( ,..,,,
Fieserst
Reagentsfor OrganicSynthesis VOLUME EIGHTEEN
Tse-Lok Ho National Chiao Tung University Republicof China
A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS,INC. NEW YORK/ CHICHESTER / WEINHEIM / BRISBANE/ SINGAPORE / TORONTO
f h i s b o o k i s p r i n t e d o n a c i d - f r e ep a p e r . @ C o p y r i g h t O 1 9 9 9b y J o h n W i l e y & S o n s ,I n c . A l l r i g h t s r e s e r v e d .P u b l i s h e ds i m u l t a n e o u s l yi n C a n a d a . N o p a r t o f t h i s p u b l i c a t i o nm a y b e r e p r o d u c e d ,s t o r e d i n a r e t r i e v a l s y s t e mo r t r a n s m i t t e d i n a n y f o r m o r b y a n y m e a n s ,e l e c t r o n i c ,m e c h a n i c a l ,p h o t o c o p y i n g ,r e c o r d i n g ,s c a n n l n g o r o t h e r w i s e ,e x c e p ta s p e r m i t t e d u n d e r S e c t i o n s 1 0 7 o r 1 0 8 o f t h e 1 9 7 6 U n i t e d S t a t e s C o p y r i g h t A c t , w i t h o u t e i t h e r t h e p r i o r w r i t t e n p e r m i s s i o no f t h e P u b l i s h e r ,o r a u t h o r i z a i i o n t h r o u g h p a y m e n t o f t h e a p p r o p r i a t ep e r - c o p y f e e t o t h e C o p y r i g h t C l e a r a n c eC e n t e r , 2 2 2 R o s e w o o dD r i v e , D a n v e r s ,M A 0 1 9 2 3 ,( 9 7 8 ) 7 5 0 - 8 4 0 0 ,f a x ( 9 7 8 ) 7 5 0 - 4 ' / 4 4 .R e q u e s t s t o t h e P u b l i s h e rf o r p e r m i s s i o ns h o u l d b e a d d r e s s e dt o t h e P e r m i s s i o n sD e p a r t m e n t , J o h n W i l e y & S o n s ,I n c . , 6 0 5 T h i r d A v e n u e ,N e w Y o r k , N Y 1 0 1 5 8 - 0 0 1 2 ( 2, 1 2 )8 5 0 - 6 0 1 1 . f a x ( 2 1 2 ) 8 5 0 - 6 0 0 8 ,E - M a i | : P E R M R E Q @W I L E Y . C O M . Library of Congress Cataloging in Publication Data: ISBN 0-471-24477-s
r s s N0 2 7 1 - 6 1 6 x Printedin the UnitedStatesof America. 1 0 9 8 7 6 5 4 3 2 1
PREFACE My first contact with organic chemistry was through the textbooks and experimental manual written by ProfessorL. F. Fieser and Mrs. M. Fieser.These works rmpressedme not only with their organizationand lucidity, but the appearanceof a compilation of reagentsas an appendix really arousedmy curiosity about research tools. This feature was not found in any other textbook, and was a harbingerof the tamous and successfulseries,Reagentsfor Organic Synthesis. T h e F i e s e r sw i l l l o n g b e r e m e m b e r e df o r t h e i r o u t s t a n d i n gc o n t r i b u t i o n s t o chemicaleducation.Their dedicationto providing a quality serviceduring the latter part oftheir lives playedan important role in the rapid advancesoforganic synthesis during the past thirty years. The quick retrieval of essentialinformation through consultationofthe seriesmust havesaveduncountableman-hoursin research.and in the courseof such readingsthere must also have been occasionsthat a chemist became inspiredto developimproved or new syntheticmethods. The "ROS" referenceseriesis an establishedinstitution. That is the main reason wiley & Sons decidedto continue its publication.In acceptingan invitation to authorship with great trepidation,I can only hope that my feebleefforts will prove to
"usinga dog'stail to substitute bemorethanmerely for a mink,s.',ffilfu/ffiE{)
The previousformat is essentiallymaintained,exceptthat more conventionalreferenceabbreviationsare used. Due to space limitations and my attempt to cover many more papers,unnecessaryexplanationsare omitted. with the same considerations, a generaltransformationthat can be describedin a short sentencewithout ambiguity is deemedsufficient, and the correspondinggraphicsare dispensedwith.
Tse-LoxHo
CONTENTS
ReferenceAbbreviations x l Reagents I Author Index
419
Subjectlndex 480
REFERENCE ABBREVIATIONS ACR ACS .{CIEE .{JC .{OMC BBB BCSJ BSCB BSCF
Acc. Chem. Res. Acta Chem. Scand. Angew. Chem. Int. Ed. Engl. A u s t .J . C h e m . Appl. Organomet.Chem. Biosc. Biotech. Biochem. B u l l . C h e m . S o c .J p n . B u l l . S o c .C h i m . B e l g . B u l l . R u s s .C h i m . F r .
BRAS
B u l l . R u s s .A c a d . S c i . Chem. Ber. C h e m .C o m m u n . Collect. Czech. Chem. Commun. Can.J. Chem. Chem. Lett. C h e m .P h a r m .B u l l . Carbohydr. Res. Dokl. Chem. (Engl. Trans.)
CB CC CCCC CJC CL CPB CR DC G H HC HCA HX IrC(B) IJS(B) J\CS JCC rcCS(T) iC R(S) JCS(Pl) JFC JHC JUC l\P JOC .'O\lC
G a z z .C h i m . I t a l . Heterocycles Heteroatom Chem. Helv. Chim. Acta Huaxue Xuebao I n d i a n J . C b e m . ,S e c t .B I n t . J . S u l f u r C h e m . ,P a r t B J. Am. Chem.Soc. J. Carbohydr.Chem. J. Chin. Chem. Soc. (Taipei) J. Chem. Res. (Synopsis) J. Chem. Soc. Perkin Trans. l J. Fluorine Chem. J. Heterocycl.Chem. J. Med. Chem. J. Nat.Prod. J. Org. Chem. J. Organomet. Chem.
xii
ReferenceAbbreviations
JOCU LA MC NJC NKK OM PAC PSS RJOC *tC S SC SL SOC T TA TL YH
(Engl' Trans') J. Org' Chem' USSR Liebigs Ann' Chem' MendeleevCommun' . New Journalof ChemtstrY NiPPon Kagaku Kaishi Organometallics Pure APPI' Chem' PhosPhorusSulfur Silicon RussianJ' Org' Chem' Recl' Trav' Chim' PaYs-Bas Synthesis S Y n t h 'C o m m u n ' SYnlett (JPn') SYnth.Org' Chem' Tetrahedron Tetrahedron:AsYmmetrY Tetrahedron Lett' Youji Huaxue
l-Acetamido-2,2,6,6-tetramethylpiperidin-1-oxyl (1). Glycoloxidation.t The tosicacidsaltof 4-acetamido-TEMPO is a mild oxidizIng agentthat convertsglycolsto a-dicarbonyl compounds. NHAc
OH Br
\
-.'\.,..OH l ) < -\? l | /
w'
TSOH . HzO
+
\ l
Br
l /
\ . {
cH2cl2
/ - N - \ I
Br
00,1h-> 180,24 h
89%
(1) '\Nalter, \f . G. Banwell,V. S. Bridges,J. R. Dupuche, S.L. Richards, andJ. M. JOC 59, 6338 t 1994).
Acetic anhydride. Acetylation,' In the presenceof freshly prepared MgI2 (from Mg and 12in dry r'ther),Ac20 acetylatesprimary, secondary,and tertiary alcoholsas well as phenols. Cyclization,2 Acetic anhydride provides a diketene unit on reaction with ureas rn the presenceof DMAP.
o Me.rA*-err t
l
H
H
O"rO ,
o Me.rA*.en
DMAP, Py rt,2h
o24u" 59"/"
Rearrangement-cyclization t 6-Oximino nitriles form 2-acetamidopyridines ,,n treatmentwith Ac2O-AcCl under reflux. The reactionproceedsfrom rearrangernent of N-acetoxyenaminesto C-acetoxy imines, which undergoelimination and ;rclization.
.,G-
Ac2O,AcCl a,4h
NHAc 69%
Pummerer rearrangement.a 7-sulfinyl acids give y-thio-y-butyrolactones. In a .clenium version,sthe rearrangementproduct (with a a,a-difluorinated selenoxide) rrn reactwith cyclic ethers.
ll" tr
2
AcetYlene
llli"illl11!!J.T:3,;i1:,1*lWglli.l]3i,lls1':i*:r""^:: "strirai' r Kumamoto' DLr and i.nffi:f
:f;jV:**;,il.;;: 'll:';l*"t"'
;;.";;' K
o r
34' l3ll (lee3)' andK' Maeda'rL Y' rokunaga'
-.''' ^"fiilj:ilH,HlAs *l'i","'1":[1iT:Til:il',:l]Jl,: "" acvanide the permits ,, J;il;;ni
it or atrvrhalides'
Wlostowski'SC rp. Dowd,B. K. Wilk' and M'
t! I't
!!!
23'2323(1993)'
Eri r-l rrtatt
tu-
I to amides in acetonitrile Acetonitrile' 15.' , alcohols are converted Benzyl Ritter rcaction" ' OEtz' presenceol BFr SC24' 601(1994)' andH' Badparva' A' R' Sardarian' rH. Firouzabadi'
in the
thus chloride' 3' i . ^-., -.lcoholsare convertedto chloridesl a c-Acetoxyisobutyryl Primary chlorination'' Regioselective selectively' alditols react ""o,"tl"itu Acq
t*5
u
t
lbll
aF :r rl
-t3..v
J-coct I
"o^l&o" HO
' M. Benazza, M'
dioxana;
,TT
Cl OAc
Ac2o,py 527"
( 1994) y' JCC 13'96? andG' Demaill Uzan' R' Massoui'
t#: n"'?;;:,t#t f,I",to"oo; Primarv:'".".Y: : :'Jl'".;11 l'X"f;I :H'ffi:' ip.,ioin. rf, "".i;;;;";l'rt.:',"1',),i;:."-'Jl"::::1fi < diisoProPYlethYlamine' (1993)' oto'IOC58'3791 andH' Yamam 'K. Ishihara' H' Kurihara'
in KoH-DMSO' acetylene Acetylene. N-vinylationwith .oleundergoes PYrt VinYlafion't
D5 i rJ It
ti N-Acvlaziridines
a\
, .q9l).
I
\./
N
?*J v
H KOH,OMSO
6 1603
1200,2 h
A,. G . M a l ' k i n a A , . l . M i k h a l e v aL, . B r a n d s m aa,n dB . A . T r o f i m o vS, C 2 4 , O.A. Tarasova 203s( 1994).
n r tr i l e s
Acetyl hypobromite. N-Bromination.t
Amides are brominated with AcOBr in CCl,r at room
lemperature. L. Duhamel,G. Ple,andP. Angibaud,SC 23,2423(1993).
k :n the
2- (4- Acetyl -2- n itrophenyl)etha nol. Carboxyl group protection.t The crr-estersof aspartic and glutamic acids are tbrmed readily using the DCC method, after the geminal functionalities are sequestered (by reaction with EtrB). The acid can be regeneratedunder conditions r0.l M Bu+NF) that do not affect an N-Boc group.
dc.. thus
o
AOS".*o2
U**
o {@---t--,A^ I Y H2N-- - -BEt2
^f-f"o' \Z
\-,'\
"Ht
H2N- - - -BEt2
DCC, CH2Ct2
J . R o b l e s ,E . P e d r o s o ,a n d A . G r a n d a s ,S l 2 6 l ( 1 9 9 3 ) .
\'-Acylaziridines. Polyketides.t Preparedin a one-potreactionfrom RCOOH,(COCI)r,EtrN, and are suitableacyl donorsfor thesereagents rn aziridine(e.g.,2-methylaziridine), with theirpolyanions. via reaction compounds of poly-1,3-dicarbonyl --hain extension I ih. Pres;,'llrdine,
NaH.THF: BuLi:
Ph^\/ 00,
B Lygo.IL 35. 5073(1994)
O
*A-I-""oot''
.A,.cooBuf
-D\tso.
O
't h
; ao.nct
\
96v"
tn
4
AcYltelluranes
Acylmethylenetriphenylphosphoranes' pyrolysis of these stabilized Wittig Acetylene precursors'Flash vacuum reagentsremovestriphenylphosphineoxidetofurnishacetylenes.Bothterminal'and by this method' are accessible intJrnal acetylenes2'r
PhsPrl H
,P
LfI
-n
R 59-82'/"
Ph3Pr1 ,P
X <
o
R
cOOM€
,o
*tr
Meooc<
!t:
R 23-700h
'R. A. AitkenandJ. I. Atherton,JCS(PI)l28t (1994)' andF' C' Smith'IL 34' 'R. A. Aitken,H. Herion,o'lu"o'i' i'v' nuut' S' Seth'I' J' Shannon'
,t-lti.tlli'il;,
andS. seth,rcs(Pt) t72't(tes4)' r. G. Mccreadie, c. E.R. Horsburgh,
17, l-2 '*'';;;';;;ror,nation.t Acylsilanes.
}T
a
-
fr
resultsin 1,2-cyclopropaneReactionwith ketoneenolares
diol derivatives'
n
)-a
\
LOA,THF, -800,0.5h;
uessioa,! *
Ph"'V
''oit
PhCOSiMe3,'8Oo- -30o
a SL 841 (1993)' ' K . T a k e d a ,J . N a k a t a n i , H ' N a k a m u r a ' K ' S a k o ' E ' Y o s h i i ' a n d K ' Y a m a g u c h i '
Acyltelluranes. reactionof aldeF'tzAlCl-catalyzed Thesereagentsare readily obtainedtfrom butyltelluridein THF at room temperature' hydeswith diisobutylaluminum andtrimethylof arcytsilanes'iOn treatmentwith butyllithium Enol silyl ethers exchange' tellurium-lithium silylation, enol silyl chloride,thesecomplundsundergo silylated' further are enolates and O * C silyl migration'The lithium
2-Alkanesulfonylbenzothiazole
rd \\'irtig ilnal
and
o
^^*-"ru l l
BuLi,Me3Sicl,-105o
os,"".
* l*""4r"", I
OSiMeg RCH
l;
*
gLi I "a"Aa,r". - tI r.le3siclI
R = Ar, PhS,BnO
V
OSiMe3
ncHAsiys. 99"/" (Z:E=98'21
T . I n o u e , K . T a k e d a ,N . K a m b e , A . O g a w a ,I . R y u , a n d N . S o n o d a ,J O C 5 9 , 5 8 2 4 ( 1 9 9 4 ) T . l n o u e , N . K a m b e , l . R y u , a n d N . S o n o d a ,J O C 5 9 , 8 2 0 9 ( 1 9 9 4 ) .
n : : i h .f L 3 4 , 9q:
cl\rpropane-
l - Adamantyl fluoroformate (1). Phenol protection.t The reagent (l) transforms phenols carrying strongly electron-withdrawinggroups into mixed carbonates.Deprotectionis accomplished bv use of trifluoroaceticacid at 0-20' for 20-60 min.
6"i, (1)
J-
JCR(S)242 (1994). andC. J. Springer, I Niculescu-Duvaz
\ O H
51 r.1l ( 1993).
!- Alkanesulfonylbenzothiazole (1). Olefination.t The anions of (l) react with carbonyl compounds to give predom: n a n t l y( E ) - a l k e n e s . R
2->r'\, rron of aldelure. n.l tnmethyl-
)
(AJ?"o (1)
!m e\change' I - 8 . B a u d i n . G . H a r e a u .S . A . J u l i a . R . L o r n e , a n d O . R u e l , B S C F 8 5 6 ( 1 9 9 3 )
5
3-AlkoxYacrYloYlchlorides
AlkenYlboranes' E n y n e s . | T h e a t t a c k o f l i t h i o a l k y n e sthe o noriginal - a l k e n yconfiguration l d i s i a m y l b oofr athe n ealkesfollowedby in which oxidationwith iodinet';;;;;;"";
u'o'' """'i"7f)nll;,,", chirl?: thatbears ; Anenone ::'li; Jif; ;:',oon
c a n b e s y n t h e s i z e d t h r o u g h s u c c e s s i v e " u t t i o o ' Further o f u t h i r atreatment l b o r a n e wofi t hthe a nresulting alkeneand "*Juiylt' "'-;":;; HzOz with finally an alkyne' followed t, and methyl ether and Et3COLi' alkenylborarre*itt' oicnioior"ethyl affords the product'
L r n
rrtr t
of defined L^-^-:^ onizls are converted to allylamines
l-*mn:!.i'i:::T[1i,1'.di.il$:n*inm"H a-
a,
a The requiredvinylborontc o"ruilt*"ro.hyde)' followedby hydrolysis' i"..,a" *t,n catecholborane (HCHO)n
a?
HN --,,'
dioxano ,
(-o, ph.r4,ra
Nv/
PhC=CHB(Ofl)z 89"/o
y,&lJnsaturatedkctones'a"tThesynthesisfromalkenyldiisopropoxyboranes . It is suitablefor reaction t, catalyzedby BF3 oEtz. *o*., The correspondand a,p-unsaturated (e'g" Cu reagents)' organometattics that are;;;; with substrates manner' obtainedin an analogous ing alkynyl ketonesare JIli^l' 676(1993)' andE' Mincion": rp. Bovicelli, P.Lupatelli, ss re c' ttee^11' ';.;.;;;;; ""0 v' r' Mahindroo' TL 34' 583(t993)'. tH.i. t.i".t, andI' Akritopolou' (1993)' oE.-i.Takada, S' Hara'anii' su'utl' TL34"1067 (ree2)' 483 a' Hc suzuki' ';.:;. ;;;;;: i. su'u' andA' *CH:CHR BFa-' tetraf luoroborate' Ph3P Atkenyltriphenylphosphonium of epoxideswith an are availablefrom the reaction salts These in moder|,3'Dienes'' fttt:l:1 andtPh.PHl*BFa-'Diene *tt'i"nl"tti") or (AcCl acidchloride ArCHO and DBU' thesesaltsare treatedwith ate yieldsis observedwhen 66'1308(1993)' ' K. Okuma'M. Ono,andH' Ohta'BCSJ
''^#ffi:J::tl'*H'l#i followed bY heating above
withoxalvlchloride or vinvlethers innolu"reaction 100"C'
Ct
c
H
alr
-
:{ I Irr a:
o
t# *
Alkylaluminum chlorides
o
ued by re alken atoms ,cneand
oo-> rt
COCI
'
RO \:\
6oo
> looo
RO \:\
!o
Po
cl
ctco
R = Me
'L.
72/o
, n d M . P r e t o r , S 1 0 7 9( 1 9 9 3 r . F. Tietze,C. Schneidera
c.ulting rh H:oz d e f in e d rR;NH, ( ) n e sb y
A l k y l a l u m i n u mc h l o r i d e s1. 3 ,5 - 8 ; 1 4 ,4 - 5 : 1 5 , 2 - 5 ; 1 6 , l - 3 ; 1 7 :4 - 7 reactionof a dioxalenium Mukaiyamaaldolization.t The intramolecular with a silyl enolethersidechaingivesdioxabicyclicproducts. OMe
qlP orr.
.fl.-\
Et2AtCt/ CH2Ct2
o--\-\
Lo -7"
Fo
-200,2h 65o/o
\ b()faneS ' reactlon
Ene reactions. The intramolecular version is suitable for the construction of Excellentl . 3 - c h i r a l i t yt r a n s f e ri n t h i s p r o 12-, 14-,and l6-memberedring systems.2 cessis evident.r
l1s.pond-
OH EtAtCt2/ CH2C|2
. / - \ / / \ / 1
-780
Pr3SiO 667.
t: \r lth an ln moder-
2-(Alkenylmethyl) cyclic ethers are formed by the reaction of lactols and alkenes." Diels-Alder reactions. Diethylaluminum chloride depositedon silica seemsto be a superiorcatalyst.5Methylaluminum dichloride alone is effective in promoting Intramolecularcycloadditionsinvolving a furan ring as the diene.' Reaction of the 1,3-dipolar species derived from methyl [3+2]Cycloaddition. ketone with silyl vinyl ethers furnishes functionalized cy1-phenylthiocyclopropyl clopentanes.TA related reaction is the trapping of a fragmented cyclobutane.E
o z\
_
+
SPtr
TBDPSO
\/-
M€2A|Cl/ CH2C|2
)""3sen TBDPSO4-
1l chloride 76%
fir
t
Alkylalumlnumchlorides
reactwith
carbonv.t" i on of eno.tizabte Atkytat : !! !i,!o]r:..fr"r:J;J!es to gtv
stereoselectively orgunoiu.inum chlorides
CONMe2
'
'l 'I
Faner!|tltJa:ri '1 l. Tr.bI L:lrar L lrrd l, \.-lraar
MeAlC12
oHc.:r,coNMez
CHzGlz oo -> 250
THldroxy
66% (97:3)
ester enolates is epoxide opening by esters'to The catalyzed
toN-crotonvr,,",Jo'"iiJ".i*,,';:li,:::'TilTil,.}i:{iliilil,',,"", ch,oride reacThe corresponding showsl'5-asymmetricinduction' 4-benzyloxazolidin-2-one photoactivation' ,t* *nn MezAlClrequires
W*Yo O O
PhMs-hexans - 780, 0.8 h
, . . O O
Thus S k c l e t a t r e a r r a n g e m e n t . | z T h e f u s e d r i n gring - s y sskeleton t e m ( 1 )(2)' con t a i nthe i n glatter acyclobutene to a:itYo its straino,;;"t";"tent Ticlq-mediated unit releases initial the availablein two steps,inuoruin'g classof compoundsare enones' cvclic to of the properalkvnes il;;;;Jdition
I
TBS
/l
at<
CH2C12
lr'\rr" 80%
0)
Cl{
tI
Ita
tI
# E
3lt.
SMe
ErAlcl2
00
r c o
YY*Yo a8"/"
SMe
d d n
lrtrn -*:r
t--,
EtzAlGl
)-
tl
trr{
ar
Ph
Ph
tbt
(2)
(1994)' rS. Leser' J. Omeara' and Z Wang' SL 829 3:12-'^'::31
'i. o".ii;r;;"'i andM w' 'qno"'!n'roc st'
(1994)' "nJi'-fu*uji*a'TL35"7965 rK. Masuya, K' Tanrno' (1993)'-. 1843 cc .'ti. ilil;;i andH. Kishino , , , E. pires,andA. J. Royo,TA 4, 62t I' Garcia' J' A' Mayorat' s C . C a t i v i e l a , F ' F i g u e r a s 'J '
nn,, il'3illo,,,, i! Ii'J;-. :0,":1I1'^Klj;:?i:II?"?;,h:l 7Y. Horiguchi, l' Suehiro'
['|r-r! tfrrr
l$r
c;
n
sn(t IF -
a
Alkyla-phenylthiocrotonates u ltn
e\
lS
l(rn\ l-
9
tT. Fuiiwara, T. Iwasaki, J. Miyagawa, and T. Takeda, CL343 (1994). 'M. Taniguchi,H. Fujii, K. Oshima, and K. Utimoto, BCSJ 67,2514 (1994). 'nS.K. T a y l o r , J . A . F r i e d , Y . N . G r a s s l , A . E . M a r o l e w s k i ,E . A . P e l t o n ,T . - J . P o e l , D . S . R e z a n k a ,a n d M . R . W h i t t a k e r , J O C 5 8 , 7 3 0 4 ( 1 9 9 3 ) . " K. Ruckand H. Kunz,S l0l8 (1993). 'r K . N a r a s a k a ,H . S h i m a d z u , a n d Y . H a y a s h i , C L 6 2 1 ( 1 9 9 3 ) .
Alkyl /- butyl iminodicarbonates. Protectedamines.t Aminescan be preparedby Gabrieland Mitsunobusyntheare availableby (l) as nucleophiles. The reagents sesusingthe iminodicarbonates followedby introwith alkyl chloroformates, acylationof 4-methoxybenzylamine ductionof the N-Bocgroupand removalof the benzylmoietywith CAN'
o
(Boc)2O ATCHzNHz
tl RoAct
2 /v NaOH
no^n.\/\ " \4or"
o
"oA*Ao\
DMAP,MeCNi CAN, MeCN-H2O
THF
(1)
J. M. ChongandS.B. Park,JOC5E,7300(1993) t utene c l.rtter : d rr t e d
Alkyl phenyl selenides. electron activatedthroughphotoinduced Alkylating agents.t Theseselenides, transfer,reactwith enol silyl ethers,forming a-alkylatedketones. Rl
OTBDMS
ocN, ,il
)_sepn R2
R3
MoCN.H2O
Rl
*
0
t t l
gzl'\.
ffi;
ill
gs
ili' t'
60-72"/.
G. Pandey and R. Sochanchingwung, CC 1945 (1994).
.{.l 621
Alkyl c-phenylthiocrotonates. Michael reactions. The ester group exerts profound influences on the steric courseof the reaction.Thus diastereocontrolris possibleby changingsolvent,enolate counterion, and activating group at the a-carbon of the acceptor. The phenylthio group increasesreactivity, but electron-withdrawing substituentsat this position tend ro erode the diastereoselectivity.Temperatureeffects are also dramatic.
il
10
Allylboranes
'V.'ny"oo*ba,**. b* (15:1) (1:30)
81o/" R = Me, CHeCle,-78o,48 h R = menthyl, THF,0o, 10 min 83"h
'8.
tlhl !o tt
I -+fr
J. Corey and I. N. Houpis' TL34,2421 (1993)'
AlkyltriphenYlarsonium salts. ylideswith a bromoacetic esterc.' Alkylationof the corresponding LJnsaturated conjugatedestersdirectly' estergenerates
taq.t t { J . r G r Lr.q
BuLi,THF -7go-> 00;
Me3SiC-CCH2AsPh3 BtcH2COOR - 7 8 0 ,2 h
MesSiC-CCH=CHCOOR (E:Z 52:48-3'.97\ 46-$Oo/"
R = alkyl, Propenyl, ProPYnYl
lDler
f '-A't
I
lFral I
'Y. Shenand Y. Xiang, HC 3' 54'l (1992)'
C-sr
I
rD5 bt
Allenyl(triPhenYl)lead. in a reacPropargylation of carbonyl compounds is achieved I-Alky-4'ols.t propargyl and PhrPbMgBr from tion catalyzed by BFr . OEtz. The reagentis prepared
rFd\
bromide.
Fllt
C
C14 qkr
rD. Seyferth,D.Y' Son,andS. Shah,OM 13'2105(1994)'
Allylboranes.14, ll-12; 139-141;16' 6 prepared from reacAllylation,t 2-Allyl-l'2-oxaborolane is an allylating agent tionof2-a||y|oxy.|,2-oxaborolanewithallylmagnesiumbromide.Al|ylationiscarriedoutwithoutsolvent,betweenOoCtoroomtemperaturewithaldehydesandat l'2-addition' 80-100"C with ketones. Conjugated aldehydesundergo
G^
M62CO 80-1000 3h
G-"x^
HN(CH2CH2OH)2 120-1600,1-2 h
"oX^
( r..11 \ lL^l t l.il tr t . h
Allyldiisobutyltelluroniumbromide11
ccoF
B-Allylbis(isocaranyl)boranes(1)2candelivertheallylgrouptocarbonylsub. stratesto give chiral homoallylic alcohols'
n
Yotn
A)""
v
(1)
om(racetlc
(1993)' W. Zhou,S. Liang, S. Yu, and W' Luo, JOMC 452' l3 tT.A.J.vanderHeide,J.vanderBaan,E'A'Bijpost'F'J'J'deKanter'FBickelhaupt'and G.W. KlumPP,TL 34,4655(1993)'
Allyl chloroformate. 13, 9 N,-Protectionoflysine.|Reactionwiththecopperchelateoflysinefurnishes for large-scalepreparation' rhe derivative quantitatively. The method is suitable A. Crivici and G. Lajoie,SC 23' 49 (1993)'
J rn e reacd pr,'pargYl
A llytdiisobutyltelluronium bromide' Heteroatomaltylation.Diisobutyltellurideisagoodleavinggroup;therefore and anilinessare readily allylated by this salt' phenols,tthiophenols,2 Cyclopropanation.aThederivedylide(1)isabletoparticipateincyclopropane use the salt stoichiometically as ring formation with enones. It is not necessary to diisobutyl telluride can be made catalytic' Ph Ph
BrMsiM".
"
iBu2Te, CS2CO3
\z\
coPh
THF/ trace HzO 500. 48 h
d lr(rm reacatl(rn lS Caf-
rrJe. and at
vcoPh V\
SiMea
70"/"
t ' .
I
iaurr"AZ\r,y".j (1)
\
C. Xu. S. Lu, and X. Huang,SC 23'2527 (1993)' 's.-M. Lu, C.-D. Xu, andX. Huang,YH 14,545(1994)' C. Xu, S. Lu, andX. Huang,HC 5,7 (1994)' 893(1994)' 'Y.-Z.Huang,Y.Tang,Z.-i'Znou, W Xia, andL'-P' Shi' "/CS(PI)
f,
12 Allylidene(triphenyl)phosphoranes Allyldicarbonyl(cyclopentadienyl)iron. folHeterocycles. Lewis acid-catalyzed reaction with aromatic aldehydesr'2 2-aryltetrahydrofuran-4methyl to leads methanol lowed by CAN oxidation in and for carboxylates. The reactivity of aliphatic aldehydes and ketones is inferior, catalyst' as TiCl4 using better ketonesthe reactionproceeds
f|llbrycrrrl Cntcitc
1
ln trtflrr
irr.,
.erril rcd rcrlt
r U
X.rotrr
MeOOC
cHo
6-roc,;re.r1 oc
>:l\ ( -1/
rtfrihtf |'ll.frtia
i Zn9l2lCH2CI2 CAN, CO, MeOH
Noz
'rc
-780
Noz 71"/"
t<
:ootrol
t\*tia -ir-!lium trF.!'*'Drotdt
tosyl N-Tosylpyrrolidinederivativest are similarly obtained in reactions with imines.
f,. '-a
--.'-
'S. JiangandE. Turos,OM 12, 4280(1993);TL35' 7889(1994)' tS. JiangandE. Turos,rL 35' 7889(1994). tT. Chen,S. Jiang,andE. Turos,TL35'8325(1994)'
lllrri
AtlyldimethylsilYl trif late. Allytation of aldehydes.t The reagent,prepared by reaction of diallyldimethylto afford silane with triflic acid, reacts with aromatic aldehydesat low temperatures
Fnr'n
homoallylic alcohols.
C!j:3
rl d
Gi?
tt
rl
iYrD cI
t|!qt rFrtr
I M. A. Brook,G. D. Crowe,andH. Hiemstra'CJC72,264 (1994)'
II
r"ttrr
r
dQorra ccl
lr Allylidene(triphenyl)phosphoranes. alkylation Cyclopentadienes.t One step annulation with a-haoketones involves reaction. Wittig and intramolecular
cHcooEr -\ PPh3
o.
F ( Br
NaHCO3/ H2O cH2cl2 rt, 12 h
-Cr)96%
tq
||;l lM.
H a t a n a k a .Y . H i m e d a , a n d I . U e d a , J C S ( H ) 2 2 6 9 ( 1 9 9 3 ) '
lar
fb
AllYltributYlstannanesl3
: fol6s. 'oi uran-4rr. and for
( Allyloxycarbonylam ino)methanol' cysteine' the reagentis apcysteine protection,t For masking the thiol group of is achievedby palladiumplied in trifluoroacetic acid/dichloromethane.Deprotection catalyzedreductivedeallylation' TLSS'9035(1994)' A. M. Kimbonguila,A. Merzouk,F' Guibe,andA Loffet'
-17; 16,'7-9' 342-343; 17"t2 -13 Allyltributylstannanes. 13, l0; 14, 14 a-ketols is under chelaAllylation of carbonyl compounds.t The reaction with tion control to give sYn-l,2,diols' an a-radical is via a radical Allylation of p-oxy-o-iodoanilides.2 Generationof induction' giving translocationreaction.The allylation is subjectto 1,2-asymmetric predominantlYthe anti Products' u ith tosYl
o
o H o
. l r r
i--aT'" 'Y) \.,/
4>"rsnBue
H
o
#(y" ' (
it\
l{\ afford
H
o
)Yry" P h
p n
(
PhH, hv 2 5 0 , 4 8h
64"/.
r ) J: rnrethyl-
o
(93:7)
a chloroformate ester, Allylation of heterocycles.3.a Upon activation with Interestingly,the plridines and azolesare susceptibleto attack by allyltin reagents' on the regioeffect narure of the substituenton c-2 of the reagenthas a determining electron-withdrawing an .clecrivityin the additionreactionto the pyridine ring' Thus whereaselectron-donating sub:roup (cyano and acyl groups) favors addition to c-4' .rrtuentS(e.g., methyl) direct reaction arC-2' y,&Ilnsaturatedacids.sFreeradicalsgeneratedfroma.iodoacylderivatives amides with defined ..i oppolzer's camphor sultam are converted to 7,6-unsaturated give the acids' to rbsoluteconfiguration.The chiral auxiliary can be removed
e..rlk1'lation
. d BuaSn
Et3B/CH2Cl2 .200
pe
for preparatton of homoAllyl replacement.6 The radical reaction is suitable fluorides' rlf rlic fluoro compounds from gem-nitroalkyl
14
Allyltrichlorosilanes
Bu3Sn
Meooc. n
.cooEr
vX F
'
(
F'^
__-^.
PhH' ^' 3 h
\\
Noc
I L:Csrlll I I Darr
MeoocvvcooEl
A|BN
rlrriAddition to a,p-epoxy aldehydes.l The syr-selective reaction catalyzed by LiClO4 is under chelation control. l-Alken-6-ones.* A four-componentsynthesisfrom an alkyl halide, carbon monoxide,a Michael acceptor,and the allylstannanein the presenceof AIBN starts with generationof an alkyl radical R', which is subsequentlytrapped by the three
fd ri'l,c
Gr4l a l|^*jrr
other reagentsin a tandem reaction. Yields are excellent.
I '-' BX | ""=o Bu3snx t Epoxide
opening.o
/tcN
Terminal
al
$e-
trl:}
o
er I
-rti*efar
*.I,rt
!
*&\"*
ll
tu?!d,
epoxides are opened regioselectively with allyl-
lithium reagents derived from the stannanes. 'D. J. Hallert and E. J. Thomas,SL 87 (1994). tD. P . C u r r a n , A . C . A b r a h a m , a n d P . S . R a m a m o o r t h y ,f 4 9 ' 4 8 2 1 ( 1 9 9 3 ) . rR. Y a m a g u c h i ,K . M o c h i z u k i , S . K o z i m a , a n d H . T a k a y a ,C C 9 8 l ( 1 9 9 3 ) . tT. l t o h , H . H a s e g a w a ,K . N a g a t a ,a n d A . O h s a w a ,J O C 5 9 ' l 3 l 9 ( 1 9 9 4 ) . t D . P . C u r r a n , W . S h e n ,J . Z h a n g , S . J . G i e b , a n d C . - H . L i n , H 3 7 ' 1 7 ' 1 3( 1 9 9 4 ) . 6Y. T a k e u c h i . A . K a n a d a .S . K a w a h a r a , a n d T . K o i z u m i , J O C 5 8 ' 3 4 8 3 ( 1 9 9 3 ) . 7J. lpaktschi, A. Heydari, and H.-O. Kalinowski, CB 127'905 (1994). '1. R y u , H . Y a m a z a k i , A . O g a w a ,N . K a m b e , a n d N . S o n o d a ,J A C S 1 1 5 ' l l 8 7 ( 1 9 9 3 ) ' 'L. E . O v e r m a n a n d P . A . R e n h o w e ,J O C 5 9 , 4 1 3 8 ( 1 9 9 4 ) .
Allyltrich
hrd lrrlll
rrf-
,fr ffrl
rl (!
f:(l'd
tr-l + rEq*l I
lorosilanes.
Allylation
of aldehydes.
Formation
alcohols
of homoallylic
proceeds
in a
highly stereoselective manner,r depending on the double bond configuration of the allylsilane. The silane reagents can be generated in situ from conjugated dienes by Pd(0)-catalyzed hydrosilylation. In the presence of a chiral phosphoramide,' it is possible to achieve asymmetric allylation of aldehydes.
DMF
-,sicr3
+ RCHO
Y\
ottW\,,.sicls
+ RCHo
oh I R"-
OH
I N,Y\ :
la: h t
AllyltrimethYlsilane
15
S . K o b a y a s h ia n d K . N i s h i o , J O C 5 9 , 6 6 2 0 ( 1 9 9 4 ) . : S . E . D e n m a r k , D . M . C o e , N . E . P r a t t , a n d B . D . G r i e d e l ' J O C 5 9 , 6 1 6 1( 1 9 9 4 ) .
lr z.'ri by i...rrbon B\ starts th. three
Allyltrimethylsilane. 13, ll-13; 14, 18-19; 15' 8 The compound is comparableto trimethylsilyl Trimethylsilyt fluorosulfonate.t rriflate as a source of trimethylsilyl cation. It is formed by treatment of allyltri-78'C. methylsilane(or tetramethylsilane)with fluorosulfonic acid in CHzClz at a-Allyl amino acids.2 a-Acyliminium ions, which are generatedin situ from a-alkoxy amino acid derivatives,are efficiently trappedby various allylsilanes. N-Homoallyl amides.s N-Triflyloxy amides readily give N-acyliminum species on heatingin isopropanol.In the presenceof allyltrimethylsilane'homoallylic amides are formed as products.
^/\ H
o
Messi.\,r1
II N
,A*r\A
,Me
I
r:lh rllyl-
oTl
H
iPrOH, A
56-80%
Homoallyl selenides.a Selenoacetalsare converted to homoallyl selenidesin a Lewis acid-promotedreaction. Pyrrolidines from [3+2]cycloaddition. Using BFr . OEt2 as catalyst, N-cbzto give the Na-amino aldehydesreact with allyltrimethylsilanestereoselectively Interestprorected cis, cis-2-alkyl-3-hydroxy-5-trimethylsilylmethylpyrrolidines.s amino N-Boc with 2-chloromethylallyltrimethylsilane rngly, similar reactions of aldehydesproceedby the desilylativeene reactionpathway.' OH
\rcHo lc.J:
ln a
CbzNH
Itl'\n of the
Me3Siv^
\-{
t ) "ot*-L.'"".
BF3'OEt2/ CH2C|2 - 1 0 0 ,I h
t J r en e s b Y :. rl i\ pos-
750h
(c'
rn-\-""o BocNH
[,tessi _ \
BF3.OEt2/CH2C|2
oH ,,
"n1.\/U"' BocNH
- 1 0 0 .t h 72k
> 95% de
andG. P. Roth,TL 34' 995 (1993). B H. Lipshutz,J. Burgess-Henry, , . N . S p e c k a m pB' ' K a p t e i n ' F -C . R o o s ,M . C . L o p e z ,M . A . B r o o k ,H . H i e m s t r aW (1993). 58,3259 JOC E. Schoemaker, and H. Xamphuis,
16 Alumina , R.V. Hoffman,N. K. Nayyar,J. M. Shankweiler, andB.w. Klinekole,TL 35, 3231(1994). '8. HermansandL. Hevesi.BSCB103.251(19941. 5S.Kiyooka,Y. Shiomi,H. Kira, Y. Kaneko,andS. Tanimori,JOC 59' 1958(1994)' uF.D'Aniello,A. Mann,D. Mattii, andM. Taddei,JOC 59,3'762(1994\'
Ester hydrolysit be effected in a sho phenylacetatein th time (e.9., 30 sec rs
Aldol condcny ethersand aldehyda Allylzinc reagents. Homoallylic alcohols.t Allylation of carbonyl compounds is straightforward. Under catalyzed conditions enonesundergo conjugate addition' with Reductive allylation2 of perfluorocarboxylic esters involves prior treatment i-Bu:AlH. "uttntt"\ ' F3CCHOAIBUi
iBu2AlH F3CCOOET cH2cl2, -78o
bt,
F3CCHCH2CH=CH2 I OH
znBt2l CH2C|2, 40o
d
B-Keto cstcrt. rlyze the reactionb l0 min at roomtem
u"/. o a-Allylglycine derivatives are readily acquired from a-
Addition to imines.l imino esters. N-Homoallyl amides.a N-acyl-a-methoxyamines (availablefrom electrochemito homocal methoxylationof amidesand carbamates)are convenientlytransformed allyl amines and p-amino acidsby replacementof the methoxy group' of Chlorohydrins.s o-Chloroallylzinc reagents are formed by deprotonation ketones and with aldehydes reaction Further ZnClz. with treatment and allyl chloride furn isheschlorohydrins.
LDA, ZnCl2 THF. -780
\-,\
H
. l F e i x a s ,A . C a p d c r r R. S. Varma, J. B. Lrr R . S . V a r m a ,M . V e n 'R. S . V a r m a ,A . K . O 'S V. Ley and D. M. I 'B C . R a n ua n d R . C l 'D D . D h a v a l e ,P . ! i I
R P H R',,\,.\ I 61-96%
' J . E s h e l b y ,P . C . C r o w l e y , a n d P . J . P a r s o n s ,S L 2 7 7 ( 1 9 9 3 ) ' J. tT. l s h i h a r a , H . H a y a s h i ,a n d H . Y a m a n a k a , T L 3 l ' 5 ' 7 ' 1 7 ( 1 9 9 3 ) ' 1G. Courtois and L. Miginiac, JOMC 450' 33 (1993). nN. Kise, H. Yamazaki,T. Mabuchi, and T. Shono' TL35' 156l (1994\' tK. H,. I l a , a n d H . J u n j a p p a , T L 3 4 , 3 1 4 5( 1 9 9 3 ) ' M a l l a i a h ,J . S a t y a n a r a y a n a
Alumina. 14,20-21; 16,9-10 with or de-O-silylation Ethercleavage.rAluminacontaining3VoHzOmediates dramatically' without solvent.With microwaveirradiationthe reactiontime shortens
Aluminum. Rcduction of si : hc n itro group to eitl :. usedto facilitatc t
Pinacolforntti Reductive silylt, .rlrlation.{ Dependi rc rntroduced to thc
Aluminum 17
I
iq94).
9-:
Esterhydrolysis.Efficientcleavageofesters,2-aincludingphenylpivalate,5can beeffectedinashorttrmewithassistanceofmicrowave.Itispossibletocleavea by shortening the reaction phenyl acetatein the presenceof a primary alkyl acetate t i m e ( e . g . .3 0 s e c v s . 2 . 5 m i n ) ' r between silyl eno| Ald.ol condensatio,,,6 The ultrasound-promoted reaction ethersand aldehydeson alumina surfaceis anti-selective'
a r n l . n tw i t h
o .. oH
OSiMe3
Bht l\)rward'
ALI"N
Al203
/\ t
+
l
PhCHO ultrasound
(,
18h
68'/" (75:25)
p-Ketoesterc,lAfteractivationat200ocundervacuumaluminaisusedtocatalyzethereactionbetweenethyldiazoacetateandaldehydes,whichrequiresonly l0 min at room temperature. Al2O3
t:..i trom c-
. t \.,\H
l
N2v/,cooEt N2/ri, 10 min
o \.,vcooEl 80%
: l r , tr o c h e m i m a . lt ( )h o m o | r, ' 1 , ' n r t i o no f '. :rJ ketOIl€S
andA' Guerrero'I 50' 8539(1994)' J. Feixas,A. Capdevila, (1993)' R. S. Varma,J. B' Lamture'and M' Varma'TL 34' 1029 (1993)' 999 JCS(Pl) Chatterjee, A. K' and R. S. Varma,M. Varma, ' R . S . V a r m aA en , dM ' V a r m a7' L 3 4 ' 3 2 O 1 ; 4 6 0(31 9 9 3 ) ' , .K. Chatterjea 'S.V. , L 7 9 3( 1 9 9 3 ) ' L e y a n dD . M . M y n e t t S '8.C. 4 9 '5 3 3 3( 1 9 9 3 ) ' R a n ua n dR . C h a k r a b o t t y ' T -D. Mali, JCR(S)152(1994)' S' R. and Patil, P.N. D. Dhavale,
Aluminum. form aluminum reduces Reduction of nilro cornpounds' In the amalgamated to the amine.2Ultrasound rhenitro groupto eitherthe hydroxylaminerstageor directly reduction' latter to facilitate the r\ used --iiro*tyormation.s effective' A combination of KoH and aluminum powder is trimethylelectrochemical Reductive silytation. o-Dichlorobenzeneundergoes of the silyl groupscan numbers various conditions, reaction on .rlylation.aDepending he introduced to the ring. Al anode e, Mo3SiCl THF/ HMPA
r l r r : t t o nw i t h o r n. Jr.rmaticallY'
SiMe3
18 Aluminumchloride are Allylaluminanes.sFormationoftheorganometallicreagentandinsitureactlon Lead and nickel halides in the cephem system' t"tultt p-lactu* with an allenyl reaction' also involvedin the
2,3' DihYdro' 2,2' d imcth'lbt methallylPhenYletherswith AlC
o\ *\
e.conurrls..., BnCONH-
ttlr\
aS-SO2Ph
*rvo coo--\-
/--Y^^ coo-\-
AI
q
/-\ \\ // -o""
PbBr2, Nicl2(bipy) NMP, 35-400
OMe
a5%
are metalatedby treatment Polyf luoroalkyl iodides withDMFsolvent Polyftuoroalkyl aldehytles'6 reaction Thein situ
o AliPhatic Fricdel-Cmfts drcr tricarbonYliron-comPlexed amx nient accessto conjugated t rrith rionrr of alkenylstannanes
tourt'
of Al powderuno"utu'"1'Jlt*"t#
Y ,,\
gives the aldehYdes' P{s 81' 149(1993)'
,c. yuan,c. wang,H. Feng,J' Chen'""1 t:y::"" 6013ilee4)' ';.;.;;;.; andRln' Luzlro'rL 3s' (leea)' 5rt 66 sehgal, ,i J. id;;; andA. -.. ^ 13,24ls (lee4). and J' Dunogues'oM ';:'il;i;";' M' Bordeau'c' Biran' (1994)' 146l tt 5H. Tanaka,S. Sumida'*'i"t"E"' ""0-s l"::i'
... iJ.'ii" ""4 x.-Q.rans,JFC6r' 217(lee3)'
ricvra Sar towards al erlctroph'es 1':n:' with AlClr'
u'" heated *-tt"n pt'"nof' and nitromethunt which ts doximes are formeds 2 moles of AlClr' with suifide forms a ""tpn; methyl are obproducts Chloromethyl "t'n p:o ratios of "l",nu'i" ton'pouno''; '"*ii' very electroph"'"
uorconj sation rvzedconden
'"il;;;*:n:;",'x#:'"+i:TH""-ffi
ridines'? Oitnopnift' gives2-aminopy gatedcarbodiit io"' i'itt' - NPh
*oc'
,n'\
COOMe I
ill 'l'
cOOMe
sr \
,r
,\^
15 15'.10;16' l0-ll; 17' 13' 15-17; 14'21-22" ketones Aluminum chloride' oxoindolin-3.ylidene of to (Z).isomerizatron ,i" tilIsomerization., on contactwith AlCl:' as occursat room temperature and sulfonamidesserve N-Alkvlamides'ureas 2'";;;;";;:' of formation Friedel-craft' itt" selectiveth" p'"t"nt" "r licit' alkyl donors2rot u"n'l'*-in hvdroxyphenytpyrioinemetr,anolslby.t,","u..ionofphenolswith2.pyridinealde-
;;*-:,*:;r#:'l'r:#*";"",T;i,
.,.Fe(@h
a'"'3
tnt"' o th
NHPh COOMe COOMe
o { v h
+ '
rt | \
3,5' DialkYl-6' alk YlnctLY merizationof acidchloridcsin preParation.
3 RCH,@
Ester cleavagc'tl Thc I cleavemethYl, benzYl' methol mcth 9- (tri methylsilYl)ethoxY anitt of sac Tran Ylation are obtained bY using acttta of amines with tanoylation15
Aluminumchloride 19 p-' .:nd in situ reaction | : - . 1 n r c k e lh a l i d e sa r e
2,3-Dihydro-2,2-dimethylbenzofurans.s A one-pot synthesis by treatment of methallyl phenyl etherswith AlClr involvesClaisenrearrangementand cyclization.
Vr
s \ c : . - - :\ 1
// OMe
6'
t '- ::.:i.rtedbY treatment :: $ ith DMF solvent r'
CH2Cl2 -70o-> rl 98%
Aliphatic Friedel-Crafts acylations. Reactions involving alkynylsilanese or dienesprovide useful syntheticintermediates."'Aconvetricarbonyliron-complexed nient accessto conjugatedamides and sulfonamidesis the dematallativesubstituwith the proper electrophiles. tionrr of alkenylstannanes
ctcocooEr / Alcl3
v I ' -
l<
Atct3
,,,(','Fe(co)3
cH2ct2, -78o
Y o2t
cooEr
70"/.
-.-:
o
SiMer
cl l5 i-ylidene ketones d . - : , ' n a m i d e ss e r v e a s nf 2 ' . . : - ' r r t o r m a t i oo r. . ^:rh 1-pyridinealder r : - . - - r r € o € S .S a l i c Y l a l ar: . .l \\ rth AlCl r. r., :. ,ri AlCl., which is r:1.. . trf productsare ob| . ,rJensationof conjuOl'
:coMe -
,Fe(CO)s
loOMe
.,=Fo cl
I
" illt )
, -silr'tes
.r ' ' v )'
Atct3/ cH2cl2
rl
ctl\o-\r^p1.,
-780,3h
74"/"
Ph
Dehydrochlorinative tri3,5-Dialkyl-6-alkylmethyl-4-hydroxy'2-pyrones." merizationof acid chloridesin the presenceof AlClr is the simplestmethodfor their preparation. OH PhN02 Atct3
t-,/s-* i l l
3 RCHzCOCI 1000,5 h
a\oAo
R
51-80% Estcr cleavage.t3 The AlClr-PhNMe2 combination is a versatile reagent to and cleavemethyl,benzyl, methoxymethyl,methylthiomethyl,methoxyethoxymethyl, p-(trimethylsilyl)ethoxymethylestersat room temperature. Transacylation ofamines. The effectivenessvaries and good yields ofproducts are obtained by using activatedamides (imides, N-tosylamides).'a4-Tosylaminobuof amines with N{osylpyrrolidone proceedsmuch more smoothly. tanoylation15
20
Aluminumhydride-triethylamine
' G . F a i t a , M . M e l l a , P . P . R i g h e t t i , a n d G . T a c c o n i , f 5 0 , 1 0 9 5 5( 1 9 9 4 ) . t K . H . C h u n g ,J . N . K i m , a n d E . K . R y u , I L 3 5 , 2 9 1 3( 1 9 9 4 ) . tG-. S a r t o . i , R . M a g g i , F . B i g i , A . A r i e n t i , C . P o r t a , a n d G . P r e d i e r i , f 5 0 , 1 0 5 8 7( 1 9 9 4 ) . 'J. N . K i m a n d E . K . R y u , T L 3 4 , 3 5 6 7( 1 9 9 3 ) . tc. Sartori, F. Bigi, R. Maggi, and F. Tomasini, TL35,2393 (1994). oc. A . O l a h , Q . W a n g , a n d G . N e y e r , S 2 ' 7 6( 1 9 9 4 ) . tT. Saito,T. Ohkubo, K. Maruyama, H. Kuboki, and S. Motoki, CL ll27 (1993). n K. M. Kim, H. R. Kim, and E. K. Ryu,H 36, 497 (1993). 'M. M u r a k a m i , M . H a y a s h i ,a n d Y . I t o , J O C 5 9 , 7 9 1 0( 1 9 9 4 \ . "'M. F r a n c k - N e u m a n na n d P . G e o f f r e y , T L 3 5 , 7 0 2 7 ( 1 9 9 4 ) . " M . N i e s t r o i ,W . P . N e u m a n n , a n d O . T h i e s , C B 1 2 7 , l l 3 l ( 1 9 9 4 ) . rrG. S a r t o r i ,F . B i g i , D . B a r a l d i ,R . M a g g i , G . C a s n a t i ,a n d X . T a o , S 8 5 1 ( 1 9 9 3 ) . 'tT. A k i y a m a , H . H i r o f u j i , A . H i r o s e , a n d S . O z a k i , S C 2 4 , 2 1 ' 7 9( 1 9 9 4 ) . 'oE. B o n , D . C . H . B i g g , a n d G . B e r t r a n d ,J O C 5 9 , 4 0 3 5 ( 1 9 9 4 ) . ''8. B o n , D . C . H . B i g g , a n d G . B e r t r a n d ,J O C 5 9 , 1 9 0 4( 1 9 9 4 ) .
Aluminum chloride-carbondisulfideon resin. sulfonEsterification' The catalystpreparedby treatmentof a cross-linked resinwith AlCl: andCSzin ethanolis very effective. atedpolystyrene 'H. Yang,B. Li, andY. Fang,SC 24,3269(1994).
Aluminum hydride. Reduction of oxime ethers.t The O-methyl derivatives of conjugated ketone oximes are reducedto unsaturatedamines togetherwith smaller amounts of aziridines and saturatedamines.
a\ \-/
AIH3/ THF A, th
t -
")/"u
\ .
i i *
*Y*al
OMe
Conjugate addition.2s Coordina oxygen of a carbonyl disfavors arrrk r Homologation of aldehydcs.' Rr rhould be noted that MeAl(OAr): proo
Organometallic reactions.5 Addr in responseto the type of Al-based Lc by MeLi at -78"C in the presenceof { plete contrast to the reaction promorcd
K. Maruoka,S. Saito,andH. Yamanrqo :K. M a r u o k al ,. S h i m a d aH, . l m o r o .a n dl K . M a r u o k aI,. S h i m a d aM, . A k a k u r ae. r 'K. Maruoka,A. B. Concepcion, and H li K. Maruoka,H. Imoto,andH. Yamanro
l l l
-l'
o t -
91% (58:32:10) 'M.
wzsio)Z
NHe
NHe
MeO-N
Aluminum tris(2,6-diphenylpheno Cycloadditionr Selective acrru thecycloaddition with Danishefskr',
Zaidlewicz and I. G. Uzarewicz, HC 4,73 (1993).
Aluminum hydride-triethylamine. Functional group reduction.t The stable complex is prepared by adding EtrN to the AlHr solution,which is obtainedby adding an appropriatequantity of HCI in ether to a solution of NaAlHa in THF. lts reducingpower towards 59 organic compoundshas beenevaluated.Quantitativereductionusing proper amountsof the com-
A luminum tris(pentafluoropheoorl Cleavage of chiral acetals.' t1l ductivering opening to give mainll rh tbrmed stereogeniccenter.
.Y
3'.l
ArOq' o't?q ?5''r
plex can be achieved. 'J. S. ChaandH. C. Brown,"/OC58, 3974(1993).
K . I s h i h a r a ,N . H a n a k i , a n d H . Y a m a r r c o
Aluminumtris(pentafluorophenoxide)2l I
r : r ' : ) i 8 7( 1 9 9 4 ) .
r:-
Aluminum tris(2,6-diphenylphenoxide). to participatein activationof lesshinderedaldehydes Cycloadditionr Selective dienecanbe accomplished. with Danishefsky's thecycloaddition
e3) Me3SiO
Y
)9_l)
l<
Y
*Y" "*O o
'
l
o)34l
oY-Y"'. or''r! \.,o
l
o
OMe
\..o
cH2c12 87% (>99:1)
- 780
I
. : . . - l r n k e ds u l f o n 'ic-: .r'.
3 Coordination of the very bulky aluminum reagentto the Conjugate addition.2 oxygenof a carbonyl disfavorsattack of the latter by carbanions. Homologation of aldehydes.a Reaction with diazomethane gives epoxides. It rhould be noted that MeAl(OAr)z promotes formation of ketones. Organometallic reactions.s Addition of RM to ketones shows chemoselectivity in responseto the type of Al-basedLewis acids.4-Heptanoneis attackedexclusively This result is ln comby MeLi at -78'C in the presenceof 4-methylcyclohexanone. plete contrast to the reaction promoted by MeAl(OAr)2'
'nrugatedketone l k ' : nr()untsof aziri-
'.
SL 439 (1994). K. Maruoka.S. Saito,andH. Yamamoto, : K . M a r u o k aI,. S h i m a d aH, . I m o t o ,a n dH . Y a m a m o t oS,L 5 1 9( 1 9 9 4 ) . 'K. M a r u o k al . S h i m a d aM, . A k a k u r aa, n dH . Y a m a m o t oS,L 8 4 7( 1 9 9 4 ) . 'K. SL 521(1994). andH. Yamamoto, Maruoka,A. B. Concepcion, 'K. SL 441 (1994). Maruoka,H. lmoto,and H. Yamamoto,
H:
A luminum tris(pentaf luorophenoxide). Cleavage of chiral acetals.t (4R,6R)-4,6-Dimethyl-l'3-dioxanes undergo re.luctivering opening to give mainly the product with (S)- configuration at the newly tormed stereogeniccenter.
=
'.Y
: A(OC6Fs)3
!f ::r.1 hr adding Et3N t3:. Jurntityof HCI in r : : . 1 . 5 9 o r g a n i cc o m ir i'lr\unts of thecom-
3,.l
cH2c12 250,1 d
t
o l
o-\r\ I R^R' 61- 90% (S:R >99:1- 73:27)
K . I s h i h a r a ,N . H a n a k i , a n d H . Y a m a m o t o ,S L 1 2 7 ( 1 9 9 3 ) .
22
€ttdo-3'Amino'5-norborn€n'ando'2-ol
N- Amino-2-(1-ethyl-1methoxy)propyl)pyrrolidine' Hydrazones'Thehydrazoneofcrotylo*yacetaldehydeundergoes[2'3]Wittigre. with stereoa-hydroxyaldehyde resultingin protected7'6-unsaturated arrangement centersat C-2 andC-3''
Meo'""f-\ r.r-NJ
LDA,THF.HMPA
:
-780;
are more reactive than carb( Viehe salts.
cr P
v\-/cHo OTBS
TBsCl, imidazole;
\Z.wo..A"
Aminosilanes. Iminium salts.t N-SilY compounds afford c-siloxYr chlorides are obtained' Trrr induce the transformation t
cr-\Ao
44% (3 stePs)
03
' ACIEE33'2098(1994)' 'D. Enders, andJ' Runsink D. Backhaus'
W. Schroth,U. Jahn'andD. !
' 14' 22: 16' 12- l3;17' 15-16 N-Amino'2-(methoxymethyl)pyrrolidine canbecomethe alkylation't The THF solvent fo' 'oontfo"t"tive Hydrazones of an activatorsuchas t-BuMezSiOTf' electrophilein the presence oo; LoA,rHF,
.ff N-'t\r/ Ph-
rBsorl'-78o:
Lot"
A
o JL ..'(cHr)ooras
Ph- I
og
)
Ph
Ammonia. Release of resin'bott' from the solid suPPorton c Photoinduced aminati as amination of the aroma
83% (> 95% ee)
derived from Alkylation of the hydrazone Chiral 2-sulfenylated aldehydes'2 conauxiliary ozonolytic cleavageof the chiral methylthioacetaldehyde,frltit*"iO' of compounds' stitu;es a route to this class 'B. B. LohrayandD' Enders's 1092(1993)' 3349(1994)' tD. Enders,T.Schafer, o piuu' andZ'Zampom'T50'
\ . M . B r a Y ,A . G . J h i n g r a n T . Y a m a s h i t a ,M . Y a s u d a .T T . Y a m a s h i t a ,K . T a n a b c . K
n il o' 2' ol' en ilo- 3- Amino-5-norbornen'e in decalinprovides pyrolysisof the hydroxyamides unO Oxazoles.t a,"yfuti* reaction. retro-Diels-Alder oi "vtroo"ttvo*t1:n u.n1 2-substitutedoxazoleso; ;t; from the vic-dtamtne' aresimilarlyprepared Imidazoles Rcocl
."'oH ,,"NHCOF
d€caline, A
llt t
z)--R
'/
\mmoniurn formete. Transfer hYdrogcna sen from ammoniumfor reduced.3
. . \ .K . B o s eB, .K . B a n i kK
H. S.P. Rao and K. S. Redd B.C. Ranuand A. Sarkar.
(1993) 'M. A. Eissenstat andJ' D' Weaver'JOC 58'3387
Ammoniumformate 23 id i ne. !ri ir:\ Je undergoes[2,3]Wittig relc.: I r\droxyaldehYdewith stereo-
^
-cHo OTBS
I
44olo(3 steps)
:
.'
Aminosilanes. Iminium salts,' N-Silyl derivatives of secondary amines react with carbonyl compounds afford a-siloxyamines. On further treatment with MerSiCl, iminium chlorides are obtained. Trimethylsilyl triflate is superior to Mersicl since it can induce the transformation in the cases of enolizable aldehydes.a-chloro ethers are more reactive than carbonyl compounds, enabling the preparation of vinylogous Viehe salts.
cr ?Br' crl*cr
ErzO/CHsCN Me3SiNR2
cr'\'
;
irn,
,e{l
75-887.
l 6 l l - 1 3 : 1 7 ,l 5 - 1 6 . ' : T H F s o l v e n ct a n b e c o m et h e 3 . ;\ t e - S i O T f .
c . {CHz)TOTBS
\"
a-
Ph :3'.
W. Schroth,U. Jahn,andD. Strohl,CB 127,2013 (1994).
Ammonia. Release of resin-bound peptides.t Bound peptides are quantitatively cleaved from the solid supporton exposureto ammonia vapor. The method is general. Photoinduced amination. Addition of NHr to a styrenic double bond2 as well as amination of the aromatic ringr are possibleupon photosensitization.
(> 95"/" ee)
th - : the hvdrazonederived from c l , c : . : i r ' , ' f t h e c h i r a l a u x i l i a r yc o n -
hv, NH3/ MeCN
(Hzo)
ruc$cr fa
Cl
. .: ,
d:.-:lc'
,oe
687.
A . M . B r a y , A . G . J h i n g r a n , R . M . V a l e r i o ,a n d N . J . M a e j i , J O C 5 9 , 2 t 9 7 ( t 9 9 4 ) . T . Y a m a s h i t a ,M . Y a s u d a ,T . I s a m i , K . T a n a b e ,a n d K . S h i m a , T 5 0 , 9 2 j 5 ( 1 9 9 4 \ . T . Y a m a s h i t a ,K . T a n a b e ,K . T a m a n o , M . Y a s u d a ,a n d K . S h i m a , B C S J 6 7 , 2 4 6 ( 1 9 9 4 ) .
lqg-lI
h i j - \ \ a m i d e si n d e c a l i np r o v i d e s lr - ::J retro-Diels-Alder eaction.
:+f
aY-{
Vor!"
,-o,
Ammonium formate. Transfer hydrogenation.t2 Mediated by Pd/C, alkenes readily accept hydrogen from ammonium formate. Conjugated carbonyl compounds are more readily reduced.s
ll- N />-R Fi
A . K . B o s eB , . K . B a n i k ,K . J . B a r a k a ta, n dM . S . M a n h a sS, L 5 7 5( 1 9 9 3 ) . H. S.P. Raoand K. S. Reddy,7L 35, l7l (t994). B.C. RanuandA. Sarkar,TL 35,8649(1994\.
24
Ammonium vanadrte
Ammonium hYPoPhosPhite' of double bonds in the presenceof Pd/C Transfer hydrogenation't Saturation hindrance' Semihydrogenationof alkynes shows selectivity correlating with steric
Antimony(III) chloride. H y d roph enylation of e noacs. has beenobservedin the Palladium to enones.furntt tetraphenylborate
with this systemis rePorted' '8.T. Khai andA. Arcelli,CB 126,2265(1993)'
' C. S. Cho,S. Motofusa,andS. Ucmu
Ammonium Persulfate' Acetoxylactonization.|Unsaturatedcarboxylicacidsundergooxidativecycliacid' zation in the presenceof triflic acid in acetic give quinonesin a AgNOr1,4-Naphthoquinones'2 Polymethoxynaphthalenes
Antimony(V) chloride-silver bc Aryl sulfides.r Disulfides ar
c a t a l y z e d o x i d a t i o n . T h e r e s u l t s a r e s i m i l a r t o t h o s e o f t h e C e ( I V ) o x i d a t i synon. and general method for isocyanate Isocyanate synthesis.3 A convenient
arenes.
T. Mukaiyamaand K. Suzuki.CL 2!
thesisisbyoxidationofoxaly|amines.Silvernitrateandcopper(Il)Sulfateare cocatalysts. (NHr)zSzOe
BuN=C=O
BuNHCOCOOH
AgNO3,CuSOa 83%
hexane 400, 3 h
are cleaved' and the products may be Selenosulfonates.a Diaryl diselenides terceptedwith sodium benzenesulfinate'
in-
Antimony(V) fluoride. Halogen replacement.' a-l! venientlybe replacedwith fluorrn trolled by the amount of the rcagc 4 - Chloroc yclohexa' 2,5' dic tt
probablyinvolves[Cl2CX]' [Sb:F cies are derived from dichlororra
' M . T i e c c oL, . T e s t a f e r rai ,n dM ' T i n g o l i I' 4 9 ' 5 3 5 1( 1 9 9 3 ) ' 8CSJ tY. Tanoue,K. Sakata,M Hashimotols'Morishita'M' Hamada'N' Kai' andT' Nagai' 67,2593(t994). rF. Minisci,F. CoppaandF' Fontana ' CC 679(1994\' t L . w a n ga n dX . H u a n gS, C2 3 ,2 8 1 7( 1 9 9 3 ) '
Ammonium vanadate. vanadate' diphenylsilanediol' Meyer'schuster rearrangement't Ammonium systemfor the convercatalytic an efficient and an alkanedicarboxylic aciJ constitute aldehydes' sion of propargyl alcohols to a,B-unsaturated
>= OH
)
'M.
NH4VO3- Ph2si(oH)2 diacid
A
\ ,/-\
cHo+
)
MC 89 (1994)' B. Erman, S. E. Gulyi' and I' S' Aulchenko'
D . J . B u r t o n a n d I . H . J e o n g ,. l F C t l ! , .-P. ,q B . F e r r o n , J . - C . J a c q u e s YM r |993).
\ -,"^o / )
{renediazonium salts. Reaction with silyl cnol ctl,ct uards arenediazoniumsalts accq .rf ketones by a free radical Pr observed.
Arenediazoniumsalts 25
in '-: lresence of Pd/C rd: .:r.rtion of alkYnes
A ntimony(III) chloride. Hydrophenylation of enones.t A remarkable catalytic effect exerted by SbCll has beenobservedin the palladium-mediatedtransferof a phenylgroup from sodium to enones,furnishing B-phenyl-carbonylcompounds. tetraphenylborate '
u:i
- : , , o x i d a t i v ec y c l i -
th.
- , ' n e si n a A g N O r , ,'rtdation. ' , : r \ o c y a n a t es y n -
d
: r . r r l l ) s u l f a t ea r e
a C:
C=: ?.
l'-.
: : , ' J u c t sm a y b e i n -
C. S. Cho.S. Motofusa,andS. Uemura,TL 35, l-139(1994).
Antimony(V) chloride-silver hexafluoroantimonate. Aryl sulfides.r Disulfides are activated by this catalytic system to react with arenes.
T. Mukaiyamaand K. Suzuki,CL23, | (1993).
Antimony(V) fluoride. Halogen replacement.t a-Halogen atoms (such as chlorine) of ketonescan convenientlybe replacedwith fluorine on reactionwith SbFs,and the extentcan be conrrolled by the amount of the reagent. 4-Chlorocyclohexa-2,5-dienones.2 The preparation from 4-alkylphenol ethers probablyinvolves[ClrCXl. [Sb2FrcCl] as the reagentin which the carbocationspecies are derived from dichloromethaneor chloroform, which is used as solvent.
r n d T . N a g a i ,8 C S " I
.'\.--r
,.O\D
SbOls- CHCIg
a*\ t t
)
o2'4 47"/"
N: N :
JrphenYlsilanediol, .i.tem for the conver-
J
\-
D. J. Burton and I. H. leong,JFC 65, 153(1993). , . K a r a m , a n d J . - M . C o u s t a r d ,T L 3 4 ' 2 9 4 9 , . - P . J o u a n n e t a u dO B . F e r r o n , J . - C . J a c q u e s yM r |993).
cHO {renediazonium salts. Reaction with silyl enol ethers.t Derivatives from ketonesand estersbehavetouards arenediazoniumsaltsaccordingto their relativenucleophilicities.a-Arylation .,f ketones by a free radical pathway and nonradical a-amination of esters are ,'bserved.
26
l-Arr-l-Lllr
Aryl(cyano)iodoniumtriflates Ph
Ph
PhN2BF4
!o
\
pv
MqSiO
00,2h
OMe
PhCH< OSiMe3
CHph rV.V.
6
Z h d a n k i n , M . S c h e u l l e r ,a n d p . J . S r a n s . f L . } a
Ph
PhN2BF4
pv
MqSOi
Ph
72%
rrqson
Pht(ococF3)2
!r,rr.rnen
MeOOC
00.2h
a3%
T . S a k a k u r a .M . H a r a , a n d M . T a n a k a ,J C S ( P l ) 2 8 3 , 2 8 9 ( 1 9 9 4 ) .
Aryllead triacetates. Arylation of activated ketones. The reag isoflavanonesr and a-arylglycine derivarives.
fY") \-f\rrn o
ArPb(OAc)3
2.,,r.o,,
CHC13,py
S,{.'J-V II SPh
|
i
l
|
/
zr^
600, I h
Areneselenenyl bromides. Asymmetric methoxyselenenylation.t A chirally constituted Ar*SeBr reagent inducesasymmetricaddition to doublebonds.Chiral allyl ethersare accessibleafter oxidationand selenoxideelimination.
o-Arylation of 3,5-di-t-butylphenol.' and terphenylsare obtained.
' K. Fujita,M. Iwaoka,andS. Tomoda,CL92J (1994).
Diorganolead diacetates.a Exchange of oc etatewith a vinyl or anotheraryl group rakcs pt
6t)1
Ph
N r-A renesul fonyloxybenzotriazoles. Peptide synthesis.t'2 The B-Naphthalenesulfonyloxy derivatives of benzotriazole (1) and of 6-nitrobenzotriazolehave been evaluatedas rapid coupling agents. These can be used with hinderedamino acids as well as Gln and Asn residues'
aY\" t-(=\ \-^ru' \ >-/ b_"/: d'\
Hi
PhPb(OAch
B(OH)2
cftcr3 rt. t8h
D. M. X. Donnelly, B. M. Fitzpatrick, B. A. O'Rail1. J. Morgan and J.T. Pinhey,IL 35,9625 (t994r. D . H . R . B a r t o n , D . M . X . D o n n e l l y ,p . J . G u i r y - .e r d 'J. M o r g a n , C . J . P a r k i n s o n ,a n d J . T . p i n h e y . . l C g p l r
(1)
' 8 . K u n d uS , . S h u k l aa, n dM . S h u k l aT, L 3 5 , 9 6 1 3( 1 9 9 4 ) . tB. Devadas, and K.B. Mathur,TL34,6455(1993\B. Kundu,A. Srivastava,
A ryl(cyano)iodonium triflates. Iodonium ion transfer.' These reagents are prepared from aryliodonium and trimethylsilyl cyanide in the presenceof trimethylsilyl tribis(trifluoroacetate)s for the preparationof aryl and alkynyl iodonium salts from be used They can flate. derivatives. tributyltin the corresponding
I - A za-1,3-bis(triphenylphosphoranylklcnc) :CHCHN:synthon.t This reagentis peg I Bt: l-benzorriazolyl) with PhrP:CH, andrhca densation with araldehydes, cinnamylamines art
PhsPlr^
,eens n, ffingn
A. R. Katritzky,
J. Jiang, and P. J. Steel, JOC 5t. {jJ
l-Aza-1,3-bis(triphenylphosphoranylidene)propane27 Me35iOTl
PhlcN Tfo'
Pht(ococF3)2 MesSiCN
887o
CH2C|2. rt
t-
'
::NNHPh F_'
.:
V . V . Z h d a n k i n , M . S c h e u l l e r ,a n d P . J Stang,rL 34, 6853(1993).
Aryllead triacetates. Arylation of activated ketones. The reagentsare useful for the preparation of isoflavanonesrand a-arylglycine derivatives.2
4"(o\ i l
t
\'/\Y'\sPh
ArPb(OAc)3
t
CHC13,py 600, g h
ll:l ll
-.
' n r t r t u t e dA r * S e B r r e a g e n t I c'rhersare accessibleafter
o-Arylation
of 3,5-di-t-butylphenol.'
Highly hindered 2-hydroxybiphenyls
and terphenylsare obtained. Diorganolead diacetates.a Exchange of one acetoxy group of an aryllead triacetatewith a vinyl or anotheraryl group takes placewhen it is treatedwith RB(OH)2. Ph
ll: c1 :
rr deril'ativesof benzotrla.'J :r. rapid couPling agents' . Gln and Asn residues'
l!-:
rf-'
( 1993). _r{.6-155
PhPb(OAc)3 B(OH)2
cHct3 r t . 1 8h
n
,Pb(OAc)2 Ph'
D . M . X . D o n n e l l yB, . M . F i t z p a t r i c kB,. A . O ' R e i l l ya, n d J . - PF. i n e t , 7 4 9 , ' 1 9 6(71 9 9 3 ) . 'J. MorganandJ.T.Pinhey,?L 35,9625(1994). 2921(1994)' D. H. R. Barton,D. M. X. Donnelly,P.J. Guiry, andJ.-P.Finet,"|CS(P// 'J. 3361(1994). andJ.T. Pinhey,./CS(P1) Morgan,C.J. Parkinson,
l - A za- 1,3-bis(triphenylphosphoranylidene)propa ne. :CHCHN:synthon.t This reagent is prepared by reaction of BICHzN:PPh: Bt: l-benzotriazolyl)with PhrP:CH2 and then BuLi. When usedin situ in the conJensationwith araldehydes,cinnamylaminesare produced.
,,\,cHo Ph3P111
s ::r PreParedfrom arYliodonium I r: nc presenceoftrimethylsilyl tri11r rnd alkynyl iodonium salts from
\) ,,PPhe rt, overnight
{ . R . K a t r i t z k y , J . J i a n g , a n d P . J . Steel."/OC59,4551(1994)
2 h) Ba(OH)zis sufficien equivalentof the base.
'1.Paterson K,. - S .Y e u n gr.r
Baker's Yeast. Carbonylreduction.Manysubstrateshavebeenreducedenantioselectivelyto pyridinophenones'3ethyl give alcohols: trifluoromethyl ketones,' a-acetoxyketones'2 and 3-chloro-2-oxoalkanoicesters'6 o-t"to u.ia derivatives,s a-methylacetoacetate," ring opening'7 a,B-Epoxy ketonesundergoreductionand hydrolytic catalytic amount of NADPH to perIt is possible to use a cell-free extract and a is used as the hydride source' form the reduction.2In this approach,glucose (E)-F-nitrostyrenes* are saturated' Hyilrogenation. frre doutle bonds of Reductionofotherfunctionalgroups.Certainthionesarereducibletoafford as stlbstrates,the nitro group is preferchiral mercaptans.,Using nitroaryl ketonesr0 entially reduced. and l-heteroarylethanols by Kinetic resolution,'t In the resolution of l-aryl-
Barium ruthenate. Alkane oxidation.' .onably good yields.For c tion is greatly accelerate
T . - C .L a ua n dC . - K . M a l . r
Benzenediazonium cbh Indole synthcsis.' n V-ani I i noindoles.Cleavag
enantioselectiveoxidationtheeevalueofthe(S)-isomerreachesS6-|o0vowhenthe group' The value of the 2-pyridyl ethano| has either a phenyl, 2-furyl, or 2-thienyl not applicableto 1-(2-thiazolyl)ethanol derivativeis lower (4OVoee).The method is (O7oee). 'T. Fu.lisawa, andM' Shimizu'TA 5' 1095(1994)' T' Sugimoto, tK. Ishihara,T' Sakai,S. Tsuboi,andM' Utaka'TL35'4569(1994)' tM. Takemoto and K. Achiwa' CPB 42,802(1994)' andA' Ohno'BCSJ67' 524 K Nakamura' oY. Kawai,M. Tsujimoto, S' Kondo'K' Takanobe' (1994). 5G. Pedrocchi-Fantoni, S. Redaelli'andS Servi'G 122' 499(1992\' 6S. Tsuboi,H. Furutani,M'H' Ansari' T' Sakai'M' Utaka' and A' Takeda'JOC S8' 486 / toOlr
7 o . M e t h - C o h n ,R . M . H o r a k , a n d G ' F o u c h e J' C S ( P I ) l 5 l 7 ( 1 9 9 4 ) ' 8 M . T a k e s h i t a ,S . Y o s h i d a ,a n d Y ' K o h n o ' H 3 7 ' 5 5 3 ( 1 9 9 4 \ ' (1994)' 'J. K . N i e l s e n a n d J . o . M a d s e n ,T A S ' 4 0 3 (1994)' "'w. Baik, J. L. Han, K. C- Lee, N' H' Lee' B' H' Kim' and J -T' Hahn' IL 35' 3965 TL 34' 883 S i n i g a g l i a ' M ' a n d P o l i ' S ' " P e d r i n i ' P ' M . F a n t i n , M . F o g a g n o l o ,A ' M e d i c i ' ( 1993).
"o\Z\A (
/
,
\1. Satomura. JOC 5t. t75'
Benzeneselenenylbronl Alkynyl phenyl sclcti ' Heterocyclization.2 reterocyclicproducts or runctionalizationof alken .:rresand benzamidescar
NPh tl
pr'AoA Barium hYdroxide. Olefination.'AlthoughtheconventionalprocedurefortheHorner-Emmonswith NaH in an aprotic solvent, more wadsworth reaction calls for enolate generatlon comp|exsubstratestendtogiveunsatisfactoryresultsduetoeliminationand/or temTHF system is uniquely effective at room epimerization. The Ba(OH)2/aqueous peratureinsuch.u,"..U,uully0.3equivalentofactivated(byheatingl00-l40.Cfor 2E
'
\ L . B r a g a ,C . S . S i l v c i n . \ De Kimpe and M. Bock \ 1 . T i e c c o , L . T e s t a f e r r i .Y
l- Engman, JOC 5t,239a r
Benzeneselenenylbromide 29
2 h) Ba(OH)zis sufficient, but more complicatedphosphonatesmay require 0.7-1.0 equivalentof the base. '1. Paterson, K.-S.Yeung,andJ. B. Smaill,SL 774(1993\.
to --.d enantioselectively ethyl a\ ndinoPhenones,3 " - l-oxoalkanoic esters'6
D
c-
l e n tn g . t ' - , u n to f N A D P H t o P e r i , . - l h r d r i d es o u r c e . r ' -r:e\'are saturated' ''.. rre reducibleto afford t ' 'he nirro grouP is PreferN : .
[:! r lft
n
Barium ruthenate. Alkane oxidation.t Hydrocarbons are oxidized to carbonyl compounds in reasonably good yields. For example, cyclohexanegives cyclohexanone(607o).The reaction is greatly acceleratedby the addition of Lewis acids (FeClr, ZnCl2, etc.). T.-C.Lau andC.-K. Mak, CC 766(1993).
Benzenediazonium chloride. Indole synthesis.t m-Hydroxystyrenes react with the diazonium salt to afford Cleavageof the N-N bond is readily achievedby hydrogenolysis. .V-anilinoindoles.
bY 1-heteroarYlethanols the when ,;hes 86-1007o '3 ralueof the 2-PYridYl :,, I -( 2-thiazolYl)ethanol
'"c'(
PhN2*Cf
Me2CO,Et3N
/ Ho-'Z\-{. H2 | i l ) \,/-N 'ruxpn Ni
*Y)d \,'/-r't H
- 50, l0 min
80"/"
\t. Satomura. .lOC 58,3757(1993\. )r.
rnd A Ohno, BCSJ67'524 lr
\
t!.:
P
Takeda,JOC 58' 486
TL 35,3965(1994\' Sinigaglia,TL 34' 883
Benzeneselenenylbromide. 13, 26 -27 Alkynyl phenyl selenides.t The selenenylationof l-alkynes is mediated by Cul. Heterocyclization.2.3 Participation of an imino group to form five-membered -crerocyclicproducts or intermediatesthereof is observedduring PhSeBr-induced ,.:ncrionalization of alkenes.Likewise, the cyclofunctionalizationof allylic benzimi:-rtesand benzamidescan be achieved.a
NPh
,n\d'v j.-:i fr)r the Horner-Emmons\,H ln an aProticsolvent'more '. Jue to elimination and/or -.:.1uely effectiveat room tem:.',i tb1'heating100-140"Cfor
PhseBr/ CHC13; aq. NaHCO3
o tnAoYs"rn NHPh
L B r a g a ,C . S . S i l v e i r a ,A . R e c k z i e g e l ,a n d P . H . M e n e z e s ,T L , 3 4 ' 8 0 4 1 ( 1 9 9 3 ) ' D e K i m p e a n d M . B o e l e n s ,C C 9 1 6 ( 1 9 9 3 ) . T i e c c o , L . T e s t a f e r r i ,M . T i n g o l i , L . B a g n o l i , a n d C . S a n t i , T 5 l ' 1 2 ' 1 7( 1 9 9 5 ) . F-ngman,JOC 58,2394 (1993).
,'|il*tltt
u 'c,nr
30
Benzeneseleninic anhydride-trifluoroacetic
anhydrid
27; 16' 19-21;l7' 26 chloride' 13' 26-27; 14' Benzeneselenenyl andconditionsfor the substitution The re.agent Substitutivea"'t'n"ytoti'on'' not affected'osuchas the azidogroupare ii".i,"""tnt., tnat miro with alcohols are sufficiently of phenylselenoglycosides "un u" "fr""i"J o' ""ut'n"n' Glycosylation actingas nucleoPhiles'
"n-'\,r*t
phf
8oo,s h
N,
While normal selenenylchlorination Cyclopropyl ketones'2
A . G . K u t a t e l a d z e ' ! ' LK' i c e 'T G occurs
-when
7'6-
unsaturatedketonesu'"tt"uttd*ithPhSeCl''ub'"qu"ntreactionoftheadductswitha base(e.g',NaH)eff.ects"nin..u'"'".ularalkylationtoformcyclopropanederivatives.
o
Ph^/\z
ll
NAH / THF
Temperini'CC 1883(1994)' tM. Tingoli,M. Tiecco,L' Iestaferri'andA' e6s (lee4)' sL ';. il;;;;' L. Jung,andJ' F' Stambach'
^^
':;:it;:^:nT)l,l;,"^0""0'''rhereactionconditionsaremld'
L;;';',;:;;:::'"ffi,i::
thiogrv' activates reagent ;'il'''frii:!the serenide vield' in ?7-1007o und"t these conditions
":;;;";;;;""d cosides.Disaccharides 'J. CossyandN Furet'TL 34' 7755( 1993)' ( lee4)' ,;. sn;;;. Y. lto. andr' ogawa'sL s35
,'"*1l;:Tl"tfllll"J;tion
BenzenesulfenYl chloride' ll' 2-IndolYlmethYl PhcnYl t undergo O-sulfenYlation' *hrlt ransement.The ensuingallen-
,.r
69%
*":l:ffi
(cF@* hltol'
95%
PhSeCl:
PhS..OO
cl
/ Mec'N Phsecr ?"tn-.
round of addition bY the ne* rea1 cessis thus basedon an otherut
gener(in situthermolvsis) by oxidation rouowed
ates the target esters'
-nK \-
Nxe"
o-Quinodimethanc gcta rrrPhSCl, sulfenYlationtrigge .ited can be traPPedbY dienop
andA P \{. GraY,P'J. Parsons' 'H. Sano,K. Kawata,andM Ko
BenzenesulfonselenYlchlod SelenenYlation.t PhSO: tr-selenoketones. Its reactrcl tive ArN:Se sPecies,which
( M. R. BrYceandA' Chesne;"
' M . 1 . W e i n h o u saen dK ' D ' J a n d aS' 8 l ( 1 9 9 3 ) ' luoroacetic anhydride' using the combiBenzeneseleninic anhydride-trif nooition io"a double bond rrifunctionato*;:";';;"';;;;;; the primary product' unstableselenoxideas tl,i.rmally r"li. nation of anhydrides is susceptible to a second if," uffyfi. ,riffuo.ou."tute o."url-uni syn_Elimination
BenzenesulfonYlmethYl P'tl RCH2CHO - RCH(OH) TolS(O)-CHzSO2Phis Prom
rnfluencesthe [2'3]sigmatrq
Benzenesulfonylmethylp-tolylsulfoxide
n6.
. :t. 17.26 l l : : -,rnditionsfor the substitution ' Jtr erouPare not affected' Ot]': x - . :ienoglycosideswith alcohols l6
round of addition by the new reagentPhSeOCOCFT,which is formed in situ. The processis thus basedon an otherwiseundesirableside reaction.
OH
CI
+
f,
-\.,2""oH
hydrolysis N3
95""
lc-
: .'::trseen l l
PhSe(O)OSe(O)Ph
(cFsco)zo/ cHzctz; .- --\-,
3l
6 9 %( 6 : 1 )
'
. - 'ilnation occurs when 7,6' :ire lron of the adductswith a ' ::n d\cloProPane derivatives'
A . G . K u t a t e l a d z e ,J . L . K i c e , T . G . K u t a t e l a d z e ,a n d N . S . Z e f i r o v , J O C 5 8 , 9 9 5 ( 1 9 9 3 ) .
Benzenesulfenyl chloride. 14, 27; 15, 19 2-Indolylmethyl phenyl sulfoxides.t a-Ethynyl-o-acetamidobenzyl alcohols undergoO-sulfenylation, whichis immediatelyfollowedby a [2,3]sigmatropic rearrangement. The ensuingallenylsulfoxides areproneto cyclize.
'S€Ph
R'
:l'',
.\:
,199-l).
-/-Y\ VNxl"
R
-oH Phsct- Er3N
2'-A
R'+
THF, - 230
le
\.,'-N'
ll >-1 'soPh Ac
55-93%
' . J ! t r o n c o n d i t i o n sa r e m i l d , lli.
|r
-.Jc' realeot activatesthioglY- r rrrons in 11-l0o1o Yield'
lrn
situ thermolYsis)gener-
o-Quinodimethane generation.2 When o-stannylmethylstyrenes are exposed to PhSCl, sulfenylationtriggersa fragmentation.The o-quinodimethanesthus generrted can be trappedby dienophiles. \{. Gray,P.J.Parsons, andA. P. Neary,SL 281(1993). ' H . S a n oK , . K a w a t aa, n dM . K o s u g iS, a 8 3 1( 1 9 9 3 ) .
Benzenesulfonselenyl chloride. Selenenylation.t PhSOzSeClreacts with enolizablecarbonyl compounds to give .r-selenoketones.Its reactionwith N-trimethylsilylanilinesresultsin the very reacrive ArN:Se species,which can be trappedas Diels-Alder adducts. \1.R. BryceandA. Chesney, CC 195(1995).
r anhldride. to. : r double bond using the combith 3 -il!-noride as the primary product' is susceptibleto a second rii .:.r'l;.1t0
Benzenesulfonylmethyl p-tolyl sulfox ide. RCHTCHO - RCH(OH)CH:CHSO2Ph.t Condensation of aldehydes with TolS(O)-CHzSOzPh is promotedby piperidine.The B-substituentof the carbon chain :nf luencesthe [2,3]sigmatropicrearrangementof the allylic sulfoxides,which are in
32
N-(a-[Benzotriazol-l-yUslkyl)amines
predominate.Enantiopequilibrium with the vinylic isomers,suchthat anti products urepolypropionatechainscanbeassembledbyaniterativeprocessincorporating this step.
prds(oVSo2Ph oHc
piperidine / CH2C12
OH OMOM
^ : l Phs6r\-',...y'\Y" t l
N- ( a- Alkoxyalkyl)- and . actionswith sodium alkoxidc Tr ial k yl sta n ny I m e thyla n stannyllithiumreagents.
Condensations with alhc generated.Trapping of thesc s r i d i n i u m s a l t so r 1 . 2 , 3 . 4 - r e r
-200
'J. C. Carretero JOC58' 1596(1993)' andE. Dominguez,
aY\" Y\' 2-Benzenesulfonyl-3-phenyloxaziridine' alkynyl sulfides Alkynyt sulfoxides.t The reagenttransfers its oxygen atom to in refluxing chloroform.
r! Ph
L-p
;
bt'
' S.T. Kabanyaneand D' I' MaGee,CJC 70' 2'158(1992)'
l - Benzenesulfonyl-2'trimethylsilylacetylene' it incorpoAcetyleneequivalent,t As a dienophilefor the Diels-Alder reaction, After conjugate rerates into the adductstwo hetero substituentson trigonal carbons. to fluoride ion-initiated duction with LiAlHq the B-silyl sulfonemoiety is susceptible fraementation. MelSi - l
rll.
MeoH
Meosita-
L|AIH4/THF;
PhSOr'V
PhSO2
100%
B-Amino ketone synthcr bazoleto becomean acetal& rion gives rise to 1,1.3-r rrenzotriazolyl groupactivate theaminalunit revealsthe ka
o 90%
' R . V . w i l l i a m s , K . C h a u h a n ' a n d V . R . G a d g i l ' C C l ' 1 3 9( 1 9 9 4 ) '
N- (c-[Benzotriazol'1-yl]alkyl)amines' benzotriazole The benzotriazolyl anion is an excellent leaving group; therefore, Furcomponents' synthetic of derivatives have been used extensively as precursors aldean benzotriazole' equimolar thermore, these reagentsare readily obtained from derivatives hyde, and a secondary amine. A reviewr of synthetic usesof benzotriazole appearedin 1991. admixture of the Aminal exchange,2 Aminals are very easily available by group should be benzotriazolyl reagentswith other amines. This replacementof the the generaavoid to order in accomplishedwith the same amine as the extant subunit tion of a mixture of comPounds.
Enaminones.T When thc rry, elimination promotedby a ;ondensedwith esters.Enamrl
LDA THF
N "N N,
h"
pTol
- 7 8 P ,O 5 h
33
N-(d-[Benzotriszol-1-yl]alkyl)amines
i: :: Juct\ Predominate'EnantioP| : ' : i r 3 t t \ e p r o c e s si n c o r p o r a t i n g
OH OMOM : l
"-so),'\& l
l
The high-yielding reN-(a-Alkoxyalkyl)- and N-(a-falkylthio]alkyl)amines.r proceed room temperature. at actionswith sodium alkoxidesand sodium thiolates from reaction with the are obtained Trialkylstannylmethylamines.a Products stannyllithiumreagents. Condensations with alkenes.5 In the presenceof LiBFa iminium speciesare generated.Trapping of these specieswith dienes and alkenes provides tetrahydropyridinium salts or 1.2.3.4-tetrahvdroquinolines. Ph
I /'^\."'\ t
PhCH=CHz
aY\*
V1'ph \_N 'pn
, . len atom to alkYnYl sulfides
;
t-'" L
i
\*'\Z
L'BF4|l - /p r ' l l
l
l
Ph
1
P h ]
4sy"
/X/* t i l \ru/\Z
F.
ir'
incorpor ' - . ' ' : i . - A l d e r r e a c t i o ni,t re' conjugate After carbons. .. I :' i o n i n i t i a ted f l u o r i d e t o . : r t r h l e :-
l 60"/"
p-Amino ketone synthesis.n The benzotriazole derivatives enable 9-vinylcarbazole to become an acetaldehyde1,2-dianion equivalent. The acid-catalyzed reacrion gives rise to 1,1,3-trifunctionalized propanes in which the migrated benzotriazolylgroup activatesthe a-carbon for alkylation. Subsequenthydrolysisof rhe aminal unit revealsthe keto group.
. AIPI. ' THF ; Bu.N F
o
^n
r:\ )'J' / ,FN \_{N,i,r
'- iroup: therefore,benzotriazole ' . o i s y n t h e t i cc o m p o n e n t sF' u r N--:;utmolar benzotriazole'an aldef: r: -. - .r\e\ of benzotriazolederivatives b.'
NR,
HCI
?
^,\,,^nn, n
Enaminones.T When the amine geminal to the benzotriazolylgroup is second.irv, elimination promotedby a strongbaseresultsin a metalloenamine,which can be ;ondensedwith esters.Enaminonesare the final products.
-^\r\,
of the c,. r ar ailable by admixture be should group lr I iirc' benzotriazolyl generathe nrr -uhunit in order to avoid
BuLi,R'Br;
\-An-
90"k
I \.Z\N'
N
LDA THF - 7 8 0 , 0 . 5h
,)--nt" p-Tol
| ''-o:I L " ' "l
PhCO2Me THF .78o-> rt
"T:Ytn pTd
O
12h
u"/"
34
Benzotriazol-l-ylory trlr(al-
Benzotriazol-l-ylmethylimino(triphenyl)phosphorane
rA. R. rA. R. rA. R. 1A. R. 5A. R. oA.R. 7A.R.
K a t r i t z k y , S . R a c h w a l ,a n d G . J . H i t c h i n g s , T 4 7 ' 2 6 8 3 \ 1 9 9 1 ) . K a t r i t z k y , K . Y a n n a k o p o u l o u ,a n d H ' L a n g , J C S ( P I ) 1 8 6 7( 1 9 9 4 ) ' Katritzky, w.-Q. Fan, and Q.-H' Long, S 229 (1993). Katritzky, H.-X. Chang, and J. Wu, S 907 (1994). Katritzky and M. F. Cordeev, JOC 58' 4049 (1993). K a t r i t z k y , Z . Y a n g , a n d J . N . L a m , J o C 5 8 ' 1 9 7 0( 1 9 9 3 ) . K a t r i t z k y , R . A . B a r o c k , Q . - H . L o n g , M . B a l a s u b r a m a n i a nN, ' M a l h o t r a , a n d J ' V '
G r e e n h i l l .S 2 3 3 ( 1 9 9 3 ) .
(Ero)2PoH BuLi,20e _
2",-N. ''N I ll \,./-tl \-N'
2\-N. ''N I ll \.^-r.t'
Benzotriazol- 1-ylmethanol. N-Alkylation of amiiles.t Benzotriazol-1-ylmethylation on the nitrogen atom of an amide is accomplishedin refluxing aceticacid. Benzotriazolecan then be displacedby reactionwith an organometallicreagent(RzZn, etc.). On LiAlHq reduction N- methylaminesare obtained.
GI
.pphe
NaH
.pphl
THF,a
//
-|
)-N'
A . R . K a t r i t z k y , J . J i a n g ,a n d J . V . G r e c n h r l t -- A . R. Katritzky, R. Mazurkiewicz,C.V. Src
'A. R. Katritzky,G. Yao,X. Lan, andX. Zhao,JOC 5E'2086(1993)'
N- (Benzotriazol- l-ylmethyl)carbamates. 1,1-Bis(heteroaryl)alkanes.r The benzotriazole unit has a lower leaving tendency than the carbamoyl group in the presenceof a Lewis acid. Accordingly' Friedel-Crafts alkylation of very reactive arenes(heteroarenes)is feasible.However' the benzotriazole can be replaced in the second step.
riY\'\Z\r.r' ,)--
**"o.*'
ZnCl2
cHs
cHzcr2 n
Benzotriazol-1-yl methyl methyt etbcr. Dimethyl acetals.t Deprotonarion ol alkylation serveto elongatethe sidechtra acetalson heatingwith TsOH-MeOH.Th
A . R . K a t r i r z k y , Z . Y a n ga,n dD . J .C u n d 1S.
Benzotriazol-l -ylmethyl phenyl sulttdc 2,2 - Diarylc yclopropyl phe nyl sa[ila rhe reagentis deprotonatedwith LDA io r zole acts as a leaving group in the ring-c trvesalso undergothe same reaction.
A. R. Katritzkyand M. F. Gordeev, SL 2lJ | | ' A. R. Katritzky,L. Xie, andW.-Q.Fan,JoC 58' 4376(1993).
Benzotriazol- l-ylmethytimino(triphenyl)phosphorane. reactions.t Phosphonomethyliminophosphoranesare readily wittig-Horner prepared. These novel compounds form unsaturated heterocycles on reaction with dialdehydes. Homologous phosphine imines undergo elimination of benzotriazole to give (Nwhich are useful for the synthesisof pyridines.2 vinylimino)phosphoranes,
Benzotriazol-1 -yloxy tris(d imethyhrit hexafluorophosphate (1). Dipeptide synthesis. Among varb least problems due to racemization arr ob
are the 6-trifluoromethylbenzotriazolc: r Hydroxy-7-azabenzotriazoleitself is an cft edditional advantageof being a visual id endpoint.l
Benzotriazol-l-yloxy tris(
t:
2">-N. ''N I ll \-/-r.r'
!
\-N'
BuLi,20o
*|]'(-o,,n.
rYcHo \r^cgo
.pph.
3S
a'il-\ \r-\.7N
l r - - : - ' i r r a n . N . M a l h o t r a .a n d J . V .
"""-
fY\* \-/'\N'
fi< -
i:l(rn on the nitrogen atom ir: 5:r./(rtriazolecan then be disr:. r.On LiAlH4 reduction IR
,.pph3
THF, ^
,,'"n,
PhcH=cHcoph
Ph
/-*
rN 59%
R. Karritzky,J. Jiang,andJ.V. .- A. A'R'Katritzky,R . M a z u r k i e wGreenhill, i c z , c . V .JOC s , " " rSE,l987 * , * a M .(t993). F.Gordeev, JOC59,2140(lgg4\. ..
v._)lr
Benzotriazol-l-ylmethyl
- . r h a s a l o w e r l e a v i n gt e n , [,c*rs acid. Accordingly, I l r ' : ' i :.ne\ ) is feasible.However. lr:
rt
c F. I
methyl ether. Dimethyl acetars.t Deprotonation of the methyr ether with BuLi and subsequent afkylation serve to erongatethe side chain. The a-benzotriazoryr ethersgive dimethyl acerarson heatingwith TsoH-MeoH. Thus thereagentis a methyrar anion equivarent. A. R. Katrirzky,Z. yang,and D. J. Cundy,SC23, 3061 0993).
Benzotriazol-l-ylmethyl
phenyl sulfide. 2,2-Diarylcyclopropylphenyl sulfides.t
Th, r.hereage ntr, o.proton ut"owitrrLDain,r,"pr";fn"#:tti:T;ill
;.;.::ffi J[: zoleactsas a reavinggroupin the ring-crosure step.simprerbenzotriazoryr rivesalsoundergothe same deriva_ reaction. A. R. Katritzky andM. F.Gordeev, Sa213(1993).
t ' - '
Fra ne. rl -' -.'phosphoranesare readily tc; :ererocvcleson reaction with Irr. : ,'t benzotriazoleto give (Ni\ :: ie\ri of pyridines.2
8enzotriazol-l -yloxy tris(dimethylam ino)phosphoniu m bexafluorophosphate (l). Dipeptide synthesis' variouscouplingreagentsthe besryierdsand the 1-o:t hast problemsdue to racemization are obr"ru"d *irt, ,t i, satt (l)r. St;;;;; reagenrs
""i t-",uu"" zotriazote3 anarogs. [Note:til'r:::r:r::Tffi:T,:t'"nzotriazote2 an.efficient
peptidecouplingaoaitru"e.i dditionat advantage It hasthe ", o:Iltttll's etnga vlsualindicator(yellow to colorless) of the reaction endpoint.l
36
N-Benzoyl'(4S)-t-butyl-2'oxazolidinone
Benzylamine. Fluoroalkyl- and fluoroarylash form resin as catalyst) with fluoro carb treatment with EtrN. Hydrolysis of tb
N )u N
PFo'
O-P(NMe2)g
amines.
(1)
r J . D u d a s h ,J r . , J . J i a n g , S ' C ' M a y e r ' a n d M ' M ' J o u l l i e ' S C 2 3 ' 3 4 9 ( 1 9 9 3 ) ' Boom' and W' tJ.C.H.M. Wijkmans, J.A.W. Kruijtzer, G'A' van der Marel' J'H' van
''>N.,\Ph R
Btoemhoff, RTC ll3, 394 (1994)' L ' A ' C a r p i n o 'a n d M ' B i e n e r t ' T L 3 4 ' t A . E h r l i c h ,S . R o t h e m u n dM , ' B r u d e l 'M ' B e y e r m a n n ' 4 7 8 1( 1 9 9 3 ) . rL. (1993). A. Carpino, JACS l15, 439'7 '
3-(Benzotriazolyl)ProPYne' -'-i-irytpyuoin.t at the sp terminusof the proR"u"tionwith N-tosylimines p a r g y l b e n z o t r i a z o l e f o | l o w e d b y i n t r a m o l e c u l a r S u b s t i t u t i o n ( a n d aavailromatization_ are also a new syntheticprotocol'2-Hetarylpyrroles detosylation)represents ableby this method. I A. R. Katritzky,J. Li, andM' F' Gordeev's 93 (1993)'
r B . S . J u r s i cS, C2 3 ,3 6 1( 1 9 9 3 ) '
o
J't
Ph.
Mee r wein - Pon n dorf-Ve rlc y rtJt tor asymmetric reduction(36-96% 1r r-PrOH.
D. A. Evans,S.G. Nelson,M. R. Gagrr. e
N- Benzoyl-(4S) -t-butyl-2'oxazolidinone' Benzoylation.ln-Alkylcarbinolsshowkineticselectivitiesintherangeof2030: I for reactionof the (R)-enantiomers'
| I -Ph Ho-
(R,R)-3-Benzyl-1,5-diphenyl-3-ezrp
o-
N-BenzoYltetrazole. and amines with the N-acyl-5-phenylteAcylation.t Derivatization of alcohols applicable'The mixture in THF is uniformly is trazole in the presenceof pyridine to complete the reaction' kept at -10'C and then at room temperature
P1 ( -N-az ' Y
v . A . S o l o s h o n o k ,A . G . K i r i l e n k o , V . P X
'
MoMsBr Et2HH2cl2 oo'2h
Bzo Ph (95o/. ee)
' D. A. Euans,J.C. Anderson, andM K' Taylor'TL 34' 5563(1993)'
"olrn
.V-Benzylidenebenzenesulfonam ilc. Knoevenagel reoction.t As surn *ith active methylenecompounds.thc :nce of EtrN in chloroform the reruol :r-sulfonylketones,a-nitro esters.and
't\'.W.Zajac,T. R. Walters,J. Buzby,J. G1
Benzyloxyketene. Iterative chain extension.' 12+21 Jerivatives,which can be openedand p
Benzyloxyketene37 Benzylamine. Fluoroalkyl- and fruoroarrramines.t Imines formed (with Dowex-s' H*form resin as cataryst) with fruoro carbonyl compounds undergo prototropic shift on treatment with Et:N. Hydrolysis of the benzylideneisomers gives the fluorinated amrnes. k , _ : ' ( . 2 J . _ r 4 9( 1 9 9 3 ) . . . j - i.: \tarel. J.H. van Boom, and W ni - - .
{ C a r p i n o .a n d M . B i e n e r t ,7 L 3 4 ,
fr
lF,^,n
R-C-N=C-ph
rl, 4h
79-980/"
l r : - - r . . r t t h e s p t e r m i n u so f t h e p r o cu :' .:h.trlution (and aromatization)-Hetar.v"lpyrroles are also availt.\
HCt, Et2o
fr
R_C-NH. HCI H 87-991"
V . A . S o l o s h o n o kA, . G . K i r i l e n k o , V . p . K u k h a r , a n d G . R e s n a t i ,T L 3 5 , 3 l l g (lgg4).
rR'R)'3'Benzyr'1,5'diphenyr'3'azapentane-1,5-dioxysamarium(III) iodide(t).
Bn -ph 'r^T--Y
ph..,
l * - i
o_sm_o I
I ln j .:-' ree. * ith the N-acyl-5-phenylte, : r i r c a b l e .T h e m i x t u r e i n T H F i s r. t , ::llete the reaction.
(1)
Meerwein-ponndorf_Verley reduction,t The samarium iodide is a catalyst tor asymmetric reduction(36_ g6Eo yield, up to 97Voee) of carbonyl compounds by r-PrOH. D. A. Evans,S.G. Nelson,M. R. Gagne, andA. R. Muci,"/ACSf 15,9g00(1993).
\ -:' . .electivitiesin the ranse of 20-
:
+
BzO"'\Ph
xolpr'
.\'-Benzyl idenebenzenesulfonam ide. Knoevenager reaction.t As surrogate for benzardehyde in the condensation *ith active methyrenecompounds, the benzenesulfonimineis superior. In the pres_ ence of EtrN in chroroform the reaction with, inter aria, B-diketones,p-keto esters, a-sulfonyl ketones.a-nitro esters, and malononitrile proceedsat room temperature. w.W. Zajac,T. R. Walters, J. Buzby,J. Gagnon,andM. Labroli , SC 24,427(lgg4).
(95% ee)
Benzyloxyketene. ? _ r { r i 6 - 1( 1 9 9 3 )
Iterative chain eilension.t [2+2]cycroaddition with imines provides B-ractam Jerivatives,which can be opened and processedinto new imines to renew the reaction
2.2' -t 3E
BenzYltrichloroacetimil
or removedas desired'The chain extensequence.The amino group may be retained and 2-amino-l'3-diols' sion method is useful to constructsy'?-poly-l'3-diols OBn OSiRs
"no)
Et3N/ CH2C|2
'D. BharandS. Chandrasekaran, S 785( 19
^^
osiR3
Benzyltriethylam mon ium tetratb ior Sulfur transfer.' The reaction s'il fides. Interestingly,I,l'-binaphthalenc the reactionwith the bis-diazoniumsal
NAr
a\ II NAr
Benzyltrimethylammonium dichlorr Introduction of an Iodination.t enamino ketonesis readilv achievedr'i
5 8 ' 1 6 4 6( 1 9 9 3 ) ' ' C . P a l o m oJ,. M . A i z p u r u aR, ' U r c h e g u ai ' n dJ ' M ' G a r c i a ' J O C
K. Matsuo.S. Ishida.and Y. Takuno.CPI acid' "o-(2-Benzyloxyethyl)benzoic 'acid conventhe esterification of an alcohol with this For irr"u", orot"riion.t by hyis achieved cleavage The suitable' tional methods (e.g., DCC) are usually lactonization' induce to l-BuOK with Jrogenolysis(Hr' Pd/C) followed by treatment which liberatesthe alcohol unit'
.'\yAon i l l \z9osn
o
o
o
AAon
Hz, Pd-C
R
l l l \Z\-^OH
AcOEt rl
2,2' - Bis(d iphenylphosph i no)-l,l'-trir 15, 34; 16, 32-36: 17, 34-38 Palladiumcomplexes. Asymmetric alkenylation and arl
O
H
+
'rYq l l l l \t^"/
QH2Cl2 n
TfO_._r-.r
f-il
(o)
\,
85-96% (overallyield)
(1994)' IY. Watanabe, M. Ishimaru,andS Ozaki'CL2163
Benzyl trichloroacetimidate' 13' 32 Alcoholbenzylation.|ThederivatizationiscatalyzedbyTMSoTf,whichdoes compounds' not causeracemization of sensitive chiral
Chiral morpholines and pipcnzn .ubstitutionsof 1,4-diacetoxy-2-bute promoted by Pd(0) complexes.In thc p grvesoptically activeproducts.
Lactimbenzylethers.2Cyclodipeptidesareconvertedtothebislactimethers, whicharevaluableintermediatesforstereoselectivea-aminoacidsynthesis.
aoH
l \ttHBn
or1* HN--,\o
.
tno;n* cr3c
A'\-*'
+
l
A' ."
BnOa,,^:* MftSiOTl
il
tl
N.-Aoen vn2wt2
ri
61"/"
(1993)' r P . E c k e n b e r g ,U . G r o t h , T ' H u h n ' N ' R i c h t e r ' a n d C ' S c h m e c k ' T 4 9 ' 1 6 1 9 ( 1 9 9 3 ) ' 3 2 1 L A 2U. G r o t h , C . S c h m e c k ' a n d U ' S c h d l l k o p f'
F Ozawa, Y. Kobatake, and T. Hayashr. I F. Ozawa, A. Kubo, Y. Matsumoto. T. Hr oM 12,4t88 (t993). \ ' . U o z u m i , A . T a n a h a s h i ,a n d T . H a y r t r
2,2'.Bts(diphenytphosphino)_1,1,_binaphthyt (BINAp)
r \ r : . : . J e \ i r e d .T h e c h a i n e x t e n ! i . : I - a m i n o -1 . 3 - d i o l s .
oBn oSiR.
/..l r -
39
Benzyltriethylammoniumtetrathiomolybdate. sulfur transfer.t The reactionwith arenediazonium sartsleadsto diaryl disul_ fides'Interestingly, l,r'-binaphthalene-2,2'-dithior is the onryproduct(6lzoyield)in the reactionwith the bis-diazonium sartderivedfrom l,l,-binaphthyl-2,2,-diamine. 'D.
B h a r a n d S . C h a n d r a s e k a r a nS , 7g5 0994).
Benzyltrimethylammoniumdichloroiodate. Iodination.t Introductionof an iodine atom to the centrarcarbon atom of enaminoketonesis readilyachieved with the reagent.
(1993) 5t. t6.16
'K.
M a r s u o ,S . I s h i d a , a n d y . T a k u n o , CpB 42, ll4g (lgg4).
a - . ' - ' h o l u i t h t h i s a c i dc o n v e n -
T . : - .J\aqe is achievedby hyr ' 3-t )K to rnducelactonization.
o L'- -
F
o
H
h.,
-
r-\l
l
l l \v\-,,
2,2'-Bis(diphenytphosphino)-l,1,-binaphthyt (BINAp). f3, 36_37; 14,38_44, 15, 34; 16, 32-36; 17,34_38 Palladiumcomplexes. Asymmetric alkenylation and arylation.t,2
o
a .''or)
85-9606 roverall yield)
(alBtNAPl2Pd
""rT lM".
.Y\
SB/" (A7"/"eel
It:., r.i hr TMSOTf, whichdoes d. r , \ : . r : : . J r o t h e b i s l a c t i me t h e r s , | . , . ' . n ( )a c i d s y n t h e s i s .
chirar morphorinesand piperazines-. The ring formationby tandemartytic substitutions of 1,4-diacetoxy-2-butene with 1,2-amino arcohols and r,2_diamrnes is promotedby Pd(0)complexes. In the presence of a chiral BINAP ligandthis reaction givesopticallyactiveproducts.
aoH l-NHB.
\-,/ :
4-'voAc l
* Aco/
- , _ z _ N
h- ... I
r { 9 . 1 6 1 (91 9 9 3 ) .
rR)€tNAP Et3N,THF
' 5 o et nl 61%
Pd2(dba)3
ro>,""\ t l
'N'
Bn 72o/o (650/o ee)
F. Ozawa,Y. Kobatake,and T.
S"tilli;rt
Hayashi, TL 34, 2505(lgg3).
Y' Matsumoto, r' Havashi, s. Niriioru,K. yanagi, andK. Moriguchi, ,ir!1]'
Y. Uozumi,A. Tanahashi, andT. Hayashi , JOC Sg,6g26(tgg3\.
40
(BINAP) 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl
Platinum complexes. Baeyer-Villiger oxidation.t In kinetic resolutionsof chiral ketones(as racemic mixtures) up to 587oee has been observed.The configuration of the migrating carbon is retained. ' A . G u s s oC, . B a c c i nF, . P i n n a a, n dC . S t r u k u l O , M 1 3 , 3 4 4 2( 1 9 9 4 ) .
Rhodium(I) complexes. Intramolecular hydrosilylation.t The yields and ee values of this reaction are dependenton substratestructuresand solvents.There are subtle mechanisticvariations that are not clearly understood.
tJ. B . H o k e , L . S . H o t t i s , a n d E . W . S t e r n .. l O "L. S h a o ,H . K a w a n o , M . S a b u r i ,a n d y , L U 'K. M a s h i m a , K . - H . K u s a n o ,N . S a r o . y . I { Y . H o r i , T . I s h i z a k i , S . A k u r a g a w a ,a n d H .
l,l' -Bi-2,2' -naphthol (BINOL) bororr Hetero-Diels-Alder reactions.t n analogs)to chiral imines catalyzedb1.t
able BINOL ligands proceedswith good, induction operatesfor matching pain. rl hand, the reaction of achiral substralesro rise to productsin good ee.2
' X . w a n ga n dB . B o s n i c hO M 1 3 , 4 l 3 l ( 1 9 9 4 ) . ,
Ruthenium(ll) complexes. Aymmetric hydrogenation.t An extension of the general method to varrous aamino a,o-dicarboxylates has been accomplished,furnishing products with 70987o ee. A r u t h e n i u m ( I I )c o m p l e xc o n t a i n i n ga n o c t a h y d r o - B I N A Pl i g a n d :h a sb e e nt e s t e d hydrogenationof conjugatedacids. for its effectivenessin inducing enantioselective
r{
n2
cooH
MeOH 1o-25o
Reduction
of carbonyl groups.
cooH 83% (93%ee)
Aldehydes and ketones are subjected to enan-
tioselective reduction. Hydrogenation of benzaldehyde-a-d,3 a-alkoxyketonesa'5 or Bk e t o e s t e r s 6 T sc a n b e a c c o m p l i s h e d u s i n g e i t h e r t h e R u d i h a l i d e c o m p l e x e s o r s o m e modified forms. a-Ketoestersv are also similarly reduced. 'T. Pham and W. D. Lubell, JOC 59,3676 (1994). tX. Z h a n g , T . U e m u r a , K . M a t s u m u r a , N . S a y o , H . K u m o b a y a s h i ,a n d H . T a k a y a , S L 5 0 1 ( 1994). tT. O h t a , T . T s u t s u m i , a n d H . T a k a y a ,J O M C 4 8 4 , l 9 l ( 1 9 9 4 ) . o E . C e s a r o t t i ,P . A n t o g n a z z a , M . P a l l a v i n c i n i , a n d L . Y i l l a , H C A 7 6 , 2 3 4 4 ( 1 9 9 3 ) . sE. C e s a r o t t i ,P . A n t o g n a z z a , A . M a u r i , M . P a l l a v i n c i n i , a n d L . Y i l l a , H C A 7 5 , 2 5 6 3 ( 1 9 9 2 ) . oJ.P. l, . Mallart, X. Pfister, L. Bischoff, M.C.C. G e n e t ,C . P i n e l , V . R a t o v e l o m a n a n a - V i d a S d e A n d r a d e , S . D a r s e s ,C . G a l o p i n , a n d J . A . L a f f i t t e , T A 5 , 6 6 5 , 6 7 5 ( 1 9 9 4 ) .
OSiMe. I
R
\ ' rlpn
\
\oMe
tprort Brc. crlro,
H
The (RO)aBH species in which rhc -1.3'-bis(o-hydroxyphenyl)-BINOLproyes rhe Diels-Alder cycloaddition.rAlmog e r orable case. B-Amino esters.a By means of doud and a chiral BlNOl-boronate catalysr. rh a simple method for the synthesis of &r Hydroxy-B-aminoestersare similarly ro
yamamoto,SZ 129(l99jr. . K. HatroriandH. 'K. HattoriandH. yamamoto,249, l74g tlg{ K. IshiharaandH. yamamoto,"/z{CS lla. tJ6 'K. Hattori,M. Miyata,and H. yamamoro. .r_ K. Hatrori and H. yamamoto,I50, 27gStlg.l
l,l' -Bi-2,2' -naphthol-lanthanide
coof Nef reaction.t.2 Optically acrive p-b condensationof nitromethane with aldcbg as catalyst.
1 , 1 ' - B i - 2 , 2 ' - n a p h t h o l - l a n t h a n i d e c o m p l e x e4 sl
s
t-
:. rrl ketones(asracemic :r ,rf the migrating car-
a-
rc. of this reactionare .tl!' mechanisticvarta-
J: ,
tJ. B . H o k e , L . S . H o l l i s , a n d E . W . S t e r n ,J O M C 4 5 5 , 1 9 3 ( 1 9 9 3 ) . "L. S h a o ,H . K a w a n o , M . S a b u r i , a n d Y . U c h i d a , 7 4 9 , 1 9 9 " 1( 1 9 9 3 ) . 'K. M a s h i m a , K . - H . K u s a n o , N . S a t o , Y . M a t s u m u r a , K . N o z a k i , H . K u m o b a y a s h i ,N . S a y o , Y . H o r i , T . I s h i z a k i , S . A k u t a g a w a , a n d H . T a k a y a ,J O C 5 9 , 3 0 6 4 ( t 9 9 4 ) .
l,l' -Bi-2,2' - naphthol (BINOL) boronates. Hetero-Diels-Alder reactions.t The cycloaddition of Danishefsky's diene (and analogs)to chiral imines catalyzedby boronatesderived from commercially available BINOL ligands proceedswith good diastereoselecriviry.The double asymmetric induction operatesfor matching pairs, which exhibit fast reaction rates. On the other hand,the reactionofachiral substratesin the presenceofchiral binol-boronatesgives rise to productsin good ee.2
9
OSiMe3
-.,1ntethodto varlous d- : n r p r o d u c t sw i t h 7 0 -
?
t_
i\-* |
"'Dpn H
i ' l r s a n d :h a sb e e nt e s t e d ,n oi conjugatedacids.
't1 l]"-
),,
ll-oMe
o
.\ l
BINOL CHzClz
il r^f '
*
,\ l
r."tf'
",'l-tn n
ll
"'f pr, H
20 - 630/" (99:1-86:14)
83% (93% ee)
The (RO)aBH species in which the four oxygen atoms belong to the chiral -1.3'-bis(o-hydroxyphenyl)-BlNol proves to be an exrremely selecrive catalyst for rhe Diels-Alder cycloaddition.iAlmost exclusivelyone product is obtained in a farorable case. p-Amino esters.4 By means of double stereodifferentiation using chiral imines
:c' are subjected to enan-
and a chiral BlNol--boronate catalyst,the condensationwith ketenesilyl acetalsis r simple method for the synthesisof B-amino esters in optically active forms. aHydroxy-B-aminoestersare similarly accessible.s
a ooH
| .-.
-
(Pho)38
cr-alkoxYketoneso5orBR.- : rrlide comPlexes or some
Ir , r
d-- r -:
K. HattoriandH. Yamamoto, .lt 129(1993). K. HattoriandH. Yamamoro, I49, 1749(1993\. K. Ishiharaand H. Yamamoto, "/ACS1f6, l56l (1994). 'K. H a t t o r iM , . M i y a t a a, n dH . y a m a m o r o , . / A CUSS , l l 5 l ( 1 9 9 3 ) . K. Hattoriand H. Yamamoto, 250, 2785,l994't.
1 1 - . . , . h r . a n d H . T a k a Y a 'S L 5 0 1 F. ll: ::,. { 16. 2344 (1993)' J' , . \ rlla. HCA 75,2563 (1992\ r ' \ P i i s t e r .L . B i s c h o f f ,M ' C C A i - ^ : . 6 7 5( 1 9 9 4 ) .
l,l' -Ri- 2,2' - naphthol - lantha n ide complexes. 17, 28- 30 Nef reaction.t'2 Optically active B-hydroxy nitroalkanes are obtained in the ;ondensationof nitromethanewith aldehydesusing a BlNOl-lanthanum complex .rr catalyst.
42
1,1'-Bi-2,2'-naphthol-tin(IV)chloride
@o. |
eryo
oAcn'o I
(Y\
v
,La oH
o/Y'*o, OH
ni\-*t
I
@
cH3NO2 THF, -500
=-,'=,
'
K . I s h i h a r a , M . K a n e e d a ,a n d H . Y a m a r u
BO"h(92"hee)
prepared from (i-PrO)rLa promotes Michael reactions.2 A BINOL complex Michael reactionswith excellentresults' enantioselective derived from lanthanide chlorides' Alkylation.3 Organolanthanide reagents with good stereoselectivity' alkyllithiums, and BINOL add to aldehydes Diels.Alderreactions.aTheversionwithinverseelectrondemandinvolvingapyronesandvinylethersiSsubjectedtoasymmetricinductionbyaBlNol-ytterbium complex.
I
COOMe
2-vt ( . 6 + r l
r-o"u
Yb(oTD3,iPr2NEt (B){+)-BINOL
o
-.O-\,,COOl,/t"
+A OBu
l,l' -Bi-2,2' -naphthol/titanium con; In addition to the chiral BINOL-h1 usingdiisopropoxytitaniumand oxotitr
ferent degrees. Ene reactions.t The enantiosckt reaction of glyoxylate is effective usio reactionof fluorala also attains a hig Chiral catalyststhat contain substituc
Both allylstannanes' Allylation. bonyl substratesin enantioselectiveand rationi of a very effective catalyst froc the need for stirring, heating or coolil of the methodology. Under such cond rained by substituting the allyl rcageil
82"/" (53"kee)
a I
r H . S a s a i ,T . S u z u k i , N . l t o h , a n d M ' S h i b a s a k i ' T L 3 4 ' 8 5 1 ( 1 9 9 3 ) ' 116' l57l (1994)' rH. S a s a i ,T . A r a i ' a n d M ' S h i b a s a k i ' J A C S Pease' TA 4' 2407 (1993)' E t J and Lyford, L K. Chibale, N. Greeves, 103' 295 ' 1 . 8 . M a r k o , G . R . E v a n s , l - ' e ' O " t t " " q ' J ' F e n e a u - D u p o n t 'a n d B ' T i n a n t ' 8 S C B
\ PhCHO +
CH2=C=CHSnBu3+ ?
\
( r994).
The fornrr Aldol condensation.' iilyl acetalsand aldehydesmay actuall migration. chiralformswhenmeso-cyclicl,2-carboxylicanhydridesanddicarboximidesare Michael reaction.to Using enocr treatedwith the complexat low temperature' rnd a chiral BINOL-TiO catalyst, thc t 42' 9 (1994)' ' K . M a t s u k i , H . I n o u e ' A . I s h i d a , M ' T a k e d a ' M ' N a k a g a w a 'a n d T ' H i n o ' C P B ralues range from moderateto highly-
16' I 33 l,l' -Bi-2,2'-naphthol-lith ium aluminum hydride' are obtainedin hydroxylactams and Enantioselectivereductions't Lactones
l,l' -Bi-2,2"naphthol-tin(IV) chloride' Enantioselectiveprotonati'on.|Cleavageofenolsilylethersandketenebis(triketonesand esters' alkylsilyl) acetalsby the complexleadsto chiral
Y. Motoyama, andK. Milec M. Terada, 'V. Terada, and K. Miler S. Matsukawa,
IL 35. ll K. Mikami andS. Matsukawa, 'K. Mikami, T. Yajima,M. Terada,E. Kr
I,l'-Bi-2,2'-naphthol/titanium complexes 43
osiEt3
r
f
f
i
t
H o cH2cr2
Y\"",. all-f"* .,,.i, (, aY'n a-,b-{""'' \"' " \.\2
, \1^*o,
,,*""
' o H 'K.
I s h i h a r a ,M . K a n e e d a a, n d H . Y a m a m o t o , , / A C S lf6, lll79 (1994).
8c*. 92".ee)
r , P r C ) r , L aP r o m o t e s rn:h:ntde chlorides, a.:l\lt\.
dc:r.rndinvolving ar : ill\OL-Ytterbium
I I
::oMe
-5!
l,l'-Bi-2,2'-naphthol/titanium complexes. 15, 26-27; 16, 24-25; 17, 28-30 In addition to the chiral BINOL-ligated dichlorotitaniumcomplex, the variants usingdiisopropoxytitaniumand oxotitaniumspeciesare shown to be effectiveto different degrees. Ene reactions.t The enantioselectivesynthesis of a-hydroxy esters from ene reactionof glyoxylate is effective using vinyl chalcogenides2 and allylsilanes.iThe reactionof fluorala also attains a high level of enantio- and diastereoselectivities. Chiral catalyststhat contain substituentsin the BINOL moiety havebeen evaluated. Allylation. Both allylstannanes5 and silanes6transfertheir allyl groupsto carbonyl substratesin enantioselectiveand diastereoselectivemanners.The facile preparationTof a very effectivecatalystfrom BINOL and (i-PrO)qTiina2:l ratio without the need for stirring, heatingor cooling is most advantageous in future applications of the methodology. Under such conditions homopropargylic alcohols are also obtained by substitutingthe allyl reagentwith allenyltributylstannane.t
(ot)"'
-
phcHo+ cH2=c=cHSnBu3+ 9?o" T : , r r . B S C B1 0 3 '2 9 5
r ! n r . a r e o b t a i n e di n ri Jrearboximidesare H :.'. CPB42'9 (1994)'
rcr. .rnd ketenebis(triC.laf\.
AfYo. \.)iz
H
gH /'
,n{ 48olo (> 99"/. ee)
Aldol condensation.e The formation of B-siloxy ester derivatives from ketene 'ilyl acetalsand aldehydesmay actuallybe an ene-typereactioninvolving silyl group migration. Michael reaction.ttt Using enonesas acceptors,enol silyl ethers as nucleophiles, rnd a chiral BINOL-TiO catalyst, the Michael reaction takes place at -78'C. The ee ralues range from moderate to highly respectable(36-90Vo). M. Terada, Y. Motoyama, and K. Mikami, TL 35,6693(t994). 'M. Terada, S. Matsukawa, and K. Mikami, CC 327(lgg3). K . M i k a m ia n dS . M a t s u k a w a , T L 3 5 , 3 l 3( 139 9 4 ) . 'K. Mikami, T. Yajima,M. Terada, E. Kato,andM. Maruta,TA5, 1087(1994).
44
Bis(acetonitrile)dichloropalladium(II)
tA.L.
C o s t a ,M . G . P i a z z a ,E . T a g l i a v i n i ,C . T r o m b i n i , a n d A . U m a n i - R o n c h i ,J A C S 1 1 5 ' 7001d993). oS. A o k i , K . M i k a m i , M . T e r a d a ,a n d T . N a k a i , f 4 9 , 1 7 8 3( 1 9 9 3 ) . 'c. E. Keck and L. S. Geraci, TL 34,782'7 (1993). 8 G. E. Keck, D. Krishnamurthy,and X. Chen, rL 35, 8323(1994\'K. M i k a m i a n d S . M a t s u k a w a ,J A C S 1 1 6 , 4 0 7 ' 7( 1 9 9 4 ) . l"S. K o b a y a s h i ,S . S u d a , M . Y a m a d a ,a n d T . M u k a i y a m a , C L 9 7 ( 1 9 9 4 ) .
itrile)dichloropalladium(Il).14,35-36; 15,28-29; 16,25- 26; 17,30-3 | Bis(aceton finds usein the prepaAllylic rearrangement. This suprafacialrearrangement oxides.2 and 6-hydroxyallylic phosphine rationof 4-acetoxy-2-alkenonitrilesr OAc
/w\./\ o
(MeCN)2PdCl2
cN
oAc
(MeCN)2PdCl2
rnrd\^/\
O
Bis(aceton itrile)chloronitropalledior Oxidative cyclization. Homoalll.l vertedto 7-lactolsrand 7-lactones.: req
T. M. Meulemans, N. H. Kiers, B. L. F.er -[994). : P. Compain, J.-M. Vatele,andJ. Gore.SL 9
-r'V"t,/f^"*
THF
'H. Abe, H. Nitta, A. Mori, and S. Inoue.C :J. Clayden and S. Warren, JCS(pt) 29t3 tll 'M. K i m u r a , H . H a r a y a m a ,S . T a n a k a . a n d 'P. A . v a n d e r S c h a a f ,J . - p . S u t t e r , M . G r c l l a n d M . P f e f f e r ,J A C S 1 1 6 ,5 t 4 3 ( 1 9 9 4 ) . '_A . D e g l ' l n n o c e n t i , A . C a p p e r u c c i ,L . B a r r (1994). oA. D u c h e n e ,M . A b a r b r i , J . - L . p a r r a i n . V M. Kosugi, T. Sakaya, S. Ogawa, and T. Mr
OAc
^t'n2HVV\ .r I
Bis(allyl)di.fr-chlorodipallad ium.
87"/"
The catalyst induces endo-trig cyclization of 2-hydroxyat room temperatureto afford 3-pyrrolines.' An oxidaderivatives 3-butenylamine o-allylbenzylaminesaoccurs when PhrP is added after of tertiary tive cyclization Cyclization.
Cross coupling,t Biaryls are otxarr rn the presenceof the palladium complcr vic-Bissilylation.2 Disilanes are sp r h e 1 , 2 - d i s i l ydl e r i v a t i v e s .
Allylic substitution.l Di-Boc-ail1L tates.The productsare convertedinto pr
complexation. NaN(Boc)2
^
aY'v t t \u
l
l
z
"{t,'"' \,,^YNME,
(M€cN)zPdcrz
.:.-NMe2
NaoAc / MecN
\\,". 'i/ 'oAc
Ph3P r'Ya ,; $,./r", I
I
'"?;I'
cl
86"k
Cross couplings. The catalyzed coupling of haloalkenes with organometallic reagentsgivesrise to variousfunctionalizedalkenes,includingenynes,s3-substituted 3-butenoicacids.6and 1.4-dienes.r
o o ll
,./"nou"
7)' Me3Si'
+
Aa,rn"
[[ .2' I
(M€cN)2Pdcl?
DMF.N2 rl,1h
z
fsien.
Me3Si-
64"/"
.--..------.--*\.^ r. a t !
1r'-t ?!:Pt
Many chiral ligands have been investigar lective sense.These bidentate ligands usn pair.n
Reductive cleavage of &(N-goc Using formic acid as hydrogen sourcc. conjugated and deconjugated esters. Th palladium.
Y. Hatanaka, K.-i. Goda,y. Okahara.andI -F. Ozawa,M. Sugawara, andT. Hayashi.O 'R. J u m n a hJ,. M . J .W i l l i a m s a, n dA . C . W 'B. M. TrostandM. G. Organ,.IACS116.t0
Bis(allyl)di-p.chlorodipalladiurn r - R o n c h i .J A C S 1 1 5 '
1 6 .1 5 - 2 6 : 1 7 .3 0 - 3 1 nJs use in the PrePa: : , . p h i n eo x i d e s . 2
45
'H. Abe, H. Nitta, A. Mori, and S. Inoue, CL2443 Ogg2\. :J. Clayden and S. Warren, JCS(PI) 2gl3 (lgg3). tM. K i m u r a , H . H a r a y a m a ,S . T a n a k a , a n d Y . T a m a r u , C C 2 5 3 1( 1 9 9 4 ) . 'P.A. v a n d e r S c h a a f ,J . - P . S u t t e r , M . G r e l l i e r , G . P . M . v a n M i e r , A . L . S p e k , G . v a n K o t e n , and M. Pfeffer, JACS 116,5143 (1994). tA. D e g l ' l n n o c e n t i , A . C a p p e r u c c i ,L . B a r t o l e t t i , A . M o r d i n i , a n d G . R e g i n a t o , I L 3 5 , 2 0 g 1 ( t994). oA. D u c h e n e ,M . A b a r b r i , J . - L . P a r r a i n , M . K i t a m u r a , a n d R . N o y o r i , 5 L 5 2 4 ( l g g 4 ) . 'M. K o s u g i , T . S a k a y a ,S . O g a w a ,a n d T . M i g i t a , B C S J 6 6 , 3 0 5 8 ( 1 9 9 3 ) .
-'
Ita' l|\
'
i
Bis(acetonitrile)chloronitropalladium(II)-copper(II)chloride-oxygen. Oxidative cyclization. Homoallylic and homopropargylicalcoholsare convertedto 7-lactolsrand 7-lactones,2 respectively. 'T.M. M e u l e m a n s ,N . H . K i e r s , B . L . F e r i n g a ,a n d p . W . N . M . v a n L e e u w e n ,T L 3 5 , 4 5 5 -41994).
CN
rP.
.:lr()n of 2-hYdroxY. r r r o l i n e s . rA n o x i d a 'r Ph'P is added after
c i ,r,:
I
C o m p a i n , J . - M . V a t e l e ,a n d J . G o r e , S L g 4 3 ( l g g 4 ' ) .
Bis(allyl)di-fr-chlorodipallad ium. cross coupling.' Biaryls are obtained from aryl halides and aryl(halo)silanes in the presenceof the palladium complex and KF. vic-Bissilylation.2 Disilanes are split and add to alkenes and alkynes to glve t h e 1 . 2 - d i s i l ydl e r i v a r i v e s . Allylic substitution.l Di-Boc-allylamines are readily obtained from allyl acetates.The productsare convertedinto protectedglycine esterson ozonolysis. NaN(Boc)z
\Aoo. > :
U
r
ru1ao.1, ""oi MeOH l6-/.
MeooC
ttlBocl2 95"k
Ph3P- MF
b -
600
86% ) & .\ J : ' L r ' \ u i t h o r g a n o m e t a l l i c c,-.: rr cny nes,t 3-substituted
l.ri
(-pa,ct \ , :-- ,
\
\
S
\lany chiral ligandshave been investigatedto assistthe substitutionin an enantioselectivesense.Thesebidentateligandsusually possessan N,p-,a-6N,.!-,7 or O,p-donor pair.n Reductive cleavage of B-@-Boc-aziridin-2-yl) a,B-unsaturated esters.e using formic acid as hydrogen source, the reductive cleavage gives a mixture of conjugatedand deconjugatedesters.The caralyst is bis(2-methallyl)di-p-chlorodipalladium. Y . H a t a n a k aK,. - i . G o d a ,Y . O k a h a r aa,n dT . H i y a m a , 2 5 0 , 8 3 0(11 9 9 4 ) . 'F. Ozawa, M. Sugawara, and T. Hayashi, OM 13,323'l(lgg4). R. Jumnah,J.M. J. Williams,andA. C. Williams,TL 34,6619(t993\. '8. M. Trost and M. G. Organ,JACStt6, t0320(t994).
l6
Bis(benzonitrile)dichloropalladium(II)
'P. 32' 566 (1993)' von Matt and A' Pfaltz' ACIEE a n d G ' H e l m c h e n 'T A 5 ' ^ ; ' P f a l i z ' C ' L e f e b e r 'T ' F e u c h t ' ; ' ; ; ' P. von Matt, o. Loiseliur' 573( 1994). J' M' J Williams'JCS(PI) -J.V. C G ' F r o s t 'C ' J ' M a r t i n ' a n d A l l e n , S . J . C o o t e ,G J ' D a w s o n ' 2 0 6 5( r 9 9 4 ) . '1. sL 551(1994)' c. fr"" ""d J' M J' Williams' " Y a m a m o t o 'S L 6 4 ( 1 9 9 5 ) ' A ' a n d S h i m i z u , I . A. Satake'
Bis(arenesulfonyl)methanes' under solidare obtained through alkylation Atdehyde syilthesis't Aldehydes l i q u i d b i p h a s i c c o n d i t i o n s f o l l o w e d b y r e d u c t i o n w i t h L i A l Hsynthon' 4andHg(Il)-promoted methanesare a formyl anion hydrolysis.Thus the bissulfonyl
R
I lll 'l
A
B ,.) f
?
Fo/ +
f
catalyst.
Ar'SO2N=XArn
sensitiveO-protectedT-hydroxyB-ketoestersrssimplified'usingtheadductsofthe alcohol as precursors' alkynoic esterswith propargyl
,",J
o ll
ill
'l'
Meo'')
o
PdClz(PhCN)z
o
r',t"o,&orHP PhH 60-650 8h
(no' OTHP
of allylic alcohols (e'g'' allyl alcohols'2 Umpolung Allytation of aldehydes with in the presence attack on aldehydesis realized isoprenol)and the ai'""t nutt"ophilic of (PhCN):PdClI and SnCl:'
(PhcN)2Pdcl2
RcHo - ,o')''y'
?
THF - H2O
OH rr ll I
/\)v
56-83%
are formed' a-Chloromethylene-7-lactones Cyclization of allyl propynoates'3'4 original substitution tnrru"n."d by additivesand the The nature oi tt" B_grouo',', pattern.
i
co (PrcN|fq
13' 34; l5' 29 Bis(benzonitrile)dichloropalladium(II)' other The selective cleavage(fbr which 'i'yl an'n't Cleavage "f p'"p";;;; useis (":1 in the presenceof other "'tn"" :,1"jtals) Pd(Il) reagentsare also effective) very preparation of the u.ing this methodology, the ful for syntheti" *un,p,irutionr.
NaO
f
ArSOzCl- ArI.5 This transformationrc and also LiCl and (lPrO)+Ti. Arenesulfonyl isocyanates.6 Arenesulfon diphenylselenideundergogroup exchangeurth
'Y.-P.WangandX Huang'YH 13'253(1993)'
^
CuCl2
cH{,,
X - - 1 ,n = 1 X = S e .n = 2
Imidazolidin-2'thiones.n Aziridines coo influence of (PhCN)zPdClu.
G .S . S a r i n ,7 L 3 4 ,6 3 0 9( 1 9 9 3 ) . ' Y . M a s u y a m aM, . F u s ea' n dY . K u r u s uC ' L ll99 t S . M a a n dX . L u , J O C 5 8 ' 1 2 4 5( 1 9 9 3 ) ' 'S. Ma andX. Lu, JOMC447'3O5(19931. 'T. Satoh,K. Itoh, M. Miura,andM. Nomura.SCj 'G. a n dL . I . S i m a n d iI,L 3 4 . 2 8 3 9r l 9 9 l r -G. B e s e n y e i S. Nemeth,andL. l. Simandi.fl !6' Besenyei, 'J -O. BaegandH. Atper,JACS116' 1220( l99r)
Bis(ben zyloxy)diethyla minophosph i nc. Glycosyl phosphites-' The diethylamtno rhuson reactionwith sugarsin the presenccof tormed.These productsare not only useful ar Jized to the phosphates,which are precunor \{. M. Sim, H. Kondo,andC.-H. Wong.JACSll!
Bis(bromomagnesium) sulfide. Sulfides. The reagent, prepared b1 satu uith anhydrousH25, reactswith organic halx JOCU2t' ll0] A. N. NodugovandN. N' Pavlova,
B i s ( b r o m o m a g n e s i u m ) s u l f i d e4 7 R
- . ' r t . r n d C . H e l m c h e n I' A 5 .
||.
I
cr cl
B Pdcr2(PhcN)2
lt/
, - i J \ 1 . J . W i l l i a m s ,J C S ( P I I
R{
f_\
CuCl2
04o)
cH3cN, Licl n,43-72h
o4o/
/--n
50-94%
d
) a'
. : n a l k v l a t i o nu n d e r s o l i d t lH. and Hg(II)-Promoted ,, n \ \ n t h o n .
Arsozcl - ArI.5 This transformationrequires znl2 or KI as iodide source, and also LiCl and (iPrO)rTi. Arenesulfonyl isocyanates.6 Arenesulfonylimino derivativesof iodobenzeneor diphenylselenideundergogroup exchangewith co in the presenceof the palladium catalyst. co (PhcN)2Pdct2
Ar'S02N=C=O
Ar'SO2N=XArn l l i r o' f, f - t
cH2ct2
-. .learage (for which other : . r h c r \ ( e . g . ,a c e t a l si)s u s e :hc preparationof the very 'J. u.in-qthe adductsof the
- .
X = 1 ,n = 1 X=Se,n=2
Imidazolidin-2-thiones.s
Aziridines condense with sulfur diimides under the
i nf luence of (PhCN)zPdClz. G. S. Sarin, TL 34,6309 (t993). Y . M a s u y a m a ,M . F u s e , a n d y . K u r u s u , C L l l g g ( l g g j , . 'S. M a a n d X . L u , J O C 5 8 , 1 2 4 5( 1 9 9 3 ) . 'S. Ma and X. Lu, JOMC 442, 305 ( 1993). 'T. S a t o h ,K . I t o h , M . M i u r a , a n d M . N o m u r a , B C S J6 6 , Z l 2 l ( 1 9 9 3 ) . -G. B e s e n y e ia n d L . I . S i m a n d i , T L 3 4 , 2 8 3 9 ( t g g 3 ) . G . B e s e n y e i ,S . N e m e t h , a n d L . L S i m a n d i , T L 3 5 , 9 6 0 9 O g g / ) . 'J.-O. B a e ga n d H . A l p e r , J A C S 1 1 6 , t 2 2 O( g 9 4 \ . .
oil
o ll
nt"o,.WorHP :. '
l -r_
69"k
u n g o f a l l y l i c a l c o h o l s( e . g ' ' -.. r. realized in the presence
o*il : I F
o *
Bis(benzyloxy)diethylaminophosphine. Glycosyl phosphites,t The diethylamino group of the reagent is exchangeabre; thuson reactionwith sugarsin the presenceof r,2,A-triazore,glycosyl phosphitesare iormed' These productsare not onry useful as glycosyrationagents, they can be oxiJized to the phosphates,which are precursorsof sugarnucleotides. M. M. Sim, H. Kondo,andC.-H. Wong,"/ACS11S,2260 il993).
56-83'/" Bis(bromomagnesium) sulfide.
or lJ:
are formed. l:rr Iene-7-lactones . Jnd the original substitution
sulfides' The reagent, prepared by saturating an ethereal solution of EtMgBr *ith anhydrousH25, reactswith organic halides to furnish sulfides. {. N. NodugovandN. N. pavlova, JOCU 29. I 103(l992).
4t
manganese(III) chloride [N,N'-Bis(3,5-di-/-butylsalicylidene)-1,2-cyclohexanediaminato(2-)l
Bis(/-butoxycarbonyl) oxide. IDi-t-butyl pyrocarbonate] Derivatization of amines and alcohols. Attachment of the Boc group to aryand BoczO.Both laminesr is achievedby reactionwith sodium hexamethyldisilazide nitrogen and oxygen atoms of hydroxylamine are derivatized in a biphasic system in the presenceof EtrN as base.2 Cyclic carbodiimides.s Bis(iminophosphoranes)behaveas nucleophilestoward Boc2O. After an isocyanate is formed, a Wittig reaction follows. Either an intramolecular or intermolecular process predominatesaccording to the influence of rins strain.
J. F. Larrow, E. N. Jacobsen,y. Gao. y. Flor
(-\ N=C=N: Boczo - DMAP
cH2ct2
N=c=No
rt.th
'lo"/.
' T. A. Kelly andD.W. McNeil,7L 35, 9003( 1994). I M. A. StaszakandC. N. Doecke,TL 34,7043(1993). tP. Molina,M. Alajarin,P. Sanchez-Andrada, J. Elguero,and M.L. Jimeno,JOC 59,7306 (1994).
N,O-Bis(f -butoxycarbonyl)hydroxylam ine. Synthesisof N-alkylhydroxylamines and hydroxamic acids,' N-Alkylation is conditions(96-98Vayield), whereasacyconvenientlyachievedunder phase-transfer The lation with an acyl chlorideproceedsin the presenceof EtrN in dichloromethane. Boc groups are subsequentlyremoved on treatment with trifluoroacetic acid. ' M. A. StaszakandC.W.Doecke,TL 35,6021(1994\.
[N, N' -Bis(3,5-di-r-butylsalicylidene)- 1,2-cyclohexanediam i nato(2-)] manganese(lII) chloride. Enantioselective epoxidation.' This effective catalyst (l) is readily prepared in a 70-100 kg scalefrom the resolveddiamine (with tartaric acid), the salicylaldehyde (from formylation of the phenol by Duff reaction), and manganeseacetate,followed by anion exchangeby treatment with aqueousNaCl.
Bis(chlorodibutyltin)
oxide. Diol monoesters.t l,n-Diacetates rr by transesterificationto methanol in rh effect arisesfrom cooperationof two difl l,rng-gh.ir diacetates(n > 5) the selcc cannotoperate.
J. Otera,N. Dan-oh,andH. Nozaki.f 19. -l
Bis(sym-collidine)iodine(I) perchlonrc Silylation.t Transsilylation from a { rodinationof the doublebond, renderingr .rs 2- iodomethyltetrahydrofuran). Iodolactonization.2 Medium-sized .rlkenoic acids is favored by the presencc Glycosylationr phenyl selenoghco
Dissacharidesare formed at room tempcr
C. Colombier, T. Skrydstrup, andJ.-M. &r B. SimonorandC. Rousseau, ,/OC59.59ll r l H. M. Zuurmond,P.H. van der Meer.p. A tl ran Boom,JCC 12, l09l (1993).
Bis(1,5-cyclooctadiene)nickel(0). 13. _15
t7.32
Bromoalkene t alkene cyclizatiot. lar cyclization,making methyleneazacrc
lut,r
l',1 manganese(Ill) chloride
Bis(1,5-cyclooctadiene)nickel(O)49
lla
tr|.-' ,i rhe Boc group to aryt h r . : : . i l a z i d ea n d B o c 2 0 .B o t h r o : . . r J r n a b i p h a s i cs y s t e mi n t<:..i q' as nucleophilestoward ctr, :. f(rllows.Either an intra\, :Jrns to the influenceof
(1)
'J.F.Larrow,E.N.Jacobsen,y.Gao,y.Hong,X.Nie,and C.M.Zepp,JOCSg,19390994).
'\ Z*ru=C=f't '=--N-C=N <
)
Bis(chlorodibutyltin)
oxide. Diol monoesters-t r,r-Diacetates(n : 2,3,4) areconverted to the monoesrers by transesterificationto methanol in the presenceof the tin oxide. The catarytic effect arisesfrom cooperationof two different tin metal atoms held in proximity. For long-chain diacetates(n > 5) the serectivityvanishes becausethe template effect cannotoperate. J. Otera,N. Dan-oh,and H. Nozaki,T 49,3065(lgg3).
:-:
\ l [ . J i m e n o .J O C 5 9 . 7 3 0 6
lamrc acids,t N-Alkylation is s ,^ e8c?yield), whereasacyf F ' \ r n d i c h l o r o m e t h a nT eh .e rr:: : :: I luoroaceticacid.
Bis(syzr-collidine)iodine(I)perchlorate. 15, 30; 17, 155 silylation.t Transsilyration from a 4-pentenyl silyl ether to an arcohol involves iodinationof the doublebond, renderingthe pentenyloxy group nucreofugal(leaving as 2- iodomethyltetrahydrofuran). Iodolactonization.2 Medium-sized (7- to l2-membered) ring formation from llkenoic acids is favoredby the presenceof an in_chain oxygen atom. Glycosylation s Phenyl serenoglycosidesare activated by the iodinating agent. Dissacharides are formed at room temperaturewithin minutes. C. Colombier, T. Skrydstrup, andJ._M.Beau,TL 35, g167fl994). B. SimonotandG. Rousseau, JOC 59,5gl2 0994\. H. M. Zuurmond,P.H. vander Meer,p. A. M. van der Klein, G. A. van derMarel,andJ. H. ran Boom,JCC 12, l09l (t993).
ocdiaminato(2-)l Irr. \ .r I I t is readily preparedin r : : : . . r c i d ) ,t h e s a l i c y l a l d e h y d e l: irnganese acetate,followed
Bis(l'5'cycfooctadiene)nicker(0).13, 35;14,36-3i; t7.32
rs,30-32,
r3r-132; t6, l9;
Bromoalkene I alkene cyclization,t A nitrogen atom assiststhe intramolecu_ .ir cyclization,maki ng methyleneazacycl ic compoundsreadily available.
50
2,4-Bis(4-methoxyphenyt)1,3,2,4-d itliral
Bis(cyclopentadlenyl)ironhexafluorophosphate
pn^n/'V
Ni(coD)2, cHgcN;
Bis(cyclopropyl)titanocene. Alk ylide ne - and vinylc ycloprop.u of carbonyl compounds including esro vinylcyclopropanes on acidic workup.
/-/,^cN r N l
Y'.'
P{ 99%
A q Y I^\ \
Intramolecular allylation.2 Certain dienic aldehydes undergo cyclization to in the presenceof Ni(cod)2,Et3SiH, and PhrP' z-Allylgive 2-alkenylcyctoalkanols nickel nucleophilesare generatedfrom reaction of the diene units with the silylnickel hydride. Cycloalkenolswith 5-, 6-, and 7-memberedrings are readily obtained'
N . A . P e t a s i sa n d E . I . B z o w e j , T L 3 1 . 9 1 1
Ni(cod)2 - Ph3P
Oxidation of allylic alcohols.t Ti enceof oxygenis effectiveto oxidize atl 02 and in the presenceof an acid, cerrtrr undergo cyclodehydration. The oxider ),lH4PF6,and 02.
^/ / \ o B n \'-./)""'/
Ei3siH PhMe,0o
OBn
Bis(dibenzyl ideneacetone)palladiur-
E3siol
59"h
'D. Sole,Y. Cancho,A. Llebaria,J. M. Moreto,and A. Delgado,JACS116,12133(1994). tY. Sato,M. Takimoto,K. Hayashi,T. Katsuhara, K. Takagi,and M. Mori, JACS116'9'7'71 ( 1994).
E -Y€"ro I
(dba)2pd t
=
o
od\
OTBS
)-\
-:-:"
Cp2Fe*PF6-
EtcN -23o
rK. Narasaka. CL 125(19931. Y. Kohno,andS. Shimada,
\-\I
I
/I > ^l l N k| v'\-//
72"/.
l
ph3p/phMe v2,
Bis(cyclopentadienyl)iron hexaf luorophosphate. Acyliminium ions.' Oxidative destannylationof N-(a-stannylalkyl) amides leads to reactiveelectrophiles,which can react with enol silyl ethers, allylsilanes, allylstannanes,and trimethylsilyl cyanide. The stannyl group lowers the oxidation potential of the amidic nitrogen, without which the acyliminium ions do not form under the oxidation conditions.
E -y \
6 E'
3a%
E. Gomez-Bengoa, P. Noheda, and A. M
E
I Bis(d iphenylphosph ino)alkanel bis(2-r (Z)-Enol esters.t The stereosclecr alkyne linkage is catalyzed by rutknn ieparated by 2, 3, or 4 methylene groupr
H. Doucet,J. Hiifer,C. Bruneau,and p. H I
o \-
2.4. Bis(4-methoxyphenyl)-1,3,2,4d irl I Lawesson's reagent). 13, 38-39; 15. ll Thiols from alcohols.t In toluerc o \erts aralkyl and cycloalkyl alcoholsro r Perfluoroalkyl amines.2 Thionarrq tron with NBS-BuaNH2F.r constitutesa c
2'4-Bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane (Lawesson's 2,4-disulfide reasent) sl Bis(cyclopropyl)titanocene. Alkylidene- and vinylcyclopropanes.t The reagenteffects cyclopropylidenation of carbonyl compoundsincluding estersand lactones.Reactionwith alkynes gives vinylcyclopropaneson acidic workup. 9996
o"V G]" # 3.+.
i : j.:\Je\ undergo cyclization to i l - : E r , S i H .a n d P h r P ' z ' - A l l Y l I : ' : . : . ' n eu n i t sw i t h t h e s i l y l n i c k e l -i. are readilYobtained. irri 'N.
Bis(dibenzylideneacetone)pallad ium- oxygen. oxidation of allylic alcohols.t The catalyst system (dba)2pd-phrp in the presenceof oxygenis effectiveto oxidize allylic alcohols.Interestingly,with exclusionof 02 and in the presenceofan acid, certain substratescontaining a remotedoublebond undergo cyclodehydration. The oxidation can also be effected with (phrp)4pd, NH4PF6,and 02.
/ / / :9" "
I .
A . P e t a s i sa n d E . I . B z o w e j , T L 3 4 , g 4 3 ( l g g 3 ) .
. . : / { C S 1 1 6 ,1 2 1 3 (31 9 9 4 ) .
-'>.**
t r l Ph3P/ PhMe Oe, A
L. r . - : \ - r o - s t a n n y l a l k Y l )a m i d e s ,r '- i:lrrl .ilyl ethers,allylsilanes' srr)uP lowers the oxidation | :-: ,- ' irminium ionsdo not form
o
, . ' -'
; T
\-\
/
I
r-,f^T^( \"'\"'
72"k
9.:
'il A
3A"/" 'E.
(dba)2Pd Ph3P/ PhMe csA,
A
E = COOMe 62"/o
G o m e z - B e n g o a ,P . N o h e d a ,a n d A . M . E c h a v a r r e n ,T L 3 5 , 1 O g 7 O g g 4 \ .
I Bis(diphenylphosphino)alkane]bis(2-methallyl) ruthenium complexes. (Z)-Enol esters.t The stereoselectiveaddition of carboxylic acid to a terminal alkyne linkage is catalyzed by ruthenium complexes.Bidentatephosphineligands \eparatedby 2,3, or 4 methylenegroups are all effective. H. Doucet,J. Hiifer,C. Bruneau, andp. H. Dixneuf,CC 9500993). 2,4. Bis(4- methoxyphenyl) -1,3,2,4- dithiadiphosphetane 2,4-disul fide I Lawesson'sreagent). 13, 38-39; 15,37:16,37-3g Thiols from alcohols.t In toluene or DME the Lawesson'sreagentdirectly converts aralkyl and cycloalkyl alcoholsto thiols. Perfluoroalkyl amines.2 Thionation of perfluoroacylamines followed by reacrion with NBS-BuoNHzF3constitutesa convenientmethod for the preparation.
52
sulfoxide Bismuth(III)mandelate-dimethyl
B-r>Ribofuranosides.s Starting from ribofuranoses and alcohols, the glycosidation is mediatedby a mixture of AgClOa and Lawesson'sreagentor Ph2Sn:S. ' T . N i s h i oJ, C S ( p t )l l l 3 ( 1 9 9 3 ) . rM. Kurobashi andT. Hiyama,TL 35, 3983(1994). tN. Shimomura CL l94l (1993). andT. Mukaiyama,
z\/\/\.1
-o
aG
T. Zevaco,E. Dunach,and M. postet.It .} :V. Le Boisselier, E. Dunach,and M. porrc
Bismuth. 13, 39 Carbonyl compounds and imines are attacked to give homoallylic alcoholsand amines by a mixture of bismuth and allyl bromide in acetonitrile.The presenceof BuaNBr is required, whereasMerSiCl and NaI are less effective. GenerAllylation.t
ally, the yields rangefrom 85 to95Vo.The use of tantalum insteadof bismuth works only for imines, and with lower yields. '
andJ.S. Sandhu,TL 34,7975(1993). P.J. Bhuyan,D. Prajapati,
Bismuth(Ill) chloride. 15, 37 Bismuth(Ill) chloride is an excellent catalyst for Thus t-butyl chloride is obtainedquantiwith chlorosilanes. chlorinationof alcohols Chlorination of alcohols.t
tatively at room temperature. Reduction of nitroarenes.2 This reagent in combination with zinc is a mild reducing agent, converting nitroarenes to azoxyarenes.
Bis(pyridine)iodine(I) tetrafluorobor Dimerization of 1-iodoalkynes.: l Iodination.2 Arenes undergo iodrn fluoromethanesulfonic acid may be uscd
J. Barluenga,.l M. Gonzalez, L Llorenre.e 'J. Barluenga, J . M . G o n z a l e zM, . A . G a r c r : 0 5 8( r 9 9 3 ) .
Bis(tetrabutylam monium)ceriu ml I V I
Oxidative cross-coupling,t a-Sran dation,and the resultingfree radicalsca .uch as silyl enol ethers and allylsilarrr
reaction.Note that a-germanylalkanoice the a-silylalkanoic estersdo not underso
lM. Labrouillere, andJ. Dubac,5L723(1994). C. Le Roux,H. Gaspard-lloughmane, 2H. N. Borah,D. Prajapati, J.S. Sandhu,andA. C. Ghosh,7L 35, 3167( 1994). ph{ Bismuth(III)
chloride-metal
*
R.M
cooEr
iodide.
Silyl enol ethers react with carbonyl acceptorsto give Bsiloxy ketonesand esters.rAs BiXr is also a catalystfor the replacementof B-siloxy groups, prolonged reaction times can be applied to prepare p-halo carbonyl comAldol condensation.
poundsdirectly.2The reactionis enhancedby ultrasound. 'C. Le Roux,H. Gaspard-lloughmane, J. Dubac,J. Jaud,andP.Vignaux,JOC 58' 1835(1993). 'C. Le Roux,H. Gaspard-lloughmane, andJ. Dubac,JOC 59,2238(1994).
Bismuth(III) mandelate-dimethyl sulfoxide. Epoxide cleavage. Carboxylic acids are obtained from this reaction.' It shows chemoselectivityin that alkenes and alcohols are inert. Bismuth(lII) acetateand oxide are not effective. In aryl epoxides, the presenceof electron-donating groups favor the oxidation.2
\'. Kohnoand K. Narasaka, CL 16g9( 199-1
Bis(tributylstannyl)acetylene.
Ethynylation of azaaromatics.t Afr :nateester,pyridine, quinoline, pyridazrn .\ the tin compound. a-Chloroethyl chl lct ivator.2
T. Itoh,H. Hasegawa, K. Nagata,M. Okade T. Itoh,H. Hasegawa, K. Nagata, M. Okadr.
Bis(tributyltin)acetylene 53
ln -.. rnd alcohols,the glYcosiIt\- r'l\ reagentor Ph2Sn:S.
zvvY
Bi mandelate
N"oo, DMSO, 800
507.
'T.Zevaco,E. Dunach,andM. Postel,TL34,2601(1993\. rV. Le Boisselier, E. Dunach,and M. Postel,JOMC482,ll9 (1994).
i r:. iiircked to give homoallYlic 1 l . r ^ l r r m i d ei n a c e t o n i t r i l eT. h e lr.: \:l
are lesseffective.Gener-
frii: -rn lnsteadof bismuth works
'J. Barluenga, I M . G o n z a l e zl ., L l o r e n t ea,n dP . J .C a m p o sA, C I E E 3 2 , 8 9 3( 1 9 9 3 ) . rJ. Barluenga, J. M. Gonzalez,M. A. Garcia-Martin, P.J. Campos,andG. Asensio,JOC 58,
t!
2058( l 993).
lc' :: .. an excellentcatalyst for r-t , . -hloride is obtainedquanti-
l -
Bis(pyridine)iodine(I) tetrafluoroborate -tetraf luoroboric acid. Dimerization of f-iodoalkynes.t Head-to-tailcoupling gives l,l-diiodoenynes. Iodination.2 Arenes undergoiodination in CH:Cl:. Trifluoroaceticacid or trifluoromethanesulfonicacid may be used insteadof tetrafluoroboricacid as catalyst.
- ^ r n r t r o nw i t h z i n c i s a m i l d
Bis(tetrabutylammonium)cerium(IV) nitrate. Oxidative cross-coupling.' a-Stannylalkanoicestersand amides undergooxidation, and the resultingfree radicalscan be trappedin situ by electron-richalkenes such as silyl enol eihers and allylsilanes.Thus 7-keto estersare accessibleby this reaction.Note that a-germanylalkanoicestersare lessreactivetoward the oxidant and the a-silylalkanoic estersdo not undergooxidation at all.
t?:
; .- : D.-'.
[ ) u b a cS, L7 2 3( 1 9 9 4 ) . 1994). - r 5 -. 1 1 6( 7
(BuaN)zCe(NOg)e
OTBS ph\
*
nsMAcooEr
tnM"ooa, K2CO3,MoCN 00, 2h
u. - -rrbonyl acceptorsto give Brlr.' : : the replacementof B-siloxy t :
::!'pare B-halo carbonYlcom-
lf :.
-:1J.
JOC 58' 1835(1993)' r1 , - .: P \ rgnaux, ( 1 9 9 4)' : l 1 8 i e Jr,'
tr.:.r'J irom this reaction.'It shows ar. :rert. Bismuth(lll) acetateand re..1.e of electron-donatinggroups
o
M=Sn, R=Bu M=Ge, R=Me M=Si, R=Me
44o/ 22"/" 0/,
Y . K o h n o a n d K . N a r a s a k a .C L 1 6 8 9( 1 9 9 3 ) .
Bis(tributylstan nyl)acetylene. Ethynylation of azaaromatics.t After activation of the system by a chloroformate ester,pyridine, quinoline, pyridazine, and analogousheterocyclesare attacked by the tin compound. o-Chloroethyl chloroformateis particularly effective as the activator.2 T. Itoh, H. Hasegawa, K. Nagata,M. Okada,andA. Ohsawa,750,13089(1994). 'T. ltoh, H. Hasegawa, SL 557(1994). K. Nagata,M. Okada,andA. Ohsawa,
54
Bis(tributYltin)oxide
39 Bis(tributyltin) oxide. 13,41-42: 15' r -i,--.BuaNF, benzyl-, allyl-, and alkynylsilanes by Cata|yzed Transmetallation., areconvertedtothetributyltinderivativesbythetinoxideinTHF.Yieldsareexcel. lent - (10 examPles,95-99Vo Yield)' ring opening to afford the stannyl ester i_ltt rr_z_ones., Diketene undergoes a tandem of an aldehyde and HMPA induce of p-stannyloxybutenoic acid' Addition aldolization and decarboxylation'
(BusSn)zO
:{Fo THF / Nz
r I I
l a.Z..,rosnBu3I T' It I O
lAu3SnO '
HMPA 400
0o. 10 min
2-Alkyl-4-oxopentanals'3
I
RcHo
Bis(2,2,2-trichloroethYl) azod Amination of arenes.' \[' electrophilic reagentfor manl a the amines by treatmentwith z
H. Mitchelland Y. Leblanc.JOC
Bis(trichloromethyl) carbonl Dehydration.' Aldoxrnrcr EtrN to give nitriles in good I t Chlorination of phosphint
Y\,' o
dichlorideson reactionwith trq aldehld to 1,2-dichloroalkanes, to isonitriles,ureasto carbodt
48-807o
derived from In the presenceof LiBr' the tin enolate
D. P. Sahu.IJC(B)32B.385( 199 tA. wells,sC 24, l'/15(l99at.
diketeneandbis(tributyltin)oxidereactswitha-bromoaldehydesinachemoselective bromine and decarboxylation' manner. It involves displacementof the
\
/ +
.V.N- Bis(trif luoromethanesul Aromatic chlorination. deficient arenes at room temPc
,Bt
cHo
1r:--,osnBua
(Bu3Sn)2O
l
0o, 10 min
l
l
o'snBu, o
LiBr rl, 24 h
CHO
O
S.V.S€rtd R. Yu.Garlyauskajte,
77"/"
l , 5 . D i k e t o n e s . o T h e d i k e t e n e - t i n o x i d e a d d u c t i s a u s e f u l M i c h a e l d o n not orthat do Note that simple stannyl enol ethers 1,5-diketones. give to enones with reacts of the o-stannyl group by the ester undergo the same reaction; thus the coordination carbonYl must be imPortant' oxide' as well as many other organMacrolactonization.s Bis(tributyltin) of ll-' l3-' 14-' 16-' and l7-membered otin(IV) compounds, catalyzetheformation in hot octane' The yields c'r-hydroxyalkanoates lactones from 2,2,2-trifluoroethyl range from 2l%oto SlVo' '8. P. Warnerand S. L' Buchwald,JOC 59' 5822(1994)' ' CL l2l9 (1993)' 21.Shibata,M. Nishio,A. Baba'andH' Matsuda ' JoC 59'486(1994)' H' Matsuda and 1M. Yasuda, A' Baba' r' Siiittt' M. Nishio, ol. Shibata,M, Nishio,A' Baba,andH' Matsuda'CC 1067(1993)' tJ. D. White,N. J. creen,andF' R' Fleming'?L 34' 3515(1993)'
Bis(trif luoromethyl) telluril I Trifluoromethylation.' methylation.Three different P A renethiols are S-tri f luorol
and S.V.Pazenok. D. Naumann,
1.2-Bis(trimethylsiloxy)cYch I, I - B utanediacylat ioa. ranedionesin one Pot BF, etlx cyclobutenewith acetalsor kc \mall amount of water after tl :rnd to render the reversible n Jouble bonds disfavor the pro<
l,2.Bis(trimethylsiloxy)cyclobutene S5 r . e n z r l - ,a l l y l - , a n d a l k y n y l s i l a n e s !.\I br ::.. trn oxide in THF. Yields are excel;r I -; ,'pening to afford the stannyl ester a. i.-r.h\de and HMPA induce a tandem
,:-3-.
RCHO'
HMPA
)r
\,,\rR o 48-80"/"
il:: DT
- ,r LrBr. the tin enolatederivedfrom in a chemoselective , ^:',,moaldehydes - : :nJ decarboxylation.
\
)t
Mitchelland y. Leblanc,JOC Sg,6820lgg4,t.
'D. P. Sahu,IJC(B)32B,385(1993). -A. Wells, SC24, t7t5 (t994).
'V'N- Bis(trif luoromethanesur fonyr)ben zenesurfonodi im idoyr ch roride. Aromatic chlorination.t This reagentphS(:NI5g16Fj)2Cl chlorinateselectron_ deficientarenesat room temperature.
,B'
A""o I
rH.
Bis(trichloromethyl) carbonate = [triphosgene]. Dehydration.t Aldoximes and carboxamides are dehydrated in the presenceof EtrN to give nitriles in good yields. chlorination of phosphines.2 Both trialkyr- and triarylphosphines afford the dichlorideson reactionwith triphosgene,which can then be usedto convertepoxides to 1,2-dichloroalkanes, ardehydesto gen-dichrorides,amidesto nitrires,formamides to isonitriles,ureasto carbodiimides,and amines to triphenyrphosphoranylimines.
40o
sa-
Bis(2,2,2-trichloroethyl) azodicarboxylate. Amination of arenes.t with ZnI, as the cataryst, the reagent is an adequate electrophilic reagentfor many arenes.The products are cleaved in one step to provide the amines by treatmentwith zinc dust in aceticacid.
R. Yu.Garlyauskajte, S.V.Sereda, andL. M. yagupolskii,f S0,6g9l0994).
LrBr rt, 24 h
77"/"
Bis(trifluoromethyl)
lri. li,': ic.
r.:.:uc(rs a useful Michael donor that ' ' . " r . r m p l es t a n n y le n o l e t h e r sd o n o t : 't the O-stannylgroup by the ester
telluride (CF:)zTe. Trifluoromethylation.t In a seared tube aniline undergoes nuclear trifruoro_ methylation.Three different positionalisomersare obtained in about equal amounts. Arenethiolsare,s-trifluoromethyrated under urtravioretirradiation. D. Naumann, S.V.Pazenok, and V. Turra,RJOC29, I2g
r le. as well as many other organI ic': : i l-. l3-, 14-, 16-, and l7-membered n - r . i i i n o a t e s i n h o t o c t a n e .T h e y i e l d s
2: -e:, 1 1 ] , .. t : 1 9 ( 1 9 9 3 ) . o c i i \ t . r t s u d a ,J O C 5 9 , 4 8 6 ( 1 9 9 4 ) . ( 1067(1993). E! r1 _rr t5r5 (1993).
0993).
1.2-Bis(trimethylsiloxy)cyclobutene. 1,1'Butanediacylation. For rhe synthesis of 2,2-disubstituted 1,3-cyclopentanedionesin one pot BFr etherateis used to promote the condensationbetweenthe ;rclobutene with acetalsor ketones.rln the reactionwith ketones,the addition ofa 'mall amount ofwater after the initial step is necessaryto assistthe rearrangement .ind to render the reversibrereaction insignificant. Steric hindrance and conjugate Joublebonds disfavor the process.2
56
Bis(trimethylsilyl)methylomine
OSiMe3 OSiMe3
*3
N,O- Bis(trimethylsilyl)acetam ide. TMSOTf generation.t Reactions rhtr promoted by the combination of triflic a bis(trimethylsilyl)ureal.
BF3'OEi2 cH2cl2 / N2
Ms. ' y . - J . W u ,D . W .S t r i c k l a n dT,. J .J e n k i n sP, . - Y L , JC7l, l3ll (1993). . i u , a n dD . J . B u r n e l lC rT. J. JenkinsandD. J. Burnell,JOC 59, 1485(1994).
N,O-Bis(trimethylsilyl)hyd roxylamine MerSiNHOSiMer. Primary amines.t The reagentbehavesas an electrophile toward higher-order organocuprates,transferring an NHSiMer moiety to one of the anionic ligands. p- Hydmxylamino esters.2 Alkylidenemalonic esters undergo Michael addition with the bissilylated hydroxylamine, while the correspondingacrylic esters react very sluggishly.The addition is subjectto 1,2-asymmetricinduction by an allylic substituent.
PhCHO
'
+
BnOSiMs3 +
y' ^\
M . E l G i h a n i a n d H . H e a n e y .S L 4 3 3 ( 1 9 9 3 r
Bis(trimethylsilyl) sulfate-silica. Thioacetalization.' In the reaction r tonesare convertedto dithioacetalsverr n 75-99Vo yield). H. K. Patney,TL 34, 7 121(1993).
tnr! Bn2N
COOET
2"oor,
Me3SiNHOSiMa3 QH2C!2, 22o
cooEt
-fcoor,
rnrf
'
NHOS|Me3
cooEr
-Y"oon t11-tOSiMe.
60% (95:5)
lA.
C a s a r i n i , P . D e m b e c h , D . L a z z a r i , E . M a r i n i , G . R e g i n a t o ,A . R i c c i , a n d C . S e c o n i ," / O C 58. 5620 ( 1993). tM.T. (1994)' R e e t z ,D . R i i h r i g , K . H a r m s , G . F r e n k i n g , a n d F ' K a y s e r ' T L 3 5 ' 8 7 6 5 , 8 7 6 9
BistrimethylsilylmethYlamine. Stable imines. Imines derived from aliphatic amines usually have the tendency to isomerizeto the enamineform. However,the bissilylatedmethyliminesare stable'; therefore, they are potentially useful synthetic intermediates. The conjugatebaseof such imines reactswith electrophilesin accordancewith the
Bis(trimethylsilyl) selenide. 14, 5l Selenoxo esters and amides.' Br rrn weak Si-Se bond, the reagent is capablc c amidesby seleniumatoms. BFr . OEt; rs a I
Y. Takikawa,H. Watanabe, R. Sasaki,and K 5
Bis(trimethylsilyl) sulfide. Thionation of carbonyl compounds. Jitions. Importantly, side reactionsare mlnl control of the reagent. Thioamides,2 By activation of rhc rd treatmentwith the silyl sulfide, amides to analogsunder extremelymild (-78t) cord
nature of the reagent.2
Diallyl ;atalysis.
'A. Capperucci, S. Grelier,J.-P.Picard,c. Palomo,and A. Ricci, G. Seconi,J. Dunogues, J.-M.Aizpurua,JOMC458,Cl (1993). 2A. Ricci,A. Guerrini,G. Seconi,A. Mordini,T. Constantieux, J.-P.Picard,J.-M.Aizpurua, andC. Palomo,SL 955(1994).
.{. Degl'lnnocenti, A. Capperucci, A. Mordror r |9 9 3 ) . 'D. C. Smith, S.W.Lee,andP.L. Fuchs.JOC5! S.-C.Tsay,G. L. Yep,B.-L. Chen,L. C. Lrn. er
sulfides.l
A one-step prepari!
Bis(trimethylsilyl)sulfide 57 N,O- Bis(trimethylsilyl)acetam ide. TMSOTf generation.' Reactions that require catalysis of TMSOTf can be promoted by the combination of triflic acid and bis(trimethylsilyl)acetamide[or
o
bis(trimethylsilyl)ureal.
96%
t-
Me.Si \'\ BnOSiMe3 -
J B u r n e l l .C J C 7 l , l 3 l l ( 1 9 9 3 )
I
'M.
Bn2N COOET : I ' $"oo' : ttXOSiMe3
. . r . . 9 55 )
, n dG . S e c o n i",/ O C i i : - - . t , . .A . R i c c i a x i \ : ' . e r . f L 3 5 , 8 7 6 5 , 8 7 6( 199 9 4 ) .
l::-
j:IInes usually have the tendency
tb.:... riated methylimines are stable'; l:::a::redlates. th :.:. rrophiles in accordance with the
, i
L : c . r e r .J . - P . P i c a r d , C . P a l o m o , a n d
o i . i - : : ! ' u \ . J . - P .P i c a r d ,J . - M . A i z p u r u a ,
OBn
Ph, \,,\
-
90/
El Gihani andH. HeaneyS , L 433 (1993).
Bis(trimethylsilyl) sulfate-silica. Thioacetalization.t In the reaction with 1,2-ethanedithiol,aldehydesand ketonesare convertedto dithioacetalsvery rapidly at room temperature(17 examples, 15-997o yield). '
: :'::l ' \ -:rcEr --I \-l -i \rer
Y
Me3SiO FNSiMel
/
L\ H( )Silter. I :- :.citrophile toward higher-order ,re of the anionic ligands. !) I'- - :.ters undergoMichael addition E - ':..ponding acrylic esters react l - : . . - ' r ' n e t r i ci n d u c t i o nb y a n a l l y l i c
H
cF3cooH
H. K. Patney,TL 34,7t2'7(tgg3).
Bis(trimethylsilyl) selenide. 14, 5 I selenoxo estersand amides.t By virtue of silicon's high oxaphilicity and the weak Si-se bond, the reagentis capableof replacingoxygen atoms in estersand amidesby seleniumatoms. BFr . OEt2 is a suitablecatalyst. Y. Takikawa,H. Watanabe, R. Sasaki,and K. Shimada, BCSJ67,876,|gg4\.
Bis(trimethylsilyl) sulfide. Thionation of carbonyl compounds.t Thiones are formed under very mild conditions. Importantly, side reactionsare minimized due to the possiblestoichiometric control of the reagent. Thioamides.2 By activation of the substrate with phosphoryl chloride before treatmentwith the silyl sulfide, amides and lactams can be converted to the thio analogsunder extremelymild (-78"c) conditionswithout the need for a catalyst. Diallyl sulfides.l A one-step preparation from allylic alcohols involves BFr catalysis. A. Degl'lnnocenti, A. capperucci, A. Mordini,G. Reginato, A. Ricci,andF. cerreta,rL 34. ( | 993). 'D. C. Smith,S.W.Lee,andP.L. Fuchs,./OC59, 348(1994). S.-CT . s a yG , . L . Y e p ,B . - L .C h e n L , . C . L i n , a n dJ . R . H w u ,I 4 9 . 8 9 6 9 f l 9 9 3 ) .
5E
Borane-amines
bistriflate (PhrPt)rO 2 TfO-. Bis(triphenylphosphonio)oxide Alkanes.t The phosphoniumsalt (from PhrPO+ Tf2O)activatesalcoholsfor with NaBHa. direct deoxygenation lJ. B. Hendrickson, M. Singer,andM. S. Hussoin'JOC 58' 6913(1993)'
Borane-dimethylsulfide. 14' 53; 15.4{: 3-Hydroxypropylethers.t with TIIS ductivering openingverycleanly.BothCunderthe sameconditions. completely
BFb. Sraz
Bis(triphenylstannyl) chalcogenides. Diorganotrisulfides undergo monodesulfurization in a nonDesulfurization.t concerted process. Reaction temperaturescan be regulated by considering the relative reactivities. The tellurium reagentis the most reactlve one'
CHS
o
.7t-l
'C. J. Li andD. N. Harpp,TL 34, 903 (1993).
Erythro- 1,2- diols.z Hydroboration o by regioselectivering cleavageaffords thc
9-Borabicyclo[3.3. l]nonane, B-functionalized. 13, 249 With EtrN the enolboration of ketones proceeds with stereoseEnolborationr lectivities following the leaving abilities of the substituentson boron. A better leaving group favors formation of (Z)-enol borinates, whereasa poorer leaving group leads to
B. Bartelsand R. Hunter,JOC 58' 6756{ 199 'R. Amouroux,A. Slassi,andC. Saluzzo. ll J
more (E)-enol borinates. 2-Amino alcohols.2 In epoxide opening with lithium amides, a catalytic amount of B-bromo-9-BBN suppressesformation of allylic alcohols' ' H. C. Brown,K. Ganesan, andR. K. Dhar,JOC58' 147(1993)' rC.E. Harris,G.B. Fisher,D. Beardsley, L. Lee, C.T. Goralski,L.W. Nicholson,and B Singaram,JOC 59,'l'146(1994).
Borane. Carbonyl group reduction.t With LiBH4 as catalyst the reduction prevails over hydroboration of unsaturatedcarbonyl compounds.Conjugatedalkenonesgive allylic alcohols. N-Atkylindoles from N-acylisatins.2 The reductive aromatization occurs at room temperature in good yields (72-86Vo). 'A. Arase,M. Hoshi,T. Yamakai,andH' Nakanishi'CC 855(1994)' ' A . C . P i n t o ,F . S . Q .d a S i l v a a , L 3 5 ' 8 9 2 3( 1 9 9 4 ) ' , n dR . B . d a S i l v a T
Borane-amines, 13, 42 Reductiveamination with piperidines.t Treatment of a piperidine and an aldehyde with the borane-pyridine complexgives the tertiary amine' Sp2, reaction catalyst.2 Borane-quinuclidine is a catalyst for the substitution. Epoxide formation is observed from allylic r-butyl peroxides' ' A . E . M o o r m a n nS, C2 3 ,7 8 9( 1 9 9 3 ) . 'H.-S. Dansand B. P. Roberts, JCS(Pl)891(1993).
Boron tribromide. 13, 43; 14' 53-5a Bromination of alcohols.t Primar converted to bromides. (Z)-2- Bromoalkenyl boronatcs.: Tl qtro of alkynes with BBrr and subsequent be selcctr can residue atom and the boron are useful syntheticintermediates. 8&: rt
^
FPrclr
J . D . P e l l e t i e ra n d D . P o i r i e r , T L 3 5 , l 0 5 l r 1 9 'K. K . W a n g a n d Z . W a n g , T L 3 5 , 1 8 2 9I l 9 9 a
Boron trichloride. 13, $:14,54; 15. 4{ Activation of boronic acids. Alkyl ranes, as reactive intermediates. For eu azacycles(azetidines,pyrrolidines.pipcr erocycle synthesis involves reaction of a I
organoazide. Borodesilylation.s The elementercl rron of aryl derivativesby the Suzuki cc readily available.
Boron trichlorid€
'r;O 2 TfO-. f P() - Ti:O) activates alcohols for '5t ^'.1t1993).
-r,'nodesulfurizationin a noni :-.:-.rted by consideringthe relap,
59
sutfide.14,53; 15' 44; 17'50-51 Borane-dimethyl undergore3-Hydroxypropylethers.t With TMSOTf as catalyst,1,3-dioxanes be cleaved may of 1,3-dioxolanes ductivering openingvery cleanly.Both C-O bonds completelyunderthe sameconditions.
a)
x
Ph
BH3. SMe2- MesSiOTf
Ph
cHzclzor THF
en$en
-78o- rt
95%
I ::'i- : l\ e one.
Erythro-1,2-diols.2 Hydroboration of 2-substituted4,5-dihydrofurans followed ring cleavageaffords the diols in useful yields. regioselective by l-1 : i9 I (\! \et(rnesproceedswith stereoseb.::: ient\ on boron. A better leaving lfe:. r poorerleavinggroup leadsto - lrthium amides, a catalytic t , r : . r l r ca l c o h o l s . s
l{-
: :
: r l . [ i . L . W . N i c h o l s o n ,a n d B .
B. BartelsandR. Hunter,JOC 58,6756(1993)' :R. Amouroux,A. Slassi,andC. Saluzzo, H 36, 1965(1993)
Boron tribromide. 13, 43;14, 53-54 Bromination of alcohols.t Primary, secondary, and tertiary alcohols are converted to bromides. (Z)-2-Bromoalkenyl boronates.2 These compounds are obtained by treatment quenchingwith an alcohol.As both the bromine of alkynes with BBrr and subsequent arom and the boron residue can be selectively replaced,the difunctionalized alkenes are useful syntheticintermediates.
BBr3/N2;
t . ; ' : . r . t t h e r e d u c t i o np r e v a i l so v e r s i v ea l l y l i c b r ' r r u e a t e da l k e n o n e g :ii-,ll\e
^
r-ProH.-100
4"'
-81o,''P4,
a r o m a t i z a t i o no c c u r s a t andD. Poirier,?L 35, l05l (1994). J.D. Pelletier 'K. K. wang andZ. Wang,TL35, 1829(1994).
( . {i 1994). t5 .'1.: r1994).
!3::rinr of a piperidineand an aldeF:r:rrJr! amlne. inc :. : catalystfor the substitution. ir.:l:,.rtdeS.
Boron trichloride. 13, 43; 14, 54; 15, 44 Activation of boronic acids. Alkylboronic acids are converted to dichloroboranes,as reactive intermediates.For example, azidoalkylboronicacids give cyclic azacycles(azetidines.pyrrolidines.piperidines).rAn alternativemethod2for the heterocyclesynthesisinvolvesreactionof a bromoalkylalkenewith BClrEtrSiH and an organoazide. Borodesilylation.3 The element exchangeon the furan ring enablesthe prepararron of aryl derivatives by the Suzuki coupling. The silyl compounds are much more readily available.
60
Boron trifluoride €aheraae MesSi,
o
/SiMe3
BCl3/CH2C12
Fu. _.O. ^. Fu t
(Hzo)
Ar /SiMe3
l
-tB-" I
Fu
(.)
(Ph3P)4Pd
Cumulenyl aldehydes.E Exposure of promotes rearrangement of the epoxide mo portion of the initial productsmay onl) urx
Na2CO3 - MeOH
45-970/o BF3. OEr2
Selective ether cleavage.o The BCI: . SMez complex is useful for selective cleavage.Thus primary and secondarybenzyl ethersare removedin the presenceof a TBDPS group. Note that BF: etherate-SMezeffects predominantly desilylation (due to F-). The cleavageof trityl ethers without affecting benzyl ethers is also achievable. 'J. M. Jego,B. Carboni,andM. Vaulrier, ESCF554(1992). tJ.M. Jego, B. Carboni,A. Youssofi, and M. Vaulrier, SL595(1993). ' Z. Z. Song,Z.Y. Zhou,T. C.W. Mak, and H. N. C. Wong,ACI EE 32, 432(tgg3). 'M.S. , .A. Robinson, Congreve E,. C . D a v i s o nM, . A . M . F u h r y A , . B . H o l m e sA, . N . p a y n eR andS.E. Ward,SL 663 (1993).
Flr, Fh
Fused ring C-glycosides.' Ionization < ate alkenesleadsto C-C bond formation. I able group, formation of a tetrahydrofuran rr the axial direction, the C-2 oxygen functro new ring. Bfr . o€t
Boron triffuoride etherate.13, 43-47: 14, 54-56: 15, 45-4j: 16, 44-4j; 17, 52-53 HF generation.' Treatment of BFr . OEt2 with 4-methoxysalicylaldehydegeneratesHF, which can be usedto deprotectsilylated alcohols. Tritiation of arenes.2 Introduction of tritium labels to activated arenes ls conveniently performed at room temperature by treatment with BFr . OEtz and TzO. Fluoroarenes, Reaction of aryllead triacetates with BFr . OEt2 at room temperaturegives the fluoroarenes.rThe Schiemannreactioncan be effected at lower temperatures4than usual when arenediazoniumsalts are heated with BFr . OEtz. Under photochemical conditions a reaction temperature of 20-37"C is adequare. Ring expansion of epoxides and oxetanes.s
H
,oh I n I
o ) o J / n R'O
BF3. OEt2 Et2O, 0o
,\
o.,
Protecting group switch.'n 2-(Trinrrh \erted to l-O-acyl sugarsby reaction \rith ( etheratehas a dual role in activatingthe anb , p o s s i b l yF - ) . Allylation. Reactionsof allyltin"': e rre greatly influenced by the nature of tl The stereocontrolis rm diastereoselectivity. polyol synthesis.
R l^l-l---r R'o nl ()) L-^/
m
m =1 , 2 n = 0 ,1
Isomerization of glycidic esters.6 BFr . OEr2-inducedformation of a-hydroxyp;y-unsaturatedestersopens ways to other difunctional compoundssuch as alkenyl epoxides, which are not directly available from the corresponding dienes. Primary alcohol protection.T t-Pentylation is limited to primary alcohols when they are treated with 2-methylbutene and BFr . OEtz.
PhCHO +
phAAsnsus
Znol2tErp n BF3.OEt2, O{2
4-alkynyl ketones. The Mukaiyama o sufficiently mild to allow the pres€nccol
Borontrifluoride€therate 6l or\ - . ? d :.
l-\ 'o/
,SiMes
Cumulenyl aldehydes.' Exposure of epoxypropargyl alcohols to BFr.OEt2 promotesrearrangement of the epoxidemoiety to the aldehyde and dehydration. A portionof the initial productsmayonly undergo the prototropic shift.
. MeOH
45-970k
Ph OH
.
: i\ is useful for selective r. .'. :i'mo\ed in the presenceof l i t - . r : . ' d o m i n a n t l yd e s i l y l a t i o n I - : " - , i r n ! b e n z y le t h e r si s a l s o
: l , t'
; j . r 2 .1 3 2( 1 9 9 3 ) . \ \ . P a y n eR, . A . R o b i n s o n ,
BF3. OEt2
*Ji=-\,o
{ ' : 1 6 .4 4 - 4 7 ; 1 7 , 5 2 - 5 3 - : r,r\) salicylaldehYde gen' , ectrvated a r e n e si s c o n ': BF, OEt: andTzO. - UF, OEt: at room tem,an be effected at lower - hc.atedwith BF: . OEtr. ' ;o -17'Cis adequate.
/ "*\ro
+
Ph
Ea<
Ho
Ph 587o
Fused ring C-glycosides.e lonization of glycosides in the presenceof appropriate alkenes leads to c-c bond formation. when c-2 is protected by an acid- cleavable group, formation of a tetrahydrofuran ring ensues.Since the alkene attacks from the axial direction, the c-2 oxygen function must be equatorialin order to form the new ring.
"""'o\y'-oAc '
tn{
Ph
"",,,.o-,__--r
BF3. OEtz
l l Bno""\a^oBn
A
:
OBn
t t ) \.
eno""\.^d :
cx,cr,
OBn
- 1 0 0 . 0 . 5h
71"/"
Protecting group switch.r' 2-(Trimethylsilyl)ethyl glycosides are direcrly converted to l-o-acyl sugarsby reaction with carboxylic anhydrides. Boron trifluoride etheratehas a dual role in activatingthe anhydrideand providing a desilylatrngagent r possiblyF-). Allylation. Reactionsof allyltinrr'r2and allyrsiranereagents13 with aldehydes are greatly influenced by the nature of the Lewis acid catalyst, with respect to diastereoselectivity.The stereocontrol is important for application of the reaction to polyol synthesis.
OH
PhCHO*
enAAgn"u.
*Ar^l
OH
+
Ph :,
pn
Ph
nJ.-- -J tormation of a-hydroxyor -: -,,rnpourtdssuch as alkenyl r , : - i . l ( ) n d i n gd i e n e s . i n : - . , ir o p r i m a r y a l c o h o l sw h e n
ZnCl2/Et2O, rt
90o/o
19:8
-78o BF3.OEt2/ CH2C|2,
92%
98:2
4'alkynyl ketones. The Mukaiyama condensationusing BFr . oEt2 as catalyst rs sufficiently mild to allow the presenceof a chalcogensubstituentat the terminal
62
Boron trifluoride
ethera
followed by An intramolecular Nicholas reaction carbon of propargyl acetals'u demetal|ationwithFe(Nor)lconstitutesaconvenientmethodforaccessingketones l endant''' w i t h a n e t h Y n YP
Co2(CO)8 BF3. OEtz
A l
o
\__r^\
t
73"/"
Atdolization'fragmentation't6
the acetal When ethylene glycol is present'
derivedfromthe2-hydroxyalkylcycloalkanoneisliabletoacid-cata|yzedfragmentation to give an unsaturatedester'
o PhCHO +
I BF3.oEr2 I
r-f
"or o.vo
|| *lY)r.-----r
f1 H O O H L
t-
,n^r.rYo$o* 61"/"
A c t i v a t i o n o f i m i n e s . | l T h e e l e c t r o p h i l i c r e a c t i o n o f i m i n e s w i t(BFr h o r g' aOEt' n o m)'e tAa l is promotedby a Lewis acid lic reagentssuchas RMgX, RLi' RzCuLi is based on the l'2'3'4-retrahydro-B-carbolines flexible synthesisof l-substituted ,,n"i),nnrro-type
esrer in place of a secondary reaction.ts By using a carbamare few aldehydes(especially very the limited to amine, the condensatronis no longer reaction temperature higher a acid' ' by tosic formaldehyde)' If BFr OEt: is replaced is needed. is rearrangementof N-alkyl-N-allylanilines Aza' CoPe rearrangement'te The of *irh ZnCt,, the catalytic effect promoted bY Lewis acids' In comparison BFy OEt: is suPertor' of oxime O-allyl ethers in the presence Pyridine ring formation'zo Thermolysis of BFI OEt2 leadsto pyridine derivatives' Hetero-Diels-,Alderreaction'2t3'4-Bis(trimethylsilyl)-5'6-dihydro-2H-pyrans under very mild conditions'The diene are accessibletrorn u tututy'ed cycloaddition with the reaction of l'4-ditosyloxy-2-butyne is prepared in 44-47Vo yi"tO f'ot chloride' tri methylsilylmethylmagnesium electron-deficient The catalyzed reaction between an [3+2]Cycloaddition'22 alkeneandanallylsilaneestablishesfourstereocentersinacyclopentanering'It involvesmigration of the silyl group' 'S. MabicandJ.-P.Lepoittevin'sL 851(1994)' rP. McceadyandR' Croteau ' CC 774(1993)'
'G. De Meio,J' Morgan'andJ'T' Pinhey'I49' tl19 t ' i . i i i n t , u * u , S . A k i , T ' F u r u t aa' n dJ ' M i n a m t \ a s jl ';.;totr:'Y. ",rose' H. Kashiwagi'andY Masa\r' \r D Y 'i. tn"ri".n".ta, K' Shah'P' S' Vankar'and ';.li;u;"t", i. Franck'andA' cave' TL 34' 58ei ' l '; ;:;;' B. Ramos'andA' Rodriguez'rL3l'6-?': 'D. E. Leuy,F. Dasgupta' andP' C' Tang'TA 5' 1365 ' ACS47' 826 ( 199-r " U. ptf".uit and G' Magnusson' (19911 1429 CL v. Nitiig"i.t'i and A' Takuwa' andG P Lu\c' n ti. o.'nrti.ntrl' J. A' Jablonowski' 'r.;. ;;;;* andP' F' Cirillo' "Ioc s8' eee ( leel- 'vly*fri*u,ru, H' Shimizu'andT' Kataoka'-cclr 76e' l' ';. t;ii'P' Heshmati'andL Sarrazin'sL S and-K H' Suemune' "S . N'ug"rno' A Matsukuma' Htrelr M' 'i. Yamazaki' H fuiuu,., M. Nakagawa' 899-t l9er' ';.-;; Hoeveand H' Wvnberg'sC 24' 'f.'c. ""no,, andJ R' stille' Joc 58' 5095( l99i' t"i ioyurnu, T. ogura, K' Tagahara'M Yit-tl'11 : :'C. Brouard,J. Pornet,andL' Miginiac'SC2'l^'{u "i'S. pun"t andN' F' lain' JoC 58' 2345( l99ll
Boron trifluoride etherate-thiol' The boron trrf Cleavage of THP-ethers'' $ ithou cleavesTHP ethers at low temperatures melhoxlnr acetals' acetonides, mesitaldehyde ' ethers synthe\rs ln Allylic sulfides'2 The direct thiol' a and with BFl-oEt2 ,..orilirh.d TL 35' 3033I l99r ' K. P. NambiarandA' Mitra' ' i - C t " t ' L ' - C ' L i n ' P ' A ' F u r t h 'C ' C S h u m E H w u .s 3 2 9( 1 9 9 3 ) .
Boron trif luoride-nitromethane' catallst enaU Polyene cyclization't The effecti\e than l .rf taxodione. It is vastly more
OMe
':3 t@ -2f t'
I 50' 9ll9 t l' S.R. Harring and T' Livinghouse'
Borontrifluoride-nitromethane
:.,,1r\ reaction followed by :lhod fbr accessingketones
\- ".\-
c th
. , ' l i s p r e s e n t ,t h e a c e t a l .ri rd-catalyzedfragmenta-
,"^r^..ayo$o,.,
63
'G. De Meio, J. Morgan, and J.T. Pinhey,I49,8129 (1993). tK. S h i n h a m a , S . A k i , T . F u r u t a , a n d J . M i n a m i k a w a , S C 2 3 , 1 5 7 ' I( 1 9 9 3 ) . sA. I t o h , Y . H i r o s e , H . K a s h i w a g i ,a n d Y . M a s a k i , H 3 8 , 2 1 6 5 ( 1 9 9 4 ) . oI. B h a t t a c h a r y a ,K . S h a h , P . S . V a n k a r , a n d Y . D . V a n k a r , S C 2 3 , 2 4 0 5 ( 1 9 9 1 ) . '8. F i g a d e r e ,X . F r a n c k , a n d A . C a v e , f L 3 4 , 5 8 9 3 ( 1 9 9 3 ) . 'X. Wang, B. Ramos,and A. Rodriguez,TL35,6977 (1994). 'D. E . L e v y , F . D a s g u p t a ,a n d P . C . T a n g , T A 5 , 2 2 6 5 ( 1 9 9 4 ) . "'U. E l l e r v i k a n d G . M a g n u s s o n ,A C S 4 7 , 8 2 6 ( 1 9 9 3 ) . " Y. Nishigaichi and A. Takuwa, CL 1429 (1994). '-J. A . M a r s h a l l , J . A . J a b l o n o w s k i ,a n d G . P . L u k e , J O C 5 9 , 7 8 2 5 ( 1 9 9 4 ) . ''J. S . P a n e ka n d P . F . C i r i l l o , J O C 5 8 , 9 9 9 ( 1 9 9 3 ) . 'M. Y o s h i m a t s u ,H . S h i m i z u , a n d T . K a t a o k a , C C 1 4 9 ( 1 9 9 5 ) . 58. T y r r e l l , P . H e s h m a t i ,a n d L . S a r r a z i n , 5 L 7 6 9 ( 1 9 9 3 ) . "S. N a g u m o ,A . M a t s u k u m a ,H . S u e m u n ea, n d K . S a k a i , f 4 9 , 1 0 5 0 1( 1 9 9 3 ) . 7T. K a w a t e , M . N a k a g a w a ,H . Y a m a z a k i , M . H i r a y a m a , a n d T . H i n o , C P B 4 1 , 2 8 7 ( 1 9 9 3 ) . "W. t e n H o e v e a n d H . W y n b e r g ,S C 2 4 , 8 9 9 ( 1 9 9 4 ) . '' L. G. Beholzand J. R. Stille, ./oc 58, 5095 ( 1993). :"J. K o y a m a , T . O g u r a , K . T a g a h a r a ,M . M i y a s h i t a , a n d H . I r i e , C P B 4 1 , 1 2 9 7( 1 9 9 3 ) . ] C . B r o u a r d ,J . P o r n e t , a n d L . M i g i n i a c , S C 2 4 , 3 0 4 7 ( 1 9 9 4 ) . " J . S . P a n e ka n d N . F . J a i n ,J O C 5 8 , 2 3 4 5 ( I 9 9 3 ) .
o 61"k
. rr I nes with organometalI ' . . i .'u rs acid (BFr . OEt2).A n . . . : : h o l i n e si s b a s e do n t h e r.
t . . . - : r n p l a c eo f a s e c o n d a r y f ..'. :!'\\aldehydes(especially d ;hcr reactiontemperature
Boron trif luoride etherate-thiol. Cleavage of THP-ethers.' The boron trifluoride etherate-ethanethiol mixture cleavesTHP ethersat low temperatureswithout affecting the methylenedioxygroup, acetonides,mesitaldehydeacetals, methoxymethylethers, and t-butyldimethylsilyl ethers. Allylic sulfides.2 The direct synthesis from allylic alcohols such as geraniol is accomplishedwith BFr-OEt2 and a thiol. K. P. NambiarandA. Mitra, fL 35, 3033(1994). ' S . - C .T s a y L, . - C .L i n , P . A . F u r t h ,C . C . S h u m D , . B . K i n g ,S . F . Y u , B . - L .
C h e n ,a n dJ . R .
H w u ,S 3 2 9( 1 9 9 3 ) . n' 7-' r.:
\ - r l k r l - N - a l l y l a n i l i n iess rhe catalytic effect of , .,I l) I ethersin the presence
h i . . ' l, - 5 . 6 - d i h y d r o - 2 H - p y r a n s r c - . ' : r r l dc o n d i t i o n sT. h e d i e n e I J r t o s y l o x y - 2 - b u t y nw 'l eith I ^.' .\ccn an electron-deficient ili'. n a cyclopentane ring. It
Boron trif luoride-nitromethane. Polyene clclization.t The catalyst enables an efficient synthesis of precursors trf taxodione. It is vastly more effective than BF: ' OEt2 or other Lewis acids. OMe
OMe OMe
OMe
'l.r1o, MeN02 -200, I h
95"/o
S . R . H a r r i n g a n d T . L i v i n g h o u s e ,Z 5 0 , 9 2 2 9 ( 1 9 9 4 )
64
Bromoform
Bromine. 13, 47: 14, 56-57:' 15, 47 Bromodeselenenylation.t 7-Phenylselenoa,B-unsaturated esters undergo bromination at the a-carbon while detachingthe selenenylgroup and deconjugatingthe double bond. Bromination of deactivated arenes. Good yields are obtained when the bromination is carried out in concentratednitric acid and sulfuric acid at temperaturesbetween 80 to 85'c.2 Alternatively,using BrF-1as catalyst,rthe reactiontemperaturecan be loweredto 0-10'C. stilbene - benzil.a An economical method for the transformation uses bromine and sulfuric acid in refluxing aceticacid. 'J.-F.Duclos, F. Outurquin,andC. paulmier,TL34,j4l7 Ogg3\. tA. M' Andrievskii, M . v . G o r e l i kS , . v . A v i d o n a, n dE . S h .A l ' t m a n ,R J o c 2 9 ,t 5 r 9 ( t 9 9 3 ) . t S. Rozen andO. Lerman, JOC Sg,23gllgg3\. oM. S. Yusubov, E. A. Krasnokutskaya, and V. D. Filimonov,JOCII ZE,6700lgg2\.
c}r&:
\,-\,siue,
*o*T" H2O/ CttP
C . M o l t k e - L e t h a n d K . A . J o r g e n s e nA , CS l?. I 'M. P . C o o k e a n d J . Y . J a w ,J O C 5 8 , 2 6 7 ( 1 9 9 1 ' 'W.-W. Weng and T.-Y. Luh, JCS(PI) 268'l rl99i
.V-Bromosuccinimide. 13, 49: 14, 57-56. I O-Deprotection, Free-radical-initiata \r'aterremovesa benzyl ester.'A similar nrrl Regioselective oxidations. An alkarr give the ketol (instead of the hydroxy aldch nyleneacetal.l
Bromine-amine. oxidation.' Primary and secondaryalcoholsare readily oxidized to carbonyl compoundsby bromine-hexamerhylenetetram ine (88-967oy ield). Bromination.2 Bromine complexed to polymeric pyridine has been used to brominatearomatic compounds.
ra o.
'1. Yavari andA. Shaabani, JCR(S)274(1994\. tM. Zupanand N. Segatin,SC 24,2617(lgg4').
Bromine trifluoride. Fluorination In a freon solvent, this powerful fluorinating agent is able to convert compoundscontaining c:N (ketone oxime ethers,hydrazones)rand c:S groups to gen-difluorides.2Trifluoromethyl derivativesare directly obtained from alkyl dithioates.3caution must be paid to avoid the use of oxygenatedsolventswith which BrFr reactsviolently. 'S. Rozen, E . M i s h a n ia, n dA . B a r - H ami , J O C5 9 ,2 9 1 80 9 9 4 ) . tS. Rozenand E. Mishani, CC 1761.lgg3\. tS. Rozen a n dE . M i s h a n iC , C 2 0 8 1f l 9 9 4 ) .
5r
Dehydrogenation of 2-oxazolincs.' T rron-dehydrobrominationsequence.Sincec ior compoundsbearing an alkyl group ar C rrsablein such cases.
Transpositional bromination of allylit use of this reaction is the transformationo Jehydrobrominationto acquire2-sulfinyl-l.
o ?rot.,lfy
l::,c?c,,
ofd
t
.
Me2s
Bromoform. oxidative bromination of uracils.t Uracils form 5-bromo derivatives in excellent yields (83-95Vo)on heatingwith bromoform in the presenceof oxygen. Dibromocyclopropanation. This well-known reaction has been applied to unsaturated acylphosphoranes2 with good results. It also shows selectivity for silyldienes.s
Ho-\
I
tEz
Aromatic bromination.b Activated e rre brominatedwith NBS in a biphasicslrr
N-Bromosuccinimide 65 cHBr3
l - - - . . : ' u r a t € de s t e r su n d e r g ob r o !r . ::, \up and deconjugatingthe
\ - \-- s i uv" "
"
at{ KOH_Q*Br.
\-'\ -siMer \'/-'--" .e|.
H2O I CH}C!2
637o
!'
- , ' b t a i n e dw h e n t h e b r o m i :r; acid at temperaturesber. reactiontemperaturecan
t '
- transformationuses bro-
$.
: ^ . n . R J O C2 9 , l 5 l 9 ( 1 9 9 3 ) .
F
, | 28.670(1992).
C . M o l t k e - L e t h a n d K . A . J o r g e n s e n ,A C S 4 7 , I I l 7 ( 1 9 9 3 ) . :M. P. Cooke and J.Y. !aw, JOC 58,267 (lgg3). 'W.-W. Weng and T.-Y. Luh, JCS(PI) 268'l (1993).
.V-Bromosuccinimide. 13, 49; 14,57-58; 15, 50-51;16, 47 O-Deprotection. Free-radical-initiated bromination followed by treatment with waterremovesa benzyl ester.rA similar methodis also effectiveto cleaveallyl ethers.2 Regioselective oxidations. An alkane-1,2-diol can be selectively oxidized to give the ketol (insteadofthe hydroxy aldehyde)via NBS reactionofthe dibutylstannyleneacetal.l
I
, J r l r o x i d i z e dt o c a r b o n y l r r c l d) . .rrdrnehas been used to
.'
E.
NBS
o
f"t
cHct3 5 min
84"/"
fu F .' 1.... iL.-
. ' r r n a t i n g a g e n ti s a b l e t o - - . . h l d r a z o n e s )ar n d C : S . : : . d i r e c t l yo b t a i n e df r o m i , r r r g s n a l a 4s o l v e n t sw i t h
Dehydrogenation of 2-oxazolines.4 This method involves an allylic bromination-dehydrobrominationsequence.Sincecomplicationsof allylic brominationexist tor compoundsbearing an alkyl group at C-2, the use of PhCOrBu'and CuBr is adrisable in such cases. Transpositional bromination of allylic alcohols.s A synthetically significant use of this reaction is the transformationof sulfinylated substratesand subsequent Jehydrobrominationto acquire2-sulfi nyl- 1,3-butadiene.
t...-
o r-rot,,id\< I HO-'\
r:' < hromo derivativesin excel: : , : : c \ e n c eo f o x y g e n . ' r . : - : r ( ) n h a s b e e n a P P l i e dt o , . .:l.o shows selectivity for
o
NBS/cH2cr2 Mo2S
,, pTot"iS.
. { ( \ 8O7o
BT _J '
KoH
o a.rot"is\y',
iPrOH -2oo
\ 817o
(E:Z 91:9\
Aromatic bromination.n Activated aromatic and heteroaromatic compounds t r e brominatedwith NBS in a biphasicsystem,with 70VoHCIOqas the catalyst.On
66
i{-Bromosuccinimide
the other hand, the bromination of activatedbenzoic acids is readily achievedin an aqueousbase.i Nitrene formation.t 2,4-Dinitrobenzenesulfenylnitrene is generated from the sulfenamineby treatmentwith NBS. Trappingof the nitrene by alkenesgives rise to azi ridi ne derivatives. 2,3'Dihydro-1,4-benzodithiines and -oxathiines.e A remarkable one-por synthesisof these heterocyclesfrom cyclohexanonesand ethanedithiolor 2-mercapto_ ethanol is mediatedby NBS at 0'C.
a'Yo
Y)
*
"r.., NBS
""j **
"A. l . M e y e r s a n d F . T a v a r e s ,7 4 3 5 , 2 4 8 1 ( 1 9 9 { r . iE. B o n f a n d , P . G o s s e l i n ,a n d C . M a i g n a n , f A 4 . 1 6 6 oY. C o l d b e r g a n d H . A l p e r , J O C S E , 3 0 7 2( 1 9 9 3 t . J . A u e r b a c h ,S . A . W e i s s m a n ,J . J . B l a c k l o c k . U R I ( 1993). 'T. Michida and H. Sayo,CPB 42,27 (t994). 'H. T a n i , S . l r i e , K . M a t s u m o t o ,a n d N . O n o . t / J a . t ; 'D. Q a s m i , L . R e n e ,a n d B . B a d e t , 7 L 3 4 , 3 8 6 1 r l 9 9 . r r K . F u k a s e ,A . H a s u o k a ,a n d S . K u s u m o t o , f L J r l . l l ! tJ. P . D u l c e r e , V . A g a t i , a n d R . F a u r e ,C C z i T ( l g g l , 'H. E. Morton and M. R. Leanna, TL 34,4481 tt99t,
rfY')
Y4")
.V-Bromosuccin
imide -iodosylbenzene.
Vinyl bromides.'
z=s 68% Z=O 82% Substitution of sulfunyl derivatives. An a-alkylthio N-Boc a-amino acid is easily synthesizedfrom a thiol, r-butyl carbamate,and glyoxylic acid. Replacement of the alkylthio group by fluorenylmethylcarbamoyl unit gives a useful derivativefor solid-phasesynthesisof a-aminoglycine-containingpeptides.The replacementis convenientlymediatedby NBS.ro Thioglycosidesare activatedfor disaccharideformationrrby means of an NBStriflate salt combination.
Unsaturated carboxy.'|rc acr
nation on heating with the two reagents. Thc rre Hunsdiecker reaction.
A . G r a v e n ,K . A . J o r g e n s e nS , . Dahl, and A. Srant-re
.V-Bromosuccinimide-silvernitrate. Bromoacetylen es from trime thyls ilyla cct ylcs tectsthe transformation in onestep.
T . N i s h i k a w a , S . S h i b u y a , S . H o s o k a w a .a n d M . l s o h c
Bromoetherification.t2
The combination of NBS with an alcohol to functionalize an alkene is analogousto bromohydrination.Interestinglytricyclic skeletonscan be constructed from such adducts in one operation based on dehydrobromination, isomerizationof an alkyne to an allene,and intramolecularDiels-Alder reaction.
I
d
NBS - 1 5 0 .3 h
a' I
t$o--l
)-
t-BuOK
.V-Bromosuccinimide-2,2,6,6-tetrametbl.lpipc Stilbenes.tDibenzylphosphonium sallsarc c .rmilarto the Ramberg-Biicklund reaction.
i.^en
N8S. cl{q
Ph Ph
PhH, A 2h
a-Bromomethyl ketones.tl Vinyl halides are converted to the more versatile compoundswith many other functional groups (e.g., ester) tolerating the reaction conditions.A catalytic amount of HBr is addedto the reactionmedium. The method is applicableto the preparationofother halomethylketonesby using the correspondi ng N- halosuccinimides. M . S . A n s o na n dJ . G .M o n t a n aS, L 2 l g , 1 9 9 4 ) . rR. R. Diaz, c. R. Mergarejo, M.T. p. Lopez-Espinoza, andr.I. cubero,Joc sg,i92B(9g4\. 'X. KongandT. B. Grindley,JCC 12,557(1993).
\ . J . L a w r e n c ea n d F . M u h a m m a d , T L 3 5 . 5 9 0 _ tr 1 9 9 { r
\ - Bromosucci nim ide-water. Fragmentation of tosylhydrozones.t Oxabrct brominated at nitrogen. The presenceof two porc 'okes nucleophilic attack by water at the far end r glete a fragmentation-prone unit. Accordingly. rru rccessible.
N-Bromosuccinimide-water 67 n.'
.,.rJ. is readily achievedin an
D.', x
:rtrene is generatedfrom the : r c n eb y a l k e n e sg i v e sr i s e t o
brrr.
.\ remarkableone-pot syn: :.ihanedithiolor 2-mercapto-
a.
'A. I. Meyersand F. Tavares,TL 35,2481(lgg4). 58. Bonfand,P. Gosselin, andC. Maignan,TA 4, 1667(lgg3). oY. coldbergand H. Alper, JOC 58,3072(t993). 7 J .A u e r b a c h , S . A . W e i s s m a Jn.,J .B l a c k l o c kM, . R . A n g e l e sa,n dK . H o o g s t e eT nL , 34,g3l (1993). *T. Michida andH. Sayo,CPB 42,27(1994). 'H. T a n i ,S . I r i e ,K . M a t s u m o t o a ,n dN . O n o ,H 3 6 , 1 7 8 3( 1 9 9 3 ) . "'D. gasmi, L. Rene,andB. Badet,TL34,3861(1993). " K. Fukase, A. Hasuoka, andS. Kusumoto.TL 34,21870993). 'tJ. P. Dulcere,V. Agati,andR. Faure,CC 270(lgg3). ''H. E. Morton and M. R. Leanna,TL 34, 4481(1993).
t
t 'l ^\^//
, t
-
68'. 82".
a l!: D 1l-
I
51,r.V-Boc a-amino acid ts I I r o x l l i c a c i d .R e p l a c e m e n t -rrrera useful derivativefor .f'tides. The replacementrs
N- Bromosuccin imide -iodosylbenzene. Vinyl bromides,t Unsaturated carboxylic acids undergo decarboxylativebromination on heating with the two reagents.The transformationis reminiscent of the Hunsdieckerreaction. A. Graven,K. A. Jorgensen, S. Dahl,andA. Stanczak, JOC 59,3543(1994).
.V-Bromosuccinimide-silver nitrate. Bromoacetylenesfrom trimethylsilylacetllenes.t t'ectsthe transformation in one step.
The reagentcombination ef-
, , n b v m e a n so f a n N B S T. Nishikawa, S. Shibuya,S. Hosokawa, andM. Isobe,SL485(1994).
J '. :'' lr tri
ih an alcoholto functionalnrlr tricyclic skeletonscan .rJ on dehydrobromination, , l.ir Diels-Alder reaction.
.V-Bromosucci n i mide -2,2,6,6-tetramethylpiperid i ne. Stilbenes.t Dibenzylphosphoniumsalts are convertedto stilbenesin a manner .rmilar to the Ramberg-Biicklundreaction.
.i|'n
rBUOK
Ph Ph
)l"j(
PhH. A
H
2 h
2' I t,
b,
rrerted to the more versatile i . t c r ) t o l e r a t i n gt h e r e a c t i o n :clction medium. The method ,'nesby using the correspond-
I Cubero,IOC 59,'7928(1994).
Y:-"T'. a) 70% (Z:E 80:2Ol
) , 1 . JL. a w r e n c ea n d F . M u h a m m a d , T L 3 5 , 5 9 0 3 ( 1 9 9 4 ) .
V-Bromosuccinim ide -water. Fragmentation of tosylhydrazones,t Oxabicycloalkenonetosylhydrazones are trrominated at nitrogen. The presenceof two potential leaving groups (Br, Ts) pro rokes nucleophilic attack by water at the far end of the conjugated system to complete a fragmentation-prone unit. Accordingly, macrocyclic acetylenic lactones are rccessible.
(r-B!rtLa.r8
.t-(r-Butoxycarbonyl)-2-(r-butyldimethylsiloxy)pyrrole
o
Tot aq. t-BuOH,acetone, NBS,-10o;
/t
raso--\"2
N"N -
aq. NaHSO3,55o
I
r'\r-\ l t
t--.1-oA
I
BOC
+
"x
*^flo
l
g
HO
i , . R a s s uP, . S p a n ua, n dL . P i n n a f. L 3 5 - : r G . C a s i r a g hG
J R \lahajanandI. S Resck,CC 1748(1993).
l.-1-Butanedione. 1,5-Dimethytene-2-oxazolidinones.t condensation of the diketone with N.rlk1l- or N-aryl isocyanatesprovidesan accessto the heterocyclesin one step.
YO -^o
O
'
Li,col i l _ C-...-.----* Et3N, dioxane ilpn 250.12h
\-o. t F o ?-ti
.V-(f- Butoxycarbonyl)methanesulfonam ide' lt s\ H N-Sulfunylcarbamates.t Prepared by reaclton t butylchloroformate(EI]N-DMAP as base).As a nuc tion, variousalkyl groups can be attachedto the nrtn rL 35,379(1994). B. R. Neustadt,
Ph
54"/" A. Gomez,G. Trujillo,R Aboytes,G'Zepeda'R'W' Bates'and J. M. Sanchez, R. Hernandez, J T a m r i zH . 36. l95l(1993).
.V-Butylanilinomanganesechloride, PhN(Bul!l{ Regioselectiveenolization.t The kinetic ketor ganeseamides.Polyalkylationwith suchenolaterts r P. Clery,and K. Chau.fL 3-(.itr G. Cahiez,B. Figadere,
.\ - (t-Butoxycarbonyloxy)-5-norbornene-enilo-2,3-dicarboximide (l)' Protection of unhindered amines,t The chemoselectivity of the reagent is .hown by the exclusiveBoc-derivatizationof the CH2NH2 group in the presenceof .e\cral other CHNH2 pendantsin an amino sugar.
K
oH"'" o
(1)
rt- Butyldimethylsilyl)dihalomethyllith ium. Dichloromethylene dianion synthon.' Gencrl rase), the reagent (TBS)C(Cl)rLi attacks a cartro .rloxyalkyl)dichloromethyllithiumspecies'as a rtsul eew organolithiumcompoundcan then react rr ith an Enones from two different aldehydes-: Th .rrtchestwo aldehydeson itself, becoming the a-t'et ::m. After union with the first aldehydemoleculethc .\ treatmentwith sec-BuLi in a one-potreaction
RCHO
, C5 9 ' l 9 1 8( 1 9 9 4 ) I C r a p s a sY,. J .C h o ,a n dS . M o b a s h e rJyO
),Y3'
gBuLr R'CHO
.\'-(t- Butoxycarbonyl)-2-(t-butyldimethylsiloxy)py rrole' Glycine anion equivalent,t After a Lewis acid-catalyzed condensationwith an aldehydeat c-5 and functional group protection,the degradationof the pyrrolinone ring unveils a B-hydroxy-a-amino acid chain. More elaboratesystemscan be obtained from chiral aldehydessuch as glyceraldehydeacetonide'
HMPA
S h i n o k u b o ,K . M i u r a , K . O s h i m a , a n d K . U t i r n o t o . f i :t S h i n o k u b o ,K . O s h i m a , a n d K . U t i m o t o . f L 3 5 . 1 - { l
j
(nButyldimethylsilyl)dihalomethyllithium
o
(:l -T"1
//r,----r \\ + H ll raso-{*)' i l-to oJ Boc f.-
69
QH SnCla
o
Et2O
NH2 OH
80/"
lC.
,'l the diketone with l.: t ' , ' i : i r ( r c l c l e si n o n e s t e p .
C a s i r a g h i ,G . R a s s u ,P . S p a n u ,a n d L . P i n n a , T L 3 5 ' 2 4 2 3 ( 1 9 9 4 \ '
N- (f-Butoxycarbonyl)methanesulfonamide, MsN HCOOBu" N-Sulfunylcarbamates.t Prepared by reaction of methanesulfonamidewith treacbutylchloroformate(EI]N-DMAP as base).As a nucleophilein the Mitsunobu atom' tion, various alkyl groups can be attachedto the nitrogen TL 35,3'19(1994)B. R. Neustadt,
tFr
: -
. . ( , Z e p e d a ,R . W . B a t e s ,a n d
.V-Butylanilinomanganesechloride, PhN(Bu)MnCl' Regioselectiveenolization.t The kinetic ketone enolatesare formed with manganeseamides.Polyalkylationwith such enolateris not observed' P' Clery,and K. Chau,TL35'3065,3069(1994)' G. Cahiez,B. Figadere,
! - l - dr r a r b o r i m i d e ( 1 ) . .r.ill\lty of the reagent lr ( : ' \ i l r g r ( ) u pi n t h e P r e s e n c e I
t-
tt-Butyldimethylsilyl)dihalomethyllithium. Dichloromethylene dianion synthon.t Generated by deprotonation (LDA as (abase), the reagent (TBS)C(Cl)rLi attacks a carbonyl compound to give an The silyl transfer. a C-to-O of result .iloxyalkyl)dichloromethyllithiumspecies,as a new organolithiumcompoundcan then reactwith anotherelectrophile' Enones from two different aldehydes.2 The silyldibromolithium reagent .ritchestwo aldehydeson itself, becoming the a-carbon of the resulting enone sysrem. After union with the first aldehydemoleculethe nucleophilicsite is regenerated bv treatmentwith sec-Buli in a one-pot reaction.
t
:
RCHO;
Yv,,',
sBuLi R'CHO;
lp\ r role. c r . : - . , t e l rz e d c o n d e n s a t i own i t h a n ::: -risradationof the PYrrolinone \1, :: cluboratesystemscan be ob\.:a -:,('t()nide.
HMPA
o ll
/^
/\,// \
R V - R ' 53 - 59%
K. Miura,K. Oshima,and K. Utimoto' TL 34' l95l (1993)' H. Shinokubo, H . S h i n o k u b oK,. O s h i m aa, n dK . U t i m o t o , T L 3 5 ' 3 ' l 4(I1 9 9 4 ) .
70
(r-Butyldimethylsilyl)trimethylstannane
/-Butyldimethylsilyl dimethyl phosphite. u-Hydroxyphosphonates,t Using a Lewis acid as catalyst, the reaction of the -78'C. The condensationwith a-benzyphosphitewith aldehydesis rapid, even at loxyaldehydesis srrn-selective. ' T. Tokomutsu, JOC 59' 7930(1994). andS. Shibuya, Y. Yoshida,
phenyl sol! a-(/-Butyldimethylsilyl)vinyl Indole synthesis.t This Michael acct The product undergoesa sila-Pummerer n dolesare obtainedon elimination of the lP
Z>r'Li
9*""* /-Butyldimethylsilyl triflate. 13, 50-51; 15' 54-55 readily available (e.9., by B-Siloxyaldehydes.t Chiral epoxy alcohols are via a stereoselective transformation Sharplessepoxidationof allylic alcohols).Their opensa new way and i-PrzNEt triflate rearrangement-silylationinducedby the silyl
V. Iwao.H 38.45 (1994\.
to protected aldols.
-+"'
TBSOTf
t- ButyldiphenYlsilYl chloride. Silylation,t Primary and secondarr reagentin DMF using NHaNOI as catallst
cHo
!P12NEt
mol. saeves -420
S.A. HardingerandN. Wijaya,IL 34. 38:l ' l R = Pr
78"/"
Ether cleavage,2 Alkyl p-methoxybenzylethersare directly convertedto TBSprotectedalcoholsby treatmentwith TBSOTf and then with EtrN at room temperature. Yields rangefrom fair to excellent(63-9lVo)-
r- Butyl 3-(ethoxycarbonyl)-3-(diethl'lpf Stobbe condensation.' The Emmor *ith an aldehydeis complementaryto rlx rhe product is the diester,which can be h1
CF,COOH leads to a conjugated ester/salu
' M . E . J u n ga n dD . C . D ' A m i c o", | A C S1 1 5 'I 2 2 0 8( 1 9 9 3 ) ' tT. Oriyama,K. Yatabe,Y. Kawada,andG. Koga,SL 45 (1995)'
n "
L
(EtO)2P-v.CO2Ei
("o,n, (r-Butyld i methylsilyl)trimethylstannane. Silastannylation of alkynes,t The partitional difunctionalization is achieved using a catalytic systemof Pd(OAc):-RNCat room temperature(75-99Voyield). The many chemoselectivecoupling proceduresavailable to vinyltin and silicon compoundsmake theseproduct extremelyvaluablefor syntheticquests' oEt Me3SnSi(M€)2Bu' Me3Sri
-OEt Pd(OAc)2
XX*" I
SiMe2
_A 92"/.
M. Murakami. H. Amii, N. Takizawa,and Y. Ito, OM 12' 4223 (1993\
t {
"
\ \ ' . M . O w t o n , P . T . G a l l a g h e r ,a n d A . J u a n - V
r-Butyl hydroperoxide. 16, 53-54: 17. 56 For epoxidation of el Epoxidation.' .rlumina is a useful base. Moderate ee rl :lkenes are epoxidized in the pres€rrc r
l ii rt rate. Oxygenation of carbanions.t Thc al :ransformingcarbanionsinto alcoholstal rnterestis the formation of acetyleneorrd
7l r-Butylhydroperoxide
C
.rtal)st. the reactionof the - , ' n d e n s a t i ow n ith o-benzy-
F
.,:
l
d-(t-Butyldimethylsilyl)vinyl phenyl sulfoxide. Indole synthesis.t This Michael acceptor reacts with o-lithio-N-Boc-aniline. The product undergoesa sila-Pummerer rearrangementto induce ring closure.[ndolesare obtainedon elimination of the IPhSH] element.
'^-;\''-<
a>(Li
9""r*
o
J "
rat'-
ii.
:r'.rdill available (e.g., bY ' n l r t t ( ) nv i a a s t e r e o s e l e c t i v e 'lj r -PrlNEt opensa new way
t
\
- 200 aq. NH4CI; EtOAc.
2'v-\ I ll
FSPh
\,^N'
Boc
A
43/
M. IwaoH , 3 8 ,4 5 ( 1 9 9 4 ) .
t-Butyldiphenylsilyl chloride. Silylation.l Primary and secondary alcohols are rapidly silylated with this reagentin DMF using NHaNOTas catalystat room temperature. S.A. HardingerandN. Wijaya,rL 34,3821(1993).
J r r e c t l yc o n v e r t e dt o T B S ,i rrh Et.N at room temPera-
lr' !D_
|t
t-Butyl 3-(ethoxycarbonyl)-3-(diethylphosphono)propionate. Stobbe condensation.t The Emmons-Wadsworth protocol of condensation with an aldehydeis complementaryto the classicalStobbecondensation.But here, the product is the diester,which can be hydrolyzedselectively.Thus treatmentwith CFICOOH leads to a conjugated ester/saturatedacid.
fa
I
I
(ErO)2P.v.C02Er
I\corB, lt .'
: u n c t i o n a l i z a t i o ins a c h i e v e d rr'ritture(15-99VoYield).The : . rin.vltinand silicon com-
i .
: n c t l cq u e s t s .
F.- D-
oEt
_-J r.'i:'
-{
SiMer
92 "/"
LDA,THF RCHO:
*-y.o. -corH 75-95%
W . M . O w t o n , P . T . G a l l a g h e r ,a n d A . J u a n - M o n t e s i n o s S , C 23,2ll9 (1993).
t-Butyl hydroperoxide. 16, 53-54; 17,56-57 Epoxidation.' For epoxidationof electron-deficientalkenes KF supportedon .rlumina is a useful base. Moderate ee values are observedwhen unfunctionalized 'rlkenesare epoxidized in the presenceof a chiral borate derived from dimethyl t art rate. Oxygenation of carbanions.' The alkoxide form (i.e., l-BuOOLi) is capableof transfbrmingcarbanionsinto alcohols(after subsequentprotonation).of particular rnterestis the formation of acetyleneoxides.
72
l-Butylhydroperoxide
t_Butyl hydroperoriL_ t-BuOOLi Fl
h-Ll
-
1,3-Dienes give 4-r-butylperoxy-2-al\
nr i
dinium dichromate.16
THF
oxidation ofsulfur-containing compounds. A new procedure for oxidation of sulfidesto sulfoxidesusesr-BuooH in aqueousH2Soaat ambient temperature(95l00vo yield).4 Inrerestingly, 4-(methylthio)benzaldehydeis oxidized to the sulfone carboxylic acid in 0.5M NaoH at 70'c, but in the presenceof cetyltrimethylammonium sulfate (and lM NaoH) at room temperaturethe sulfide remains untouched.s Unsymmetrical pe rox ides.6
r /
NH
f\o{""'. r-lv\
tBUOOH BF3. OEt2
Aro-o
(n,\
>-
pentane
oxidative ring expansion of furans.l The transformation into pyranones effected in the presenceof camphorsulfonicacid is similar to that involving r-BuooHVo(acac)2,o but there must be also an oxidationat the benzylic positionof the original skeleton.
r-8uOOH,
csA
$r"'"'
"""r* zqi
aY -.-(^-\
t-BuOO
o CrHg
50"/" Hydrocarbon oxidation. A metal caralyst is usually required. By adding bis(rriphenylsilyl) chromate,e diphenylmethane is oxidized to benzophenone, and vanadium-pillaredmontmorilloniter0catalyzesthe conversionof arylaceticestersto arylglyoxylic esters by t-BuooH. The presenceof calcined Zncrol-hydrotalcite enablesthe selectivegenerationof benzylic hydroperoxidesfrom aralkanes.' The Gif oxidation of aralkanesinvolving r-BuooH, Fe(No:)r . 9H2o, pyridine, HoAc (the so-calledGoAggrv system)gives mixed benzylic peroxides.12 The addition of MX (M:Li, Na, EtrN; X:Cl, N:, NCS, CN, NOz,. . .) enablesfunctionaliza_ tion of hydrocarbons to afford alkyl chlorides, azides, thiocyanates.cvanides. nitroalkanes,etc.rl using solubleFe(III) and cu(II) chelaresin the oxidation of hydrocarbonswith t-BuooH and air without solvent,it is possibleto obtain ketoneproducts.14 Similar catalytic effects of RuClz(PPhr)rhave been revealed.r5
Oxidation of alcohols, Oxidation rr. \ e c o n d a r y b e n z y l i c a l c o h o l s 1 8( r - B u O O H _ ( OsO+-EI+NOH) have been developed. ArNH2 - ArNOz.2o The Fe(lll) and are very effective catalysts for the oxrdar usually present as an additionat Iigand fcr
V . K . Y a d a va n d K . K . K a p o o r , Z L 3 5 . 9 { g l r E . M a n i u r y , H . A . H . M o u l o u d ,a n d G . G { M . J u l i a , V . P . S a i n t - J a l m e s ,a n d J . - N . \ ' e r r r < 'F. F r i n g u e l l i .R . P e l l e g r i n oa. n d F . p i z z o . S f F . F r i n g u e l l i , R . P e l l e g r i n o ,O . p i e r m a r r r .e r r ^ M . - J . B o u r g e o i s ,E . M o n t a u d o n ,a n d B . \ l e r l l R . A n t o n i o l e t t i , L . A r i s t a , F . B o n a d i e s .L L c 'T.-L. H o a n d S . G . S a p p ,. t C 1 3 , 2 0 7 ( t 9 8 : t , -J. Muzarrand A. N.'Ait Aijou, SC 23. 2|F r I B . M . C h o u d a r y ,c . V . S . R e d d y ,a n d K . K R r B . M . C h o u d a r y , N . N a r e n d e r ,a n d V . B h u m e . 'F. M i n i s c i , F . F o n t a n a ,S . A r a n e o ,a n d F R c < D. H. R. Barton and W. Chavasiri,f 50. t9. I 'D. H . R . B a r t o n , S . D . B e v i e r e ,a n d D . R H r l l S . - 1 .M u r a h a s h i , Y . O d a , T . N a o t a , a n d T X u r S . B h a t , N . C h i d a m b a r a m ,a n d S . C h a n d r a s c D . D . A g a r w a l , R . J a i n , p . S a n g h a ,a n d R R r 'J. M u z a r t a n d A . N . ' A i t A i j o u , S 7 8 6 ( 1 9 9 , ,1 'C. B e c k a n d K . S e i f e r t ,T L l S , 7 2 2 l ( t g g t l S . T o l l a r i , D . V e r g a n i ,S . B a n f i , a n d F . p o r r e .
r-Butyl hydroperoxide-dialkyl tartrrl.l { . 6 1 - 6 2 ; 1 5 , 5 5 - 5 6 ; 1 6 , 5 4 - 5 5 ; 1 7 .5 7 _ S
Epoxides from alkenylsilanols.t Enel :he help of Si-OH direction, and the prodrx Chiral a-furfuryl amides.2 Kinerrc n .r(rnof one enantiomerto the dehydropipc Chiral allenyl sulfones.3 The oxidarp :,rnssi5 accompaniedby in situ selenori& ,
.
-\__
OeN
l.a/
\"{]
_/
IFP'OL'
n B u t y l h y d r o p e r o x i d e - d i a l k ytla r t r a t e - t i t a n i u m ( I V ) i s o p r o p o x i d e 7 3 1,3-Dienes give 4-r-butylperoxy-2-alkenones -
_ULI
Oxidation
of alcohols.
i :'.ss procedurefor oxidation of b r i'i ., r. et ambienttemperature(95l : r : - . i c i s o x i d i z e dt o t h e s u l f o n e t ! ' r . - - - . c f l Co€f c e t y l t r i m e t h y l a m m o u'.. - -' .uliide remains untouched.s
o-
-^ a 2 .' - : , ' r m a t i o ni n t o p y r a n o n e se f i: t{) that involving t-BuOOH- -'r z r lic positionof the original
a--?o ,
\r.
^.\^., U U4ng
50." . . . l i r r e q u i r e d .B y a d d i n gb i s ( t , ::1!'d to benzophenone,and F : r er:ion of arylaceticestersto , r' -rlcined ZnCrOrhYdrotalcite l... l r : . - r r J e sf r o m a r a l k a n e s . r r - b . . r t { . F e ( N O r ) r' 9 H 2 O ,p y r i d i n e , l r r : r \ c ' n r v l i c p e r o x i d e s . rT2h e a d d i |
I t \
\ O . . . . . ) e n a b l e sf u n c t i o n a l i z a -
rr..
..z rdes. thiocyanates,cyanides,
r : ' r , \ r d a t i o no f h y d r o c a r b o n sw i t h hr.iin ketoneproducts.raSimilar ! :
for
and for allylic alcoholsre (r-BuooH-
OsOo-EtoNOH) have been developed. ArNH2 - ArNOz.20 The Fe(lII) and Mn(III)
complexes of tetraarylporphyrins
are very effective catalysts for the oxidation with l-BuooH. usually present as an additional ligand for the metal ions.
l-Methylimidazole
is
' V. K. Yadav and K. K. Kapoor, TL 35, g48l (tgg4). I E . M a n i u r y , H . A . H . M o u l o u d , a n d G . G . A . B a l a v o i n e ,T A 4 , 2 3 4 0 O g g 3 \ . 'M. J u l i a , V . P . S a i n t - J a l m e sa,n d J . - N . V e r p e a u x 5, 4 2 3 3 ( 1 9 9 3 ) . 'F. F r i n g u e l l i ,R . P e l l e g r i n oa. n d F . P i z z o , S C 2 3 , 3 1 5 7( 1 9 9 3 ) . ' F . F r i n g u e l l i , R . P e l l e g r i n o ,O . P i e r m a t t i , a n d F . P i z z o , S C 2 4 , 2 6 6 5 ( 1 9 9 4 ) . 'M.-J. B o u r g e o i s ,E . M o n t a u d o n ,a n d B . M a i l l a r d , T 4 9 , 2 4 i . 7 ( l g g 3 ) . R . A n t o n i o l e t t i , L . A r i s t a , F . B o n a d i e s ,L . L o c a t i , a n d A . S c e t t r i , T L 3 4 , 7 0 g g ( l g g 3 \ . 'T.-L. H o a n d S . G . S a p p ,S C 1 3 , 2 0 7 ( 1 9 8 3 ) . 'J. Muzartand A. N.'Ait Aijou, SC 23,2.l3 (tgg3). "8. M . C h o u d a r y ,G . V . S . R e d d y , a n d K . K . R a o , C C 3 2 3 ( t g g 3 \ . B . M . C h o u d a r y , N . N a r e n d e r ,a n d V . B h u m a , S L 6 4 1 ( 1 9 9 4 ) . rF. Minisci, F. FontanaS , . A r a n e o ,a n d F . R e c u p e r o C , C 1 8 2 30 9 9 4 ) . 'D.H.R. B a r t o n a n d W . C h a v a s i r i ,I S 0 , 1 9 , 3 1 , 4 7 ( l g g 4 ) . 'D. H . R . B a r r o n , S . D . B e v i e r e ,a n d D . R . H i l l , Z S 0 , 2 6 6 5 ( t g g 4 ) . 'S.-1. M u r a h a s h i , Y . O d a , T . N a o t a ,a n d T . K u w a b a r a , T L 3 4 , l 2 g g . t g g 3 \ . "S. B h a t , N . C h i d a m b a r a m a, n d S . C h a n d r a s e k a r a nC.C 6 5 1 ( l 9 9 3 ) . 'D. D . A g a r w a l , R . J a i n , P . S a n g h a ,a n d R . R a s t o g ,i I J C ( B ) 3 2 8 , 3 8 1 ( 1 9 9 3 ) . 'J. Muzartand A. N.'Ait Aijou, S 786(1993). -C. B e c k a n d K . S e i f e r t ,T L 3 5 , 7 2 2 t ( 1 9 9 q . r"S. T o l f a r i , D . V e r g a n i ,S . B a n f i , a n d F . p o r t a , C C 4 4 2 ( l g g 3 ) .
t-Butyl hydroperoxide-dialkyl tartrate-titanium(IV) isopropoxide. 13, 5l_53; 1 1 . 6 1 - 6 2 ; 1 5 , 5 5 - 5 6 ; 1 6 ,5 4 - 5 5 : 1 7 . 5 7 - 5 8 Epoxides from alkenylsilanols,t Enantioselectiveepoxidation is achieved with the help of si-oH direction, and the productsare desilylatedwith fluoride ion. chiral a-furfuryl amides.2 Kinetic resolution is achieved by selectiveconver.ron of one enantiomerto the dehydropiperid-3-one derivative. chiral allenyl sulfones.l The oxidationof B-arylselenenylB;y-unsaturated sultirnesis accompaniedby in situ selenoxideeliminatron.
-\_
OeN
.
l-BUOOH
tti:'-l
l-BuOOH-pyri-
Oxidation systems for alcoholsrT (r-BuOOH-RuCl,),
secondary benzylic alcoholsrs (l-BuooH-cror)
)r 11 r '"
on reaction with
dinium dichromate.'n
\"{]
J
-w1
(iPro)4Ti , (+)-tanrate 85% (42% ee Rl
74
Butyllithium
'T.-H. Chan, L. M. Chen, D. Wang,and L. H. Li, CJC 71, 60 (1993). tW.-S. Zhou, Z.-H.Lu,andZ.-M. Wang, I49, 264l (1993\. tN. K o m a t s u ,T . M u r a k a m i , Y . N i s h i b a y a s h i ,T . S u g i t a ,a n d S . U e m u r a ,J o c s g . 3 6 g i ( g 9 3 \ .
o Ph-s cl
Fr,
MsCl-Et3N DBU
/-Butyl hypochlorite. 13, 55 Nitrile oxide formation.t The reaction of aldoxime o-tributylstannyl ethers with t-BuoCl resultsin chlorination and then 1,3-elimination.In the presenceof a dipolarophile,the isoxazolineor isoxazolecycloadductis formed. I O.
Moriya,H. Takenaka, M. Iyoda,y. Urara,andT. Endo,JCS(pl)413(tgg1!t.
t-Butyliminoosmium trioxide. vic-Aminohydroxylation.t The reaction is completely analogous to the dihydroxylation with OsO+.It is also amenableto asymmetricinduction.
Ph
t-BuN=OsOs CH2C!2, -78o
Ph
t-BuNH Ph
H
Ph
OH
92%
'H.
a- He tero sub stit ute d al ke ny lli th it t and the reaction with carbonyl compo{ svntheticapplications.From deprotonar of 3(211)-furanones.a Asymmetric rnd presentin the allenyl ether has been ob,
Dihydro-1,4-dithiinsare liable to dcp .ubsequentreactionwith aldehydesrhc i .ince TiCla is too acidic for the purposc
A route to 4-substitutedimidazoles-r zoleand subsequent lithiation ar C-.1t\.c Lithium-halogen exchange. Al\c iJact at room temperature in hydrocarbo 1007oyield).EThis methodis favorablern ,rnly I equivalentofthe reagentis nee&
After suchan exchange3-lithio-ll/-t. ,,-allenylphenols (isolatedas mixed carh The selectiveexchangeof one of tno r rron of an allylic methoxyethoxymerh!lI cnableseffectiveinduction of chiralirl b, the reactionwith imines.rt)
R u b i n s t e i na n d J . S . S v e n d s e n A , CS 48, 439 (994\.
Butylfithium. 13, 56; 14,63-68:15, 59-61; t7,59- 60 Monotritylation of symmetrical I,n-diols.t Deproronation of the diol in DME using BuLi and subsequenttreatmentwith trityl bromide accomplishesthe task. Propargylic alcohols.2 Butyllithium serves as a base and a nucleophile in the three-componentreaction,also involving a terminal acetyleneand an N,N-disubstituted amide.
rr"o5r,
BuLr:
"n) NHSO2AT Ar = mg51ty1
o BuLi *
"A*"",
PhC=CH
Ph<
OH
\
Bu
90/" Acetylenes from I-chlorovinyl sultoxides.s This high-yield conversion (Fritsch-wiechell rearrangement) terminates a one-carbon homologation of aldehydes. The method consistsofcondensation ofan aldehydewith chloromethyl phenyl sulfoxide and dehydration prior to the treatment with BuLi.
Lithium-tin exchange. Organosra ;ompounds.Regio- and stereoselectilefu rred by the tin atom of alkenylstannarr :ron'2is possible.N-(a-Tributylstannrlat rzrridinesraafford the correspondinglrth
ionstruction of five-memberedheterocrcl .rlamines have been obtained from azarr lmethyl)amines.r5
Butyllithium k'l
^,,199-l).
o ph_d
-.:
i:
- r\
[emura,JOC58,369'7(1993). cl
N i : \rme O-tributYlstannylethers :rnation. In the Presenceof a | : N:: ..: r. tormed. I i
b l;r -
11-51p 47 11 1( 1 9 9 4 ) .
- :.erely analogousto the dihY- ' r ' r Li n d u c t i o n .
:-\H
H
;+
Ph
OH
RcHo
F.'
MsCl-Et3N;
o Ph-dl
f
75
BuLi :-H
cl
DBU
a-Heterosubstituted alkenyllithiums. The generation of such sp2-carbanions and the reaction with carbonyl compoundsproduce intermediatesuseful for many synthetic applications.From deprotonatedallenyl ethers the reaction gives precursors of 3(2H)-furanones.oAsymmetric induction in the reaction by a chiral element presentin the allenyl ether has been observed.s Dihydro-1,4-dithiinsare liable to deprotonationat the doublebond.6However,in a subsequent reactionwith aldehydesthe addition of 20 mol vo (i-Pro)aTi is essential, sinceTiCla is too acidic for the purpose. A route to 4-substitutedimidazolesTinvolving c-2 silylationof a sulfamoylimidazoleand subsequent lithiation at c-4 (sec-BuLi can also be used)has beendeveloped. Lithium-halogen exchange. Alkenyl iodides (but not the bromides) and BuLi react at room temperature in hydrocarbon solvents such as hexane and benzene (501007oyield)."This methodis favorablein comparisonwith that using r-BuLi because only I equivalentof the reagentis needed. After such an exchange3-lithio-2H-l-benzopyrans undergo fragmentation to give o-allenylphenols (isolatedas mixed carbonates).e
J7"
The selectiveexchangeof one of two vinylic bromine atoms,as directed by chelation of an allylic methoxyethoxymethylether in a chiral carboxyl anion equivalent, enableseffectiveinduction of chirality by virtue of the juxtaposedfunctionalitiesin the reactionwith imines."'
)r
lr il 3'
r
:: 'r()nationof the diol in DME - Je .rccomplishes the task. : :a:e ood a nucleophilein the i,<:t\lene and an N,N-disubsti-
BuLi;
03
tnl NHSO2AT
cH2ct2
Ph. -cooMe
Y
insorn,
MoOH
NHSO2AT
Ar = rngs;1r1 62o/o(92ok de\ OH Ph
907. This high-yield conversion ilct e -s-earbon homologationof aldern : jehlde with chloromethylphenyl rr * .:r BuLi.
Lithium-tin exchange. organostannanes are valuable precursors of lithium ;ompounds.Regio- and stereoselective functionalizationat the site originally occuried by the tin atom of alkenylstannanes, for example,deuterationrrand sulfenylar'on'2is possible.N-(a-Tributylstannylalkyl)iminesrrand 2-tributylstannyl-N-trityl.rziridinesra afford the correspondinglithium derivatives,respectively,useful in the rr)nstructionof five-memberedheterocyclesand functionalizedaziridines.Homoal.rlamines have been obtained from aza-wittig rearrangementof allyl(trialkylstanrr lmethyl)amines.r5
76
Butyllithium
IsoxaZolesfrom oximes and esters.to Dianions from oximes condensewith certain esters,resultingin isoxazolesdirectly. Deprotonation of unusual carbon acids. Lithiation of epoxidesrTas well as of is a preludeto C-C bond formation. a-Keto acids chromium-carbene complexes18 are convertedto a-alkoxyacrylic acids on quenchingthe dianions with hard carbon 'e electrophi les. a-sulfunyl carhanions. The consecutive alkylation of methyl phenyl sulfone anion with an N-tosylaziridineand an aldehyderesultsin a trifunctional compound.2o For accessto a homoallylic amine (derivative)it only requires elimination of the PhSO3Helement. An a-sulfonyl carbanion(and other stabilizedcarbanions,e.g.,phosphorusylides) can add to a thio-substituted triple bond to furnish 5-membered ring products.2rThe correspondingalkoxy compoundbehavessimilarly.
.z
O C n Hsr
OC6H13 EULI
HMPA . THF
\---t
*
x
RCHO
-
rt,2h
-78o - rt + X = PPhs
AV', \ /
R
wittig and related reactions. 2-Alkenyl-2-methoxycyclopropyl ylides afford on treatmentwith BuLi, due to skeletalreorganizationof the methylenecyclopentenes initial products.22 OMe
MeO
"_tr-\
'PPh.
8r
-
BuLi, -78o PhCHO
^_/-y ("n
D . G a b b u t t ,J . D . H e p w o r t h , B . M . l k , ClEf ti M. Braun and K. OpdenbuschA S . C a s s o na n d P . K o c i e n s k i , S l l 3 - 1 ( 1 9 9 t Y . Zhao. P. Quayle, E. A. Kuo, S. Rah m 'W. H . P e a r s o na n d E . P . S t e v e n s .I L 3 5 . 'E. V e d e j sa n d W . O . M o s s , " / A C Sl l 5 . 1 6 '1. C o l d h a m , J C S ( P l ) 1 2 7 5( 1 9 9 3 1 . -Y. He and N.-H. Lin, S 989 (1994). -D. G r a n d j e a n ,P . P a l e , a n d J . C h u c h e . r , 'L. L a t t u a d a ,E . L i c a n d r o , S . M a i o r a n a . , 'R. B . B a t e sa n d S . C a l d e r a ,J O C 5 t . 6 9 : M . B . B e r r y , D . C r a i g , a n d P . S . J o n e s .5 R. L. Funk, G. L. Bolton,K. M. Brumn 7 0 2 3( r 9 9 3 ) . ' P .H . L e e , J . S . K i m , Y . C . K i m . a n d S I S . H a n e s s i a n ,Y . L . B e n n a n i , a n d Y . L c l ' ' S . H a n e s s i a n ,A . G o m t s y a n , A . P a l n c -
OC5H13 I
69% (one-pot reaction)
MeO
'C.
s-Butyllithium. 14, 69; 16, 56 Amide polyanions. The chelatrn r possibleto generatea carbanional ..ems to be sufficiently strong as a h
.ck on the carbonyl.With an electro : rerDot€(stabilized)carbanion can ,reated in the presenceof (-)-sparrel Regioselectivealkylation. Thro . possibleto alkylate an alcoholat lh ':gio- and stereocontrolin the alkrle
n 2h t
51% (R=|FC5H13,overall Yield)
Cyclic phosphonamide a-carbanions are excellent olefination reagents particularly useful for enolizable carbonyl compounds.2r P-stabilized allyl anions have found application as Michael donors.2a rD. K o m i o t i s ,B . L . C u r r i e , G . C . L e B r e t o n ,a n d D . L V e n t o n ,S C 2 3 ' 5 3 1 ( 1 9 9 3 ) ' tJ. R. H*u, G. H. Hakimelahi, F. F. Wong, and C. C. Lin' ACIEE 32' 608 (1993)' rT. S a t o h , Y . H a y a s h i ,a n d K . Y a m a k a w a ' B C S , /6 6 ' 1 8 6 6( 1 9 9 3 ) ' aS. H o r m u t h a n d H . - U . R e i s s i g ,J O C 5 9 ' 6 7 ( 1 9 9 4 ) . sP. R o c h e t ,J . - M . V a t e l e ,a n d J . G o r e ' S L 1 0 5 ( 1 9 9 3 ) . o 24, R . C a p u t o ,C . F e r r e r i , L . L o n g o b a r d o ,D . M a s t r o i a n n i ,G . P a l u m b o ,a n d S . P e d a t e l l a ,S C t223 (t994). t R. C. Vollinga, W. M. P.B. Menge,and H' Timmerman, RTC ll2' 123(1993)' *T. Y o k o o . H . S h i n o k u b o , K . O s h i m a , a n d K . U t i m o t o' S L 6 4 5 ( 1 9 9 4 ) .
t
--h^
o l
l*l^"-)-oY*f NBn2 o Y-
Propargylicalcoholscan be slnt This rer .r.l oxidativedesilylation. 're silyl groupto a prolinolmeth)le
.z^r,.-rl'\ ,/\
\
\
/
-s-BuL, ; R'x
OMe
A
s-Butyltithium
with cern. :: ,n o\imescondense l l ' . : : . , , no f e p o x i d e s raTs w e l l a s o f -( ^ ,nti tbrmation. a-Keto acids i r . - : J r a n i o n sw i t h h a r d c a r b o n li '' :i of methyl phenyl sulfone u . : . - : t r i f u n c t i o n a cl o m p o u n d . 2 o . . q u r r e se l i m i n a t i o no f t h e |,t : . J - : \ n \ . e . 9 . .p h o s p h o r uysl i d e s ) The I : - rnbered ring products.2r t OC*H'r
77
C. D. cabburt, J. D. Hepworth, B. M. Heron, M. M. Rahman JCS(pt) 1 7 3 3( l g g 4 ) . , \f. Braun and K. Opdenbusch,ACIEE 32,5i.8 Ogg3\. S . C a s s o na n d P . K o c i e n s k i ,S I 1 3 3( l 9 9 3 ) . .lgg4). Y Z h a o , P . Q u a y l e ,E . A . K u o , S . R a h m a n , a n d E . L . M . W a r d , T L l S , 3 7 g j \ \ . H . P e a r s o na n d E . p . S t e v e n s ,T L 3 5 , 2 6 4 l ( l g g 4 ) . 'F. V e d e j sa n d W . O . M o s s , " / A C Sl l S , 1 6 0 7( l 9 9 3 ) . I Coidham, JCS(Pt) t275 ,1993). \ He and N.-H. Lin, S 989 fl994). D G r a n d j e a n ,P . P a l e , a n d J . C h u c h e , T A 4 , t g g l ( l g g 3 ) . 'L. L a t t u a d a ,E . L i c a n d r o , S . M a i o r a n a , a n d A . p a p a g n i G 1 2 3 , 3 l ( 1 9 9 3 ) . , 'R B . B a t e sa n d S . C a l d e r a ,J O C S g , 6 9 2 0 , l g g 3 \ . \ t . B . B e r r y , D . C r a i g , a n d p . S . J o n e s ,S l 5 1 3 fl993). R . L . F u n k , G . L . B o l t o n , K . M . B r u m m o n d , K . E . E l l e s t a d ,a n d J . B . S t a l l m a n ,, / A C Sl l S , -otl ( 1993). P H . L e e , J . S . K i m , Y . C . K i m , a n d S . K i m , T L 3 4 , : l S 8 3( 1 9 9 3 ) . S H a n e s s i a nY, . L . B e n n a n i ,a n d y . L e b l a n c ,H 3 5 , l 4 l l ( 1 9 9 3 ) . 'S H a n e s s i a n ,A . G o m t s y a n , A . p a y n e , y . H e r v e , a n d S . B e a u d oni , JoC sg,5032 fl993).
t - -
(Y
69'/" ,one-pot reaction) lTa lx
rr clclopropyl ylides afford ' icletal reorganizationof the
OMe
I
R
P
r - B u t y l l i t h i u m . 1 4 , 6 9 ; 1 6 ,5 6 Amide polyanions. The chelating power of an amidic oxygen atom often makes r possibleto generatea carbanion at the a-position to the nitrogen.rs-Butyllithium ..ems to be sufficiently strong as a baseyet low enough in nucleophilicitynot to at_ :.ick on the carbonyl.with an electron-withdrawinggroup present in the acyl moiety i remote (stabilized)carbanion can be generated.Furthermore, chiral speciesare .reated in the presenceof (-)-sparteine.: Regioselectivealkylation. Through carbamation and assisteddeprotonation it ' possibleto alkylate an alcoholat the d-position. A proximal amino group can exert 'r'sio- and stereocontrol in the alkylation of a diol.r
h
51'r (B=rFC6H13,ov€rall yield)
)(*Ao'\,'\ro:r"#.u.
ll
6.
- s c 2 3 , 5 3 1( 1 9 9 3 ) . \, !tE32.608(1993).
j.NBnr
I \--+l
l k - ' ,lefinationreagentsparticu^: . rued allyl anionshavefound \:-
-\t o
, ? -
^ s-BuLi
ll O M
/
-78o e
l
\
"t+ ;/,i"1-";17 ru"n, 3
Propargylic alcohols can be synthesizedby alkyration of silylmethylacetyrenes rnd oxidative desilylation.This reaction is renderedenantioselective by anchoring :he silyl group to a prolinol methyl ether.a
,eit.
!
a ,C2 4 , , ( , P : l u m b oa, n dS . P e d a t e l lS ^,"
r ! l t . l 1 2 , 1 2 3( 1 9 9 3 ) . . . . ^ ; . rr 1 9 9 4 ) .
"
Z^s)u\ (/ x ,
s-BuLi
"\
/
-780
Z R-
p /
'at ,",11
R'X
OMe
OMe
R' : 'On
KF- KHCO3 H2o2lMeoH
-Z R-
7E s.Butyllithium-N,N,N',N'-tetramethytethylenediamine Alkylative deoxygenation of epoxides.s This transformation to alkenes is actually quite common and not limited to s-Buli. Peterson olefination reaction,. The application to reaction of an N-(trimethylsilylmethyl) formamidine with carbonyl compoundsprovidesenaminesthat are useful for transformation into homologousnitriles via the N,N-dimethylhydrazones.
Lithiation at the methyl group tor those bearing carbanion-stab lormedawhen N-Boc-benzyl(chl Directed metallation vs. rcar lection of the two pathways(sirc ' patternat the benzylic position
Ph TMS,,,\N,ME
\-,u
+
s-BuLi
F*r-t"
Ph
Ph
(-*
R
CN
a>\.tt t.
^
"ff
I
e&! ------
o-ANEt' rlr
76% 'J. E . R e s e ka n d P . B e a k , T L 3 4 , 3 0 4 3 ( t 9 9 3 ) . :P. B e a k a n d H . D u , " / A C Sl l 5 , 2 5 1 6 , l | g g 3 \ . rW. G u a r n i e r i , M . G r e h l , a n d D . H o p p e ,A C I E E 3 3 , l : . 3 4 ( t g g 4 ) . aR.C. Hartley, S. Lamothe, and T.-H. Chan, IL 34, l44g (tg93', sE. D o r i s , L . D e c h o u x ,a n d C . M i o s k o w s k i , I L 3 5 . 7 9 4 3 i l g g 4 \ . 'B. S a n t i a g oa n d A . I . M e y e r s , T L 3 4 , 5 8 3 9 ( 1 9 9 3 ) .
o-Alkylation of benzoic acid. ,-directing substituents on an aror
:he carboxyl group is also effecrrr
s-Butyllithium-potassium /.butoxide. l-Alkoxy-1,3-dienes.t a.B-Unsaturated acetals undergo 1,4-elimination on treatmentwith this combinationof strong bases.Since the alkoxydienescan be deprotonatedagain by the same base, a one-pot umpolung alkylation is also possible ( e . g . ,s t a r t i n gw i t h 2 - a l k e n y l - 1 , 3 - d i o x a n e s ) . 2
-ll.p-r
--\oJ
s-BuLit-BUOK THF -950
-
=1y O(CH2)3OM
RHar;
1 *1 , R o(cH2)3oH
HzO
RHal= Mel ao"t RHat= Me3Sicl 85"/,
'C. P r a n d i a n d P . V e n t u r e l l o ,7 5 0 , 1 2 4 6 3 ( t 9 9 4 ) . tC. C a n e p a ,C . P r a n d i , L . S a c c h i ,a n d P . V e n t u r e l l o ,J C S ( p t ) 1 8 7 5( 1 9 9 3 ) .
s-Butyllith iu m-N, N,N',N' -tetra methylethylenediam i ne. Amide u-anions. The Boc-protected secondary amines are readily converted to a-lithio derivatives,rwhich behave in the same way as other organolithium reagents.N-Boc-2-methyltetrahydro-| ,3-oxazine undergoesregioselectivedeprotonation at C-4.2
P. Beak and W. K. Lee, JOC 5t. ttOr P. Beak and E. K. Yum, ./OC 5t. tll \ . S n i e c k u sM , . R o g e r s - E v a n sP. & I994). 'P. B e a k ,S . W u , E . K . Y u m , a n d \ ' \ r P . Z h a n g , a n d R . E . G a w l e y ,J O C 5 t . J Mortier, J. Moyroud, B. Bennerau
t-Butyllithium. 13, 58; 15. 6.t-6J Deprotonation. The presenc .:rrectsthe deprotonation.For eri ret hyl- I ,2,3,4-tetrahydropy rim rdr -erboxylic acid,3H-4 of l-triisopn Even a remoteBoc-NH unil ere :,rrrtion.5Cyclic phosphonamida ' l,rphilesstereoselectively. A bulk 're approachof the reagentsfrom
NHCOO&rf
,-Butyllithium 79
h ":11
ll:
.t()rmationto alkenesis actu-
- :
N - : ' l ! ' -
' reactionof an N-(trimethYl,r rdesenaminesthat are user \'-di methylhydrazones.
j
Lithiation at the methyl groups is favoredover other N-alkyl substituents,except ior those bearing carbanion-stabilizinggroups.Azacycles(3-, 5-, 6-membered)are formedowhen N-Boc-benzyl(chloroalkyl)amines are treated with s-BuLi-TMEDA. Directed metallation vs. reatangement of O-arylmethyl carbamates. The selection of the two pathways(site of deprotonation)is dependenton the substitution patternat the benzylic position.5
t
Ph.
)-c
R. PH
R
ffcoruet,
R=H
R I
(Yo^ o/)
80%
"o*.,, R=Bu 91%
o-Alkylation of benzoic acid," Alkoxy and amide groups are the most popular ,-directingsubstituentson an aromatic ring to achievenuclearmetallation.However, :he carboxyl group is also effective.
. r n d e r g o1 , 4 - e l i m i n a t i o no n rc'r " \ . r :he alkoxydienescan be de. - ! a l k y l a t i o ni s a l s o p o s s i b l e rr:
|-"1r.,
: - 3
1
--f
R O(cH2)soH
AO/, RHal = Mel RHal = Me3SiCl 85"1
.lt''
1875(1993).
P BeakandW. K. Lee,JOC 58, ll09 (1993). P B e a ka n dE . K . Y u m ,J O C 5 8 , 8 2 3( 1 9 9 3 ) . \'. Snieckus, M. Rogers-Evans, P. Beak,W. K. Lee, E. K. Yum, andJ. Freskos, TL 35,4067 I9 9 4 ) . 'P Beak,S. Wu, E. K. Yum,andY. M. lun, JOC 59,276(1994). P Zhang,and R. E. Gawley,JOC 58,3223(1993). J Mortier,J. Moyroud,B. Bennetau, andP.A. Cain,JOC 59,4042(1994).
r-Butyllithium. 13, 58; 15, 64-65; 16, 56-57 Deprotonation. The presenceof a chelator unit in the molecule facilitates and .:rrectsthe deprotonation.For example, The H-6 of 2-t-butyl-l-methoxymethyl-3r c t h y l - 1 , 2 . 3 . 4 - t e t r a h y d r o p y r i m i d i n - 4 - o nHe-. 2' o f N - m e t h y l i n d o l e a 2 n d i n d o l e -| . r r b o x y l i c a c i d . rH - 4 o f l - t r i i s o p r o p y l s i l y l g r a m i n ae rae s e l e c t i v e lrye m o v e d . Evena remoteBoc-NH unit exertsa directing effect on the lithiation at a benzylic form stabilizedcarbanionsthat react with elec;.,'ition.5 Cyclic phosphonamidates .:,rphilesstereoselectively. A bulky (e.g., i-Pr) group on the nitrogen atom impedes 're approachof the reagentsfrom its side.6
rdiamine. nJ-::i \r-
t-BuLi/ THF - -20o :
Jmines are readily converted r \\av as other organolithium
: -:.: jr'!()es regioselective deprotona-
Mel -600- 0o
NHCOOBut
(Y' w"""oo"r, 80%
E0
r-Butyllithium-hexarnethylphosphorictriamide
o
t-BuLi/THF -70o;
ll'
4-o',r7\ r-^N--\
.ph
i-Prl, -70o
,-Buttlll n
\
;
..P
-ro'PLiH ^N-\
\
Ph
94"/"
Halogen-lithium exchange. Special usesofthis merhod include functionalization of bromoallylamine,ipreparationof a-silylaldehydes,E synthesisof alkenyl triflones,etrifluoromethyl ketones,r0 alkylidenecyclopentanesrr'r2 and diaryl tellurides.rr
K. Matsumoto, T. Yokoo,K. Oshima.K L'rr t-BuLi -1000- 00
94"k
1-Ethynyl ethers.ta
t- Butyllithium-potassium hydride. Homologation of acids (esten). . condensationproducts of esters u'irh ch x ith t-BuLi-KH theseketonesare conrer rransformedinto acids through hydrarron Phs(o)cH(cDLi
A synthesis from an acetic ester involves phosphorylation of
the enolate [LDA; (EtO)zPOCl] and using l-BuLi for the elimination.
RCOOCH3 LDA/THF
' K . S . C h u a n d J . P . K o n o p e l s k i , 7 4 9 , 9 1 8 3( 1 9 9 3 ) . t M . l s h i k u r a a n d M . T e r a s h im a , J O C 5 9 , 2 6 3 4 ( l g g 4 ) . tT. S a k a m o t o ,Y . K o n d o , N . T a k a z a w a ,a n d H . Y a m a n a k a ,H 3 6 , 9 4 1 ( 1 9 9 3 ) . oM. Iwao, H 36,29 (lgg3). sR. D . C l a r k a n d J a h a n g i r ,f 4 9 , l 3 5 l ( 1 9 9 3 ) . "S. E. Denmark and C.-T. Chen, JOC 59,2922 (t994). 7J. B a r l u e n g a ,R . - M . C a n t e l i , a n d J . F l o r e z , J O C 5 9 , 6 0 2 , 1 5 8 6( 1 9 9 4 ) . "L. D u h a m e l , J . G r a l a k , a n d A . B o u y a n z e r ,C C 1 7 6 3( 1 9 9 3 ) . 'A. M a h a d e v a na n d P . L . F u c h s , I L 3 5 , 6 0 2 5 ( 1 9 9 4 ) . "'1. V i l l u e n d a s ,A . P a r r i l l a , a n d A . C u e r r e r o , I 5 0 , l 2 6 i i O g g 4 \ . "T.V. O v a s k a , R . R . W a r r e n , C . E . L e w i s , N . W a c h t e r - J u r c s a ka, n d W . B a i l e y . J O C 5 9 , 5 8 6 8 (994). l2 M. P. Cooke. JOC 59.2g3O (tgg4\. 'tL. E n g m a n a n d D . S t e r n , O M 1 2 , 1 4 4 5( l g g 3 ) . 'oJ. A . C a b e z a sa n d A . C . O e h l s c h l a g e r J, O C 5 9 , ' 7 5 2 3( 1 9 9 4 ) .
l-Butyllithium-hexamethylphosphorictriamide. Disilylalkyllithiums.' A reactionschemefor C-C bondformationthat involves umpolungof an oxygenatedcarbon atom may exploit a gem-disilylcompoundas startingmaterial,althoughits availabilityis the primaryconsideration. Alkylation and oxidationprotocolsare routine.
o l t ^ ,
*-Y'' zsPh
71-877.
T. Satoh,Y. Mizu, Y. Hayashi,and K. \'ame
t- B uty ll ith iu m -N, N, N', N' -tet ra met h-rI Directed lithiation.t The o-direcrrc .ompound with two proximal metal atom
atn \.,,
Ll
t-BuLi TMEDA -1000- a
A tandem elimination and deproron .:risopropylcarbamate.2 By virtue of rhr :quivalentof a-fluoroacetyl anion.
\. J. Asheand P.M. Savla,JOMC461. I r t99 J A. Howarth,W. M. Owton,andJ. M. perc
t-Butyllithium-N,N,N',N'-tetramethylethylenediamine El
RX'
: - PzriH Ph
*S"'"".
r.BuLi A,ti ;;^.)s' t,n
Ph
"tto
s - :::,,'d includefunctionaliza' l r : : ' - . r n t h e s i so f a l k e n Y lt r i : a n d d i a r Y lt e l l u r i d e s ' r l ,,, - ..
/2
t
flo*
'oJ-L*
= ",.,)sifrsirra".
no
89o/.(RX=Mel)
sirl". \
,"h'
*ft""'="o-']', 57%(H=Ph)
T. Yokoo,K. oshima,K. Utimoto,andN. A. Rahman,BCSJ67' 1694(1994). K. Matsumoto,
t- Butyllithium-potassium hydride. Homologation of acids (esters).t a-chloro-a-phenylsulfinyl ketones are the treatment condensationproducts of esters with chloromethyl phenyl sulfoxide. on can be which \\ ith r-BuLi-KH theseketonesare convertedto potassiumalkynoxides, rransformedinto acids through hydration.
l-.' .
of . ,'lr es phosphorYlation
l : -
. n rrn a t i o n .
Phs(o)cH(cl)Li RCOOCH3
o
*"
o/\"-cl ' ' |
LDA/THF
|
,,sph o'
70-95"/.
..ro q-tlt1993).
TL 35, 133(1994)' T. Satoh,Y. Mizu, Y. Hayashi,and K. Yamakawa'
"'
q9{}.
,r; I
)f
RcH2cooH
l*o----"]
71-87"/" i1
.
r- Butyllith ium-N,N, N', N''tetramethylethylenediam ine' Directei! lithiation.t The o-direction of (Z)-B-lithiostyrene to give a dilithio i(rmpoundwith two proximal metal atoms is remarkable'
, : J \ \ ' . B a i l e Y ,J O C 5 9 ' 5 8 6 8
an \,2
9'-
t-
C t r()nd formation that involves r P . : .i eem-disilYlcomPound as t r l : - -:r\ consideration.AlkYlation
r_R,,ri
|
Li
;; 1000- A
PhAscl2
72\.\
\A.,
il
|
Li
+
rxr -78o - 25o 35"/o
N,NA tandem elimination and deprotonationoccurs with 2,2-difluoroethyl a synthetic is carbamate By virtue of this behavior the .1'sopropylcarbamate.2 :quivalentof a-fluoroacetyl anion' r J. AsheandP.M. Savla,JOMC461' I (1993). J A. Howarth,W. M. Owton,andJ. M. Percy'Sl 503 (1994)'
82
r-Butyl trimethylsilyl peroxide,t.BuOOSiMer
/-Butyl 2,3-dioxo-4-pentynoate. Dienophile.t This polycarbonyl compound forms Diels-Alder adducts, which are versatile intermediates for various syntheses.For example, an indoxyl derivative is accessibleon reaction of its butadiene adduct with a primary amine and dehydrogenation. ' H. H. Wasserman andC. A. Blum,TL 35,9787(1994).
2-r-Butylthio-1-azo-(4'-methylbenzene). Azo group transfer to ketone enolates with in situ a-p-tolylhydrazonation.' prototropic shift is accomplished at room temperature. In many casesthe yields are
C a d m i u m .1 3 , 6 0 Deprotection. For removalof thc 2 protectedaminoacid,Cd in I : I HOAc-Dl indolizidinehas beensynthesized: direc chaininvolvedliberatingthe aminewirh
excellent.
a^\r\ o /
' C . D e l l ' E r b aM, . N o v i ,G . P e t r i l l oa, n dC . T a v a n if, 5 0 , 1 1 2 3 (91 9 9 4 ) .
(
n-Butyltin trichloride. 15, 65-66 (Z)-Homoallylic alcohols. The (Z)-selective reaction of allyltin reagents with carbonyl compoundsis catalyzed by BuSnCl:.r'2The nucleophilesare actually the 1,3-transposed allyl(butyl)tin dichlorides.Operationally,it is important that the allylstannanes (E,Z mixtures) must be introduced last in order to achieve good stereoselectivities.
BuSnCl3
BuSnCl2
cH2ct2
q^\y'
RCH..-!' z'r -SnBu3
R'cHo
")-^f-"L\-
a lO
ov,ccls
Cinnamic csters.l The synthesis b1 COOMe, and BurAs is catalyzed by Cd (l
G. Hancock,L J. Galpin,and B. A. Morgto.I .'A. M. Castano, J. M. Cuerva,andA. M. Echt l. Zhengand Y. Shen,SC 24,2069 (|994t.
?" /,:\,,\.
R
V
R
'
0o
rH. M i y a k e a n d K . Y a m a m u r a ,C L 1 4 7 3( 1 9 9 3 ) . 2H. M i y a k e a n d K . Y a m a m u r a ,C L 8 9 7 ( 1 9 9 4 ) .
t-Butyl trimethylsilyl peroxide, r-BuOOSiMer. Aldehydesfrom sulfones.' Sulfone o-carbanions undergotrimethylsiloxylation in good yields.On silica gel chromatographythe productsare decomposedto furnish aldehydes.
Cadmium iodide. Knoevenagel condensation,
Cdl, ir
D. Prajapatiand J. S. Sandhu,JCC 12,7tg tl!-
Celcium borohydride. Reduction of esters.t With an alkcr hols with this borohydride. Intermediarc h :ers are converted to aldehydeson tneeloa S. Narasimhan, K.G. Prasad, andS. Mrdbrtr
lF. Chemla,M. Julia,andD. Uguen,BSCF547(1993).
Celcium hydride. Aldehyde enamines.t Good yiclds u CaH2 as the condensating agent. Cyclotcr :rothermic reaction. The optimal ratio of, | cnts each. G B. Fisher,L. Lee, and F.W Klettke,SC2l.
r^'. [)rels-Alder adducts,which F : :rample, an indoxyl derivad u , ' r r t h a p r i m a r ya m i n e a n d
Cadmium. 13,60 Deprotection, For removal of the 2,2,2-trichloroethoxycarbonyl group from a protectedamino acid,Cd in I : I HOAc-DMF is a reagentsuperiorro Zn.r A didehydror : retone enolateswith in situ u:: Ir many casesthe Yieldsare
).
indolizidine has been synthesized:directly from a carbamatecontaining a diketo chain involvedliberatingthe amine with sonication.
cd ))))
199!t).
-:,
HOAc - OMF 230
r r : - ' : \ n o f a l l Y l t i n r e a g e n t sw i t h -;leophiles are actuallY the If: rt is imPortant that the al)r: rn order to achieve good ," |
OH
-
/-\n
R
V
Cinnamic esters.' The synthesis by heating a mixture of ATCHO, BrCHzCOOMe, and BurAs is catalyzed by Cd (10 mol Vo\. G. Hancock,I. J. Galpin,and B. A. Morgan,TL 23,249 (1982). :A. M. Castano, J. M. Cuerva,andA. M. Echavarren, TL 35,7435(lgg4). 'J.Zheng and Y. Shen,SC 24,2069 (1994).
I R
'
Cadmium iodide. Knoevenagel condensation'
CdIz is a useful catalyst.
D. Prajapatiand J. S. Sandhu,JCC 12,739( 1993).
r - . indergo trimethylsiloxylation N - , r . a r € d e c o m P o s etdo f u r n i s h
Calcium borohydride. Reduction of esters.' With an alkene as catalyst, estersare reduced to the alcohols with this borohydride. Intermediate borates formed during reduction of aryl esters are converted to aldehydeson treatment with NaOCI in good yields. S. Narasimhan, K. G. Prasad, and S. Madhavan, .lC 25, 1689(1995).
Calcium hydride. Aldchyde enamines.t Good yields and purity of enamines are obtained with CaH2 as the condensating agent. Cyclohexane is used as a diluent to moderate the erothermic reaction. The optimal ratio of CaHz and R2NH to RCHO is 1.2 equivaicnts each. G. B. Fisher,L. Lee, and F.W. Klettke,SC 24, l54l (1994\.
E4 Camphorsulfonicacid Calcium hypochlorite. RCHTOH - RCOOMe.| Methyl esters are produced (82-97Vo yield) on treatment of primary alcohols with Ca(OCl)2 and HOAc in MeCN/MeOH and molecular sievesin the dark. Stabilized a-chloromethylenetriphenylphosphoranes.2 A convenient preparation of Ph:P:C(CI)R, where R:CN, Ac, COOEt, is by treatmentof the phosphonium salts with bleachingpowder in EIOH containing HCl. ' C . E . M c D o n a l dL,. E . N i c e ,A . W . S h a wa, n dN . B . N e s t o rT, L 3 4 , 2 7 4 1( 1 9 9 3 ) . tB. SchAfer, I49, 1053(1993).
Calcium nitrate. Nitrophenols.' In aqueoussulfuric acid at low temperatureCa(NOr)z is comparable to NaNOr as nitrating agent for substitutedphenols. 'S.
Carbon disulfide. Activationof N-CH2,t Der rwo purposes.The N_H bond is C-2.Moreimportantly, the lirhb desiredposition. H . A h l b r e c h t a n d C . S c h m i t r . . S9 t !
Carbonyldiimidazole.
13, 66: ll u-Diketones.t This synthcr via the cyclic carbonates.Thc libc decarboxylation. syz-Diols rcr I
S.-K.Kang,D.-C.park,H.-S.Rho.
C. Birarya,S. K. Joshi,andA. G. Holkar,SC 23, ll25 (lgg3).
Camphorsulfonic acid. 13, 62-64: 14,71-72:15, 68; 16, 58 Acetalization' This sulfonic acid (CSA) is a very useful catalyst for many reactions.It has been employedin the selectiveprotectionof diequatorialdiols.2 es 9H
HO.,i/\ l
" l
"ofuo eq
OMe
csA cHc13
eP"fleb"t: 760/"
Diels-Alder reactions.3 In an intramolecular cycloaddition approach to construct the pentacyclic skeleton of eburnamonine the catalytic system of LiClOa-Et2O is insufficient. The addition of l0 mol 7a of CSA is required. Benzannulation.o OH
csA cHct3
or-r",.\,,,,coorur" t i l l \.\z\--oMe 82/"
'S.V. L e y , G . - J . B o o n s , R . L e s l i e , M . W o o d s , a n d D . M . H o l l i n s h e a d ,S 6 8 9 ( 1 9 9 3 ) . 'S.V. L e y , H . W . M . P r i e p k e ,a n d S . L . W a r r i n e r , A C I E E 3 3 , 2 2 g O ( l g g 4 ) . rM. D. Kaufman and P.A. Grieco, JOC Sg,7lg7 (lgg41. oM. A. Ciufolini and T. J. Weiss, TL35, ll2'r. (lgg4').
Catecholborane. 16, 65_66; l?. 6 Generatedby passing dibonr chol at room temperature.l Catalyzed hydroborationt. S preparedin the presenceof l0 rrol
Many catalysts have been discr Sonication with activated nickcl 1 erher) significantly increasesthc r gioselectivity for the hydroborarrc
rcacrions using bis(mesityl)niotiua ;ause the major hydroborating atsr o-Halo boronic acids.6 Th.! .-arecholboranewithout solvent.
l'. Suseela and M. periasamy,JONC I G.W.Kabalka,C. Narayana, and N. X X.-L. Hou,D.-G. Hong,y.-L. Guo.rr 'K. Burgess, M. Jaspars, andW. A. ver K. Burgess,M. Jaspars, and W. A. nt 'S. Elgendy, G. Claeson, V.V.Kaller. I kully, andJ. Deadman, I S0,3t03 ( l!
Cerium(IV) ammonium nltntc. I Tetrahydropyranylethcn.t Tt :atalyzedby CAN.
Methoxybenzaldehydcs.2 Bcaz :-position are oxidized at room rcrq
Cerlum(lV) rmmonlum nltrrte
l u . e . : , 3 1 - 9 7 7 oY i e l d )o n t r e a t n \!-:C\/MeOH and molecular A convenientPrePara!r?,.r t i'': rl r"r€otof the phosphonium I r :. -r{. t7.il (1993).
tci'r-, ll r3lureCa(NOr)zis compan , .
E5
Carbon disulfide. Activation of N-CH2.t Derivatization of indolines with CSz/BuLi accomplishes two purposes. The N-H bond is protected against electrophiles in the alkylation at C-2. More importantly, the lithiodithiocarboxyl function directs deprotonationat the desiredposition. 'H. AhlbrechtandC. Schmitr,S 983(1994).
Carbonyldiimidazole. 13, 66:' 16, 64 a-Diketones.t This synthesis starting from a,B-dihydroxy ketones proceeds via the cyclic carbonates.The liberated imidazole promotes B-elimination and thence decarboxylation. syn-Diols react faster than anri-diols. 'S.-K. Kang,D.-C.Park,H.-S.Rho,andS.-M. Han,SC 23,2219(1993).
, _ i
6 \ 1 6 .5 E rt:. ;.eful catalystfor manY rerr. r ,'i diequatorialdiols.2
--.-\^
, 9H
Lo+\..' I l l
'
[-^ )"-r''o
I OMe
'-J 76"/"
1 . . - . , , a d d i t i o n a P P r o a c ht o c o n | .r:il\ trc system of LiClO4-Et2O irc..1urred.
CH y'-\
'
\y/cooMe I 3A-'oMe
3r. . H . :n.head,S689(1993)' _ r _ rt : q 0 ( 1 9 9 4 ) .
Catecholborane. 16, 65-66; 17, 67 -68 Cenerated by passing diborane (ex NaBHr + I2) to a benzene suspensionof catechol at room temperature.l Catalyzed hydroborations. Starting from l-alkynes, catecholborylalkenesare preparedin the presenceof l0 mol 7o HrB . NEt2Ph or HrB . THF.I Many catalysts have been discovered for the hydroboration with catecholborane. Sonication with activated nickel powder2 lobtained from Li reduction of NiI2 in ether) significantly increasesthe reactivity. In the presenceof (PhrPhRhCl the regioselectivity for the hydroboration of allylic sulfones3is enhanced. The catalyzed rcactions using bis(mesityl;niobium4 are different from those using Cp2TiCl25 becausethe major hydroborating agent for the former reactions actually is borane. a-Halo boronic acids.6 These substancesare made from l-haloalkenes and catecholboranewithout solvent. Y. Suseela and M. Periasamy, JOMC 4SO,47(1993). .G.W. Kabalka,C. Narayana,and N. K. Reddy,SC 24, l0l9 (1994). X.-L. Hou,D.-G. Hong,Y.-L. Guo,and L.-X. Dai, TL 34, 8513(1993). 'K. M. Jaspars, andW A. van der Donk, fL 34, 6813(1993). Burgess, ' and W. A. van der Donk, TL 34,6817(1993). K. Burgess,M. Jaspars, 'S. V.V.Kakkar,D. Green,G. Patel,C. A. Goodwin,J. A. Baban,M. F. Elgendy, G. Claeson, f50, 3803(1994). Scully,andJ. Deadman,
Cerium(IV) ammonium nltrate. 13, 67-68; 14,74-75; 15,70-72; 16, 66; lZ 68 Tetrahydropyranyl ethcrs.' The condensationof alcohols with dihydropyran is :atalyzedby CAN. Methoxybenzaldehydes.z Benzyldimethylamines methoxylated at the o- and/or rposition are oxidized at room temperature.
E6 Cerium(IV)ammoniumnitrat€ Allyl ethers. Conversion of allylic alcohols to ethers (and ether exchangealso) and transpositional allylic methoxylation have been effected by the CAN-ROH system.r'a Cephem sulfoxides undergo alkoxylation at the a-position of the ester.sThe B-methoxyalkyl phenyl selenides obtained from CAN oxidation of diphenyl diselenide in the presenceof alkenes in methanol are potential intermediatesof allyl ethers.6 O
O
"'.,+6)
cAN
;;
hot
cooMe
n
.. "',#3)
o/-"J*;"" ur".
Nitration. Carbazoles are nitratedT using CAN as the reagent. Alkenes are converted to nitroalkenesn by CAN in the presenceof NaNOz and HOAc, whereas epoxidesgive B-nitrato alcohols'on reactionwith CAN-NH+NOr. Functionalization of alkenes. CAN oxidation is often employed in the generation of reactive speciesfor addition to alkenes. Thus an azido radical created in the presenceof a-methoxy a,B-unsaturatednitriles is trapped.r0The adductsare useful precursorsof a-azido carboxylic acids, and thence a-amino acids.
R
OMe
R'
CN
CAN - NaN3
R. PM" N3-foNo2 R' CN
HoAc;Kzgog + HCI
*k;oo"
yield) 40-65%(overall Bicyclic lactones are produced" when dihydropyran and malonic monomethyl ester are treated with CAN and Cu(OAc)2,preferably with ultrasound irradiation. COOMe CAN, Cu(OAc)z
t r l
*
Kooc^cooM"
cH3cN tl, 2h
))))
r'\.-\
l t F \oAo'
o
84"/"
Cleavage of cyclopropyl sulfides. Oxidative desulfurization of these compoundsgives ketones.12 Oxidative coupling. Methods for ketone synthesis by trapping electrophilic species generated by CAN oxidation with silyl enol ethers are quite useful. 2are exemplary Tributylstannyl-1,3-dithianerrand l-trimethylsiloxy-1,3-butadiene'o substrates.
OSiMe3 Pht\
.
\"o**
'G. Maity andS.C. Roy,SC23, 16670993r '1. Badea,P. Cotelle,and J._p.Catteau,.SCZ 'N. IranpoorandE. Mothaghineghad, I Sf. I 'N. IranpoorandE. Morhaghineghad, f50. ) 5M. Alpegiani,p. Bissolino,D. Borghi,andt "C. Bosman,A. D'Annibale,S. Resia,andC. tM. Chakrabarty andA. Batabyal, SC24. | ( "J. R . H w u ,K . - L . C h e n a , n dS . A n a n r h a nC. ( 'N. Iranpoorandp. Salehi,I50,909 (t99.tr ''D. L. J. Cliveand N. Erkin, TL 35,24Sg(tgi " D. D'Annibaleand C. Trogolo,IL 35, 20tj I ''Y. Takemoto, T. Ohra,S. Ruruse,H. Koikc.i ''K. Narasaka, N. Arai, andT. Okauchi,gCS. 'A. B. Paotobelli, D. Latini, andR. Ruzzicoa
Cerium(III) chtoride. 14, 75-77: lS. 72 _ p-Hydroxy amides.t Cerium(III) eo than the Li enolates toward ketones aod >94Vo yield of the aldot. Modified Reformatsky reaction.z a Ce(III) enolates by the phTeLi-CeCl , cr lowards carbonyl compounds.
. X. Shangand H.-J.Liu, IL 35, 2485(lgg1l 'S. Fukazawa and K. Hirai, JCS(pl)1963( t99l
Cesium carbonate. 14, 77 -7g; lS, 73_75 Alkylations. Cs2COr has shown sonr O-alkylation of 2-pyrimidinone,' diasrere rlkylation/Wittig reaction3to form ethorr.c Carbamates : Formation and hydrotyti rcacrion with CO2 in the presenceof Cs€ rlkylation. When the alkylating agenr is . rlkyl)oxazolidin-2-oneis the product.t Ag recedes N-carboxylation. Dh
a"' tBuOOC
cq - crco
-;;----
lg. cQ'P
Cesium carbonate
ol- : :'thers(and ether exchangealso) . !.:i eft-ectedbY the CAN-ROH sYsor :r lhe a-position of the ester'sThe n.-' ( \\ oxidation of diPhenYldiseoi :': Prrtentialintermediatesof allyl
n -
H
t -
---J,/
\
*N--^
:
tl
u"o''\coo^t" 85n
as the reagent.Alkenes are rr- -'--r'rrf NaNO: and HOAc, whereas .- ('\\-NHrNOr. : r\ ()ftenemployedin the genera,lt.:' --. rn azido radical createdin the . ?\ lr;
r .\\
r k . . :rJpped.r0The adductsare useful ltr'c-- : . r - a m i n oa c i d s . I
R,.
-tA: (:Cor
L: -Cr
_COOH
^ 12\ t Ns 40-65% (ovsrall Yi€ld)
dr- . -:: .pr ran and malonic monomethyl F.r:'.:irlr $ ith ultrasoundirradiation' COOMe
I r.. t_ oAclz
:-:\
- :'
I /r\_^ t
l
\o^d
84"/o
rr:ji::\r' desulfurization of these comn\:.: -) nlhesis by trapping electrophilic 2Jr .. rl enol ethers are quite useful' e x e m p l a ry a r e lhr..:irrrr-1.3-butadienela
oSiMe3 \ l t l ph,'\
. \-""oa,"".
cAN + MecN
o tnYA""o
00
69"/o
'G. Maity and S. C. Roy, SC 23, 1667 (lgg3). '1. B a d e a ,P . C o t e l l e , a n d J . - P . C a t t e a u ,S C 2 4 , 2 } l l ( 1 9 9 4 ) . tN. I r a n p o o r a n d E . M o t h a g h i n e g h a d ,I 5 0 , 1 8 5 9( 1 9 9 4 / . 'N. f r a n p o o r a n d E . M o t h a g h i n e g h a d ,T 5 0 , 7 2 9 9 ( 1 9 9 4 ) . 5 M. Alpegiani, P. Bissolino, D. Borghi, and E. Perrone, SL 233 (lgg4). nC. B o s m a n , A . D ' A n n i b a l e , S . R e s t a ,a n d C . T r o g o l o, T L 3 5 , 6 5 2 5 ( 1 9 9 4 ) . 'M. C h a k r a b a r t y a n d A . B a t a b y a l ,S C 2 4 , l ( l g g 4 ) . "J. R . H w u , K . - L . C h e n , a n d S . A n a n t h a n , C C 1 4 2 5( 1 9 9 4 ) . 'N. I r a n p o o ra n d P . S a l e h i ,f 5 0 , 9 0 9 ( 1 9 9 4 ) . "D. L. J. Clive and N. Etkin, TL 35,2459 (1994). 'l D. D'Annibale and C. Trogolo, TL 35,2083 (lgg4). t Y. Takemoto, T. Ohra, S. Ruruse, H. Koike, and C. Iwata, CC l5lg (1994). ''K. N a r a s a k a ,N . A r a i , a n d T . O k a u c h i , B C S J 6 6 , 2 g g i ( l g g 3 ) . ''A.8. P a o l o b e l t iD , . Latini, and R. Ruzziconi,TL34,TZl ,lggr.
Cerium(III)
chloride. 14, 75-77: 15, 72-73; 16, 67-68 B-Hydroxy amides.t Cerium(III) enolares of amides show better reactivities than the Li enolates toward ketones and aldehydes. Reaction with camphor grves >94Vo yield of the aldol. Modified Reformatsky rcaction.z a-Bromoesters are probably converted to Ce(lII) enolates by the Phreli-ceclr combination, which makes them reactive towards carbonyl compounds. X. Shangand H.-J. Liu, ZL 35, 2485(t994). 'S. Fukazawa and K. Hirai, JCS(Pl)1963(1993). Cesium carbonate. 14, 77-78; 15. 73-75 Alkylations. Cs2COr has shown some unique properties as a base. It promotes o-alkylation of 2-pyrimidinone,r diastereoselective Michael addition,2and tandem alkylation/Wittig reaction3to form ethoxycyclopentadienes with good results. Carbamates: Formation and hydrolysis. Amines form carbamic acid salts on rcaction with co2 in the presenceof Cs2cor.a carbamate esters are isolated after rlkylation. When the alkylating agent is an a-bromoalkyl epoxide, 5-(a-hydroxyrlkyl)oxazolidin-2-oneis the product.5Apparently, epoxide opening by the amine DrecedesN-carboxvlation.
i
-Ph
QOz. CS2CO3
: - _ - . - . _ tBuOOC
lg,
DMF,rt: COr - RBr
-Ph
, t-BuOOC^NHCOOn R = Bn, Pr, iPr, CH2BI
EE Cesiumfluoride Bis-urethanesderived from propylenediaminesare convertedto cyclic ureas6on treatmentwith Cs2CO.,. Nitrene formation,T Ethyl N-tosylcarbamateundergoesa-elimination (-TsOH) on treatmentwith CszCOrat room temperature.The nitrene cycloadductwith cyclohexeneis producedin 79Voyield under theseconditions. ' B. S. Moller,M. L. Falck-Pedersen, T. Benneche, andK. Undheim,ACS46, l2l9 (1992). r N . O u v r a r dJ, . R o d r i g u e za,n dM . S a n t e l l A i , C I E E3 1 ,l 6 5 l ( 1 9 9 2 ) . t M . H a t a n a k aY,. H i m e d aR . . I m a s h i r oY, . T a n a k aa, n dL U e d aJ, O C 5 9 ,l l l ( 1 9 9 4 ) . 'K.J. Butcher,5L825(t994). sM. Yoshida,M. Ohshima,andT. Toda,H 35,623(1993r. oK. J. Fordon,C. G. Crane,andC. J. Burrows,TL 35,6215(1994). 7 M . B a r a n iS , . F i o r a v a n tLi ,. P e l l a c a nai ,n dP . A . T a r d e l l af , 5 0 , 1 1 2 3 (51 9 9 4 ) .
Cesium ffuoride. 13, 68; 14, 79:' 15,75-76; 16,69-70:'17,68 Desilylations. Silyl groups attached to various kinds of atoms can be removed by CsF, leavinganionic speciesreadyfor reactions.Unusualroutesto dienals.rallylic alcohols,22,5-dihydrofurans,3and tris(perfluoroalkyl) carbinolsohave been devel-
t K. H. Ahn andS.J. Lee,TL 35, 1875( 199.t) 'J. E. Oliver,R. M. Waters, andW. R. Lusby.S 'Y. Nambuand T. Endo,JOC SE,Ig3Z Ogg3t.
Chiral auxiliaries and catalysts. Small ring synthesis. Simmons_Sml are enantioselectivein the presenceof chi (l ) . ' ' 2
Formation of cyclopropanecarboxylic c derived from diazoacetateswith alkencs is r bipyridine (2) [complexed to Cu;3 and a b, Rul.r"
The [2+2]cycloadditionof ketenewirh r tion by chiral organoaluminumcomplexes sulfonamides(3).4
oped basedon this reaction. NHSO2AT PhcHo
+
MelSi \,'\,"11
CsF - DMSO;
\,/ N-\
Ph-\&.cHo
"NHSO2AT
znol2lHzO
70"/"
(1)
t2) The CsF-Si(OEt)4system,which operatesas a basefor the conjugateadditionsof amides to unsaturatedesters,probablyreleasesethoxideions. a-Fluoroalkanoic acids.6 When trichloromethyl carbinols, the adducts of aldehydesand chloroform, are treatedwith CsF, Bu,rNF,and EtrN, a fluorine atom is introducedto the position originally occupiedby the OH group. Saponificationthen deliversthe fluorinated carboxylic acids in 76-l00Vo yield. Tr ime rization of aryl isocyan at es.1
*$"="=o
..F i3oo 5 min
Ar I N
o\ t
Ar-
N' Y
7'o l
N-Al
l,3-Dipolar cycloadditions. In rhc n oxides cocomplexation of the alcohol and dii coursein the formation of 2-isoxazolincs..B cycloadditions to the boron atom of a chint gen atoms is important to determinc rhc rr products.
The monoacetonide (5)7 of the terraptrc irom tartaric acid has been used to modif, drchlorotitaniumdialkoxide is able to carel nitronesand alkenes.
tl
o 85 - 98% ' M . B e l l a s s o u e da n d M . S a l e m k o u r ,T L 3 4 , 5 2 8 1 ( 1 9 9 3 ) 2A. B . M u c c i o l i a n d N . S . S i m p k i n s ,J O C 5 9 , 5 1 4 1( 1 9 9 4 ) . t M . H o i o , M . O h k u m a , N . I s h i b a s h i ,a n d A . H o s o m i, T L 3 4 , 5 9 4 3 ( 1 9 9 3 ) 'G.J. C h e n , L . S . C h e n , K . C . E a p e n ,a n d W . E . W a r d ,J F C 6 9 , 6 1 ( 1 9 9 4 ) .
R . o
H
Ts-N'r'o R.
(.)
Chiral auxlllarles ond catrlysts
( . : - : '- " n \ e r t e d t o c y c l i c u r e a s oo n G , ' - . : i r g ( ) e sa - e l i m i n a t i o n( - T s O H ) f:: . :rene cycloadductwith cYcloO:1 jhc'rm.ACS 46, l2l9 (1992).
| [|.. I -. o.:l
leglr. : J . r .J O C 5 9 , l l l ( 1 9 9 4 ) .
F: 6-
qg-l).
'
's0
k
6i',,. r. rk .
-
l12-15(1994).
1 7 .6 8 rJ. of atoms can be removed . . . u a lr o u t e st o d i e n a l s , a' l l y l i c iarbinolsa have been devel-
Chiral auxilisries and catalysts. small ring srnthesis. simmons-Smith reactions using cH212-Et2znas reagenr are enantioselectivein the presenceof chiral trans-\,2-cyclohexanedisulfonamides (l ) . ' ' ' Formation of cyclopropanecarboxylic esters by capture of the metal-carbenoid derived from diazoacetateswith alkenes is renderedenantioselectiveby a chiral 2,2,_ bipyridine (2) [complexed to cu]3 and a bis(oxazolinyr)pyridine (2a) [complexed to Rul.t" The [2+2]cycloadditionof ketenewith aldehydesis subjectto asymmetric induction by chiral organoaluminumcomplexes,for example,of c2-symmetrical 1,2-bissulfonamides(3).4
CFe \ (\
NHSO2AT
j"
E9
tK.H. A h n a n d S . J . L e e , T L 3 S , 1 8 7 5( 1 9 9 4 ) . oJ. E . O l i v e r , R . M . W a t e r s ,a n d W R . L u s b y . S 2 7 3 ( l g g 4 ) . 'Y. Nambu and T. Endo, JOC SE, lg3} (gg3\.
/s,/-CFs
Ph
TNHSO2 I Phl,,'NHSO,
Ph/\&.cHo
\ -
h.',
70"/"
t2)
(2a)
I - ., r,,r the conjugateadditionsof 'l-
o-,
. -:i l()ns.
-'i
carbinols, the adducts of
B-.\
i. .rndEt.N, a fluorine atom is
1 :'.
ol{ group. Saponification then
l('
':.'ld.
Ar I
N
l-\ i'
N
7'o I - N- A ,
I
The monoacetonide (5)7 of the tetraphenyltetraor(Seebach'sTADDOL) derived irom tartaric acid has been used to modify many Lewis acids. For example, the Jrchlorotitanium dialkoxide is able to cat^lyze asymmetric cycloadditions between nrlronesand alkenes.
R
H
P
rs-N'r'o
9: Fr
. :.
l,3'Dipolar cycloadditions. In the reacrion of allylic alcohols wirh nitrile oxidescocomplexationofthe alcohol and diisopropyltartrate to Zn directs the steric coursein the formation of 2-isoxazolines.s Bonding of the nitronesthat participatein cycloadditions to the boron atom of a chiral oxazaborolidine (4)6through their oxy_ een atoms is important to determine the transition states leading to isoxazolidine products.
Y n 85 - 98%
R'
t { 5 9 , 1 (11 9 9 3 ) . 6 9 .6 l ( 1 9 9 4 ) .
(3)
(.)
Ph Ph
Vt'o"
'' xo)"',Oon Pif Ph (5)
v
cFs
90
Chiral auxiliariesandcatalysts
Diels-Alder reactions. Many excellent Lewis acid catalysts for the DielsAlder reaction are formed from enantiomeric binaphthols and substituted binaphthols. Ytterbium-,8aluminum-,eand titanium-basedr0 specieshavebeendeveloped.A chiral iron catalystrris also quite effective,but a zirconocene-based catalystr2is disappointingin terms of asymmetricinduction. A tricyclic, C2-symmetricalpolyoxa diol auxiliary can be used to attach acryloyl g r o u p st o f o r m c h i r a l d i e n o p h i l e s( 6 ) . r r An acyloxyborane catalyst (7) made from a tartaric acid derivative promotes cyclocondensationof Danishefsky's diene and aldehydesto construct substituted dihydropyran-4-ones.'o The dibromotitanium derivative of TADDOL is a catalvst for the hetero-DielsAlder reactionbetweenenonesand vinyl ethers.15
\ or&* r?
.L.
o
cooH^
#"|-{" " b-d. \-\o Pr"
/.- o
,oY5*-o
E 8 (6)
( 11 )
Dihydroxylation. Besidesthe enor loid-based chiral auxiliariesseveralC. (15)28 havebeendeveloped to directalke areprobablyoverwhelmed by the Sharpl catalyticwith respectto the mostexpcn
a''tl-' t t
r^Y"t \-/''""
(7)
t Oxidations. Much effort has been spent in finding conditions for enantioselective epoxidationofdifferent kinds ofalkenes. The most successfulcatalystsseemto be C2-symmetrical(salen)Mn complexes(8) (9) (10). Oxidants such as 4-phenylpyridine oxide in combinationwith NaOCl16rT withre or or PhIO,18O2lpivalaldehyde without2{)N-methylimidazole, as well as periodateion,2rare effective. A titanocene catalyzes epoxidation of several alkenes by r-BuOOH with moderate ee.22 Optically activelactonesare formed by an air oxidationusing a Cu(II) complexof a 2 - t o - h y d r o x y a r y l ) - 4 - t - b u t y l o x a z o ltilnl )e. 2 1 (Salen)Mncomplexes2a and a camphorsultim(12)25have been employedin asymmetric oxidation of sulfidesto chiral sulfoxides.
Ph
F
,/:Nt
Ar, l-N, zN-\ ')--{ ,A, >- Mn
''N'
{ Fdl "1 'b
Mn
R'-< \-o't 'o cl \< t--<
Ph
R (8) R = R'= l-Bu R = t - B u ,R ' = M e
(e)
(10)
$
l
"9 {
(13)
Homogcneous hydrogcnation Usiol ral diphosphine ligands, the asymmcrrt b1 rives2eand itaconic acids is accomplisbt{. rn the reduction of peptides on polynrr r Orher cationic Rh complexescontaining nr ccnyldiphosphinesftenjoy a differcnr dcan Reductions with boranc. Many chi 1.3,2-oxazaborolidines in situ, are worrlrv r Jucrionby borane.The most.on"enicnr I rhe natural amino acids; therefore, ir is r phenylglycine,phenylalanine,methionirE. :hat purpose. Resolved synthetic amirrc el tmino-2-indanolri and cis_1,2-diphcnyl-2 raries are obtained from 2_arylaminonnhy 16) (which can be used to reduce ketoncsr, :n situ from NaBH+_MerSiCl).{
Bicyclic 1,3,2- oxazaborolidinessynrhoi rrmes." The crystalline BHr adductof rhc I
Chlrrl auxilhrles rnd crtrlysts
9l
is :.:J catalysts for the Dielsgl:: ,1. and substitutedbinaPhr .;:;re\ havebeendeveloPed.A r r . e n e - b a s e cda t a l Y s t 1i s2 d i s -
")..;*
t) -i: be used to attach acryloyl
(12)
lr::: . acid derivative Promotes t1.r:- ttr constructsubstituteddi3 -tr:rllst for the hetero-Diels-
Dihydroxylation. Besidesthe enormously popular and effective cinchona alkaloid-basedchiral auxiliaries several C2-symmetricaldiamines 113;,26114;,27and (15)2thave been developedto direct alkene dihydroxylation with osoa. These efforts are probably overwhelmed by the Sharplessprotocols becausethe approachesare not catalytic with respect to the most expensiveand toxic reagent.
- -aH
l - - /
(11)
' o c-J
\
F-1
l
*
l\---/ \)
NH
q-
N H I
l : - : .irnditionsfor enantioselec-
' .uccessfulcatalYstsseemto {)\rdantssuchas 4-PhenYlll0 ' , withre or O1/pivalaldehYde Ph i, l r .
.rre effective. A titanocene ^ rrh moderateee.22 D{,i of ll\: " : . , ' n u s i n ga C u ( I I ) c o m P l e x It
2
v\
9Me
:."re beenemPloYedin asYm-
(10)
(13)
n
'Y_Xfl-) \--'J
Ph
A \
/",'Ph
(*I- N l
(-,F"n 4t
(14)
1-
Ph (15)
Homogeneoas hydrogenation, Using Rh(cod)cl dimer as the catalyst and chiral diphosphine ligands, the asymmetric hydrogenationof dehydroamino acid derivatives2eand itaconic acid3ois accomplished.Related catalysts are successfully applied rn the reduction of peptides on polymer support3* and of bisdehydrodipeptides.r'b other cationic Rh complexescontaining modified Dlops,3ft propraphos,reand ferrocenyldiphosphinereenjoy a different degree of success. Reductions with borane. Many chiral 1,2-amino alcohols,rr-rawhich form 1.3,2-oxazaborolidinesin situ, are worthy of evaluation for their effect on ketone reJuction by borane. The most convenient sourceof such amino alcohols is provided by the natural amino acids; therefore, it is not surprising that various derivatives of phenylglycine,phenylalanine, methionine, cysteine, and proline have been made for rhat purpose. Resolved synthetic amino alcohols that have been used include cis-l,rmino-2-indanol35 and cis-1,2-diphenyl-2-aminoethanol.s6 Analogous chiral auxilrries are obtained from 2-arylaminomethylpiperidines,sTas p-hydroxysulfoximines 16) (which can be used to reduce ketones$ and imines3eby nascentborane generated .n situ from NaBHa-MerSiCl).ao Bicyclic 1,3,2-oxazaborolidinessynthesizedfrom proline are the original "chemrr mes." The crystalline BHr adduct of the l-methyl derivative can be prepared from
92
Chiral auxiliariesandcatalysts
reduction of MezS . BHr in toluene or xylene at room temperature.4rResults from oxazaborolidine' diethyl a-ketophosphatesa2in the presenceof the bicyclic 1-butyl quite respectable. and of numerousketones using a monocyclic catalyst (17),4rare
v
Ph
Ph NH OH
pn.,r.s. 'pn " apn
HN-^,O
o'
fuo'
Me
: -,.,.-\
to reduce A tetracyclic oxazaborolidine derived from tryptopholoo can be used imines' for ketones enantioselectively.It is not effective in ketone Long-rangemediationby a chiral boronate(1,7-asymmetricinduction)as stoichiowith iminesa6 of reduction reductionby boraneis feasible.Enantioselective has been acid tartaric from prepared metric quantities of a cyclic dialkoxyborane reported.
OH
s s\r \ ,'tZtA,zV"-;
BH3. SMe2/ M€2S; Z
, . Vr n n n , O VH \,/\,/
NaOH,H2O2
87"/" (92"/"eel
on modiAmino diol auxiliariescan be highly effectiveor modestin their effects diethanoclsymmetrical The LiAlHq. by reduction ketone fying the stericcourseof (-)-B-pinene furnin" (18)a?gives good results' whereas a ligand (19) prepared from performs poorly.o8
?*" oH *./trn
: (18)
oH
\)-'"''')
(17)
(16)
from carbonyl compounds and Me.SiCN complex of a C2-symmetricalbis(oxazolin tem has separatebinding sites for the abc
(1e)
also subject to The rhodium(I)-catalyzed reduction of ketones with silanes is cyclic derivative,o' enantioselection by chiral ligands, which can be a bipyridine phosphonitesand phosphites,s0or diferrocenyl dichalcogenides'sl Titanium(IV) complexes with chiral salen ligands such a-cyanohydrination. a-cyanohydrins as (20)5?are useful to induce enantioselectiveformation of O-silyl
(20)
Transpositional reduction of allylic t (HCOOH as hydride donor) of allylic cart presenceof chiral ligands basedon binaph able in this manner using an MOP-phcn h1 Addition of R2Zn to aldehydes. Thrr ing the asymmetric induction efficienc;- o tertiary amines have been derived from pm proline analog,60norproline analo9.6' {OC
bound norephedrine,6rand n-xylylenednr zoline ligand65belonging to this caregon r The catalytic efficiencies of sonr l.j Except for one ligand derived from hldro ferrocene.A similar ligand is a Cr(CO). co thiols?2are also attractinga great deal of r The reaction in the presenceof a l.l{ haps the most popular combination colq and (i-PrO)aTi. Many polyfunctional coc
by this method.ura The organozinc reagco fashion.T5-77 However, the chemoselectivity r-PrO)qTiin the catalytic system.o Dialkyl thiophosphoramidatesDbeari ng lroselectivecatalysts,and alkylbenzencsr r'-diphenylphosphinoyliminesin the prcsc \..V-Diallylnorephedrine has been choscn I
Other organometallic additions. Al rldehydes in the presenceof Ti-TADDOIT The cleavageof allyl ethersu by Grignard r :er the absolute configuration of which c
Chiral auxiliariesandcatslysts 93 of R' l...ults from reduction r- - 1-butYloxazaborolidine' "r. quite resPectable' , t-
from carbonyl compounds and MersicN. Another catalyst is a chloromagnesium complex of a C2-symmetricalbis(oxazolin-2-yl)methylenederivative (21).s3This system has separatebinding sites for the aldehyde and cyanide components.
Y
€
CN
r\oH \)-,""',)
17 -c a n b e u s e dt o r e d u c e h:xin ketone ;\ - r::rc induction)as - 'l tminesa6with stoichio> ' t r t a r l a r i ca c i d h a s b e e n Ej'-
OH n n n P VH
,/\,/V
87"/. (92"h ee\
on modir -' .:J.t rn their effects : d ( : \ Y m m e t r i c a li e t h a n o l. . (-)-B-Pinene from I le rrr-pared
tH
J\
:H
. \HPh
r9 to 3 . * : l h s i l a n e si s a l s o s u b j e c t cYclic G : rrP\ridine derivative'ae ;hr .,'genides'5r ligands such lre. irtth chiral salen a-cyanohydrins O-silyl of rr-.:i i,\o
(20)
oH
1"fi"y "'yi*-rn
,f
(21)
Transpositional reduction of allylic carbonates. Pd-catalyzed Sa2' reduction (HCOOH as hydride donor) of allylic carbonates proceeds enantioselectivelyin the Chiral allylsilanesare readily availpresenceof chiral ligandsbasedon binaphthyl.sa able in this manner using an MOP-phen ligand.55 Addition of R2Zn to aldehydes. This seemsto be the standardreaction for testing the asymmetric induction efficiency of chiral ligands.Thus, various B-hydroxy a bicyclic rertiary amines have been derived from proline,56valine,s?norephedrine,ss'se proline analog,m norprotine analog,6r(oc).cr-complexed norephedrine'62polymerand n-xylylenediamine-linked units.6aA hydroxymethyloxabound norephedrine,u3 zoline ligand65belonging to this category shows a lower efficiency. The catalytic efficiencies of some 1,3- and 1,4-amino alcohols remain high. are based on Except for one ligand derived from hydroxyproline,66most others6T-oe and ethersTr B-amino ferrocene.A similar ligand is a Cr(COh complex.T0 B-Hydroxy thiols?2are also attracting a great deal of attention. The reaction in the presenceof a 1,2-diamine ligand requires a Lewis acid. Perhaps the most popular combination comprises trans-|,2-bistriflamidocyclohexane and (i-PrO)aTi. Many polyfunctional compounds can be prepared in chiral form The organozinc reagentsattack conjugated aldehydesin the l'2b1 this method.73'7a However, the chemoselectivitycan be changed by using NiClz instead of iashion.?5-?7 r-PrO)+Tiin the catalytic system.?8 bearing a p-hydroxy group are also highly enanDialkyt thiophosphoramidates?e :roselectivecatalysts, and alkylbenzenes exhibit special effects in the reaction of \-diphenylphosphinoylimines in the presenceof polystyrene-supportedephedrine.E0 \..V-Diallylnorephedrine has been chosen as catalyst in the Reformatsky reaction.El other organometallic additions. Alkyl- and aryltitanium alkoxides add to rldehydes in the presenceof Ti-TADDOLateE2in a highly enantioselectivemanner. The cleavageof allyl etherstr by Crignard reagentsgeneratesa new allylic stereocen:er the absolute configuration of which can be controlled by a chiral Zr catalyst.
94
Chiralauxiliaries andcatalysts
Other effectivecatalystsfor similar reactionsincludeR:P-ligatednickelEaand palladium derivatives.85'80 Chiral diaminessTmediateGrignard reactionswith aldehydes. and allylTwo different tacticsfor the allylation of aldehydeswith allylsilanes88 involve the use of a chiral Lewis acid catalystand the attachmentof the stannanes8e reagentto a chiral template,respectively. The combinationof a bis(amide/phosphine) and z'-allylpalladiumchloride can be
An extensive study on Sn(OT chiral diamine ligandsderived fm nificance is that the enantioselec of the ligand structures.
used to achieveasymmetric allylic alkylationeoand deracemizationof cyclic allyl esters.el
PhCHO *
oSiMer l - 4 /tSg I OTBS
9 ,
'
crr
(n-hexyl)4NBr
o a . \
x?.2
OAc
4\-{ \J
(\
OYY
'o
PPh2 7.5"/.
aY"t -T" "')^
The DIPT-Ti(Opr,), 95% (97%ee)
irn, \v
Michael reaction, Differenr example, an oxazoline prepared fn ; a r b o h y d r a t e - b a s e d t h i o l I 0 rh a r . e b a
N . I m a i , K . S a k a m o t o ,H . T a k a h a s h N . I m a i , H . T a k a h a s h i ,a n d S . K o h r K . I r o a n d T . K a t s u k i ,f L 3 4 . 2 6 6 t ; ''H. Nishiyama,y. Itoh, H. Marsunrq ' Y. Tamai, H. yoshiwara, M. Somclr .
2.5%r-allylpalladium chloride cH2cl2 Aldolization and related reactions. Tartaric acid-derived acyloxyboranecomplexes are shown to be useful catalysts for asymmetric aldol reactions. (.S)-4Isopropyl-3-tosyl-1,3,2-oxazaborolidin-5-one is an excellentcatalyst,not only for the aldolizatione2er betweena silyl enol ether and an aldehyde;it also reducesthe products to afford syn-1,3-diols.ea Asymmetric aldolizationof a-isocyanoacetamide and fluorinated benzaldehydes has been realized with a gold(l) salt and a ferrocenyl amine-phosphine ligand.es (Salen)-Ticomplexesservewell in catalyzingthe condensationof diketenewith aldehydes.e6A camphor lactameTis an adequatechiral auxiliary as its derived imide
' '
'. ' ' -
undergoesasymmetricaldol reactions.
o
ffi
' '
Et2BOTf- rPr2NEt cH2ct2; iPrCHO, -78o- 0o; H2O2/ MeOH
75% (90 : 10)
has been u
hydes.ee
'
Y . U k a j i , K . S a d a ,a n d K . I n o m a r a _ I J . - P .G . S e e r d e n ,A . W . A . S c h o l r eo p K . V . G o t h e l f a n d K . A . J o r g e n s c n. f S . K o b a y a s h i l,. H a c h i y a .H . l s h r r a a K . M a r u o k a , A . B . C o n c e p c i o n .a n d K . M a r u o k a , N . M u r a s e ,a n d H . ! ' r n E. P. Kiindig, B. Bourdin, and G. Bcr Y . H o n g ,B . A . K u n t z , a n d S . C o l l r n B. C. B. BezuidenhoudtG , . H. Casrlc Q. Gao, K. Ishihara,T. Marul,ama. t 8 . W a d a ,H . Y a s u o k a ,a n d S . K a n c r n B . D . B r a n d e sa n d E . N . J a c o b s e n../ O S. Chang, R. M. Held, and E. N. Jacd H . S a s a k i ,R . I r i e , T . H a m a d a , K . S u T . Y a m a d a ,K . I m a g a w a ,T . N a g a r a .r T . N a g a t a ,K . I m a g a w a ,T . y a m a d a . r P . P i e t i k a i n e n ,T L 3 6 , 3 1 9 ( t 9 9 S t . S. L. Colletri and R. L. Halterman..l( C. Bolm, G. Schlingloff, and K. \lcx K . N o d a , N . H o s o y a ,R . I r i e , y . \ . a m r
Chiralauxiliaries andcatalysts 95 lu-:: i{ P-ligatednickelEaand pallaG: --.,rJ reactionswith aldehydes. B b . . : , . .* i t h a l l y l s i l a n e s 8a8n d a l l y l d - .. . i.t and the attachmentof the
An extensive study on Sn(orf)2-catalyzed asymmetric aldol reactionse8using chiral diamine ligandsderived from proline has been carried out. of particular significance is that the enantioselectivitycan be switchedcompletelyby stight changes of the ligand structures.
o: - ., lrlpalladium chloride can be tirrcerrlizationof cyclic allyl :-
OSiMe3 PhCHO +
(set OTBS
Sn(oTt), Bu25n(OAc)2 cH2cl2, -780
o H o I i l
or
en^fset OTBS
o H o
: ll pnl^Y^set
:
OTBS
a\-
il'"lr
l.'. .
46"/"
\zr\
o r . ) \
\
l
(L
l
-\-{)-*/'Z I I I
\-/
ii",*lA t-'tV
/ ' o The DIPT-Ti(oPr')2
t:
has been used in hydrophosphonylation
82/.
of aromatic
alde-
hydes.ee
95% (97"/" eel
Michael reaction, Different ligands for copper catalysts are available. For example, an oxazoline prepared from valine,r00a phosphine from proline,r,rand a carbohydrate-based thiol "'2have been tested.
\
f]. .. : Jerivedacyloxyboranecom:rrtrrc aldol reactions. ('S)-4.i. ' a - . - r . l c n t c a t a l y s t n, o t o n l y f o r t h e r . - - , : \ J e : i t a l s o r e d u c e st h e P r o d tr .:. .:nJ fluorinated benzaldehydes t r ' - - ' r \ I a m i n e - p h o s p h i n el i g a n d ' e 5 r - .::n.ation of diketenewith aldet ' , , , u r i l i a r y a s i t s d e r i v e di m i d e
o
OH
c*/t 90 : l0)
N . l m a i , K . S a k a m o t o ,H . T a k a h a s h i ,a n d S . K o b a y a s h i ,f L 3 5 , 7 0 4 5 ( l g g 4 ) . I N . I m a i , H . T a k a h a s h i ,a n d S . K o b a y a s h i ,C L l j ' l ( l g g 4 ) . ' K . f r o a n d T . K a t s u k i , T L 3 4 , 2 6 6 1 ( 1 9 9 3 ) ;s L 6 3 8 ( 1 9 9 3 ) . '' H . N i s h i y a m a , Y . I t o h , H . M a t s u m o t o , S . - B . p a r k , a n d K . I t o h , " / A C Sl 1 6 , 2 2 2 3 ( t g g 4 \ . ' Y . T a m a i , H . Y o s h i w a r a ,M . S o m e y a ,J . F u k u m o t o , a n d S . M i y a n o , C C 2 2 g l ( l g g 4 ) . ' Y. Ukaji, K. Sada, and K. Inomata, CL l84l. .lgg3\. ^ -P. - J . G . S e e r d e n ,A . W . A . S c h o l t eo p R e i m e r , a n d H . W . S c h e e r e n ,T L 3 5 , 4 4 1 9( l g g 4 ) . K . V . c o t h e l f a n d K . A . J o r g e n s e nJ, O C 5 9 , 5 6 8 7 ( 1 9 9 4 ) . ' S . K o b a y a s h i I, . H a c h i y a ,H . I s h i t a n i ,a n d M . A r a k i , T L 3 4 , 4 5 3 5 | g g 3 t . K . M a r u o k a , A . B . C o n c e p c i o n ,a n d H . y a m a m o r o , B C S J 6 5 , 3 5 0 1 ( 1 9 9 2 ) . K . M a r u o k a , N . M u r a s e ,a n d H . y a m a m o t o , J O C S g , 2 9 3 9 i l 9 9 3 ) . E . P . K i i n d i g , B . B o u r d i n , a n d G . B e r n a r d i n c h i ,A C I E E 3 3 , t 8 5 6 ( 1 9 9 4 ) . .' Y. Hong, B. A. Kuntz, and S. Collins, OM 12,964 (t993). B . c . B . B e z u i d e n h o u d tG , . H. castle, S.V. Ley, and J.v. Geden,rL 3s,744'7,i45r (lgg4). ' g. G a o , K . I s h i h a r a ,T . M a r u y a m a , M . M o u r i , a n d H . y a m a m o r o , Z 5 0 , g 7 g ( l g g 4 ) . ' E . W a d a ,H . Y a s u o k a ,a n d S . K a n e m a s a ,C L 1 6 3 ' l( 1 9 9 4 ) . B . D . B r a n d e sa n d E . N . J a c o b s e nJ, O C 5 9 . 4 3 7 8 ' l g 9 4 \ . 0tgg4\. S . C h a n g , R . M . H e l d , a n d E . N . J a c o b s e nT , L 35,669 ' H . S a s a k i ,R . I r i e , T . H a m a d a , K . S u z u k i , a n d T . K a t s u k i , T 5 0 , l l g l T l g g 4 \ . T. Yamada, K. Imagawa, T. Nagata, and T. Mukaiyama, BCSJ 67, 224g (lgg4). : T . N a g a t a ,K . l m a g a w a ,T . y a m a d a , a n d T . M u k a i y a m a , C L 1 2 5 9( 1 9 9 4 ) . P . P i e t i k a i n e n ,r L 3 6 , 3 t 9 ( 1 9 9 5 ) . ' S . L . C o l l e t t i a n d R . L . H a l t e r m a n ,J O M C 4 S S , 9 9 0 9 9 3 ) . C . B o l m . G . S c h l i n g l o f f . a n d K . W e i c k h ar d t , .A C I E E3 3 , l g 4 8 ( t 9 9 4 ) . ' K . N o d a , N . H o s o y a ,R . I r i e , Y . y a m a s h i t a , a n d T . K a t s u k i , f S 0 , 9 6 0 9 f l 9 9 4 ) .
96
Chiral auxiliaries and catalysts
tt
P . C . B . P a g e ,J . P . H e e r , D . B e t h e l l , E . W . C o l l i n g t o n , a n d D ' M ' A n d r e w s , T L 3 5 ' 9 6 2 9 ( 1994). 2o S . H a n e s s i a n ,P . M e f f r e , M . G i r a r d , S . B e a u d o i n ,J . - Y . S a n c e a u ,a n d Y . B e n n a n i , J O C 5 8 , l99l (1993). " T . o i s h i , K . t i d a , a n d M . H i r a m a , T L 3 4 ' 3 5 7 3( 1 9 9 3 ) . tt M. Naka.lima, K. Tomioka, Y. Iitaka, and K. Koga' T 49, 10793 (1993)' 3 K. Inoguchi, N. Fujie, K. Yoshikawa' and K. Achiwa, CPB 40' 2921 (1992)' ]t' T. Morimoto, M. Chiba, and K. Achiwa, CPB 41, ll49 (1993). t"" 35' 5785(1994)' I. ojima, C.-Y. Tsai, andZ.Zhoog,If tt* S. El Baba, K. Sartor, J.-C. Poulin, and H. B. Kagan, BSCF 131' 525 (1994)' r(! T. Morimoto, M. Chiba, and K. Achiwa, CPB 40,2894 (1992). rtu Taudien, K. Schinkowski, and H.-W. Krause, TA 4' 1983' 73 (1993)' S. r'" A. Tcrgni,C. Breutel, A. Schnyder' F. Spindler, H. Landert, and A' Tijani, JACS 116' 4062 ( 1994). rr C . D a u e l s b e r ga n d J . M a r t e n s , S C 2 3 ' 2 0 9 1 ( 1 9 9 3 ) . t' T. Mehler and J. Martens, TA 4, 1983' 2299 (1993). tt Y. H. Kim, D. H. Park, and I. S. Byun, "/oC 5E' 451I (1993). ! M . P e r i a s a m yJ, . V . B . K a n t h , a n d A ' S . B . P r a s a d I' 5 0 ' 6 4 l l ( 1 9 9 4 ) ' tt Y. Hong, Y. Gao, X. Nie, and C. M' Zepp, fL 35' 6631 (1994)' 16 G.J. Quallich and T. M. Woodall, 5L929 (1993). tt o . F r i j h l i c h , M . B o n i n , J . - C . Q u i r o n , a n d H . - P . H u s s o n ,T A 4 ' 2 3 3 3 ( 1 9 9 3 ) ' '* C . B o l m a n d M . F e l d e r ,I L 3 4 , 6 0 4 1 ( 1 9 9 3 ) . t' C . B o l m a n d M . F e l d e r ,S r 6 5 5 ( 1 9 9 4 ) ' oo C. Bolm, A. Seeger,and M. Felder, TL34'8079 (1993). o' D . J . M a t h r e , A . s . T h o m p s o n , A . w . D o u g l a s , K . H o o g s t e e n ,J . D . C a r r o l l , E . G . C o r l e y , and E. J. J. Grabowski, JOC 58, 2880 ( 1993)' o' T. caida, rA 5, 1965 (1994). 43 G. J. quallich and T. M. Woodall, TL 34,4145 (1993). * M. Nakaga*a, T. Kawate, T. Kakikawa, H' Yamada, T. Matsui, and T' Hino' T 49' 1739 ( 1993). nt c . A . M o l a n d e r a n d K . L . B o b b i t t , J A C S l l 5 , 7 5 1 7( 1 9 9 3 ) ' * 1739 M. Nakagawa, T. Kawate, T. Kakikawa, H. Yamada, T. Matsui, and T. Hino, T 49, ( 1993). ot (1994)' E. F. J. de Vries, J. Brusse, C. G. Kruse, and A. van der Gen, TA 5' 3'1'l n* (1994)' 467 4l' T.-J. Lu and S.-W. Liu, JCCS(T) o' H . N i s h i y a m a , S . Y a m a g u c h i ,S . - B . P a r k , a n d K . I t o h , T A 4 , 1 4 3 ( 1 9 9 3 ) ' tt' J.-i. Sakaki, W. B. Schweizer, and D. Seebach,HCA 76,2654 (1993). 5 ' H . N i s h i b a y a s h i ,J . D . S i n g h , K . S e g a w a ,S . - i . F u k u z a w a ,a n d s . U e m u r ^ , c c 1 3 7 5( 1 9 9 4 ) . 52 M . H a y a s h i ,Y . M i y a m o t o , T . I n o u e ' a n d N . O g u n i , J O C 5 8 ' 1 5 l 5 ( 1 9 9 3 ) ' tt E. J. Corey and Z. Wang, IL 34' 4001 (1993)' 'o T. Huyashi,H. Iwamura, M. Naito, Y. Matsumoto,Y. Uozumi, M' Miki, and K Yanagi' JACS 116,7't5 0994). 5 5 H a y a s h i ,H . l w a m u r a ,a n d Y . U o z u m i ' T L 3 5 ' 4 8 1 3( 1 9 9 4 ) ' T. su M. Watanabe and K. Soai, ,/CS(P1)3125 (1994). " P . D e l a i r , C . E i n h o r n , J . E i n h o r n , a n d J . L . L u c h e ' T 5 l ' 1 6 5( 1 9 9 5 ) . t' K . S o a i , C . S h i m a d a ,M . T a k e u c h i , a n d M . I t a b a s h i ,C C 5 6 ' l ( 1 9 9 4 ) . 5n K . S o a i , T . H a y a s e ,K . T a k a i , a n d T . S u g i y a m a ,J O C 5 9 , 7 9 0 8 ( 1 9 9 4 ) ' * S . W a l b a u ma n d J . M a r t e n s , T A 4 , 6 3 " 1 ( 1 9 9 3 ) . o' W . B e h n e n .T . M e h l e r , a n d J . M a r t e n s , T A 4 , l 4 l 3 ( 1 9 9 3 ) . u' G . B . J o n e sa n d S . B . H e a t o n , T A 4 , 2 6 1 ( 1 9 9 3 ) .
or M. Watanabe and K. Soai. ./C9 * J . M . A n d r e s ,M . A . M a r r i n e z .t nt J . V . A l l e n , C . G . F r o s t ,a n d J . V T. Mehler,J. Martens, and S. $ o7 G. Nicolosi,A. patti, R. Mormr nn M . W a t a n a b e ,M . K o m o t a , M . \ o' H. wally, M. widhalm, w_ \tar '" - r M . U e m u r a ,R . M i y a k e , K . I r i r l M . l s h i z a k i , K . F u j i t a ,M . S h r m - ' J . K a n g ,J . W . L e e , a n d J . I . K r m C . E i s e n b e r ga n d P . K n o c h e l . . l ( ' -' L. Schwink and P. Knochel. fl R . O s t w a l d , P . - Y .C h a v a n t .H . S -o S. Vettel and P. Knochel, It 35. -K . S o a i a n d K . T a k a h a s h i ,J C 9 , '* M . A s a m i , K . U s u i ,S . H i g u c h r ' K. Soai, Y. Hirose,and y. Otrno "' K. Soai, T. Suzuki, and T. Shou '' K. Soai, A. Oshio, and T. Sairo 't B. Weber and D. Seebach.f Sf. " J . P . M o r k e n ,M . T . D i d i u k , a M , ' A . F . I n d o l e s ea n d G . C o n s i g l i o . " J . S p r i n z a n d G . H e l m c h e n .f L I * P . V . M a t t , O . L o i s e l e u r ,G . K o c h 573 1994). 'M. Nakajima, K. Tomioka, and I " K . l s h i h a r a ,M . M o u r i , e . G a o .
(r993). |1490
" W. R. Roushand N. S. Van Nieur ' B. M. Trosr and R. C. Bunr. ./AC B. M. Trost and M. G. Organ. .Lr 't K . l s h i h a r a ,T . M a r u y a m a , M ! 3 4 8 3d 9 9 3 ) . '' M . S a t o , S . S u n a m i , Y . S u g i r a .e Y . K a n e k o ,T . M a t s u o , a n d S . K I ' V . A . S o l o s h o n o ka n d T . H a y a s h M . H a y a s h i ,T . I n o u e , a n d N . O g ' R . K . B o e c k m a n ,J r . , A . T . J o h n r 'S . K o b a y a s h ia n d M . H o r i b e . A C ^ T . Y o k o m a t s u ,T . Y a m a g i s h i ,a n d ' Q.-L. Zhou and A. Pfaltz, TL l. M. Kanai and K. Tomioka. fL fll : M . S p e s c h aa n d G . R i h s , H C A T a
Chlorine. 17,198-199 gem-Dichloroalkanes.t Ori :rne with AlClr as catalyst. Oxidative displacement ol it rlcohol converts an iodo compou
Chlorine
, ! : i D \ f . A n d r e w sT, L 3 5 ' 9 6 2 9 S c : - i 3 u .a n dY . B e n n a n' iJ O C S E , -el ( 1993). t, cPB t0. 292t (t992). ) '.1 tl
t ( ( . ' l 3 l . 5 2 5( 1 9 9 4 ) . r ,-1,
-l r1993). l..r $<: rnd A. Tijani' JACS 116' 4062
ll'*i
a ^::: 1994). .q-r
I
rc I { {. tl33 (1993).
. - . ' . . n . J .D . C a r r o l l ,E ' G ' C o r l e Y '
I
, T \lrr.ut. and T. Hino, T 49' l'139 Fi . i
\lrt:ui. and T. Hino, T 49' 1739
h : ( i . n . T . 4S ' 3 ' 1 7( 1 9 9 4 ) ' h :1 r. l{3 (1993). ?t 1"51 t 1993). r n r l S . U e m u r a ' C C 1 3 ' 1 5( 1 9 9 4 ) ' Ir: t()( 5t. r5l5 (1993). t
r. zumi. M. Miki, and K. Yanagi,
97
or M. Watanabe and K. Soai, "ICS(P/) 837 (1994). * , A 5,67 (1994). J . M . A n d r e s , M . A . M a r t i n e z , R . P e d r o s a ,a n d A . P e r e z - E n c a b oT ot J . V . A l l e n , C . G . F r o s t ,a n d J . M . J . W i l l i a m s , T A 4 , 6 4 9 ( 1 9 9 3 ) . * T . M e h l e r , J . M a r t e n s , a n d S . W a l l b a u m ,S C 2 3 , 2 6 9 1 ( 1 9 9 3 ) . ot G . N i c o l o s i , A . P a t t i , R . M o r r o n e , a n d M . P i a t t e l l i , I A 5 , 1 6 3 9( 1 9 9 4 ) . o* M.Watanabe,M.Komota,M.Nishimura,S.Araki,andY.Butsugan,.ICS(Pl)2193(1993). n' H . w a f f y , M . W i d h a l m , W . W e i s s e n s t e i n e ra,n d K . S c h l o g l , T A 4 , 2 8 5 ( 1 9 9 3 ) . "' M . U e m u r a ,R . M i y a k e , K . N a k a y a m a ,M . S h i r o , a n d Y . H a y a s h i , J O C S S ,1 2 3 8( 1 9 9 3 ) . 'l M . I s h i z a k i ,K . F u j i t a ,M . S h i m a m o t o ,a n d O . H o s h i n o ,T A 5 , 4 l l ( 1 9 9 4 ) . -t J. Kang, J.W. Lee, and J. I. Kim, CC 2009 (1994). -' Eisenberg and P. Knochel , JOC 59,3760 (1994). - ' C. L . S c h w i n ka n d P . K n o c h e l , T L 3 5 , 9 0 0 7 ( 1 9 9 4 ) . -5 R . O s t w a l d , P . - Y . C h a v a n t ,H . S t a d t m u l l e r ,a n d P . K n o c h e l, J O C 5 9 , 4 1 4 3 ( 1 9 9 4 ) . -o S . V e t t e l a n d P . K n o c h e l, T L 3 5 , 5 8 4 9 ( 1 9 9 4 ) . -" K. Soai and K. Takahashi, JCS(Pl) 1257 (1994). '* M. Asami, K. Usui, S. Higuchi, and S. Inoue, CL297 (1994). -" K . S o a i , Y . H i r o s e , a n d Y . O h n o , f A 4 , 1 4 ' 7 3( 1 9 9 3 ) . *' K . S o a i , T . S u z u k i , a n d T . S h o n o ,C C 3 1 7( 1 9 9 4 ) . '' K . S o a i .A . O s h i o . a n d T . S a i t o .C C 8 l l ( 1 9 9 3 ) . '' , 5 0 , ' 7 4 7 3( 1 9 9 4 ) . B . W e b e ra n d D . S e e b a c h T " J . P . M o r k e n , M . T . D i d i u k , a n d A . H . H o v e y d a ,J A C S l l 5 , 6 9 9 7 ( 1 9 9 3 ) . ' A . F . I n d o l e s ea n d C . C o n s i g l i o , O M 1 3 , 2 2 3 0 ( 1 9 9 4 ) . " J . S p r i n z a n d G . H e l m c h e n ,T L 3 4 , 1 7 6 9( 1 9 9 3 ) . * P . V . M a t t , O . L o i s e l e u r ,G . K o c h , A . P f a l t z , C . L e f e b e r ,T . F e u c h t ,a n d G . H e l m c h e n , T A 5 ,
s73(t994).
'M . N a k a j i m a , K . T o m i o k a , a n d K . K o g a , T 4 9 , 9 ' 7 5 1( 1 9 9 3 ) . " K . l s h i h a r a , M . M o u r i , Q . G a o , T . M a r u y a m a , K . F u r u t a , a n d H . Y a m a m o t o ,J A C S l l 5 , I 1 4 9 0( 1 9 9 3 ) . * W . R . R o u s h a n d N . S . V a n N i e u w e n h z e ,J A C S 1 1 6 , 8 5 3 6 ( 1 9 9 4 ) . ' B. M. Trost and R. C. Bunt, JACS 116,4089 (1994). ' B . M . T r o s t a n d M . G . O r g a n , J A C S 1 1 6 , 1 0 3 2 0( 1 9 9 4 ) . '' K. Ishihara, T. Maruyama, M. Mouri, Q. Gao, K. Furuta, and H. Yamamoto,8CS"/66, 3 4 8 3( 1 9 9 3 ) . '' M . S a t o ,S . S u n a m i , Y . S u g i t a ,a n d C . K a n e k o , C P B 4 2 , 8 3 9 ( 1 9 9 4 ) . Y . K a n e k o ,T . M a t s u o , a n d S . K i y o o k a , T L 3 5 , 4 l O 7 ( 1 9 9 4 ) . '' V . A . S o l o s h o n o ka n d T . H a y a s h i , I A 5 , l 0 9 l ( 1 9 9 4 ) . M . H a y a s h i ,T . I n o u e , a n d N . O g u n i , C C 3 4 1 ( 1 9 9 4 ) -R . K . B o e c k m a n , J r . , A . T . J o h n s o n ,a n d R . A . M u s s e l m a n ,T L 3 5 , 8 5 2 1 ( 1 9 9 4 ) ' '' S . K o b a y a s h ia n d M . H o r i b e , A C S 4 E , 9 8 0 5 ( 1 9 9 4 ) . ^ T. Yokomatsu, T. Yamagishi, and S. Shibuya, TA 4, l'179 (1993). ' Q.-L. Zhou and A. Pfaltz, TL34,'l'125 (1993\. M. Kanaiand K. Tomioka,TL35,895 (1994). ' M . S p e s c h aa n d G . R i h s , H C A 7 6 , l 2 l 9 ( 1 9 9 3 ) .
| 5 l i A 5( 1 9 9 5 ) . . ('( it' I 1994). -,i08 (1994). : 5e
Chlorine. 17, 198-199 gem-Dichloroalkanes.' Oximes are transformed into gem-dichloridesby chlo'rne with AlClr as catalyst.
li-:
Oxidative displacement of iodoalkanes.2 The combination of chlorine and an ricohol convertsan iodo compound into an ether.
9t
Chloroborane
ocoR
IM.Tordeux,K.Boumtzane'andC.Wakselman,]oC5t.1939(1993). (t994)' 'ildtvr.."o A' Gadelle'TL3s'2t3s
"nl"i]l::" 2-(chloroacetoxvmethyl)b:t'il: ..,itable for acylationof the hydroxvl reagentts sut This alcohols't o! Prolcction manipulationand Estersareformedby conventional groupat C-2 of glycosyldono"' phthalideformation it"i, .t."rug" is triggeredby
bywurtzcoupring canbeprepared' colqounfs groupis
of one alkyl with Mg in ether'Introduction of 3-chloropropyttricfrfor-ositane accomplishedUy'"uttion'"ithanorganolithiumreagent'andthesilylchloridecan t h e n b e u s e d f o r t r c r - ' o t i o n o r s i t y t e n o l e t h e r s . 2 Ssuwithout c h o - s catalysts' i l y l k e t e nThe e a creacetalsare with aldehyde a extremelyreactivein urooi.onornsations bearing uerciontusessilyl keteneacetals tion is syn-selective';';;;; groupinsteadof an alkyl substituent' chiral Si-alkoxy(e'8', 8-phenylmenthoxy)
,Rr\
+ A€Ho
PhcH3
.;.
O
9H
Mes/>^Ar i
45 - 680/" (90 94% 6e)
in aldol moietv on the derivedtlltt :"-lT:ltis The effects of the silacvclobutane proceed reactions that these earlier'aIt wasalsosugggested reactionswerediscovered states' transition boatlike and "t. O*i*."tdinate silicon species JACS116'?026(1994)' D.M. coe,andM. E._schnute' rS.E. Denmark, B.D. Grieder, ( lee3)' e88 2s. E. Denmark. s. o. criedei,andD. M' c9:t /9911 JOC59'5136(1994)' 'i. i. O."t"tt andB' D' Griedel' (1992)' 'A. G. Mvers,s' e' xepnari'aio n' ctttn' JAcs114'7922
an'"illi""iii;rr"r.,
'
c
H. C. Brown, S.V. Kulkarni. and
2-Chloro-2,3-dihYdro'1'3'4J Amides.' This is a new cc amines at 0"C. PYridine can h
LA 659(1994)' tT.ZieglerandG' Pantkowski'
r'chrT:;1s'i;i:J;:;1"#t::'?lll
/-_,\
D(
in complex) sulfide (asdimethvl of thisborane Theadvantage
h y d r o b o r a t i o n i , t r . u t t t ' " u o o u c t s - c a n b e o x i dfrom i z e d4-(p-nitrobenzoyloxy)-ldirectlytocarboxylicacidsin of 7-valerolactone excellentyields.Thus "'rr"ii"rt. in this casebecauseit is This particularesteris used acnlved. easily be can pentene with the acetate)' i"Ou..O very slowly(in comparison
H. Kimura,H. Konno'andN Tr
ChlorodiphenYlPhosPh i nc. Aziridine derivativcs.' Ph2PCl,followed bY a subsegu tbr the preParationof N-diPha a- Al k ox Y alIYlPho s Phitc rng one of the alkoxY grouPs
oxide derived from acrolein di lrf protected 4-amino aldehYd
i H. M. l. Osborn,J' B' SweencY 'S. K. Armstrong,E'W. Colling
o-C hloroethYl chloroformrl De- N'benzYlation.t Ter :hloroethYl)carbamatesin ref rlr hydrolyzedbY heatingwitl B.V.Yang,D. O'Rourke'andJ
Chloroiodomethane. Simmons-Smith rcactit :thers in the Presenceof Etj Homologation reactiott rrhium reagent and the chh .iters into chloromethYl kert rnd alkenYlboronatesinto al
C\\oroiodomet\rne i St
el9 (1993).
ocoR /-,.\
99
BH2CI.SMe2, CH2C|2,rl,2 h; Cro3, ACOH/H2O,rl, I h
,-l.,,,,,\cooH 84%(R=pO2NC6Ha)
Dr!3:le for acylation of the hydroxyl Fd br conventionalmanipulationand
' H.
C. Brown,S.V.Kulkarni,andU. S. Racherla, JOC 59,365(1994).
DN
2-Chloro-2,3-dihydro-1,3, 4,2 - oxadiazaphosphole. Amides.' This is a new condensatingagentfor the union of carboxylicacidsand amines at 0"C. Pyridine can be used as HCI scavenger. b ;,: f,e preparedrbY Wurtz couPling lc: lntroductionof one alkyl group is ltr, :rigent. and the silyl chloride can : tbc:. Such O-silyl ketene acetals are tlc::rJes u'ithoutcatalysts.The reac1' -q. rrlll ketene acetals bearing a rp :.::ad of an alkYl substituent'
h - -
? 9 " \r€s'/\Y'\Ar .5 -68% (90 - 94% 6s)
n :-< Jertvedsilyl enol ethersin aldol 14g;c.ted that thesereactionsproceed l c i : i n \ l t r O ns t a t e s . (1994). E i -:nute../ACS116,'1026
rst
vrt t 1993).
l$: l a - "ll t1992).
'H.
Kimura,H. Konno,andN. Takahashi, BCS"/66,321Ogg3\.
Chlorod iphenylphosph i ne. Aziridine derivatives.t The selective reaction of 2-amino alcohols with Ph2PCl,followed by a subsequento-tosylarion and a NaH inducedcyclizationallows for the preparation of N-diphenylphosphinyl aziridines. a'Alkoxy allylphosphine oxides.2 Allylic acerals react with ph2pcl by replacing one of the alkoxy groups with the diphenylphosphinoylresidue.The phosphine oxide derived from acrolein diethyl acetal has been transformed into (E)-enol ethers of protected4-amino aldehydes. H. M.I. Osborn,J. B. Sweeney, andB. Howson,SL 145(1994). tS. K. Armstrong, E.W.Collington,andS. Warren,JCS(pl)515(1994).
c-Chloroethyl chloroformate. De-N-benzylation.t Tertiary benzylamines are transformed into the o-(achloroethyl)carbamates in refluxing 1,2-dichloroethane. Thesecarbamatesare readily hydrolyzedby heatingwith methanol,giving the secondaryamine hydrochlorides. B.V.Yang,D. O'Rourke,andJ. Li, SL 1950993).
Chloroiodomethane. borrne (as dimethyl sulfide complex)in iiJrzeJ directly to carboxylic acids in ir :.'ne from 4-(p-nitrobenzoyloxy)-l it is because case in this ls used tr e.rer a - e l f , t el .
simmons-smith reaction.t clcHrl delivers its methylene group to allylic ethers in the presenceof EtzZn. Homologation reactions, clcH2l undergoes I/Li exchange with an alkyllithium reagentand the chloromethyllithiumthus obtained can be used to convert esters into chloromethyl ketones,2Fischer carbene complexes into methyl ketones,r and alkenylboronatesinto allylboronates.4
100 N-ChloromethylPhthalimld€
%?-o) oJ
BuLi/ THF lCHzCl -78o - rl
,\
o.o., T I
oJ
TOohlE:Z 98:2)
I A. B. CharetteandJ.-F.Marcoux,TL 34,'1157 (1993). rJ. Barluenga, CC 969(1994)' A. Alonso,andJ.M. Concellon, B. Baragana, 3J.Barluenga, TLSS'9471(1994)' P.L. Bernard'andJ. M' Concellon, tH.C. BrownA . . S . P h a d k ea,n dN . G . B h a t 'I L 3 4 ' 7 8 4 5( 1 9 9 3 ) .
Chloromethyl chlorosulfate. chloromethyl esters.t The reagent clcH2oso2cl protected amino acids under phase-transferconditions'
m-Chloroperoxybenzoic acid. 13, 76 -19. Oxidation of organochalcogenidct. dized at -50'C, to the sulfoxidesor sulfo peracidused.Telluridesare converteddrrc ethylaminehas a remarkableeffect on tlr a-Chloro enones.' A convenient m atom to the a-position of enonesis by..trer
F. FarinaM . . V . M a r t i n .R . M . M a r t i n - A r e ( |9 9 3 ) . tY. Nishibayashi, N. Komatsu,K. ohe, andS 'Y. M . K i m , K . H . C h u n gJ, .N . K i m , a n dE K
is useful to derivatize N-
lN. Harada,M. Hongu,T. Tanaka,T. Kawaguchi, sc 24,767 andK. Tsujihara, T. Hashiyama, (1994).
Chloro(pyridine)cobaloxime(III ). Free radical cyclizations,t Cobalorr ibil anode has been used to effect the red cals from bromoacetalsin electrochemr
chain is presentin such acetals,cyclizatro Chloromethyl methyl ether. 13, 76; 14' 5-6 A convenienrmethod for its synthesisris by heating an acid chloride with methyreagent is commonly employed for alcohol Protection' The lal. ' R. J. Linderman,M. Jaber,and B. D. Griedel,JOC 59' 6499(1994)'
1-Chloromethyl-4-fluoro-1,4-diazabicyclo[2.2.2]octane bis(tetrafluoroborate)' ' This salt is an effective fluorinating agent for enol acetates' Fluorination silyl enol ethers,phenyl-substitutedalkenes,mitdly activated arenes,sulfides bearing o-H atoms, and certain carbanions. reThe introduction of fluorine into p-dicarbonyl compounds,2as well as the reported' been also groups,3 have vinylic tributylstannyl placementof Benzylic alcohols and benzaldehydesare oxidized. To transform oxidationa two equivalents of the reagentand longer reaction times are acids, into the alcohols requi red. ' c. s. Lal, Joc s8,2'l9l (1993\. ?R.E. Banks,N. J. Lawrence, CC 343(1994)' andA. L. Popplewell, I D. p. Matrhews,S.C. Miller, E.T. Jarvi, J. S. Sabol,andJ. R. McCarthy,TL 34, 3057(1993). aR.E. Banks,N. J. Lawrence'andA. L. Popplewell, SL 831(1994)'
N-ChloromethylPhthalimide. Thiol protection.t The phthalimidomethyl group, introduced to thiols under miltt reaction conditions using this reagent, is removed by treatment with hydrazine hydrate followed by mercuric or cupric acetate. ' Y.-D. Gongand N. Iwasawa ' CL 2139(1994\.
T. Inokuchi,H. Kawafuchi,K. Aoki, A. I'osh
.V-Chlorosuccinimide. 13. 79-801 15. t6 Dehydrogenation of sulfenamides.
rmines is applicableto the synthesisof an tbr the elaborationof other amino acids Chl orodehy d roge na t io n of a- ph c nyla .rcrylamidesare formed through a reactro l r o c h l o r in a t i o n ,a n d c h l o r i n a t i o n .
o tn--f
rc
ll ruHn
cHs
cc"
a-Sulfon Degradative chlorination. 1 the presenceof NaOMe (in methanolr r-h lorinationof N-tosyl-N-alkylhydrazrrr 'he formation of chloroalkanes.{
onro Ph S COOMe \./ \,/
r.d
N-Chlorosuccinimide
'\',n"'o'Y oJ
;-
7ek (EI Z
t-
I 98 :2\
'':
\! rl :;ellon' CC 969(1994)' l l * - - : i , 3 5 .9 4 ? l ( 1 9 9 4 ) ' -!15 (1993). fI l{
NCCHTOSOTCIis useful to derivatize fc: ..'n,Jtttons. x'
SC24'76'l andK' Tsujihara' I Hashryama,
l0l
m-Chloroperoxybenzoic acid. 13, 76-79:14,84-87;15, 86; 16' 8O-83; 17' 76 Oxidation of organochalcogenides.t 5-Ethylthiofuran-2(5Il)-ones are oxidized at -50'C, to the sulfoxidesor sulfonesaccordingto the stoichiometryof the peracidused.Telluridesare converteddirectly to alkenes2at room temperature.Triethylaminehas a remarkableeffect on the oxidation. a-Chloro enones.3 A convenient method for the introduction of a chlorine atom to the a-position of enonesis by treatmentwith HCI-MCPBA in DMF. F. FarinaM . . V . M a r t i n ,R . M . M a r t i n - A r a n d aa,n d A . M a r t i n e zd e G u e r e n uS' C 2 3 , 4 5 9 (1993). :Y. Nishibayashi, N. Komatsu,K. Ohe,andS. Uemura,JCS(Pl)ll33 (1993). 'Y. M . K i m , K . H . C h u n gJ, . N . K i m , a n dE . K . R u y ,S 2 8 3( 1 9 9 3 ) .
Chloro(pyridine)cobaloxime(III). Free radical cyclizations.t Cobaloxime in combination with a sacrificial Zn toil anode has been used to effect the reductivegenerationof carbon-centeredradi;als from bromoacetalsin electrochemicalprocesses.When an unsaturatedside chain is presentin such acetals,cyclization may occur. and S. Torii, BCSJ67,595(1994). T. Inokuchi,H. Kawafuchi,K. Aoki, A. Yoshida,
. 'l heatingan acid chloride with methy-
E f.: . -,.hol Protectlon. !,
59 6{99 (1994)'
rycloil.2.2loctene bis(tetrafluoroborate)' acetates' !c-: .: iluorinating agent for enol bearing -:iJl1 sulfides arenes, activated 5qas well as the reLc -,:f,.rnrl compounds,2 rePorted' tare also been ti:To transform ! :
V-Chlorosuccinimide. 13. 79-80; 15, 86-88 Dehydrogenation of sulfenamides.' The expedient transformation to sulfenrmines is applicabteto the synthesisofan electrophilicglycine synthon appropriate tor the elaborationof other amino acids. Chlorodehydrogenation of a-phenylthio amides'2 (Z)-3-Chloro-2-phenylthiorcrylamidesare formed through a reactionsequenceinvolving S-chlorination,dehy. i r o c h l o r i n a t i o na,n d c h l o r i n a t i o n .
o
tntlA*"*
NCS ccl4 , a
cHe
o tnt;A*r" tl ct" 57-80%
C C 3 4 3( 1 9 9 4 ) ' t-a r'. -: (1993)' .,^ andJ R. McCarthy'IL 34' 3057 ( 1 9 9 4 ) ' Fe r-:... St E3l
to thiols under lrJr:rethrl group' introduced by treatmentwith hydrazine [cr-:. rr removed c 3.a:Jte. )9..
a-Sulfonyl esters undergo a,a-dichlorination, but Degradative chlorination. 1 rhe presenceof NaOMe (in methanol) loss of the ester group seemsinevitable.r under photochemicalconditionsresultsin f hlorinationof N-tosyl-N-alkylhydrazines 'rt formation of chloroalkanes.a
o o
o o Ph
S
NCS
COOMe NaOMe / MeOH rt,1h
P h s c t
\,/ Y
cl 86"/"
102 Chromium(Il)acetate
seleChlorination renders arsanyl
Activation of Se-arsanYl selenoesters.s form Seto react with silYl enol ethers to noesterselectroPhilic,enablingthem (p-oxoalkYl ) selenoesters' R1
o
rC. Hackmann andH.-J.Sch?iferf :B. B a r l a a mJ,. B o i v i n ,a n d S . Z . Z
o B l
R2
+
RAs"a"en,
extendedby a functionalizedis reaction and dehydration, follos
OTMS
"4."\"
cH2c12 200, t h
U
s0-67%
Cyclicethersfromlactols.6Aldolcondensationoflactolswithenolacetatests and SnCl2' promoted by a combination of NCS 'R.C. LoveyandA. B' Cooper'sL 167(1994)' (1995)' ?A.R. Maguire,M.E. lraurpth-y, t". i"tt"*r.r, andG. Ferguson,TL36'467 (1994)' 164l 47' 'n. i. i"""gr"t andJ' L' steeues' AJC IL 35' 79ll (1994)' oL. R. collazo,n. S. cuziec,iv-i. Hu, unaR' Pankayatselvan' (1993)' 163l CC Kato' S' and Murai' T' 5T. Kanda,K. Mizoguchi';' i"ik"' (1994)' uY. M".uyu*u, Y. Kobayashi'and Y' Kurusu'CC ll23
Chromium-carbene 17.80-84
complcrc
1,4- Dicarbonyl compoundr. as acylanionstoward Michael e coppercomplex.2
Cyclization and cycloadditi ketenesunder photochemicalco cyclizationleadsto aminonaphr with imines to form B-lactams.
aldehydeleadsto B-lactones.5 Th
.)
lrteO-\ ' C r\f
80-81 Chlorosulfonyl isocyanate' 13' Nitriles.|Apreparationofnitrilesfromcarboxylicacidsinvolvesreactionwith CISOTN:C:OandthenwithEt:N'Asimilarprocedureisalsousefulfortheintroheterocycles' duction of cyano groups into certain 2 - I m i n o p y r r o l i d i n e s . 2 N - S u b s t i t u t e d p y r r o l i d i n o n e s u n d e r g o c ytoc lafford o a d d ithe tion with water and the products decomposeon heating
with CISOzN:C:O, amidines.
+"
CISO2N=C=Oa_: (r..Arufr
(lnz)"cootr,te
H2o, Eoo
O
(m)r
a-Amino acids.o Alkytarr< iollowed by photocarbonylation rroup is chiral, its stereocentcr of two new C-C bonds. Michael acceptors, Some r rcceptor characteristics.Intercs hi g h d i a s t e r e o s e l e c t i v i t i e s .
(dXr)nCOOMe (OC)aCr--9 69 - 93%
n=1,2,3
pn$NAruue'
T 50' 6549 (1994)' I H. Vorbriiggen and K' Krolikiewicz' ll95 (1993)' 2 3 ' ' p . r , a .S " . i ; n a n d R . D ' A l l a n ' S C
';:i;;;;:""ii'i,ii,o*oatkenes''-rhe:rgl-e1o-Tt:11T:::.::ff :i:.i: toxic arequite rhe'tincompounds "i u, Bu,snH.
Chromium(II) acetate'
."r,:il:ffifii.;#ffi;il
from the products' and much more difficult to separate
;::i,#:,;;;;iiiii":" ,,,:ff;:':;:;;";:;:;;;;or
il;;i;ii;ination
with groups orthetworunctionar
^r^. --+^-o aon hc can be that ^a rketone 2'2'-dipvridvrhas the imprication
B . C . S o d e r b e r gD , .C. York, T.R 1994). H . S a k u r a i a n d K . N a k a s a k a ,C L l 0 C A. Merlic, D. Xu, and B. C. Gl.dr P -J. Colsonand L. S. Hegedus./OC P -J. Colson and L. S. Hegedus..tOC
Chromium-carbene comPlexes 103
arsanyl selet31r.'n renders to form Se' ,i'. .""t ethers
n R ll
l I
q2
"As"-Y"
o
50'67"/o
enol acetatesis 1..: .rrtols with
;u.
- IL 35' 467 (1995)'
(1994)' z ' ' - T L 3 5 '7 9 l t ( 1 9 9 3 )' itrll rc
isopropene unit. The substrates are prepared by a Nef and acetylation'
extended by a functionalized
reaction and dehydration, followed by reaction with formaldehyde 'C. H a c k m a n n a n d H . - J . S c h i i f e r ,T 4 9 , 4 5 5 9 ( 1 9 9 3 ) . r B. Barlaam. J. Boivin, and S. Z. Zard, TL 34, 1023 (1993)'
Chromium-carbene complexes.13' 82-83; 14,91-93:15, 93-95; 16' 88-92; 17, 80-84 1,4-Dicarbonyl compounds. 1-oxidoalkylidenechromium(O) complexes react a as acylanionstoward Michael acceptors.The reaction is induced by lightr or by copper complex.2 cyclization and cycloaddition. Aminocarbene complexes behave like aminoketenesunder photochemicalconditions.with the participation of a benzenering, cyclizationleadsto aminonaphthols,rwhereasthe amino ketenescan also be trapped with imines to form B-lactams.aIntramolecularcaptureof analogousketenesby an The intermolecularprocessgives much inferior results. aldehydeleadsto B-lactones.s
O
l!!:
""o4.\
f
u
,*rio THF,25o,20h
(co)s
reactionwith rri .. r.lds involves useful for the intro*.-1. '. also cYcloaddition lsg.-'rer undergo the water to afford i '.",,n, with
-o*,. 3H2)nCOOMe a3 - 93"/'
9.r
72"/" a-Amino acids.6 Alkylation of the carbanionsderived from aminocarbenes rollowed by photocarbonylationgeneratesprotected amino acids.when the amino can exert great steric influenceson the formation group is chiral, its stereocenter(s) .rf two new C-C bonds. Michael acceptors. Some unsaturated carbene complexes of cr(co)q exhibit very rcceptor characteristics.Interestingly,they undergo Michael additions' with r igh diastereoselectivities. ( O C ) a C r- 6 il tl
,n'\A*A*"" \_J
oLi
*
a\ l
THF NANMe
l
-200 l h
81"/" ( s y n : a n t i> 9 9 . 5 : 0 . 5 )
radical"t*.itt:l-:: lr ll 'Promoted are quitetoxlc i' ia.',in compounds
Jt: :"JJ: lr: l;,:::,lT:::l.i
13' 4501 B C . S o d e r b e r g ,D . C . Y o r k , T . R . H o y l e , G . M . R e h b e r g ,a n d J ' A ' S u r i a n o ' O M I9 9 4 ) . H . S a k u r a i a n d K . N a k a s a k a ,C L 2 0 1 ' l ( 1 9 9 4 ) ' C A . M e r l i c , D . X u , a n d B . G . G l a d s t o n e , J O C5 8 ' 5 3 8 ( 1 9 9 3 ) ' P - J . C o l s o n a n d L . S . H e g e d u s ,J O C 5 8 , 5 9 1 8 ( 1 9 9 3 ) P -J. Colson and L. S. Hegedus,JOC 59' 49'12(1994\'
104 Chromlum(II)chlorlde 6C. Schmeckand L. S. Hegedus, JACS116'9927(1994). 7Y. Shi and W. D. Wulff, JOC 59, 5122(1994).
Chromium(II) chloride-nicle* Cyclization of o-iodoarylal, arylchromium speciesis catalyze
Chromium(Il) chloride. 13, 84; 14' 94 -97 : 15, 95-96: 16, 93-94: 17' 84-85 cyclopropanols.t crclu effects a unique transformation of a,B-unsaturated aldehydes.In the product the hydroxyl group is trans to the original a-substituent'
ll f'-yAcxo (-J
c'cr, DMF
I\
r^1'\""oH \-/ 63o/o
Homoallylic alcoholsund amines, carbonyl compoundsand allylic bromides by addingPhMgBrto a CrClz susof PhzCr,which is prePared reactin the presence synis observed.'The pensionin THF containingTMEDA. For enones1,2-addition CrCl2 only requires bromides allylic thesisof homoallylicaminesrfrom iminesand andBFr .OEt:. Sityl- and stannyhlkenes. The addition of a-silyl-a and a-stannylalkylchromiumsreagentsto carbonyl compoundsleads to the alkenesdirectly. The reagentsare form€din situ from the halidesand CrCl2.
PhA/cHo
(Meosl)2CB12
cot2, oMF
D. M. Hodgson and C. Wells, fL J!1
"nAu\-sit',t", I M€3Si
Chromium hexacarbonyl. (Z)-3-Alkenoic esters.t Scl to give the deconjugated(Z)-al}ce catalyst. However, high temperar! obtain 99Vo(Z)-isomersl the prod creaticlipase. 2-Vinyl-3- alkenols.2 4r-Fer irom pentadienylacetateswirh tO .rnd methyl benzoate. The compl mild baseto give the dienols.
(^on" \-Z.vr1,oev
M.G
250, 24h 84o/o
of clcctron-dcficient alkenes. Aryl radicals are generated from aryl halides by reaction with the CrClz-ethylenediamine complex,6and the mode of addition is similar to that of arylcopper reagents. (E)-Alkcnes.l Condensation of a-acetoxy bromides with aldehydes by CrClr the Zn leads to (E)-alkenes. In the synthetic sensethis method is complementary to Wittig reaction. p-Arylation
'D. Montgomery, CC 363(1993)' andP. Stevenson' K. Reynolds' 'P. wipf andS. Lim, CC 1654( 1993). tM. Ciammaruco, M. Taddei,andP. Ulivi, TL34,3635(1993\. oD. M. Hodgsonand P.J. Comina,TL 35' 9469(1994). t D. M. Hodgson,L.T. Boulton,and G' N. Maw, TL 35' 2231(1994)' 6H.l. Tashtoush CB 125,1759(1993). andR. Sustmann, ?M. KnechtandW. Boland,SL 837(1993).
t
{ . A . V a s i l ' e va n d E . P . S e r e b r y a k o \ { . S o d e o k a ,H . Y a m a d a ,T . S h i m r z r
Ch romium(VI) oxide-3,5-diar Cyclopropylketones.' Merhy 'r idized.
Chromiurn(VI)
oxide_3,5-dimethylpyrazole
105
Chromium(II) chloride-nickel(Il)chloride. 14,97_98: lS, 96_9j : 17,86 crclization of o-iodoarylalkynesand -alkenes.r Ring formation involving arylchromium species is catalyzed by Ni(II). ) - l 5 e 5 - 9 6 ;1 6 , 9 3 - 9 4 ; 1 7 , 8 4 - 8 5 of a,B-unsaturated lx:.re transformation a-substituent. original to the Ep .. :rdnr
--.../4..,.oH
Crclz -NiCt2
I
/-
'D.
DMF 250,24h
M. Hodgson andC. Wells,?Z 35, 160l(t994).
\-,' 63%
:rl compoundsand allylic bromides i:14:-:.: by adding PhMgBr to a CrCl2 susl r r - . . : . 1 - a d d i t i o ni s o b s e r v e d .T2h e s y n 1 r - : : . l y l r c b r o m i d e sr e q u i r e so n l y C r C l 2 oi a-silyl-a and a-stannylalkyl!.:.: roc- eeds to the alkenes directly. The !r : -: CrCll.
Chromium hexacarbonyl. (z)-3-Alkenoic esters.t selective 1,4-hydrogenarion of 2,4-alkadienoic esrers to give the deconjugated(Z)-alkenoic estersis readily accomplished using cr(co)6 as catalyst. However, high temperaturesand pressuresare required. For purification [to obtain 99vo (Z)-isomersl the products are hydrolyzed in the presence of porcrne pancreaticlipase. 2-vinyl-3-alkenols.2 ?lpentadienyrchromium comprexes can be generated from pentadienylacerateswith (oC)rcr(phcooMe), which is obtained from Cr(co)o and methyl benzoate.The comprexescondensewith aldehydes in the presenceof a mild baseto give the dienols.
MeOOCfi
*A,A'-siMes
I
;
t$qSi
I
u%
lltncs. Aryl radicals are generatedfrom lhr.:redramine complex,6and the mode of Ee!r il r
ea. \\ bromideswith aldehydesby CrCl3rn.c rhrs method is complementaryto the '. (- 16l (1993).
L -u :6,15( 1993). W
\vz\v1,/OPiv
\,r'-c(co)3 /xu,C{o
I
r.'
flaonc
vgJ,
D : : - 1 52. 2 3 1( 1 9 9 4 ) . ?!e.,l9Jl.
OPiv
xrco" 63y"
THF 12OO
A. A. Vasil'ev and E. p. Serebryakov, MC 4 (lgg4\. V . S o d e o k a ,H . Y a m a d a ,T . S h i m i z u , S . W a t a n u k e ,a n d M . Shibasaki, JOC 59,7t2 (t994).
Chromium(VI) oxide-3,5-dimethylpyrazote. Cyclopropylketones.t Methylenegroups attached to a cyclopropane ring are .ridized.
-< I
N-CroIH
.,\-r,i
cH2ct2, -20o
r\
\.v tl o
35"
106 Cob(I)alamin rM.G.
J . C o s s ya n d A . B o u z i d e ,C C l 2 1 8 ( l 9 9 l r :S.-1. M u r a h a s h i , T . N a o t a .a n d N . H i r a i . , l (
Chromyl diacetate. Epoxidations.r Steroidal epoxides are readily prepared at low temperatures with CrOz(OAc)2.
Cobalt(Il) acetylacetonate.17,87 [4r+ 2zt+ 2tt]Cycloadditions.' Su lectiveby addinga chiralphosphine lrg
B a n w e l l ,N . H a d d a d ,J . A . H u g l i n , M . F . M a c K a y ,M . E . R e u m , J . H . R y a n , a n d K . A Turner, CC 954 (1993).
'L. R. andE. G. Gros,"ICR(S) 137(1993). calagousky
Chromyl chloride. Obtained in'llvo yield from CrOr and TiCle in CH2CI2with ultrasoundirradiationrfor 2.5 h. It can be used in the Etard oxidation or convertedinto CrOz(OBu')z and the cyclic chromate of 2,5-dimethylpentane-2,5-diol for other oxidations.
.Y
I F. A. LuzzioandW.J. Moore,JOC5t, 512(1993).
Cob(I)alamin. Aziridine cleavage.t Cob(I)alamin is prepared in situ by Zn reduction of hydroxocob(Ill)alamin . HCI in the presence of NHrCl. Fused nreso-aziridines are cleavedto chiral allylic amines.
/-Yl
Cob(l)alamin
C)*"ooru'
\
MoOH 0o
NHCOOBUI
'2.-d. ZhangandR. Scheffold, HCA76,2602(1993). Cobalt(Il) acetate.16,95 from enaminescan add to a proximal double Cyclization.' Radicalsgenerated bond.The reactionshowsusefulstereoselectivity.
f-(
.N->
t > - { \ \: \,/ \
O . Co(OAc)a
Hso'
V. Lautens, W. Tam,andC. Sood,JOCSl E. Hata,T. Takai,andT. Mukaiyama. CL I K. Yorozu,T. Takai,T. Yamada,and T. Vr
\?
56% (87'/o ael
a) rl
y- Lactones from tetrahydrolumu ;omplished in the presenceof an a-dilr Epoxidation.t Oxygen is used as r cooxidantin the presenceof 4A-molccu estersas a result of rearrangement.
# .,+ -''J-"t'\
AA -'' ts* o
60% (95:5) Oxidation of alcohols.2 Aerobic oxidation of alcohols requires Co(OAc)z as well as RuClr and an aldehyde for cooxidation. Yields ofacids or ketones are excellent (9 examples, 78-987o yield).
Cobalt(II) bromide-silica. Dithioacetization.t The reacrion *ithin a few minutes. In situ generation of Coz(CO)>: I * nthesisare relatedto its complexatton br reductionof CoBrz with Zn dust uo rcetylene.Pauson-Khandreactionscan
H. K. Patney,TL 35, 5717(1994). 'V. Periasamy, M. R. Reddy,and A. Dcreg
Cobalt(Il) chloride. 14, 99; 15, 97-9t Allylation of 1,3-dicarbonyl cosV rrotesthe allylation of 1,3-dicarbonllcc Ilnsymmetrical suffides.2 RSH -
p-Acetamido ketones.t A rhree-c rn aldehyde, and acetonitrile appears r hldration of nitrilium species,which rs r
Cobalt(Il)chloride 107 i \ l : : X . r r . M . E . R e u m ' J ' H . R y a n ,a n d K ' A '
tre::iJll\
I
p r e p a r e dat low temperatures
Cobalt(II) acetylacetonate.17,87 canbe rendered enantiose[4tt+2tt+2tt]Cycloadditions.t Suchcycloadditions ligand. lectiveby addinga chiralphosphine
r - '
. rn CH:Cl: with uttrasoundirradiad r :rrton or convertedinto CrOz(OBu')z r.: : - : - 1.5-diol for other oxidations' LTt
Br;
'J. C o s s ya n d A . B o u z i d e ,C C l 2 l 8 ( 1 9 9 3 ) . rS.-1. M u r a h a s h i ,T . N a o t a , a n d N . H i r a i , J O C 5 8 , 7 3 1 8( 1 9 9 3 ) .
h.*1
Co(acac)2 F.PROPHOS Et2AlCl/PhH 66o/o (72'h ael
i
i r : - t l i r e d i n s i t u b Y Zn reductionof hYare : \ H . C l . F u s e d rneso-aziridines r.
-VNHCOOBUI I
-,.
y-Lactones from tetrahydrofurans.2 Oxidation with molecular oxygen is accomplishedin the presenceof an a-diketone. Epoxidation.t Oxygen is used as oxidant, and propanal diethyl acetal acts as a cooxidantin the presenceof 4A-molecular sieves.Silyl keteneacetalsgive a-siloxy estersas a resultof rearrangement. W. Tam,andC. Sood,JOC 58,4513(1993). M. Lautens, '8. Hata,T. Takai,andT. Mukaiyama, CL l5l3 (1993). 'K. CL 1579(1993). Yorozu,T. Takai,T. Yamada,andT. Mukaiyama,
e
t :
5'61" (87olo ee)
, ,-.
Drr.3:imrnes can add to a proximal double L-:.r
Cobalt(II) bromide-silica. Dithioacetization.t The reaction is usually complete at room temperature within a few minutes. Most uses of dicobalt octacarbonyl in organic In situ generation oI CodCo)*' synthesisare relatedto its complexationto triple bonds.The complex may be formed by reductionof CoBrz with Zn dust under a CO atmospherein the presenceof an acetylene.Pauson-Khandreactionscan be carried out subsequently.
llr
H. K. Patney,TL 35, 5'717(1994). : M . P e r i a s a mM y ,. R . R e d d ya, n dA . D e v a s a g a y a r a j , 7 5 0 , 6(915959 4 ) . \ --
+ r'N
^
\.,-r\
\
6O96(95:5)
rr j;rlron of alcohols requires Co(OAc)z as ilar. r'. \'ields of acids or ketones are excel-
Cobalt(Il) chloride. 14, 99: 15, 97-98 Allylation of l,3-dicarbonyl compounds.t A catalytic amount of CoClz promotesthe allylation of 1,3-dicarbonylcompoundswith allyl acetatesin high yields. Unsymmetrical sulfides.2 RSH + F(X - RSR'. p-Acetamido ketones.t A three-component condensation involving a ketone, .rn aldehyde, and acetonitrile appears to involve aldol and Michael reactions and hydrationof nitrilium species,which is quite unusual.
lOt
Cobalt(II) chloride-oxySen
o
o
O
CoC12
R'\
H,
I Rl
B2
NHAC
i l l
+
R-^'Y'\R2 I Rr
CH3CN,AcCl
26-787o
'G.c. Maikap, M . M . R e d d yM , . M u k h o p a d h y aBy.,B h a t i aa, n dJ . I q b a r r, 5 0 , 9 1 4 5( 1 9 9 4 ) . rS. Chowdhury, P.M. Samuel,L Das,andS. i.oy, CC tgg3(lgg4). rB. Bhatia, M. M. Reddy,andJ. Iqbal,CC 713(igg4).
Cobalt(II) chloride-oxygen. oxidation of aldehydes. In the presenceof butanal, aromatic aldehydes undergooxidativecoupling at room temperatureto give benzils (g examples,62-7Svo).1 The sameoxidationcan be diverted to the carboxylic acid on additionof Ac2o to the reactionmedium. A similar processfor the oxidationof secondaryalcoholsis catalyzedby a cobaltdisalencomplex.2 Oxidative condensation of aldehydes and alkenes.l
o ll \rAH
CoCl2-02 /MeCN +
/tcoor"
O
T. P u n n i y a m u r t h y ,S . J . S . K a l r a , a n d J . l g b o l - s .J .
S . K a l r a , T . P u n n i y a m u r t h y ,a n d J . l q b t t . B h a t i a , T . P u n n i y a m u r t h y ,B . B h a t i a , a n d J ' T .P u n n i y a m u r t h y , B. Bhatia,and J. Iqbal. I! 'P. Li and H. Alper, CJC 71, 84 (1993). 5.
C o p p e r .1 5 , 9 9 ;1 6 , 9 5 o-Halophenylcopperreagents.t o-l* copperreagents,which can be usedat roo groups. N-Phenylanthranilic acids.2 Coppc halobenzoic acidsby aniline may be pcrfo Ullmann coupling.3 This classicrc: sis. Unsymmetricalbiphenylsare obtairs ;alicyl alcoholunit), thusrenderingthc ret a-Amino estersand ketones.a c-Dn aminesin refluxingtolueneunderthc inf} ketonesor estersin onestep.A Stevensree \uch products.
OAc
o
AczO, rl
il F1/"
..
+ P?rCH2rllr2 tl N2
Epoxidation and benzylic oxidation.a
tn.4rn
CoCl2-02 /MeCN
tnhrn 91./"
f'Yo*l"n VOH
Allylation of active methllcnc co.Fr uredto promoteC-allylation.
G . W . E b e r t , D . R . P f e n n i g , S . D . S u c h a n .r n d l R. F. Pellon, R. Carrasco, and L. Rodcs. SC l! \l Takahashi,T. Oguku, K. Okamura, T. Dt
rt
tsPrCHO
tcs(Pr) t473(t993).
'F
G. West,K.W. Glaeske, andB. N. Naidu.S 9 J B. Baruahand A. G. Samuelson. /yJClt. 96t
Clea vage of I, 3 - diox olan es.s
R' coet2-znct2to2
^ ) o -\ I n^d
)-R'
D M E ,8 5 - 9 5 .
HCOO- ,/
o il
R^o
\
\
/-R'
Copper(II) acetate. Dehydrogenation of carboxamido c ut 1 the dehydrogenation,which can also bc r
CoPPer(II).c€tete109
NHAC
O
i
l
r'T*'
> :'. :r:
l
B1
'T. Punniyamurthy'S.J. S. Kalra, and J' Iqbal,TL 35' 2959(1994)' tS. J. S. Kalra, T. Punniyamurthy,and J' lqbal, TL 35' 484'l(1994)' 'S. B. Bhatia,andJ' Iqbal'f49' 6l0l (1993)' Bhatia,T. Punniyamurthy, 'T. Punniyamurthy, B' Bhatia,andJ. Iqbal,TL34,4657'4003(1993)' 'P. Li andH. Alper,CJCTI' 84 (1993).
26'78'/o
(1994)' a : . r t r r . a n d J . l q b a l ,I 5 0 , 9 1 4 5
t! :
:' ..-
'ut .'nno''
uns<-. , 'r hutanal, aromatic aldehydes 6 2 7 5 7 o)" ( 8 e x a m p l e s , b e n z i l s : r r e u--. to the 'AczO of addition on acid \.' lrc c: ..,:. alcoholsis catalyzedby a cobalt-
r!
Copper.15,99r 16.95 o-Halophenylcoppetreagen's.|o-Haloiodobenzenesformremarkab|ystable copperreagents,whichcanbeusedatroomtemperaturetointroducealkyloracyl groups. of halogen in oN-phenylanthranilic acids.2 Copper-catalyzed displacement water' halobenzoicacids by aniline may be performed in refluxing for biphenyl synthevaluable still is reaction classic This ,orpiiog., Ullmann the aryl iodides (e.g.' by a sis. unsymmetrical biphenyls are obtained by tethering salicyl alcohol unit), thus rendering the reaction intramolecular' react with tertiary a-Amino estersand ketones.a a-Diazocarbonyl compounds lminesinrefluxingtolueneundertheinf|uenceofCupowdertoprovidetheamino intervenes in the formation of ketonesor estersin one step. A stevens rearrangement \uch Products.
t an,i alkenes.l O OAc i l l
'''e3N
\r'\A"oor" 75%
o
il .. "o\t t l
cu + PhCH2NMe2
N2
PhM6
o
o ll nAlpn | NMez R = Ph R = OEt
Allylation o! active mewene ;'ed to promote C-allYlation.
tnhrn
c>
HCOOJ
!d
o I
-'
^,,\n h
Fl'
\ rR' v
compounds.5 A mixture of cu and cucloa is
TL34'22'19(1993)' c W. Ebert,D. R. Pfennig,S.D. Suchan'andT' A' Donovan' (1993)' 144'l 23' SC R F. Pellon,R. Carrasco,and L. Rodes, and T' Iwasaki' T. Oguku,K. Okamura,T' Da-te'H' Ohmizu' K' Kondo' \1. Takahashi, tcs(PI) t4'13(t993). 'F G. West,K.W. Glaeske'andB' N. Naidu,S 9"17(1993)' N'/Clt' 961(1994)' I B. BaruahandA.G. Samuelson,
91%
t-
7oo/o 63"/o
Copper(II) acetate. Dehydrogenationo!carboxamidocnamincs.|Conjugatediminesareproduced manganeseacetate' 1 the dehydrogenation,which can also be effected with
ll0
Copper(I) bora(trisdimethylpyrazole)
complex
,,?-
ra
s
P1:<
S1:<
: (t)
68%
N-Arylpiperidines.2
substitution of arylbisrnuths by piperidines is catalyzed by
'
P. J. Perez, M. Brookhart, and J. L. Templctoa
Cu(OAc)2. ' J . C o s s ya n dA . B o u z i d e , T L 3 4 , 5 5 8( 13 9 9 3 ) . :A. Banfi, M. Bartoletti,E. Bellora,M. Bignotti,andM. Turconi' S 7'15(1994).
Copper(Il) acetylacetonate' HeterocycliZations. An n-donor atom at a proper distance to an a-diazomethyl ketoneparticipatesin metal-catalyzeddecompositionof the functional group, giving rise to a heterocyclic ketone. For medium azacycleformationr'2the soluble Cu(acac)z complex is much superiorto RhlOAc)a. Oxacyclesare similarly accessibleusing the
Copper(I) bromide. 14, 99-100; 15.!)6 Photoaddition of organohalidcsto dl photoinduced r lyst for the regioselective result t the overall zinc dust reductionwith many case in However, an organocuprate. Removalof thiophenoxide.2The CuI nativeto CuOTf for this PurPose.
sPh
hexaf luoroacetylacetonate.r'a
--€spn 'spn
q.'& .
Prr' I
/f \=Nz -f.t,,\
Cu(acac)2
/
/P
f1 try'l
PhH, A
lt-
/ / ll
M. Mitani and H. Hirayama, JCR(S) 249 tl$) 'T. Cohen,C. Shook,and M. Thiruvazhi. TL J
76"k
'F. G. West,B. N. Naidu,andR.W.Tester, "/OC59' 6892(1994). rJ.S. Clark andP.B. Hodgson, CC 2701(1994). rJ.S. Clark,S.A. Krowiak,andL. J. Street,fL 34, 4385(1993). 'J. S. Clark andG. A. whitlock, 7L 35, 6381(1994).
Copper(Il) bromide. 14, 100;15' 100 Allylic thiocyanatesand selenocyau
SiMe3
g MOrt
Copper(I) bora(trisdimethylpyrazole) complex. carbenoid and nitrenoid reactions.t Decomposition of diazoacetic esters by the novel Cu complex (l) in the presenceof alkenesand alkynes gives cyclopropanes and cyclopropenes,respectively.Similarly, a nitrenoid is generatedfrom TsN:IPh, forming aziridines in similar reactions.
E
A. S. Guram,SL 259 (1993).
Copper(II) bromide lll
-1 HN-{
(1)
dY h . ^ . p i p e r i d i n e iss c a t a l Y z e b
r r . S 7 7 5( 1 9 9 4 )
tt( ta L
.trnc€ to an a-diazomethYl 'rc lunctional grouP' giving I .,:i,rnr the solubleCu(acac)2 ':rlarlv accessibleusing the
'P. J. Perez,M. Brookhart,andJ. L. Templeton, S f2' 261(1993)'
Copper(I) bromide. 14,99-100; 16' 96 photoaddition o! organohalidcs to alkenes.t CuBr ' PBur is an effective cataalkenes' on lyst for the regioselectivephotoinduced addition to electron-deficient using addition conjugate the as same is the result reduction with zinc dust the overall convenient' more is method this cases an organocuprate.However' in many . can be used as an alteriemoval of thiophenoxiile.2 The CuBr SMe2 complex native to CuOTf for this PurPose'
CuBr.SMo2
sPh
{set
sPh
PhH -THF o
c Ph SPh g3o/o
249(1993)' JCR(S) M. MitaniandH. Hirayama, TL 35'6041(1994)' 'i. Coft"n, andM' Thiruvazhi' C' Shook, 100 Copper(ll) bromide' 14, 100;15' from silones'' Allylic thiocyonclesond selenocyonctes S.:rri
,.r1r.
xcN
SiMe3
a9l)
C\1 \-/<
KXCN,2 CuBt2 \I\oOHot\dcqN 2go
np\tr. estersby 1,.- n,positionof diazoacetic cyclopropanes gives 3 . i:'... and alkynes from TsN:lPh' . . - :r.n,.id is generated
A. S. Guram,SL 259 (1993)
Z-*{
\X
X=S X =Se
?1Yo 72olo
l12 Copper(l)chloride Copper(II) carbonate-copper(II) hydroxide. ArBr - ArOMe.' The copper catalyst system is effective for displacement of nonactivatedbromide using NaOMe in methanol under CO2 at 125"C. 'D. Nobel,cc 4t9 (1993).
Copper(I) chloride. 13, 85; 15, l0l Propargylamines, The S7y2displacement of propargyl phosphatesor acetates with amines is general for the preparation.(60-95Vo yield).r Another pathway involves oxidative coupling of N,N-dimethylanilineswith l-alkynes under oxygen.2 Other productsof this reactionare the N-methylanilinesand N-methylformanilides.
ArNMe2*
CuCl - 02
E--R
**lo"
or*fi:t
-
or*filo 20-36%
+ ATNHMe 5-18%
Amidines from amines and nitriles.3 CuCl activates ordinary nitriles towards attack by amines exceptthose with low nucleophilicity(e.g., ArNH:). Conjugate addition.a Under photoirradiation and CuCl catalysis enones are attackedby silylatednucleophiles(siloxyalkenesor alkylsilanes). 1,2-Dialkylidenecycloalkanes.5 CuCl brings about rapid intramolecular coupling of vinylic stannanesand iodidesin DMF.
r-<
(
n
ErOOC
CuCl/ oMF
i SnMe3 620 , 3 min
I
'Y. I m a d a ,M . Y u a s a ,I . N a k a m u r a ,a n d S . - Z V tS. M u r a t a , K . T e r a m o t o ,M . M i u r a , a n d M . S o 'C. R o u s s e l e tP , . C a p d e v i e l l e ,a n d M . M a u m r . I 'M. M i t a n i a n d Y . O s a k a b e ,C C 1 7 5 9( 9 9 a t . 'E. Piersand T. Wong,JOC 58,3609 (1993r ^G. H a n , M . C . M c l n t o s h ,a n d S . M . W e i n r e b .L
Copper(I) chloride-bipyridine. Heterocyclization, Captodative radrcr a-chloroacetic estersby treatment with CuC tramolecularlyby an alkene (e.g., a 3-butc
Formation of five-membered ring heterocl -l-chloromethyltetrahydrofuran- 2 -carboxr le mixture of cis and trans isomers (ratio 6.1: -1 lidine and piperidinederivatives.2
ar-Alkenyl dichloroacetatesand trichlorr chlorolactones.r
J .H . U d d i n gK , . J .M . T u j i p ,M . N . A . v a nZ e r 59, r9930994). 'J. H. Udding,K. J. M. Tujip,H. Hiemsira. ! and F.O. H. Pirrung,H. Hiemstra,W. N. Specleo t24t5 (1994\.
Copper(Il) chloride. 14, 100 Hydrolysis of oximes and amidcs. I heating an oxime or O-benzyloxime *rrh rmides2is carried out in the presenceof eq A related reaction is the transformatrr zolesrin an alcoholic solvent.
80%
Functionalization of amines via the o-aminobenzamides.n Diazotization of the amide and CuCl-promoteddecompositionof the diazonium salt in the presenceof
en-^,4.,-r.rxz 'i tl \-"Ar"
CrJCt?
l€
3h. s
MeOH result in a-methoxvlation of the amide.
y{}'ou"
rffo \?
NaNO2,HCI
fl trrteO^pry
CuCl (5'l.) MeOH,rt, 1.5h
,n\ 61"/.
oMe
Aryl 1,1-dimethylpropargylethcrs.' A :ronof phenolsusesCuCl2. 2H2Oand DBt Friedel-Crafts benzylation The cau Chlorination. CuCl2 is a mild chlon The AlzOr supportedreagenthas also bcr
CoPPer(lI)chloride 113
r. j::!'Jtive for disPlacementof crt() rtl25'C.
('i::iil phosphatesor acetates q . c l J r . A n o t h e r P a t h w a yi n u '' l-alkynesunderoxygen'2 rr--..J nd N-methYlformanilides'
9Ho ArNMe 20 36"/"
*
ATNHMe
5-18%
rY. I m a d a , M . Y u a s a ,l . N a k a m u r a , a n d S . - 2 . M u r a h a s h i ' J O C 5 9 ' 2 2 8 2 ( 1 9 9 4 ) ' t S. Murata, K. Teramoto, M. Miura, and M. Nomura ' JCR(S) 434 (1993\. rG. R o u s s e l e tP , . C a p d e v i e l l e ,a n d M . M a u m y ' T L 3 4 ' 6 3 9 5 ( 1 9 9 3 ) . 'M. M i t a n i a n d Y . O s a k a b e ,C C 1 7 5 9( 1 9 9 4 ) . tE. Piersand T. Wong, JOC 58,3609 (1993). oc. H a n , M . C . M c l n t o s h , a n d S . M . W e i n r e b ,7 L 3 5 , 5 8 1 3 ( 1 9 9 4 ) .
Copper(I) chloride-bipyridine. Heterocyclization. Captodative radicals are generatedfrom a-heterosubstituted d-chloroacetic estersby treatment with CuCl . bipy. Such a radical can be trapped intramolecularlyby an alkene (e.g., a 3-butenylgroup) attachedto the c-heteroatom' Formation of five-membered ring heterocycles is a favorable process. Thus methyl has been obtained in 75Voyield as a 3-chloromethyltetrahydrofuran-2-carboxylate mixture of cis and trans isomers(ratio 64:36).r The glycine analoSgivesboth pyrrolidine and piperidine derivatives.2 a.r-Alkenyldichloroacetatesand trichloroacetatesalso undergo cyclization to give chlorolactones.r '
lt:i j:.\ ordinary nitriles towards c r :' . s . . A r N H z ) . ,-.: (-uCl catalysis enones are : r I ..rlanes). 3- .1 rapid intramolecularcou-
JOC J.H. Udding,K. J. M. Tujip,M. N. A. van Zanden'H. Hiemstra,and W N Speckamp' 59. 1993fl994). t J . H . U d d i n gK f ,5 0 ' 1 9 0 7( 1 9 9 4 ) ' , . J . M . T u j i p ,H . H i e m s t r aa,n dW . N . S p e c k a m p ,F.O.H.pirrung, r ,0 , H . H i e m s t r aw, . N . S p e c k a m pB,. K a p t e i na, n d H . E . S c h o e m a k eI 5 ( 1 9 9 4 ) . t24t5
Copper(Il) chloride. 14, 100 Hydrolysis of oximes and amides. while deoximationr is accomplished by . heating an oxime or o-benzyloxime with cuCl: 2HzO in MeCN, hydrolysis of amides2is carried out in the presenceof aqueousglyoxal. A related reaction is the transformationof 5-aminopyrimidinonesinto imida-
a
)
zoles3in an alcoholic solvent.
80'"
o
rclrcn:amides.6 Diazotization of c i . r . , , \ n i u ms a l ti n t h e P r e s e n coef
enr*\nHz t t l \-NAM"
CuCl2,MeOH
ph " ' ' N - \ - llN .
" 3h. A
" )_oue //^-N
H
59v"
,'--\
','":4ru!
onAo 61 vo
oMe
Aryl 1,1-dimethylpropargyl ethers,a An improved procedure for the etherification of phenols uses CuCl2 ' 2H2O and DBU in MeCN at 0"C' Friedet-Crafts benzylation The catalyst is CuClz supported on Al2Ot's Chlorination. CuClz is a mild chlorinating agent for sodiomalonate esters'" The AlzOr supported reagent has also been used in a-chlorination of conjugated
ll4
Copper(I)iodlde
and coumarinss in refluxing carbonyl compounds such as 1,4-naphthoquinonesT chlorobenzene. rL. SinghandR. N. Ram,SC 23,3139(1993\. ' L. SinghandR. N. Ram,JOC59,710(1994). ,1. Marsuura, andJ. Sakakibata,JCS(PI)965 T. Ueda,N. Murakami,S.-i.Nagai,A. Nagatsu, (1993). oJ.D. Godfrey,R. H. Mueller,T. L. Sedergran, IL 35, and V. J. Colandrea, N. Soundarajan, 64050994). 5M. Kodomari,G. Shimada, and K. Mogi, NKK ll37 (1994). oX.-x. Shi andL.-X. Dai,JoC 58, 4596(1993). 7P.K. SinghandR. N. Khanna,SC23, 2083(1993). 8P.C, Thapliyal,P.K. Singh,andR. N. Khanna,SC 23' 2821(1993).
An addition-dehydration reaction s. C,N-diaryl nitrone are mixed with Cul.
Ph
ph-c=cH -
F*i
H
o-
PTT
Cyclopropanationof allyl o.-diezs
o t-Buooc ( ,
Copper(I) cyanide. Cyanation of I- alkynes.'
c
,lj
;
// CuCN - Nal MessiCl DMSO - MoCN - H2O
ph:CN 72"/'
500, 60 h
s112'reaction of allylic phosphates,2 The regioselectivereaction with Grignard reagentsprovides a new accessto alkenes. o-Allytation of benzamides.s Directed lithiation of benzamidescreatesa nucleophilic site at an o-position,but the lithium speciesis unsuitablefor the allylation' -78'C) prior to the reaction with Thus transmetallationwith CuCN .LiCl (at
RX - RCFy Organichalidcsrn by catalyzedreactionswith CICF€O0 Arylation of active mcthtlcne c{
Phl +
(* coo€r
allyl bromide is a necessarYsteP. 'F.-T.Luo andR.-T.Wang,IL 34, 59ll (1993). rA. Yanagisawa, SL 689 (1993). N. Nomura,andH. Yamamoto' tD. Pini, S. Superchi, JoMC 452'C4 (1993). andP. Salvadori,
Copper(I) iodide. 16, 98 Alkylation of L-alkynes. Chain extension of l-alkynes by reaction with propargylchloridesor tosylates,ras well as with aryl and vinyl iodides,2is catalyzed by CuI. In addition to the base K2COr, sodium iodide and triphenylphosphine are added in the respectivereactions.Carboxylationprecedesalkylation with an alkyl halide when the reaction is conducted under CO2, thus resulting in alkyl 2-
L. L. Vasiljeva, and K. I M. A. Lapitskaya, K. Okuro,M. Furuune,M. Enna,M. Mru Y. Fakue.S. Oi, and Y. Inoue,CC 2O9l tl' 'K. O k u r o ,M . E n n a ,M . M i u r a ,a n dM . \ o \'1.P. Koskinenand L. Munoz,JOC9.t1 'Q.-Y. ChenandJ.-X. Duan,IL 34. 42,11( Q.-Y.ChenandJ.-X. Duan,CC 1389(199 'K. Okuro,M. Furuune,M. Enna,M. Mru
Copper(II) nitrate. Coupling of alke nylstannaacs.
alkynoates.r fOOM" eussny/ Cul - K2CO3
Ph:
+
RBr COz / MeCONMez 1000
Ph------cooR
sPh
or
I
iodlde 115 CoPPer(I) : coumarins8 in refluxing
r J J . S a k a k i b a r a ,J C S ( P I) 9 6 5
An addition-dehydration reaction sequenceoccurs4 when an arylacetylene and a C,N-diaryl nitrone are mixed with Cul-dppe.
Ph-C=CH
'
H
l.-,
P
Ph'H
cat.Cul-dPP€
Ph' PFN,*
Ph-c=c< K2CO3/DMF 80p,4 h
h
. . r n d V . J . C o l a n d r e a ,T L 3 5 ,
Ph 741o
Cyclopropanationof atlyt a' diazoalkanoates.s
o r-BuOOC ( )r i l o N 2 /
Cul, P(OEt)s
o t-Buooc\r-( \,o
PhH, A
// 9r
76"/"
-vr\
RX - RCFy Organic halides are converted into trifluoromethyl compounds by catalyzed reactions with CICF2COOMe6or FSO2(CF2)zOCFzCOOMe'7 Arylation of active me@ene compounds.tr Grignard i b . : . J ! r \ e r e a c t i o nw i t h CN
tl -
: benzamidescreatesanuclern.uitable for the allYlation' r. -. ( prlor to the reaction with
e
, i
with D : l-alkYnes bY reaction catalYzed l: . .:nJ r inYl iodides,2is are :, .: 1. rnd triphenylPhosPhine a l kYl a n : : : , c J e s a l k Y l a t i o nw i t h 2alkYl j ('( thus resulting in
Phl +
\
cooEr
ouso.tzoo
pN Ph-< cooEt 787"
and K' K. Pivnitsky,S 65 (1993)' M. A. Lapitskaya,L.L.Vasiljeva, 'K. Okuro,M. Furuune,M. Enna,M. Miura' andM' Nomura,JOC 58' 4617(1993)' 'Y. Fakue,S. Oi, and Y. Inoue,CC 2091(1994). 'K. Okuro,M. Enna,M. Miura,andM. Nomura'CC ll07 (1993)' 'M. P. KoskinenandL. Munoz,"lOC58' 879(1993)' 'Q.-Y. and J.-X. Duan,Tt 34' 4241(1993\. 'Q.-Y.Chen ChenandJ.-X. Duan,CC 1389(1993). 'K.Okuro,M.Furuune,M.Enna,M'Miura,andM'Nomura,lOC58'7606(1993)'
Copper(II) nitrste. Coupling of alke nYlstannane s.' COOM€
;"----:-cooR
Cul-K2CO3
BussnT I
sPh
Cu(NOr)z THF n
9Ph COOtr,te t l
(Y MeOOC
SPh
65o/o
l16
Cyanomethylformate
oxidative cleavage of cycloalkanones,z The formation of acyclic keto acids by Cu(NOr)z-mediatedauand cyclohexanones from a-substitutedcyclopentanones tooxidation in aqueousacetic acid is quite efficient (60-96Vo yield).
Cyanotriethylsilane.17,89 a- Cyanohydrin triethylsilyl ethcn.' BurSnCNas catalyst. ' M. SchollandG.C. Fu,JOC59,7178( l99ar
' R. L. Beddoes, J. Wang,and P. Quayle,TL 36' 283 (1995)T. Cheeseright, 2 A . A t l a m s a nai n dJ . - M .B r e g e a u lst ,7 9 ( 1 9 9 3 ) .
Cyanotrimethylsilane-titanium(IV) cbl d-Amino nitfiles.l Copper(II) tetrafluoroborate. y-Oxoalkylcoppers.t Trialkylsiloxycyclopropanes undergo ring opening on treatment with Cu(BF+)2.The alkylcopper speciesthus produced can be captured In the absenceof such with alkynyl sulfones or dimethyl acetylenedicarboxylate. results. electrophiles,demetallativedimerization
Bn2N
/,
faorsAt
Benzyl cyanides.z TMSO \.4
ou-co"Me \\ /-a/
Cu(BFa)2 CH2Cl2-H2O-BuOSiMe3 /
1
\
MeO2C:C02Me 200. 3 h
t
\
i
CO,ME
ph
ph
Ph)-+Ph c( br
[r.!SO
rcL
73"/.
, . Schwicllr M . T . R e e t z ,M . H u b e l , R . J a e g e r R 'H. E. Ziegerand S. Wo, JOC 59,3838(l99.tr '1.
Ryu, K. Matsumoto, Y. Kameyama, M. Ando, N. Kusumoto, A. Ogawa, N' Kambe' S M u r a i . a n d N . S o n o d a ," / A C Sl 1 5 , I 2 3 3 0 ( 1 9 9 3 ) .
Cyanoborane - am i ne. Carbonyl reduction.t The complexes of BHrCN with propylamine or butyreducingagents. lamine are very efficient and chemoselective ' M . K . D a . .P .K . M a i t i ,a n dA . B h a u m i kB, C S J6 6 ' 8 1 0( 1 9 9 3 ) .
pCyclodextri n-benzyltriethylam molir a-Hydroxy acids.' Homologation of requires a strong baseto deprotonatechloru rhe fact that the trichloromethide anion lc
Using the B-cyclodextrin/benzyltriethyh tbrmation of the adducts is facilitated. carbinols gives a-hydroxy acids in exccllca C.-H.Zhou,D.-Q.Yuan,andR.-G.Xie. 5C !
Cyanomethylenetributylphosphorane, Bu rP:CHCN. This stabilized phosphoraneeffects the condensationof a carEsterification' boxylic acid with an alcohol similarly to the Mitsunobareagent.
2-Cyclohexenone. A Decarboxylation of amino acids. (3 examples. Z rcids with 2-cyclohexenone
rT. Tsunoda. F. Ozaki,andS. lto, 7L 35, 5081(1994). .
Cyanomethyl formate, HCOOCHTCN. Formylation.t Alcohols and amines are formylated in good yields at or slightly aboveroom temperature.Imidazole is addedduring the formylation of alcohols. rJ. Deutschand H.-J.Niclas,SC23, l56l (1993).
COOH
\-J j \ HO ttx.
o{-! rr-t
E;j 1,t.
T. Mehler.andJ. Martens.5C ! S.Wallbaum.
2-Cyclohexenone 117
r : :llrrtion of acyclic keto acids - m e d i a t e da u lr -:. hr Cu(NOr)z . .16% yield). Ir I
'.
Cyanotriethylsilane.17,89 u-Cyanohydrin triethylsilyl ethers.' A convenientpreparation BurSnCNas catalyst.
method
uses
' M. schollandG.C. Fu,.loC59'7178(1994).
- 1 6l.E 3 ( 1 9 9 5 ) .
Cyanotrimethylsilane-titanium(IV) chloride. a-Amino nitriles.' on r i : r . u n d e r g or i n g o p e n l n g 'rr. captured be can produced r. t r x ' \ l r r e . I n t h e a b s e n c eo f s u c h
Bn2N\
/i
Bn
Me35iCN
Bn2NwNHBn
4"" 807"
Bcnzyl clanidcs.2
i\
ia,,-'\rel
,-4Tcozue bo,ut"
t /
i -
73"/.
i
\ - . . - . . n ( ) t oA. . O g a w a ' N ' K a m b e ' S '
u ith proPYlamineor butY-
Bil
\
du-
- rgents.
Ph Ph Ph)-(Ph
ct
Ms3SiCN
cl
Ph 1 P h cN
Ph P h \ cl
931"
'M.T. Reetz,M. Hubel,R. Jaeger, andR' Goddard'S 733(1994)' R. Schwickhardt, tH.E.ZiegerandS. Wo,JOC 59' 3838(1994). chloride' p-Cyclodextrin-benzyltriethylammonium carbinols a-Hydroxy acids.t Homologation of aldehydes via trichloromethyl to related is method ofthis defect requires a strong baseto deprotonatechloroform. A dichlorocarbene' into decompose the fact that the trichloromethide anion tends to system, the Using the B-cyclodextrin/benzyltriethylammonium chloride catalytic trichloromethyl the of formation of the adducts is facilitated. Saponification carbinols gives a-hydroxy acids in excetlent overall yields' 'c.-H. Zhou,D.-Q.Yuan,andR.-G.Xie, SC 24' 43 (1994)'
,('ll( \ carln. .::c'cts the condensation of a r t . - - : . , ' h . ri e a g e n t .
2.Cyclohexenone. a-amino Decarboxylation of amino acids.t Amines are obtained on heating yield)' acids with 2-cyclohexenone(3 examples,T2-827a
I
. \J slightly o:^ . Jrcd in good yields at or a l c o h ols' o f u: : : :he formYlation
HO
cooH NHZ
oo letraothylen€glycol dim€thyl€thsr 1 7 0 0 ,3 h
' S. Wallbaum, T. Mehler,andJ. Martens,SC 24' l38l (1994)
chloride 118
Cyclopentadienylbis(triphenylphosphine)rutheniun(I)
chloride' 1,5-Cyclooctadiene(cyclopentadienyl)ruthcnium(I) reaction)is readily pro(ene-type alkynes to 7,4_Dienes.t Addition of alkenes groups products are favored' and functional moted by the Ru complex' Branched i n t h e s u b s t r a t e s a r e t o l e r a t e d . I n t e r n a l a l k y n e s a l s o u n d e r g oist hai sprecursor a d d i t i o nof .The2:l ethyl 4-hydroxypent-2-ynoate adduct from 1,ll-dodecadiene and ancepsenolide.2
^Y
CpRu(cod)Cl
,.\./ R'
DMF-Hzo
R
'
\
*',,J
Dialkyl azodicarboxylates' 15' | | l-l Allyl carbamates.' BY catalYsisr reaction of alkenes and diethyl azodtcr tJuctsare convertedto allylic carbamd a-Amino P-hYdroxY esters': Enc giving th carboxylatestereoselectively, \-N
-(5:1)
bond the reaction sequenceaccor
'lOC M. A. BrimbleandC. H. Heathcock' 'C. Greck,L. Bischoff'F. Ferreira'C Prt
in the cycloaddition l'5-Cyclooctadiene participates [4+2]Cycloadditions'1 excellent' generally tricyclic adductsare with alkynes. The yields of the
Dialkyltin dicarboxYlates. IJrethanes. The abilitY of the ttt hols to isocyanatessuits well for thc :."chnologY.r'2
r S. Roy andK. K. Majumdar,SC24' 3-11 \1. GormannsandH. Ritter,I49.696i t
CpRu(cod)Cl
+
R----R'
MgOH, a
Dialkylzincs. 15' 148; 17' 96 One new PreParationmethod' exP sub P-AlkylstYrenes.2 The nitro uslo temperature rlkyl group at room
115'4361 (199-3)'.. ' B . M . T r o s t a n d A . I n d o l e s e 'J A C S 116' 4935 (1994)' t S. M. fror, and T' J. J Miiller' JACS (1993)' t B . M . T r o s t , K ' I m i , a n d A ' F ' I n d o l e s e 'J A C S 1 1 5 ' 8 8 3 1
chloride' Cyclopentadienylbis(triphenytphosphine)ruthenium(I) of l-alkynesto allylic addition reconstitutive The p,.y_unsaturatedkeiones., to a short This Ru-catalyzedreactionis applicable alcoholsis atom_economical. rosefuransYnthesis'
*o\^ . R'
CpRu(PPh3)2Cl
o _ i l "../\r\
NHaPF6
^ I R'
t
O--r \ \
OrganocuPrates.l The PreParat :,r the toleranceof many functional 1 il\o more sYnthetic Pathwaysto thc l,rssibleto achievehydroborationaod Sulfinate estersfrom chlorosdf'
o
-a
:l _J-
FZdt
R'
1000
up lo 74o/o
Chemoselective reactions vith ildehyde is selectively activated b! 1 ' B. M. TrostandJ. A. Flygare,JoC 59' 1078(1994)'
tl, chloride. c : i - : \ F e r e a c t i o n i)s r e a d i l YP r o I r : . , r c d . a n d f u n c t i o n a lg r o u P s this addition.The 2: I r{ -:..1!-rgcl r : ::: - I -1noate is a Precursorof Dialkyl azodicarboxylates. 15, I I l-l l2 Allyl carbamates.t By catalysis with SnCl+ the reaction temperature of the ene -60'C. The adreaction of alkenes and diethyl azodicarboxylate may be lowered to ducts are convertedto allylic carbamateson reductionwith Li in liquid ammonia. d-Amino B-hydroxy esters.2 Enolates of the estersreact with di-l-butyl azodicarboxylate stereoselectively,giving lhe anti products. On reductive cleavageof the
R
\
I
R',\.'/
N-N bond the reactionsequenceaccomplishesan electrophilicamination. 5
1)
JOC 58' 5261(1993). M. A. BrimbleandC. H. Heathcock, rC. Greck.L. Bischoff,F. Ferreira,C. Pinel,E. Piveteau, andJ.P.Genet,SL 4'15(1993). p::: .rpirt€sin the cYcloaddition trr ::rerallY excellent'
Dialkyltin dicarboxYlates. ILrethanes. The ability of the tin dicarboxylates to promote addition of alcohols to isocyanatessuits well for the synthesisof urethanesand in polyurethane technology.r'2 S. Roy and K. K. Majumdar,SC 24,333(1994). t M . G o r m a n nasn dH . R i t t e r T , 4 9 , 6 9 6 5( 1 9 9 3 ) .
I
t.
."''
?n iu mt I t chloride. t r rr - ' J J r t i o no f l - a l k y n e s t o a l l y l i c rJ :jJ.tron is aPPlicableto a short
Dialkylzincs. 15, 148;17,96 One new preparationmethod' exploitsa boron-zinc exchange' p-Alkylstyrenes.2 The nitro substituent in B-nitrostyrenes is replaceableby an alkyl group at room temperatureusing dialkylzinc reagents' Organocuprates.' The preparation of cuprates from organozincs is viable due ro the tolerance of many functional groups (e.g., esters) in the reagents.There are also more synthetic pathways to the organozincs; for example, from an alkene it is possibleto achieve hydroboration and boron-zinc exchange' Sulfinate estersfrom chlorosulfites-a
U
^
\'
t
\
s
\
| R'
Hiio'-'ct
Me2zn lEt2O -780,5h
o I
r
s""'
FAi;o'-'u" 90% (R:S 95:5)
chemoselective reactions with organozincs.5 The aldehyde group of a keto aldehydeis selectively activated by TiCla to engagein reaction with MezZn (in conl19
120 I,t-Dlezebicyclo[5.4.0]undec-7-ene trolled amounts). The same group is completely blocked by the presence of PhqP (cphosphonioalkoxide formation), which permits selective attack of Me2Zn on the ketone. ' F. Langer, J. Waas, and P. Knochel , TL 34,526 I ( 1993). 2D. S e e b a c h ,H . S c h ? i f e rB , . S c h m i d t , a n d M . S c h r e i b e r , A C I E E3 1 , 1 5 8 7( 1 9 9 2 ) . tF. L a n g e r ,A . D e v a s a g a y a r a P j , . - Y .C h a v a n t ,a n d P . K n o c h e l , S L 4 l 0 ( 1 9 9 4 ) . 'J. K . W h i t e s e l l a n d M . - S . W o n g ,J O C 5 9 , 5 9 7 ( 1 9 9 4 ) . sT. K a u f f m a n n , T . A b e l , W L i , G . N e i t e l e r ,M . S c h r e e r ,a n d D . S c h w a r ze , C B 1 2 6 , 4 5 9 0 9 9 3 ) .
l,4-Diazabicyclol2.2.2loctane.13, 92; 15, I 09 Baylis-Hillmon reaction.t'2 DABCO is an excellentcatalystfor the condensationof aldehydeswith acrylic esters.The atdehydes includecinnamaldehyde and formylpropionates.
/-NOz /
aCOOIIIF ll -cool,t
.
4-Hy droxy -2-cyclopentenonesreacr n rtl tive 4-acetonyl-2-cyclopentenones.5 * hrch lar Michael reaction and elimination. An B-keto estersand araldehydesgives rhe y-.
<>
o
€t. DBU rr+
o
,1\rRt 5",'oH
COOMe
COOMo I H..',/^\.,/.COOMe ? ' t l
?\/\.cooMe
OBU I
R2
I
rt,5d
OH - 4oo/o
'F. R. van Heerden,J. J. Huyser,and C.W. Holzapfel,SC 24,2863(lgg4). 'P. Perlmutter and T. D. McCarthy,AJC 46,253 (1993).
1,8-Diazabicyclo[5.4.0]undec-7-ene. 13,92; 14, 109; 15, 109-l l0; 16, 105-106; 17, 99-100 Elimination.' In general, l-aryl-2-bromoalkynes are formed on treatmentof 2,2-dibromostyrenes with DBU-DMSO. DBU is capableof inducing the elimination of B-acetoxy nitroalkanes and deprotonation of benzyl isocyanoacetate.2 A tandem Michael-Henry reaction of the resulting speciesensues,leading to 3,4-disubstitutedpyrrole-2-carboxylicesters. Certain allylic and benzylic trichloromethylsulfoxidessuffer elimination of chloroform on exposureto tertiary amine bases.l
o
R'2:'os/'-
tY-5'"",, R'
CH2C|2 rl
| R'
Nitroalkanes
Diazomethane. 14, 109-ll0; 17,100 Cyclopropanation.Unsaturatedamrd ramarefoundto undergo Pd(ll)-carall.zed c tonylgroup.For the access of l-aminocrcl tr.p-didehydroamino acidderivatives *irh d
a)
+
CHCI-.
=
/COOMe P h
N1
cHrrt c.> d
Ph
R=R'=Me R=Ph,R'=H
Addition ond condcnsation reactions. afford homologsof dimethylitaconate.a
\ ' . R a t o v e l o m a n n a n aY , . Rollin, C. Gebehcnm ,1994). '\. O n o , H . K a t a y a m a ,S . N i s h i y a m a ,a n d T e S . B r a v e r m a n ,D . G r i n s t e i n , a n d H . E . G o r r l r c b 'R. B a l l i n i a n d A . R i n a l d i , T L 3 5 . 9 2 4 7( t 9 9 t t F. G. West and G. U. Gunawardena. JOC St. fi 'M.-H. F i l i p p i n i a n d J . R o d r i g u e z ,C C 3 3 r t 9 9 t
and dimethyl
maleate
J. Vallgarda, U. Appelberg, I. Csoregh, and L' C . C a t i v i e l a ,M . D . D i a z d e V i l l e g a s , a n d A . I
t
Diazomethane
.\eJ h\ the presenceof PhrP (ofr.::re attack of Me2Zn on the
/
rNOe
,-YcooMe
DBU
acooMe ll \cooM"
- '
121
\cooM"
MeCN 15min
93v" i r - , i r - ] l . 1 5 8 7( 1 9 9 2 ) . x r c 5 L ' 1 1 0( 1 9 9 4 ) . CB 126,459(1993)' rn.:ir Schwarze,
4-Hydroxy-2-cyclopentenonesreact with diketene under the influence of DBU to which is the result of O-acylation,intramolecugive 4-acetonyl-2-cyclopentenones,s lar Michael reaction and elimination. An unusual condensationreaction of cyclic p-keto estersand araldehydesgives the 7-arylidenederivatives.'
:r;e.lent catalyst for the condenp,Je.rncludecinnamaldehYdeand
<.
o
Fo
o
cat. DBU,THF, rt;
//\.-R1
A \ J 'R'
C@Me
)-/
-? '.f'u.coove I OH
45-82"/"
- 40"/.
: :r
:16l ( 1994).
lr.'. 15. 109-l l0; 16, 105-106;
v . R a t o v e l o m a n n a n aY , . R o l l i n , c . G e b e h e n n e ,c . G o s i m i n i , a n d T . P e r i c h o n , T L 3 5 , 4 7 7 7 ( I994). tN. O n o , H . K a t a y a m a ,S . N i s h i y a m a , a n d T ' O g a w a ,J H C 3 1 " 7 0 7 ( 1 9 9 4 ) . 'S. B r a v e r m a n ,D . G r i n s t e i n , a n d H . E . C o t t l i e b , T L 3 5 ' 9 5 3 ( 1 9 9 4 ) . 'R. B a l l i n i a n d A . R i n a l d i ,T L 3 5 , 9 2 4 7 ( 1 9 9 4 ) . 'F.G. W e s ta n d G . U . G u n a w a r d e n aJ,O C 5 8 , 5 0 4 3 ( 1 9 9 3 ) . ^ M . - H . F i f i p p i n i a n d J . R o d r i g u e z ,C C 3 3 ( 1 9 9 5 ) .
11:.:. are formed on treatment of p-:. 3ltrr1'nitroalkanesand deprochici - Henry reactionof the result7r:''i: l-carboxYlic esters. lf, r:Jes suffer elimination of chlo-
n
g
."r-s'
;
Diazomethane. 14, 109-ll0; 17, 100 Cyclopropanation. Unsaturated amides derived from Oppolzer's camphorsulram are found to undergoPd(II)-catalyzedcyclopropanationrfrom the sideofthe sulacids: the reactionof tbnyl group. For the accessof l-aminocyclopropanecarboxylic a,B-didehydroaminoacid derivativeswith diazomethaneis most expedient'
COOMe
*
CHCI-'
N1
0o -> reflux Ph
,tr =Ve
CH2N2 / Et2O
COOMe
X P h N1
Ph
- 100%
r F ' = H
itr,-.lkanes and dimethyl maleate
J. Vallgarda, U. Appelberg, I. Csoregh, and U. Hacksell, JCS(PI) 461 (1994) C . C a t i v i e l a ,M . D . D i a z d e V i l l e g a s , a n d A . I . J i m i n e z , T 5 0 ' 9 1 5 7 ( 1 9 9 4 ) '
122 Dlbromomethrne
Dibenzoylperoxide. O.Benzoylhydroxylamincs.tRapid reactiontakesplacewith aminesat room The productscan be convertedto N-alkylhydroxamicacids' temperature. Free radical cyclization.2 Dibenzoyl peroxide promotesthe isomerizationof in refluxingbenzene. p-iodoalkyl propynoates to a-(iodomethylene)-7-lactones
O3
Ph/\V
Pn' CH2Br2/ EI2NH 5 5 o , 1 . 5h
Q?bl
N-Acyloxazolidines.2 Under the pha of 1,2-amidoalcoholsis observed. ,l \ H Bz2Q2
,\}.r,
o < . t ) PhH, ^
' Y . - S .H o n ,F . - J C . h a n ga, n dL . L u , C C l 0 { l r t J.M. Vega-Perez, andF. Ako J.L. Espartero,
bfJ H 44Vo
' L. Criersonand M. J. Perkins,TL 34,'1463(1993). 2G. Haaima,J.-J.Lynch,A. Routledge,and R.T. Weavers, T 49' 4229(1993)'
l - (N,N' -Di-t-butoxycarbonylforma m il it Di-Boc guanidines,t The reagent rr tion with amines furnishes guanidine&rl .,i-
\ Dibromodif luoromethane. Ramberg-Bicklund reaction.r A sulfone is converted to the alkene by treatment with Br2CF2,KOH supported on alumina' and t-BuoH. The one-pot reaction avoids isolation of the halogenation product. gem-Difluorides.2 Instigated by activated zinc, the transfer of fluorine atoms to carbonyl compounds from the reagent is probably the method of choice. The innocuousnessof the system is of great advantage' Using (MezN)rP and Zn, the Wittig reagent Difluoromethylenation,l (Me:N)rP:CF2 is prepared, which is capableof reacting with substratessuch as protected ribonolactones. 'T.-L. Chan,S. Fong,Y. Li, T.-O.Man, andC.-D. Poon,CC l77l (1993)' 'C.-M. Hu, F.-L. Quing,andC.-X. Shen,JCS(P/)335(1993)' 3J.S. Houlton.W. B. Motherwell, B. C. Ross,M. J. Tozer,D. J. Williams,andA. M. Z. Slawin' r 4 9 , 8 0 8 7( 1 9 9 3 ) .
1,2-Dibromoethane. the broBromine source,t Some ester enolates form c-bromoesters instead of moethylated products on reaction with 1,2-dibromoethane'
x
w.4
rl
B. Drake,M. Patek,andM. Lebl,S 579( l9+
.\',N' - Di-t-butoxycarbonylth iou rea. Guanid.ines.' Guanidines are s\ntl .imines in the presenceof HgCl2 and Et '\ of electron-deficientamines such as trifll tl99]' K . S . K i m a n dL . Q i a n ,T L 3 4 , ' 1 6 7 7
3,5-Di-/-butyl-l,2-benzoquinone. 15. I I Cleavage of 1,2-amino alcohols. r)ccufS ot room temperature. However. Jetermined.
andD. B. Gutrgur V. Horak,Y. Mermersky,
'J. IbarzoandR. M. Ortuno,T 50, 9825(1994).
Dibromomethane. and a-Methylenation of aldehydes,t The treatment of aldehydeswith CHzBrz directly diethylamine leads to a-substituted acroleins.The same results are obtained from the ozonides derived from the homologous l-alkenes'
Dibutyl disulfide. [3 + 2]Cycloadditions.' Methylencc .rlkenesphotochemicallyand in the prc leads to methylenecyclopentaneprodrrt, . r i t u e n ti s a t a n a l l y l i c p o s i t i o n .
Dibutyl dlsulfide 123
CH2B'2/ EI2NH
O3
le\e. place with amines at room tl\ \ . h\ droxamic acids. lc a:,'motesthe isomerizationof
^, r/\ P n
,n\20
/// v
5 s o, 1 . 5h
cHzBr2/ EI2NH EEO
I
Ah
Ph/\r'o
(87"/4
(72L\
tsi, r'.€rrn refluxing benzene' N-Acyloxazolidines.2 Under the phase-transferconditions smooth cyclization of 1,2-amidoalcoholsis observed.
-+-\ FI
l ) O-T-J H 44"k
r.
'Y.-S.Hon,F.-J.Chang,andL. Lu, CC 2041(1994). :J. M. Vega-Perez, andF. Alcudia,JCC 12' 4'17(199t). J.L. Espartero, (1). l-(N,N' -Di-t-butoxycarbonylformamidinyl)pyrazole protected formamidine. Reacof is a donor The reagent guanidines.t Di-Boc guanidine derivatives. furnishes tion with amines
r t9. 4229(1993).
,-\ (",* BocN4NHBoc
r ;,,nrert€d to the alkene by treattn.: : BuOH. The one-Potreaction : h e rransferof fluorine atoms
ini
b l r : h e method of choice. The in-
i1,.1 Zn, the Wittig reagent 5::1,! \ ith substratessuchas Pro-
r
tt
1-71(1993).
I liq:
I
(1) '
B. Drake,M. Patek,andM. Lebl,S 579(1994).
N,N' - Di-/-butoxycarbonylth iourea. Guanidines.t Guanidines are synthesized by reaction of the reagent with amines in the presenceof HgCl2 and Et:N. The method is suitablefor derivatization of electron-deficientamines such as trifluoroethylamine. ' K. S. Kim andL.
(1993). Qian,rL 34,'76-l'7
t l J \ \ ' i l l i a m s ,a n d A . M . Z . S l a w i n '
3,5-Di-t-butyl-1,2-benzoquinone.15, I I 3 Cleavage of l,2-amino alcohols.t The oxidative cleavage to give aldehydes occurs ar room remperature. However, the scope of this method has yet to be l o-arrrmoestersinsteadof the bron{\clh3ne.
determined. 'V. Horak,Y. Mermersky, andD. B. Cuirguis,CCCC59'227(1994\'
Dibutyl disulfide. DCnrtrf aldehydeswith CHzBrr and ! ieme results are obtained directly l-alkenes.
[3+2]Cycloadd.itions.t Methylenecyclopropane reacts with electron-deficient alkenes photochemically and in the presence of Bu2S2.This free radical reaction leads to methylenecyclopentaneproducts, in which the electron-withdrawing substituentis at an allylic position.
124 Dibutyltindialkoxides
r^) t t \r'
Dimethyl
,so2Me [1 l
*
ll a
i
tw Bus-sBu
A direct
prepe
addition of a water scavenger such as DCC
+
G . - J . B o o n s , G . H . C a s t l e ,J . A . C l a s e , p _ G r r c r D . J . J e n k i n s a n d B . V . L . P o t t e r ,C R 2 6 5 . I { S r 'J. K i z l i n k a n d I . P a s t u c h aC , C C C 5 9 , 2 1 1 6r t 9
42"/" lC.C.
carbonate.3
in the presence of Bu2Sn(OBu)2 is possiblc
H u v a l , K . M . C h u r c h ,a n d D . A . S i n g l e t o n ,5 L 2 7 3 ( l g g 4 ) .
Di-r-butyl peroxide. Homolytic additions.t Xanthates in which the S-bearing carbon site can support a free radical readily undergo homolysis by heating with l-Buzoz. The two radi-
Dibutyltin dichloride-silver perchlontc Activation of glycosylfluoridcs.' Tl .ystemfor thedisplacement of thef luori&r rn the presence of 4A molecularsieves.
cal fragments can be taken up by an unsaturated compound. Group transfer to a remote doublebond concurrentwith cyclization of certain unsaturatedxanthatesis
H . M a e t a , T . M a t s u m o t o ,a n d K . S u z u k i . C I R!
an intramolecularversion.An oxocaneprecursorof lauthisancan be acquired(357o) in this manner.2
a-\=
I
OEt
cunr.4o-/s-( \
Dibutyltin oxide. 13,95-96; 15, lt6-1t7. Diol monofunctionalization Forml ment with electrophilicreagentsachieverb .\ primary hydroxyl group is preferentiall! \econdarydiol their respectivesteric enr In
TBUPh D
COOMe
1 5 0 - 1 6 0 0 ,1 . 5h
regiochemistry, as shown in severalcarbol lauthisan
'J. H . U d d i n g , H . H i e m s t r a , a n d W . N . S p e c k a m p ,J O C 5 9 , 3 7 2 1 ( 1 9 9 4 ) . tJ.H. U d d i n g , J . P . M . G i e s s e l i n k ,H . H i e m s t r a , a n d W . N . S p e c k a m p ,J O C 5 9 , 6 6 7 1 ( l g g 4 )
Dibutyltin bistriflate. 16, lll -ll2 1,3-Dithianes.r The tin triflate servesas a Lewisacidcatalyst.
cHo
*
Buzsn-s) sJ
Bu2Sn(OTl)2
ctcH2cH2ct
e\.r-"1 sv,/
3 5 0 ,2 0h
'T.
??o"
Hosl-t.oR OH
&aS.O lto.
r,bt{.SC
Rapid stannyleneacetalization is achrrt
A. Glen,D. A. Leigh,R. P. Martin,J. P. Smen H. Qin andT. B. Grindley,JCC 13,475( t99rl B. Guilbert,N.J. Davis,M. Pearce, R.T. Aplr 'A. Morcuende, S. Valverde. andB. Herradonl
S a t o , J . O t e r a , a n d H . N o z a k i , J O C S E ,4 9 7 1 ( 1 9 9 3 ) .
Dibutyltin dialkoxides. vic-Diol monofunctionalization. Formationof stannylene derivativespermits selective cleavage andhencefunctionalization, includingalkylation'andacylation.2
Dica rbonyl(cyclopentadienyl)cobalt. l,l. Cycloisomerization.t'2 The phoroindu Jerivatives from a-(4-pentynyl)acetoacerr t hesesubstances.
Dicarbonyl(cyclopentadienyl)cobalt125 A direct preparation from methanol and carbon dioxide in the presence of BuzSn(OBu)2 is possible at elevated temperature and pressure. The addition of a water scavenger such as DCC increases the yield. Dimethyl
carbonate.3
'ySOzMe
'G.-J. B o o n s .G . H . C a s t l e ,J . A . C l a s e ,P . G r i c e , S . V . L e y , a n d C . P i n e l , S L 9 1 3 ( 1 9 9 3 ) ' r D . J . J e n k i n s a n d B . V . L . P o t t e r ,C R 2 6 5 , 1 4 5( 1 9 9 4 ) . t J . K i z l i n k a n d I . P a s t u c h a ,C C C C 5 9 , 2 1 1 6 ( 1 9 9 4 ) . l. ':
S-t cering carbon site can supIn! \\ rth l-Bu2O2.The two radiioirlound. GrouP transfer to a a r : r r n u n s a t u r a t e xd a n t h a t e si s a-r:'ri.an can be acquired(357o)
CEt CoHra
Dibutyltin dichloride-silver perchlorate. The mixed reagents are a suitable catalyst Activation of glycosyl fluorides.t systemfor the displacementof the fluorides by other nucleophiles,including t-BuOH, in the presenceof 4A molecular sieves. ' H. Maeta,T. Matsumoto, andK. Suzuki,CR 249,49(1993)-
Dibutyttin oxide. 13, 95-96;15, l16-l17; 16, 112 Formation of stannylene acetals and then treatDiol monofunctionalization ment with electrophilicreagentsachievethe purposeof selectivediol derivatization' A primary hydroxyl group is preferentially protected, and in the caseof a secondarysecondarydiol their respectivesteric environmentshave important influence on the regiochemistry,as shown in severalcarbohydrates.r-l
)crJ€ lauthisan
I
i-'
OH-OH
,1994).
\-,. r:mp.
Bu2SnO
JOC 59, 6671(1994).
M6OH Me3N. SO3
o t (
r'rao$o\$.on o
o
H
93-977. t. i.:J catalyst. -
h
\
q
Rapid stannyleneacetalization
is achieved by microwave heating'"
-o'-f-) s__/ 85"/"
o: .irnnylene derivativesPermits u:r r'.galkylationr and acylation.2
A. Glen, D. A. Leigh, R. P. Martin, J. P. Smart, and A. M. Truscello,CR 24E' 365 (1993)' 'H. qin and T. B. Grindley,JCC 13,475 (1994). '8. G u i l b e r t , N . J . D a v i s , M . P e a r c e ,R . T . A p l i n , a n d S . L . F l i t s c h , T A 5 , 2 1 6 3 ( 1 9 9 4 ) ' 'A. M o r c u e n d e ,S . V a l v e r d e ,a n d B . H e r r a d o n ,S L 8 9 ( 1 9 9 4 ) .
14, 116;16, ll2 -ll3; 17' lO2 Dicarbonyl(cyclopentadienyl)cobalt. formationof methylenecyclopentane Cycloisomerization.t'2The photoinduced a new way to prepare estersrepresents derivativesfrom a-(4-pentynyl)acetoacetic thesesubstances.
126 Dlchlorine oxide
o ,\coor'r" I (:
Dichlorobis(triphenylphosphine)cobrlr Carbonylation of benzyl halides.'
o ,,\.r.coou"
Cpco(CO)2
/v
lPfuPtf4(:4
P h H ,a , t h
PhcH2cl Bu.llOfl
937o
PhH
' R. StammlerandM. Malacria,SL 92 (1994). 2P.Cruciani.C. Aubert,andM. Malacria,TL35,667'l(1994).
Y. Hu, J.-X. Wang,andW. Cui, SC24. l7{-r ,
Dicarbonyl(cyclopentadienylX(d imethylsulfonium)methyll iron tetrafluoroborate. 13,98; 15, ll7 Cyclopropanation.t The reagentis an electrophilic carbene equivalent. Thus it behaves differently from dimethyloxosulfonium methylide toward 2-benzenesulfonyl- I,3-butadiene.
"f98"*fu",jr.
A / / sO 2 P h
M e N O 2 ,1 0 1 0 , 6 h
v
Mo2S(O)CH2Na
SO2Ph
DMSO,2oo
\_y q
02Ph
52o/o
4Oo/o
'J.-8. Beckvall,C. Lofstrom,S. K. Kenfunen,andM. Mattson,TL34,2007 (1993). tetraf luoroborate. Dicarbonyl(cyclopentadienyl)(tetrahydrofuran)iron Cyclopropanation.t The reagent is a catalyst for cyclopropanation of alkenes with diazoalkanes. High selectivities have been found for the formation of the cis-
Dichlorobis(triphenylphosph i ne)palledit 1 6 . l 1 8 - 1 1 9 ;1 7 , l l l - l l 2 Alkenes. Alk-3-en-l-ynes are obtarn in the presenceof SnClz and (PhrP):PdCl
carboxylic acids are degradedby one cartx Reductive silylation.t a-Diketones r while methyl benzoylformate undergoct
2.3-diphenyl-2,3-bis(O-trimethylsilyl )tartn tMe:P)zPdClzl. Heck reaction The coupling of iodo rhe normal p-aminomethylstyrenes(in Et( In the presenceofCuI-EtrN the Pd-ceu thesis of y-(Z)-alkylidene butenolides fror
pling of l-penten-4-yn-3-olwith Arl occu An interestingchemoselectivityis sho flatesTas a result of slight structural varr. SiMe3
isomers. Diels-Alder reactions.2 A polymer-bound (to the cyclopentadieneunit) salt is a useful Lewis acid catalyst. 'W. J. SeitzandM. M. Hossain,7L 35, 7561(1994). 'A. K. Sahaand M. M. Hossain,TL 34, 3833(1993). (E)-1,2-Dicatecholboranylethene. trans-Cyclohex-4-ene-1,2-diols.t The reagentis a reactive dienophile at moderate temperatures. The vic-diboranylcyclohexenesthus Seneratedare readily oxidized to the diols with alkaline HzOz. rD. A. Singleton andA. M. Redman,IL 35, 509 (1994)'
Dichlorine
@ 6.
oxide.
of quinoncs.t ClzO, which is generated in situ by passing Cl2 through suspendedyellow HgO in CCln, converts quinones to chloroquinones. I C. Thapliyal,K. P. Singh,and R. N. Khanna,SC24' 1079(1994). P. Chlorination
--SiMe3 (Ph3P)2PdCt2 Cul - rPr2NH THF. rl. 3 h
#
Seven- and eight-membered cycloalke pling of allenes.8The reductivecyclizatioo o-nitrobenzylideniminesafford indolesaa Stille coupling. The effect of sonr r rned.r0With Cu(I) salt as cocatalystthc pn of hindered biphenyls and terphenyls.' ( 3,4-diarylfurans.' l-substitutedindoles,12 nation is accomplished by reaction wirh
RNHR' and BurSnNEt2).'s exo,exo-5-Alkynyl-6-arylnorborner coupling.16 Pyrolysisof the productsgrv
Dichlorobis(triphenylphosphine)palladium127
Dichlorobis(triphenylphosphine)cobalt. Ca rbonylation of ben zyl hali il es.'
o -COOMe
aY 'J
(Ph3P)2CoCl2 PhCH,CI -
BuaNOH,CO PhH, I h
93"/'
PhcH2cooH 84"/"
' Y. Hu, J.-X. Wang,andW. Cui, SC 24, l'143(1994)' 6--
e94).
bniu m )methyuiron Thusit carbeneequivalent' actr,.phrlic ru:r. methylidetoward 2-benzenesul-
M€2S(O)CH2Na
sc..en
oMso,20p
\_V s02Ph 52o/"
d \l \larrson,TL34,2007 (1993)' lre n ri ron tetrafluoroborate' alkenes rrg.r.r ior cyclopropanationof the cisof formation the rt:. :,'und for
Dichlorobis(triphenylphosphine)palladium. 13, 103-104; 15' 123-124; 1 6 , l 1 8 - 1 1 9 ;1 7 , l l l - r r 2 Alkenes. Alk-3-en-1-ynesare obtained from dehydrationof propynyl alcohols with the same Pd complex as a catalyst in the presenceof Snclz and (PhrP)zPdCl2.r carboxylic acids are degradedby one carbon.2 Reductive silylation.l a-Diketones are converted into 1,2-(bissiloxy)ethenes, while methyl benzoylformate undergoes reductive coupling to give dimethyl 2,3-diphenyl-2,3-bis(o-trimethylsilyl)tartratewith MerSiSiMer [catalyzed by tMerP)zPdClzl. Heck reaction The coupling of iodoareneswith tertiary allylic amines gives the normal p-aminomethylstyrenes(in EIOH or PhMe) or enamines(in DMF)'a In the presenceofCuI-EtrN the Pd-catalyzedcoupling can be employedin a synthesis of y-(Z)-alkylidene butenolides from (Z)-3-bromoacrylic acid.s and the coupling of l-penten-4-yn-3-olwith ArI occurs at the acetylenicterminus'^ An interestingchemoselectivityis shown for coupling with one of two enol triflatesTas a result of slight structural variation. SiMe3
#-, k"'""" n=2
unit) salt is a rn.: : 'the cyclopentadiene
E-SiMe3 (Ph3P)2PdCl2
}{
Cul - iPr2NH
4'.
THF. rl. 3 h
at mod! reitenl is a reactivedienophile oxireadily lrr:ne: thus generatedare
) -,.:
passing Cl2 hr.h r. generatedin situ by n \ . : : . q u i n o n e st o c h l o r o q u i n o n e s ' r . r t l { . 1 0 7 9( 1 9 9 4 ) '
--SiM€3
(Ph3P)2PdCl2 Cul - rPr2NH
THF. rt. 3 h
Seven- and eight-memberedcycloalkenesare availableby intramolecularcouThe reductivecyclizations(requiring SnCl2)'of o-nitrostyrenesand pling of allenes.E i mines afford i ndoles and 2 H-indazoles,respectively' iden itrobenzyl o- n The effect of some additives on the coupling has been examcoupling. Stille salt as cocatalyst the processhas proven valuablefor the synthesis With Cu(I) ined.r0 and terphenyls.rr Other reports concern the preparation of biphenyls of hindered Aromatic amiand carbazoleprecursors''o 3,4-diarylfurans,r3 indoles,r2 l-substituted (from generated aminostannanes situ in with reaction by is accomplished nation RNHR and Bu.SnNEt2).15 are available from a three-component exo,exo-S-Alkynyl-6-arylnorbornenes (Z)-enynes. gives products of the Pyrolysis coupling.'6
l2t
Dlchlorobls(trlphenylphosphine)pelledium (Pht
Ph
+'lr O + A r ' SnBu3
*/WVoo.
(PhsP)zPdClr (sealodtube)
4
(
(,^
80-1 00p
couplings.
Other
1-Alkylthio-l'3-br
Couplingofalkenyl-oralkynyl-stannaneswithalkenyl(phenyl)iodoniumtriflates leads to stereodefineddienes or enynes"'
methodrr involving
Thestannane_acylch|oridecross.couplinghasbeendirectedtowardsaccessto and a-heterosubstitutedketones're 3-acylcyclobutenones'E
rPhrP)zPdClz/DMSO system delivers nitm
organozinc-aryliodidecoupling.Themethodservesforthepreparationof o-quinodimethanes.2l biarils20 and o_acylbenzylboronatesand thence ""r;;;;;;l
[ (PhsP)zPdClz
G":""..,d:ot
THF 5OP
(Y"opl Wt'o)(
,"f-l
I
t'''o4_l
*^ la-io L\,\
I
I
may be subjectedto a metal-metal An intramolecularcarbozincationproduct Pd-complex'forming a cupratereexchangein the presenceof a slightly different agentwhichisusefulforassemblyofringstructuresbearingafunctionalizedside chain.22 Noz EtzZn'(dPP0PdCtz/ THF CUCN'2 LiCl PhCH=CHNOz 810h
PdAraldehydes are derived from the Carbonylation and carboxylation' CO HCOONa'23The Suzuki coupling under catalyzed reaction of ArX with CO and by and quinolones are similarly acquired leads to diaryl ketones.2ochromones c a r b o n y l a t i o n o f o . i o d o p h e n o l s a n d a n i l i n e s i n t h e p r e s e n c e o f a l k y n e s . 2 sand z - A ory|-benzothiazoles are produced from o-arenediamines benzimidazoles26and respectively' mercaptoanilines,2T by using CHCIt and KOH'2Ewhereas of Carbonylation organohalidesis achievable also SnClr' reductive ulko*y"a.bonylation2e3orequires A r o u t e t o a r y l a r o a t e s c o n s i s t s o f c a t a l y z e d r e a c t i o n f r o m a m i x t u r e o freacArX' phenol derivatives are formed in a cyclocarbonylation uure.,' u una AroH,;o, tion of 2,4-pentadienyl acetates'32
halides,
both
hydroboration
reactions
of thioe
catalyzed
b1
I
'Y. M a s u y a m a ,J . T a k a h a r a , K . H a s h i m o t o ' e tJ. A. Miller, J. A. Nelson' and M. P' Byrne' 'l 'H. Y a m a s h i t a ,N . P . R e d d y , a n d M ' T a n a k a ' t 'L. F i l i p p i n i , M . G u s m e r o l i 'a n d R ' R i v a ' f L 'X. L u , X . H u a n g ,a n d S . M a ' I L 3 4 , 5 9 6 3 t l l ^ N. C. Kundu, M. Pal, and C. Chowdhurl' 'lC 'M. Moniatte, M. Eckhardt, K. Brickmann' I 'S. M a a n d E . N e g i s h i ,J O C 5 9 ' 4 7 3 0 ( 1 9 9 { t "V. A k a z o m e , T . K o n d o ' a n d Y W a t a n a b c 'J S. Gronowitz, P. Bjork' J. Malm, and A'-B | J . M . S a aa n d G ' M a r t o r e l l , J O C 5 t ' 1 9 6 - 1 I ' 'S. | 19 5 9 , 4 2 5 0 J o C T e n g ' E . a n d S. Labadie 'Y. ( Yang and H. N' C. Wong, I50, 9538 199 'M. I w a o , H . T a k e h a r a ,S . F u r u k a w a , a n d \ l 'A. S . C u r a m a n d S ' L . B u c h w a l d ,J A C S l l ' ' ^ M. Kosugi,T. Kimura, H' Oda' and T Mt3t R . J . H i n k l e , G . T . P o u l t e r 'a n d P ' J ' S t a n g '' l 'L. S . L i e b e s k i n d ,G . B . S t o n e ,a n d S Z h a n S 'J. Ye, R. K. Bhatt, and J. R. Falck,'/ACSlll '' S i b i l l e , V . R a t o v e t o m a n a n aJ, . Y . N e d e l e c 'I ' G. Kanai, N. Miyaura, and A' Suzuki. CL t ': H . S t a d t m u l l e r ,R ' L e n t z , C . E . T u c k e r ' T . I
1027 (1993). ' T. Okano, N. Harada, and J. Kiji, BCSI '7' " T . I s h i y a m a ,H . K i z a k i ' N . M i y a u r a ' a n d A . " S. Torii, H. Okumoto, L. H. Xu, M' Sadrlr V. N. Kalinin, T 49' 67'13(1993)' '- J. Perry and B' D. Wilson, JOC 5t' 7016 R. '- J. Perry and B. D. Wilson, JOC 13' 33{6 R. '- v.V. Grushin and H. Alper' OM 12,3E16 t : ' R . T a k e u c h i a n d M . S u g i u r a ,' / C S ( P / / l 0 3 l ' R. Naigre, T' Chenal, I. Cipres' P' Kakk'
r 1994). ' Y. Kubota, T. Hanaoka, K' Takeuchi' and tY. e I s h i i . C . G a o ,W . - X ' X u , M ' I w a s a k i ' r '1. D . G r i d n e v ,N . M i y a u r a ,a n d A ' S u z u k t " \ . S h i m i z u , T . K i t a m u r a , K . W a t a n a b c 'T r 1993).
Dichlorobis(triphenylphosphine)palladium129
l ,
-.,A,2\,rr Hn
f,
(,.
(Ph3P)zPdcl2 OAc
CO / phH Ac2O- Et3N 1400
ri i:nr lt phenyl)iodoniumtriflates I teen directed towards accessto lonc.' hc; .erves for the PreParationof s :nJ thenceo-quinodimethanes'2|
I p | ] I
ti,.- ' l*a = / L\,\
e'''oi-I
|
J
11 ht subjectedto a metal-metal forming a cuPraterePr!-;,-mplex, side a functionalized bearing ure.
81"/o
?hrJer are derived from the Pd:' The Suzuki couPlingunder CO b Dolrrnesare similarly acquired by rhc presenceof alkynes.252-AryllccJ irom o-arenediaminesand ob\ u.rng CHCIr and KOH,28whereas SnCi d rerction from a mixture of ArX' lormeJ in a cyclocarbonylationreac-
*-o AcO 69%
are assembled by a one-pot l-Alkylthio-1,3-butadienes Suzuki coupling with alkenyl a n d t h i o a l k y n e s o f h y d r o b o r a t i o n method3r involving coupling using a CuU l l m a nn P d ( I I ) . b y c a t a l y z e d halides, both reactions Other
couplings'
(PhrP)2PdClr/DMSO system delivers nitrophenylpyridines.3a 'Y. M a s u y a m a ,J . T a k a h a r a ,K . H a s h i m o t o ' a n d Y . K u r u s u , C C l 2 l 9 ( 1 9 9 3 ) ' tJ. A . M i l l e r , J . A . N e l s o n ,a n d M . P . B y r n e , J o C 5 8 ' l 8 ( 1 9 9 3 ) . r H . Y a m a s h i t a ,N . P . R e d d y , a n d M . T a n a k a , C L 3 1 5 ( 1 9 9 3 ) . 1L. F i l i p p i n i , M . G u s m e r o l i ,a n d R . R i v a , T L 3 4 , 1 6 4 3 ( 1 9 9 3 ) 'X. L u , X . H u a n g ,a n d S . M a , r L 3 4 , 5 9 6 3 ( 1 9 9 3 ) . oN. G . K u n d u , M . P a l , a n d C . C h o w d h u r y , J C R ( S )4 ( 1 9 9 5 ) . 7M. M o n i a t t e , M . E c k h a r d t , K . B r i c k m a n n , R . B r t i c k n e r , a n d J . S u f f e r t , T L 3 5 , 1 9 6 5( 1 9 9 4 ) . 'S. Ma and E. Negishi,JOC 59,4730 (1994). oM. A k a z o m e , T . K o n d o , a n d Y . W a t a n a b e ,J O C 5 9 , 3 3 ' 1 5( 1 9 9 4 ) '"S. Gronowitz, P. Bjork, J. Malm, and A.-B. Hornfeldt, JOMC 460, 127 (1993)' " J . M . S a aa n d G . M a r t o r e l l , J O C 5 8 , 1 9 6 3( 1 9 9 3 ) ' 't S. S. Labadie and E. Teng, JOC 59,4250 (1994). 't Y. Yang and H. N. C. Wong, I50, 9538 ( 1994). 'tM. I w a o , H . T a k e h a r a ,S . F u r u k a w a , a n d M . W a t a n a b e ,H 3 6 , 1 4 8 3( 1 9 9 3 ) ' 'tA. S . G u r a m a n d S . L . B u c h w a l d ,J A C S 1 1 6 , 7 9 0 1 ( 1 9 9 4 ) . 'oM. Kosugi,T. Kimura, H. Oda, and T. Migita, BCSJ 66,3522 (1993)' ''R.J. , n d P . J . S t a n g ,J A C S l 1 5 , 1 1 6 2 6( 1 9 9 3 ) . Hinkle, G.T. Poultera ''L. S . L i e b e s k i n d ,G . B . S t o n e ,a n d S . Z h a n g , J O C 5 9 ' 7 9 1 9 ( 1 9 9 4 ) ' ''J. Y e , R . K . B h a t t , a n d J . R . F a l c k , " / A C S1 f 6 ' I ( 1 9 9 4 ) . :" Sibille, V. Ratovelomanana,J. Y. Nedelec, and J. Perichon' SL 425 (1993). I'G. K a n a i , N . M i y a u r a ,a n d A . S u z u k i , C L 8 4 5 ( 1 9 9 3 ) . :r H . S t a d t m u l l e r ,R . L e n t z , C . E . T u c k e r ,T . S t u d e m a n n ,W . D o r n e r , a n d P . K n o c h e l ," I A C S1 1 5 ' 7027 1993). ttT. Okano, N. Harada, and J. Kiji, BCSJ 67'2329 (1994). t'T. Ishiyama, H. Kizaki, N. Miyaura, and A. Suzuki, TL34, 1595 (1993)' : 5 S . T o r i i , H . O k u m o t o , L . H . X u , M . S a d a k a n e ,M . V . S h o s t a k o v s k y ,A . B . P o n o m a r y o v ,a n d V . N . K a l i n i n , r 4 9 , 6 7 ' 1 3( 1 9 9 3 ) ' t u R . J . P e r r y a n d B . D . W i l s o n , J O C 5 8 , 7 0 1 6( 1 9 9 3 ) . tt R. J. Perry and B. D. Wilson, JOC 13,3346 (1994). 18 V.V. Grushin and H. Alper, OM 12,3846 (1993). } R . T a k e u c h i a n d M . S u g i u r a ,I C S ( P I ) l 0 3 l ( 1 9 9 3 ) ' .tR. N a i g r e , T . C h e n a l , I . C i p r e s , P . K a l c k , J . - C . D a r a n , a n d J . V a i s s e r m a n n ,J O M C 4 E 0 , 9 1 ''
( r994).
Y . K u b o t a , T . H a n a o k a ,K . T a k e u c h i , a n d Y . S u g i ' S a 5 l 5 ( 1 9 9 4 ) . "Y. I s h i i , C . G a o , W . - X . X u , M . I w a s a k i , a n d M ' H i d a i , J O C 5 8 ' 6 8 1 8( 1 9 9 3 ) ' "1. D . G r i d n e v , N . M i y a u r a , a n d A . S u z u k i ' J O C 5 E , 5 3 5 1( 1 9 9 3 ) . .N. S h i m i z u , T . K i t a m u r a , K . W a t a n a b e ,T . Y a m a g u c h i ,H . S h i g y o , a n d T . O h t a , T L 3 4 , 3 4 2 1 ( 1993).
130 4,5-Dichloro-1,2,3-dlthiszoliumchloride (ApPel'ssalt)
2,3-Dichloro-5,6-dicyano-1,4.benzoquinone. 13, 104-105; 14' 126-127; 15, 125-126;16, 120 Deacetalization and dethioacetalization.t'2 Dimethyl acetals, 4-p-methoxyphenyl-1,3-dioxolanesare cleavedwith DDQ in the presenceof water. For deprotection of thioacetals3under mild conditionsphotochemicalassistanceseemsadvantageous'o The same reaction principle ofdeacetalization can be extendedto ether exchange.s Thus alcohol protection is possibleby mixing with 2,2-dimethoxypropanein the presence of DDQ, and proximal diols are converted to acetonides.6Replacement of anomeric arylmethoxyl groups by this methodTcomplements other glycosylation procedures. gem-Dialkoxyclcloprcpane tission.s These compounds are transformed into a,P-unsaturatedesters(33-867oyield).
R O l l n't^7'orur"
R
"
D
D
MecN,600
Q
F O l u n t\Aorr"
ot
h-. s.s (t)
J.J. FolmerandS.M. Weinreb.TL 34.2731t
Dichloro(ethoxy)oxovansdium(V ). Coupling of allyl and benzyl sileta are operative,' but it is possible to achicv benzylsilane to give the 4-arylbutene pre
Cross-coupling of silyl enol cthcn a unsaturatedcarbonyl compounds involrtr Oxidative cleavoge of 4-membcnJ I a Lewis acid, catalyzesaldolizationwith r more a ring cleavage.
33-86% OSiMe3
Functionalization of benzyl ethers. Dehydrogenationwith interception of the electrophilic species generatedfrom isochromanse'r0extend the synthetic utility of
Ph-\
t
vo(oEr)ch
T-l
dts
cHzcb,e
such compounds. Other C-C bond forming pfocesses. Oxidation of imines induces C-C bond formation at the a-carbon.rr With alkynes presentthe products are the quinolines. C-Allylation of glycals by allyltrimethylsilaneis inducedby DDQ.r2 'A. Oku, M. Kinugasa, andT. Kamada,cL 165(1993). tC. E. McDonald,L. E. Nice,andK. E' Kennedy,TL35,57 (1994). tK. Tanemura, H. Dohya,M. Imamura,T.Suzuki,andT. Horaguchi'CL965 (1994)' aL. MathewandS. Sankararaman, JOC5E,7576(1993). tO. KiolbergandK. Neumann, ACS4E,80 (1994). oo. Kjolbergand K. Neumann,ACS47,843(1993). tJ. Inaga,Y. Yokoyama, cL 85 (1993). andT. Hanamoto, "M. Abe andA. Oku, TL 1994,35,3551. 'Y.-C. Xu, E. Lebeau,J.W.Gillard,andG. Attardo,TL34'3841(1993). 'uY.-C.Xu, C. Roy,andE. Lebeau,7L 34' 8189(1993) I I B. Bortoloui,R. Leardini,D. Nanni,andG. Zanardi,T 49' 10157( 1993) ' 12K.Toshima,T. lshizuka,C. Matsuo,andM. Nakata,CL2013(1993).
4,5-Dichloro-1,2,3-dithiazolium chloride (Appel's salt). condensationr This salt (1) is a dehydratingagent,capableof uniting a carboxylic acid and an alcohol to give the ester. Usually 2,6-lutidine is added to scavenge HCl.
Cyclobutenonesgive ethyl 2-chlom-} romers and the confluent action of VO((I
T. Fujii, T. Hirao,andY. Ohshiro,TL y. ft 'T. Hirao,T. Fujii, andY. Ohshiro, IL 35. m T. Hirao, T. Fujii, and Y. Ohshiro,I50. l0:l 'T. Hirao, T. Fujii, T. Tanaka,and Y. Otrshrr 'T. Hirao,T. Fujii, T. Tanaka,andY. Ohshrr
Dichloromethane. Dialkylaminomethylation.t Thc kC nich adduct(R2N:CH2)* formed upon tn
.rrr,
ll NC''
NH,
o
EI2NH
F. Souquet, T. Martens,andM.-8. Fleury.s(
Dichloromethane 131
. p r
l, : ,l(15: 14, 126-127; D : - : : t h r l a c e t a l s ,4 - P - m e t h o x Y rr..-.e of water.For deprotection | :..:.rJoc€ seemsadvantageous.4 tn -i r'\tendedto ether exchange.5 Ir: : l-dimethoxyProPanein the Replacement l't3.rl,\ ac€tonides.6 t, :clements other glycosylation c\'^'a,!undsare transformed into
. F
o l. '-' 'oMe
X
s-s'N (1) ' J.J. Folmerand S. M. Weinreb,TL 34,2'13'l(1993).
Dichloro(ethoxy)oxovanadium(V). Coupling of allyl and benzyl silanes. Desilylative homo- and cross-coupling are operative,' but it is possible to achieve selective coupling of an allylsilane and a benzylsilaneto give the 4-arylbutenepredominantly.2 Cross-coupling of silyl enol ethers and allylic silanes.l The formation of 7,6unsaturatedcarbonyl compounds involves one-electron oxidation. Oxidative cleavage of 4-memhered ketones.o The oxovanadium species,being a Lewis acid, catalyzes aldolization with cyclobutanoneas the acceptor,and furthermore a ring cleavage.
j.3 86'6
D€.:Jrronwith interceptionof the ' r'rteod the sYntheticutilitY of
OSiMe3 n Ph-\ oF
vo(oEr)ct2 cH2ct2,0o
o
o
+
,nA-\,,\r"'
o
-
,nA-(o)
46% (85:15)
I r m i n e si n d u c e sC - C b o n d l.: I :': nroductsare the quinolines. Dc-,rJ by DDQ.12
Cyclobutenones give ethyl 2-chloro-3-alkenoates,5probably via the ketene tauromers and the confluent action of VO(OEQCI, and CuClz on them.
a r-
'T. Fujii, T. Hirao,and Y. Ohshiro,TL 34,5601(1993). tT. Hirao,T. Fujii, andY. Ohshiro TL 35,8005( 1994). , 'T. Hirao,T. Fujii, and Y. Ohshiro,T 50, 10207(1994). 'T. Hirao,T. Fujii, T. Tanaka,and Y. Ohshiro,SL 845 (1994). 'T. Hirao, T. Fujii, T. Tanaka,and Y. Ohshiro,JCS(Pl)3 (1994).
:
:99.1). i i r . r g u c h i ,C L 9 6 5 ( 1 9 9 4 )
I
L -r{ rr-il (1993). (1993). , r {e 10r57 ci :,ll (1993).
i's salt). rg r!en(. caPableof uniting a car;alir 1.6-lutidineis addedto scav-
Dichloromethane. Dialkylaminomethylation.t The key intermediate in this reaction is the Mannich adduct(R2N:CH2)t formed upon treatmentof CHuClzwith secondaryamrnes.
-.rr,
ll NC"
NHt
EI2NH
cH2cr2,35o -;*
\Y*"'
""fr.ret, 90"/"
F. Souquet,T. Martens,and M.-B. Fleury,SC 23,817(1993).
132 Dicobaltoctaclrbonyl Dichloromethyl chloroformate. Carbamates,t Alcoholysis of the chloroformate leads to mixed carbonates, furnishes which are reactivetoward amines.Reactionwith 2-amino alcoholsdirectly oxazolones.
2,6-Dicyanato-9110-anthraquinone.
Cyanation.t The anthraquinone dcrl enaminesand enolatesof 1,3-dicarbonylc<
K. ButtkeandH.-J.Niclas,.9C24,3Z4t (199!
'T. Patonay, F. Mogyorodi,andL' Zolnai,SC24'2507(1994)' L. Hegedus,
Dichloromethyl phenyl sulfoxide. cHomologation of carbonyl compounds.t The adductsof the derived sulfinyl reacligand-exchange a to carbanion with carbonyl compounds have been subjected the tion of the sulfinyl group with EtMgBr. After rearrangementof the carbenoid,
Dicyanoketene acetals. Monothioacetalization.t One alkorr thio group using RSH or RSSiMer when c:l .vanoethvlene.
ring-enlargedproduct is formed.
OMe o
3
Pn-
YI
LDA $o
cr
NHrCI / HaO ;
CI
EtMgBr
rT.
.Y
ffioh
ll3-ll5' Dicobalt octacarbonyl. 13, 99-l0l; 14, ll'7-ll9;15, l17-l18; 16' L7, tO2-105 have been rePauson-Khand reaction. Numerous examples of this reaction alkynones,ra electron-deficient ported. Worthy of mentroning are those involving presence of the in version a catalytic methylenecyclopropaneas terminator,2 and triphenyl phosphiteand CO.3 are the rearIsomerization of 1-alkynylcyclopropanols.a 2-Cyclopentenones rangementProducts.
*(
-oMe coz(co)e,l-o"".
cnn,rAou"
c
(.,t
(1995)' S a t o h . Y . M i z u , T . K a w a s h i m a , a n d K . Y a m a k a w a ,T 5 l ' 7 0 3
Ph
PN
o tl () q.
(Pho)3P, ^
T. MiuraandY. Masaki,TL35,'1961(l99ar
Dicyclohexylboron halides. Aldolization.t'2 Using EtrN as a basc r\ stereoselective;therefore, aldolization ce
.rt the B-carbon of an esterinfluencesthc c ithers. Generally only a relativelysmall gn J rcyclohexylboroxy residue.
1. (Chx)2Bl- Et3N
NMe2
2. phcHo
in CClr in hgrtr!
t !
h . G a n e s a na n d H . C . B r o w n , " I O C5 9 . 7 3 4 6 r l l K . G a n e s a na n d H . C . B r o w n , J O C 5 9 , 2 3 3 6 r l l
90o/o
'T. R . H o y e a n d J . A . S u r i a n o ,J O C 5 8 ' 1 6 5 9( 1 9 9 3 ) ' (1994)' tA. S t o l l " , H . B e c k e r ,J . S a l a i i n ,a n d A ' d e M e i j e r e , T L 3 5 ' 3 5 1 ' l t 3 1 5 9( 1 9 9 4 ) ' 1 1 6 ' J A C S K ' C h u n g , Y . a n d L e e , N . J e o n g ,S . H . H w a n g , Y ' oN. I w a s a w aa n d T . M a t s u o , C L 9 9 1 ( 1 9 9 3 ) .
\..V'-Dicyclohexylcarbodiimide.14, llt Imide formation.' N-Carboxy-a-&\ \-protectedamino acids.Suchanhydrid rmines.
133 N,N'.Dlcyclohexylcarbodiimide
rr.i:. leads to mixed carbonates' !-.: : no alcoholsdirectly furnishes
2,6-Dicyanato-9110-anthraquinone. Cyanation.' The anthraquinone derivative readily transfers a cyano group to enaminesand enolatesof 1,3-dicarbonylcompounds. ' K. ButtkeandH.-J.Niclas,SC 24,3241(1994).
. . , . l l . 1 5 0 7( 1 9 9 4 ) '
aF iJJucts of the derivedsulfinyl reacligand-exchange a to ub.e;red the G.!::rngementof the carbenoid'
Dicyanoketene acetals. Monothioacetalization.t One alkoxy group of an acetal can be replaced by a thio group using RSH or RSSiMer when catalyzedby a dicyanoketeneacetalor tetracvanoethvlene.
,rr,.[ots{x
OMe
.-_?o -=^clI 68%
r r I 5 1 . 7 0 3( 1 9 9 5 ) '
c l 5 l l 7 - l l 8 ; 1 6 ,l l 3 - l l 5 ' rem;.:. oi this reaction have been a rr:.i :iectron-deficientalkynones'r of cf,'j \tlc version in the presence r'
o P€ t€
I
crn,nAolvte
CeHle,, SPh DMF,600 42h
80"/" T. MiuraandY. Masaki,TL35,7961(1994).
Dicyclohexylboron halides. Aldolization,t'2 Using EtrN as a base, the enolboration of carbonyl compounds is stereoselective;therefore, aldolization can be controlled. The substitution pattern at the B-carbon of an ester influences the configuration of the resulting ketene boryl ethers.Generally only a relatively small group can be accomodatedby a (Z)-related d icyclohexylboroxy residue.
1. (Chx)2Bl- Et3N
i-Clclopentenones are the rear-
OMe
NMe2
2. PhcHo
oHo I tl
enlfruu", I
inCCla 1.0o;2. 0o inhexane 1.0oi 2. -78o
n
oHo :
tl
enAy'^Hu", I
5:95 >97:<3
a\ K . G a n e s a na n d H . C . B r o w n , J O C 5 9 , 7 3 4 6 ( 1 9 9 4 ) . K. Ganesan and H. C. Brown, JOC 59,2336 (1994). 90%
I
. r i - r 5 .3 5 t 7( 1 9 9 4 ) ' . r { ( . l 1 6 . 3 1 5 9( 1 9 9 4 )
.V,N' -Dicyclohexylcarbodiimide. 14, l3l -132; 16, 128 Imide formation.t N-Carboxy-a-dehydroamino acid anhydrides couple with .V-protectedamino acids. Such anhydrides usually serve as acylating agents for .rmines.
134 N-Diethylalumino-2,2,6,6-tetramethylpiperidine C-Acylation of 1,3-dicarbonll compounds.z This transformation, which proceedsin CH2Cl2at room temperature,is catalyzedby 4-dimethylaminopyridine. In the cyclohexylation DCC behavesas a typical alkylatAr-Cyclohexylation,l ing agent. Promoters include HzSO+and AlCl:.
/Y'Y\ MeNi.i |
I
'H. Al-Badri,E. About-Jaudet, andN. Collington,S 1072(1994).
Diethylaluminum azide. Acyl azides.t Formation of RCoNr from estersusing this reagentproceeds in a nonpolar solvent(e.g., hexane)at room temperature.The obvious advantageis that inconveniencesand limitations imposed by the formation of acyl chlorides and the workup are eliminated.
lue,.
Ph
'C.-G. Shin,S. Honda,K. Morooka,andY. Yonezawa, BCSJ66, 1844(1993)' 2H. Tabuchi.T. Hamamoto, andA. Ichihara,SL 651(1993). t J . N . K i m , K . H . C h u n ga, n dE . K . R y u ,I L 3 5 ' 9 0 3( 1 9 9 4 ) '
Diethyl allylphosphonate. Lithiation and reaction with aldehydesprovide a-vinyl-p-hydroxyAlkylation.t phosphonates,which are precursorsof 2-diethylphosphonyl-1,3-dienes.The dehydration is easily accomplishedwith DCC-CuCl2 in refluxing CH2Cl2.
11 +
a
ft 'K.
M a r u o k a ,M . O i s h i , a n d H . Y a m
Diethylaminosulfur trif luorilc Replacementof oxygcn ltet ducedfrom a-cyanohydrins or I dif Iuoronitriles.2 Terminallydif luorinated allyh
/\Fq,
(_/o,
lV. H. Rawaland H. M. Zhong,TL 35,4947 (1994).
Diethylaluminum cyanide. strecker slnthesis.t N-sulfimines add a cyanide ion from Et2AlcN preferentially from a coordinationcomplex.Thus 1,3-asymmetricinduction arises from the chiral sulfinyl unit.
*"r',k,^{#
a-Fluorination of thiocthca DASTaloneor in combination *i
U. Stelzer and F. Effenberger, TA l. '8. B a r t m a n n a n d J . K r a u s e ,J F C a l . F. Teflier and R. Sauvetre,JFC 52. J 'M. J . R o b b i n sa n d S . F . W n u k . . t O C !
CN
*"r{ ^
Ph
72% (SS: SP = 70:30)
Diethyl (1,3-butadien-2-yl) pboq Diels-Alder reaction.t Thc presenceof a Lewis acid. The gel
ihe correspondingalkyl and silyl , rF.
A . D a v i s , R . E . R e d d y , a n d P . S . P o r t o n o v o ,I L 3 5 , 9 3 5 1 ( 1 9 9 4 ) .
N-Diethylalumino-2,2,6,6-tetramethylpiperidine. are convertedto indolesunder Fischerindole synthesis.t Phenylhydrazones mild conditionswhenthey are treatedwith the hinderedaluminumamide.Notably followsthe initial configurationof the hydrazones' the regiochemistry
H.-JL . i u , W .M . F e n gJ, . B . K i m . r r
Diethyl carboxymethylphosphc I - (D ial k y la min ome thyl ) tirll 3oestwofold Mannich reaction lo t "rndary amine reactant and CO: fr
Diethyl carboxymethylphosphonate 135
whichprols. This transformation' i. r.. l,'l-dimethylaminopyridine' as a typicalalkylat,i,,--occ behaves
^/V\
rvrenil | ! Ph
( / 6' 1844 1993)' r r - . . k ( ' S -6 " 1 rl C" -'1r
CH2Cl2' ; :- :ciluring rr'
'-lrl994)'
a reagentproceedsin D!:'...1.r\ using this that is advantage ;;.'.,,;r.. The obvious chloridesand the acyl of .",1.',.r"tr,t"n
..-a) ^l{
-'/.r-}J \-Aru'
+
Aet2 Z)-nvdrazo e-> 93"/' (E)'hidazone-> 42"/"
' a-vinyl-B-hydroxyl F . : . . 1 r - h ld e s p r o v i d e 1 , 3 d ienes' The dehydra,f,.-. n.'Vhonyl-
+
> 99:< 1 < 7:> 93
JOC 58' 7638 (1993)' K. Maruoka, M. Oishi, and H' Yamamoto'
(DAST)' 13' I l0-l l2; 16' 128-129 Diethylaminosulfur trifluoride 2-Fluoronitriles are proR-eplacementof oxygen functionality by fluorine' acyl cyanides give a'awhile ethers,r duced from a-cyanohydrins or their silyl dif luoronitriles.2 convertedto trifluoromethylalkenes'l Terminally difluorinated allylic alcoholsare
Et2NHSF3 CH2Cl2 - 700 -> 00
9!:
from Et' AlCN preleren*d.: , .rrnide ion the induction arises from . -t *..,ric
'
'
o ./ ' 9 N -_s. ' N ' J. \ph
Ar
H
,ao,o(ss:sF = 70:30)
may be performed with a-Fluorination of thioethers.a This transformation DAST alone or in combinationwith SbClr' (1993)' U. Stelzerand F. Effenberget,TA 4' 16l : E. BartmannandJ. Krause,JFC 61, I l7 (1993)' 'F. ' JFC 62, 183(1993)' TellierandR. Sauvetre 'M. J. RobbinsandS.F. Wnuk,"IOC58' 3800(1993)' Diethyl (1,3'butadien'2'yl) phosphate' Diels-Alderreaction.|Thesubstituteddienereactswithdienophilesinthe presenceofaLewisacid.Thestabilitytowardsacidsmakesiteasiertohandlethan rhe corresponding alkyl and silyl ethers' CJC 72' 2163(1994)' H.-J.Liu, W. M' Feng,J. B' Kim, and E' N' C' Browne'
r,
. - 1 5 9. 3 5 1 ( 1 9 9 4 ) .
lpiperidine'
under ---'^"?d COnVert( to indoles lh\.::J1ones are
l.:
amide'Notably ,i. it"aeredaluminum
hYdrazones' or:.i rration of the
Diethyl carboxymethylphosphonate' The phosphonoacetic acid underI-(Dialkylamtnomrinyqiinylphosphonates't Elimination of the secgoestwofold Mannich ,eaction tl giue the vinylphosphonates. primary adductsoccurs in situ' ondary amine reactant and COz from the
136 Diethyl methylphosPhonate
product, a triply functionalized compound i phosphonateare conceivable.
o (CHzO)n
(EtO),P'l\cooH ' '-tl RR'NH,PhH,^
(EIO\2P,qt I \..R
o
N I
Ap
R'
l \
29-921"
lH. Krawczyk,SC 24,2263(1994).
Diethyl chlorophosPhate. from Claisen rearrangement.t The quenching of the lithium enolates derived claisen for propensity allylic acetatesresults in enol phosphates,which show a higher be used rearrangementthan ketene silyl ethers. The mixed anhydride products can directly to generatecarboxylic acid derivatives'
o
o r-i.-.i-ar o|/b HO@.@{
B. Bonnet,Y. Le Gallic, G. Ple, and L. Duhem 'W. S. Shin, K. Lee, and D.Y. Oh, IL 36. 281 r I L D e l a m a r c h ea n d P . M o s s e t .J O C 5 9 . 5 4 5 . 1r l 9
Diethyl methylsulfonylmethylphospboo Vinylsulfunes.r Bothlithiationandco ultrasound. H. El Fakih,F. Pautet,D. Peters,H. Fillion.rr
oPo(oED2 I
y'-q.,
LOA:
crPo(oED2
EtgN- MeOH
Diethyl oxalate. Isatins.' These compounds are ob(e \-Boc anilines with diethyl oxalate follorrc
cHct3
)\:,/(
650
HMPA
77./"
P. Hewawasam and N. A. Meanwell.fL 35. 710 r R . L . F u n k ,J . B . S t a l l m a na, n dJ .A . W o s 'J A C Sf f s ' 8 8 4 7( 1 9 9 3 ) '
Diethyl methylPhosPhonate. in situ 1,1-Diiodoalkenes.t Diethyl diiodo(lithio)methylphosphonate is formed can also products condensation from MePO(OEt)r, LiHMDS, and iodine. The Horner be dehydroiodinated to give iodoacetylenes. (E)-Atlytic amines.2 Reaction of the lithiated methylphosphonateester with a with an nitrile, followed by addition of an aldehyde,furnishes a conjugatedimine amine. allylic gives the (e.g., NaBH+) with (E)-configuration.Immediate reduction
Diethyl phosphite. Aryl phosphonates.t Phosphite anroo DMF. Arylphosphonate esters are obtaincd Cyclic p-keto phosphonates.t A ncnitro epoxideswith diethyl phosphiteand r
o:"'
NeH - Df
(ElohPOH
o
BuLi,THF, -78o,t h;
il
(Eto)eP-"". PhcN, -780-> 50,t h; RCHO, -5o -> rt, 30 min
i
*".]
L-+*l
NaBH./MeOH
TN,
78o,1h->rt,1h
R/\"\Ph
83-85%(overallYiold)
Functionalized p-keto phosphonates.l lNote: Dimethyl methylphosphonate' After which should have exactly the same reactivity, is described in the cited report') of the esterification reaction of the a-lithio derivative with succinic anhydride and
a-Amino phosphonic esters.t A verr :hese phosphonopeptideprecursors involrer
rldes at 60"C in an ethanolicmedium conrr Reductive deconjugation ol 2-broto :nvolvesMichael addition, debromination rrnetic protonationofthe esterenolates.Trt : he reaction.
Diethylphosphite 137 product,a triply functionalizedcompoundis obtained.various syntheticusesof this phosphonateare conceivable.
o l l rEtO\zP:,4 r
,
I
\N-'
e
ot l
o
I
A t o
R'
Yo
29-92v"
Li _ P\-OMe OMe HOOC-COOH
o i
o l
t
l
--\_.Pr-OMe OMe I-cooH
'B. Bonnet,Y. Le Gallic, G. Ple,and L. Duhamel,S l07l (1993). tWS. Shin, K. Lee,and D.Y. Oh, TL36,2Bt (tggs). rl. D e l a m a r c h ea n d P . M o s s e t ,J O C 5 9 , 5 4 5 3 ( 1 9 9 4 ) .
rn-i : lhe lithium enolatesderived from hr-: .:ou a higher propensityfor Claisen ; :- '.:J anhydride products can be used \4.
Diethyl methylsulfonylmethylphosphonate, (EtO)rP(O)CHrS(O)rCHr. Vinyl sulfunes.' Both lithiationandcondensation with ketonesarepromotedby ultrasound. 'H. El Fakih,F. Pautet, D. Peters,H. Fillion,andJ. L. Luche,SC 24,3225(tgg4\.
P: ::.: t:
COOMe
E t 3 N- M e o H
I -.-1\
/\z\
cHcl3
I
Diethyl oxalate. Isatins.' These compounds are obtained by interception of the o-lithiated N-Boc anilines with diethyl oxalate followed by acid treatment.
650 83o/o
'P. Hewawasam andN. A. Meanwell,fL 35, 7303(1994). 5 l l 5 . . j - r1 9 9 3 ) .
is formed in situ Ih: :rc'thrlphosphonate can also products tr H rner condensation I
Diethyl phosphite. Aryl phosphonates.t Phosphite anions react with diaryliodonium salts in hot DMF. Arylphosphonate esters are obtained in 79-93Vo yield. Cyclic p-keto phosphonates.2 A new synthesis involves the treatment of anitro epoxides with diethyl phosphite and a base at room temperature.
ester with a l:r- ;led methylphosphonate with an imine lc :::'ntshes a conjugated amine' allylic the t * rrh NaBH.r)gives
'
='
-78".th->rt,th
R/,,.yPh
83-85%(ov€rall Yield) \.,rer Dimethyl methylphosphonate' r. rr:. .. .Jescribedin the cited report') After r-:::, .rnhvdrideand esterificationof the
(Y"
(Eto)2PoH
YPO(OEt)z
oT'
8O7o
T*,
NaBHy'MeOH
NaH . THF
a-Amino phosphonic esters.3 A very simple procedure for the preparation of these phosphonopeptideprecursors involves admixture of the phosphite with aldehydesat 60'C in an ethanolic medium containing NHaOAc and 3A molecular sieves. Reductive deconjugation of 2-bromo-2-alkenoatcs.a The process probably rnvolves Michael addition, debromination, and phosphite elimination prior to the kinetic protonation of the ester enolates.Triethylamine is required as baseto promote rhe reaction.
13E 2,2-Difluorovinyllithium and isoquinolines.5 Diethyl [(triphenylphosphoranylidene)aminolphosphonateis generatedfrom l-(triphenylphosphoranylidene)amino-methylbenzotriazole by reaction with diethyl phosphite anion. It undergoestypical Horner 2-Azadienes
reactions.
Diiodomethane. 13, ll3-115, 275-276: tC Ring expansion of silacyclobutanct. LDA-CH2I2 inserrsinto the cyclic C-Si bo have found some interesting synthetic applr
' 2 . - D . L i u a n d Z . - C .C h e n ,S 3 7 3( 1 9 9 3 ) . t D.Y. Kim and M. S. Kong,ICS(Pl)3359(1994)' rH. Takahashi, S 763(1994)' N. Imai, K' Onimura,andS. Kobayashi' M. Yoshioka, oT. Hirao,K. Hirano,andY. Ohshiro,BCSJ66,2781(1993). s A . R . K a t r i t z k yG J . J i a n gJ, O C5 9 ' 4 5 5 6( 1 9 9 4 ) . , . Zhang,and
Diethyl phosphoramidate. to acrylic esters in B-Amino esters.t The reagent is a Michael donor that adds free amines are liberThe toluene. in refluxing BuaNBr and KzCOr presence of the temperature. at room in benzene HCI with adducts Michael the treating ated on rK. Osowska-Pacewicka, S. Zawadzki,andA.Zwierzak'PSSE2'49 (1993)'
cnr+ j lil
Mez
&
Simmons-Smith reaction. Asymnnr containing a free hydroxyl group ar C-l rr elucopyranosides2 and their a-o- analogs'h cvclopropanes. (OBn
BsPSlVo\71,,n jg OH
Diethyl (trichloromethyl)phosphonate. Alkylphosphonate esters.t The carbanion generatedfrom dechlorination with BuLi condenseswith aldehydes(and some ketones). Catalytic hydrogenation of the (chlorovinyl)phosphonateproducts affords phosphonates.
ll#.71
o{r',
Ehan
o{*
'G.T. Lo*en and M. R. Almond,JOC 59,4548(1994).
Dif luoroiodomethane. A practical preparation of HCFzI is by reaction I,I-Difluoro-2-iodoalkanes.t of FSO:CFzCOFwith KI in MeCN between 30 and 40"C for 30 min. The iododifluoromethylationof alkenesis initiated by sodium dithionite. 'P. Cao,J.-X. Duan,and (1994). Q.-Y.Chen,CC'13'7
2,2-Difluorovinyllithium. a,B-Ilnsaturated acids and derivatives.t The adducts with carbonyl compounds are unstable.on treatment with HzSOa , HuSOr-MeOH,and EI2NLi-THF they are transformed into the unsaturated acids, methyl esters, and diethylamides' respectively.
Ph
F2C=CHLi
"x:
THF - EtzO -1000
'F.
T e l l i e ra n d R . S a u v e t r e , T L 3 4 , 5 4 3 3( 1 9 9 3 )
CFz
H2SOa -150
Ph
/-t"oor.',
An allylic alcohol may undergoan as\m ,.f a chiral ligand (e.g., a tartrate ester)to rl Trimethylaluminum can serve the sanE :odomethanefor cyclopropanation.5
Homologation of allylic alcohols.6 TL .rlic alcoholsbecomesa minor pathwa\ slr *hile using CH2IrEt2AlCl as reagents.Hoa
Methylenation of ketones.T The comb .i methylenatingagenr.The Wittig-like rcr iead are found to suppressthe reactivirl. of i :he Simmons-Smith reaction)is recovercdI Methylene homologation of vinylcq 'rhich undergotranspositionalalkylation.
&"" lc'r"ztr
RO€ -aC -> .r
Dliodomethane 139
l, : : rohenylPhosPhoranYlidene)e.9h,,ranylidene)amino-methylor: l: undergoestyPical Horner
Diiodomethane. 13, ll3-115, 275-276;16,184-185;17,155 Ring expansionof silacyclobutanes.tThe lithium carbenoidgeneratedfrom LDA-CH212 insertsinto thecyclicC-Si bondto give2-iodosilacyclopentanes, which havefoundsomeinterestingsyntheticapplications. cH2t2/ LDA JI
f. ^rrashi,S 763(1994).
Mez
THF, .78O
\^.,r-t 5l
Mez
Ar
837o
9*:
xr: rhat addsto acrylic estersin rrnc The free amines are libern/ene at room temperature. p r . s : . a 9( 1 9 9 3 ) .
Simmons-Smith reaction. Asymmetric methylene transfer to allyl glycosides containing a free hydroxyl group at C-2 arises from its directing effect. Both B-lglucopyranosides2 and their a-o- analogsrhavebeenexploitedfor the accessof chiral cyclopropanes. ,-oBn
BgPSlVorz\Ph OH
.rr:.J from dechlorinationwith I Crtalytic hYdrogenationof the
;;
(OBn
eno-$-Q "6^,oryor}",'n
OBn Et2Zn cq2l2
D3te'
lgrrJit()n of HCF2I is bY reaction at r'(. tor 30 min. The iododifluoht.,n:lc'.
'hc
rJducts with carbonYl comH SO.-MeOH, and EtzNLi-THF mct:\l esters,and diethYlamides'
-:*.
Et2zn
\--/ t"oo"
An allylic alcohol may undergo an asymmetric cyclopropanationoby attachment of a chiral ligand (e.g.,a tartrate ester)to the derived zinc alkoxide. Trimethylaluminum can serve the same role as Zn-Cu or Et2Zn to activate dirodomethanefor cyclopropanation.5 Homologation of allylic alcohols.o The Simmons-Smith reaction of certain allvlic alcohols becomes a minor pathway when they are treated with EtrAl/Et2AlOEt while using CH212-Et2Alclas reagents.Homoallylic iodidesare obtained. Methylenation of ketones.l The combination Zn-TiCla transforms CHzlz into r methylenating agent. The Wittig-like reaction is acceleratedby PbClr. Traces of lead are found to suppressthe reactivity of Zn toward CH212,but the reactivity (for the Simmons-Smith reaction)is recoveredby adding MerSiCl. Methylene homologation of vinylcoppers.s Allytmetat species are formed, *hich undergotranspositionalalkylation.
lCHzznl BCHO -400-> d
o (Y \-f-.R
,6"
0.5 h
80-91"/"
140 Diisobutylaluminum hYdride (1993). 'K. M a r s u m o t o ,y . A o k i , K . o s h i m a , K . U t i m o t o , a n d N . A . R a h m a n , T 4 9 , 8 4 8 ' 7 tA. B. Chareue and B. Cote, JOC 58,933 (1993). r A . B . C h a r e t t e ,N . T u r c o t t e , a n d J . - F . M a r c o u x , f L 3 5 ' 5 1 3 ( 1 9 9 4 ) ' nY. U k a . , i ,K . S a d a ,a n d K . I n o m a t a , C L 1 2 2 7 ( 1 9 9 3 ) . tJ. M . R u s s oa n d W . A . P r i c e , J O C 5 8 , 3 5 8 9 ( 1 9 9 3 ) ' o Y. Ukaji and K. Inomata , cL 2353 (1992). (1994)' tf. t u t u i , T . K a k i u c h i , Y . T a k a o k a ,a n d K . U t i m o t o ' J o C 5 9 , 2 6 6 8 ' 2 6 7 1 s A. Sidduri, M. J. Rozema, and P. Knochel ' JOC 58,2694 (1993)'
Diiron nonacarbonyl. 13, 320-321; 15, 334; 16' 351-353 Activation of allylic ethers. An allylic ether 7 to an electron-withdrawing group is activatedby forming the Fe(CO)+complex. on acid treatment ionization towards o."urc to generatethe allyl cation (still complexedto iron)' which is reactive substitution The etc.r enolates, ester malonate ethers, enol silyl as such nucleophiles
'S. Kikooka,M. Shirouchi.and Y. Kr : C . C a i n e l l iM , . P a n u n z i oM. . C o n r e 3809(l993). 'M. Lautens,P. Chiu,andJ.T.Colrrc 'M. Hayashi,T. Yoshiga,K. Nakarao 'J. M. ChongandJ. Johansen, fL 35. ^J. P. Marino and C. R. Hurt, SC 2f. 6 'D.J. K r y s a nS , C 2 4 , 1 5 8 9( 1 9 9 4 ) .
is stereoselective.2 'T. Zhou and J. R. Green,TL 34' 4497(1993). 'D. Enders,B. Jandeleit,and G. Raabe,ACIEE 33' 1949(1994)' 17' 123-125 Diisobutylaluminum hydride. 13, ll5-l16; 15, 137-138;16, 134-135; esters can of products reduction DIBALH The amines. and Monosilyl acetals those TMSoTf-pyridine'and with treatment by acetals be convertedinto monosilyl reagents'2 organolithium of addition the of nitriles into amines by unit. Opening of oxabicycles.3 The S7y2'reduction opens the 2,5-dihydrofuran This transformation. the assist to is required endo-oH Usually the presenceof an methodisapp|icabletotheelaborationoftheCrr-CzlSegmentofionomycin.
tsBu2AlH hexanes, a
837" Specialpreparations. a-Trialkylsiloxy aldehydes4and l-tosyloxy-2-alkanolss havebeensynthesizedusingDIBALHreductionofcyanohydrinsilylethersand epoxytosylates'respectively.Indolesand(Z)-allylicalcoholsareacquiredafter a-hydroxy simple manipulationsof the primary reductionproducts of nitriles and
Diisobutylaluminum hydridc-d Reduction of a-sulfinyl tao added to the medium. The relarrv opposite to that obtained withour t instead of ZnCl2.1
J .L . G . R u a n oA, . F u e r t ea, n dM . C I ' A . B . B u e n oM , . C . C a r r e n oJ,. L . G . I ( 1994). 'G. G u a n t iL, . B a n f i ,R . R i v a ,a n dM ,
Diisopinocampheylborane, ( Ipc! Chiral 1,4-diols.t Reactionol a rapid hydroboration, which is foll An alternative method2comprt! results in cyclic oxaboranes, tnra Prior to the oxidation the carbon c BuLi. The diols have been conw -piperidines.
esters,respectivelY.
anolz-/cru VNHz
iBu2AlH/ PhH, 0o; KF/ H2O,0o
""olzl{ \.,4N
o
"A"
6,:* THF..ltr
8H3. Sila M€Ol.l
Diisopinocampheylborane, (Ipc)zBH,end B derivatlves l4l I. Rrhman, T 49,8487 (1993).
\ i
..
olo
eg_lt.
FBu2AlH, -78o
,L-{
PhgP=CHR,2So
53-747" Or 5e 1668.2671 (1994). '.ri 9:
l::
i:.1
ts: 1 r\) an electron-withdrawing lcr ()n acid treatment ionization r, l:, 'n r. which is reactive towards !tc: in,llales, etc.r The substitution
9
-,:
'S. Kikooka,M. Shirouchi,andY. Kaneko,TL 34. l4gl ,lgg3\. rG. c a i n e l l i ,M . P a n u n z i oM, . c o n t e n t oD, . G i a c o m i n E i , . M e z z i n aa, n dD . G i o v a g n o lri4, 9 . 38090993). tM. Lautens, P. Chiu,andJ.T.Colucci,ACIEE12,2Sl (1993). {M. Hayashi,T. Yoshiga, K. Nakatani,K. Ono,and N. Oguni,TSO,2g|l (lgg4). 'J. M. Chong andJ. Johansen , TL 35,7lg7 (lgg4). nJ.P. MarinoandC. R. Hurt, SC 24,839(lgg4). 'D. J. Krysan,SC 24, t58g(tgg|).
lr- l.tl't:16, 134-135;17,123-125 of esterscan ,H :rJuctionProducts . I \ { S O T f - P Y r i d i n e ' atnhdo s e u ::
Diisobutylaluminum hydride-zinc chloride. Reduction of a-sulfinyl ketones. chelation control operates when Zncl2 is added to the medium. The relative configuration of the resultant alcohol is often oppositeto that obtained without the metal salt.r'2Magnesiumbromide can be used instead of ZnCl2.3
tt: j :I reagents.2 n : r 1 . t h e 2 . 5 - d i h Y d r o f u r aunn i t . r . : . ' r : t t h e t r a n s f o r m a t i o nT' h i s -( . i S m e n lo f i o n o m Y c i n .
'J. L. G. Ruano,A. Fuerte,andM. C. Maestro,TA S, 1443(lgg4). tA. B. Bueno, M.C. Carreno,J. L.G. Ruano,B. pefia,A. Rubio,andM. A. Hoyos,I50, 9355 ( 1994). 'G. cuanti, L. Banfi,R. Riva,and M.T. Zannetti,TL34,5483(lgg3\.
\ox
e h \j . . ' a n d l - t o s y l o x y - 2 - a l k a n o l s s n : ;ranohydrin silYl ethers and t l . r . : . l l c o h o l s a r e a c q u i r e da f t e r p: ,j.r.t\ of nitriles and d-hydroxy
Diisopinocampheylborane, (Ipc)2BH, and B derivatives. 13, ll7-l18 chiral 1,4-diols.' Reaction ofallyl ketoneswith this organoboraneproceedsby a rapid hydroboration, which is followed by an intramolecular reduction. An alternativemethod2comprisesenantioselective allylation of aldehydes,which results in cyclic oxaboranes, transboration with BHr . sMez, and then oxidation. Prior to the oxidation the carbon chain can be elongatedby reaction with BrcH2Cl, BuLi. The diols have been converted to optically active 2-alkylpyrrolidines and -piperidines.
^< 3-O
o
"4"
V),'t"r"'z TftF, -1000; BH3. SMe2 ; MeOH
_
?M" O,B\ t l
r"n{)
#)^ (> 98% ee)
Dirrl! borohydride 142 Diisopropoxytitanium(III)
are preThe useful synthetic reagents Functionarized l-atkenyrboronates, of the l-alkynes with (Ipc)zBH and treatment pared by hydroboration of substituted unO tetramethylethyleneglycol'3 alkenylboraneswittr acetald"t'ya" is a reducing agent that furCarbinols. B-Chlo;diis;pinocampheylborane group' carbinols in c-n bond geminal to rhe methyl nishes a hydride by severingttre o-hydroxyacetophetrifluoromethyl ketonesa'sand good ee are formed r.orri tr,. nones.olnterestingly,theconfigurationofthelatterseriesisoppositetothatofthe reduction products of o-methoxyacetophenones' 3-Heteroallylboranes.l.8The3-amino-and3.silylallylderivativesarevefy v a l u a b l e r e a g e n t s r o , t n e ' y n t t , e s i s o f a r r t i - 3 . a m j n o . l - a l k e nlatter - 4 . o lcases' s a n d aan n t ioxida-|-a|kenewith aldehydes'In the 3,4-diols'respectively,Uy-tonO"n'ation tive desilYlationis required'
Dilithium tetramethylcobaltate. Substitution of alkenyl and alLytyl tluorides with a methyl group in exccll ferrate reagent.
T. Kauffmann,R. Salker.and K.-U \ot'. C
Dimesityl(atkYl)borane. 14' 6 Homologation of alkYl halidcshalide to the homologous alcohol crpl ralkyl)lithium by deprotonationand tlr ' cies.Conventionaloxidationafter tltc all also be used as electroPhiles.
l-Pr2N. 7
2'usi',
BuLi - TMEDA;
.
BF3'OEt2
^J \
"l'"v\,'\ r
,-Pr2N, /
9611Q,-780;
OH I
.*;; *T MeOH
A. Pelter,L. Warren,J.W.Wilson.G F \ 1007( 1993).
OH
,/t
82")"aoM" ' C. A. Molanderand K' L' Bobbitt'JOC 59' 26'16(1994\' (1993)' p. eJi-t"i. s"row'andB' Singaram'TA 4' 189 ,T. Nguyen,D. Sherman, (1993)' 2s5l 23' SC Suzuki' A' and rA. Kamabuchi, T' Moriya'Nl rtaiyuutu' T 49' 1725(1993)' 'P.V. Ramachandran' A'V' f"oaolouit' undH'C' Brown' (1994)' Brown'rA 5' 106l' 1075 c i"ooo'ouic' sp.v. Ramachandran' B G";;';'u' T-d-Y (1994)' 2141 6P.V.Ramachandran' B coni' unoH C' Brown'TL35' ' e . C . V . B a r r e tat n dM ' A J e e f e l dI '4 9 ' 7 8 5 ?( 1 9 9 3 f - ; . ; . M . B a r r e tat n dJ ' W 'M a l e c h aJ' C S ( P l l)9 0 l ( 1 9 9 4 ) '
Di methylaluminyl phenyl sulfidc. 2-Alkyt-2-cyclohexenoncs.' Thc r by conjugateaddition and trapping of th eration of the double bond and remorll rnesylation.Actually, the liberatedthtd ,:ess;thus the final operation involres d
O -78o; Me2AlSPh,CH2C12, RCHO.THF,.78O
DiisoProPenYl oxalate' O x a l y l a t i o n . ' s e l e c t i v e r e a c t i o n w i t h n u c l e o p h i l e s i s a c ctwo o mdifferent plishable 'Forexamines' with formed in a stepwiseprocess are oxamides mixed ample, (1993)' 'M. Neveux,C. Bruneau'S' Lecolier'andP' H' Dixneuf'T 49'2629
borohydride'. Diisopropoxytitanium(III) (i-PrO)zTiClz and agent is prepared in situ from reducing 1,2'Reduction'' This cara,B-unsaturated of in the- reduction (phNEtrBH4. It sfrows fhemo.eleJtiuity bonyl comPounds' rK.S.Ravikumar,s.Baskaran,andS.chandrasekaran'JOC58'5981(1993)'
Ot{
. \ " t l vsn 36€5\
M . A . A r m i t a g e , D . C . L a t h b u r Y ,a n d M I
Dimethylamino(dimethyl)[o'hydror Alcoholprotection'' An alcohol (70-95%).Su :on at roomtemperature 'ore,the deprotection avoidsthe addrt
Dim€thylamino(dimethyl)[o-hydroxy.(E)-styryl]silane143
are Pre[u -r nthetic reagents of the ,L 13-rlBH and treatment h..::: glvcol.l fur:. ., reducing agent that in h : i lnethylgroup' Carbinols tc-.-'' and o-hydroxyacetoPhethat of the r ..":.- r\ oppositeto very i--: riall.,-l derivativesare . . .. xcn-'l-ols and 4t'tti-l-alkenecases'an oxidatdt. ln the latter
Dilithium tetramethylcobaltate. Substitution o! alkenyl and alkynyl halides.l Replacementof the chlorides and fluorides with a methyl group in excellentyields is achieved with the cobaltate or ferrate reagent. rT. Kauffmann,R. Salker,and K.-U. Vob,CB 126, 144'7 (1993).
Dimesityl(alkyl)borane. 14, 6 Homologation of alkyl halides.t A new way for the conversion of an alkyl halide to the homologous alcohol exploits the facile formation of dimesitylboryl(alkyl)lithium by deprotonationand the excellentnucleophilicityof the lithiated species.Conventionaloxidationafter the alkylation completesthe process.Epoxidescan also be used as electrophiles.
OH
"699, -780;
\ :
KF'H2O2 MeOH
-\^
,A. pelter,L. Warren,J.W.Wilson.C. F. Vaughan-Williams, and R. M. Rosser,T 49,2988, ( 3007 r993).
OH
rl
(1993)' rt,ii-r:1. fA 4, 189 :r . l-1 l85l (1993). ' {9. t1:5 (1993)' r(1994)' B"'*n. IA 5, 106l' 1075 H : l 9 9 r l ) . $ -
Dimethylaluminyl phenyl sulfide. 2-Alkyl-2-cyclohexenones.' The alkylation of2-cyclohexenonecan be initiated by conjugateadditionand trappingofthe aluminum enolatewith an aldehyde.Regeneration of the double bond and removal of the hydroxyl group are accomplished by mesylation.Actually, the liberatedthiolate displacesthe allylic mesylatein the process;thus the final operationinvolvesdesulfurizationwith Raney nickel.
I F:
O Ma2AlSPh, CH2C|2, -78o;
RCHO, THF, -78O
For exlc..::.:ler is accomplishable' a mines' d i f f e r e n t r r' 'c.r with two r-'
A
f
O
T
\.Aspn
" H
H O S P Meso2ct.NEt3,cH2ct2oo; a\^* -sio2,cH2cl2,rt
I
\,'/
ll
o
h
ErOH,250
r'f* t r l
51-64"/.
I 4 9 .2 6 2 9( 1 9 9 3 ) ' M. A. Armitage, D. C. Lathbury, and M. B. Mitchell' JCS(Pl) l55l (1994).
(i-PrO)zTiClzand rir:iJ rn situ from cara,B-unsaturated of r ::Jucrion
r : z - . t t ) C5 E ,5 9 8 1( 1 9 9 3 ) '
Dimethylamino(dimethyl)[o-hydroxy-(E)-styryUsilane. the dimethylaminogroupfrom siliAlcoholprotection.t An alcoholdisplaces' (70-957o).Suchsilyl ethersarephotolabile(254nm); thereron at roomtemperature 'bre,the deprotection avoidsthe additionof reagents.
144 DimethYldioxlrane
Y
""r"')tftz--p FOH
*
o-o
rN (254 nm)
THF
ROH
HO'
MoPO-C f
83-920/"
' M. C. PirrungandY. R. Lee,JOC5E' 6961(1993)'
DimethYl carbonate. of ketones may be followed by Ketonc-cster exchange't Carbomethoxylation deacylationinsituwhenthereactioniscarriedoutathightemperatures. Methy|ationofactivatedtoluenes,2Ary|acetonitrilesandmethylarylacetates aremonomethylatedatthebenzylicpositiononheatingwith(Meo)zCoandKzCo: in an autoclaveat l80oC' 3.Methyloxazolin.2.ones.lUndersimilarconditionsketoximesundergothe yield' very unusual heterocyclization in 22-48Vo (MeO)2C=O NOH
K2CO3,1900
,'^t-.-O.
I
ilFo
\-,,^N
487o
'M. Selva,C. A. Marques,andP' Tundo'G 123'515(1993)' tM. Selva,C. A. Marques,andP' Tundo'JCS(PI)t323(1994)' (1993)' tC. A. Marques,M. Selva'P' Tundo'andF' Montanati'JOC 58' 5765 14' 148; 15' 143-144; 16' 142-144 Dimethyldioxirane. 12, 413; 13' t20; in situ'l Generatedfrom Caro's acid and used prone to of allenic products Epoxidation. The epoxidation ::iP:l"l^.:re isoinduce group in proper distance may secondary reactions; tnus an aldehyde merization.2
!c:, ' o""\
X KzCOs/ MeOH
o
r
ll
),^)
o.-r< ,
OMe 837"
oxidations.Secondaryalcoholsareselectivelyoxidizedtoketones,including are C2-slmmetricl"anage;'''o sec;sec-l'Z-Drols'which vic-diols (without C-C ;; purity'l cal, give chiral ketols in high optical
!t
Sulfides are oxidized to sulfoxides.^( 'noval of a benzylthioethylgroup? from 1 nakes the group base-labile.When thc s rears chiral ligands, the oxidation beconx Cyclic thioamidesare desulfurizedto i Ketoximes,rohydrae C:N - C:O. rr)nyl products.
Hydroxylations. Titanium enolatest on exposurt :urnish a-ketols (60-97%o)ta ( 7 8 ' C , m i n ) . I :.rpid De-O-benzylation.ts The oxidatirc 'rher functional groups,including second Oxidation of aromatic and hctctol Tethoxyarenesto afford p-quinones'u rcg Benzofurans and substituted indoles u '.rngereadily to give benzannulatedlactoo ' ' malealdehyde,rewhich can be trapped I
e)
\1 o-o M€2CO
/-r
or-rc (
00,0.5h
(- W. Jones, J. P. Sankey, W. R. Sandcrsor l994). l K. Crandall and E. Rambo, IL 35' l'tt9 t R C u r c i , L . D ' A c c o l t i , A . D e t o m a s o ,C . F u r \'ry. TL 34,4559 (1993). P B o v i c e l l i , P . L u p a t t e l l i , A . S a n e t t i .a n d E L - D ' A c c o l t i , A . D e t o m a s o ,C . F u s c o . A . R t R S . G l a s sa n d Y . L i u , Z L 3 5 , 3 8 8 7 ( 1 9 9 { t T - H . C h a n a n d C . - P .F e i , C C 8 2 5 ( 1 9 9 3 ) * i t, \ t
A . S c h e n k ,J . F r i s c h , W . A d a m , a n d F P C l a u d i a , E . M i n c i o n e , R . S a l a d i n o .a n d I A. Olah, Q. Liao, C.-S. Lee, G. K. S- Pn A l t a m u r a ,R . C u r c i , a n d J . O . E d w a r d s . Saba. SC 24' 695 (1994)-
Dinethyldioxirane 145
X
o*o
F--(254 nm)
ROH
Me2CO- CH2Cl2
MsCN
00.8h
83-92"/o
>960/o (g4o/oeel
Sulfides are oxidized to sulfoxides.nOne applicationof this reaction is the reThe oxidation moval of a benzylthioethylgroupT from protected oligosaccharides. makes the group base-labile.When the sulfide is coordinatedto a metal that also
'retones may be followed bY )f hrshtemPeratures. afld methyl arYlacetates 11111j3r (MeO)zCOand KzCOr *tth 11;
bearschiral ligands,the oxidationbecomesenantioselective.s Cyclic thioamidesare desulfurizedto afford imines.o give carC:N - C:O. Ketoximes,r0hydrazones,rrand diazo compounds1213 bonyl products.
611;,,n.ketoximes undergo the
Hydroxylations. Titanium enolatesundergo diastereoselectivehydroxylation to furnish a-ketols (60-97vo)taon exposureto dimethyldioxirane.The reactionis very r a p i d( - 7 8 " C , l m i n ) .
\ - c Ve
€',
De-O-benzylation.t5 The oxidative cleavage occurs without affecting many other functional groups,including secondaryalcohol, OTBS. Oxidation of aromatic and heteroaromatic cornpounds. The oxidation of methoxyarenes to afford p-quinones'orequiresacid catalysts. Benzofurans and substituted indoles undergo epoxidation, but the products rearrangereadily to give benzannulatedlactonesrT Furan itself is converted and lactams.rE ro malealdehyde,re which can be trappedby Wittig reagents.
9!.3
o ( t t s 7 6 5( 1 9 9 3 ) .
lJl
lJ-l: 16' 142-144
llc:.:; comPoundsare Prone to r r l . r J l s t a n c em a y i n d u c e i s o -
o
: k ' .
OMe
83'. l r .,rrdized to ketones, including Drols, which are C2-slmmetri-
a
X
o-o MezCO 00,0.5h
Ph3P=CHCHO
H
C
cHO
cq2clz
J.:\
OHi
\:J
-CHO
62%
C . W . J o n e s , J . P . S a n k e y , W . R . S a n d e r s o n ,M . C . R o c c a , a n d S . L . W i l s o n , J C R ( S ) l l 4 (t994). rJ. K . C r a n d a l l a n d E . R a m b o , T L 3 5 , 1 4 8 9( 1 9 9 4 ) . 'R. C u r c i , L . D ' A c c o l t i , A . D e t o m a s o ,C . F u s c o , K . T a k e u c h i ,Y . O h g a , P . E . E a t o n , a n d Y . C . Yip, rL 34, 4559 (t993). 'P. B o v i c e l l i , P . L u p a t t e l l i , A . S a n e t t i , a n d E . M i n c i o n e , T L 3 5 , 8 4 7 ' 1( 1 9 9 4 ) . 'L. D ' A c c o l t i , A . D e t o m a s o ,C . F u s c o , A . R o s a , a n d R . C u r c i , J O C 5 8 , 3 6 0 0 ( 1 9 9 3 ) . -R.S. G f a s sa n d Y . L i u , r L 3 5 , 3 8 8 7 ( 1 9 9 4 ) . -T.-H. C h a n a n d C . - P .F e i , C C 8 2 5 ( 1 9 9 3 ) . 'W. A . S c h e n k ,J . F r i s c h , W . A d a m , a n d F . P r e c h t l , A C I E E 3 3 , 1 6 0 9 ( 1 9 9 4 ) . 'C. C l a u d i a , E . M i n c i o n e , R . S a l a d i n o ,a n d R . N i c o l e t t i , T 5 0 , 3 2 5 9 ( 1 9 9 4 ) . G . A . O l a h , Q . L i a o , C . - S . L e e , G . K . S . P r a k a s h ,S L 4 2 7 ( 1 9 9 3 ) . A . A l t a m u r a , R . C u r c i , a n d J . O . E d w a r d s ,J O C 5 8 , 7 2 8 9 ( 1 9 9 3 ) . 'A. S a b a ,S C 2 4 , 6 9 5 ( t 9 9 4 \ .
145 1,3-Dimethylirnidazoliumiodide lrP. (1993)' D a r k i n s , N . l v l c C a r t h y ,M . A . M c K e r v e y , a n d T ' Y e ' C C 1 2 2 2 'oW. A d a m , M . M i i l l e r , a n d F . P r e c h t l ,J O C 5 9 ' 2 3 5 8 ( 1 9 9 4 ) . IsR. Csuk andP. Ddrr, I50,9983 (1994). 'ow. Adam and M. Shimizu' S 560 (1994). ' t w . A d a m a n d M . S a u t e r ,7 5 0 ' l l 4 4 l ( 1 9 9 4 ) . t'2. Z h a n g a n d C . S . F o o t e , , / A C Sf 1 5 ' 8 8 6 7 ( 1 9 9 3 ) . ''B.J. Adter, C. Barrett, J. Brennan' P. McGuigan, M'A' McKervey' and B' Tarbit' CC 1220
MeNA
NPh ll ArAct
,' lsrm
+ A''CHO
NaH / T}f
A . M i y a s h i t a , H . M a t s u d a ,a n d T . H i g a s h r m .
( 1993).
N,N-Dimethylformamide-phosphoryl chloride' of o-hydroxyalkylCyclodehydration.t A mild and efficientcyclodehydration to largeis adaptable method The Cl-. phenolscalls for the useof clcH:N*Mez scaleoperations. OH l ^
n
pnnoloA&o.vovPh
(Y' \.Aox
H ofo^o^en
Dimethyl methylphosphonate. 16, 145 Cycloalkenones. The nucleophilic a disubstituted 1,3-cycloalkanedionesnas Wadsworth reaction to give 3-substituted l The reaction of the same reagent ritl phonates),which may undergocyclization rapid aldolization, permitting subsequcnlr I -cyclohexenones.
Cl' [CICH=NMe2]+ EtsN
o
9]---o'--o--en LiCH2PO(OM6)2 78"/o
,\
t i l I
rP.A. Procopiou, A.C. Brodie,M.J. Deal,andD'F' Hayman'TL34''7483(1993)' N, N-Dimethylformamide -th ionyl chloride' sulfene.t Methanesulfonic acid gives sulfene (CHt:59r;
on reaction with the
Vilsmeier reagent. 'D. Prajapati, S 468 (1993)' S.P. Singh'A. R. Mahajan,andJ' S Sandhu,
2,2-Dimethylhydrazino(di methyl)aluminum. and Hydrazones.t The reagent is prepared from N,N-dimethylhydrazine of unretrimethylaluminum in hot toluene (977o yield).It is useful for derivatization substituted active ketones (e.g., ferrocenyl ketones) in refluxing toluene. The fully hydraTropone hydrazonescan undergo exchangeon reaction with NzH+ in ethanol. method' this by zone, which has previously been unavailable, can be prepared ' B . B i l s t e i na n dP . D e n i f l ,S 1 5 8( 1 9 9 4 ) .
1,3-Dimethylimidazolium iodide. presence a-Diketones.t N-Phenylimidoyl chlorides react with aldehydesin the resultofthe ofthe imidazolium iodide and a base (ylide generation).Acid hydrolysis ing o-keto imines leads to a-diketones'
2H3%
/.COOMa :r.COOMe
LicHzpo(oMe)z-
I g po( | .-u.
luq" I
L
T . F u r u t a . E . O s h i m a . a n d Y . Y a m a m o t o .t C :E. W e n k e r t a n d M . K . S c h o r p ,J O C 5 9 , 1 9 4 3| V. Mikolajczyk and M. Mikina, JOC 59.6ft
Di methyl(methylthio)sulfon ium srlts. The triflate is effe< Glycosylation' rllylcarbamoyl group for reaction with gl1
Disulfidc bond formation.z Couplir achievedon treatment with the tetrafluom
H. KunzandJ. Zimmer,TL34,2907 (199\t 'P. Bishop,C. Jones,andJ. Chmielewski, fL I
Dimethyl(methylthio)sulfoniumsalts 147
-:t ,1993).
It g
NPh ll ArAcl
\1,i':'rr€\. and B. Tarbit' CC 1220
krJ: nr tl ration of o-hydroxyalkylhc rrc'rhod is adaPtableto large-
'
+ AI'CHO
MeNa i NMe r - v
NPh ll
nr.\rZAr NaH / THF
O I
,n,
l:
l
l
o
l
nr.\.,A/ l
o
A . M i y a s h i t a , H . M a t s u d a ,a n d T . H i g a s h i n o , C P B 4 0 , 2 6 2 7 ( 1 9 9 2 ) .
Dimethyl rnethylphosphonate. 16, 145 Cycloalkenones. The nucleophilic attack of lithiomethylphosphonateson 2,2' disubstituted 1,3-cycloalkanedionesresults in fragmentation and EmmonsWadsworth reaction to give 3-substituted 2-cycloalkenones.' The reaction of the same reagent with a,<.r-diestersfurnishes bis(B-ketophosphonates),which may undergocyclization.2r The glutarate-derivedspeciesundergoes rapid aldolization, permitting subsequentaddition ofaldehydes to generate3-alkenyl2-cyclohexenones.
..' '
o{^o^o^Ph
o
- o - Ph
,--n)tto
LiCHzPO(OMe)2
H
M63SiCl
78"k
l\-
c
r u 3 4 , 7 4 8 3( 1 9 9 3 ) .
t ' l { =SO.) on reactionwith the
--Y t r l 2g-93V"
/.COOM9 .-_.COOMe
t - - ' r68(I993).
,\
LicH2po(oM6)z-
I g Po(oMe)2 ff l . N .-fPo(oMelz r^\ | | l.t-.^o L
RCHO
(/\
nrcri rr rth aldehydesin the presence n::, :.' Acid hydrolysis of the result-
a)
/(Meo)r\
\* R=Ph
and fr ':' \ .V-dimethYlhYdrazine unrer. -.c'lul for derivatizationof rr:.: l()luene.The fully substituted 11"I H. in ethanol' TroPonehYdrar :'.' lrepared bY this method'
o il
71%
T . F u r u t a , E . O s h i m a , a n d Y . Y a m a m o t o ,H C 3 , 4 ' l l ( 1 9 9 2 ) . '8. W e n k e r t a n d M . K . S c h o r p ,J O C 5 9 , 1 9 4 3 ( 1 9 9 4 ) . M. Mikolajczyk and M. Mikina, JOC 59,6760 (1994).
Di methyl(methylth io)sulfon ium salts. The triflate is effective in the activation of an anomeric NGlycosylation' rllylcarbamoyl group for reaction with glycosyl acceptors. Disultide bond formation.2 Coupling of cysteine units in peptides is easily echieved on treatment with the tetrafluoroborate salt. H. KunzandJ. Zimmer,TL34,290'7(1993). 'P. Bishop,C. Jones,andJ. Chmielewski,IL 34,4469 (1993).
148 DimethYlsilYldichloride
147;16' 146;17' 126 Dimethyloxosulfoniummethylide' 14, 152;15' ethers' enol give silyl Methylenation.t Acylsilanes
PhySiMe3
Me2s(o)cH2Na
tnYot't"t
*
tnf.,"".
THF, -8OO
Dimethyl sulfide-N-chlorosuccinir In thc ; Methylthiomethylation. C-alkylauor undergo dole derivatives2 reagents.
o
60"/o(86:14)
OH
w i
ylide with enones can be performed in Cyclopropanation. The reaction of the under the same conditions epoxsolid state (yields 79-9lvo) using KOH as base.2
\/
Me2S,NCS l
l
CH2Q!2, -78o
the idesandaziridinesareobtainedfromsaturatedketonesandimines,respectively. 8343(1993)' 'T. Nakaiima,M. Segi,F. Sugimoto, R' Hioki' S' Yokota'andK' Miyashita'T49' tF. Todaand N. Imai, JCS(PI)26'13(1994)'
1,4-Dimethylpiperidine-2'3-dione' a.Diketones.,Bothsymmetricalandunsymmetricala-diketonescanbemade from organometallic reaction with the dilactam' rU.T. Mueller-Westerhoff andM' Zhou'JOC 59'4988(1994)'
S . K a t a y a m a ,T . W a t a n a b e ,a n d M . Y a n tS. K a t a y a m a ,T . W a t a n a b e ,a n d M . Y e n
Di methylsulfon ium methYlide. Vinylation.' Carbonyl comPoo give allylic alcoholsvia epoxide inta All Oxidative methylenation: give alll epoxides alkenes.Similarly,
Ms2S(O)CHz!
13' 122: 16' 146-147 N,N'-Dimethylpropyleneurea (DMPU)' Solventforalkylation.|N-AlkylationofchiralaminesinDMPUgivessecondary amines in excellentenantiopurity' rE. Juaristi,P. Murer,andD' Seebach' S 1243(1994)'
THF,.10p-d.>
R
Me2S(O)qq!
o,)-t
DimethYlsilYl bistrif late' Enolsilylation.,silylenolatesderivedfromthisreagent(inthepresenceof i-PrNEtz)undergoaldolandMichaelreactionswithoutadditionalcatalysts. rS. Kobayshiand K. Nishio,JOC 58' 2647 (1993)'
-ll4 Dimethylsilyl dichtoride' 17, ll3 dialkoxysilanes't Tethering through
The linking of hydroxyl groups from two
moleculesfavortheirsubsequentreaction.Moreimportant,thetacticaffordsstereointramolecularized glycosylation' control in these reactions, as shown in an 'M. Bols.r 49, 10049(1993).
J . H a r n e t t , L . A l c a r a z ,C . M i o s k o w s k r .J
3s.20090994).
'L. Alcaraz,J.J. Harnett,C. Mioskor's TL 35, 5449,5453(1994).
Dimethyl sulfoxide. 13, 124; 16. l'f! a, p- Un satu rat ed aldehYdcs.' 160'C gives the conjugated aldehyda
B. Plt C. S. Rao.M. Chandrasekharam.
Dinethyl sulfoxide 149
l.r- 16. 146:17,126 cl:.a:.
"nf''"",
6i\t€
Dimethyl sulfide-N-chlorosuccinimide. Methylthiomethylation, In the presenceof a tertiary amine,phenols'and inundergoC-alkylationwith the sulfoniumsalt derivedfrom the two dolederivatives2 reagents.
o \ +
5:'' ,
OH
86 14)
Me2S,NCS
t-"\-
It q:lh enonescan be Performedin c t nJer lhe sameconditionsePox\cr 're. and imines' respectively' x r : r J K M i y a s h i t af ,4 9 '8 3 4 3( 1 9 9 3 ) '
U
-T'^+,
,so
o
SCH3
v
cH2ct2, -78o
90%
'S. Katayama,T. Watanabe, and M. Yamauchi,CPB 41,439(1993). 'S. Kaiayama,T. Watanabe, and M. Yamauchi,CPB 40,2836(1992).
Di methylsulfon ium methylide. rnrctrrcal a-diketonescan be made
B
--:
Vinylation.' Carbonyl compounds react with two equivalents of the ylide give allylic alcoholsvia epoxide intermediates. Oxidative methylenation ' Alkyl halides and mesylates are homologated alkenes.Similarly, epoxidesgive allylic alcoholswith one more carbon atom.
1: l6 l-t6-147 h:::. .rminesin DMPU gives second-
Me2S(O)CH2Li THF , -10o- 0o -> rl
91"/" -FMez
n
Mo2S(O)CH2Li
)_x
R''
R
^Y F{
II t l
x-
)
+
\
_
R -
R''
or:-. rhr\ reagent (in the presence of $ :: :\rut additionalcatalysts. J. Harnett,L. Alcaraz,C. Mioskowski, J. P. Martel,T. L. Gall, D.-S.Shin,andJ. R. Falck,TL 35,2009(1994). t L. Alcaraz,J.J. Harnett, C. Mioskowski, J. p. Martel,T. L. Call, D.-S.Shin,andJ. R. Falck, rL 35, 5449,5453(1994).
l: r.I rng of hydroxyl groups from two ! ::rportant, the tactic affords stereorm, .ci ularized glYcosYlation'
Dimethyl sulfoxide. 13, 124:16, 149 a,B-Unsaturated aldehydes.t Heating B-hydroxydithioacerals in DMSO at 160"Cgives the conjugated aldehydesin 63-927o yield. C.S. Rao,M. Chandrasekharam, B. Patro,H. Ila, andH. Junjappa, I50,5783 (1994).
150 DiorganYltellurides
Dimethyl sulfoxide-trimethylsilyl chloride' 15' 146 chlorides'r Substitutionat C-2 of pyrrolesis (Pyrrol-2-yl)dimethylsulfonium in MeCN at 0"C. accomplished (1993). rF.Bellesia, andA. Pinetti,JHC30,617 u.M. Pagnoni, F. Ghelfi,R. Grandi, 1'1-dioxide' 3,3-Dimethyl-1,2,5'thiadiazolidine acid and Esters,t The derivedzwitterionicspecies(1) can be usedto condense
J. P. Marino.F. Tucci.andJ.V.Come ' z.-L. Zhou,Y.-2. Huang,andL.-L. 5
Diphenyl azidophosphonate (= | Isocyanates.t This reagenth: The reaction on conjugated acids p .rdditions. Er3N-(Pho)ff\
alcoholpairs. * O..^rO P h s P -p ' D ' 1 1 RCOOH +
R'OH
0)+
MgCN.
RCOOR'
' J.L. Castro, andR.G. Ball,JOC59'2289(1994)' V.G. Matassa, Dinitrogen pentoxide. andaziridinesareopened Opining of small heterocyclcs.tEpoxides,oxetanes, to form dinitratesor nitroaminoethylnitrates'
'4
?t
?*o' \,^a
NzOs/ CHzClz 00-50
J.H. Rigby,M. Qabar,G. Ahmed.rr 'A. S.Thompson, G. R. Humphrey. A s8. s886fl993).
Diphenyl chlorophosphonate (= , Azirenes from amides.' Kac lates.Further reactionwith NaN. I
\ , /NHPh ,/-\ o
.
o,No)c ON02
50-100
J.M. Villalgordo and H. Heimgartrrr
88V"
and SOz has the obvious Nitration.2 A new nitration system consisting of NzOr reagentsis very easily of excess any since products, advantagein the isolation of the temperatures' low at formed removed. Thus 3-nitropyridine is readily (1993). 'P. colding,R.W.Millar, N.C. Paul,andD.H. Richards, T 49,7037,7051,7063 'J. M. Bakkeandl. Hegbom,ACs 48' l8l (1994)' Diorganyl tellurides. are (Z)-Alkenylcuprates.t (Z)-Dialkenyl tellurides, prepared from alkynes' (2-thienyl)cuBu(CN)Liz' readily transformed into cuprate reagentsby mixing with Withthesespeciesallthetypicalcupratereactionscanbecarriedout. to stabilized telOlefination of aldehyttes.' Diazo compounds are converted of a catalytic presence in the luronium ylides by diorganyl tellurides (typically BuzTe) feasible' is amount of cul. The olefination of aldehydeswith such reagents PhCHO + Nr1
Alkyl azides.' The substitutr ro the Mitsunobu reaction.
oN02 go"/"
N2O5/ CH2Cl2
A
,cooMe
Bu2Te- Cul
'cOOMe
Ph.
,cooMe 'COOMe
100p 91"/o
Diphenyl diselenide. 13, 125 A new preparativemethodl usc PhOH in DMF. Air oxidation of th Ox idat iv e f un c tionalization t nitrate in methanolPh2Se2initiat hols undergo phenylselenocycloct photoinduced electron transfer pn be replaced.
(o^(
PhS€S€Ph C16H6(CN)2 / iiLOr
p-Hydroxy ketonesfrom cpc ani seneratethe benzeneselenolate ronesis achieved.N-Acetylcycte
Diphenyldiselenide 151 15. .-lf. t S:hiritution
!
{
at C-2 of PYrroles is
P i n e t r r .J H C 3 0 , 6 l 7 ( 1 9 9 3 ) '
h. acid and t I .cn b€ usedto condense
'J. P. Marino,F. Tucci,andJ.V.Comasseto, SL 761(1993). ) 2 . - L . Z h o u ,Y . - 2 .H u a n ga, n dL . - L . S h i ,I 4 9 , 6 8 2 1 ( 1 9 9 3 ) . Diphenyl azidophosphonate (= diphenyl phosphorazidate). Isocyanates.t This reagenthas similar properties to diphenylphosphinic azide. The reaction on conjugated acids produces isocyanateswhich can be used in cycloadditions. EtsN- (PhO)zPONsl MeCN, A
s RCOOR' t. ::\e r1994).
:s. , \etanes. and aziridines are opened
Alkyl azides.' The substitution of an alcohol to give the azide is an alternative to the Mitsunobu reaction. 'J.H. Rigby,M. (1993). Qabar,G. Ahmed,andR.C. Hughes,749, 10219 tA. S. Thompson, G. R. Humphrey, A. M. DeMarco,D. J. Mathre,andE. J.J. Grabowski, ./OC s 8 , 5 8 8 6( 1 9 9 3 ) . Diphenyl chlorophosphonate (= diphenyl phosphorochloridate). Azirenes from amides.t Ketene iminium salts are generatedfrom amide enoIates.Further reactionwith NaNr leadsto 2-aminoazirenes.
ONO2
Y oN02
.
r-\
9Oo"
NHPh
'J. 88"/o
Ir.r::.! tri N:Or and SOzhas the obvious rc i:r\ excessof reagentsis very easily nc: it low temPeratures. 7063(1993)' x:.::,:.. T 49.7037,7051,
are lllu::Je:. prepared from alkynes' r n::\rnq with (2-thienyl)CuBu(CN)Liz' r ! r , , x . c a n b e c a r r i e do u t ' to stabilized telF.unJ. are converted ellr Bu:Te)in the presenceofa catalytic ; r rth such reagentsis feasible' I -
-
Ph. \:{
.cooMe
'cooM"
; 91v"
NHPh
LDA / THF (PhO)2PONi NaN3/ DMF
r:\o\X.oNo,
t-.
** [?'""1
M . V i l l a l g o r d o a n d H . H e i m g a r t n e r ,H C A 7 6 , 2 8 3 0 ( 1 9 9 3 ) .
Diphenyl diselenide. 13, 125 A new preparativemethodl usesdiphenyliodonium chloride and (EtO)zP(O)SeNa, PhOH in DMF. Air oxidation of the product in aqueousNaOH is needed. Oxidative functionalization of alkenes. Activated by cerium(IV) ammonium nitrate in methanolPh2Se2initiates addition to an alkene. Some unsaturatedalcohols undergophenylselenocycloetherification,r and in casethat the activationis by a photoinduced electron transfer process the phenylselenogroup of the products can be replaced.
("" (
PhS€SePh C1oH6(CN)2 / MoOH
tN
a"r, ]
aoy''ou"
('J
70/"
B-Hydroxy ketones from epoxy ketones.o Using thiol/diselenide exchange to generatethe benzeneselenolateanion, catalytic reductive ring opening of epoxy ketones is achieved.N-Acetylcycteine may be employed as the supplementaryreagent.
dicarboxylate 152 Diphenyldlselenide-phenyliodine(III) Peptide synthesis.s coupling reaction using Ph2se2-BurPis a replica of the previous method in which a diaryl disulfide is employed. tZ.-D. Liu andZ.-C.Chen,SC 23,26'13(1993). tC. Bosman,A. D'Annibale,S. Resta,and C. Trogolo' TL 35' 6525(1994)' rG. Pandeyand B. B.V.S. Sekhar,JOC 59,7367(1994). tL. EngmanandD. Stern,JOC 59,5179(1994). 55.K. Ghosh,U. Singh,M. S. Chadha,andV. R ' Mamdapur, BCSJ66' 1566( 1993)' Diphenyl diselenide-ammonium persulfate. y-Oxy u"B-unsaturated esters.t Transposed oxygenation of B;y-unsaturated esters by the reagent combination in hydroxylic solvents is initiated by oxidation of PhzSez.The addition to the double bond is followed by another oxidation of the phenyl selenide and selenoxide elimination. The elimination seems to occur only when a conjugate system is formed. Note that B;y-unsaturatedacids are converted to butenolides,2and a-alkenyl B-keto estersto furans.r Heterocyclization. 3-Butenyl ketoximes give either 1,2-oxazines or cyclic nitrones, depending on the relative configuration of the OH and the unsaturated side chain.aOxazine formation is possibleonly when the oxygen atom of the oximes is on the same side as the double bond. pry-Unsaturated hydroxamic acids do not have the same geometrical restriction. However, a kinetic process leads to cyclic N-hydroxy imidates, and the thermody-
Azido- selencnylation.' The introdt saturatedketone allows azacyclesto bc p 3-butenyl ketonesis particularly conveor the facile elimination of the selenenylgn ' D.-W.Chen andZ.-C. Chen,TL 35, 7637t l' r M. Tingoli, M. Tiecco,and L. Testaferrr.y'6
Diphenyl disulfide. 14, 155-156 The (Z)- t Stilbenc isomerization' (E)-Setective Wittig reactions.: Tf PhzSzunder visible light to maximize tb
Oxidativc sulfenylation of fluorit the amines into sulfenylatedimines, *'hi reagentsand enolates. y-Phenytthio ketones.a Thesc coml condensationinvolving a-mercurio kelol
P h C o c H 2 H s C l - l l
\-,/
namic reaction products are the N-hydroxylactams.s
M. A. Ali and Y. Tsuda,CPB 40,2842 tl99 :J. K. Matilainen,S. Kaltia,andT. Hasc,5L 'T. S. lchikawa,andA. Konno.I Fuchigami, 'c. A. RussellandS.V.Kulkarni,JOC sE.7
/SePh HoN^o)-/
HON--\'
/n \ 'stz,\ /
+ PhSeSePh
2- Diphenylmethylsilylethanol. The prut Phosphorus protection.t by fragmentation using aqueous NH.OI
/SoPh
+ (NHr)zSzOa
H
o4rY 6x
Isoxazolidines
are also available
from
o-allyl
hydroxylamineso
approachand is useful for internucleorrd and
o-allyl
andI V. T. Ravikumar,T. K. Wyrzkiewicz,
oximes.t 'M. tM. tM. nM. tM. uM. tM.
Tiecco, L. Tiecco, L. Tiecco, L. Tiecco, L. Tiecco, L. Tiecco, L. Tiecco, L.
T e s t a f e r r i ,M . T e s t a f e r r i ,M . T e s t a f e r r i ,M . T e s t a f e r r i ,M . T e s t a f e r r i ,M . T e s t a f e r r i ,M . T e s t a f e r r i ,M .
Tingoli, L. Bagnoli,and C. Santi, CC 637 (1993)' Tingoli, L. Bagnoli,and C. Santi, SL 798 (1993)' Tingoli, and F. Marini, 5L373 (1994)T i n g o l i , a n d F . M a r i n i , J C S ( P I ) 1 9 8 9( 1 9 9 3 ) ' Tingoli, and F' Marini, CC22l (1994). Tingoli, and C. Santi, TL36' 163(1995). Tingoli, L. Bagnoli,and F. Marini, CC 235,237 (1995\'
Diphenyl diselenide-phenyliodine(III) dicarboxylate. of in the presence with PhI(OCOCF:)z Selenosulfonates.tOxidationof PhzSez in one step(68-817oyield)' salt givesthe Se-sulfonate an arenesulfinate
Diphenylphosphine. Free radical cycrization,'
I1
a)\' -'
\.
PtLtH
\-,,,
X = O, NCOOlrrh
J.E. Brumwell, N. S. Simpkins, and N. K.
'l
153 Diphenylphosphine
llr lat(
Larr.! Ph :Ser-BulP is a replica of the pre!r.-.a. ,\ ed.
Dr l
l - 3 5 . 6 5 2 5( 1 9 9 4 ) .
e - :
\ ! : - ' r r t r u r . E C S J6 6 , 1 5 6 6( 1 9 9 3 ) '
lle.
!r\c. .cJ oxygenationof B;y-unsaturated s1r.., .rrlrentSis initiated by oxidation of r. ' .lrr*ed by another oxidation of the n Ttc' elimination seemsto occur only b!: r.1-unsaturatedacidsare convertedto C:-:rn\.'
n < . : r \ e e i r h e r 1 , 2 - o x a z i n eos r c y c l i c n i tirr:,: ,ri the OH and the unsaturated side r:.:. ihe oxygenatom of the oximes is on
Azido-selenenylation.2 The introduction of a terminal azido group to an unsaturatedketone allows azacyclesto be prepared.Access to pyridine derivativesfrom 3-butenyl ketonesis particularly convenientbasedon azido-selenenylationbecauseof the facile elimination of the selenenylgroup after oxidation. 'D.-W.ChenandZ.-C.Chen,?L 35, 7637(1994). :M. Tingoli,M. Tiecco,andL. Testaferri, .lOC5t, 6097(1993). Diphenyl disulfide. 14, 155-156 The (Z)- to-(E) isomerization is effected thermally. Stilbene isomerization' (E)-Selective Wittig reactions.2 The reaction is conducted in the presenceof Ph2S2under visible light to maximize the (E)-isomer. Oxidative sulfenylation of lluorinated amines.l Anodic conditions convert the amines into sulfenylated imines, which can be used to react with organometallic reagentsand enolates. y-Phenylthio ketones.a These compoundsare availablefrom a three-component condensationinvolving a-mercurio ketones, alkenes, and PhzSzunder uv irradiation.
PhCOCH2HgCI
+
+
r--vttto
Ph2S2 D M S O , 6h
!o: :i\e the same geometricalrestriction' c \ :.r,iror)' imidates' and the thermody-
(-\A"n 63%
t.:, 1:n..'
/SePh ,r,.
_r*_..
HoN/ro!/
/SePh 50'
o1*Y 6n
rc,:r./ )-.ill)l hydroxylamines6and O-allyl :rd C Santi,CC 63'l (1993)' ;r ' L 7 9 8( 1 9 9 3 ) ' , r J C . S a n t iS !: . \ ' 1 . - : : 5 L 1 7 3( 1 9 9 4 ) ' \ t . - r r . . / C S / P /1) 9 8 9( 1 9 9 3 ) . i \ ! : ' : : : . C C 2 2 1( 1 9 9 4 ) . I - r , : : , f t 3 5 . 1 6 3( 1 9 9 5 ) . rnd F Marini, CC 235'23'l(1995)' rl: lr dicarboxYlate. in the presenceof h.Sc u rth PhI(OCOCFT)z (68-817o step Yield)' tns:. in one
' M. A. Ali and Y. Tsuda,CPB 40,2842(1992). rJ.K. Matilainen.S. Kaltia,andT. Hase,SL 817(1994). rT. Fuchigami,S. lchikawa,and A. Konno, CL2405 (1992). 'G. A. RussellandS.V.Kulkarni,JOC 5E,2678(1993). 2- Diphenyl methylsilylethanol. Phosphorus protection.t The protecting group is stable to acid and is removed by fragmentation using aqueous NH4OH. It is introduced by the phosphoramidite approachand is useful for internucleotidic bonds in oligodeoxynucleotidesynthesis. tv. T. Ravikumar,T. K. Wyrzkiewicz, andD. L. Cole,T 50,9255(1994). Diphenylphosphine. Free radical cyclization.'
I1 .1 \ t r l
Ph2PH
'ft"""'n'
X = O, NCOOMe lJ.
E. Brumwell, N. S. Simpkins, and N. K. Terrett, TL 34, 1215, l2l9 (1993)
154 Dipotasslumtetracarbonylferrat€ Diphenylphosphinic azide' PhzP(O)Nr. Isocyanates.t The azide in combination with 1,8-bis(dimethylamino)-naphthalene effects the direct conversionof carboxylic acids to isocyanates. 'J.W.cilman andY. A. Otonari,SC23, 335(1993)' Diphenytphosphinic chloride, PhrP(O)Cl. 15' 150 N-Diphenylphosphinoylaziridines.t 1,2-Amino alcohols are doubly derivaof the tized. As the phosphonate anion is sufficiently electrofugal, the treatment cyclization. causes NaH with derivatives Allylic diphenylphosphinates.2 The esterification is mediated by imidazole. The salt is probably the active reagent. ' H. M. I. Osborn,A. A. Cantrill,J' B' Sweeney, andW' Howson ' TL 35' 3159( 1994)' tJ. S. Mccallum,andL. S. Liebeskind, S 819(1993). Diphenylsilane. comDefunctionaliZation.t Removal of halogen atoms from bromo and iodo radical free by achieved can be deamination and alcohols, of pounds, deoxygenation to effect "huin pro"..res. The reaction employs diphenylsilaneas the hydrogen source and isoxanthates as be derivatized must amines and alcohols the hydrogenolysis; respectivelY. cyanides, 'D. H. R. Barton,D. O. Jang,andJ.C. Jaszberenyi, T 49"1193(1993)' Diphenyltin sulfide-silver perchlorate. with aldeAldol conilensation.t Silyl enol ethers and silyl ketene acetals react with in combination reagent hydes smoothly in the presenceofPh2SnS or Lawessons' -78'C' the very weak Lewis acid AgClOa in CHuClz at - Agclo{ Ph2Sn=S
OSiMe3
,n\
PhCHO
CH2C|2 , -78o
Disodium tetracarbonylcobaltate. NpOTs- N4COOMe.' Monoc spondingtosylates. I
G . C o m e t t i ,A . D u V o s e l ,F . F r a n c a l a n c rI
Disodium tetracarbonylferrate. l5 a-Diketones.t Reaction of an i then with CuCl, followed bY demetal process. RBr +
Cy clohexanone' 2' carbox Ylic a lyst for twofold Michael additon o( cyclizationof the l:2 adducts.Hosr
NazFe(CO)+is not unique. ' M. Periasamy, and t A. Devasagayaraj, : M. Periasamy, M. R. Reddy'U. Radhe Disodium tetrachloroPalladete. Ca rbo nylat i on of io d oxYan n ation with CO in water in the Prescr
V.V. Grushinand H. Alper, JOC St' !'' rrczs-1,3-Dithiane 1'3'dioxide. a-Iiydroxy acid defivativcs. rangement,and ancillary manipula
9 o n ptVpn 95%
NazFe(co)a-!9*
*a). o."S:-.516
NaN(siMqh PhCHO; DHP, TSOH
' T . M u k a i y a m a , K . S a i t o , H . K i t a g a w a ,a n d N . S h i m o m u r a ,C L ' 1 8 9 ( 1 9 9 4 ) '
Diphosgene. and pyridine at Estersand thiol esters.t Treatmentof acidswith diphosgene -40oc and thenwith alcoholsor thiols producesestersand thiol esters' rD.
(1994)' R a v i . N . R . R a o , G . S ' R e d d y , K . S u c h e t a ,a n d V ' J ' R a o , S L 8 5 6
Dipotassiumtetracarbonylferrate. andeasierto handlethancommercialcollman's This compoundis nonpyrophoric quantitativeyield from Fe(CO)sinvolvestreatin essentially preparationr reagent.Its pureprodmentwith KOH in MeOHfor 0.5 h, andwith Buf in refluxingTHF' The uct can be storedunderargonfor months' 'A. Baby,J.-J.Brunet,F' B. Kindela,andD. Neibecker, SC24,2827(1994)'
I V. K. Aggarwal, A. Thomas,and R J
1,3-Dithiolane 1,113,3-tetroxklc Vinyl sulfones.t Ring clear.a u i t h b a s e( e . g .i,- P r z N E t ) -
o,sxsq Ph.
R
B. E. Love and L. Chao, SC 23. 3073 I
1,3-Dithiohne l,l,3,3.tetroxides 155
s ::: i.8-bis(dimethylamino)-naphthaic .:,.rJ.to lsocyanates'
Disodium tetracarbonylcobaltate. NpOTs - N,COOMe.r Monoesters and diesters are produced from the corresponding tosYlates. I G. Cometri,A. Du Vosel,F. Francalanci, R. Santi,W. Cabri,andu.Foa,JOMC451,C l3 ( 1993).
]r
_ ( ,t : , , alcohols are doubly derival- {:.ro ',iectrofugal, the treatment of the ar.. lcr.!i.rtion
process.
is mediated by imidazole'
RBr +
co
NazFe(CO)r -*
QuQlI Na.(RCO)Fe(CO)i
RCOC9R CAN/Hzo
(1994)' 16; \rr Ho*son.TL 35, 3159 9l
iodo comlole:r rtoms from bromo and radical free by achieved n,..t,,.n can be effect to source hydrogen 5r -..rnd as the isoand xanthates .., as p.: ,ierivatized
ra
Disodium tetracarbonylferrate. 15' 152-153 a-Diketones.t Reaction of an alkyl bromide with NazFe(CO)qunder CO and then with CuCl, followed by demetallation (CAN), completesa double carbonylation
{9.'l9l (1993)'
7Ho"k
cataCyclohexanone-2-carboxylic esters.2 The reagent acts as a condensation Dieckmann and ester acrylate an to donor a of additon Michael lyst for twofold cyclization of the l:2 adducts.However, NaOMe has the same capability; therefore, NazFe(CO)ais not unique. 'M. Periasamy, ' OM 12' 1424(1993)' and U. Radhakrishnan A. Devasagayaraj, t M. Periasamy, JOC 58' 4997(1993)' Devasagayaraj' A' and M. R. Reddy,U. Radhakrishnan, Disodium tetrachloroPalladate. Carbonylation of iodoxyarenes.t Aroic acids are obtained from ArIOz by reaction with CO in water in the presenceof the palladium salt' lV.V. GrushinandH. Alper,IOC 58,4'194 (1993).
alde::.i .rl\l keteneacetalsreactwith with r I i ]..sons' reagentin combination - 18tC. :l ,: l!
F. ' F .
^;_u. -;-
trans -L,3-Dithiane 1,3-dioxide. a-Eydroxy acid derivatives.t Alkylation with aldehydes, Pummerer reafform' rangement,and ancillary manipulations render the acid derivatives in chiral
o o H
ll I PnMPn
95%
-
ra). o..S--.S16
NaN(SiMes)z PhCHO; DHP,T9OH
i \ i : ' . m u r a .C L 7 8 9 ( 1 9 9 4 ) '
.I
l+ 'o"'-Y-'oI Ph7",OTHP
(CFgCO)zO- PY LiOH. EISH THF / H2O
o\
sEr I
Ph1""otnp H 94"h (97"hae\
84% (de>97:3) V. K. Aggarwal,A. Thomas,andR. J. Franklin,CC 1653(1994)'
pyridine at t t :.tds with diphosgeneand n.,:-.e\ estersand thiol esters' (1994)' , r : : \ J R a o ,S L 8 5 6
Collman's c3.:e: to handlethan commercial treatinvolves Fe(CO)s from lr.: :rlr\e yield prodpure The THF' luxing ref r rr:. Bu,P in 3 \c:-t;ker.
SC 24,282'l (1994)'
1,3-Dithiolane 1,1,3,3-tetroxides. Vinyl sulfones,t Ring cleavageof these heterocyclestakes place on treatment with base(e.g.,i-PrzNEt).
orsxso2 Ph.
R
iP12NEt
o's -!n
EIOH. A Ph quanl.
B. E. LoveandL. Chao,SC23, 3073(1993)'
6''\ ll * r \N/r'-
)
it
a-Ethoxyalkenyllithium reagents' Animprovedpreparationofthesereagentsconsistsofdeprotonatingvinylethers with t-Bul-i in tetrahYdroPYran' the lithium reagent with MN-dialkylcara-Ethoxyvinyt ketones.t Reaction of boxamides in THF gives ketones'
EthoxYcarbonYlhYdrazine' reaction the hydrazone of an enone a-Methoxylation of enones'r In a one-pot isconvertedtothed.methoxyenoneontreatmentwithbromine'acidicmethanol, and formaldehYde.
Be CH2C!2
H2NNHcooEt
ZYo I
HoAc - EtoH
Ethylene glYcol. 15' 156 3,4-Diaroylpll Pyrrole formation.t in 4-acylpyrroleson heating ethylenegl1.
solvent. ' S . M a t a k aH , . K i t a g a w aO, . M i s u m i ,M ' T e
'M. ShimanoandA. I. Meyers,TL35"l'12'l(1994)'
ZY2NNHcooEt
' O . S e z e ar n dO . A n a c ,H C A 7 7 ' 2 3 2 3( l 9 9 a t
MeOH (H+) HCI,HCHO
Ethylene oxide. Cyclopropanation.' Sodium enola ethylene oxide in a sealedtube to form s1 ate yields. Other epoxidesgive substitut
o tl
. ftPo(oE0, \-J
OMe I
^.vo
I
I
77"/.
2 Gentle and rapid e Acetalization of a Lewis acid catalYst. 'A. FeuererandT. Severin'JOC 59' 6026(1994)'
T. E. Jacks,H. Nibbe,and D. F. Wiemer''l( r D. S. Torok,J.J. Figueroa, andW' J' Scott
c-EthoxYvinYl acetate' Pummererreaction.|Uponreactionwitha-ethoxyvinylacetatechiralsulfox-
Ethyl diazoacetate. 16' 163-164 Homologation of allYl sulfidcs' are liable to undergo a [2,3]sigmatropr r e . g . ,D B U ) .
idesinwhichthec-carbonissubstitutedwithanelectron-withdrawinggroupare transformedintoa-acetoxysulfides.Inmostcasestheenantiomerexcessoftheproducts amount to70-80Vo' (1994)' 'Y. Kita, N. Shibata,N. Kawano,S' Fukui' andC' Fujimori'TL35' 3575
^
l
r
7\.-":.\ i
l
l
ueo&
'
o ' Hr.
oE
tetraf luoroborate'
N-Ethyl-2'azidopyridinium Transdiazotization.|Acylacetaldehydesarediazotizedbythereagent(l)in formyl distinguished by the retention of the nonbasic conditions. Trris meihod is group in the Products. 156
R.C. Hartley, S. Warren,and l.C
Richen
Ethyl diazoacetate 157
/\
BFa
ll * I \N^N.
) (1) ' O. SezerandO. Anac,HCA77,2323(1994). ll':
,i deprotonatingvinYl ethers
llL:
:!'rgent w ith N,N-dialkYlcar-
Ethylene glycol. 15, 156 3,4-Diaroylpyrrolidines are converted to 2-aryl-3-methylPyrrole formation.t 4-acylpyrroles on heating in ethylene glycol at 130"C.No reaction occurs without the solvent. 'S. Mataka,H. Kitagawa, O. Misumi,M. Tashiro,and K. Kamata'CC 670(1993\'
ef an enone tr.::,'n the hYdrazono methanol, acidic ,. rth bromine, 11
Ethylene oxide. Cyclopropanation.t Sodium enolates of B-ketophosphonateesters react with ethyleneoxide in a sealedtube to form spiroannulatedcyclopropyl ketones in moderate yields. Other epoxides give substituted cyclopropanederivatives.
o a' r.,;f
-
aN2cl2 i
iH')
rCHO
OMe I
1.r-ro1oro, *
l\r'o I
o 11
l\
^.A
NaH
1250.6h
40"/"
77o/"
2 Gentle and rapid acetalization is accomplished in the presence AcetsliZation of a Lewis acid catalyst. 'T. E. Jacks.H. Nibbe,andD. F. Wiemer,JOC 58,4584(1993). : D. S. Torok,J.J. Figueroa, (1993). andW.J. Scott,JOC 58,'1274
- c : r ' , \ ) r i n y l a c e t a t ec h i r a l s u l f o x -withdrawing group are lr. r-.c'.trofl l : : l c n a n t i o m e r e x c e sosf t h e P r o d -
Ethyl diazoacetate. 16, 163-164 Homologation of allyl sulfides.l sulfonium ylides formed at low temperature are liable to undergoa [2,3]sigmatropicrearrangementon treatment with a mild base ( e . g . ,D B U ) .
p- r TL 35.3575(t994).
.,-\'-stt-\ i
MeO&
B i.r1()tized bY the reagent(1) in Dc.: .r rhe retention of the formYl
'
l
l
'i;!ii33"?, DBU,-3oo
rrY')-'Y
u"o&
R . C . H a r t l e y , S . W a r r e n , a n d L C . R i c h a r d s ,J C S ( P L )5 0 7 ( 1 9 9 4 ) '
cooEt'
158 Ethylisocyanoac€tate
Eunl;irr
polymer supported. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide, Amide formation,t Dehydrative coupling of an acid and an amine is readily achievedwith this readily preparedreagent.No aqueousworkup is necessary,and the product is easily separatedfrom the polymer-bound urea by-product by simple filtration, rinse and evaporation.
Azepine synthesis.2 A similar gives moderate yields of the heteroc Allylic carbamates.l Allylsilar rionalizationon exposureto the eth
' M. C. DesaiandL. M. S. Stramiello, rL 34,7685(1993).
Ethylene sulfate. 15, 105-107 Cyclopropanation,t This is a superior reagentfor cyclopropanationof dibenzyIn the presenceof LDA extenlaminoacetonitrilecompared to 1,2-dibromoethane. sive elimination occurs with the dibromide, and the latter also inducesdimerization of the aminonitrile.
o--e, o'"'o
x::".
LDA/ HMPA
NBn2
Ethyl N-(4-n itrophenylsulfonybrl r Ethoxycarbon Aziridination K2COr or CaO adds to alkenes.Thc the aziridination of allylic and homo other conditions. The reaction prob{
THF, .7OO
obtained.
M. A. Loreto,L. Pellrrr S. Fioravanti, tM. Barani,S. Fioravanti, M. A. Lorao 'S. Fioravanti,M.A. Loreto,L. Pelh (1993).
Ethyl trimethylsilylacetate. Peterson olefination.I Stercoc
1 . 5h
This cyclic sulfate and especially the substituted congenersare epoxide equivalents in reactivity toward carbon nucleophiles such as the acetonitrilecarbanion. 4-Hydroxyalkanonitriles,?
w... +
c
' D . G u i l l a u m eM, . B r u m - B o u s q u D e t.,J . A i t k e n ,a n dH . - P .H u s s o nB, S C Fl 3 l , 3 9 l ( 1 9 9 4 ) . tT. R. Hoyeand K. B. Crawford,JOC 59,520(1994). N . Y . G r i g o i e v a ,O . A . P i n s k e r ,a n d A .
Ethyl isocyanoacetate. 16, 164-166 Pyrrole-2-carboxylates.' The ester enolatereactswith vinyl sulfonesby way of conjugate addition and displacement.
cooH
o-.^, ,'^-...-5--.
I
\-,/
ll
' ol
.COOEI
NaH
Nc
rHF
a-"\z\
I
I N \__./=z
Europium(III) chloride. Michael addition.t In the prc bonylcompoundsaddto Michaclr
F . B o n a d i e s .A . L a t t a n z i , L . R . O r e l l r .
H
67"/.
H u b b a r d ,a n d M . A . R a h m a n , A J C 4 7 , 9 6 9 ( 1 9 9 4 )
Eu ropium tris[di(perf luoro-2-pr. Aldol condensation.t The Eu 8-alkoxy aldehydesand also the sizc particular substrates,it catalyzes ttr rn the non-chelation-controlled mod
Europium tris[di(perfluoro-2-propoxypropionyl)]methanate159
lrbod i im ide, polymer supported. i('-:.)n! of an acidand an amine is readily cn: \,' aqueousworkup is necessary,and the r:ri- h(rundurea by-productby simple filtra-
l.
-'.r
199-1).
of dibenzyfr : :.rsent for cyclopropanation r. r' r'thane.In the presenceof LDA extenll.:. :nJ the latter also inducesdimerization
iMpA
,:
x::",
Ethyl N-(4-nitrophenylsulfonyloxy)carbamate. Aziridination' Ethoxycarbonylnitrene generated in the presence of solid K2CO1or CaO adds to alkenes. The rapid reaction, requiring no catalyst, is useful for the aziridination of allylic and homoallylic acetals,which are quite unreactivetoward other conditions. The reaction probably occurs at the solid-solid interface. Azepine synthesis.2 A similar reaction (vide supra) with aromatic compounds gives moderate yields of the heterocyclic derivatives. Allylic carbamates.3 Allylsilanes undergo desilylative 1,3-transpositionalfunctionalization on exposure to the ethoxycarbonylnitrene.Yields up to 60Vohave been obtained. 'S. Fioravanti, M.A. Loreto,L. Pellacani, andP.A. Tardella,TL34,4353(1993). :M. Barani,S. Fioravanti, M.A. Loreto,L. Pellacani, andP.A. Tardella,750,3829(1994'). rS. Fioravanti,M.A. Loreto,L. Pellacani,S. Raimondi,and P.A. Tardella,TL 34,4l}l (1993).
Ethyl trimethylsilylacetate. Peterson olefination.I Stereocontrol of the reaction is achievable.
' 5 r
.ulfate and especially the substituted rr roward carbon nucleophilessuch as
.
LDA
Me3Si\
loo.,
; sPhcooEt
- 700 -> 200
7 g o / o( Z : E 8 8 : 1 2 \ tl r
,nJ H.-P.Husson,B,!CFl3l, 391(1994).
.:
N . Y . G r i g o i e v a ,O . A . P i n s k e r , a n d A . M . M o i s e e n k o v ,M C 1 2 9 ( 1 9 9 4 ) .
:r i-. .Jrc reactswith vinyl sulfonesby way of
cooH >::'
'raH
lt\,A I I
\-,/=z
N
Europium(III) chloride. Michael addition.t In the presenceof EuCl: and molecularsieves1,3-dicarbonylcompounds addto Michaelacceptorsat moderatetemperatures. F . B o n a d i e s ,A . L a t t a n z i , L . R . O r e l l i , S . P e s c i ,a n d A . S c e t t r i , T L 3 4 , 7 6 4 9 ( 1 9 9 3 )
H
67"/"
\l .{ Rahman,AJC 47,969 (1994).
Europium tris[di(perf luoro-2-propoxypropionyl)] methanate. Aldol condensation.t The Eu complex can recognize the difference of a- and 3-alkoxy aldehydesand also the size ofketene silyl acetals.Thus, dependingupon the particular substrates,it catalyzes the aldolization either in the chelation-controlledor :n the non-chelation-controlled mode.
160Europiumtris[trifluoromethyl(hydroxymethyIene).d.camphorat€
o
gsiMe3
OSiMe3
. Ao^
ll
: n OBn
\ Y .,\
:
V
.COOEI
OBn 75"h (sYn:anti >99: l)
':lz EU
Fluorine.13, 135; 14, 167; 15' 16 Ele ct roPhilic f luorination'' rn 9870formic acid or sulfuric aci The yield for direct fluorination c
\ , t Ert
PO'b ( tl
o tl
: po
Y"
\g.
\--H'H
irom l57o to 90Vo. Fluorination of allencs'' t oresenceor absenceof dry NaF' and it must be carried out at lo$
I
I
i anti
syn
peraturesto avoid charring'
rK. Mikami,M. Terada' andT' Nakai'CC343(1993)' Europium tris[trif luoromethyl(hydroxymethylene)-d-camphorate' catalystfor cycloadditioninDiels-Alder reaction.t Eu(hfc), is an efficient a-pyronesystems' volvingelectron-deficient o COOMe
)'v" (.6
t
CH2Cl2
tr\
rt.6h 88%
rI.
R . D . C h a m b e r s 'C ' J ' S k i n n e r . J T R . D . C h a m b e r s ,M ' P . G r e e n h a l l ' t T. Arimura, M. Shibakami,M Trt
I l-cool,l"
(o" rr
HzC=C=Cl{Oll
(1994)' E . M a r k o a n d G . R . E v a n s ,S L 4 3 1
oEt
)i V-Fluorobis(benzenesulfonY Fluorination of aromotkl derivedfro .]romto arYllithiums
\'. Snieckus, F. Beaulieu, K Mottt , 1994).
r2- Fluoro-4' -carboxY)triPbc!! Peptide sYnthesis.t The re
rn acid-labile handle. A Fmoc :hereafter the Fmoc grouP ls I * ithout affecting the ester linh
C. C. Zikos and N' G. Ferderigos
a {.(.mPhorele 3 S \te1 . amtrr
c€: nti >99:1) 7 5 " 6( s 4 na
Fluorine. 13, 135; 14, 167;15, 160 Fluorination of aromatic compounds is effective Electrophilic fluorination.r with a l:9 mixture of F2-N2at room temperature. acid sulfuric acid or in 987oformic of 1,3-dicarbonylcompounds2by this system varies fluorination The yield for direct
:, _ I
from l5Vo to 90Vo. Fluorination of allenes.3 Allene behaves differently toward fluorine in the presenceor absenceof dry NaF. The reaction of various allenes is explosion-prone and it must be carried out at low temperature. Cyanoallene requires even lower temperaturesto avoid charring.
) 9'r
F2- NaF
!th r lene)-d'camPhorate' c:: :. renl catalyst for cycloaddition
o // 9 l-coottle
:c, t'
zl-\
^)
oEt 88'/"
H2C=C=CHoMe
F3ccF2cF2ocF3 -.,*lo" 89o/"
'R. D . C h a m b e r s .C . J . S k i n n e r , J . T h o m s o n , a n d J . H u t c h i n s o n ' C C 1 7 ( 1 9 9 5 ) ' :R. D . C h a m b e r s ,M . P . G r e e n h a l l , a n d J . H u t c h i n s o n ' C C 2 l ( 1 9 9 5 ) . 'T. A r i m u r a , M . S h i b a k a m i , M . T a m u r a , S . K u r o s a w a ,a n d A . S e k i y a , . / C R ( S )8 9 ' ( 1 9 9 4 ) '
.V-Fluorobis(benzenesulfonyl)imide. Fluorination of aromatics.' (Phsor)rNF is useful for deliveringa fluorine atomto aryllithiumsderivedfrom directedortho-metallation' 'V. Snieckus, K. Mohri, W. Han, C. K. Murphy,and F' A' Davies,TL 35' 3465 F. Beaulieu, (1994). bromide. (2-Fluoro-4'-carboxy)triphenylmethyl Peptide synthesis.t The reagent(1) is useful for solid-phasepeptide synthesisas an acid-labile handle. A Fmoc amino acid may be derivatized as the trityl ester, rhereafter the Fmoc group is removable by treatment with 40Vo piperidine-DMF without affecting the esterlinkage.
cooH
x=F,cl (1) C. C. Zikos and N. G. Ferderigos, TL 35, 1767 (1994)
162 N-Fluoro'2,4,6'trimethylpyridinium
triflate
Fluoroboric acid. cyclic ethers are converted to Allylic rearrange'nent't 2-Alkenyl-2-alkylthio enol ethers at low temperature' - .9 r , -- -:^..^ tricarthe presence of 4'l' molecular sieves' Electrophilic substitutions' In trapped with from the appropriatedienols2can be bonyl(dienyl)iron catronsgenerated The molecusieves. the cavities of the molecular an alcohol thar is too bd;; ;; enter MgSOa is role in regiocontrol' When anhydrous lar sieves also play an important internal allylic position' used, some reaction occurs at the Enolsilylethersundergoalkylationwithdicobalt-complexedpropargylicalcoh o l s a f t e r i o n i z a t i o n o r t t r - e t a t t e r w i t h f l u o r o b o r i c a c i d . 3 A l , l , l ' 3 , 3 , 3of . h eax aweakly fluorocobalt exerts its effect by virtue isopropylphosphite Iigand on the and strongly a'-acceptingbehavior' o-ao*iig 'J. P. Hagen,JoC sE,506(1993)' t6. qulr"o,u-Cuillouand J'-P' Lellouche'JoC 59' 4693(1994)' JAcs ll5' 6438(1993)' '1. ift'r. Caffyn andK' M' Nicholas'
N-Fluoro'2,10' (3,3-dichlorocamphorsultam)' Fluorinationol"otot"''Asymmetricfluorinationisobservedinmoderate reagent(1)' yields and enantiomer excesseswith ^l
rtl-"' t-rl VN_F
-;F--^ o (1)
at room temperature. The reagent serlc electron transfer Process. rtl Dimeric alkenes from stabilizcd t singlc a by water, the reaction proceeds two loses cal dimerizes,and the dimer andV' V 9 A. S. Kiselyov,L. Strekowski, ' A. S. Kiselyov,TL 35,8951(1994)'
Fluorosilicic acid. 17' 139 Selective deprotection of trialtyls when a r-butyldimethylsill retained be at room temperature' acid rosilicic
/OSiMe?8u'
,r"S,/V
{ . S . P i l c h e r a n d P . D e S h o n g ,J O C 5 t ' 5 l
Formic acid. 13' 137 Deprotection of AdPoc-amino .nethylethoxycarbonyl group from th ;rently cleaved by treatment with forn Reductive ilechlorination of cUa :ron proceedsunder mild conditions l
I F. A. Davis,P. Zhou,and C' K' Murphy' TL 34' 39'71(1993)'
Semihydrogenation of alkYncs'' Pd(0)-catalyzedtransfer reduction of .electivityof 89-987o. The reducingI
N-Fluoropyridinium salts' 16' 170-17l Functionalizationofpyridine.Regioselectivereactionwithoxygen,sulfur,and C-2 occurs via an additionunO *ltf' carbon nucleophiles2at "ir."g"" "".f"ophil,''
Reduction of carbonYl comPoutJ i-deazaflavins.aFormic acid recycks a-HydroxY acids are obtained' in -.rtalyzed cleavageof diallyl oxosrrc rrxylation, and reduction of the keto
elimination Pathway' JI]C fo' tl6t (l??1)' rA. S. KiselyovandL. Strekowski, t n. i. fir"fyou and L' Strekowski'"IOC58' 4476(1993)' trif late' N-Fluoro'2,4,6'trimethylpyridinium to of carbonyl compoundsin moderate Generation Hyttrolysisof ditnio'ac)ian't medium aqueous and organic (e.g., cH2cl) good yields is accomplished in a mixed
o i
,nt-tAo* t ^4;-t-..\ " t l o
l
^
h
E
Formicacid 163
o -r.llc ethers are convertedto .,' : i molecular sieves,tricarrrr:. jrenolsr can be traPPedwith lr ::.,'lecularsieves.The molecuj1,, \\'hen anhYdrousMgSOa is
at room temperature. The reagent serves as an electron acceptor to initiate a single electron transfer process. Dimeric alkenes from stahiliZed Wittig reagents.2 In the presence of traces of water, the reaction proceedsby a single electron transfer mechanism. The cation radical dimerizes,and the dimer losestwo phosphinemolecules' 'A. S. Kiselyov,L. Strekowski,and V. V. Semenov,T 49' 2l5l (1993). rA. S. Kiselyov,TL 35,8951(1994).
t\ll:,'n.
rail'.,'mplexedpropargylicalco: .r,:.i A I,1,1,3,3,3-hexafluoros .::ect bY virtue of a weaklY
Fluorosilicic acid. 17, 139 ethers.' A triisopropylsiloxy group can Selective deprotection of trialkflsilyl be retained when a t-butyldimethylsilyl group is removed on treatment with fluorosilicic acid at room temperature.
/:\
l q e :
/r
9!:
,-P13SiO
,OSiMezBur
(1x) HzSiFe t-BUOH rt
A/Y
oH
,-Pr3SiO
ri:ilr(rn is observedin moderate '
l.-i
r. :jr!tton with oxygen'sulfur, and lc. :t C-l occursvia an addition-
l !
A . S . P i l c h e r a n d P . D e S h o n g ,J o C 5 E , 5 1 3 0 ( 1 9 9 3 ) .
Formic acid. 13. 137 Deprotection of Adpoc-amino acids and peptides.' The l-adamantyl-lmethylethoxycarbonyl group from the N-protected amino acid or peptide is efficiently cleaved by treatment with formic acid in trifluoroethanol and chloroform. Reductive dechlorination of chloroarenes.2 Catalyzed by Pd-C the dechlorinarion proceedsunder mild conditions.PCBs are destroyedby this method' Semihydrogenation of alkynes.l Formic acid is a hydrogen source for the Pd(0)-catalyzedtransfer reduction of the triple bond to afford the (Z)-alkene with a selectivityof 89-98Vo.The reducingsystemalso contains triethylamine' Reduction of carbonyl cotfrpounds. The reduction is effected with 1,5-dihydroFormic acid recyclesthe spentreagent. 5-deazaflavins.o a-Hydroxy acids are obtained, in the presenceof triethylamine,by rutheniumcatalyzed cleavageof diallyl oxosuccinates.sPresumably via ester cleavage,decarboxylation, and reduction of the ketone.
o i
pn/'Yo/'-< ^4.rzo.-.\ " t l cr:h"n) I comPoundsin moderateto c i CH:Cl:) and aqueousmedium
l
-
[(cod)Ru(OCOCF3)2]2 HCO2H
OH
I
PhMCOzH El3N,DPPB,dioxane 1000,4 h
80%
164
Formic acid
Hydrationofterminalalkynes'6Inanhydrousmedia,formicacidactsasan is necessaryfor the "quiuul"nt of water in the conversion.Activation with Rur(co)12 to the treatment' inert reaction of functionalized alkynes, which are otherwise Ru3(Co)12 HcooH
.. \
\r^v oH
r00o
o tl ""Zt'..' I
o-""o
Gadolinium(III) isoProPoxidc. Redox reactions.t In the Pn tively, oxidation of alcohols and re
85"/"
rsopropoxideat room temPeratur€
t h
' W . V o e l t e r a n d H . K a l b a c h e r ,l , A l 3 l ( 1 9 9 3 ) . (1993)' tJ. P . B a r r e n , S . S . B a g h e l ,a n d P . J ' M c C l o s k e y ' S C 2 3 ' 1 6 0 l rK. Tani, N. Ono, S. Okamoto, and F. Sato' CC 386 (1993)' a 541 (1993)' K. Kuroda, T. Nagamatsu, R. Yanada, and F' Yoneda' JCS(PI) tY. I ' S h i m i z u' and A' Yamamoto' JOMC T ' S a k a m o t o ' T e k a w a , M . Maruyama, T Sezaki, 473.257 (994). oN. Menashe and Y. Shvo, JOC 58,'7434 (1993)'
M. Kinosh T. Okano,M. Matsuoka,
Gallane. Reduction of carbonYl conPo cient reductionwith GaHr NR. r
example, 4-t-butylcyclohexanorr 8 7 : 1 3 .A s g a l l i u m i s m o r e e l e c t rhan alane. However, the two ree giving allylic alcohols.
C. L. Raston,A. F.-H.Siu,C. J. Tnt
Gallium. Allyl- and proPargYlgalliut ;onverted to allylating agents for observedwith silyl-substituted bn
Bi
,/\//\-... * v siMe3
R
r
>O
R'/
;
,r'.HanandY.-2.Huang,IL 35.9{
Gallium(Il) chloride.17,140 Reductive Friedel- Crafts a ce CaCl .GaClr, and advantages Lewisacidityof Ga(III).Thusth nesdirectly affordsalkylarenes
s -'r..1r1.formic acid acts as an 'rt-.,CO)r: is necessarYfor the rh r :.r : nc'rtto the treatment'
isopropoxide. Gadolinium(lll) Redox reactions.t In the presenceof cyclohexanoneand isopropanol, respectively, oxidation of alcohols and reduction of ketones are catalyzedby the lanthanoid isopropoxide at room temperature or below. 'T. Okano,M. Matsuoka, M. Kinoshita,andJ. Kiji, NKK 487(1993)' t
qq-]).
t-.
('.; :17(1993). ' \ ^ ^ : / u . a n dA . Y a m a m o t oIOMC
Gallane. Reduction of carbonyl compounds with Lewis base adducts.' The highly effiFor cient reductionwith GaHl NRr or GaHI PR: also showsdiastereoselectivity' ratio of a trans:cis example, 4-l-butylcyclohexanone furnishes the alcohols with reactive gallane is less 87:13. As gallium is more electronegativethan aluminum, than alane. However, the two reagentsbehave similarly in the reduction of enones, giving allylic alcohols. rC. L. Raston,A. F.-H.Siu,C. J. Tranter,andD. J. Young,IL 35, 5915(1994)'
Gallium. Allyl- and propargylgallium reagents.' Allylic and propargylic bromides are converted to allylating agents for carbonyl compounds. Regioselectivereactions are observedwith silyl-substituted bromides' SjMe3
a,/Vsiu",
+ > o e''
Ga Kt - Lict THF, ^; Hgo*
* ^y/V *5f|l..,"". oH oH > 90% (total yield) (EjZ>90:<10)
Y. Han andY.-2. Huang,TL 35,9433(1994).
Gallium(Il) chloride. 17, 140 Reductive Friedel-crafts alkylation.t The reagent is actually a double salt, GaCl .GaClr, and advantagescan be taken of the reducing power of Ga(I) and the Lewis acidity of Ga(III). Thus the reaction of aldehydes,ketones,or acetals with arenes directly affords alkylarenes.
166
Glyoxylic acid
,n,
2'\..
/,-y.cHo cac,2| a*
(,
;;J; l(,
I
ry:
I tc"c.,
t t l
x-
*J
,_f
K2co3 *! t€ boon ":o"
I
(,
66%
W . D . D e a n a n d D . M . B l u m , " / O C 5 E . 7 9 1 6| l l
rY.Hashimoto,K.Hirata,H.Kagoshima,N'Kihara'M'Hasegawa'andK'Saigo'749'5969 ( l 993).
Germanium(II) iodide. of allyl bromide with carAllylation of carbonyl compounds.t The reaction by germanium(II) iodide' bonyl compounds in the presenceof zinc iodide is mediated Ketonesarelessreactivethanaldehydesandrequireanexcessofthereagentand longer reaction times. rY. Hashimoto, andK' Saigo,ft 35' 4805(1994)' H' Kagoshima'
Glyoxal. a.Aminoacidsynthesis.|ThecondensationproductsofglyoxalwithN-homoand cationic aza-cope allylic chiral amino ethanols are liable to undergodehydration acids' rearranqement.Further manipulationleadsto amino
aoYo*
^?
pn""\Hl aq fHF-.,
-.. cHo * 6no _____
\-o /
HzN*
\
homoserlne lactone
Grignard reagents. 13, 138-140; 14. l7l A quantitative assay using both mcnt .hows vivid endpointsin violet or burguc As bases, Formation of magnesiumc
boxylic acid derivatives involves desulfin Grignard reagentsare preferredin certain bon acids. This method has been applrcd esters.l f rom arenesulfinylacetic Diastereoselective additions. Th€ poundsaexert stereodirecting effects on t observedin thc I rhe diastereoselectivity
.erine orthoester5and 2-acyl-1,3-dithia .ontrol.
)!,* ' r c
{
HO L-saloclride Et2O -78P
HCOOH
l C . A g a m i , F . C o u t y , J . L i n , A . M i k a e l o f f , a n d M ' P o u r s o u l i s 'I 4 9 " 1 2 3 9 ( 1 9 9 3 ) '
Glyoxylic acid. arylacetonitriles with glyArylmaleic acids.' The base catalyzed reaction of transformed into arylreadily are which oxylic acid gives B-cyanocinnamicacids, maleic anhYdrides.
Addition to imines. In the prescncc Grignard reagentsto form cyclic imincs lmines themselvesare activatedby l-ttr :eaction.8Chiral N-(alkylthio)iminesgrrr
:rveson reactionwith allylmagnesiumbn The presence of additives can chl :eactions.lo
Grignard r€agents 167
OMe
2'\',
:-
t t l
9:.€
,al
Ph
.'
x-
) -
NC
o H1 cooH
K2C03 MeOH
Ph
H2SOa
N C COOH
HcooH
Ph
o4oAo
A
86"/"
(,
48"/"
66%
'w. h:',
D . D e a n a n d D . M . B l u m . " / O C 5 8 , 7 9 1 6( 1 9 9 3 ) .
\ 1 H a s e g a w aa, n d K . S a i g o , T 4 9 ' 5 9 6 9
T:c rr'.rctionof allyl bromide with carb.:c . mediatedby germanium(lI) iodide' and In.: :iqulre an excessof the reagent ' 1 - r f : r t ) 5( 1 9 9 4 ) .
n.rr.,,n productsof glyoxal with N-homonJr'rjr) dehydrationand cationic aza-Cope i i, inllno acids.
).
o. \-o /
{
homoserlne lactone
\
HzNN
Grignard reagents. 13, 138-140; 14, 17l-172;16, 172-173;17' l4l-142 A quantitativeassay using both menthol and l,l0-phenanthroline in dry THF showsvivid endpointsin violet or burgundy.l As bases. Formation of magnesiumenolatesfrom a-chloro-a-arenesulfinylcarboxylic acid derivativesinvolves desulfinylationwith a Grignard reagent.2t-Butyl Grignard reagentsare preferred in certain circumstancesfor the deprotonationof carbon acids.This method has been applied to a synthesisof chiral B-hydroxy esters esters.l from arenesulfinylacetic Diastereoselective additions. The y-substituents of allenyl carbonyl compoundsaexert stereodirecting effects on the Grignard reaction. On the other hand, rhe diastereoselectivity observed in the reactions of the aldehydes derived from a rerine orthoestersand 2-acyl-1,3-dithianel-oxideso can be attributed to chelation control.
-r. P\ pn
)-sl /
J
. ^,
-\ccxo
COOH
I sr.r1 \--1 /
Xt
,cHo
r"_\ .-^J
MeMgBr L-s€loctride Et2O -78o
$' !F. ""n1" *, $ , * * > o * *'."1 90% (96:4)
"*
s' T 49,7239(1993)' E \! P 'ursouli
with glyrzc; reectionof arylacetonitriles arylinto transformed readily u:.:'h are 1,.
Addition to imines. In the presenceof LiCIO+, r'r-bromonitrilesare attacked by Grignard reagentsto form cyclic imines in a tandem addition-cyclizationreaction.T lmines themselvesare activatedby l-(trimethylsilyl)benzotriazolein the Grignard :eacrion.8 Chiral N-(alkylthio)iminesgive optically activehomoallylic amine deriva:rveson reactionwith allylmagnesiumbromide.' The presence of additives can change the diastereoselectivity of Grignard -:actions.lo
16E Grignard reag€nts
Some trif luoromethyl compounds suc \ to alkenes.teTrifluoroacetyl-stabilized trct acid on decompose but the products dependencyof the stereoselectivitlon ti
N.Rn Vo y t t -l'-'n o )---/-o ' c t u g J
w n
l
CFs
\o
n,oo"#o -78o 680/" CeCI3/THF,Et2O, -40o Cul - BF3'OEt2/ El2O,
RLgI
PPh3
derivasalts. N-Alkyl-rr or N-alkoxycarbonyl Adtlition to chiral pyridinium atC-2' attack to asymmetric induction during tives12are equally 'u"tO""O'" d,B-unsaturated Clharge-iirectedaddition to a-silylated Conjugate addition. substrates' is suppressedin such amidate anions is observed'13-l'i-eaOition with Grignard reagents a'B-Epoxy hydrazonesreact Attdition-frag'nent(ttion'
iPrMgCl
CFs NHz
THF -40o-> rl, 3.5 h
/ \
to afford allYlic alcohols''o F'MgBr
^
iAnruHr. /
R
ebo, t1 -
58-71"/"
provides Ring cleavageof a-nitrocycloalkanones
o
o /-,, l l
a synthesis of B-keto silanes'rs
Noz
TMSCH2MgCI THF
fsit',tes
(--r.--.-Noz
-300 -> 00, t h
\
esters are chiral l,l,-biphenyl-2-carboxylate Addition_erimination. Axially reagents'16 Grignard aiyt wittr obtained by the reaction of 2-menthoxybenzoates a of a malonic ester unit constitutes elimination by f"fft*"d Conjugate addition The reagentsare 1,1-dimetalloalkanes' useful method ro, tn. u.."r, io tzl-urt"n"s.17
R ' T " 3oo*
Crignard reagentsto effect chain elong hromineand protodesilyation,it const
MeaSi,
a5"/"
!=a"oo" r
The reaction of (Z)-l-halo-l-alkcnl kctoo halidesresultsin B;y-unsaturated Displacement reactions' I '3- Drbr .rllyltrimethylsilaneby reaction \rith
a'rus.nl.r\ Lne,
2,2_Difluoro enol silyl ethers are 18 methyl triPhenYlsilYlketone'
rHF'
p
R , R "
\1.-i
-78o->-2oo
76-91%
of trifluoroformed by the Grignard reaction
I
Me3Si. NBs
,.oir,
Br
L&
A method for the enantioselectl\c :hrough ring oPening of formYl-Pru O rignard reagents.2,2-Dimethyl-l'3-d 'Aith .cctivering opening on reaction high more the on group :rrn a /-butoxy
.ire formed25when 2-aryl-1,3-dithiole Grignard reagents are thiophilic t with retention of configurati -.rsides26 a-Chloro-a-tolylsulfinylal kanoic c
ir\placing the sulfinYl grouP'2t A benzotriazol-l-yl group attactF( :.i1. Its displacementby Grignard rc1
Grignardreagents 169
Br
Some trifluoromethyl compoundssuch as 2-trifluoromethylanilineare converted to alkenes.reTrifluoroacetyl-stabilizedWittig reagentsundergoGrignard reactions, but the products decompose on acid treatment to give alkenes.20Noteworthy is the dependencyof the stereoselectivityon the acid strength.
: e h
c 9Fo
euoocr.,-\,-,, i l -
DE'' 707o
tsuoocf
RMgX
?"p
H
PPhs
workup: 5% HCI E- selective HOAc Z- selective
,lir - or N-alkoxycarbonYlderival u . : : ' n d u r i n g a t t a c ka t C - 2 ' it:,,-. lr, a-silylated a,B-unsaturat€d pp:l..ed in such substrates' rrl ,nc'\reactwith Grignard reagents
CFa
iPrMgCl
NHC -
THF -40o-> rt,3.5 h
|
^-r
l, a.'-?"" | I|
L**j
Y
r.s',/-1.-
\rl"*l 68/"
io.,
//_8,
58-7'tok
.r nthesisof B-keto silanes.15 l
with allylmagnesium The reaction of (Z)-l-halo-l-alkenyl-1,3,2-dioxaborolanes ketones.2l halidesresultsin Bry-unsaturated Displacement reactions. 1,3-Dibromo-l-trimethylsilylpropene is availablefrom atlyltrimethylsilaneby reaction with NBS. The dibromo compound couples with Grignard reagentsto effect chain elongation.With further displacementof the vinylic bromine and protodesilyation,it constitutesan intriguing approachto (Z)-alkenes.12
..-.SiMes -.----r-..
Measi
NO,
\
85%
esters are .l -r:phen-vl-2-carboxylate gs. .rrth aryl Grignard reagents''u r , t : malonic ester unit constitutesa Ihe :.'agentsare 1,1-dimetalloalkanes'
**,,
",{r-
RMox
Me3si\
-=-
,'FL,
J
\-R
A method for the enantioselectivesynthesisof a-amino acetals(aldehydes)"is through ring opening of formyl-protected,chiral 2-formyl-1,3-oxazolidineswith and dioxanesare subjectto regioseGrignard reagents.2,2-Dimethyl-1,3-dioxolanes The productsconlectivering opening on reactionwith methylmagnesiumiodide.2a rain a t-butoxy group on the more highly substitutedcarbon atom. Styrene derivatives are similarly treated. are formed25when 2-aryl- 1,3-dithiolane-S-oxides Grignard reagentsare thiophilic towards sugar thiocyanates,forming thiogly-
76-91"/o
[.r :rr Grignard reactionof trifluoro-
with retentionof configuration. cosides26 a-Chloro-a-tolylsulfinylalkanoicestersreact selectivelywith Grignard reagents, Jisplacingthe sulfinyl group.tt A benzotriazol-l-yl group attachedto an activatedbenzylic position is nucleofugal. Its displacementby Grignard reagents28 has been demonstrated.
170 Grignardreagents Symmetrical a-diketones can be synthesizedfrom 1,4-dimethylpiperazine-2,3dione2eor 1,1'-oxalyldiimidazole.30 In a general approach to phosphonodithioic acid derivatives,I the first step is the Grignard reaction of P-chloro- 1,3,2-dithiaphospholane. Displacement-rearrangement.32 The reaction of allenesulfinate esters with alkenyl Grignard reagentsproceedsby displacementon sulfur. [2,3]Sigmatropicrearrangementand dimerization follow.
an", "{:-*" IV""]Sp2' displacement. a,B-Disubstitutedacrylic estersand nitriles are available which acidderivatives, of 3-acetoxy-2-methylenealkanoic from allylic displacement3r arereadilyobtainedfrom a Baylis-Hillmanreaction. OAc I *\.cooMe
ll
Allylic
R'MoX
A
Grignard reagents/cerium(III) cl Cerium(III)chloridepolarizes sr lectivitiesin Grignardreactions.I enonesr andnitroethylarenes,2 rcsp
nA:,,'coor'te
rHF
"T. Hattori, N. Koike, and S. Miyano. '' C. E. Tucker and p. Knochel, S 5-10r I ''F. J i n , Y . X u , a n d W . H u a n g ,J C S : p t l ''M. H o 1 . | a tA, . S . K i s e l y o v , a n d L . S r r e t"Y. Shen and S. Gao, JOC 5E,4564 { lt t' H . C . B r o w n a n d R . S o u n d a r a r a j a nI. ::R. A n g e l l , P . J . P a r s o n s ,a n d A . N a l h -'K. R. MuralidharanM , . K. Mokhalle t'w.-L. Cheng,S.-M. Yeh, and T.-y. Lr tt W.-L. Cheng and T.-Y. Luh, HC 3. JO toZ. P a k u l s k i , D . P i e r o z y n s k i ,a n d A . i :'T. S a t o h ,Y . K i t o h , K . - 1 . O n d a , K . T e t'A. R. Katritzky, H. Lang, and X. Ler 3U.T. Mueller-Westerhoff and M. Zhol ''R. H. Mitchell and V. S. Iyer, Il 3zl. J '' S . F . M a r t i n , A . S . W a g m a n ,G . G . Z t 1 ':J.-B. B a u d i n ,M . - G . C o m m e n i l .S . A 'rD. B a s a v a i a h ,P . K . S . S a r m a , a n d A I "A. Y a n a g i s a w aH , . Hibino, N. Nomun '5S. W a t a n a b e ,K . S u g a h a r a ,T . F u j i r e . !
\R'
62 - 75"/"
phosphates are displaced, showing 7-selectivity with respect to allylic
Grignard reagents.ro a-Trifluoromethylacrylic
acid is transformed
acrylic acids35 with various unsaturated Grignard
into
a-substituted
B,B-difluoro-
reagents.
'H.-S. L i n a n d L . A . P a q u e t t e ,S C 2 4 , 2 5 0 3 ( 1 9 9 4 ) . 2T. S a t o h ,Y . K i t o h , K . O n d a , a n d K . Y a m a k a w a , T L S 4 , 2 3 3 1 ( 1 9 9 3 ) . rR.J. B u t l i n , l . D . L i n n e y , D . J . C r i t c h e r ,M . F . M a h o n , K . C . M o l l o y , a n d M . W i l l s , J C S ( P l ) l58l 0993). 4J. A. Marshall and Y. Tang, JOC 58,3233 (1993). 5 M . A . B l a s k o v i c ha n d G . L a j o i e , J A C S 1 1 5 , 5 0 2 1 ( 1 9 9 3 ) . "P. C . B . P a g e ,J . C . P r o d g e r ,a n d D . W e s t w o o d ,T 4 9 , 1 0 3 5 5( 1 9 9 3 ) . tD. F . F r y , C . B . F o w l e r ,a n d R . K . D i e t e r , S L 8 3 6 ( 1 9 9 4 ) . " A. R. Katritzky, Q. Hong, and Z. Yang, JOC 59,1947 (1994\. 'T.-K. Y a n g , R . - Y . C h e n , D . - S . L e e , W . - S . P e n g ,Y . - 2 . J i a n g ,A . - Q . M i , a n d T . - T . l o n g , J O C
s9,9r4(t994).
'oF. L. uan Delft. M. De Kort, G. A. Van der Marel, and J. H. van Boom, TA 5,2261 (1994). " Y . G e n i s s o n ,C . M a r a z a n o , a n d B . C . D a s , J O C 5 8 , 2 0 5 2 ( 1 9 9 3 ) . ''D. L . C o m i n s , S . P . J o s e p h ,a n d R . R . G o e h r i n g , J A C S 1 1 6 , 4 7 1 9 ( 1 9 9 4 ) . rrM. P . C o o k e , J r . a n d C . M . P o l l o c k , J O C 5 E , ' 7 4 7 4( 1 9 9 1 ) . 'o S . C h a n d r a s e k a rM , . T a k h i , a n d J . S . Y a d a v ,T L 3 6 , 3 0 7 ( 1 9 9 5 ) . 'tR. Ballini. G. Bartoli. R. Giovannini, E. Marcantoni,and M. Petrini, IL34,3301 (1993).
O
H-N.Me
,A/--
G. Bartoli, C. Cimarelli, E. Marcanro 'G. Bartoli, M. Bosco,L. Sambri. and I
G rignard reagents/copper salts. Coupling. Dilithium tetrachh bromide with a,ardibromoalkancs have also been used as coupling par
Ss2' displacements. The opcni tions of chlorides are regio- and sren alized allyl thiazolin-2-yl sulfides ir
Grlgnard reagcnts/coppersalts 17l
d :: :r l.'1-dimethylpiperazine-2'3' the first step is the crJ -1.'n\atives,rr - .i '
h'.:
t: - 'f allenesulfinateesters with E - ' r . u l f u r . [ 2 . 3 l S i g m a t r o p irce a r -
rrl:, r'.ters and nitriles are available n c:.celkanoicacid derivatives,which
16T. H a t t o r i , N . K o i k e , a n d S . M i y a n o , J C S ( P I )2 2 7 3 ( 1 9 9 4 ) . 17C. E. Tucker and P. Knochel,S 530 (1993). 'tF. J i n , Y . X u , a n d W . H u a n g ,J C S ( P I )7 9 5 ( 1 9 9 3 ) . ''M. Ho.liat, A. S. Kiselyov, and L. Strekowski, SC 24, 267 (1994). tuY. Shen and S. Gao, JOC 58,4564 (1993). '' H. C. Brown and R. Soundararajan,TL 35,6963 (1994). 22R. A n g e l l , P . J . P a r s o n s ,a n d A . N a y l o r , S L 1 8 9 ( 1 9 9 3 ) . L K. R. Muralidharan,M. K. Mokhallalati, and L' N. Pridgen,TL 35' 7489 (1994). 'ow.-L. Cheng,S.-M. Yeh, and T.-Y. Luh, JOC 58, 5576(1993). "w.-L. Cheng and T.-Y. Luh, HC 3, 505 (1992). 'uZ. P a k u l s k i , D . P i e r o z y n s k i ,a n d A . Z a m o j s k i , f 5 0 , 2 9 7 5 ( 1 9 9 4 ) . "T. S a t o h .Y . K i t o h , K . - L O n d a , K . T a k a n o , a n d K . Y a m a k a w a , 7 5 0 , 4 9 5 7 ( 1 9 9 4 ) ' :8A. R . K a t r i t z k y , H . L a n g , a n d X . L a u , T 4 9 , ' 1 4 4 5( 1 9 9 3 ) . }U.T. Mueller-Westerhoff and M. Zhou, TL 34,571 (1993). r('R. H. Mitchell and V. S. Iyer, TL 34, 3683 (1993). t' S . F . M a r t i n , A . S . W a g m a n ,C . G . Z i p p , a n d M . K ' G r a t c h e v ,J O C 5 9 , 1 9 5 7 ( 1 9 9 4 ) . r?J.-8. B a u d i n , M . - G . C o m m e n i l , S . A . J u l i a , L . T o u p e t ,a n d Y . W a n g ,S Z 8 3 9 ( 1 9 9 3 ) . I D . B a s a v a i a h ,P . K . S . S a r m a , a n d A . K . D . B h a v a n i , C C l 0 9 l ( 1 9 9 4 ) . !A. Y a n a g i s a w aH , . H i b i n o , N . N o m u r a , a n d H . Y a m a m o t o ,J A C S l l 5 ' 5 8 7 9 ( 1 9 9 3 ) . r 5 W a t a n a b e ,K . S u g a h a r a T , . F u j i t a , M . S a k a m o t o ,a n d T . K i t a z u m e ' J F C 6 2 ' 2 0 1 ( 1 9 9 3 ) ' S.
:
l::
'.-,cooMe
Grignard reagents/cerium(III)chloride. to enhancetheir reactivitiesandregioseCerium(III)chloridepolarizessubstrates lectivitiesin Grignard reactions.B-Enaminoketonesand B-nitrostyrenesafford underthe influenceof CeClr. respectively, enonesrand nitroethylarenes,2
'R' ' -
/f-o
1. .: !'.tr\ ity with respect to allylic D.i :,r,, n-substituted B,B-difluorot:.i -.rgenls.
O
CaCl3,THF -780
H.N.Me
*Az\
R.MgX 10% ACOH
65-85%
I
7 ; . 1 { 1 . 1 3(11 9 9 3 ) . rr.. - K C Molloy,andM' Wills' JCS(PI) 'G. Bartoli, C. Cimarelli, E. Marcantoni,G. Palmieri, and M' Petrini, CC715 (1994). r G . B a r t o l i , M . B o s c o ,L . S a m b r i ,a n d E . M a r c a n t o n i , 7 L 3 5 , 8 6 5 1( 1 9 9 4 ) .
::5 r1993).
19 -v:\
/
l.l9{). Jr.rng. A.-Q
Mi, and T -T' Jong' JOC
(1994)' I , - : J H . I a n B o o m ,T A 5 , 2 2 6 1 It I rlr1993). i r , . 1 1 6 . 1 7 1( 91 9 9 4 ) . '.| ,-r' 35 : ,1995). ,n,JM. Petrini,TL 34, 3301(1993)' rr
Grignard reagents/copPer salts. Coupling. Dilithium tetrachlorocupratecan be used to couPle allylmagnesium bromide with o,ardibromoalkanes to provide ar-bromoalkenes.rVinylic tellurides havealso been usedas coupling partners.2 Sp2, displacements. The opening of allylic carbonatesrand displacementreacThe thio unit of functiontions of chlorides are regio- and stereoselectiveprocesses.4 alized allyl thiazolin-2-yl sulfides is selectivelyremoved during the reaction.5
172 Grignard reagents/coppersalts
t H . - J . C r i s t a u ,M . - B . G a s c ,a n d X . Y - Y '8. P i e r s ,B . W . A . Y e u n g , a n d F . F . F l c t
oAo ''.
MsMgBr
I enO,u/-\y?"gZ
Cul - BF3' OEt2 THF, .78O
involves the displacementof A convenient preparation of tributylstannylalkenes6 the synthesis of alkynesT reaction an allylic acetate. By using a bromoallene in the branching at the propargylic position is realized' activating group on nltrogen Opritng of aziridines. Aziridines with an
Grignard reagents/nickel complcr Coupling with neopentyl iodilt Grignard reagentscouple with neog Reaction with enol etherc. 2-S reducedto the (E)-alkenols2with rg nickel chloride complex. The rerr recifeiolide.
undergo electrophilic reactions'8'e Conjugateaddition.Precursorsofunusualaminoacidsareacquiredbytan2-(Oxazolidin-2dem addition and bromination of N-alkenoyloxazolidin-2-ones'r0 compounds' those to route on-3-yl)acrylatesrralso act as acceptorsin an alternative
iPrlgt
/u Ph
.
i-\
RMgX- CUBF SMe2
vYnvo o
THF -780 -> -100 .
6
i"",r.-{iY
P''\-
Displacement of chalcogc nidct C-C bond formation from vinYlic c Conj ugate a d dit ion - eliminat io group of benzamides with ar1.
'\{"n nBuMgX-Cul
Yilvo
BnOOC
O
THF, -780-> 250
THF. .!
6
NBS/THF, -78O
tn
(StrrP)rr€
20h
\1.ntb R c f 89o/. (R=Ph)
";{'
oN
)'YJvo BnOOC
MeOH
o
Pd(oH)2- c THF
93"/o
making disubstituted Alkynylphosphonates undergo stereoselective addition' readily available' alkenylphosphonatesr2 indirectly' for example' from Sometimes vinylic Grignard reagentsare prepared13 The sn/Li exchange is the readily available vinylstannanes via the vinyllithiums. present' be may rapid at low temperature' and a primary chloride 'D. K. Johnson, andJ' Kang,SC 24' 1557(1994)' J. Donohoe, 'A. Chieffi and J.V.Comasseto, TLSS' 4063(1994)' tS.-K. Kang,D.-G.Cho,J.-U.Chung,andD'-Y' Kim' TA 5' 2l (1994)' oJ.-E.Beckvall,E. S.M. Persson, andA' Bombrun'JOC 59' 4126(1994)' tV. Calo, V. Fiandanese, A' Nacci,and A' Scilimati' I50"7283 (1994)' uF.Bellina,A. Carpita,M. De Santis,andR' Rossi'750' 4853(1994)' tF. D'Ani"llo, A. Mann, M. Taddei'and C'-G' Wermuth'TL35"l'l'15 (1994)' ? 49' 6309(1993)' 'J. E. Baldwin,A. C' Spivey,C' J. Schofield, andJ' B' Sweeney' 'H. M. I. Osborn,J. B. Sweeney, 'TL35'2739 (1994)' andW' Howson 'oG.Li, M. A. Jarosinski, andV'J. Hruby'Il 34, 2561(1993)' I'P. A. LanderandL. S. Hegedus'JACS116'8126(1994)'
triphenyls.o Thioamides. Good yields of t u ith chlorothioformamides.?
K. Park,K. Yuan,andW.J. Scott..lO J.-P.Ducoux,P. Le Menez,N. Kuncs andC. Allard L. Hevesi,B. Hermans, 'F. L. Mazzo Babudri,V. Fiandanese, L. L. Shiu,C.-C.Yu, K.-T.Wong.B.'L 1 2 .l 0 l 8 ( l 9 9 3 ) . 'J. J.J. A. Cooney,and M. Ju Clayden, G. Marcha F. Babudri,V. Fiandanese,
G rignard reagents/Palladium cll Coupling with vinylic halidct r rrh retentionof configuration. Sx2 Displacements'1 Regio-
rhosphateshas been observed. Biphenyl synthesis.a Monoar : unctionalization of biphenyl derirr
Grignord reagents/polladiumchloride cornplexes 173 ''H.-J. C r i s t a u , M . - B . G a s c ,a n d X . Y . M b i a n d a , J O M C 4 7 4 ,C l 4 ( 1 9 9 4 ) . 't E . P i e r s , B . W . A . Y e u n g ,a n d F . F . F l e m i n g , C J C 7 1 , 2 8 0 ( 1 9 9 3 ) . HO_
-
:
ano--,/-\AZ
r.:
Grignard reagents/nickel complexes. Coupling with neopentyl iodides.' On treatment with ZnClz and (dppf)NiClr, Grignard reagentscouple with neopentyl iodides. Reaction with enol ethers. 2-Substituteddihydropyrans and dihydrofurans are reduced to the (E)-alkenols2 with isopropylmagnesiumbromide in the presenceof a nickel chloride complex. The reaction has been applied to a formal synthesis of
Ih ,n activating grouP on nitrogen
recifeiolide.
I
837" of la.rr'ner^ involves the displacement a l k y n e s T o f the :c.rction the synthesis
tan3uj, Jmino acids are acquired by 2 ( O x a z o l i d in-2l.,r,z',lrdin-2-ones.'0 compounds' those .:.:l:native route to
Y;-,.jy
r.. ;' \-,1 : . .., ,o : o F.
.-1
Ph \
iPrMgBr
H
^
Y)5HH, \.. " / o Po(on)z'c x o r x p 90"/"
!l'.
lc.: . c addition, making disubstituted p:rr.rred'r indirectly, for example'from is e . rrllithiums' The Sn/Li exchange lor:J', may be Present' l. ..<- 1994).
o6Y
(BusP)2NiCl2 (CH2)6--<\O2 THF, A 20h
==Ph)
t-
/"
4B"h (EZ 4:1)
recileiolide
Displacement of chalcogenides. The catalyzed Grignard reaction is useful for and cyclic dithioacetals.s C-C bond formation from vinylic chalcogenides3'a of the o-(r-butylsulfonyl) The displacement Conjugate addition-elimination. unsymmetrical furnishes reagents with aryl Grignard group of benzamides biphenyls.6 Thioamides. Good yields of the products are obtained in coupling reactions with chloroth ioformamides.T K. Park.K. Yuan.andw. J. scou."/oc 58, 4866(1993). tJ.-P.Ducoux,P. Le Menez,N. Kunesch, andE. Wenkert,JOC 58,1290(1993). 'L. andC. Allard, TL35,6'129(1994). Hevesi,B. Hermans, 'F. L.Mazzone,andF. Naso,TL35,8847(1994). Babudri.V. Fiandanese, 'L. L. Shiu,C.-C.Yu, K.-T.Wong,B.-L. Chen,W.-L.Cheng,T'-M. Yuan,andT.-Y.Lrth' OM 1 2 ,l 0 l 8 ( 1 9 9 3 ) . "J. M. Julia,JCS(Pl)7 (1995). -F.Clayden,J.J. A. Cooney,and andA. Punzi,SL'719(1994). G. Marchese, Babudri.V. Fiandanese,
(r!:
| \ ':r l'1 5. 2l (1994)' ' . -- .'()(- 59.4126( 1994) (1994)' 7283 r 50. rr!'j: !r... / s0. -{853(1994). (1994)' tAc:::'th. TL 35,'17'75 T 49,6309(1993)' rd I l'i Sqeeney, r l. -r5.2139(1994)' ll l:^l ,1993). la
qe-l r.
Grignard reagents/palladium chloride complexes. Coupling with vinylic halides.t'2 The C-C bond-forming reactions proceed with retention of configuration. Sp2 Displacernents.3 Regio- and stereoselective methylation of y-silylallyl phosphateshas been observed. Biphenyl synthesis.a Monoarylation of 1,4-dibromobenzene makes further iunctionalization of biphenyl derivatives possible.
dichloride l?4 Grignardreagents/zirconocene 'R.W. Hoffmann,V. Giesen,andM' Fuest'LA 629(1993)' 2Y. Sugihara SL 665(1994)' andK. Ogasawara' tu. U.Iub",H. Inami, andF. Sato,CC 1595(1993)' nN.,l. nutugln' F. S. Safarov,andA' I' P' Beletskaya ' DC 332' 195(1993)' 14' l2l-122 Grignard reagents/titanium(IV) compounds' a.Hydroxystannanes.,RingopeningofC2.symmetrical2-tributylstannyl-1,3. dioxanesfollowedbyregioselectiveethercleavagerepresentsageneralroutetochiral hydroxystannanes.
Hafnium(IV) triflate. Friedel-Crafts acylation.''l lyzes the acylation of arenes at roo benzene* acetophenone)
l. Hachiya,M. Morikawi,andS. Koh SnBu3
\
oAo
EtMgBr- Ticl4
.(-,\
CHzClz, -78o
/snBu'
7's ?" ....'\.,\
r
Swern;
SnBu3
-!,",o^
K2C03
90o/o (de >95o/o)
85% (de >95%)
Coniugateadditiontohinileredenones''Amethyltitanatecomplexgenerated fromamethylGrignardreagentishighlyeffectiveindeliveringthemethylgroupto hinderedenonesin the presenceof Ni(acac)u' (1994)' rK. Tomooka, T. Igarashi,andT' Nakai'?L 35' l9l3 35' 6075(1994)' 2S.Flemming,J. Kabbara,i'Nickis"f" H Neh' andJ' Westermann'TL Grignard reagents/zinc chloride' Reactionwitha-ketoesters.|Inaregio.anddiastereoselectiveadditionreacactive a-hydroxy esters' tion, chelation control provides optically
o i l ^PhZ-Ph/\,,Y o
ZnCl2- MeMgBr
Er2o- THF -780,1h
,^X\o
Pn7--n
U
Haloboranes. 13, 4'7-48, 72,'13. I Hydroboration.' ThexYlhalo monohydroborationat room temp( ment in convertingterminal alkln Secondary amines from azil azidesleadsto secondarYaminesd polyamine synthesis.Note that tlx ' ,l iisopropylamino)boranes.s
/\ N ; V
+ NHcMe
ci
"AAr"o CH2C|2 , n
n
J .S . C h a .S .J . M i n , J .M . K i m ' a n d( B. Carboni,A. Benalil,andM. Vau P.-Y.Chavant,F. Lhermitte,and V.
84% (28:25 88:12')
r H . S u g i m u r a a n d T . W a t a n a b e ,S L 1 7 5( 1 9 9 4 ) '
Grignard reagents/zirconocene dichloride' are susceptibleto transpositional attack Sp2' reactions't Allyl phenyl ethers with phenolateacting as a leaving group' good yields' Enyn"' are produced in moderate to Addition to l,j-diynes't ll5' 8485(1993)' JA-CS rN. Suzuki,D.Y. Kondakov'andT' Takahashi' andE'-l' Negishi'IL 34' 8301 Choueiry' D' Suzuki' 2T.Takahashi, N' i' b"ni'ou' K. Aoyagi, (1993).
Heteromethyl tris(o-methoxYut (Z)-Alkenes.' The Ylides fn reactionsto give (Z)-alkenes selco
zaldehyCeand the fluoromethYlcn
fL .} X.-P.ZhangandM. Schlosser.
Hexaalkyfditin. 13, 142:14, 173 These a Aryltrimethyltins.t midesor triflates and (RrSn): wtr
t - 1 : .1 9 5( 1 9 9 3 ) .
, lJ lll-122 ':-.\ ::'.metrical2-tributylstannyl-l'3chiral r :ijlre\entsa generalrouteto
Hafnium(IV) triflate. Friedel-Crafts acylation.t This salt in LiClO+-nitromethane medium catalyzes the acylation of arenes at room temperature, usually in excellent yields (except benzene* acetophenone) ' 1 . H a c h i y aM, . M o r i k a w ia, n dS . K o b a y a s h i , T L 3 6 , 4 0( 199 9 5 ) .
r
S*em.
t
(,co3
SnBus
YO' 90% (de >95%)
\ rrethlltitanatecomplex generated group to r:' r :n deliveringthe methyl
Haloboranes. 13, 47-48, 72, 73: 14, 82-83; 15, 163 Hydroboration.t Thexylhaloborane-dimethyl sulfide complexes are useful for monohydroborationat room temperature with superior regioselectivity. Its employment in convertingterminal alkynes to aldehydeshas been demonstrated. Secondary amines from azides.2 The reaction of alkyldichloroboranes with azidesleadsto secondaryamines directly. This processhas beenincorporatedinto a polyamine synthesis.Note that the dichloroboranescan be prepared from organobis rdi i sopropylami no)boranes.l
d'
\ \ . . r e r m a n ' T L 3 5 , 6 0 7 5( 1 9 9 4 )
addition ' i:J Jrastereoselective e s t e r s . ? .r .\Jroxy
z *\"taz
1 .NH2Me N : V -
,A/r",, Br v CH,CI, . rl
,,r' NI' V -NHMe H
NaN3;
..\ H2N' V
HzlPd-C
87"/"
' N ' ^\ , /
NHMe
H 59% (2 steps)
J .S . C h a ,S .J . M i n , J .M . K i m , a n dO . O . K w o n ,I I 3 4 , 5 l l 3 ( 1 9 9 3 ) . : 8. Carboni.A. Benalil,and M. Vaultier, (1993). JOC 58,3'736 P.-Y.Chavant,F. Lhermitte,andM. Vaultier,SL 519(1993).
84"k (2R:25 88:121
Heteromethyl tris(o-methoxymethoxyphenyl)phosphonium salts. (Z)-Alkenes.t The ylides from such phosphonium salts participate in Wittig reactionsto give (Z)-alkenes selectively.The only unusual caseis that involving benzaldehyCeand the fluoromethylene ylide. attack n ..r-.eptible to transpositional yields' oJ-.r'J in moderateto good (1993)' r( . ll5. 8'185 8301 D ( ' 1 , , u e i r ya,n dE . - l ' N e g i s h if't 3 4 '
TL 34, 1925(1993). X.-P. Zhangand M. Schlosser, 4 : 16, 174: 17, 143- 144 Hexaalkyldit in. 13, 142l'14, 173 - 1'1 These aryltin compounds can be obtained from aryl broAryltrimethyltins.t midesor triflates and (RrSn)zwith a Pd(O)catalyst.
176 HexaalkYldltin vic-Bistrimethylstannylationofalkynes.2Themetathetictransformationis temperature' On warming to 75-95"C' mediated by a Pd(0) catalyst in THF at room the(Z)-alkenesundergorsomerization,presumablyviatheallenylO-stannylacetals' of an alkyl halide and an allyl Free radical substitutions.r The cross-coupling under uv irradiation' or vinyl halide is mediated by hexabutylditin
rf\ l (
I
t].
+
cN
B'\z\ |
Hexaalkylguanidinium chlorides.sil Esterification.l R
* FcooH
+ crcooPh
\ Bu3SnSnBu3 PhH.
hv
94"h (Z:E 92:81
Photodissociation of hexabutylditin Free radical addition to double bonils. a halogen atom or thio group' abstract to generatesa tin radical, which can be used can be designedto trap the resulting carIntramolecular or intermolecular processes
B-Chloroalkyl esters.2 These rc: p-chloroalkylesterswithout simultar (acrylate,etc.)a sensitive compounds chlorideis particula butylguanidinium
P. Gros,P. Le Perchec,P. Gauthier,and J. -P. Gros.P. Le Perchec,and J. P. Senct..lO
bonradical.Syntheticapplicationsincludevicinalfunctionalizationofanenone cyclopropane'5 double bonda and the consiruction of a fused
o
Bu33nSnBu3
il
r) \_4
+ PhSCH(OMe)2+
y'\ursnau"
PhH,
lry
Hexafluorodimethyl disulfide. Trifluoromethyl sulfides.t Thrs r ,rlcoholinto a trifluoromethyl sulfide. / bond formation) weakens the C-O boo
o tl
L/
\= '1
CH(otvte)z 69% ph, .OH
Bu3snSnBu3 PhH, tN '10h
(E12N)2PCl Et3N/ Et2O . 4 0 . , 2h
COOMe
-(
ph. sl
COOMe A . A . K o l o m e i t s e v ,K . Y . C h a b a n e n k o .G , t994).
of a-iodoketones with aldeReformatsky'type reaction'u The condensation hydes is Promoted bY (BurSn):' halides by means of reaction with Oximes.l Alkyl radical' gene'at"d from compounds formed tautomerize (Bu:rSn):attack tributylstannyl nittit'' Alkylnitroso to the oximes. 37' lM.P. Maguire,K.R' Sheets,K' McVety'A'P' Spada'and A' Zilberstein'JMC (1994). 2E. Piersand R. Skerlj,CIC 72,2468 (1994)' 3C.C. HuvalandD. A. Singleton, TL 34' 3041(1993)' 4G.E. KeckandC. P. Kordik,TL34,68'75(1993)' 5R. C. DenisandD. Gravel,fL 35' 4531( 1994)' ui. St ib^tu,T. Yamaguchi,A' Baba,and H' Matsuda ' CL9'l (1993)' ?R. J. Fletcher,M. Kizil, and J' A' Murphy' TL 36' 323(1995)'
2129
luoro-2-phenylisop l. l, 1,3,3,3-Hexaf Primary alcohol protection.t Th :n 84-997oyield. The protectinggrur in THI :reatment with Li naphthalenide - -897o1. 1 H.-S.Cho, J. Yu, and J. R. Falck,JACS ll
13, 14l Hexamethyldisilazane. By ZnCl2 catalysisr Silylethers.' ethers, but aminesr irve trimethylsilyl
Hexamethyldisilazsne 177
metathetic transformation is to 75-95'C' F.:.:: rre. on warming 11. , the allenyl O-stannylacetals' allYl i:r.: 't an alkYl halide and an T::
lc: -. rrradiatton.
Hexaalkylguanidinium chlorides,silica supported. Esterification.l 't200
R
",Fcoox
R
+ crcooPh
)-cooen
Meo
But
NBu2
R''
NBu2 {l;'i"^'*< cl
a94'/" (Z:E 92:Al
Ph : 'Jrrsociationof hexabutylditin grouP' 6r.i.: I halogenatom or thio carresulting the bc .:r.rsned to trap enone an of ;lni. functionalization si.';:,'pane.5
B-Chloroalkyl esters.2 These reagents enable transformation of epoxides to p-chloroalkyl esters without simultaneous generation of HCI; therefore, potentially sensitive compounds (acrylate, etc.) are prepared cleanly. The silica-linked hexabutylguanidinium chloride is particularly effective'P. Gros.P. Le Perchec, andJ. P. Senet,SC23, 1835(1993). P. Gauthier, tP. Gros,P. Le Perchec,and J. P. Senet,JOC 59,4925(1994).
Hexaf luorodimethyl disulfide. Trifluoromethyl sulfides.t This reagent converts the diaminophosphite of an alcohol into a trifluoromethyl sulfide. An initial attack at the phosphorusatom (P-S bond formation) weakens the C-O bond for substitution by the CFrS- ion.
3 -,SnSngu3
bn(oue), 69%
(ErzN)2PCl
pnAoH
CFsSSCFs
en^oe1ruet212
Et3N / Er2O -4e ,2h
,COOME
PnAscF,
-500 -> -200
90%
95"/o
<-cOOMe 50'.
and Y.L. Yagupolskii'S 145 G.-V.Rijschenthaler, K.Y. Chabanenko, A.A. Kolomeitsev, (t994).
with aldetn.r::,\n of a-iodoketones with I i,:tJes bY means of reaction rt:, ,.,, dt)mpoundsformed tautomerlze 37' 2129 S:..:, rnd A. Zilberstein'JMC
1,1,1,3,3,3-Hexafluoro-2-phenylisopropyl alcohol. Primary alcohol protection.t The ether formation is mediated by Ph3P-DEAD rn 84-99Vo yield. The protecting group is remarkably robust; its removal requires treatment with Li naphthalenidein THF at -78oC for severalhours (recoveredyields: 73-89Vo). H.-S.Cho.J. Yu. andJ. R. Falck,JACS116,8354(1994).
9:
d:
t / . r ?r 1 9 9 3 ) i
1995).
Hexamethyldisilazane. 13, 14l Silyl ethers.t By ZnCl2 catalysis alcohols and phenols react with this reagent to give trimethylsilyl ethers,but amines and thiols remain unchanged.
178 Hexamethylphosphorictriamide Aromatic Claisen rearrangernent.z The presence of the silylating agent prevents the so-called abnormal Claisen rearrangementfrom occurring' Bis(trimethylsityl) phosphonite. The reactions with ammonium phosphinate gives (Me3SiO)2PH,which is reactive toward unactivated alkyl halides and imines. Accordingly, alkylphosphinic acids and o-aminophosphinic acids are more readily
High-pressurereactions. Aminolysis of epoxidcs.t Th catalyzedby silicagel and pronro
H . K o t s u k i , T . S h i m a n o u c h i .M . T e n cL 2t59 (1994).
accessible.o rH. Firouzabadi andB. Karimi, SC23, 1633(1993). tT. Fukuyama, T. Li, andG. Peng,TL35'2145(1994). 3E. A. Boyd,A. C. Regan,and K. James,TL 35' 4223(1994). oX.-Y. Jiao, C. Verbruggen, M. Borloo, W. Bollaert,A. De Groot, R' Dommisse'and S 23 (1994). A. Haemers,
Hexamethylenetetramine. Triiger's bases,t Hexamethylenetetramineis a sourceof formaldehyde.Thus its admixture with an aniline in trifluoroacetic acid affords Triiger's base. Bromine carrier,2 The hydrotribromide of hexamethylenetetramineis a mild and selectivebrominating agent for many arenes. ' R. A. Johnson,R. R. Gorman,R' J. Wnuk, N' J. Crittenden,and J'W' Arken,JMC 36' 3202 (1993). 'S. C. Bisaryaand R. Rao,SC 23,'7'79(1993). Hexamethylphosphoric triamide. 13, 142-143; 14, 176;15, 165-166; 16, 174-175 Solvent effects.t The stereochemical outcome of the alkylation of a-alkyl ester is subjectto solvent conB-keto ester enamines preparedfrom (S)-valine t-butyl from the opposite face of Li to trol. It seems that the bulky HMPA coordinates from that side. On electrophile of the the isopropyl group, preventing the approach to attack from the the electrophile allows the other hand, a smaller and weaker ligand
Hydrazine hydrate. 13, 144 Selective deoxygenation ol iu rnvolvesbrief heatingwith N:H..
Reduction of 1,2-bis(trinctL * ith hydrogenperoxide and CuSO. \tannylalkeneanaloguesare also h
Liberation of amines. A rnod accessto a-amino acidsusing chrn phthalimide catalyzed by a chiral 1 nately,the resultsare not very satt Protected amino acids and pcp Jerivativesaare formed and cleart DMF proceeds at room temperalu phasepeptidesynthesis. N-Aminoaziridines are releard hvdrazine. 3-Acetoxyamino-2-trif ihe N-aminonitrene.
y'1zN't-cr. l
l
l
l
[--\
\y'yN-Hnor"
opposite side of the isopropyl moiety.
OX Eo X",L,.o 'n\Aoe, R1
loluon€, HMPA
I
?
__{
_A R ' R Z
+ R2Br \THF
(70 - 1oo% ee) \
(or: toluene,MqN: roluone,dioxolane)
n ji
n\
^ ll
oer R2 hl
(47-92"h ee)
'K.
Preparation of bis(2- hydroxyct lrazine in the presenceof KOH and r i useful sourceof the nucleophilic2 i-hydroxyethylselenenyl halides.Tb
Ando, Y. Takemasa, K. Tomioka' and K. Koga, T 49' 1579 (1993\'
C. Crestiniand R. Saladino, SC2i. 2& T N. Mitchell and B. Kowall,JOMCu S Guifa and Y. Lingchong,SC23. l1l '8.W. Bycroft,W.C. Chan,S.R. Chhr -78 ( 1993). R.S. Atkinson,M. P. Coogan,andC. L O. M. Jakiwczyk,E. M. Kristoff, and D
Hydrazine hydrate 179
agent preF:3.ence of the silylating Er:..: t from occurring' r:: r \^ith ammonium phosphinate ur.:,irrrt€d alkyl halides and imines' tr:r, :hrrsphinic acids are more readily
High-pressurereactions. Aminolysisof epoxides.t The reactionof epoxideswith glycinet-butyl esteris catalyzedby silicagel and promotedby high pressure. rH.
K o t s u k i , T . S h i m a n o u c h i , M . T e r a g u c h i ,M . K a t a o k a , A . T a t s u k a w a ,a n d H . N i s h i z a w a , cL 2159 0994\.
Hydrazine hydrate. 13, 144 lq: -eJL
l:i
\
l'r."
De Groot, R' Dommisse'and
Thus its D. .. r \()urce of formaldehyde' r:.: rtiords Trdger'sbase' a mild ! : lr'\amethylenetetramineis ttl'. ::Jen.
C-
and J.W.
Aiken, JMC 36' 3202
. 1 : : l { . 1 7 6 ;1 5 , 1 6 5 - 1 6 6 ;1 6 , 1 7 4 - l ' 1 5 t-rir. 'me of the alkylation of a-alkyl coninc '-i.ut1l esteris subjectto solvent of face Irn.::. tc'rLi from the opposite On side' t! : :he electrophile from that the ri ''i. the electrophile to attack from
Selectivedeoxygenation of isatins.' A facile conversionof isatins to oxindoles involves brief heating with NzHa. Reduction of 1,2-bis(trimethylstannyl)alkenes.2 Diimine generated in situ with hydrogen peroxide and CuSOqcatalyst (l7o) is useful for the reduction. uic-Silyl/ stannylalkeneanaloguesare also hydrogenated. Liberation of amines. A modification of the classicalGabriel synthesisto gain accessto a-amino acidsusing chiral a-bromoalkanoicestersto reactwith potassium phthalimide catalyzed by a chiral phase transfer agent has been reported.r Unfortunately, the results are not very satisfactory. Protected amino acids and peptides in the form of aminomethylene-dimedone derivativesaare formed and cleaved very readily. The cleavagewith hydrazine in DMF proceeds at room temperature. This protection method is suitable for solidphasepeptidesynthesis. N-Aminoaziridines are releasedfrom a quinazolinonesystem5on reaction with is a source of hydrazine. 3-Acetoxyamino-2-trifluoromethylquinazolin-4(3H)-one rhe N-aminonitrene.
,Z--7N--r-cr, l
l
l
l
Vy*.*"oo.
r-\
fY"Y""
VY"'",.-Z1
o
v
NzHr
"r".*_
rzo".i'in
\j 64%
'tre'. t*"t
o
-
o
ll ll nA-:
ti/-t
r.
V€'N.
:.:r:.are)
^
n
ii
ji
n-\<\oEr -R1 R2
\47-92oh ee)
i,oi: I {9. 1579(1993)'
Preparation of bis(2-hydroxyethyl) diselenide.6 Reduction of selenium by hyJrazine in the presenceof KOH and alkylation in situ provide the diselenide,which is r useful source of the nucleophilic 2-hydroxyethyl selenideanion or the electrophilic i-hydroxyethylselenenylhalides. The preparation can be run on a large scale. C. CrestiniandR. Saladino, SC24,2835(1994). 'T. N. Mitchell and B. Kowall, JOMC 481, 137(1994). S. Guifa and Y. Lingcbong,SC 23, 1229(1993). '8.W. Bycroft,W.C. Chan,S.R. Chhabra,P.H. Teesdale-Spittle, and P.M. Hardy,CC776, -78 ( 1993). R.S. Atkinson,M. P. Coogan,andC. L. Cornell,CC l2l5 (1993). 'O E.M. Kristoff,andD.J. McPhee, M. Jakiwczyk, SC23, 195(1993).
180 Hydrogen fluoride
Hydrazoic acid. occurswhen an areneis treatedwith Arylamines.t Direct aromaticamination of both triflic acidand trifluoroaceticacid' hydrazoicacid in the presence 867 (1993)' rH. Takeuchi, T. Adachi,H' Nishiguchi'K' Itou' andK' Koyama'JCS(PI)
Hydriodic acid. 15' 166 Dehalogenationofa-halokctones.|Thereductioncanbeconductedin5lvoH| without solvent. openingof2-iminooxetanes.2Theeasyavailabilityof2-iminooxetanesfrom Lewisacid-cata|yzedcycloadditionofketeneiminesandaldehydesmakesitdesira b l e t o f i n d s o m e s y n t h e t i c u s e s ' 3 - I o d o c a r b o x a m i d e s ' w h i c h a r e g e n eis r aformed' tedbyreacRemarkably little hydroxy amides tion with Hl, are sourcesof B-lactams'
Formylation.2 HF-SbF. ca pounds with carbon monoxide. Tl in 53Vayield.
'T. FukuharaandN. Yoneda, CL 50 rM. Tanaka,M. Fujiwara,H. Ando.
Hydrogen fluoride-amine.
16. The two most frequently usc< and HF-EtrN, both of which coa Aromatic fluorides.t Aror formed into the fluorides by trer or photochemically. The method having polar substituents(e.9..O
Epoxide opening.2-4 Regirx
-fl| )-o
.N-eMeO-CoHq
Hl, HzO
r
o
t t l .')(^r.rx-pMeo-coHr
CHzClz,rt' 0.5 h
95o/o
SC23' 1385(1993)' 'M. Penso,S. Mottadelli,andD' Albanese' 2G. Barbaro,A. Battaglia'and P' Giorgianni' JOC 59' 906 (1994)' Hydrobromic acid/hydrogen bromide' is the for the preparation of anhydrous HBr An expedient and ".onomital method therma|decompositionofPhrPHBrinxyleneundernitrogen.IThesaltcanbemade of Bu4NBr' from PhrP and t-BuBr in the presence Selectivebromination.2Primaryalcoholsareconvertedtothebromideswith HBr/HoAcindioxane,althoughcyclicethersarealsoobtainedassideproducts. are acetylated Under such conditions secondary alcohols AroMe.AroH.3DemethylationofamethyletherwithoutdisturbingthechiralaminoacidmoietyattachedtothearylringisaccomplishedwithHBr_NaI-Hzo in a sealed tube. 'X.-H. WangandM. Schlosser, S 479 (1994)' G' Demailly'TL34'3741(1993)' 'A. El Anzi, M. Benazza, C Frechou''and 'C. ii, n. Patel,and V' J' Hrubv,TL34' 5393(1993)'
Hydrogen fluoride. moderundergo exchange to fluorides in Halogen exchange,t Aromatic halides ate yields.
r
C
N
$"*,
Substitutions. Glycosyl flu rersionof configuration.5When , present,the displacementof thc I rng group participation.6 Another method for the synr cycloaddition of glycosyl azidcs quent treatmentof the triazole & E le ct ro ch emic al f lu ori n at io .ion of aldehydes to acyl fluori telluranes (PhTeFzR)roare sorx electrochemicallyin MeCN in rh
T. Fukuhara,M. Sekigucbi, and r' F . A m m a d iM , . M . C h a a b o u nHi . A. HedhliandA. Baklouti,JFC 7l 'J. Umezawa, O. Takahashi, K. Fur 'R. Miethchen andG. Kolp,JFC lf 'M.-B. GiudicellM i , . - A .T h o n r . D 'W. BroderandH. Kunz,CR 249.2 'S. NarizukaandT. Fuchigami.JO "N. Yoneda,S.-Q.Chen,T. Hatake T. Fuchigami, T. Fujita,andA. Ko
iur. *hen an areneis treatedwith an; : rr iluoroaceticacid. i |. ':rna. JCS(PI)867(1993).
rrt:, n .an be conductedin5'l%oHl rrlai.:!rt1of 2-iminooxetanesfrom inc. rnd aldehydesmakes it desirrjc. uhich are generatedby reacly lr:tle hydroxy amidesis formed.
-
^
.
Hydrogen fluoride-amine lEl Formyration.2 HF-sbFs catalyzes formylation of polynuclear aromatic compounds with carbon monoxide. Thus naphthaleneaffords 1,5-naphtharene_diardehyde in 53Voyield. ' T. Fukuharaand N. yonecta,CL 509 llgg3\. rM. Tanaka,M. Fujiwara,H. Ando,u;;-ylrournu, JoC sE,32t3(t993\. Hydrogen fluoride-amine. 16, 2g6_2g:. The two most frequently used complexes for organic synthesis are HF-pyridine and HF-EtrN, both of which contain more than one equivalentof HF. Aromatic fluorides.t Aromatic diazonium fluoroborates are readily transformed into the fluorides by treatment with HF-pyridine, induced either thermary or photochemicarty. The method is particurarry usefur for accessingthose fruorides having polar substituents(e.g., OH, OMe, CFr, halogens). Epoxide opening.2-a Regioserective formation of fluorohydrins is observed.
Nx-eMeo-c5Ha \
,cN
-S"ooa 95qo
HF - pyridine cH2ct2,25o 28h
J
\
C
N
-7--tcooEt F O H 800/"
."c:r
9 . 1 994 ).
rrFr :3rion of anhydrousHBr is the ler :.rrogen.rThe salt can be made Lrr . \n\erted to the bromideswith rt .:,i.o obtained as side products. It lried. nl ether without disturbingthe chir; omplishedwith HBr-NaI-H:O
1 IL 34. 3'74t(1993).
rgo erchangeto fluorides in moder'
substitutions. Grycosyr fruorides are formed from grycosyr bromides with in_ version of configuration.5 when a vicinar trans diarkylamino group to a mesylate is present,the dispracementof the mesyrate group by fluorine p.o"".d, with nerghbor_ ing group participation.6 Another method for the synthesis of grycosyl fruorides consists of 1,3_diporar cycloaddition of glycosyl azides with di-r-butyi acetylenedicarboxylateand subse_ quent treatmentof the triazole derivatives with HF_pyridine.T Electrochemical fluorination. The a-fluorination of B-lactams,8 the conver_ :ion of aldehydes to acyr fluorides,e and of phenyrteilurides (phreR) to difluoro_ telluranes (PhreF2R)r' are some of the transformations that can be performed electrochemicallyin MeCN in the presence of zHF_EtrN (n : 3 or 5). Fukuhara,M. Sekiguchi, andN. yoneda,CL l)ll (tgg4). -.T. F Ammadi,M. M. chaahouni,H. Amri, and A. Bakr,outi, 'A. sc 23,2389(1993). H e d h l ia n dA . B a k l o u t i , J F C T 0 , l 4(tt 9 9 5 ) . 'J. Umezawa, O. Takahashi, K. Furuhastri,-ani'U. Not,.u, TA 4,2053 (lgg3). 'RMiethchenand G. Kolp, JFC 60,49 (lgg3). _M.-8.Giudicelli,M.-A. Tlome, D. picq,andD. Anker,CR 24g,t9 (t993). W. Broderand H. Kunz, CR 24g,221(lgg3). _ 'S,. NarizukaandT. Fuchigami . JOC Sg,42OO (lggr. -N. Yoneda, S.-e. Chen,T. Hatakeyama, S. Hara,andT. Fukuhara,CLg49(9945. 'T. Fuchigami,T. Fujita, and A. Konno, rt $, Criil9S+t.
acidic lE2 HydrogenPeroxide, -N'bromosucci nimide' Ilydrogen f luoride -pyridine affecting The addition to vinyloxiranesr proceedswithout Bromofluorination. bromodesulfenylating undergo ketones2 the epoxide. B-Phenylthio a,B-unsaturated fluorination. Fluorodesulfurization.ReplacementofaC_SbondwiththeC_Fbondismost dithioacetals are transformed convenientwith this reagentcombination. Accordingly, ethers.o a'a-difluoroalkyl into o-esters into g",-airruoridess and thioalkanoic 'A. HedhliandA. Baklouti,JOC 59,52'17 (1994)' tR. Bohlmann,?L 35' 85 (1994). rM. KuroboshiandT. Hiyama'JFC 69' 127(1994)' aM. KuroboshiandT. Hiyama,SL25l (1994)' tetraf luoroborate' Hydrogen fluoride-pyridine-nitrosonium Perftuorination.Ketoximeslareconvertedtogem-difluoridesanddiarythis combination of reagents' The lacetylenes2to 1,2-diaryltetrafluoroethaneswith to generatefluorilatter transformation is actually initiated by nitrosofluorination
'T. Honda and N. Kimura, CC 77 t 'S. C . L e m o u l t , P . F . R i c h a r d s o n .r 'N. J . G o r d o n a n d S . A . E v a n s .. l O ^ E . J . A l l a i n , L . p . H a g e r ,L . D c n g
Hydrogen peroxide, basic. 13. Epoxidation. 2-(Benzerc conjugateddouble bond wirh H: complementary manner to thcit Active epoxidizing agentsct rn combination with N-arenesu Sulfurides. A convenienr the use of basic H2O2and accto Oxidative desilylation.' t \tituent (e.g.,Ph, OR), the nrcrb iiguration. A double bond in r ketones.o
nated oxime intermediates. rC. York,G. K. S. Prakash,Q. Wang,andG' A' Olah'SL 425(1994)' 2C. York, G. K. S. Prakash,and G' A Olah'JOC 59' 6493(1994)' bis(trif luoroacetate)' Hydrogen fluoride-pyridine-phenyliodine(III) 4-alkylphenols in the presenceof of oxidation 4_Fluorocyclohexadienonei.r HF-pyridineleadstotheintroductionofafluorineatomtoC-4.Theyieldsaremoderate (6 examPles,42-'l7%o)' TL35'2541(1994)' 'O. Karam,J'-C.Jacquesy, andM'-P' Jouannetaud'
FPro\ / I
/-\
R
16' l'77-l'78; l7' 145 Hydrogen peroxide, acidic' 14, 176;15' 167-168; acid effects this transforformic in peroxide Hydrogen Arcno - ArcooH.t phenols'' give to reported are mation. However, methoxybenzaldehydes Baeyer-Villigeroxidation.3oZoHydrogenperoxideinaceticacidisableto oxidizecyclobutanonestotheT-lactones.3Inthepresenceofmyristicacid-andimmoalso undergoBaeyer-villiger oxidabilized candida (tntarcticalipasea other ketones tion with HzOu. Acylphosphonatesbehavesimilarlytoa-diketonestowardshydrogenperoxide, affording mi xed anhYdrides'5 in a cirrate buffer (pH 5), alkenes np,o|rdotion3 Treated with chloroperoxidase products' are epoxidized by H2O2to afford chiral 'R. H. DoddandM. Le Hyaric,S 295 (1993)' 2R.N. Baruah,IJC(B)33B,ll03 (1994)'
5l-
\
Cleavage of nitronatc aeio :!)nes7can be accomplishedthm :ronateanions with 307oH2O1.
Oxidative cleavage of * H:O:) is a convenient reagentfol
.l -E. B?ickvall, A. M. Ericsson. S.I \t. Schulz,R. Kluge,andM. Liptc \. S. Kende,P. Delair,andB. E. H 'P C. B. Page,A. E. Graham,D. Bc D F. Taber,L. Yet,and R. S. Bhan L H. Li, D. Wang,andT. H. Chan
Hydrogenperoxide,basic 183
rile. iri-.- proceedswithout affecting bromor ...llergodesulfenYlating - S ^ rJ q ith the C-F bond is most n: , Jrrhioacetalsare transformed n t , . , r - d i f l u o r o a l k Y le t h e r s . a
refluoroborate. :c : ten-difluorides and diaryi'.- .r)mbinationof reagents.The n'., : iu\)rinationto generatefluori-
3T. Honda and N. Kimura, CC 77 (lgg4). 4S. C . L e m o u l t , P . F . R i c h a r d s o n ,a n d S . M . R o b e r r s ,J C S ( p l ) 8 9 ( 1 9 9 5 ) . 5 N . J . G o r d o n a n d S . A . E v a n s ," / O C 5 8 , 4 5 1 6 ( 1 9 9 3 ) . 'E. J. Allain, L. P. Hager, L. Deng, and E. N. Jacobsen,JACS ll1, 44t5 (lgg3).
Hydrogen peroxide, basic. 13, 145;14, 156;15, 167 Epoxidation. 2-(Benzenesulfonyl) 1,3-dienesare epoxidized selectively at the conjugated double bond with H2O2in the presenceof methanolic NaOH,r in a useful complementary manner to their reaction with peracids. Active epoxidizing agents can be generatedin situ using basic hydrogen peroxide in combinationwith N-arenesulfonylimidazoles2 and with phosphonicanhydrides. Sulfuxides. A convenient and simple method for oxidation of sulfidesainvolves the use of basic H2O2and acetonitrile in methanol. Oxidative desilylation.s From silanes bearing an electron-withdrawing substituent(e.g.,Ph, oR), the method providesaccessto alcoholswith retentionof configuration. A double bond in the same molecule is retained. vinvlsilanes furnish ketones.o
r . : l r r1 9 9 4 ) . 6-:-:
'99{).
BUINF/ THF H2O2- KHCO3
ll, bisrtrif luoroacetate). of il : ,.krlphenolsin the presence 'm modare The ro C-4. int .,: Yields
MeOH
ttt'Jr1 -1: :rJl (1994).
A\
* t ' . 1 6 . 1 7 7 - 1 7 8 1; 7 , 1 4 5 i r:. :,,rnuc acid effects this transfor4r'::J to givephenols.2 !n :.r\,\ide in acetic acid is able to I F:tj.r'nceof myristic acid and immoI : i. , undergoBaeyer-Villigeroxidai\c: ne. towards hydrogenPeroxide, b.c : r a citratebuffer (pH 5), alkenes t\
o __J1
KF . H2O H2O2- KHCO3
o
-
MgOH/ THF
51 - 90%
cleavage of nitronate anions. conversion of conjugated nitroalkenes to ketonest can be accomplished through borohydride reduction and oxidation of the nitronate anions with 3OVoH2O2. oridative cleavage of a-diketones.s Sodium percarbonate (Nazcor . 3/2 HrOz) is a convenient reagentfor the cleavageto carboxylic acids. 'J-E'Biickvall,A'M.Ericsson,s.K.Juntunen,c.Najera,andM.yus, JocsE,s2zr(rgg3). tM. Schulz,R. Kluge,andM. Lipke,SZ 915(1993). 'A. S. Kende,P. Delair,and B. E. Blass,IL 35, gl23 (1994). 'P.C.B. Page,A.E. Graham,D. Bethell,andB.K. park,.iC 21, tS07(lgg3). 'D. F. Taber,L. yet, andR. S. Bhamidipati,TL 36,351(1995). 'L. H. Li, D. Wang,and T. H. Chan,OM 13, t75.1Ogg4\.
184 Hydrogenperoxide-metal catalysts tR. B a l l i n i a n d G . B o s i c a ,S ' 7 2 3 ( 1 9 9 4 ) . ' D . T . C . Y a n g , T . T . E v a n s , F . Y a m a z a k i ' C . N a r a y a n n a ,a n d G ' W ' K a b a l k a , S C 2 3 ' l l 8 3 ( I993).
Hydrogen peroxide-metal catalysts. 13, 145; 14, 177:15,294;17, 146-148 Dehydrogenation. Pyrazolines, available from the reaction of hydrazones and conjugatedesters,undergodehydrogenationrreadily on exposureto H2O2in the presence of iron(II) chloride. Oxidation of sulfur compounds. Aromatic amides are obtained from thioamides2on treatment with the HzOz-CoClz system. Aliphatic thioamides do not behave in the same waY. Methyltrioxorhenium(VII) (MeReOr) is an excellent catalyst for the oxidation of sulfidesto sulfoxides.3 Phenols - p-quinones.A Hydrogen peroxide in the presence of MeReOr is capableof the transformation. However, the yields vary from 4 to 74Eoin 20 examples studied. Aromatic bromination.s Addition of KBr generatespositive bromine species that can brominate aromatic compounds. Amine oxidation. The treatmentof primary aliphatic amines with H2o2 and a catalytic amount of titanium silicate molecularsievesleadsto oximes.o Arylamines with various substituentscan be converted to the corresponding nitroso compounds?by hydrogen peroxide and peroxomolybdenum complexes' The -catalyzed cetylammonium heteropolyoxometalate (e.g., peroxotungstophosphate) oxidation of aromatic amines leads to ArNO or ArNOz, depending on the reaction conditions.8At room temperature the reaction can be stopped at the lower oxidation state, but ArNOz is produced in refluxing CHCI3. When the ArNHz is cooxidized with primary aliphatic amines, arylazoxyalkanesare formed' Oxidation of allenes and alkynes.e The oxidation promoted by cetylpyridinium peroxotungstophosphatein an alcoholic solvent produces a-alkoxy ketones from allenes and a,B-epoxy ketones from alkynes (along with d'B-unsaturated ketones). Diphenylacetylenegives benzil (93Voyield at 457o conversion)'
coH,s
Hzoz EIOH- CH2C|2 C\
ErO I Q^Hri/t{
cetylpyridinium p€roxolungstoPhosPhate
tl
o 66%
900 Hzoz EIOH - CHzClz
Ph:Ph
.
cetylpyridinium p6roxotungstophosPhato 800
Ph-rAon i l '
o
93o/o(at 45% convgrsion)
Wacker-type oxidation,to I fected with H2O2in the presencc, Epoxidation. (Salen)Mn con dation.rrUsually an imidazoleis a theseoxidations.r2'r'r A great varia in this process, including oxygel organoiodine compounds. Estercfrom alkanes.ta Varro cyclohexanegives the trifluororc
Free radical reactions. N-( presenceof H2O2-FeSOain DMSO for the synthesis of mitomycin slc
${
H& FoSO.. Dq
OMSO r)t
'Y. K a m i t o r i , M . H o j o , R . M a s u d a .t N. Borthakur and A. Goswami. /.1O 'w. Adam, C. M. Mitchell, and C. R 'W. A d a m , W A . H e r r m a n n .J . L i n . e '8. M . C h o u d a r y , Y . S u d h a ,a n d p . S . ^J. S. Reddy and p. A. Jacobs,"/CS/p/r S . T o l l a r i , M . C u s c e l a ,a n d F . p o r r a . 'S. S a k a u e ,T . T s u b a k i n o ,Y . N i s h i l . e a -S. S a k a g u c h i ,S . W a t a s e ,y . K a r a y a m (t994). 'M. I o e l e , G . O r t a g g i , M . S c a r s e l l a .e T. Schwenkreis and A. Berkessel. rl rP. PietikainenT , L35,g4l ,lgg4t. 'R. l r i e , N . H o s o y a ,a n d T . K a t s u k i . . ! 'K. N o m u r a a n d S . U e m u r a ,C C l 2 g ( j 'D. R . A r t i s , I . - S .C h o , S . J a i m e - F i g u
Hydrogenperoxide-urea. 16,379 HeterocycleN-oxides.t This s effectsoxidationof pyridinederiva erableadvantages overothers. Hydration of nitriles.2 In rhe I convertedto amidesin acetone. Epoxidation and Baeycr-Vin maleicanhydrideis equivalentto m
peroxide-urea185 Hydrogen
, C2 3 ' l l 8 3 r n : : - r G . W . K a b a l k aS
-1 5 .2 9 4 : 1 7 , 1 4 6 - 1 4 8 a or. I iri' reaction of hydrazones and rll -. .\Posure to H2O2in the Presra i::'.rJe\ are obtained from thionot rrc-' \lrPhatic thioamides do of ;cc cnt catalystfor the oxidation is de r rhe Presence of MeReOr e x a m P les 2 0 4 r o ' l 4 7 o i n s \r:\ irom !.-. j:rtes positive bromine species a r \ i . . n h r t i ca m i n e sw i t h H 2 O 2a n d . A o x l m e s ' r r l : l . l e a d st o t'c .,,nrerted to the corresponding complexes'The Fr:, \\,molybdenum -catalyzed F" \'\tungstophosphate) reaction the on i 1'\t);. dePending oxidation -': lower the .toPPed at aC. \\ hen the ArNHz is cooxidized r. :'. lormed' , ..tJtron promoted by cetylpyri. ketones c . .:nt Producesa-alkoxY kea,B-unsaturated with 7r.i- :ltro9 ci.: .t 15n conversion)'
Wacker-type oxidation.to Methyl ketone formation from RCH:CHz is effected with H2O2in the presenceof (Ph1P)aPd. Epoxidation. (Salen)Mn complexeshave been developedfor asymmetric epoxidation.rr Usually an imidazole is added as an additional ligand for the metal center in theseoxidations.''''3A great variety of other oxidants have been used instead of H2O2 in this process, including oxygen, t-BuOOH, NaOCl, periodates, and high-valent organoiodine compounds. Estersfrom alkanes,ta Various Rh salts catalyzethe oxidation of alkanes. Thus cyclohexanegives the trifluoroacetate on reaction with HzOz-CFjCOOH. Free radical reactions. N-(ar-Iodoalkyl)pyrroles and indoles cyclize in the presenceof HzOz-FeSOoin DMSO under ultrasonic irradiation. The method is useful for the synthesisof mitomycin skeletonand (-)-monomorine.'5
${'
Hzoz FeSOa. 7H2O oMSo )))) 78"/"
G)-monomorine
I Y . K a m i t o r i , M . H o j o , R . M a s u d a , M . F u j i s h i r o , a n d M . W a d a ,H 3 8 , 2 l ( l g g 4 ) . 'N. Borthakur and A. Goswami, IJC(B)328,800 (1993). tW. A d a m , C . M . M i t c h e l l , a n d C . R . S a h a - M o l l e r7, 5 0 , l 3 l 2 l ( 1 9 9 4 ) . oW. A d a m , W . A . H e r r m a n n , J . L i n , a n d C . R . S a h a - M o l l e r ,J O C 5 9 , S 2 8 l ( t 9 9 4 ) . 5 B. M. Choudary, Y. Sudha, and P. N. Reddy, SL 450 (lgg4). 'J. S. Reddy and P. A. Jacobs,"/CS(P/,)2665 (1993). tS. T o l l a r i , M . C u s c e l a ,a n d F . P o r t a , C C l 5 2 O ( l g g 3 \ . "S. S a k a u e ,T . T s u b a k i n o ,Y . N i s h i y a m a , a n d Y . l s h i i , J O C 5 E , 3 6 3 3 ( 1 9 9 3 ) . 'S. S a k a g u c h i ,S . W a t a s e ,Y . K a t a y a m a ,Y . S a k a t a ,Y . N i s h i y a m a , a n d Y . I s h i i , J O C 5 9 , 5 6 8 1 ( 1994). "'M. I o e l e , G . O r t a g g i , M . S c a r s e l l a ,a n d G . S l e i t e r ,G 1 2 2 , 5 3 1 ( l g g 2 ) . " T. Schwenkreis and A. Berkessel, TL 34, 4785 (199r. l: P. Pietikainen . TL 35. 941 (1994\. 'rR. I r i e , N . H o s o y a ,a n d T . K a t s u k i , S L 2 5 5 ( 1 9 9 4 ) . 'oK. Nomura and S. Uemura, CC 129 (1994\. 15 D . R . A r t i s , I . - S . C h o , S . J a i m e - F i g u e r o aa , n d J . M . M u c h o w s k i ,J O C S g , 2 4 5 6 ( l g g 4 ) .
ErO
:.-.."^v '
t
r
t
l
O 66qo
o "t
\aApn I
t
r
a
O
33'. I at 45oloconversion)
Hydrogen peroxide-urea. 16, 3791'17, 148 Heterocycle N-orides.' This stablesourceof H2O2(with addition of CF:COOH) effects oxidation ofpyridine derivativesand other substrates.The reagenthas considerable advantagesover others. Hydration of nitriles.2 In the presenceof a weak base (aq. KzCOr), nitriles are converted to amides in acetone. Epoxidation and Baeyer-Villiger oxidation.l The complex rogether with maleic anhydride is equivalent to many ordinary peracids in its effectiveness.
186 Hydroxylamine 'B. O c a n a , M . E s p a d a ,a n d C . A v e n d a n o ,T 5 0 ' 9 5 0 5 ( 1 9 9 4 ) ' 'R. B a l i c k i a n d L . K a c z m a r e k ,S C 2 3 ' 3 1 4 9 ( 1 9 9 3 ) ' 1 0 7 5( 1 9 9 3 ) ' rL. Astudillo, A. Galindo, A.G. Gonzalez'and H' Mansilla' H36'
Nitriles
I
Hydrogen sulfide. s.' Exposure of ketenesilyl acetalsto hydrogen sulfide O-Alk yl thiocarboxYlate to the at -78'C leadsto thiocarboxYlicesters.Thus an ordinary ester is converted thioesterin two stePs. acids with HzS 3+-1.2-Dithiole-3-thiones.2 The treatment of B-oxodithioic an agent for the as and bromine leads to the heterocyclic compounds.Bromine serves
from
acetals.2
Tl
ethanol.
J . - G .J u n , H . S . S h i n , a n d S . H . K r n M. Yamauchi, CPB 41,2042 (19%t
l - Hydroxypyrid ine-2-(lIf )-rbi S-Aryl thiosulfonates.t Th sulfinylchlorides with thereage ing agents.
oxidativecyclization. Ar-SOCI O
Pn)\"'
S
H
Has
a's',7's
*A4.,
r-BUOK; H+
Ph/1
w. Sas,./CR(S.) 160(1993).
71o/o(2 sleps)
Hydroxy (tosyloxy)iodoben zenc. Oxidation of chromanoacttlux or with ultrasoundirradiatr
' s . w . w r i g h t ,7 L 3 5 , l 3 3 l ( 1 9 9 4 ) . 2T.J.CurpheyandH.H. Joyner'TL34' 3703(1993)'
r vst€IIlS.
Hydroxy (diphenylphosphoryloxy)iodobenzene' alkynes into Diphenyl B-oxoalkyl phosphates.t The reagentconverts terminal the a-ketol derivatives in aqueousacetonitrile'
Ph-l
Hzo
/OH oPo(oPh)2
MeCN A
o
tl
n&Qpo(opn), 17-42o/o
'G.F. Koser,X. Chen, K. Chen, and G. Sun, TL34,7'19 (1993)'
Hydroxylamine.15, 170 pyridine formation.t on trearmentwith hydroxylamineand Alclr in acetic (7 exinto pyridinederivatives are transformed acid6,8-dioxabicyclo[3.2.1]octanes amples,52-99VoYield). A l C l 3 ' N H 2 O H' H C l HOAC, A
52 - 997"
Allylic oxidation.2 Enones I C-Tosyloxylation. Acerophc .ubjectedto the functionalizarion nto an electrophiliccenter.
[). Kumar,O. V. Singh,O. Prakash \. Kirschning, G. Drager,andJ. He () Prakash andN. Saini,SC23. l.tj 'l P .A n d r e w sN, . J . L e w i s ,A . M c K r
H1'droxy (tosyloxy)iodoperf luon These promising reagentsare p ' :eatmentwith trifluoroperacetic I :rate. If the tosic acid is replaca '\rmed.
Hydroxy(tosyloxy)iodoperfluoroalkanes lE7 Nitriles from ethanol. , H 36' 1075(1993)'
le:-
acetals.2 The direct conversion is carried out in refluxins
'J.-G. J u n ,H . S . S h i n ,a n dS .H . K i m ,J C S ( p t )l 8 l 5 ( t 9 9 3 ) . rM. Yamauchi, .1gg3\. CpB 41,2042
sulfide !t3n. \rlvl acetalsto hydrogen to the converted is ester ,':Jrnary ln with H2S int ,,r B-oxodithioic acids for d . Bromine servesas an agent
the
l-Hydroxypyridine-2-(1H).thione. s-Aryl thiosulfonates,t This novel preparation involves reaction of arenesulfinyl chlorides with the reagentin pyridine. The products are powerful sulfenylating agents.
Ar-SOCI + H2s
,'s"7zs
r-\
Il t -NA-s
py ArS-SO2Ar cH2Qt2
6n
Phr\
'w.
58-810/.
Sas.JCR(S.I t60 (t993).
71% (2 st€Ps)
Hydroxy(tosyloxy)iodobenzene. 14, 179-lg0; 16, 179; lZ. 150 oxidation of chromanones.t Formation of chromones is achieved under reflux or with ultrasoundirradiation. 2-Spiroannulatedchromanonesgive fused-ring systems.
t
?De. converts terminal alkynes into
rrsi.nt
z'...o-a) |1Vphr(oH)ors-rsoHZ-rro-r-\ \-\'/
f
t -
--!
}|
U l ,2\
R
l
o v
-U-
'Po(oPh)a
and AlCl:
lfd:rned into pyridine
s 52'997o
lr
I
$
Allylic oxidation,2 Enones are obtained from glycal derivatives. c-Tosyloxylation. Acetophenones,32-picolines,a and related compounds are 'ubjectedto the functionalization.Thus the original nucleophilicsite is transformed rto an electrophiliccenter.
--e ,1993).
F.-:
| rr >/\z,
9Oo/.
1742"/o
'rrh h\droxylamine
))))45., s min
in acetic
derivatives (7 ex-
D Kumar,O. V. Singh,O. Prakash,andS.p. Singh,SC 24,2637(1994). \ Kirschning,G. Drager,and J. Harders,SL2g9(lgg3). ) PrakashandN. Saini,SC23, 14550993). 'l P .A n d r e w sN, . J .L e w i s ,A . M c K i l l o p a, n dA . S . W e l l s1, 13 E , 7 1 30 9 9 4 ) . H rd roxy (tosyloxy)iodoperf luoroalkanes. Thesepromising reagentsare preparedr from perfluoroalkyl iodides on successive ':eatment with trifluoroperacetic acid in trifluoroacetic acid and tosic acid monohy_ :nte. If the tosic acid is replaced with Me3Siorf, rhe corresponding triflates are '-rmed.
188 Hypofluorous acid-scetonitrile cF3coooH Rrl
TsOH'HzO
Rr-l(ococF3)2
cF3cooH -10o-> rt 24h
Rrl(oH)oTs
MeCN n
A3-92"h (overallYield)
rV.V.ZhdankinandC. Kuehl,fL 35' 1809(1994)'
Hypof luorous acid- aceton itrile' passing gaseousfluorine into aqueous Oxidation. This complex is made by acetonitrile.ltconvertssecondaryalcoholstoketones(notethatunsaturatedalcohols eventually to lactones.rPhenols and are selectively oxidized to epoxy alcohols) and quinones'2 polycyclic arenes are rapidly oxidized to give include sulfides to sulfones3'aand reagent this with achieved other oxidations polyfunctional compounds show useful amines to nitro compounds's Actually' quantitatively prepared from glycine chemoselectivities. a-Nitroacetic esters are esters. 'S. Rozen,Y. Bareket,andM Kol, I 49' 8169(1993)' t M. Kol andS. Rozen,JOC 58' 1593(1993)' tS. RozenandY. Bareket,rL35'2099 (1994)' oS. Rozenand Y. Bareket,CC 1959(1994)' t S. Rozen,A. Bar-Haim,andE' Mishani' JOC 59' 1208(1994)'
r|.
ItrI-Indazole. N-Methylation of primary anincr indazolewith an aromaticprimary am aminalwith lithiumaluminumhvdridcr
ArNH2
EIOH n
\
R . S a l a d i n o .C . C r e s t i n i , a n d R . N i c o l e t t r .I
I n d i u m . 1 4 , 1 8 l ;1 6 ,l 8 l - 1 8 2 Reformatsky-typereaction.' Bmn subsequent treatmentwith carbonylcom version2 ln an electrochemical of thc indiumanodeis used.Usingthis mctho directly from the propersubstrates.
:=". x*' Reductive coupling of imincs.| ^ l:l) on heatingwith indium rod in aqrn rn 40-1007o yield. Simple reduction si&
'S. Araki, M. Yamada, andY. Butsugan. 8C tH. schick,R. Ludwig,K.-H. schwarz.K. t 'N. KalyanamandG.V. Rao,?L 34, t647r I
Iodine.13, 148-149; 14, l8l-182; 15. I Cleavage ol carbon-metal bonJt derived from carbonylationof (4t-ally
iodine solution, esters are obtained.' Z
::-
Rrl(OH)OTs
'.
ta.
83-92"k (overallYield)
liL:j rr\eous fluorine into aqueous r,':... ,flotethat unsaturatedalcohols r h e n o l sa n d c . r : : u . r l l ) t o l a c t o n e s 'P 'lc'r l
Ut-,
and r ::.iuJe sulfides to sulfoness'a u s eful s h o w [u:-:r,'nal comPounds glycine from u"-: :l.rtrrely prepared
;
"
.
v9{).
rt lIl-Indazole. N-Methylation of primary amines.' Condensation of l-hydroxymethyl-l11indazole with an aromatic primary amine and reductive cleavageof the resulting aminal with lithium aluminum hydride afford the secondaryamine.
Zvr i i l . N
ArNHa ;
\.,'^-N'
EtoH
Lo*
rt
f)io*
LiAtH4
ATNHMe
\7\r'r'
L*"o,
85-98%
'R. Saladino, C. Crestini,andR. Nicoletti,H 3E, 567(1994).
Indium. 14, l8l; 16, l8l-182 Reformatsky-type reaction.' Bromoacetonitrile reacts rapidly with indium and subsequenttreatment with carbonyl compounds leads to B-hydroxy nitriles. In an electrochemical version2of the modified Reformatsky reaction a sacrificial indium anode is used. Using this method, fully substitutedB-lactonesare obtained directly from the proper substrates.
R
! o +
R
Br{ooEt
e (ln anodo) BulNBr THF - DMF
R
O
")i"
afford vic-diamines (meso:dl Reductive coupling of imines.' ArCH:NAr' l: l) on heatingwith indium rod in aqueousethanolcontaining ammonium chloride, in 4Q-lOIVo yield. Simple reduction side products are not formed. S. Araki, M. Yamada,and Y. Butsugan,BCSJ67, 1126(1994). tH. Schick,R. Ludwig,K.-H. Schwarz, K. Kleiner,andA. Kunath,JOC 59,3161(1994). 'N. KalyanamandG.V. Rao,TL 34,1647(1993).
Iodine. 13, 148-149;14, l8l-182; 15, 172-173;16, 182 Cleavage of carbon-metal bonds. When acyliron complexes such as those derived from carbonylation of (43-allyl)Fe(CO):NO are treated with an alcoholic iodine solution, esters are obtained.' Zirconacyclopentenes,which are formed by
190 Iodine cross-couplingofalkynes and alkenes withZr complexes,are stereoselectivelytransformed into iodoalkenes.2cyclopropylthiocarbene-chromium complexes undergo ring scission3with the net extrusion of the metal moiety and introduction of two iodine atoms. 1,4-Diiodoalkenesare formed.
t2l QHzclz
}{:::"'
'S. Nakanishi,T. yamamoto, N. Furu\er rT. T a k a h a s h i ,K . A o y a g i , R . H a r a . a n d \ 'J.W. H e r n d o n a n d M . D . R e i d , , / A C Sl 1 6 . 'A. B a c h k i , F . F o u b e l o ,a n d M . y u s . f S f . :P. B o v o n s o m b a t ,G . A . A n g a r a , a n d E V "J. J. Parlow, 7 49, 2577 (1993). J . C o s s y ,A . A l b o u y , M . S c h e l o s k ea. n d I 'L. ftike, Z. Hell, G. T. Szabo, G. Torh. !
-200,10h
sPh 8 2 %( Z : E 9 3 : 7 )
Aromatic iodination.a Activation of iodine is necessary for this reaction. For this purpose, mercuric nitrate appearsto be quite effective. a-Iodoenones.s An iodine atom can be selectively introduced into the a,Benone systemwith pyridine or PDC as catalyst. Aromatization,6 a,p;y,6-Unsaturated ketones that can be deconjugated (or enolized)cyclize and dehydrateon heating with iodine. Thus B-ionone gives 1,1,6trimethyltetralin in excellentyield.
\,/
12
<'{\
1 1 0 ' . 0 . 5h 80-95%
Iodine-cerium(IV)
ammonium nitr Iodination of chromones., Chn form 3-iodo derivatives. a,a'-Diiodination of ketoncs.: 1 Alk oxy io dinat ion an d hy d ror y ia hol or l: I aqueousMeCN gives rhc r nitrato ketones.
'.F. J. Zhangand Y. L. Li, S 565 ( 1993r -C. A. HoriuchiandE. Takahashi, BCS.|a 'C. A . H o r i u c h iK, . O c h i a i a, n dH . F u l u a
Iod i ne - hydroxy(tosyloxy)iodobenecr Ring expansion.t l-Alkynylclcl anoneson exposure to the reagentcon reactionproceedsin good yields (75-l stratesof other ring sizes have not bea
Deesterification.l 3-Methyl-2-butenyl estersare cleavedby I2 at room temperature; therefore, such esters may serve in selective protection of acids. Simple allyl esters are unreactive. Intramolecular cyclopropanation.s Malonic esters of certain allylic alcohols form bicyclic lactonesby way of iodination and generationof carbene intermediates. Thus when the system containing the malonic ester, iodine, solid KzCOr and tricaprylmethylammoniumchloride in tolueneis heated,the reactionoccurs.
P. Bovonsombat andE. McNelis,f 49. t5:
(cooMe \
!-">jct3c
t2,K2co3 TCMC,toluene ' 1 . 5h , A
H
iccl3
\"ho / ) \ Meooo b 90%
lodine-lead(II)
acetate. trans-lodoacetoxylation.t
Alken iodine in the presenceof lead(Il) acer 'A.V.
Bedekar,K. B. Nair,andR. Soman
transt\.. jre \tereoselectively ci: ::rrum complexesundergo nr .:i , .rod introduction of two
I r
/ SPh
:_
Iodine-lead(Il)acetate l9l rS. N a k a n i s h i , T . Y a m a m o t o ,N . F u r u k a w a , a n d y . O r s u j i , S 6 0 9 ( 1 9 9 4 ) . :T. T a k a h a s h i ,K . A o y a g i , R . H a r a , a n d N . S u z u k i , C C t O 4 2( l g g r . 'J.W. H e r n d o na n d M . D . R e i d , J A C S 1 1 6 ,3 8 3 ( 1 9 9 4 ) . 'A. B a c h k i ,F . F o u b e l o a, n d M . y u s , I 5 0 , 5 1 3 9 ( 1 9 9 4 ) . 5 P . B o v o n s o m b a t ,G . A . A n g a r a , a n d E . M c N e l i s , ,T 3 5 , 6 1 8 7 0 l g g 4 \ . ^J.J. Parlow, 749,2577 (tgg3). C o s s y ,A . A l b o u y , M . S c h e l o s k e a , n d D . G . p a r d o , T L 3 5 , 1 5 3 9( 1 9 9 4 ) . -* JL.. r t i k e , z . H e r , G . T . S z a b o ,G . T o t h , M . B i h a r i , a n d A . R o c k e n b a u e r , T 4 g , 5 1 3 3( l g g 3 ) .
7 tr aa.7\
tr<-i..Jr\ tbr this reaction.For b.: ..' r\. r rntroducedinto the a,Br:tr: -rn be deconjugated(or t n : f h u : P - i o n o n eg i v e s 1 , 1 , 6 -
Iodine-cerium(IV)
ammonium nitrate. lS, 70 Iodination of chromones.r chromones, flavones, and thio analogues thereof form 3-iodo derivatives. a,a'-Diiodination of ketones.z The reaction is carried out in hot MecN. Alkoxyiodination and hydroxyiodination of enones.s The reaction in an alcohol or 1: l aqueousMecN gives the adducts.In MecN the products are a-iodo-6n itrato ketones. 'F. J . Z h a n ga n dy . L . L i , S 5 6 50 9 9 3 ) . :C. A. HoriuchiandE. Takahashi,BCSJ67,271(tgg4J. 'C. A . H o r i u c h iK, . O c h i a ia, n dH . F u k u n i s h C i , L l g 50 9 9 4 ) .
Iodi ne -hydroxy (tosyloxy)iodobenzene. Ring expansion't l-Arkynyrcycropentanors give 2-(iodomethylene)-cycrohexanoneson exposure to the reagentcombination in MecN at room temperature. The reactionproceedsin good yields (75-g6vo) in a limited number of examples.substratesof other ring sizeshave not been studied.
: : 95''i'
? . :.ri cd by I2 at room temperar , : r - : r ( ) n o f a c i d s .S i m p l ea l l y l
t'Y' 12- Phl(OH)OTs
$ e : . ( , t c e r t a i na l l y l i c a l c o h o l s fcr. ,n of carbeneintermediates. r . : , J r n e .s o l i d K z C O r a n d t r i -
MoCN, rt
^,Wo \-/
75-86"/"
d r r : r e a c t i o no c c u r s . P. Bovonsombat and E. McNelis,T 49, 1525,lgg3\. E
-
'
I-1
X l,e:OC 90%
b
Iodine-lead(II) acetate. trans'Iodoacetoxylation,t Alkenes give uic-iodoacetates by treatment with rodine in the presenceof lead(Il) acetatein acetic acid at room temperature. A.V. Bedekar,K. B. Nair,andR. Soman,SC 24,22gg(tgg4:t.
192 Iodine-triphenylphosphine-imidazole Iodine-silver oxide. Iodohydrins.t In aqueous THF alkenes undergo addition, and the resulting r8O-epoxidesare availiodohydrins eliminate HI on exposure to base. Accordingly, able in two steps if isotopically labeled water is present in the medium. rB. Borhan,S. Nazarian,E.M. Stocking,B.D' Hammock,and M'J. Kurth, JOC 59' 4316 ( 1994).
Iodine-silver trifluoroacet ate. 17, 154 Ioilodesilylation.t controlled replacementof a silyl group in the furan ring by iodine has synthetic significance. It is possible to obtain 3-iodo-4-trimethylsilylfuran by this method. Interestingly, trisfuranylboroxines are converted to the iodofurans by I2-AgBFa.
. Y. Wu and P. Ahlberg, S 463 rt9 R . C a p u t o , E . C a s s a n o ,L . L o n e r
Iodinebromide.lZ 152-15_ Cyclization.t It is somer rnducedalkenefunctionaliza low temperatures homoallylicr o
il t-euoAo 4\-'/'\,/\
r&.ora
: €6o.s(
'2.2. SongandH. N. C. Wong,LA 29 (1994).
Iodine-titanium tetra.l-butoxide. CycliZation. 4-Pentenylmalonic esters are converted to cyclopentane derivativesr under the influence of the combined reagents.Apparently Ti(OBu')o acts as a base in the process.When CuO is also present,bicyclic lactones are formed.2 COOMe
I (-cooru"
F
BzO
MeOOC 19 12 - (l-BuO)1Ti CuO / CH2C|2 rt,30h
( r-14 t o
\ry
ezd H
92% 'O. K i t a g a w a ,T . I n o u e , K . H i r a n o , a n d T . T a g u c h i , J O C 5 8 ' 3 1 0 6( 1 9 9 3 ) . 'O. K i t a g a * a , T . I n o u e , a n d T . T a g u c h i' T L 3 5 , 1 0 5 9( 1 9 9 4 ) .
Iod ine-triphenylbismuth dibromide. Dehydration.' This reactive combination of reagents cannot be replaced with ph3Bi-I2, PhBiI2, or PhzBiI. With PhrBiBr2 alone much longer reaction time is required for dehydration of alcohols. ' R . L . D o r t a .E . S u a r e za,n dC . B e t a n c o r , T L 3 5 , 5 0 (3159 9 4 ) ' Iodine -triphenylphosph ine -imidazole. Iodination. This reagent system is useful for the preparation of iodides' from acid-sensitive alcohols. The phosphine moiety may be incorporated in a polymer matrix.2
J.J.-W.DuanandA. B. Smirh..td
lodine chloride. Iododesilylation.t Arylsil rue of this facile conversion.A rhe reaction.
Iodination. Differenr mol nation of organic molecules:K ;onversionof fluorinated alk;..
\t. Takahashi, K. Hatano,M. Krr ' t994). L. A. Jacob,B.-L. Chen,and D. S H. A. Muathen,"/CR(S/405 ( t994| '\'. M o n t a n a rS i , . Q u i c i ,a n dC . R c \'-Iodosuccinimide. 16, 185-lt
Disulfide bridging.t Clsrr \lS. Applications of this merlx rnd apamin have been demonsu
Iodination,2 Deactivated I :()omtemperature.Presumablr. : n f l a t e , w h i c h i s f o r m e di n s i r u Benlyne generation.l Scrr .rsed to generate benzyne from :ecognized as a superior reagen
N-Iodosuccinimide 193 'Y. Wu and P. Ahlberg, S 463 (1994). tR. C a p u t o , E . C a s s a n o ,L . L o n g o b a r d o ,a n d G . P a l u m b o , T L 3 6 , 1 6 7 ( 1 9 9 5 ) .
nj::;'- addition, and the resulting r*O-epoxidesare avail\c. -lrnell'. pr...:.i rn the medium' r:
,r .]ndM.J' Kurth, JOC 59' 4fl6
bY o: : .rlrl grouP in the furan ring 3 i o d o 4 t r i m e t h y l s ilylc r','btain iodothe to converted are xr:,,\rnes
Iodine bromide. 17, 152-153 to usethis reagentfor the halogenCyclization.' It is sometimesadvantageous At of an internalnucleophile. with participation inducedalkenefunctionalization reactwith enhanceddiastereoselectivity. low temperatures homoallyliccarbonates
o
II t-Buo,Ao
lBr, DME
: -goo, 30 min
o
o tl
o
l'--""r.,---."--
8 9 %( 1 0 : 1 )
'J.J.-w.DuanandA. B. Smith,JoC s8,3703(1993). derivac .,'rrerted to cyclopentane as a acts Ti(OBu')r grn:. .\pparently formed'2 are ]b,...1,.1 lu.,on".
MeOOC i9
,-l-4, I P :
l
{
92o/o
, . ; , , r 5 t . 1 1 0 6( 1 9 9 3 ) ii -,r
, l rcagents cannot be replaced with time is :i,,ne much longer reaction
g :<
.r9J)
iodides' from fu :,,r the preparationof in a PolYmer It\ :',rr be incorPorated
Iodine chloride. Iododesilylation.t Arylsilanes can be used as surrogatesof aryl iodides by virtue of this facile conversion.A silver salt may2 or may not be required to facilitate the reaction. Iodination. Different molecular complexesof ICI have been employed in iodination of organic molecules: ICI . pyridine for aromatic iodination,r Ph.rP' ICI for conversionof fluorinated alkyl trimethylsilyl ethersto iodides.a 'M. Takahashi, T. Oriyama,andG. Koga,TL35' 5'79 K. Hatano,M. Kimura,T. watanabe, (1994). ' L . A . J a c o bB. . - L .C h e n ,a n dD . S t e c S , 6ll (1993). 'H. (1994). 405 A. Muathen JCR(S) , 'V. Montanari,S. Quici,andG. Resnati,TL35, l94l (1994).
.V-Iodosuccinimide.16, 185-186 Disulfide bridging.t Cysteine units in peptides can be linked by reaction with oxytocin, NIS. Applicationsof this method in the synthesisof (Arg8)-vasopressin. rnd apamin have been demonstrated. Iodination.2 Deactivated arenes can be iodinated with NIS in triflic acid at room temperature. Presumably,the actual reagent is the superelectrophiliciodine(I) rriflate, which is formed in situ. Benzyne generation.s Several reagents [e.g., lead(IV) acetate, etc.] have been used to generate benzyne from l-aminobenzotriazole. N-lodosuccinimide is now recognized as a superior reagentfor this purpose.
194 lon-exchangeresins
NIS cH2cl2 n
ofpropargylic alcohols.a 1-PhenylethynylcyclopenIsomerization-iodination phenyl on reaction with NIS-phI(oH)ors' The expansion ring tanols do not undergo formation favors alkyne unit' which group apparently ctrangesthe polarization of the
Henry reaction.2 The condc presenceof Amberlyst-A2l can br rent is not needed.
of a-iodo enones.
Deacetalization and dcthiur rerminal acetonide can be hydroll complishmentmakes possiblean r
'H. Shih,Joc 58,3003(1993). 3 1 9 4( 1 9 9 3 ) ' t C . n . O i u t , W a n gG , . S a n d f o r da,n dG ' K ' S ' P r a k a s hJ'O C 5 8 ' Q. (1994)' tM. A. Birkett,D.w. Knight' andM' B' Mitchell'sL253 aP.Bovonsombat andE' McNelis,fL 34' 8205(1993)' Iodosylbenzene.13, l5l; 16' 186 oxidationofsulfides.|p-Toluenesulfonicacidhasacatalyticeffectintheconis PhI(OH)OTs' version to sulfoxides. The actual reagent (salen)Mn(Ill) comprex to mediate Asymmetric epoxidation.z with a chiral the active oxygen atom' supplies the epoxidation of alkenes, iodosylbenzene 'R.-Y. YangandL.-X. Dai, SC 24,2229(1994)' 'N. Hosoya-, R. Irie, andT' Katsuki'SL 261(1993)'
Iodosyl fluorosulfate' Diaryliodoniumsalts.|ThisisapowerfulelectrophiletoeffectaFriedelCrafts.typereactionofaromaticcompounds(alkylandhaloarenes).Nitrobenzene bisulfate in 607o yield' reacts to give bis(m-nitrophenyl) iodonium o'*t ,-
9rN\
o
'N.
FSO2OI=o cH2cl2 n
|
'l /-\
|
I (r Zlf'
+
Hosoi
V' D' Sorokin' P' J' Stang'and V'V' Zhdankin' S. Zefirov, T. M. Kasumov'A' S' Koz'min'
s 1209(1993). lon-exchangeresins. 13, 152;15' 178 an enoneand an allylsilaneis usually Cyclization.' Ring formationinvolving initiatedbyaLewisacidcatalyst.However,Amberlyst-l5servestheSamepurpose vet entailsa simPlerProcedure'
Xn 9-(
)--..*.coor | NHBoc
7")
Dithioacetals are hydrolyzed i releasedmercaptan.a Mon oac ylation of 1, o> diols-t erhyl propionate),symmetrical l.r of Dowex 50W-X2.
D. Schinzerand K. Ringe,SL 461 ( | tR. Ballini andG. Bosica,JOC 5t. t 'K. H. Park,Y. J. Yoon,andS.G. La 'V. S. Giri andP.J.Sankar,SC23. ll 'T. Nishiguchi,S. Fujisaki,Y. tshir.
Ion-exchange resins, modificd. Oxidation.t A supported rr aromatic aldehydesto carboxylic Triazenes.2 Association of Amberlite IR-120 provides reaga
J.-W.Chen,J.-X. Huang,andJ. Xu. 'P.J. DasandS. Khound,I 50, 9107
Ion-exchongeresins, modified 195
ov\
(--"'*t"
\4""'/
"-,.{f
l l ) A m b € i l y s t - l s
;;
\"f1 1 )
95"/"
iol,,/,.- l-Phenylethynylcyclopenr :- \lS-PhI(OH)OTs' The PhenYl formation rli . :.c unit. which favors
lr.
:.
' , r ( ' 5 8 .3 1 9 4( 1 9 9 3 ) J.l.l
Henry reaction.2 The condensation of a nitroalkane with an aldehyde in the presenceof Amberlyst-A21 can be accomplished in good yields in a short time. Solvent is not needed. With Dowex 50W-X8 as catalyst, a Deacetalization and dethioacetalization. terminal acetonide can be hydrolyzed while keeping internal units intact. This accomplishmentmakes possiblean easy accessto 2,5-dideoxy-2,5-imino-o-mannitol.s
L
I
Xn in the conl. .l r.r. a catalytic effect 6,11 t tT. c o m P l e xt o m e d i a t e '.,:r,\tn(lll) y' r- ::c activeoxygen atom'
a Friedelfu. :.c;rrophile to effect Nitrobenzene la.r .. .rnti haloarenes)' 6 0 7 r t n Y i e l d ' tll"::
+j
HOSOa
) \
Zhdankin' \ r n . P .J . S t a n g 'a n d V ' V '
is usually a: .n\rne and an allylsilane purpose same the serves A:.lri-erlrst-15
olir"oou" NHBoc
90% MoOH Dowex 50W-Xg rt, 25h
lA") 937.
Dithioacetals are hydrolyzed in acetone. Paraformaldehydeis added to trap the releasedmercaptan.a By u transesterificationwith a simple ester (e.g., Monoacylation of l,t*diols.t ethyl propionate),symmetrical l,ar-diols can be derivatized at one site in the presence of Dowex 50W-X2. D. Schinzerand K. Ringe,SL 463(1994). tR. Ballini andG. Bosica,JOC 59,5466(1994). 'K.H. Park,Y.J. Yoon,andS.G. Lee,TL35,9"l3'l(1994). 'V. S. Giri andP.J. Sankar,SC23, 1795(1993). 'T. Nishiguchi, S. Fujisaki,Y. Ishii, Y. Yano,andA. Nishida,JOC 59, ll9l (1994)
Ion-exchange resins, modified. Oxidation.t A supported ammonium perborate resin has been used to oxidize aromatic aldehydesto carboxylic acids. Triazenes.z Association of diazonium ions with a cation exchanger such as Amberlite IR-120 provides reagentsfor coupling with amines. J.-W.Chen,J.-X. Huang,and J. Xu, YH 13,53'7(1993). 'P.J. DasandS. Khound,f 50, 910?(1994).
196 lron pentacarbonyl
Iridium complexes.13, 88-89 Reduction. Dichlorohydridobis(triisopropylphosphine)iridiumforms a catalyst with NaBH,rthat effects reductionrof ketones,alkenes,and alkynes. Another catalyst for asymmetric hydrogenationof cycloalkanonesis based on the B I N A P - l r ( I ) - a m i n o p h o s p h i n es y s t e m ' ' 'H. Werner,M. Schulz,M.A. Esteruelas, andL'A. Oro,JOMC445'261(1993). tX.Zhang, T. Taketomi,T. Yoshizumi,H. Kumobayashi, K. Mashima,and A. Akutagawa, H. Takaya,./ACSrl5, 3318(1993).
Iron(III) acetylacetonate. Coupling.t Grignard reagentscouple with allylic and propargylic halides in the presenceof Fe(acach.
OTs BuLi - MgBr2
6
6t
,
F€(acacl3
o
A \
/
a-Sulfonyl carbanions couple and form alkenes2in a dimerization reaction mediated by this catalyst.
BuLi/THF 0o Fe(acac)3
F 51-82"/"(E:Z -3:1\
'A. S . K . H a s h m i a n d G . S z e i m i e s ,C B 1 2 7 , 1 0 7 5( 1 9 9 4 ) . 'L. J i n , M . J u l i a , a n d J . N . V e r p e a u x ,S L 2 1 5 ( 1 9 9 4 ) .
Iron pentacarbonyl.13, 152-153 synstitchingmethodfor cyclopentenone Cyclopentenones.tThe carbonylative Fe(CO)s of using variant the includes thesis,typified by the Pauson-Khandreaction, undercarbonmonoxideat relativelyhigh temperatures.
/---a\ v,
Ph I
|
CO /MeCN 1400.26h
'A. J. Pearsonand R. A. Dubbert,OM 13, 1656(1994).
,\
\J
ltels4 RM9X- Cul - M€3SiCl
1
CH2l2-El2Zn
Oxidative coupling.l 2,2'-Binaphrh ing 2-naphtholswith FeClr . 6H:O in rtr Oxidative cyanation.o The mcrhll to catalyzed autooxidation,and the rntr PhCOCN,affording the N-cyanomerhrlc BnX - BnNHAc.s This rransform
vation ofbenzyl halidesby FeCI. in rcfh displacement(and in situ hydrationt. gem-Dichlorides.6 Certain pollch
R R
o
\^ \
47% ('l:O.8)
rSO,
Iron(III) chloride. 13, 133-134: 14. tG 1 7 ,1 3 8 - 1 3 9 Alcoholysis of epoxides.' Fdl. rs Oxidative cleavage of trimethylsilt eeneration,in combination with conjuga Smith reaction,completesthe sequenc substituentat the y-position of a lo*er h readily prepared from cyclopentenonc.
77"/"
/-v
chlorination.The role of FeCl. in rhcscc: carbonyl group and as chlorine donor, Allylic amination.l Using a mr rlun alkenesundergoene-typeamination rr rrl
PhN}IOI
N . I r a n p o o ra n d P . S a l e h i ,S l l 5 2 ( 1 9 9 { r I K.l. Booker-Milburn and D. F. Thompson. i 'D. V i l l e m i n a n d F . S a u v a g e tS , L 435 r t99{r 'S. M u r a t a . K . T e r a m o t o ,M . M i u r a . a n d \ l I 'M. K a c a n a n d A . M c K i l l o p , S C 2 3 , 2 1 8 5r t 9 ^D. M. Antonov, L. I. Belen'kii, A. A. Dudrrx R . S . S r i v a s t a v aa n d K . M . N i c h o l a s .r l t - < . I
Iron(III) chloride 197
r'.r:rne)iridiumforms a catalyst in.. rnd alkynes. r i , . , l o a l k a n o n e si s b a s e do n t h e , . " , r / ( { . 1 5 .2 6 1( 1 9 9 3 ) . l: \ \kutagawa,K. Mashima,and
rlr. rn,l propargylichalidesin the
Iron(III) chloride. 13, 133-134;14, 164-165;15, 158*159; 16, 167-169' 190-l9l; 17,138-139 Alcoholysis of epoxides.t FeCl: is an effective catalyst for the transformation. This method of enone Oxidative cleavage of trimethylsiloxycyclopropanes.z and Simmonstrapping, enolate generation,in combination with conjugate addition, incorporatesa that also of ring expansion Smith reaction,completesthe sequence are 4-alkyl-2-cyclohexenones Thus lower homolog. substituentat the 7-position of a readily prepared from cyclopentenone.
o
o
t"..':-<
o
R M 9 X - C u l- M e 3 S i C l
FsCl3/ DMF
CH2l2- Et2Zn
NaOAc / MeOH
'08)
':
r .limerization reaction medi-
t
Y
R
\^
A
t r l R
45-71%(laststep)
Oxidative coupling.s 2,2'-Binaphthols are produced in excellent yields by heating 2-naphtholswith FeClr ' 6H2O in the neat with a microwavesource' Oxidative cyanation.a The methyl group of substituted ArNMe2 is subjected to catalyzed autooxidation,and the intermediateradicals can be interceptedwith PhCOCN, affording the N-cyanomethyl derivatives. BnX - BnNHAc.s This transformationis relatedto the Ritter reaction.Activation of benzyl halidesby FeClr in refluxing MeCN is sufficient to bring about the displacement(and in situ hydration). gem-Dichlorides.6 Certain polychlorinated ketones undergo deoxygenative chlorination.The role of FeCl: in thesecasesis twofold: as Lewis acid to activatethe
l;*',
EZ-3:1)
1
carbonyl group and as chlorine donor. Allylic amination.l using a mixture of Fe(lI) and Fe(III) chloridesas catalysts, alkenesundergoene-typeamination with PhNHOH'
FeCl2, FeCl3
Y synIn: :lrethodfor cyclopentenone h. :-.:c. the variant of using Fe(CO)s
+
PhNHoH dioxane 8h.A
PhHN 48"h
It -:i.
Ph
_
>z\ ,-)_/ 770/o
'N. I r a n p o o r a n d P . S a l e h i ,S I 1 5 2 ( 1 9 9 4 ) . : K. I. Booker-Milburn and D. F. Thompson , TL 34,'7291 (1993). 3 D . V i l l e m i n a n d F . S a u v a g e tS , L 435 (1994). tS. M u r a t a . K . T e r a m o t o .M . M i u r a , a n d M . N o m u r a , B C S J 6 6 ' 1 2 9 7 ( 1 9 9 3 ) . tM. K a c a n a n d A . M c K i l l o p , S C 2 3 , 2 1 8 5( 1 9 9 3 ) . uD. M . A n t o n o v , L . L B e t e n ' k i i , A . A . D u d i n o v , a n d M . M . K r a y u s h k i n , M C r 3 00 9 9 4 ) . 'R. S . S r i v a s t a v aa n d K . M . N i c h o l a s ,T L 3 5 , 8 ' 1 3 9( 1 9 9 4 ) .
198 Iron(II) sulfate
Iron(lII) chloride, clay-supported' p.ct, oirp"t.ed in silica gel catalyzes the rapid condenDithioacetalization.' sation of ketones with o-benzenebismethanethiol' """";-;;;;;:rlrrn., activiti.esfor the Iron monrmorillonitEshows Bood catalytic acetals and aldimines' synthesis of B-amino esters from silyl ketene
M. van LeeuwenandA. McKillop..lCSl tA. M. Gasco,C. Medana,andA. Gasco
Isocyanuric chloride. a-Perchloro esters.' Oxidatirc < ro chloroalkyl estersthat are also full
'H. K. Patney, SC23, 1829(1993)' 'M. Onuku,h..Ottno,N. Yanagiya' andY' Izumi' sL 141(1993)'
o. Iron(III) Perchlorate. Transesterification't
esters of Ethyl esters from carboxylic acids and acetic
R.
/o-(R'
1oA*
benzylicalcoholsareobtainedinthecatalyzedtransesterificationprocesses,using group' ethyl acetateas the donor of ethoxy or acetyl ' B. Kumar,H. Kumar,and A. Parmar,IJC(B)32B, 292 (1993)' F. Bellisia.M. Boni, F. Ghelfi,andU V Iron(III) "--)ilrir,
PhthalocYanine' with PhNH9H This catalyst effects anilination of alkenes ,^ination.t
inrefluxingPhMe.otherFecatalystscausereductionofthereagenttoanilinetoa great extent.
.V-Isopropylephedrine. En antio selective prot onat ion. ron source for thiol ester enolates. C. Fehr,I. Stempf,andJ. Galindo.AClfl
Fe-phthalocyanins
,NA
rNHPh "nA
P h M e/ N 2 , 4
2- Isopropylapoisopi nocampheylbc E n a n t io selectiv e hydroborat iot -' iignificantly better asymmetricindu boranes.
'M. Johannsen JoC 59'214(1994)' andK. A. Jorgensen,
Iron(II) sulfate. of aromatic halides with enoSxvll reactionsof haloatenes't The displacement NH3 to give arylacetic acid derivatives lates of acetic acid derivatives in liquid (esters,amides,etc.)hasabroadscope'Thereactionisinitiatedbyelectrontransfer. produces o-nitroanilines' The Reduction of benzofuroxans'2 The reduction when PhSH is used as the reducing agent' iron salt may be presentrn catalytic amounts
oFeSOr .7HzO DMSO, H2O rt
[rY*o' \z\nx,
U. P. Dhokte and H. C. Brown, fL J5. I
2-Isopropylapoisopinocampheylborane199
I g.. iltalyzes the raPid condeng,',,J catalytic activiti.esfor the s .rrJ aldimtnes.
' M. van Leeuwen and A. McKillop, ICS(PL) 2433 (1993). tA. M . G a s c o ,C . M e d a n a , a n d A . G a s c o ,S C 2 4 , 2 ' 1 0 7 ( 1 9 9 4 ) .
Isocyanuric
chloride.
\
a-Perchloro esters.' Oxidative cleavageof cyclic acetals by this reagent leads to chloroalkyl estersthat are also fully chlorinatedat the a-position.
cl Oo.tt-7,O t
)rr.r; acids and acetic esters of ln.c-terification processes,using
R
g-zR'
v bl- 1 R ,
t
"',NyN'cr o
*r ^t^
v'
\^/-\
I
ct
DMF
)
X
,o !-* v
|
'R'
X=OH,Cl t : ! ! i
'F. Bellisia,M. Boni, F. Ghelfi,andU. M. Pagnoni,TL35,2961(1994). inr:r,,n of alkeneswith PhNHOH Ir(,i ,'i the reagentto aniline to a
/
NHPh
N-lsopropylephedri ne. Enantioselective protonation.' ton source for thiol ester enolates.
This chiral amino alcohol is an excellent pro-
' C. Fehr,l. Stempf,andJ. Galindo,ACIEE 32, 1042(1993).
a:: >
-E'.
mc: t ,'f aromatichalideswith enoo ::\e arylacetic acid derivatives nr .- rnitiatedby electrontransfer' 1-1 produceso-nitroanilines' The PhSH rs usedas the reducingagent'
\'-Noa j?,Naz t co"'o
2-Isopropylapoisopi nocampheylborane. Enantioselective hydroboration.t This bulkier chiral borane i-PraBHz achieves significantly better asymmetricinduction than those realized by IpcBH2 and related boranes.
6*, (1994). U. P. DhokteandH. C. Brown,7Z 35,4'115
Ketene. Acetylation.t This reagent effects rapid c-acetylation of B-diketone cu(II) chelatesat room temperature in CHCI: (75-95Vo yield). Contrarily, the use of acetyl chlorides (and other acyl chlorides) leads to a mixture of C- and O-acetyl derivatives'
Lanthanum(III) bromide. Benzyl esters.t Benzyl ab presenceof LaBrr. Other lanthe 'Y. JiangandY. Yuan,SC24, l(Xj
'G. J. Matare,A. Bohac,andP. Hrnciar,S 381(1994)'
Ketene acetals. A general preparativeprocedurerconsists ofpassing HCI through a stoichiometric etherealmixture of a nitrile and an alcohol (2 OH per CN) at 0'C and treatment of the adducts with NaOMe. Both acyclic and cyclic ketene acetals are obtainable' lA. B. Argadeand B. R. Joglekar,SC 23, 19'19(1993).
Lanthanum(III) chloride. B-AIkoxy carboxylic aciltacids is catalyzed by La(III) gl
andH, rrr J. A. Peters, J. Huskens.
Lanthanum(III) isoproporila p-Cyanohydrins.t Group
Ketene r-butyldimethylsilyl methyl acetal. Pummerer reanangernen| Sulfoxides are converted into a-siloxy sulfides,' in which the new O-C bond is anti to the original S-O bond. Accordingly, the rearrangementof chiral sulfoxides is enantioselective.The method is applicable to syn-
curs in the presenceof Ln(lll) r
thesisof B-lactam Precursors.t
Lanthanum(III) tris-F-dikar Thc Selective alkylation.t in thc differentiated be clearly (iilc methylation amine undergo
Meo\
ra\ *"-?.,.1) J+i,
^trr-
\z\
}1-70'l. (> 99o/. ee)
'Y. Kita, N. Shibata,S. Fukui, andS. Fujita,TL 35' 9733(1994)' ty. Kita. N. Shibata, TL 36, ll5 (1995)' N. Kawano,T. Tohjo,C. Fujimori,andK. Matsumoto,
'
H. Ohno,A. Mori, andS. Inorr. (
unchanged. Hydrogenation.2 With ler enonescan be selectively redrrc I.V. Komarov,V. E. Denisenko,I tl.V. Komarov,V.E. Deniscnko, e
Lead(IV) ecetate. 13, 155-156 Cleavage of N-substituteJ 1 irom such derivatives bearing c 4- Oxopentylation of hctc ,ring cleavage) in the prescno r ields of the products. The rer eroaromatics.Manganese(IIl) r
Cu(II) C-i. .r \ lation of B-diketone r.c.J ContrarilY,the use of acetYl ,:.,.
,,f C- and O-acelyl derivatives'
Lanthanum(III) bromide. BenZyl esters.t Benzyl ethers can be used to esterify carboxylic acids in the presenceof LaBrr. Other lanthanoid bromides (Nd, Sm, Dy, Er) are also effective. 'Y. JiangandY. Yuan,SC24, 1045(1994)'
I
p3\-:ns HCI through a stoichiometric the { nc: C\ ) at OoCand treatmentof atenr ucetalsare obtainable'
Lanthanum(III) chloride. p-Alkoxy carboxllic acids.t The Michael addition of alcohols to unsaturated acids is catalyzed by La(III) salts. 'J. Huskens, and H. van Bekkum,T 49,3149(1993). J. A. Peters,
Lanthanum(Ill) isopropoxide. 17, 160 p-Cyanohydrins,t Group transfer from acetone cyanohydrin to epoxides occurs in the presenceof Ln(III) alkoxides. r:rcrtedinto a-siloxy sulfides" in the rear6 i :'O bond. AccordinglY' The method is aPPlicableto syn-
'H. Ohno,A. Mori, andS. Inoue,CL9'15(1993).
ir.
-:?'D-
i'i'70"6 (> 99% €e)
t. --:1 199'1). , L 36' I l5 (1995)' , 1 J K M a t s u m o t oT r
Lanthanum(III) tris-F-diketonates. Selectivealkylation.t The reactivities of amines toward alkylating agents can be clearly differentiated in the presence of a lanthanide complex. Thus a tertiary amine undergomethylation(MeI or MezSOa),while a primary amino group remains unchanged. Hydrogenation.2 With lanthanum(Ill) tris-B-diketonates, the C:C enonescan be selectivelyreduced in a catalytic hydrogenationprotocol'
bond in
'1.V.Komarov.V. E. Denisenko, andM. Yu. Kornilov,T 49,7593(1993). tf .V. Komarov,V. E. Denisenko,and M. Yu. Kornilov,T S0' 6921(1994)'
Lead(IV) acetate. 13, 155-156; 14, 188;16,193-194 cleavage of N-substituted phenylglycinols.t The generationof primary amines from such derivatives bearing chiral substitutentsproceeds without racemization. 4-Oxopentylation of heteroaromatics.2 The oxidation of 1-methylcyclobutanol (ring cleavage) in the presence of pyridine and related substancesleads to useful yields of the products. The reaction involves radical substitution on protonated heteroaromatics.Manganese(Ill) acetate is a comparable reagent. 20r
202 Lipases
Ho-b
O
Pb(OAc)a HOAC, 80-l0oo
67"/" (2.75:1l Dioxycarbenes.3 A method for the carbene generation involves oxidation of methyl dimethylhydrazonocarboxylate,alcoholysis, and pyrolysis.
Pb(OAc)4
F"**co,r"
cH2ct2
MeQ oac
-x N{ i l o
BOH
A
RO MeO
60-721o a Saturated alcohols form D-lactoneson reaction with Remote carbonylation Pb(OAc)aand carbon monoxide.
o
af>
M-)
oH
Pb(OAc)4
co / PhH 400
af\^o
l ( | fl-4':-z H
|
'M. K. MokhallalatiandL. N. Pridgen,SC23, 2055(1993). 'G. L Nikishin,L. L. Sokova,andN. I. Kapustina, DoK 326,205(1992). tK. Kasram,D. L. Pole,M. El-Saidi,andJ. Warkentin, JACSl16, l16l (1994). oS.Tsunoi,I. Ryu, and N. Sonoda,JACS116,54'13(1994).
Lead(IV) acetate-copper(II) acetate. Dehydrogenation.t 2-(Alkoxycarbonyl)- and 2-(aminocarbonyl)cycloalkanones are converted to the cycloalkenoneswith the mixed acetatesin refluxing benzene. 'A. G. SchultzandM. A. Holoboski.TL 34,3021(1993).
Lipases. Hydrolysis.
The list includes acetatesof primary alcohols adjacentto a stereodimethyl trans-aziridine-2,3-dicarboxycenter,lmethyl 3-hydroxyalk-2-enoates,2 late,3 acetatesof secondary alcoholsainctuding the homoallylic type,5 4-substituted oxazolin-5-ones,6and 1-chloroacetoxybicyclo[4.1.0]heptane.?
Resolution by tran sesterif icat iot. hols,8propargyl alcohols,e2-phenylthro hydroxy-2-hexenoates,12 and 2-substr esterification provides a means of scpe also resolvedby lipase-mediatedenan Other esters that have also been us iluoroethyl propionate.rs'16 There is a rc cationrTof racemic trifluoroethyl estcr
Malonic estersare desymmetrized chiral carboxylic estersare obtainedfr boxylic carbonic anhydrides.re Chemoselective tran sester if icatia of carbohydrates,2o the 2-OH of 4.6-0l of 1,3-naphthalenediol22 has been obsc only moderate (3-OAc : l-OAc : 1,3-(OA
Amidation of esterc, Acrylic:' e well as N,N'-diacyldiamines26 are rl diestersare converted to N-aminosucc B-Hydroxy esters give equimolar r
resolved esters.2E The former compoul alcohols.Racemic amines, like alcoh (ion2eor N-alkoxycarbonylation.{
T. Matsumoto.Y. Takeda.E. Iwata.M S :P. AIlevi, M. Anastasia, P. Ciuffreda.eo 'M. Bucciarelli, A. Forni.I. Moretti.F. P 'Y. Naoshima, M. Kamezawa, H. Tachrb JCS(P1)5s'1(1993). 'Y.-C. Pai,J.-M. Fang,andS.-H.Wu..lO ^J.2. Crich,R. Brieva,P. Marquart.R -l (1993). 'J.-P. Barnier,L. Blanco,G. Rousseau. E 'N.W. BoazandR. L. Zimmerman,IA 5. 'P. Allevi, M. Anastasia,F. Cajone.P-Ci "'T. Fukazawaand T. Hashimoto,IA rl. ll " L.T. KanervaandO. Sundholm, JCSTP tH. M. Takano,andl Akita, l. Umezawa, 'T. Itoh,J. Chika,Y. Takagi,andS. Nisb '' M. Pozoand V. Gotor,T 49, 10725 ll99: 'V. S. Parmar.R. Sinha,K. S. Bisht,S.Gr uL.T. KanervaandE. Vanttinen,IA 4. tj 'F. Theil,A. Kunath,M. Ramm,T. Rabr 'tM. ShapiraandA. L. Gutman,IA 5, l6t '8. andM. Bassir,fL 35.{ Guibe-Jampel 'R. Pulidoand V. Gotor, CR 252,55 ( 19, t' L. Panza,M. Luisetti,E. Crociati,andS
LiPases203
a-,. i2.75:1)
involves oxidation of
i.::-rittion
r. r1J Fvrolysis'
\leo
,oR
N;(
d
O +
\< /\
^
Rq '
ued
t,.::r d-lactoneson reaction with
o ll -tt--,/r^'O
..-'l.\///
l
r
67" o
lv. '
)A -r:6 :05 (1992). ! - { ( \ l 1 6 .l 1 6 l ( 1 9 9 4 ) ' 9.:
lnJ :-(aminocarbonyl)cycloalkanon:: rr'J lcetatesin refluxing benzene' 9:
rlmrr\ alcoholsadjacentto a stereon\\ . I rans -aziridine-2,3-dicarboxyrhe homoallylic type,54-substituted .l ,, heptane.?
Resolutioniy transesterification. Using vinylic acetatesto esterify allyl alcohols,Epropargyl alcohols,e2-phenylthiocycloalkanols,r0a-hydroxy esters,rrmethyl 5the enantioselective and 2-substituted 1,3-propanediols,13 hydroxy-2-hexenoates,12 Vinyl carbonatesare isomers. optical of of separation esterification provides a means carbonates'ra to benzyl conversion enantioselective also resolved by lipase-mediated 2,2,2-triinclude resolution kinetic in the used been Other esters that have also transesterifienantioselective on a double report is a There fluoroethyl propionate.rs'r6 cationrTof racemic trifluoroethyl esters and cyclic meso-diolsby lipase catalysis. Malonic esters are desymmetrized by exchangeof one of the ester groups,rsand chiral carboxylic estersare obtained from lipase-mediatedalcoholysis of mixed carre boxylic carbonic anhydrides. Chemoselectivetransesterification. The esterification of the primary alcohol the 2-OH of 4,6-O-benzylideneglycopyranosides,2rand the 3-OH of carbohydrates,2o has been observed,although in the last casethe selectivity is of 1,3-naphthalenediol22 (3-OAc: l-OAc: 1,3-(OAc)z:80:16:4). only moderate Amidation of esters. Acrylic2s and B-keto amides,2aprotected dipeptides,2sas well as N,N'-diacyldiamines26 are accessible by the enzymatic method. Succinic diestersare converted to N-aminosuccinimides2?by hydrazines' 3-hydroxyamides and the B-Hydroxy esters give equimolar mixtures of chiral synthesis of 1,3-amino the for are useful resolved esters.28The former compounds acetylaenantioselective by resolved are alcohols. Racemic amines, like alcohols, tion2eor N-alkoxycarbonylation.30 lT. Marsumoto, y. Takeda,E. Iwata,M. Sakamoto, andT. Ishida,CPB42, ll9l (1994). rP. Allevi, M. Anastasia, P. Ciuffreda,andA'M. Sanvito,TA4'1397 (1993)' rM. Bucciarelli, 3041(1993)' A. Forni,I. Moretti,F. Prati,andG. Torre,JCS(P1) I Y. Naoshima, T' Fujita,K Kihara'andT' Raku' Y. Munakata, H' Tachibana, M. Kamezawa, JCS(PI)557(1993). tY.-C. Pai,J.-M.Fang,andS.-H.Wu,JoC 59' 6018(1994). oJ.Z. Crich,R. Brieva,P. Marquart,R.-L' Gu, S. Flemming,and C'J' Sih' "/oC 58' 3252 ( l 993). tJ.-p.Barnier,L. Blanco,G. Rousseau, "/OC58, 1570(1993). andI. Fresse, E. Guibe-Jampel, 'N.W. BoazandR. L. Zimmerman,TA 5, 153(1994). 'P. Allevi, M. Anastasia, F. Cajone,P. Ciuffreda,andA. M' Sanvito,TA 5' 13(1994)' 'nT.Fukazawa TA 4,2323 (1993). andT. Hashimoto, 'L.T. KanervaandO. Sundholm'JCS(PI)2407(1993). 'tH. Akita, I. Umezawa, M. Takano,andT. Oishi,CPB 4l' 680(1993). 'tT. Itoh,J. Chika,Y. Takagi,andS. Nishiyama' JOC 58,5'll'l (1993)' '' M. Pozoand V. Gotor,T 49, 10725(1993). ,5v. s. parmar,R. Sinha,K. S. Bisht,S. Gupta,A. K. Prasad, T 49,4107(1993). andP.Taneja, ' u L . T .K a n e r v a n dE . V a n t t i n e n , T4A, 8 5 ( 1 9 9 3 ) ' ''F. Theil.A. Kunath,M. Ramm,T. Reiher,andH' Schick,JCS(PI)1509(1994)' '8M. ShapiraandA. L. Gutman,?A 5, 1689(1994). '8. Guibe-Jampel andM. Bassir,IL 35,421(1994). 'R. Pulidoandv. Gotor'CR252,55(1994);JCS(PI)589(1993)' t' L. Panza,M. Luisetti,E. Crociati,andS. Riva,JCC 12' 125(1993).
204 LithiophosPhine (1993)' 22D. L a m b u s t a ,G . N i c o l o s i , M . P i a t t e l l i , a n d C . S a n f i l i p p o , I J C ( B ) 3 2 8 ' 5 8 ttS. Puertas, R. Brieva, F. Rebolledo, and V. Gotor, T 49' 400'l (1993)' 2nM. J . G a r c i a , F . R e b o l l e d o ,a n d V . G o t o r , f 5 0 ' 6 9 3 5 ( 1 9 9 4 ) . ? 5 K . K a w a s h i r o , K . K a i s o , D . M i n a t o , S . S u g i y a m a ,a n d H . H a y a s h i , T 4 9 , 4 5 4 l ( 1 9 9 3 ) . "C. Astorga, F. Rebolledo, and V. Gotor, JCS(Pl) 829 (1994)' "C. Astorga, F. Rebolledo' and V. Gotor, S 287 (1993)' 28 M. J. Garcia, F. Rebolledo, and V. Gotor, TA 4,2199 (1993). " M . T . R e e t z a n d C . D r e i s b a c h ,C h i m i a 4 8 , 5 7 0 ( 1 9 9 4 ) ' 'oM. Pozo and V. Gotor, T 49,4321 (1993).
2-Lithiothiazole. Formyl anion equivalent.' 2-Lrt pounds. Degradation of the heteroclcl dride reduction, and hydrolysis (HgCl D\
u{)
Bn.r,Boc BnAcooMe
,::':
*"
c-Lithioalkyl dimesitylborane. 13, 8 Alkenes.t The a-boryl carbanions react with carbonyl compounds to afford are trapped alkenes. The reagentis (E)-selectivefor ArCHO when the intermediates leads to TFAA with Treatment HF-MeCN. with MerSiCl and then treated with aq. are they aldehydes (E)-alkenes atiphatic from (Z)-alkenes mainly. For generationof lithioalkylboranes'2 the (e.g., to CF.SO.H) added together with a protic acid are Ketones.3 when the adducts from the lithioalkylboranes and aldehydes furnishes MeszBCHzLi that except treated with TFAA or NCS, ketones are formed,
5-Lithiomethyl-3-methylisoxazolc Benzoisothiazoles.tAnnulatron bonyl compoundsprobablyprocecd
I -al kenes.
tization.
Ph
J
"nFo.<+'1
Li
SMe
THF
\-
;;
2'"*" I
p/-\
pnnAo
707.
o'r
ti
rFll
EW')
o.
->a" . <+'1,",u n,-,-u,n\ J
A . D o n d o n i a n d D . P e r r o n e ,S I 1 6 l ( 1 9 9
'-
CrH'q
. I D . P o o r a n c h a n dJ, . S a t y a n a r a y a n aH
927.
' A. Pelter,D. Buss,E. Colclough,and B. Singaram , T 49' 707'7(1993\' tA. Pelter,K. Smith,andS.M. A. Elgendy,r 49"lll9 (1993)' t A . P e l t e rK, . S m i t h ,S . M ' A ' E l g e n d ya,n dM . R o w l a n d sT'4 9 , 7 1 0 4( 1 9 9 3 ) '
3-LithiothioPhene. 3- Substituted thioPhenes-' -1-L method. It is stable at room temPeftrl rn a convenientmanner.
Lithiophosphine. and t-BuOH Alkylphosphines.t The reagentLiPH2 is prepared from red B Li' to the halide alkyl in liquid ammonia, and used immediately. Thus the addition of an syntheone-pot a solution furnishes the primary alkylphosphine.r On the other hand, sis of dialkylphosphines2needs NaNH2 to promote the second alkylation. 'L. Brandsma. and B'A' Trofimov'MC 14 J.A. van Doorn,R'-J. de Lang,N'K' Gusarova' ( 1995). SC 24' 2L. Brandsma, N K. Gusarova,A.V. Gusarov,H' D. Verkruijsse,and B' A' Trofimov' 32t9 (t994).
, . Z h u ,a n dR ' D X . W u ,T . - A .C h e n L
L i t h i u m . 1 3 , 1 5 7 - 1 5 8 ;1 5 ' 1 8 4 (E)- 1,2-Dilithioalkenes't Cart ,Jilithio derivatives.These may bc e 5 - Trim ethyl silyl' 3' cy cI oh cx c to rrf anisolewith Li-MerSiCl and hldt lation and dehydrogenationresult in
Lithium 205 uc(B) 32B,58(1993).
lr-^
19 -: , ,r - ( 1 9 9 3 ) .
|."'-
rJ ii l{rrashi,r 49,4541(1993). t
2-Lithiothiazole. Formyl anion equivalent.t 2-Lithiothiazole reacts with various carbonyl compounds. Degradation of the heterocycleinvolves S-methylation with MeOTf, borohydride reduction,and hydrolysis(HgClz, aq. MeCN).
! ! :
S:
Bn-
N
,Boc
BnAcooMe
Irh .arbonyl comPoundsto afford sh.n the intermediatesare trapped l\ Treatmentwith TFAA leadsto ! :rr'm aliphatic aldehydesthey are ) r, rhelithioalkYlboranes.2 tr,,.lkrlboranes and aldehydesare c\,.pr that MeszBCHzLifurnishes
L|-
: .
J
anf\")
Et2o
/
\
Bn-,Boc N
a
rl
gnr'\\,-COOMe
o
- 780 -> -650
OR
910/"
A . D o n d o n i a n d D . P e r r o n e ,S l 1 6 2 ( 1 9 9 3 ) .
5-Lithiomethyl-3-methylisoxazole. carBenzoisothiazoles.tAnnulationwith B,B-bismethylthioa,B-unsaturated bonyl compoundsprobablyproceedsby a 1,4-addition,aldolization,and aromatization. SMe
7su" l
"/-\
B n -. N .Boc
pnnAo
+
,<
4o'" LiH2c
THF, -780,t h; BF3'OEi2 C5H5, a
-
A-t
i"
'
?t" I
/\-{ )--,)-d' FAn
o . )--, '2f
CzHrs
1
'D. Pooranchand, S 241 (1993). H. Ila, andH. Junjappa' J. Satyanarayana, 92"/o
y'19-lr7 (1993). 9 r . . ) ri . r : : . I . 1 9 .7 1 0 4( 1 9 9 3 ) '
3-Lithiothiophene. 3- Substituted thiophenes.t 3-Lithiothiophene is obtained by the LilBr exchange method. It is stableat room temperature,and various derivativescan thus be prepared in a convenientmanner. ' X . w u , T . - A .C h e n L , L 3 5 , 3 6 7 3( 1 9 9 4 ) . , . Z h u ,a n dR . D . R i e k e T
f,rrrrc'd from red B Li, and t-BuOH rhc :Jdition of an alkyl halide to the Or r hc'other hand, a one-potsynthe|(r(:':hc secondalkylation. , C 14 , ( , - . r r o v a ,a n dB , A . T r o f i m o vM andB' A. Trofimov,SC24' \r-r:ut.1sse,
L i t h i u m . 1 3 , 1 5 7 - 1 5 8 ;1 5 , 1 8 4 (E)-1,2-Dilithioalkenes.t Carbon-carbon triple bonds add lithium to form dilithio derivatives.These may be alkylated. 5-Trimethylsilyl-3-cyclohexenone.2 This compound is obtained by treatment of anisole with Li-MerSiCl and hydrolysis of the enol ether. Further desilylative acylation and dehydrogenationresult in n-acylphenols.
206 Lithium-1,3-diaminopropane
o
OMe
o
Li - Me3SiCl THF
OH
I
a-\ \-\
aA-t t l \4SiMes
coR
HCI / Me2CO
Lithium aluminum amides. 17. 16l Imines,t Efficient formation of i ketonesis carried out at room tempcrr al M. Bencheqroun. A. Solladie-Cavallo,
90"/"
Reductive C-O bond cleavage. Benzylic methyl ethers give benzyl anionsl which can be alkylated. The controlledstepwisecleavageof dimethyl acetalsamakes the method syntheticallyuseful.
,n
HzO
btri,te
,n
rBso "
OMe
'A. M a e r c k e ra n d U . G i r r e s e r , I 5 0 , 8 0 1 9 ( 1 9 9 4 ) . '8. B e n n e t a u ,F . R a j a r i s o n ,J . D u n o g u e s ,a n d P . B a b i n , f 5 0 , l l 7 9 ( 1 9 9 4 ) . tU. A z z e n a , G . M e l l o n i , M . F e n u d e ,C . F i n a , M . M a r c h e t t i , a n d B . S e c h i , S C 2 4 ' 5 9 1 ( 1 9 9 4 ) . ol). A z z e n a ,G . M e l l o n i , L . P i s a n o ,a n d B . S e c h i , T L 3 5 , 6 ' 1 5 9 ( 1 9 9 4 ) .
Lithium-ammonia. 13, 158;17,161 of 1,2-dithiinsfrom toluene-a{hioland 1,3De-S-benzylation.tA synthesis andoxidativecoupling. requiresdebenzylation alkanediynes
"o.. /\ Bn-s
P s'Bn
Li -NH3(r) l2-Kl / aq. EtzO
H
O
n
Lithium aluminum hydride. 14. 190 Selective desilylation't Due to I removal of one O-silyl group has been
O
Y Y
I fif
"n&NJ\y'
L,rD
;
Reduction of 2 - arylide nec Yclorlt cycloalkanols is the result of a dirccr' .rlcohols. Heterocycle translormation'-' *ay of N-O bond cleavage,C:N
6/
boo
H U
S-S
50"/.
rM. Koreeda andW. Yang,SL 201(1994).
Lithium cobaltbisdicarbollide LiCo(BqCzHrr)2. Michael addition.t The reaction between silyl keteneacetals and very hindered enonesis effectivelycatalyzedby this Lewis acid. In various considerationsit is superior to the LiClOa-Et2O system. 'w. J. DuBay,P.A. Grieco,andL. J. Todd,JOC59,6898(1994).
Lith ium-1,3-diaminopropane. (E)-Alkenes.t Carbon-carbon triple bonds are reduced stereoselectivelywith this system. '1. Kovarovaand L. Streinz,SC 23,239'l (1993).
E . F . J . d e V r i e s , J . B r u s s e e ,n n d f i . r a n d tK. Koch and J.H. Smitrovich,IL 35. I l: 'R. Z i m m e r , K . H o m a n n ,a n d H . - U . R e r n
Lithium aluminum hYdride-aluni StereoselectivecleavageoI d# ethersof pyranosidc diphenylmethyl availableequatorialoxygenatom pl results. Hydroalumination of allencs.: treatmentwith phenylboronicacid e alcohols.
Lithiumaluminumhydride-aluminumchloride 207
Lithium aluminum amides. 17, 162 Imines.t Efficient formation of imines from aldehydes and from unhindered ketones is carried out at room temperature.
coR
Dc::\l ethers give benzYl anionsr Ir;r;LB of dimethyl acetalsomakes
'A. Solladie-Cavallo, andF. Bonne,SC23' 1683(1993). M. Bencheqroun,
Lithium aluminum hydride. 14, 190-191 Selectivedesilylation.t Due to neighboringgroup participation,the selective removalof one O-silyl grouphasbeenobserved. OTBS
OTBS t'
-'8
rBSo " ,i\-^"n/\r"'.,,,\2
OMe
ll79 (1994). ,nd B. Sechi, SC 24' 591 (1994\3 ^-iqr1994).
*? * rif
LiAtH4/ THF, A NaOH
Ph/\'rN..2\2
r 50
br"
n:.\ 1rr)mtoluene-a-thioland 1,3?.,'upllng.
Reduction of 2-arylidenecycloalkanones.2 Formation of trans-Z-arylmethylcycloalkanolsis the result of a directed hydroaluminationof the immediate allylic alcohols. Heterocycle transformation.3 6H-1,2-oxazines are converted to aziridines by way of N-O bond cleavage,C:N bond reduction,and cyclization.
HO
OH
_/,/ \\___/
YY'n
5 - J
I
h>
LiAtH4/ Et2O
/
trrteoA'o-N
50%
F\
q9{t.
with a:: reducedstereoselectivelY
\
H P h
U'k
r.rc'neacetalsand verY hindered I - . r r r o u sc o n s i d e r a t i o ni st i s s u -
N
Gis: t'ans 94 : 6)
E . F . J . d e V r i e s , J . B r u s s e e ,a n d A . v a n d e r G e n , J O C 5 9 , 7 1 3 3 ( 1 9 9 4 ) . I K. Koch and J. H. Smitrovich, TL 35, ll3-l (1994\. 'R. Z i m m e r , K . H o m a n n ,a n d H . - U . R e i s s i g L, A l l 5 5 ( 1 9 9 3 ) .
Lithium aluminum hydride-aluminum chloride. Stereoselective cleavage o! diphenylmethylene acetals,t Formation of axial diphenylmethyl ethers of pyranosidesis noted. Preferential coordination to the more available equatorial oxygen atom prior to the hydride delivery may explain the results. Hydroalumination of allenes.2 Allylaluminum species are formed that on rreatment with phenylboronic acid and a carbonyl compound furnish homoallylic alcohols.
20E Lithium aminoborohydrides LiAtHr-AtCt:
cunlco
PhB(OH)2 PhcHo, -780
PhYoH
*l*
c"Hlz
"r"*
62"/" rA. B o r b a s ,J . H a j k o , M . K a j t a r - P e r e d y ,a n d A . L i p t a k , J C C 1 2 , l 9 l ( 1 9 9 3 ) . 2S. N a g a h a r a ,K . M a r u o k a , a n d H . Y a m a m o t o , B C S " /6 6 , 3 7 8 3 ( 1 9 9 3 ) . Chiral
borohydrides.a
Transt
- hiral reducing agents.
Lithium aluminum hydride-copper(I) cyanide. Reiluction of altylic epoxides.t Reduction by an s7y2'pathway leads to allylic alcohols in which the double bond is transposed' 'J. F. Genus,D. D. Peters, andT. A. Bryson,Sa 759(1993).
C. B. Fisher,J.C. Fuller, J. Harriso 8 S i n g a r a m ,J O C 5 9 , 6 3 7 8 ( 1 9 9 4 t . G . B . F i s h e r ,J . C . F u l l e r , J . H a r r i s o o J . C . F u l l e r , C . M . B e l i s e ,C . T . G o r e l 'J. H a r r i s o n ,S . G . A l v a r e z ,C . G o d P
Lithium amides, chiral. 13, 159-160; 17, 163-164 Enantioselcctive deprotonation.t Protected 4-hydroxycyclohexanonesundergo regioselectiveenolization and can subsequentlybe converted to chiral compounds through O-derivatrzation (acetylation, silylation). The addition of LiCl seems to
Lithium bis(methYlthio)trimct! Cascade reaction.t With 2-o : rophiles that enable regeneration rrng formation is essentially accor
somewhat. enhancethe enantioselectivity2 Michael additions.l chiral amides themselves may be used as the Michael addendsfor unsaturated esters. With an anti-selective alkylation in situ the overall
,'i 3,3-bismethylthiocyclopentano
processgives accessto chiral B-amino esters. The presence of chiral lithium amides has influence on the Michael addition involving achiral enolates. 'M. Majewskiand J. MacKinnon,CJC 72, 1699(1994). ' B . J . B u n n ,N . S .S i m p k i n sZ, . S p a v o l da,n dN . J .C r i m m i n ,J C S ( P I3) l l 3 ( 1 9 9 3 ) ' rE. Juaristi,A. K. Beck,J. Hansen,T. Matt,T. Mukhopadhyay, S M. Simon,andD' Seebach'
. L." I"lx]""'
\ 1 . - R . F i s c h e r ,A . K i r s c h n i n g . T . M t
l2'lt (1993't.
Lithium aminoborohydrides. 17, 170 These nonpyrophoric reagents, LiBHr(NRJ, show virtually the same reducing power as LiAlH4, yet react with protic solventsonly slowly above pH 4' They can be prepared as solids or used in situ.r Advantageously,they can be handled in dry air as easily as NaBHq. Reduction of amides.t The second stage of the reduction (i.e., C-O vs. C-N bond scission),can be controlled by using aminoborohydrides having different steric rebulks. The cleavageof the C-N bond to give alcohols is favored by less hindered ducing agents. Diastereoselectivereduction of imines.3 Moderate 1,3-induction of chirality is observed.
Lithium borohydride-trimctbY C:N Bond reduction. Oxrn Juctionto give aminesat room tc
D . G r e e n , G . P a t e l , S . E l g e n d Y .J . A 3 { , 6 9 1 7( 1 9 9 3 ) . {. Banaszek and W. KarPiesiuk' CX
Lithium bromide. Finkelstein disPlacemcnt.' rromideson rePeatedtreatmen ' reldsrangefrom 86Voto 96%.
Lithium bromide 209
cn..,OH I /t\,// CrH,:"
*l"n
HruIpn
lEr2NBH3lLi
cu{}
":#
THF. OO
62"k
83o/o (34k
( (' 12.l9l (1993)' lrr i-81 (1993). 6 6 u
rile. x l ^ \ J n S n 2 ' P a t h w a Y leads to allYlic id )
- ! : ,
J-;n-t undergo rcJ 1-hvdroxycyclohexanones compounds hc chiral to converted tl\ r(,:. The addition of LiCl seems to
de\
chiral borohydrides.a Transfer of [LiH] to chiral organoboranesleads to the chiral reducingagents. , G . B . F i s h e rJ, . C . F u l l e r J, . H a r r i s o nS , . R . B u r k h a r d tC, . T . G o r a l s k ia, n d , . G . A l v a r e zE JOC 59,6378(1994). B. Singaram, t C. B. Fisher,J.C. Fuller,J. Harrison,C.T. Goralski,andB. Singaram ' ' TL 34, l09l ( 1993) 'J. , TL 35' 5389(1994)' C. Fuller,C. M. Belise,C.T. Goralski,andB. Singaram 'J. JOC 59"1193(1994)' Harrison,S.G. Alvarez,G. Godjoian,andB. Singaram,
Lithium bis(methylthio)trimethylsilylmethide. Cascade reaction,t With 2-oxiranylethyl tosylate and related bifunctional electrophiles that enableregenerationof a carbanionoidspeciesby Si-C bond scission, ring formation is essentiallyaccomplishedin one step.For example'the preparation of 3,3-bismethylthiocyclopentanolin SOVoyield has been reported'
rn...\e\ may be used as the Michael 'x'...tr\e alkylation in situ the overall rHF
Mes"siMeo ra. rnfluence on the Michael addition
MeS'
'Li
*
Ar'\rot"-
NH4CI
>
nres"nloH MeS
\-/
80"/. la--: C' rr-
":rtn. JCS(PI) 3ll3 (1993)' Seebach'S :.Jhlay, M. Simon' and D'
.ho*' virtuallY the same reducing R ,ri) slowly abovepH 4' They can be tr. as s.s.1r. they can be handledin dry air ,: the reduction(i'e', C-O vs' C-N tc nr: h,'rohydrideshaving different steric : .:i. 'hrrlsis favoredby lesshinderedre\!,,Jerate 1,3-inductionof chirality is
M . - R . F i s c h e r ,A . K i r s c h n i n g , T . M i c h e l , a n d E . S c h a u m a n n 'A C I E E 2 3 ' 2 1 7 ( 1 9 9 4 t '
Lithium borohydride-trimethylsilyl chloride. 15' 186 reundergo thereof2 C:N Bondreduction. OximesrandvariousO-derivatives ductionto give aminesat room temperature. TL V.V. Kakkar'andJ' Deadman, J. A. Baban,G' Claeson, D. Green,G. Patel,S. Elgendy, 1 4 . 6 9 r 7( 1 9 9 3 ) . 'A. Banaszek CR 251,233(1994). andW. Karpiesiuk,
Lithium bromide. Finkelstein displacement.' Primary alkyl chlorides are converted to the pure bromides on repeated treatment with LiBr in 2-butanone ^t 120"C. Typically, the r ields ranqe from 86Voto 96Vo.
(LDTBB) 210 Lithium 4,4'-di-r-butylbiphenylide 2-Alkylcycloalkanones.2 A useful procedure for the dealkoxycarbonylation of 2-alkyl-Z-ethoxycarbonylcycloalkanonesconsists of microwave heating of the esters with LiBr, BuaNBr, and some water. 'X. Li, M. S. Singh,andF. Labrie,SC 24,733(lgg4). 2J.P.Barnier,A. Loupy,P. Pigeon, (1993). M. Ramdani,andP. Jacquault,JCS(PI)397
Lithium f-butoxide. 1,4- Naphthalenediols trom dimethyl phthalide - 3 -phosphonates. The annulation by tandem Michael-Dieckmann reactions is promoted by t-BuOLi.
3-An
Organolithiums. Barbier-type cou carbonylcompoundare treatedwith LD . r l k y l l i t h i u m si n t h e s a m ew a y . o Carbanionsgeneratedby reducrire d rntramolecularlyr2 accordingto their srr \ome speciesat higher temperaturesallo
Z,x'n
o
Li. OTTB
2"X
l-BuLi,THF, -78o;
/\-4, i l t o \ZY
-^" J"oo
COOMe PO(OMe)2
Al
/a<-e
oc THF, -780 -> A, t h
Altytic alcohol dianions.2 2-Alkylpropenols are deprotonated by BuLi and t-BuOLi to provide the dianions. However, the reaction with electrophiles is not regioselective. 'M. Watanabe, H. Morimoto,K. Nogami,S. Ijichi,andS. Furukawa,CPB41,968(1993). 2T. Liu and R. M. Carlson,SC 23, 1437(1993).
Lithium 4,4'-di-t-butylbiphenylide (LDTBB). 13, 162-163;16, 195-196; 17, 164 Lithium-halogen exchange. The reagent has been proven particularly effective for chloro compounds, as shown in the Barbier-type reactions involving chloromethyl ethyl ether,r 1,4-dichloro-2-butyne2and -2-butenes.3Vinylic chlorides also readily undergo exchange,4and actually 2,3-dichloropropeneis converted to the dilithio reagent.s Reductive lithiation of allylic acetals.6 This method provides masked lithium homoenolates,which are used in reactions with carbonyl substrates.
/yoet
Ring opening of azetidines.t philic intermediates.
Li.DTBB /THF + RCHO
Hzo
?" n'\..ACHOet
D. Guijarroand M. Yus, TL 34,348'l tl9{)3 t D . G u l a r r oa n dM . Y u s ,I 5 l , 2 3 l ( 1 9 9 5 i 'D. G u i ; a r r oa n dM . Y u s ,I 5 0 , 7 8 5 7( 1 9 9 { 'A. Bachki,F. Foubelo, andM. Yus,fL J5. 'D. GuiiarroandM. Yus,TL34,2Oll tlrn3 ^J. -J.F. Gil, D. J. Ramon,andM. Yus,?.5f. -r Almena,F. Foubelo, andM. Yus,f 50. J 'D. G u i j a r r oa n dM . Y u s , 7 5 0 , 3 4 4 7( 1 9 9 { "D. Guijarro,B. Mancheno, andM. Yus.f ! "S. MarumotoandI. Kuwajima,./ACSl15. t '8. MudrykandT. Cohen, JACSll5. 3855r t F. Chen,B. Mudryk,andT. Cohen, f 51. I
Lithium chloride. B- Chlorohy d rin s from c yclic sulfitc servesto differentiatethe two hydroxll 1 Robinson annulation.2 Using rhc L oxocycloalkanecarboxylic esters not ool balkoxylationalso occurs.
(Z- selective)
DrBB= ffi
K. NymannandJ.S. Svendsen, ACS4t. lt3 : Y. Ozaki,A. Kubo,andS.-W.Kim. CL 991
Llthium chloride 211 of r :,,: rhe dealkoxycarbonYlation , r,r :|rcrow&veheatingof the esters
JCS(PI)397(1993). P .i,-rluault,
Ring opening of azetidines.T 3-Aminolithium reagentsare obtained as nucleophilic intermediates. Organolithiums. Barbier-type condensationoccurs when an alkyl nitrile and a carbonyl compound are treated with LDTBB.t Trialkyl phosphatesare converted to alkyllithiums in the same way.' Carbanions generatedby reductive desulfurization react intermolecularlyr0'" or intramolecularly12according to their structural features. Thus the rearrangementof some speciesat higher temperaturesallows accessto novel skeletons.
j1l2- -1phosphonates. The annulaP:".'n()tedbY t-BuOLi.
OH
^,x'n
Li - OTTB
-rr"
tri :r':!'thodprovidesmaskedlithium c.lr\,,n) I substrates'
r
OH l "'\AcHoe, (Z-selective)
|
"""o OH
Zvx^
98%
l - r a l - 1 6 3 ; 1 6 , 1 9 5 - 1 9 6 ;1 7 , 1 6 4 b.i. .een proven particularly effecI BJrhrer-type reactions involving : .:.J -l-butenes.sVinylic chlorides <J:.irlr,roProPeneis converted to the
r'Xu''
(wam)
OH
CPB41,968(1993). r: \ Furukawa,
[r^Li ,'-oo -f
780
Afucoolvte t l \Zfcoor,,l"
rl. Jre deprotonated bY BuLi and r.Jitron with electrophilesis not
rHF-hex /\,/\,rLi
-so" ncro I OH
l X ^
'D. Cularro andM. Yus,TL34,348'7(1993). ' D . G u i l a r r oa n dM . Y u s ,f 5 f , 2 3 l ( 1 9 9 5 ) . 'D. andM. Yus,f 50,7857(1994). Gui.larro { A. Bachki,F. Foubelo.and M. Yus,TL 35,7643(1994). tD. cularro andM. Yus,TL34,2}ll (1993). oJ.F. Gil, D. J. Ramon,andM. Yus,T 50,343'l(1994). tJ. (1994). andM. Yus,T 50,5'175 Almena.F. Foubelo, 'D. cularro andM. Yus,T 50,344'l(1994). 'D. Guilarro,B. Mancheno, andM. Yus,r50, 8551(1994). "'S. Marumotoand L Kuwajima,JACSf f5, 9021(1993). '8. MudrykandT. Cohen,"/ACS115,3855(1993). ''F. Chen,B. Mudryk,andT. Cohen,T 50, 12'193 (1994\.
Lithium chloride. p-Chlorohydrinsfrom
cyclic sulfites.r Ring opening of cyclic sulfides by LiCl servesto differentiate the two hydroxyl groups of vic-diols. Robinson annulation.z Using the LiCl-HMPA system at high temperatures,2esters not only undergo annulation with enones,decaroxocycloalkanecarboxylic balkoxylationalso occurs. 'K. NymannandJ.S. Svendsen, ACS48, 183(1994). r Y . O z a k i .A . K u b o .a n dS . - WK i m , C L 9 9 3 ( 1 9 9 3 ) .
212 Lithiumdiisopropylamide Lithium cyanide. a-Cyano phosphates.t Lithium cyanide provides the nucleophile in the derivatization of carbonyl compounds. The reaction is performed in the presence of a chlorophosphateester in DMF at room temperature. '1. Mico andC. Najera,f 49,4327(1993).
Lithium diethylamide. f5, 188 Diethylcarbamoyllithium.t Reaction of EtzNLi with CO gives a reagentthat is reactive towards severalsulfur compounds. Accordingly, it can be used to synthesize thiocarbamates. y,6-(Jnsaturated anilides.2 Et2NLi converts N-phenyl imidates to N-silyl ketene N,O-acetals,which undergo Claisen rearrangementat room temperature.
NPh
THF ET2NLi, -78":
o\,-
N-Protected iminodiacetic esters nucleophiles. 2-Arenesu Directed lithiation. gioselectivefashion, furnishing thro r57-96Vo). 3-Halopyridines, i ncludr lithiation and regioselectivereactron t hat 3-chloro-4-iodopyridinegenenrl
r-BuLi. Halogen dance is also obserr Vinyl esters are silylated at thc esters of silyl ketones.TThe regiosc and the ability of the lithio derivatrv rion with suitable acceptorsare explo cyclopentenones.E
TFBs)Ph o/\JJ
(.z--
-cooEl ll
9't
TBSC|. -200
oer
I Ph-:\
eroa-l
'T. Mizuno, L Nishiguchi, and T. Hirashima, T 49,2403 (1993). tP. Metz andC. Linz. I50.3951 (1994).
Lithium diisopropylamide. 13, 163-164:15, 188-189;16, 196-197: 17, 165-167 Ester enolates. Procedures for the preparation of (E)- and (Z)-ketene silyl acetals are well developed.rEnolates have been generatedfrom conjugate esters by way of Michael addition, and when a remote halide is present, they are quenchedby cyclization. Chiral Michael donors such as carbanionsof the SAMP/RAMP hydraesters2with zones initiate formation of trans-2-(2'-oxoalkyl)cycloalkanecarboxylic excellent diastereomerexcessand enantiomer excess.
osiMeT
V\ot
LDA THF.HMPA;
o
..^"li
,
osiMeT
LDA / THF ;
OMPU
66"/"(E:Z <1 :99\
{o""
V Y I
,N-N
70%(E:Z >99 1 )
t
rvreooc
LDA
r )
O3
n , v vsortn
L--
C"-
MqSiCl
Me3SiCl
Alkenyl aryl sulfoxides are also quent reaction with aldehydesis dias Cyclopropanation.to When a lr hexadieneare mixed with LDA. a tr,
MeOOC--1 t ott ."V F-'
/
54"/" (>99%de, 97% ee)
These are gr esters.':coa chloromethylphosphonic saturateda-aminonitriles,15phospl Assorted anions,
derived from c.r-haloalkanecarboxll i of a synthesisof N-Boc cyclic imino r are unstable i methyl-2-oxazolinesre evenat -75"C.
213 LithiumdiisoProPYlamide N-Protected iminodiacetic esters readily yield 1,3-dianions,rwhich are useful or:Jr'\ the nucleophilein the derivar. l.'rtormed in the Presenceof a U l':'
3\ [ . rr ith CO gives a reagentthat is D r J r n : l r .i t c a n b e u s e dt o s y n t h e s i z e s1i. \'-phenyl imidates to N-silYl r3:i('ment at room temperature.
nucleophiles. 2-Arenesulfonyl benzamides are deprotonated in a reDirected lithiation. in good yields gioselectivefashion, furnishing thioxanthen-9-one10,10-dioxidesa directed omanifest compounds, iodo the (57-96Vo).3-Halopyridines,including be noted It should (at electrophiles.s with C-4) reaction lithiation and regioselective BuLi or either with on treatment generates 3,4-pyridyne that 3-chloro-4-iodopyridine r-BuLi. Halogendance is also observed'n Vinyl esters are silylated at the trigonal a-carbon, making available the enol esters of silyl ketones.TThe regioselectivedeprotonation of B-alkoxyacrylic esters and the ability of the lithio derivative to undergo a tandem Michael-Julia condensation with suitable acceptorsare exploitable in the synthesis of highly functionalized cyclopentenones.8
o
2oo
o2
rcooEt LDA/THF, .9OO
Ph{
1-SOzPh ETOOCJ/
tr. i39: 16,196-197; 17' 165-167 rr:rrrro of (E)- and (Z)-ketene silyl D jr'ncrated from conjugate esters by rlrJ. r\ present,they are quenchedby t"::,'nr of the SAMP/RAMP hYdraUun.carboxylicesters2with l_- .,.:','t'
osiMeT
707"(E:Z >99 1 ) MeOOC\/.\ l-) \
- . v \,Asorpn
cooEt
\
r
+
54"/"
(>99"/.de, 97% ee)
LDA / THF
L-62"k
ao-\
SMPU
-
Ph-\
Alkenyl aryl sulfoxides are also deprotonated at the a-carbon, and the subsequent reaction with aldehydesis diastereoselective.q Cyclopropanation.to When a ketone or nitrile and 2-phenylsulfonyl-1,3-cyclohexadieneare mixed with LDA, a twofold reaction (Michael + SN2)occurs.
THF;
\le35iCl
-:
ll ),,so,pn
?--a
55"/" 2:1) (ratioot diast€reomers
I9 9 3) .
.fA
-4
These are generated by deprotonation of allylic halides,rl chiral carbamates,'tunesters,r2conjugatedhydrazones,13 chloromethylphosphonic The dianions sulfonamides.rt and phosphonamides,16 saturated a-aminonitriles,15 the basis forms reaction this and cyclize, acids derived from ar-haloalkanecarboxylic Assorted anions.
The conjugatebasesof 2-(arylmethoxy)of a synthesisof N-Boc cyclic imino acids.rE as are unstable methyl-Z-oxazolinesre [2,3]sigmatropic rearrangement takes place -75'C. even at
triamide 214 Lithium diisopropylarnide-hexamethylphosphoric LDA, THF
o1
o.-/--*K
-750,3.5h
riY l l
l
t
or
\Zf-rl'\
)
/
D . D u g a t , D . G a r d e t t e ,J . - C . G r a m a i n , a n d B I 'P. D o w d a n d B . K . W i l k , S C 2 3 , 2 3 O 7( 1 9 9 3 t 'K. K a t o , H . S u e m u n ea, n d K . S a k a i , I 5 0 . 3 1 1 1 'M.-C. P . Y e h , B . A . S h e u ,H . - W . F u , S . - 1 .T a u .
OH 70"/"
'J. Otera,Y. Fujita,andS. Fukuzumi,SL2l3 (1994). 'D. Enders,H. J. Scherer,and J. Runsink,CB 126, 1929(1993). tJ. Einhorn,C. Einhorn,andJ.-L. Pierre,SL 1023(1994\. aF.Beaulieu JOC 59,6508(1994). andV. Snieckus, t c . w . G r i b b l ea n dM . G . S a u l n i eH r ,3 5 , 1 5 l ( 1 9 9 3 ) . oRocca,C. Cochennec, M. Mallet, A. Godard,and F. Marsais,L. Thomas-dit-Dumont, G. Queguiner,JOC 58,7832(1993). 's.w. wright, ra 3s, l84l (1994). tA. Datraand R. R. Schmidt,TL 34, 416l (1993). nJ.Fawcett. JCS(Pl)6'7(1993). andD. R. Russell, S. House,P.R. Jenkins,N. J. Lawrence, '0A.M. Ericsson, N. A. Plobeck,andJ.-8. Biickvall,ACS48, 252 (1994). " M. Julia,J.-N.Verpeaux, BSCFf31, 539(1994). andT. Zahneisen, 12S.Berte-Verrando, F. Nief, C. Patois,and P. Savignac,JCS(PI)821(1994). 13M.Yamashita, andK. Nakano,BCSJ66, 1759(1993). K. Matsumiya, 'oS.S.C. KochandA. R. Chamberlin, JOC 58,2725(1993). 'tC.-J.Chang,J.-M. Fang,andL.-F. Liao,JoC 58, 1754(1993). '6V.J. Blazis,K. J. Koeller,andC. D. Spilling,TA 5,499 (1994). 'tF. A. Davis,P. Zhou,andP.J.Carroll,JOC 58,4890(1993). 'tA. De Nicola.C. Einhorn,J. Einhorn,andJ. L. Luche,CC 8'19(1994). ''K. KamataandM. Terashima, CC 2771(1994\. triamide. Lithium diisopropylamide-hexamethylphosphoric Enolization.t N-Aryl enaminones are enolized toward the a'-position despite the presenceof HMPA. For alkylation at the 7-carbon it is necessary to use LiNlSiMer)z as the base. A general approach to itaconic estersz is via the a-dimethylaminomethylsuccinates,which are formed by alkylation of B-dimethylaminopropionic esterswith a bromoacetate. 1,4-Asymmetricinduction is evident in the alkylationsof chiral cyclic acetalsof esters. cycloalkanone-2-carboxylic Attack of a remote ester enolate onto a diene-Fe(COh complex under a CO atmosphere leads to a cyclic product. Fused and bridged ring systems can thus be
Lithium diisopropylamide-potassiumr-l Epoxide isomerization' This stmng allylicalcohols. The regiochemistry of thc mal heteroatomin the substrate.
oMoM
LO^. }q
A. Mordini, S. Pecchi,G. Capozzi,A. Cepp A. Ricci,JOC 59,4784(t994).
Lithium diisopropylamide-silver cy.trI Intramolecular Michael addition.t T mation of sulfonic lactones in good yields tt
unsaturated esters due to preferential dcpr atom.
?t" $A"oo,n. TBsd
LD^'^ ttt 'E 3
N. Asao,M. Meguro,andY. Yamamoto, SL l8
constructed.4 r\
-j
v
,/\
\ - l -r / Fe(CO)"
'cooEt LDA/HMPA co / rHF cF3cooH 797o
Lithium hexamethyldisilazide. 13, 165: lr Amino acids. Through enolization p1 idin-4-ones2using LHMDS as the bascfor r thesized, respectively. The stereoselectir't substituentson the nitrogen atoms.
Lithiun hex.methyldisilazide 215 Frrm ade
o1
I V \-N, \
lD. D u g a t , D . G a r d e t t e ,J . - C . G r a m a i n , a n d B . P e r r i n , B S C F 6 6 ( 1 9 9 4 ) . I P. Dowd and B. K. Wilk, SC 23,2307 (1993). tK. K a t o , H . S u e m u n e ,a n d K . S a k a i , ? 5 0 , 3 3 1 5 ( 1 9 9 4 ) 'M.-C. P . Y e h . B . A . S h e u ,H . - W . F u , S . - 1 .T a u , a n d L . - W . C h u a n g , J A C S l l 5 , 5 9 4 l
(1993).
OH 707.
D :l.i-:
"e-1t.
Lithium diisopropylamide-potassiumt'butoxide. 13, 164 Epoxide isomerizationr This strongbasecombinationconvertsepoxidesto of the ring openingcanbe directedby a proxiThe regiochemistry allylic alcohols. mal heteroatomin the substrate.
t-[)-a],,nt.M. Mallet, A. Godard,and
,o,o"
LOA - I-BUOK
R:rr\r'ottlol't OH
. r - . : . r R R u s s e l l ,J C S ( P I ) 6 7 ( 1 9 9 3 ) ' . . l t' l t . 1 5 2( 1 9 9 4 ) . l-rl ':9 r 1994). rr . ( s, Pl) 821 (1994). Lr 66 i-59 (1993).
I A. Mordini, S. Pecchi,G. Capozzi,A. Capperucci, G' Reginato,and A. Degl'lnnocenti, A. Ricci, JOC 59,4784(1994).
- - i
l-<: ..r9J). .1,. .99{). ,,
re: r
r:. ( ( 879(1994).
Lithium diisopropylamide-silver cyanide. Intramolecular Michael addition.t The combination of reagentspromotes formation of sulfonic lactonesin good yields (60-93Vo) from 7-alkanesulfonyloxy-a,Bunsaturated esters due to preferential deprotonation at the a-carbon to the sulfur atom.
phoric triamide. ol:,'tJ to*ard the a'-position despite LiN! - . : i i t r o i t i s n e c e s s a r yt o u s e
o OMs I
: the a-dimethYlaminomethYl}.; : ::.'t hl laminopropionicesterswith 1.'
$A"oou" TBSO
o-'b=o
t
LDA-A9CN THF -78o , 5 min
\
Y\" Lcootu"
rBSd
a. r r..rttofl]of chiral cyclic acetalsof rtr::c-Fe(CO)r comPlex under a CO In.: f ldged ring systemscan thus be
oHc\ P^
,-l*\
t\
b,l
EIOOC \ 79"/"
'N.
A s a o , M . M e g u r o , a n d Y . Y a m a m o t o , s L 1 8 5( 1 9 9 4 ) .
Lithium hexamethyldisilazide. 13, 165; 14, 194 Amino acids. Through enolization piperazine-2'5-dionesrand perhydropyrimidin-4-ones2using LHMDS as the basefor alkylation, a- and B-amino acidsare synthesized, respectively. The stereoselectivity can be manipulated by varying chiral substituentson the nitrogen atoms.
216 Lithium hexamethyldisilazide-silveriodide
3,1* "Y"T-
-THF LiN(SiMe3)2
Lithium hydride. 13, 165-16 Alkyl silyl ethers.t Acrirr ;arbonyl compounds in ver;- hr Reduction.2 A wide scq derived from hydrogenationol RCOOR',and (RO)zCO.Hali&
9 r "Y^f A'n
"Y'T* 92 - 960/.
oY^r'
oY"-ra'..
-THF LiN(SiMe3)2 0o
Ph-r N.v.N-z
N-v.N-z
Ph
Mel , -78o
"-la..
r
N\,-N-z
Ph
r
T 60%(84:16)
Julia condensation.3 LHMDS is also an effective base for the generation of sulfonyl carbanions,which may undergocondensationwith esters. Horner olefination.a With this strongerbase a lower temperature (e.g., -78"C) is sufficient to achievethe transformation. Elimination.5 a,a-Dibromoketones undergo dehydrobromination and rearrangementto afford lithium alkynolates on consecutiveexposureto LHMDS and BuLi. Such speciesare interceptedby acid chlorides.
LiN(SiMe3)2-THF
o
-7Ao
,4"*r"
I
BuLi / THF ,-78o;
n-or-i
clPo(oEt)' ]
R-opo(oEo2 30 - 560/o
'M. O r e n a , G . P o r z i , a n d S . S a n d r i , J C R ( S )3 1 8 ( 1 9 9 3 ) . 21. B r a s c h i , G . C a r d i l l o , C . T o m a s i n i , a n d R . V e n e z i a, J O C 5 9 , 7 2 9 2 ( l g g 4 ) . r H . K . J a c o b sa n d A . S . G o p a l a n , J O C S g , 2 0 t 4 ( l g g 4 ) . oM. W a t a n a b e ,S . I j i c h i , H . M o r i m o t o , K . N o g a m i , a n d S . F u r u k a w a , H 3 6 , 5 5 3 ( 1 9 9 3 ) . 5V.V. Zhdankin and P.J. Stang,IL 34, I46l (1993).
Lithium Allylic
hexamethyldisilazide-silver and benzylic amines.
proceeds in refluxing
THF.
iodide.
The substitution of benzylicr
The protecting
T. Ohkuma,S. Hashiguchi, andI E. M. Zippi,SC 24,2515(B9at
and allylic halides2
groups on the N,N-bis(trimethylsilyl)
amines are easily hydrolyzed. 'T. M u r a i , M . O g a m i , F . T s u j i m u r a ,H . I s h i h a r a , a n d S . K a r o , S C 2 3 , 7 ( 1 9 9 3 ) . 2T. M u r a i , M . Y a m a m o t o ,S . K o n d o , a n d S . K a t o , J O C 5 8 , : , 4 4 0 ( l g g r .
Lithium hydroxide. Saponification.' The mrl rn a synthesisof chiral 2-alk1 3-keto esterswith 2-triflylor-r Emmons -Wadsworth olclt haseto effect the olefination of * ith ketone"s,slow addition of r Jctivated4,A molecularsievesr
R.V.Hoffmanand H.-O.Kim. fI 'F. B o n a d i eA s ,. C a r d i l l i ,A . L a r r
Lithium naphthalenide (L!\ l. Lithium- haloge n exchatg l i t h i u m sf r o m a c e t a l - c o n t a i n r and halopyridines.rDechlori nar rchievedwith BuLi alone (srop Of coursethe N,C-dithio derira markablythe coupling with ar1. achieved.6
Carbamoyl and thiocarbanrc .ponding lithium reagents.TL afford 2-hydroxy carboxamides Although it is mentionedrha vive the LN treatment,those d
highertemperatures(-40oC vs. The direct conversion of diel alternative route to the R-OH Elec trophilic subst it ut ion q diarylmethanolsfrom diaryl kar various electrophiles,r0solveslh
reaction with functional nucleop
Lithium naphthalenide(LN)
'.
Lithium hydride. 13, 165-166 Atkyl silyl ethers.t Activated commercial LiH promotes reductive silylation of carbonyl compounds in very high yields in the presenceof MerSiCl and Zn(OTf)2. Reduction.2 A wide scope of substrates reducible by activated LiH or LiD (derived from hydrogenationof n-Buli in TMEDA) includes RCHO, RrCO, RCOCI' RCOOR', and (RO)zCO.Halides undergo elimination.
r
-Ph
fr
""ta
v
x
, :-'.r84:16)
'fc.::rc
base for the generationof ',\ esters. lth Itr :. (e.g.' -78"C) \\r'r temperature r3 . I .:: lr drobromination and rearr - - : : \ c ' e x p o s u r et o L H M D S a n d L-
'='-
R:oPo(oEt)2 30 - 56%
],.
'T. Ohkuma,S. Hashiguchi, andR. Noyori,JOC 59,21'7(1994). I E. M. Zippi,SC 24,2515(t994\.
N.--N-z
en
c:
2l7
i 9 . " 1 9 2( 1 9 9 4 ) .
. 3 6 , 5 5 3( 1 9 9 3 ) . d . : . : u l a w aH
o:
, : h e n z y l i c r a n da l l y l i c h a l i d e s 2
rr..
(\n the MN-bis(trimethylsilyl)
\ : : ' . . S C 2 3 , 7( 1 9 9 3 ) . - 1 - r 0( 1993). 5r
Lithium hydroxide. Saponification.t The mildness of LiOH as a saponifying agent is demonstrated in a synthesisof chiral 2-alkyl-4-oxoalkanoicacids.In the first step, alkylation of B-keto esters with 2-triflyloxy esters provides the keto diesters. Emmons-Wadsworth olefination.2 Lithium hydroxide is a more convenient base to effect the olefination of aldehydesin THF at room temperature. For reaction with ketone.s,slow addition of the base to the reaction components in the presenceof activated 4A molecular sievesimproves the yields significantly. ' R.V. HoffmanandH.-O. Kim, TL 34,2051(1993). rF.BonadieA s ,. C a r d i l l i ,A . L a t t a n z iL, . R . o r e l l i ,a n dA . S c e t t r i , 7 L 3 53' 3 8 3( 1 9 9 4 ) .
Lithium naphthalenide (LN). 15, 190-l9l Lithium-halogen exchange. The reagent is useful for preparation of organolithiums from acetal-containingsubstrates,rdihaloarenes(monofunctionalization;,2 and halopyridines.rDechlorinationof N-(B-chloroalkyl)amidesapparentlycannotbe achievedwith BuLi alone (stops at N-deprotonation?),and the use of LN is required.a Of course the N,C-dithio derivatives may be employed in C-C bond formations (remarkablythe coupling with aryl and vinyl halides).Barbier-typereactionshavebeen achieved.6 Carbamoyl and thiocarbamoyl chlorides also undergo exchangeto give the corresponding lithium reagents.These are readily trapped by carbonyl compounds to afford 2-hydroxy carboxamides.T Although it is mentioned that cyclic acetals of saturatedcarbonyl compounds survive the LN treatment, those derived from phenones are susceptible,especially at higher temperatures(-40"C vs. -78'C). Actually both C-O bonds may be severed.n The direct conversionof dialkyl sulfatesinto alkylithium reagentsnprovidesan alternative route to the R-OH - R-X * R-Li method. Electrophilic substitution of phenones. The facile formation of CO-dilithiated diarylmethanols from diaryl ketones and LN, coupled with subsequentreaction with various electrophiles,r0solvesthe compatibility problem of the conventional addition reaction with functional nucleophilesto prepare diaryl r-carbinols.
ether 218 Lithium perchlorate-diethyl l.2-Amino alcohols.tt The treatment of a mixture of an imine and a carbonyl compound with LN causesreductive cross-coupling. by treatB-Functional amines.t2 B-Aminoethyllithium reagentsare available p-functionalized amines. ment of aziridines with LN, and thencethe
ph N
/)
Li -naphthalene THF, -78o
PhNH
(-.e
E*; HzO
Reductive desulfonylation.ts Alkyl phenyl sulfones are cleaved unidirectionally, alkyllithium thus generatedcan be utilized accordingly. 'J. F. Gil, D. J. Ramon,andM. Yus,T 49,4923(1993). 'M. S. Sell,M.V. Hanson,andR. D. Rieke,SC24' 2379(1994). 3Y. Kondo,N. Murata,and T. Sakamoto'H 37, 146'7(1994). 'F. Foubelo andM. Yus,It 35,4831(1994). 5J.Barluenga, andJ. Florez,JOC58' 5976(1993). J. M. Montserrat, oC. Gomez,D. J. Ramon,andM. Yus,T 49'4ll7 (1993). t D. J. RamonandM. Yus,TL 34,'lll5 (1993). tJ. F. Gil, D. J. Ramon,andM. Yus,I49, 9535(1993)nD. Guiiarro,G. Guillena,B. Mancheno, andM. Yus' T 50'342'7(1994)' 'oD. Guiiarro,B. Mancheno,and M. Yus,T 49' 1327(1993). " D. Guiiarroand M. Yus,T 49,7761(1993). 'tJ. Almena,F. Foubelo, andM. Yus,JOC 59' 3210(1994). 'tD. GuiiarroandM. Yus,TL35,2965(1994). Lithium perchlorate. 17, 167-l7O Aldol-type reactions.t The condensation between an aldehyde and a ketene -30"C. syn-Selectivityis silyl acetal proceedsin CHzClz with LiClOq as catalystat observed when a-oxyaldehydes are used as reaction partners. Diels-Alder reactions and 1,3-Claisen rearrangements.2 Lithium perchlorate in CHzClz apparently mimics the LiClOcEt2O system in the catalysis of many reactions, including the Diels-Alder reactionsand 1,3-Claisenrearrangements. ' M . T . R e e t za n dD . N . A . F o x ,? L 3 4 , l l l 9 ( 1 9 9 3 ) . tM.T. ReetzandA. Gansaur,T49,6025(1993).
Lithium perchlorate-diethyl ether. DithioacetaliZation of aldehydes.' The reaction is performed at room temperature with high chemoselectivitY. an aldehyde,an B-Amino esters.2 A three-componentcondensationcomprising (requiring as short a efficient N-silylamine, and a ketene silyl acetal is extremely reaction time as l0 min at room temperature).
..^+Me3SiNEt2- Y*z, \ ^-cHo oPh
Electrophilic substitution of indolc.' acidity of the LiClOc-Et2O system. It cao Diel s- Ald er rea ctions an d c yclocor J up to 5 stereocentersare created by this m action.4Camphorsulfonic acid is also pra condensation involving an aldehyde atd catalyzed.s
LCO. -
Erp an
Ene reactions.6 Catalyzed reactioa diones. Arylamines. Electron-rich arcnes na boxylateto give arylhydrazinederivatrres provides the amines in one operation. Fa about 707oyield.
'V. G. Saraswathy andS. Sankararaman. JOC t M. R. saidi,A. Heydari,andJ. lpaktschr.Ct 'K. H. Henry,Jr.,andP.A. Grieco,CC 510r I 'P. A. Grieco,J. P. Beck,S.T.Handy.A. Serr 'P. A. Griecoand E. D. Moher,7L 34, 5567r I ^ 486 ( 1994). W.J. Kinart, JCR(S,) '1. Zaltsgendler, Y. Leblanc,andM. A. Bcrnr
Lithium 2-(pyrrolidin-1-ylmethyl)pyrn Chirat allylic alcohols.t Opening r nishes products with moderate enantiorrE
'M. Asami,T. Ishizaki,andS. Inoue.fA 5. ]t
Lithium 2-(pyrrolidin-l-ylmethyl)pyrrolidide
t:
I r.
LiClOr elher
-:!' \rf an imine and a carbonyl
P'.E
s u . : , ' n easr e cleaved unidirectionx.,'r-JrnglY.
.f,y^"oorn
r t , 1 0m i n
:.rgents are availablebY treat, r ; l t z e da m i n e s .
219
NEt2 83%
Electrophilic substitution of indole.3 This reaction strictly exploits the Lewis acidity of the LiClOrEt2O system. It can be applied to a synthesisof yuehchukene. Diels-Alder reactions and cyclocondensations. Tricyclic skeletonscontaining up to 5 stereocentersare created by this method in an intramolecular Diels-Alder reaction.4camphorsulfonic acid is also present as a catalyst. The Danishefsky cyclocondensation involving an aldehyde and a very reactive diene is also similarly catalyzed.s
)
-"
.oql).
l:l
!vv:
Licrol'csA
<--n r I993).
t
rt\i-\ t t
l
EtzO
)l
4h
$o 64"/"
, , ,0. ,a,t (tnno). i - e i
Ene reactions.6 Catalyzed reactions include alkenes and 1,2,4-triazole-3,5-
Q 9 :
ketene t(':.\!'en an aldehydeand a -30"C' s)tx-selectivityis \'t at crri : t r , , 1l J r t n e r s .
perchlorate rTangements-t Lithium many reacof catalysis the in 1r.:rnr : ( r e a r r a n g e m e nts' lrr.en L
t3!l:,,n is performedat room
tempera-
an rd"'r-rtton comprisingan aldehyde' a short as (requiring rtn:.r efficient
diones. Arylamines. Electron-rich arenesreact with bis(2,2,2-trichloroethyl) azodicarboxylate to give arylhydrazine derivativesTin good yields. Reduction with Zn-HOAc provides the amines in one operation. For example, P-methoxyaniline is prepared in about 707oyield. 'V. G. Saraswathy JOC 59'4665(1994)' andS. Sankararaman, tM. R. Saidi,A. Heydari,andJ. Ipaktschi,CB 127,176l(1994). t K. H. Henry,Jr.,andP.A. Grieco,CC 510(1993). 'P. A. Grieco,J. P. Beck,S.T.Handy,A. Saito'andJ. F. Daeuble, TL35'6783(1994)' t P.A. Griecoand E. D. Moher,TL 34,5567(1993). ow. J. Kinart, JCR(S)486(1994\. r Zaltsgendler, Y. Leblanc,and M. A. Bernstein'TL 34' 2441(1993\' I.
Lithium 2-(pynolidin-1-ylmethyl)pyrrolidide. Chiral allylic alcohols.t Opening of meso-epoxidesby the chiral base furnishes products with moderate enantiomer excess. ' M. Asami,T. Ishizaki,andS. Inoue,TA S'793 (1994).
220 Lith ium 2,2,6,6-tefi amethylpiperid ide (LT M P)
Lith ium tetraf luoroborate. Activation of oxetanes.t The ring opening by an amine in MeCN is made possible by the addition of LiBFa. 1,3-Amino alcohols are obtained in 85-987o yields. Cleavage of 4-(trimethylsilylmethyl)ethyleneacetals.2 The anion furnishes Fto attack the silyl group, resulting in the fragmentation of the dioxolane system and emergenceof the carbonyl group.
.{. Yanagisawa, K. yasrr. K. Hattori and H. Yaman L A. Flippin, J. M. Mucb '1. A. Flippinand J. M. M G . B a r t o l i , M . B o s c o ,C . r
Lithium tetramethylth l,2-Addition to cnt rnd a ketone, favoring t rperationof a single-ela
'M. Chini, P. Crotti,L. Favero, andF. Macchia,TL 35,'16l(1994\. tB. M. Lillie andM. A. Avery,TL 35, 969 (1994).
Lithium 2,2,6,6-tetramethylpiperidide (LTMP). 13, 167;14, 194-195:17, l7l-172 Isornerization of epoxides.t The conversionto carbonyl compounds is initiated by proton abstraction. With a highly hindered base the less substituted side of an epoxide is preferentially deprotonated;thus a monosubstitutedepoxide tends to give an aldehydeproduct.
I E. MarkoandC.W Lcu
Lithium trialkylstennr Allenyl stannancs.' :nce of CuBr . SMe: pro
Ketene silyl acetals.z The enolsilylation of esters is highly dependent on the bases used. Contrasting stereoselectivitiesin the silylation of methyl a-t-butyldimethylsiloxyacetateare found with respectto the reaction conditions: The (E)-isomer is obtained in the trimethylsilylation promoted by lithium tetramethylpiperidide,and the (Z)-isomer from the reaction with r-butyldimethylsilyl chloride in the presenceof
B-Trialkylstannyky mpose attack by organ ::rely. The adductsare n
LHMDS and HMPA.
:lcctrophile trans to thc
LiN(SiMe3)2
TBSO
OTBS OMe
HMPA/ THF
o tttotAo""
t-BuMe2SiCl -1000-> rt
I S. AidhenandR. Brasl: D. Enders, K.-J.Heider.er LTMP /THF Ms3SiCl - 1000-> rt
61"/"
,osiMes TBSO
OMe
82/"
Directed lithiation, The nitrogen atom of aromatic aldimines assiststhe deprotonation at a proximal benzylic position by LTMP.T The resulting lithium derivatives are nucleophilic and synthetically useful for elaboration of isoquinolines.a
oc"e
-oupling with aryl iodid
l- ith ium tri-s-butylbon
r 5 .r 9 2 - 1 9 3
Demethylation.t Ar :he cleavageof aryl meth
C. Majetich,Y. Zhang,arl
l- ith ium trimethylsilyld Helerocycles. Borh
LTMP / THF
3-siloxy ketonesand ofcl nrolve condensationwirt n\ertion.
BCON(OMe)Ms rt
(R=nBu) 83o/"
Dianions of B-enamino ketones.s The deprotonation is complete at room temperature, but the subsequentalkylation (e.g., with aldehydes)should be conducted at a lower temperature (-70'C).
2'''/l (/
221 Lithium trimethylsilyldiazomethane
t is made Posln::.i F\ an amine in MeCN yields' ^,,1. 85-987o in obtained are rl. F)tlcneacetals.t The anion furnishes and system rai::-.'ntationof the dioxolane
K. Yasue,and H. Yamamoto,CC 2103(1994). A. Yanagisawa, 'K. HartoriandH. Yamamoto, JOC58, 5301(1993);r 50, 3099(1994). 'L. andD. S. Carter,JOC 58,2463(1993). A. Flippin,J. M. Muchowski, 'L. JOC 58,2631(1993). A. FlippinandJ. M. Muchowski, 'G. Bartoli,M. Bosco,C. Cimarelli,R. Dalpozzo,andG. Palmieri,T49,252l(1993).
Lithium tetramethylthallate. 17, 172 I,2-Addition to enones.t This methylating agent can discriminate an enone rnd a ketone, favoring the former. The reversechemoselectivity may be due to the operation of a single-electrontransfer mechanism.
r i. -r5.761( 1994)' ).r 171-172 LTuP). 13, 167; 14,194-195;17' initiated is compounds r.:.:'\n ro carbonyl side of an dc::i hase the less substituted to give tends -r',no\ubstituted epoxide t\ j on thc rr: - ,'i estersis highly dependent a-t-butyldi' methyl of i: :- rhe silylation (E)-isomer r i i 1c'reaction conditions: The and -: !r.: i i'r l it h ium tetramethylpiperidide' of presence the in lr-.J:methylsilyl chloride
I E. MarkoandC.W.Leung,JACS116,371(1994).
Lithium trialkylstannate. Altenyl stannanes,t The Siy2' displacementof propargyl tosylates in the prescnce of CuBr . SMez provides allenyl stannanes,which, by virtue of Pd(0)-catalyzed :oupling with aryl iodides, are important precursorsfor arylallenes. p-Trialkylstannylcyclohexanones.' Conjugated chiral (SAMP) hydrazones mpose attack by organostannane reagents diastereoselectivelyand enantioselec:rrely. The adductsare nucleophilic,thus allowing substitutionat C-2. Entry of the :lectrophile trans to the tin residue is favored. SC 24,789(1994). I S. AidhenandR. Braslau, K.-J.Heider.andG. Raabe,ACIEE32,598(1993). D Enders.
t \
.rur,,", lve
Mqsicl
;1t'u* OMe
TBSO
' 10Oo -> rl
82"/"
the deprol(':- ,,1aromatic aldimines assists derivativcr lithium resulting br t.T\lP.' The I i,,: cl.rborationof isoquinolines'a
Lithium tri-s-butylborohydride (L-selectride). 13, 167-168;14, 195-196;
ts. t92-193 Demethylation.t An unconventional application of the bulky reducing agent is :rc cleavageof aryl methyl ethers (68-100% yield). J Majetich,Y. Zhang,and K. Wheless,TL 35,8"12'l(1994).
L ithium trimethylsilyldiazomethane. Heterocycles. Both the formation of 5-trimethylsilyl-2,3-dihydrofuransr from i-siloxy ketonesand of cycloheptapyrrolones2from N-methylanilides of a-keto acids :rrolve condensationwith the ketone group and subsequentSrv2reaction or carbene
car. lr.r€ Me
:rsertion. $% (R=rFBu)
r 3
*.,z\ room temT:.': Jeprotonation is complete at ar conducted r. i $ rth aldehydes)should be
tl
MqSiC(Li)N2 EtzO -780->A
I
ll' t A
222 Lithium tris(methylthio)methide 'K. Miwa, T. Aoyama, and T. Shioiri, SL 461 (1994). tH. O g a w a ,T . A o y a m a , a n d T . S h i o i r i , 5 L 7 5 7 ( 1 9 9 4 ) .
Lithium triorganozincates. Halogen-zinc exchange, Haloarenes are converted by Me:ZnLi to arylzinc nucleophiles.rReaction of the latter with carbonyl compounds gives benzylic alcohols. Analogously, propargylic substratesgive allenylzinc reagentsthat are sourcesof homopropargylic alcohols.2 Silylzincate reagents are superior to silylcuprates in Conjugate addition.l in the addition to the a,B-unsaturatedcarbonyl compounds. efficiency terms of their lY. Kondo,N. Takazawa, JOC 59,4717(1994). C. Yamazaki,andT. Sakamoto, 2T.Katsuhira, T. Harada,K. Maejima,A. Osada,andA. Oku,JOC 58' 6166(1993). tR. A. N. C. Crump,l. Fleming,andC. J. Urch,JC.S(P1) 701(1994).
Lithium tris(t-alkoxy)aluminum hydride. a-Amino aldehydes. N-Boc a-amino phenyl estersr and carboxyanhydrides2 are reduced to aldehydesin THF. chiral a-hydroxy acids.s a-Keto esters of cis-3-tosylaminoisoborneolare reduced stereoselectively.The chiral auxiliary can be removed by LiOH in aqueous
Homologous thioesters.2 Bcsi , methylthio)alkanes derived from r esters.The transformationis acco * ith aqueousHBFr in DMSO ar t3{
r-.A. Abood,SC23, 8ll (1993). 'V. Barbero, S. Cadamuro, L DeganrI
Lithium tris(phenylthio)merh ilc. Ipso anion precursor,t Nuck products that readily subrnit a PhS resultinglithio compoundsare acrl
o II
('>-\J]
(Phs)3cLi/ THF
(
-7go : s-BuLi / THF
I
THF at room temperature without racemization.
T Cohen, K. McNamara, M. A. Kuzcr NHTs
NHTs
o
l i ^ . ot'\\.,Hn tl
LiArH(ocEr3)3 THF,
OO
o
o ll
o-vPh : OH
97"/.
Stereoselective reduction of cyclic ketones.a Conformationally rigid ketones are reduced from the less hindered equatorial direction by the very bulky tris(lbutyldiethylmethoxy)aluminum hydride reagent. Thus 4-l-butylcyclohexanone furin a 95:5 ratio. nishesa mixture of cis- and trct?.s-alcohols 'P. Zlatoidsky, HCA 77,150(1994). 'J.A. Fehrentz, C. Pothion,J.-C.Califano,A. Loffet,andJ. Martinez'TL35'9031(1994). tY. B. Xiang,K. Snow,andM. Belley,JOC 58,993(1993). nG. Boireau,A. Deberly,andR. Toneva,SL 585(1993).
Lithium tris(methylth io)methide. B-Hydroxy esters.t Epoxide ring opening with LiC(SMeh with subsequenthydrolysis (mediated by HgO-HgCl2) complementsthe conventional method involving formation of B-cyanohydrins. The overall yields of the new method are good; however, the reagentsare much more expensive.
r9 9 3 ) .
223 Lithiumtris(phenylthio)methide Homologous thioesters,2 Besides complete hydrolysis to give esters, 1,1,I-tris(methylthio)alkanes derived from alkyl halides can also be a source of methylthio esters. The transformation is accomplished by heating the tris(methylthio)alkanes
)q: 9-j
with aqueousHBFa in DMSO at 130'C. 313 -r,n\€tt€d by Me3ZnLi to arylzinc alcorr^ r\l compoundsgives benzylic of sources are that reagents rc ,. cn1lzinc in a j i ^ r . r r e s u p e r i o rt o s i l y l c u p r a t e s compounds' carbonyl hc'. J-unsaturated S:., :'"ttr. JOC 59,47l'7(1994)' (1993)' r . - . : \ O k u ,J O C5 8 ,6 1 6 6 , , r \ r , .,r l 0 l ( 1 9 9 4 ) .
o :-':nr l estersrand carboxyanhydrides2
rr)
Lithium tris(phenylthio)methide. Ipso anion precursor.t Nucleophilic homologation of the reagent generates productsthat readily submit a PhS unit to anothernucleophile(e.g., sec-BuLi). The resulting lithio compounds are acyl anion or methylene anion equivalents.
oLi ll
?.
lc:
'N.A. AboodS , C2 3 ,8 l l ( 1 9 9 3 ) . rM. Barbero,S. Cadamuro, (1993). andR' Fochi,JCS(Pl)2075 I. Degani,S. Dughera,
are re't r'is-3-tosylaminoisoborneol aqueous in LiOH bY removed ..rn be
(Phs)3cLi / THF -78o i s-BuLi / THF
6-
1,,1i Phs/\sPh
o a\<. \\--/\; ;-
H PhS
SPh
64"h
la'. NHTS
i
T. Cohen, K McNamara,M. A. Kuzemko, K. Ramig, J L. Landi, and Y. Dong, T 49,'7931 ( 1993).
o
o&tn on
97"/"
ketones t t.tnes.! Conformationally rigid tris(lbulky very the by direction :rrl Ir, furniiint. Thus 4-l-butylcyclohexanone ! . : ' : . r 9 5 : 5r a t i o ' (1994)' | ::rr. andJ. Martinez'fL 35' 9031 | --: l993). 6<
'rei I
hy' p.r::',r $ith LiC(SMe): with subsequent involving method pL,-,.'n,.the conventional of the new method are good; howl] ..'.',.
1
-l
I ,l
I
|1 I :..{
Reductive coupling. Using aromatic estersare reduced to h Stannylation of organohal coupling of allyl, vinyl, proparg
temperature.The unsaturatedst
Magnesium.13, 170;15, 194;16' 198-199 1,2-Difunctionalizationofconjugateddienes'tDienesaremetallatedbytreatcompoundscan be preparedby the subsequent ment with activeMg. A variety of suchas epoxidesand COz' reactionwith electrophiles
Ms/rHF: , p { -:-+
' M.w sell, H. Xiong,andR. D. Rr t Y.-c. xu, E. Lebeau,andC. walk t Z.-Y. wei and E. E. Knaus,TL 31. 'G. H. Lee,E. B. Choi,E. Lee,and t C. s. Pak.E. Lee,andG. H' Lee.. oM. Heintz,M. Devaud,H. Hebri.t t Y.-P.Xiao andM.-2. Bei' YH ll. 8H. Tanaka,A. K. M. abdulHai. H
-1 -li Y ' o \---,
L--/
COz; aq. HCI
69%
C l e a v a g e o f e s t e r s . z M a n y e s t e r s a r e c l e a v e d o n r e a c t i o n w i tto h Mits g iselectivity: nmethanolat value of this method pertains Ooc to room temperature. A siecial a polyfrom > pivalate' To cleaveone group p-nitrobenzoate > acetate > benzoate of an excess Mg is of Mg to I equivalent' Otherwise ester it requires the limitation with THF' substrate'methanol can be diluted used. In the case of an insoluble substratemay inesters' Special features of a Reduction of a,B-unsaturated
Magnesium-cadmium chlori Reductions.' A number o tem, which includes acid chlo pounds. THF is used as cosolrt Ketones from nitroalkcncr
duceatandemreaction.3AreductivecyclizationofT-oxo-2-alkenoatesaisobserved.
ErOOC\
"4,,)-
Mg / MeOH
MeOOC.*/,,,,
00 -> 250
H
91% (>99'/" ee)
M Bordoloi,fL 34, l68l (19931 t M Bordoloi, CC 922 (1993)-
*
Magnesium-mercurY(Il) cL DesulfonYlation.l
H
o
a{ x"*"oo*"
OH Mg -HgCl2 MeOH - 2go
r--{l,,,,,, \--j".,,,."oot"
98% (4'32:1)
(e'g" epoxide) suffers sufficient leaving ability Note that a 7-substituent with conditions.5 reductive removal under these
224
,^q
chlorlde 225 Magnesium-mercury(II) Reiluctive coupling. Using Mg as a sacrificial anode to perform electrolysis, aromatic estersare reduced to benzils6 and isothiocyanate estersto dithiooxamides.T Stannylation of organohalides.E Magnesium together with PbBr2 promotes coupling of allyl, vinyl, propargyl, and aryl halides with BurSnCl in THF at room temperature.The unsaturatedstannanesare obtained in 66-99Vo yield.
I)renesare metallatedbY treata n rr' prePared bY the subsequent Itl
/f
'M.w. Sell,H. Xiong,andR. D. Rieke,ZL 34,600'1,60ll(1993). 'Y.-C. Xu, E. Lebeau,andC. Walker,TL35,6207(1994). tZ.-Y. Wei andE. E. Knaus,IL 34, 4439(1993). oc.H. Lee,E. B. Choi,E. Lee,andC.S. Pak,JOC 59, 1428(1994). tC. S. Pak,E. Lee,andG. H. Lee,JoC 58,1523(1993). oM. Heintz,M. Devaud,H. Hebri,E. Dunach,andM. Troupel ,T49,2249 (1993). 'Y.-P. Xiao andM.-2. Bei, YH 13,84 (1993). oH. Tanaka,A.K.M. abdulHai, H. Ogawa,andS. Torii, SI 835(1993).
o
\.:. r.-rctionwith Mg in methanolat I r:rr:hodpertains to its selectivity: c T,, cleaveone group from a PolYkr^.: Otherwise an excessof Mg is r n , ' :. r n b e d i l u t e d w i t h T H F ' c : r l c r t u r e so f a s u b s t r a t em a y i n -',,ro-2-alkenoatesais observed' ot
Magnesium-cadmium chloride-water. Reductions.t A numberof functionalgroupsare rapidly reducedby this system, which includesacid chlorides,benzyl halides,epoxides,and carbonylcompounds.THF is usedas cosolvent. are observed. Ketonesfrom nitroalkenes.2 Someselectives
Noe
Mg -cd'2 H2O/ THF 15 min
Aco
.-Q,, H 91q. (>99%ee)
'M. Bordoloi, 7L 34, 168l(1993). rM. Bordoloi, CC922(1993).
Magnesium-mercury(II) chloride. Desulfonylation.l
rc'.ri
O"?
Mg- HgCl2
a.rrr
rbility (e.g., epoxide) suffers
;;* 2
,ntt/Y h
l
98%
Magnesiumbromide
Phenytsulfidesfrom sulfoxides.2 /-(o
soPh
U.r,,"'./
p h O '"\"s
Mg -HgC12 MeOH -430,3h
o,,
€rp
TsN"-t"Yph
sPh
/-
rt ErJ
U.'l./ 981"
rJ. A . M a r s h a l l , B . M . S e l e t s k y ,a n d P . S . C o r t S. H. Woo, TL 35,3975 (lgg4). t N . M o r a , J . M . L a c o m b e , a n d A . A . P a ri a . I 'P. L. Bailey,A. D. Briggs, R. F.W. Jackson
, G H. Lee,E. Lee,andC. S. Pak,TL 34,4541(1993)' t G H. Lee,E. B. Choi,E. Lee,andC. S. Pak,TL 35,2195(1994).
Magnesiumbromide.15, 194-196;16, 199:17,174 additionof allylstannanes Carbonylcondensations.t The highly sy,?-selective MgBr2. is mediatedby to protectedamino aldehydes
":i:;T' -".-? "",J'),,.
Magnesium chloride. B-Keto esterc.t After conversion o salts with MgCl2-EtrN, the reacrion r safely. 'R. J. Clay,T. A.
to
a*i-f-
Collom,G. L. Karrick.and
Magnesium chlorochromate. Ketones.t The oxidation of second has been reported. ' P.H. J. Carlsen and K. Aasbo,SC24. t9 r 1
a-oxy o-quinodimethane.s. MgBr2 plays two roles in the synthesis of atetralols2 from o-tributylstannylmethylbenzaldehydes.It promotes the conjugated enol generation,and it catalyzes the subsequentcycloaddition with dienophiles.
Magnesium iodide-diethyl Dithio a cet aliza t io n.l
ether. 13. l
HS--
aY"^o + !\-.SnBu3
fcooMe
( F o + \--l
COOMe
MgB12
Hs'/
cH2ct2 0 0 .t h
58"/. 'P. K. Chowdhury, JCR(S)124(1993\. Hydrolysis of methylthiomethyl esters.s The method has been applied to the synthesisof phosphoserineand phosphothreonine. Bromohydrins from epoxy sulfoximines.o Chiral epoxides available from the unsaturatedsulfoximinesmay be used as precursorsof bromohydrins.Ring opening via the magnesium chelates affords a-bromoaldehydes, as a result of sulfinimine reduced elimination. In the presence of BuTNBH+ the aldehydes are immediately without much racemization.
Magnesium methoxide. Decarbalkox ylation of carbamatct-' oxylactams react smoothly. Note thar rhc lactam cleavage. '2.-Y. WeiandE.
E. Knaus,ZL 35, 847( t99{
Magnesium methoxide227 MgB12 Pha -Q..O^ ua
---.2o
BuaNBHa Er2o-cH2cr2
tsN"-V\Apn
sph
Br I HO. A ,,. v v ' P h 72o/o (87o/o eel
-r* 98%
'lq:
rJ.A. M a r s h a l l ,B . M . S e l e t s k ya, n d P . S . C o a n , J O C5 9 , 5 1 3 9 ( 1 9 9 4 ) . t S. H. Woo, TL 35, 3975 (lgg4). t N. Mora, J. M. Lacombe, and A. A. Pavia, TL 34,2461 (lgg3). oP.L.Bailey,A.D.Briggs,R.F.W.Jackson,andJ.Pietruzka,TL34,66ll(1993).
q9_l).
r l c . : r r e a d d i t i o no f a l l y l s t a n n a n e s Br
Magnesium chloride. B-Keto esters.t After conversion of potassium malonic monoestersto the Mg salts with MgCl2-EtrN, the reaction with acid chlorides proceeds smoothly and safely. 'R.
J. Clay,T. A. Collom,G. L. Karrick,andJ. Wemple,S 290 (1993).
'ca' Magnesium chlorochromate. Ketones.t The oxidation of secondary alcohols with variable yields (17-1007o) has been reported. 'P. H. J. Carlsenand K. Aasbo,SC 24,89 (1994). roles in the sYnthesisof alr promotes the conjugated ,JJition with dienoPhiles.
.
Magnesium iodide-diethyl ether. 13, l7l;16, 199;17, 174 Dithioacetalization.
( \--l
F o +
HS> | HS-/
Mglz Et2O rt.8h
,A.rs)
\ A \_J'.--
I
96% I
58"/. 'P. K. Chowdhury,JCR(S)124(1993). lhc :r.'thod has been applied to the nc (':rral epoxidesavailablefrom the r\, :. ,\i bromohydrins.Ring opening rljc:rJes. as a result of sulfinimine .i.lchrdes are immediately reduced
Magnesium methoxide. Decarbalkoxylation of carbamates.t Bidentate carbamates such as N-carbalkoxylactams react smoothly. Note that the use of NaOMe instead of Mg(OMe)2 leadsto lactam cleavage. '2.-Y.Wei andE.E. Knaus,IL 35,84't(1994\.
22E Malononitrile Magnesium monoperoxyphthalate. Ox idation of atdehyde hydrazones.l The reaction produces nitriles, including chiral nitriles from SAMP-hydrazonesin methanol at pH 7 and 0oC.
COO )2 Mg
61^or"r"
-*'1'r
a'n
\-\.cooMe
coooH
('n NC..',,\,ZCOOtvte
- . ( " * \-/ cooK
;
M6OH , pH 7 0o
'D.
Manganese(Ill) acetate. 13, l7l: lrl. Cycloalkylation of B-dicar.btl Mn(III) oxidation of B-dicarbonll co fbrmation from alkenes is improved b
72%
Oxaspirolactonesare products of f< lactones.2The reaction with hera .elective.3
E n d e r sa n d A . P l a n t , S L 1 0 5 4( 1 9 9 4 ) .
Magnesium oxide. 16, 200 Alkynylsilanes.t A terminal alkyne and a hydrosilane undergodehydrogenative coupling on solid bases. Magnesium oxide can be used to promote the reaction at room temperature. IM. Itoh, M. Mitsuzuka,T. Utsumi,K. Iwata,and K. Inoue,JOMC476,C30 (1994).
Magnesium perchlorate. Cleavage of N-Boc amides and carbamates,t This Mg(ClOa)2-promotedcleavage does not affect N-Boc amines. rJ.A. Stafford,M.F. Brackeen, andN.L. Valvano'TL34'7873(1993). D.S. Karanewsky,
Malononitrile. Polycyanocyclopropanes.' Coelectrolysiswith aldehydesleads to tetracyanocyclopropanesor bicyclic dicyanopyrrolines. At a higher current alcoholation of a cyano group and addition of the amine to the cis-nitrile result in the heterocyclization.
,\ l l Yox
l
+
CaHrz
When Mn(OAch-mediated elecrroc r\ conductedin the presenceof an all ippear as products.a Cyclic peroxides.s When a srrean
lincludingMn(OAc)r and Mn(OAcl:1.rl alkenesand B-keto estersis follo*ed b rure toward the ketone or aldehydegm u' - Ac ylox ylat ion of en onc s.6
Ph Ph
Nc NC
'M.
I &cN CN
EIOH d (0.9 F/mol)
,cN PhCHO+ (""
NaBr . EtoH €-.(1.8 F/mol)
NcA,cN Etov /\ -N'
Elo/
lll-"*,**
a.ri.t.OMe
t t l
H -
r\
@
NH2
and Y'T' N . E l i n s o n , T . L . L i z u n o v a , B. I. Ugrak,G.I. Nikishin,M.O. Kekaprilevich, Struchkov, MC l9l (1993).
Oxidative cyclization of f.cta-i rntramolecular trappingleadto cyclk I
Manganese(III) acetate 229
rE,r.lr(rnproducesnitriles, including Lnr'lrt DH 7 and 0'C.
Manganese(Ill) acetate.13, l7l; 14, l9't-199; 16,2OO:17,lj5-176 cycloalkylation of B-dicarbonyl compounds, The radicals generatedfrom Mn(III) oxidationof B-dicarbonylcompoundsadd to alkenesefficiently. Lactone formationfrom alkenesis improvedby ultrasound(45-80Voyield).1
E
('n
I
* ("oo"" a) \,,COOK
NC.,,,,^\,/COOMe
COOMe Mn(OAc)3
HOAc/ Ar
))))
a\-{'F o
l l \:'a^O
787"
727o
Oxaspirolactonesare products of formal cycloaddition of enols to exocyclic enol lactones.2 The reaction with hexacarbonyldicobalt-coordinated enynes is regioselective.s hyJrosilaneundergodehydrogenative hc u.ed to promote the reaction at
tl
l.9onl
Mn(OAc)3
l
+
t:.,,ue.JOMC476.C30 (1994).
l,-"*,"o,.
CeHrz
HOAC, 30o
CeHrz
C02(CO)6 410/o
r.
This Mg(ClOo):-Promotedcleav-
o: \ L Vafvano,TL 34,'1873(1993).
r rrr aldehydesleadsto tetracyanocybrr her current alcoholationof a cyano ilc re.ult in the heterocyclization.
Ph
n"r,
_
€loH r '8Fl.ol)
N:r
NcA,cN EIOV
\
,ronN'^"*,
When Mn(OAc)rmediated electrochemical oxidation of diethyl benzylmalonate is conducted in the presenceof an alkyne or alkene, hydronaphthalenederivatives appear as products.a Cyclic peroxides.s when a stream of dry air is admitted to the oxidation sysrem Iincluding Mn(oAc)r and Mn(oAc)u], the first c-c bond formation in the reaction of alkenes and B-keto estersis followed by oxygen trapping and completed by ring closure toward the ketone or aldehydegroup. The product yield can be as high as 9ovo. u' - Acyloxylation of enones.6
o .\-ou" t t l
-P\
Mn(OAc)3 RCOOH / PhH
RcoovJ\*,.oMe t i l -lA=\ / 73% (R=Ph)
Oxidative cyclization of p-enamino ketones.T Radicals are produced that on Intramolecular trapping lead to cyclic products.
230 Manganesedioxide
Mro3rrra
Mn(OAc)3 / EIOH ; HOAc -HzO
(
-^i\-.\
// o
MnO2-SiO2
OH
o , -{.. \
NcvvcN
hexane
l€ \
rt.7d
\
387"
rM. Allegretti,A. D'Annibale,andC. Trogolo,?49, 10705(1993). 'J. M. Metlor and S. Mohammed,T 49,'7l54'.l (1993). 'G.G. Melikyan,O. Vostrowsky, W. Bauer,H.J. Bestmann,M. Khan, and K'M. Nicholas, JOC s9,222 (1994). aF. Bergamini,A. Citterio,N. Gatti, M. Nicolini,R. Santi,and R. Sebastiano' 364 "|CR(S) ( 1993). sT. Yamada, JCS(PI)609 (1993). Y. Iwahara,H. Nishino,and K. Kurosawa, 6A. S. Demir andA. Saatcioglu, SC23, 571(1993). tJ. Cossy,A. Bouzide,andC. Leblanc,5L202(1993).
Manganese(II) bromide. Bromine-zinc exchange.t MnBr2 together with CuI catalyzes the exchange, thus rendering the preparation of RZnBr from RBr andF-t2Znquite readily in DMPU at room temperature.
Pyrroles from pyrrolidines.E Variour drogenationon exposure to MnO2 in rcflu l14 examples).
F. Bellesia, F. Ghelfi,U. M. Pagnoni,and A I :A. Fabretti, F. Ghelfi,R. Grandi,and U. V p 'F. Bellesia, F. Ghelfi,U. M. Pagnoni.and A I 'R.-G. Xie, Z.-J.Zhang,J.-M. yan, and D -e 'L. A. Martinez,O. Garcia,F. Delgardo. C At ^U. Karlsson,G.-2. Wang,andJ.-E.BIckrell. P. Breuilles,R. Leclerc,and D. Uguen,fL .Ii. '8. B o n n a u ad n dD . C . H . B i g g ,S 4 6 5( 1 9 9 { r
Manganese(III) tris(2-pyridinecerboryl B-Oxoalkyl radicals.t Cyclopropam radicals form adducts with alkenes (acrrlor
'I. Klement,P. Knochel,K. Chan,andG. Cahiez,TL35, ll77 (1994). ? PhlV\ Manganese dioxide. 14, 200-2Ol:15, 197-198 Oxidation of sultides. The oxidation to sulfoxides is carried out in the presence of Me:siclr or concentrated hydrochloric acid2 in aqueous methanol. on the other hand, alkyl phenyl sulfides are converted to phenyl vinyl sulfidesr with MnO2AcCl in DMF. oxidation of alcohols.2,6-Bis(hydroxymethyl)phenols are oxidized by active MnO2 to the salicylaldehydesat room temperature (86-907o yield).4 In refluxing chloroform both benzylic alcohols are oxidized (79-827o). Allylic and benzylic alcohols are oxidized by MnO2 on bentonite with microwave irradiation.5No solvent is needed,and the reaction is rapid (l min). Ultrasound is less effective in promoting the oxidation (yields 15-667o vs.32-lOOVo). Unactivated alcohols can be oxidized with MnO2 in the presence of RuCl2(pcymene)2,K2CO3,and a free radical inhibitor.6 Manganese dioxide deposited on silica gel is Hydration of hydroxy nitriles.l to aqueous MnSOq. This reagent of KMnO+-SiO2 mixture a prepared by adding (the OH group is important) at room amides nitriles to hydroxy of effects hydration the usefulness of the method makes time long reaction the However, temperature. somewhat questionable.
ll
? p'.,
Mn(pic)3/DMF,e r'ro .-o,tr.h' 4pn
49"/"
Sulfunyl radicals.2 with alkenes.
Generated from r
+ Tolso2Na E€^
q IE
Ox id ation of 1- oxidoalkylide n cchtw by removal of Cr(CO)6 from such a compl intercepted by silyl enol ethers. 'N. Iwasawa, S. Hayakawa, M. Funahashi, K k :K. Narasaka, T. Mochizuki,andS. Havakarr 'K. Narasaka andH. Sakurai , CL 1269(1993t
Manganese(III)tris(2-pyridinecarboxylate)[:Mn(plc)3]
--(' \ =J
x
\-f't
// o
Ncv\'/cN
HrNcol .coNH, \./ \,/
+
557"
M. Khan, and K. M. Nicholas'
R : ; n r r . a n d R . S e b a s t i a n o ,J C R ( S ) 3 6 4 pi
v
,CONH2
14o/o
\
-rirl993).
ci::inn.
OH
I
NC. \-/
tl,7 d
x7.
:.
nexane
t v\
OH
MnO2-SiO2
OH
o r
231
.tcSrPl6 ) 09(1993).
.r ,\rth CuI catalYzesthe exchange, R.B:rnd Et2Znquite readily in DMPU
ru -r5 l r77 ( 1994).
Pyrroles from pyrrolidines.E Various N-substituted pyrrolidines undergo dehydrogenation on exposure to Mno2 in refluxing THF. Yields range from 24vo to j2vo (14 examples). 'F. Beflesia, F. Ghelfi, U. M. Pagnoni,and A. pinetri, SC 23, l'159(lgg3\. rA. Fabretti, F. Ghelfi,R. Grandi,andU. M. Pagnoni,SC 24,2393(lgg4). rF. Bellesia,F. Ghelfi, U. M. Pagnoni,and A. pinetti, G 123,28g(1993). 'R.-G. Xie, Z.-!. Zhang,J.-M. Yan,andD.-e. yuan,.SC24,53 (1994). 5L.A. Martinez, O. Garcia,F. Delgardo, C. Alvarez,andR. patino,TL34,5293(lgg3). oU. Karlsson, G.-2. Wang,andJ.-E.B?ickvall, JOC 59,l196 (1994). 'P. Breuilles,R. Leclerc,andD. Uguen,TL35, 14Ol(1994). 'B. Bonnaud andD. C. H. Bigg,S 465 (1994).
Manganese(III) tris(2-pyridinecarboxylate) [Mn(pic)3]. B-Oxoalkyl radicals.t Cyclopropanol derivatives fragment, and the resultant radicals form adducts with alkenes (acrylonitrile, silyl enol ethers).
9
o
Mn(pic)3 / DMF,0o
PhA.,a',Aph 6 s ; . t , ' r i d e si s c a r r i e do u t i n t h e p r e s r r.rJr in aqueousmethanol. On the l r , , r h c n y ' lv i n y l s u l f i d e s 3w i t h M n O 2 6llrlrphenols are oxidized by active zr';:c r86-90Vo yield).o In refluxing -q-827c). d 11 \tnO; on bentonitewith microwave trr'r.:. rapid (l min). Ultrasoundis less ;-f^ I \s. 32-l0OVo). h \lnO: in the Presenceof RuClz(Pr.c Jroride depositedon silica gel is aaJ.r,\ aqueousMnSOr. This reagent r :ne OH grouP is imPortant) at room l mrf.e: the usefulnessof the method
OTBS
Arn
Mn(pic)3/ DMF, 0o
Phv
eu3snx 2\61
enAl\
6x
47"/o
Sulfunyl radicals.2 Generated from sodium arenesulfinates,the radicals react with alkenes.
SEI + TolSO2Na ErS^
Mn(pic)3 MoOH, 0o
SEt
.,a&"o"' 87"/.
Oxidation of I-oxidoalkylidenechromium(0) complexes.3 C-C Bond cleavage by removal of Cr(CO)o from such a complex leaves the alkyl radical, which can be rnterceptedby silyl enol ethers. N. Iwasawa, S. Hayakawa, (1993). M. Funahashi, K. Isobe,and K. Narasaka, BCS"/66.819 tK. Narasaka, T. Mochizuki, and S. Hayakawa,CL l?05 (1994). r K. Narasaka and H. Sakurai, CL 1269(lggj\.
232 Mercury(II) iodide
Mercury. 13, 174;15, 198; 16,205-206 Allylmercury iodides.' These allylating agents are prepared from allylic halides (RCl or RBr requires NaI) and Hg in THF. They react with various acid chlorides in the presenceof AlClr to afford ketones. The more highly substituted allylic position participatesin the C-C bond formation.
/-,u ...,
(Nal)
o
Rcoct
Hg
/-\_.rnt
ll
^d* -X\
cH2cl2 , oo
THF
pounds.' The workup procedure comg tion. Aldehydesand enonesgive 1.2- e
L B. Dicker,JOC 58,2324(1993\. 'J.Otera, Y . F u j i t aS , . F u k u z u m iK, . H r n r
llercury(II) oxide-sulfuric acil. Furans,'t l-Alkynyl-2,3-epor\ . tion. The epoxide ring suffers total &r nucleus.
'R. C. LarockandY.-d.Lu, JOC58, 2846(1993).
Mercury(Il) acetate. 15, 198-199; 17, 176-l'7'7 Starting from olefins, an asymmetric synthesisof alcoHydroxymercuration.t method in the presenceof the hydroxymercuration-demercuration is achieved by hols
ngCrl ta?c
B-cyclodextrin, albeit in relatively low optical yields. ' K. R. Rao and H. M. Sampathkumar, SC 23, 187'7(1993). C. M. Marson, S. Harper, and R. Wriggbs
Mercury(Il) chloride. 13, 175;15, 200 Cleavage of stan nyl carbox ylot es.'
A"oosnr,. #l
A"oo, 42"/"
Desulfurization.2 A synthesis of pyrroles from phenylthio dihydrofuran derivatives is mediated by HgClr.
/cooEl
,nr-q\
HgOlz/ RNHz M6CONMe2 '1500
ln
/cooEl
\N'^\ R
'C. Deb and B. Basu,JOMC 443, C24 (1993). 'W. H. Chan.A.W. M. Lee, K. M. Lee,andT.Y. Lee,JCS(PI)2355(1994).
iodide. Condensations. HgIz is a mild Lewis acid, which, as a suspensionin an aprotic solvent promotes condensation between silyl ketene acetals and carbonyl com-
ltercury(Il) trifluoroacetate. 13. I ?5 3-Alkox y - 2- bromopropionarc rr;ct oroacetate hashigherelectrophilicirlI .rdductin conjunctionwith an alcohol.' be replacedby sequentialtreatment$rrl P.L. Anelli, A. Beltrami,M. Lollo. andF
llethanesulfonyl chloride. 13, l?6 Dehydration of allylic alcohols. hols with MsCl and EtsN (mesylarion l0 min. T. Kitahara,T. Matsuoka, H. Kiyora.y. \ti r 1994).
Mercury(II)
a- Methoxyallenyltitanium Ester homoenolate.t
triisopro; The reaction o
a-Methoxyallenyltitanium triisopropoxide233
allylic !t r:int\ are prepared from 'H l T he1 react with various acid chlor- ire more highly substitutedallylic
pounds.r The workup procedure comprises hexane dilution, filtration, and evaporation. Aldehydesand enones give 1,2- and 1,4-additionproducts.2 'I. B. Dicker.JOC 58.2324,l99r. 'J. Otera,Y. Fujita,S. Fukuzumi,K. Hirai, J.-H.Gu, andT. Nakai,TL36,95 (1995).
x':
-5c o
Ac13 :r:ct2 . 0o
Mercury(II)
oxide-sulfuric acid. Furans.'' l-Atkynyl-2,3-epoxy alcohols undergo Hg(II)-catalyzed isomerization. The epoxide ring suffers total destruction during its incorporation into a furan nucleus.
HgO-HzSOr
t-lc:::... an asymmetricsynthesisof alcolc:::;uration methodin the presenceof
Me2CO
82"/.
tl r clJ.. 'C.
la
A"oo,
F
42"/o
from phenylthio dihYdrofuran
lcooEl
/-\
>4.* c
cHo
\N/'\ R
L,:': lCSrPl) 2355(1994)'
a;:,: *hich, as a suspensionin an aprotic nlr. letene acetals and carbonyl com-
M . M a r s o n , S . H a r p e r , a n d R . W r i g g l e s w o r t h ,C C 1 8 7 9( 1 9 9 4 ) .
Mercury(II) trifluoroacetate. 13, 175 3-Alkoxy-2-bromopropionate esters.' In comparison with Hg(OAc)z the trifluoroacetatehas higher electrophilicity. Thus it reacts with acrylic esters,forming an adduct in conjunction with an alcohol. The trifluoroacetoxymercury group can then be replaced by sequential treatment with KBr and Br2. lP. L. Anelli, A. Beltrami,M. Lollo, andF. Uggeri,SC 23,2639(1993).
Methanesulfonyl chloride. 13, 176 Dehydration of allylic alcohols.t The method involves treatment of the alcohols with MsCl and Et3N (mesylation),and with i-PrzNEt in HMPA at 140"C for l0 min. 'T. Kitahara,T. Matsuoka, H. Kiyota,Y. Warita,H. Kurata,A. Horiguchi,andK. Mori, S 692 ( 1994).
c- Methoxyallenyltitanium triisopropoxide. Ester homocnolate.t Thereaction of this reagentwith aldehydesgives 7-lactones.
234 2- (2 -Melhoxyethoxy)prop'2-yl hyd roperoxide
OMe Ti(oPd)3
hydroperoxide is more hazardous. as solvent removal at room temperaturE
gnzHlcHoI etro
anzH5(oTo
aq.HCl/THF' A
I
(1993)' D' Dorsch'ACIEE 32' 1449 S. Hormuth,H'-U' Reissig'and
tetraphenylborate' S-Methoxylbenzenesulfenylpyrrolidine c-mettrylating agent(1) reactswith This novel MethylationoI P'x'io'"i"''t yield' in ?0-847o io gin. products enolates o
NaH/DME' '
ll
,/\_cooet \-J
.
fl ' .l
r-r.. * gM€ t__r-cooet L,N-s. PtuB-
+
VooH / to1,o""
53% (anti:sYn 94:6)
U. R. ZoPe,andT' A rtr P.H. Dussault,
Methoxy methylenetriphenylpbospl T (E)-4'HYdroxYalk'2'enals'' which ethers, enol leads to unstable hydes are available in chiral form fn
dation and oxidation, 4-hydroxyalkc carbinol center are easily establistrt
Ph
(1)
*,(L""o
(1994)' c. M' Rayner' cc 2591 rr. F. pickersgi', A. p. Marchington, and
esters' on,t]:nn a t-butvl 4-Methoxy-2'r-butyl-2'5'dihydroimidazole'1'carboxylic ,vn,t ,"or.ntr, u.triiuigrv"in" from hydrolyAminooriarynnilir.-'ii" recovered Jtiot are fo' alkylation'etino groupas "nuntio-"ont'oii"' sis of the Products' -.
I
MeoYN)-< \-1.1
boogn
l
(1993t' L. Yu and Z. Nang' CC 232
rrolid P-tN-(2-Methoxymethyl)py Th accePtor' Michael Chiral o coursc stereochemical minesthe c lactone with (e.g', rroolefination
0)
CIZnO l
/=( o. l
(1993)' rS. BlankandD' Seebach ' ACIEE32' 1765
t
I
'-"'A;;i';:r;#:J]il,"5''lllil:;!'"'i.t'nu'i'^'^'thandredhvdroperoxidewith a l k y l h a l i d e s f u r n i s h e s t i ^ t O p " ' o * i d536oyieh;;o'onoty'i' e s t h a t a r e , s e l e c t i v e of l y h2'3-dimethyl-2ydrolyzedinaqueous in " *it"td wilh extraction water' aceticacid.The reagent *itt' i.troweo uy airution 2-metho-r",n"""i, 2-methoxyprop-2-yl butenein near be noted ,tt",-itt" simpler EtOAc, and evaporati"";;tJ
\t. Node, R. Kurosaki, K' Hosomt' I9 9 5 ) .
p-[N-(2-Methoxymethyl)pyrrolidinyl]nitroethene 235 hydroperoxide is more hazardous, as it can undergo exothermic decomposition on solvent removal at room temperature.
Bn,N&o;7o 53% (anlijsYn94:6)
\ ,ooH ' x o-\.oMe
CSOH/ DMF
+
RCHzBT
RCH2OOH HOAeHzO CH2C|2,0o
29-60"/"
3 l : r 1 9( 1 9 9 3 ) . 'P. H. Dussault,U. R. Zope,and T. A. Westermeyer, JOC 59,8267(1994). rphenylborate. rl C-methylatingagent(1) reactswith
>.e'
o
Ar ( \-J
)-cooEt
Methoxyrnethylenetriphenylphosphorane. (E)-4-Hydroxyalk-2-enals.' The Wittig reaction with 2,3-epoxy aldehydes leads to unstable enol ethers, which are rapidly hydrolyzed. Since the epoxy aldehydes are available in chiral form from the allylic alcohols through Sharplessepoxidation and oxidation, 4-hydroxyalkenals with desired absolute configuration at the carbinol center are easily established.
OH
Ph3P=CHOMe
1nc:.CC2597(1994)'l-carboxYlicesters. firrrl elycinesynthon(l) with a t-butyl [!n,r acidsare recoveredfrom hydroly-
"{""o
I 'oAZl '
I.BUOK/ THF -780-> 250
cHo
80o/. (R=Ph)
'L. Yu andZ.Wang,CC 232(1993).
F. IN- (2- Methoxymethyl)pyrrolidinyl]n itroethene. Chiral Michael acceptor. The chiral auxiliary of this nitroenamine (l) deternimines the stereochemicalcourseof Michael reactionsrsuch that enantioselective troolefination (e.g., with lactone enolates)becomes a reality.
CIZnO
t . , /< o. I
ide. hr. easily handled hydroperoxidewith l .rre relectively hydrolyzed in aqueous rrcl.J b;- ozonolysisof 2,3-dimethyl-2by Jrlurion with water, extraction with d rhat rhe simpler 2-methoxyprop-2-yl
DME, -780
o o
)Ll.\ l
No,
5L"".
82"/. (56"/"ee)
(1)
' M. Node,R. Kurosaki,K. Hosomi,T. Inoue,K. Nishide,T. Ohmori,and K. Fuji, TL 36,99 (l99s).
236 Methylaluminum 1,1'-bi(2,2"naphthoxlde)
2-(4-MethoxYPhenYl)ethanol. protection of carboxylic acids.t Esters are prepared using DCC-DMAP, and ot room temperathey are cleaved on contact withl%o trifluoroacetic acid in cHzcl2 estersand t-Boc t-butyl affect not do conditions deblocking ture for a short time. The
cHo
+
:C=O
amines. ' M. S. Bernato*icz,H.-G.Chao'andG. R. Matsueda, TL 35' 165l(1994)' Y . T a m a i , M . S o m e y a ,J . F u k u m o t o . S
l.-Methoxy-3-trimethylsiloxy'1,3-butadiene' Trichlorotropones,tThe Diels-Alder reaction with tetrachlorocyclopropene is isolatedin 56Voyield' 3,4,5-Trichlorotropone takesplaceat room temperature.
"'X"' "",.'oy\zo"".
oy'\
+
|
,Fcl
\-( ct'
cl
56%
tM.
Methylaluminum bis(2,6-di-r-boty 15,204:16,209-212; 17,184-l8t Homologationof carbonyl cosT mote reactionof aldehydesr and I ketones. Isomerization of trisubstitutca . titudesis revealedin the rearrangen ohenoxide.
/)
.o'rX Ph/'Ph
V
G . B a n w e l l a n d J . H . K n i g h t , A J C 4 6 , 1 8 6 1( 1 9 9 3 ) '
SbFs/PhMe-THF -78o
an \-.\zN
/-\
Br{r />O-)2Altr,o ag' \_z )CHzCh / \
TO,
l -
.Y\ KMnOI
5,
!-
Methytamine-potassium Permanganate' Amination of nitroisoquinolines.'
NOc
02'
\ " "
.*"d3
NHMe
26"/o
lM. Wozniak and K. Nowak, LA 355(1994\.
Methylaluminum 1,1''bi(2,2"naphthoxide)' ketenewith aldehydes is subject to B-Lactones.t The [2+2]cycloadditionof (S). (S) asymmetricinduction
-7go -> -N
Chemoselective organolithits plane of cyclohexanonesby the bulkl the axial direction. Also for steric cyclohexanonesin which C-2 and C" Asymmetric Diels-Aldcr r.ta dienophiles (e.g., the acrylate of >p cycloaddition.
K. Maruoka,A. B. Concepcion, andH : K. Maruoka,A. B. Concepcion, andH 'K. Maruoka,N. Murase,R. Bureau.T I 'K. Maruoka,H. Imoto,andH. Yamerm 'K. Maruoka,M. Oishi.K. Shiohara. tr
Methylaluminum bis(2.6-di-r-butyl-4-X-phenoxide)237 PhM€, -78o, t h
r\ J:. Preparedusing DCC-DMAP' and Ir1i..:r. acid in CHzCl2 at room temperaio:.. .i,' not affect t-butyl estersand t-Boc
//'a,,
+
cHo
r? -\o 15"/"
(36"/.ee)
srtj:
f L 3 5 , 1 6 5 l( 1 9 9 4 ) .
'Y.
[f.
: ! ' r a t i o n w i t h tetrachlorocYcloProPene : h i , , r , , t r o p o n ei s isolated in 56VoYield. I
a
vvr'
I
-
c
tl-cl
\-{
rt
cll
Methylalu minum bis(2,6-di-t-butyl-4-X-phenox ide). 13, 203; 14, 206 -207 ; r5, 2Q4: 16, 209-212: 17, 184-188 Homologation of carbonyl cornpounds. The very bulky organoaluminums promote reaction of aldehydesr and ketones2 with diazoalkanes. Aldehydes afford ketones. Isomerization of trisubstituted epoxides.t A reversal of relative migratory aptitudes is revealed in the rearrangementinduced by SbFsand by the bulky aluminum phenoxide.
oy'\ -
T a m a i , M . S o m e y a ,J . F u k u m o t o , S . M i y a n o , J C S ( P I ) 1 5 4 9( 1 9 9 4 ) .
cl
56%
/F
o'r,X
aF.o..,X P/'Ph .
Phl'Ph
+
V SbF5/PhMe-THF-78o
O-)2AlMe
(^)r!o.",X Ph''Ph o""Y
92:8
89o/"
0:100
cH2c12
\'l:
y'-- \ t ,N
-7go -> -200
NOz
MeN\zL*r-\ .
\-rl..,'i
.,::" 60%
Chemoselective organolithium reactions.a The blocking of the equatorial plane of cyclohexanonesby the bulky Lewis acid fbrces attack by nucleophilesfrom the axial direction. Also for steric reasons dialkyl ketones are less reactive than cyclohexanonesin which C-2 and C-6 are not substituted. Asymmetric Diels-Alder reactions.s Single-sited coordination of chiral dienophiles (e.g., the acrylate of o-pantolactone)confers diastereoselectivityto the cycloaddition.
!ile t. to nn ,'t ketene with aldehydes is subject
'K. Maruoka,A. B. Concepcion,and H. Yamamoto,SL 521(1994). t K. Maruoka,A. B. Concepcion,and H. Yamamoto,JoC 59,4725(1994). rK. Maruoka,N. Murase,R. Bureau,T. Ooi, andH. Yamamoto, f 50,3663(1994). tK. Maruoka.H. Imoto. ,SL441 (1994). andH. Yamamoto, 5K. Maruoka,M. Oishi,K. Shiohara, ?50,8983(1994). andH. Yamamoto,
238 Methylenecyclopropane
Methylaluminum bis(2,6-diphenylphenoxide). 15, 205; 16, 212-213 Organometallic reaction of aldehydes.r Contrasteric functionalization of the more hindered aldehyde has been observed in a competing reaction, due to selective complexation of the less hindered substrates.
grBDPs \\-
+
6-\
_ ,lj tsorBDPS n/i'v
r K . M a r u o k aS. . S a i t o A 1 5 ,l l 8 3 ( 1 9 9 3 ) . . . B . C o n c e p c i oann, dH . Y a m a m o t o , J A C1S
iodides. 1-(N-Methylamido)-3-methylimidazolium Ketones. These imidazolium salts (1) are acyl transfer agentsthat react readily with organometallic compounds to give ketones.
O
t='1
o
*
*,J1.".ilrl*tt l r -
II
R'MgX THF -78o -> rt
R
n'
F . M . C o r d e r o ,S . C i c c h i , A . G o r i , a n d A I
!tethylenetriphenylphosphorene. Vinyltin cornpounds.t Acyhins ur agent.Accordingly,vinyltinsare accer
J . - 8 . V e r l h a c ,H . K w o n , a n d M . p e r e r r c . . l (
75-921"
(1)
'M.A.
d e l a s H e r a s ,A . M o l i n a , J . J . V a q u e r o J, . L . G . N a v i o , a n d J . A l v a r e z - B u i l l a "' / O C 5 t ' 5862 0993\.
O-Methyl benzenesulfenate. 16, 214 Alkyt phenyl sulfoxides.t The methoxysulfonium salts obtained from reaction of the sulfenateester with alkyl halides decomposein situ (elimination of MeX in analogy to the Arbusov reaction), leading to the sulfoxides.
Ilethyl N-ethyl-N-tributylstan nylcrrl Diacylcyclopropanes.t The rin req
.ommon tin enolates,which are not Vr ketones react well, and cyclizarion fi ;l clopropanes.
R'
I i l ^ , ^,\ ,w' H V
+
\ ('^'
'M. KerstenandE. Wenschuh, PSS80, 8l (1993).
Methyl chlorodif luoroacetate. Trifluoromethylarencs.''2 The substitution of aryl halides to give ArCFr by heating with CICFzCOOMe, KF, and CuI in DMF involves insertion of difluorocarbene into C-Cu bonds. 'J.-X. Duan,D.-B. Su,and Q.-Y.Chen,JFC 61,279(1993). tJ.-X. Duan,D.-B. Su,J.-P.Wu, and Q.-Y.Chen,JFC 66, 167(1994).
Methylenecyclopropane. 1,3-Dipolar cycloadditions.t The reaction of methylenecyclopropanewith nitrones generatesspirocyclic isoxazolidines that are prone to thermal rearrangement. Thus 4-piperidones can be prepared in a two-step process.
l. Shibata,Y. Mori, H. Yamasaki, A. B.h.-
V-Methylimidazole.
Reactions of rallylnickels.t As .l rrcial effects to allylation and coupling n
S. Knapp,J. Albaneze, andH. J. Schusar. .n
\lethyl a-isocyanatoacrylate. This dienophile is obtained in good :r€atmentwith NaReOa,COC|r, and rrrfl
F. Effenberger, J. Kuhlwein,and C. Baum3
Meihyl c-isocyanatoacrylate
s l, :: 16.212-213 of the rtrr.:!'ricfunctionalization dueto selective ni:.rrns reaction,
239
OTBDPS
/ { c s 1 1 5 .l l 8 3 0 9 9 3 ) .
'F.M.
ls. | ::,r.ter
Methylenetriphenylphosphorane. vinyltin compounds.t Acyltins undergo normal wittig reactions with this reagent. Accordingly, vinyltins are accessible.
o q
Cordero,S. Cicchi,A. Goti, andA. Brandi,TL35,g4g (1994').
agents that react readily
ll F
,
lJ.-B. Verf hac,H. Kwon,and M. Pereyre,JCS(pl) 1367(lgg3).
-5 92"/"
rnd J. Alvarez-Builla, ,/OC 5t,
Methyl N-ethyl-N-tributylstan nylcarbamate. Diacylcyclopropanes.t The tin reagentpromotes Michael reactions.conrrary ro common tin enolates, which are not Michael donors, those derived from a-chloroketones react well, and cyclization following the conjugate addition results in cyclopropanes.
R'
Dr-r: \alts obtained from reaction s. .:r \rtu (elimination of MeX in rl: r rJes.
o R"'t\./cl
+
{
Et Bu35n-N-COOM6
)
LiBr/ CICH2CH2CI
a2t
600
o R ' ll r
n14
I
c4^' 26-970/o
' I. rf ,:rl halides to give ArCFr by r : . , , l r e s i n s e r t i o no f d i f l u o r o c a r -
F: b ^- r1994).
with nif :rcrhrlenecyclopropane t f !"'ne to thermal rearrangement. F r , ' .e \ \ .
Shibata,Y. Mori, H. Yamasaki,A. Baba,and H. Matsuda , TL g4, 6567Og93\.
.V-Methylimidazole. Reactions of rallylnickels.t As an additive, N-methylimidazole confers beneficial effects to allylation and coupling reactions. S. Knapp,J. Albaneze, andH.J. Schugar, JOC 58,997(1993).
Methyl c-isocyanatoacrylate. This dienophile is obtained in good yields from methyl a-azidopropionate by rreatmentwith NaReOr,COCI2,and triflic acid.l F. Effenberger, J. Kuhlwein,and C. Baumgartner, LA 1069(1994).
rt
sulfoximine 240 S-Methyl-S-neomenthyl-N-tosyl
salts. S-Methylisothiocarbonohydrazide are formed sym-Tetrazines.t6-substituted 3-methylthio-1,2,4,5-tetrazines (1). is an oxidative last step The salts with the when iminium chloridesare treated aromatization.
A \_, i
+
ures{
,NHNH2 NHNH2
cl
+
N=N
EgN / EIOH
, )-^
ues{
NaNOz-HOAc
Mo2N'
fa
N_N
I
S.S. Taj andR. Soman,IA 5, l5l3 r 19
15-371" (1)
' S.C. Fields,M. H. Parker,andW R. Erickson,JOC 59' 8284( 1994)'
Methyllithium. 13, 188-189;14,2ll;15, 208 Deprotonation. For alkylation of enamino ketones at the 7-positionr and lithiation of allenes2the use of MeLi-HMPA is adequate. Debromination. Selective debromination of I,l-dibromoalkenes affords predominantly (98:2) the (E)-isomers.3gez-Dibromocyclopropanes are debrominated. A preparation of 1-trialkylsilylcyclopropenes by this method takes advantage of a 1.2-siliconshift.a
euy\e' Me3Si
Br
MsLi / Et2O rt,th
Methyl 2-pyridinesulfinate. Preparedin557o yield from 2-p1rr m e n tw i t h N B S i n o n e p o r t i o n . l a,B-Unsaturated ketoncs.t Th
the sulfinylation-dehydrosulfinylar using this reagentand withour the rrc requiresreflux in THF. Ketonescontaining dithioaceralg tional oxidative methods are incon thermal decompositionof the o-sul membered)is recommended.
A BuAsiM".
o
lot
ll
42"/" Reaction with carbonyl compounds. Methyl 2,3-epoxypropanoate derived from serine gives ketones on reaction with RLi or RMgX at low temperatures.It is important that MerSiCl is added before RM.5 The addition of organometallic reagentsto a-nitroketones constitutes a straightforward route to 0-nitro alcohols.o rG. Bartoli,M. Bosco,C. Cimarelli,R. Dalpozzo, G. De Munno,andG. Palmieri,TA 4, 165l
7l
RMn' B. M. Trost and J. R. Parquette, JOC g'.
5-Methyl-1,5-tetramethylene-4-p Facially selectiveDiels-Aldcr r philesgivesadductswith which srer
(1993). 2P.Audin,G. Drut-Grevoz, andJ. Paris,SC23, ll39 (1993). 3D. Grandjean andP. Pale,fL 34, ll55 (1993). nM. S. Baird,C. M. Dale,andJ.R. Al Dulayymi,JCS(Pl)1373(1993)' 5L. Pegorier, S 1403(1994). Y. Petit,A. Mambu,andM. Larcheveque' uR. Ballini,G. Barroli,P.V.Gariboldi,E. Marcantoni, andM. Petrini,Joc 58,3368(1993).
r< I
Ptr
x.alt x4 l
S-Methyl-S-neomenthyl-N-tosyl sulfoxim ine. chiral epoxides.t The carbanion derived from the sulfoximine (1) reacts with aldehydesby methylene transfer.
M. Beckmann,
T. Meyer, F. Schulz. aod
241 5-Methyl-1,5-tetramethylene-4-phenylcyclopentadiene
N o'A,\-'l l l l
A t l
lr, ' . .1.-1.5-tetrazinesare formed [. I The last stePis an oxidative
N-".'^ ".di- " : o
(1)
N=N
a.'-
'S. S. Tai and R. Soman,TA 5, l5l3 (1994).
N-N
r-:r:
15-37"/"
!9 .:\1 ( 1994).
r \c:,,nes at the 7-positionr and lithiqu.!l!' affords pre-
oi l.l-dibromoalkenes sn.';r clopropanes are debrominated' r lhr. method takes advantage of a
Methyl 2-pyridinesulfinate. Prepared in 55Voyield from 2-pyridinethiol in l: I MeOH-CH2CI2 at 0"C by treatm e n tw i t h N B S i n o n e p o r t i o n . r u,p-Unsaturated ketones.' The direct dehydrogenationof ketones involving the sulfinylation-dehydrosulfinylation sequence is achieved in a one-pot reaction using this reagentand without the need ofa sulfenic acid trap. Sulfinylation ofesters requires reflux in THF. Ketones containing dithioacetal groups can be dehydrogenated,whereas conventional oxidative methods are incompatible. Addition of CuSOq (2 equiv.) before thermal decomposition of the a-sulfinylated mesocyclic k€tones (7-, 8-, and 12membered) is recommended.
/'\
A
i
KH / THF
R/u
a2"/" lc::rl 1.3-epoxypropanoatederived i ,': R\lgX at low temperatures'It is o-:rrrtrketonesconstitutesa straighti []. \tunno, and G. Palmieri' TA 4' 165l P
I
R'
t. I i:,'nr the sulfoximine (l) reacts with
|
o
tl
*lg*, lroo
B. M. Trost and J. R. Parquette, JOC 58, 1579 (1993)
5- Methyl-1,5-tetramethylene-4-phenylcyclopentadiene. Facially selective Diels-Alder rcactions.t The reaction with various dienophiles gives adducts with which stereochemicalmanipulation is greatly simplified.
o
'vi1
: _ \t . i . r 7 3( 1 9 9 3 ) . q - : . 1 1 0 3( 1 9 9 4 ) . 'n .:J \{. Petrini'JOC 58' 3368(1993)'
l
\"Ar-Ot,te
BrAsiM".
r<'
A ll x \
o ^
X=NH:CHzClz,5 h, rl X=O: PhCHo,4h, A X=O X = NH
68Yo 831o
'M. Beckmann, T. Meyer,F. Schulz,andE. Winterfeldt,CB 127,2505(1994).
242 Molybdenum carbenecomplexes
Methyl(tributylstan nyl)magnesium. The method of vicinal dimetallation of the triple Atldition to alk-3-en-|-ynes.t the synthebond followed by sequential quenching with electrophiles is valuable for adducts of of the treatment Thus geometry. sis of functionalized dienes with defined (E)-2-methyl-l-iododienes. gives enynesand MeMgSnBur with MeI and 12
'nw
Bu3SnMgMe CucN
-/
f I
|
*ta-)'
L
-
l snBual
r
.
|
'"
'nrr\:lo\
,l
1
,"t:T:'* \./''"o
Olefin metathesds.With caralyslI I saturatedheterocycles3 areeffectivcll'rr substrates.a
o
tJ. Uenishi,R. Kawahama, CC 1438(1993)' A. Tanio,and S. Wakabayashi,
A I
\ Methyl(trif luoromethyl)dioxi rane. 15, 212; 16, 224 Oxygen insertion into unactivated secondary and terOxyfunctionaliZation.t -H alkylamines can be very efficient with this dioxirane' protonated of bonds tiary C dioxirane and the NHr'moiety is important in deterthe between bonding Hydrogen functionalization' the of regiochemistry the mining
\2
r^)
Sxll:
r.\
:r.ll. .,CLr"*'-6ni,"*
I
BF;
l + -NMe.
),. \\ ^/
n=0-3 R=H,Me
a
\.r-,
fa
o-r ;^_,( (rl
Qf',"-^'*
-liu". BFr
\r"
//
F.
N--r
o (40 : 60)
Adam' JACS 115' A s e n s i o , M . E . G o n z a l e z - N u n e z ,C . B . B e r n a r d i n i , R ' M e l l o , a n d W ' 7250 (1993\.
rG.
Molybdenum carbenecomplexes.17, 194-195 1,4-Dialkoxy-1,3-dienes.tPropargyl ethers and a-alkoxyalkylidene-molyundergoa noveltransformation' bdenumpentacarbonyls
D. F. Harvey and D. A. Neil, I49, 2145 ttg 'O. F u j i m u r a , G . C . F u , a n d R . H . G r u b b e .. l S.F. Martin, Y. Liao, H.-J. Chen. M. Ptud 'G. C . F u a n d R . H . G r u b b s , " I A C Sl l 5 , 3 m
Ilolybdenum hexacarbonyl.13, 194-I Cleavageof isoxazoles.r The mild r \etoneswithout affectingalkeneunirsp Cycloisomerization. Homoproprrg Jrofurans.2 The (EtrN)Mo(CO)scomplc .rndexchange, promotesthe isomerizar
Molybdenumhexacarbonyl 243
. :,rnal dimetallationof the triple lr, :i:rles is valuablefor the sYnthe') T ru\ treatmentof the adductsof E i . :rethyl-I -iododienes. n?
Bu
Mo(co)s * \./.-o -
'n". --"1
t-z
oMe
looo ,"{o""
Olefin metathesis. With catalyst (1) cycloalkenesincluding enol ethers2and unsaturatedheterocycles3are effectively synthesized.Keto alkenes can also be used as substrates.4
o
lI.- (C1138(1993)'
A l
N
\ ) ; / / \ ln:, unactivatedsecondarYand terb.' .crr efficient with this dioxirane' ' moietYis important in deterc \tl
o
PhH _
-
R
n= O-3 R=H,Me
a_\ i l
\.\l\1 l
t N
l
N
r
Y )
l
\
'r:*;,Hff
l{:.
(1)
Q-"'^-*
(1)
r1 -\o4.,en
PhH
86"/.
'D. F. Harveyand D. A. Neil, T 49, 2145(1993). 2o. Fulimura,G. C. Fu, and R. H. Grubbs,JOC 59, 4029(1994). rS.F. Martin. Y. Liao,H.-J.Chen,M. P?itzel, andM.N. Ramser,Il, 35,6005(1994)' o c . C . F u a n dR . H . G r u b b s , , I A C1S1 5 , 3 8 0 (01 9 9 3 ) .
h-
R \lello' and W. Adam' JACS 115'
f:
bc:. .rnti a-alkoxyalkylidene-molyCrf:l':rtl\)n.
Molybdenum hexacarbonyl. 13, 194- 195; 15, 212-213; 16, 225-226 cleavage otisoxazoles.' The mild conditions of ring cleavagegenerateenamino ketones without affecting alkene units present in the molecules. Cycloisomerization. Homopropargyl alcohols give, after mild oxidation, dihydrofurans.2The (EtrN)Mo(CO): complex, obtained by photochemically induced ligand exchange,promotes the isomerization of epoxyalkynes to furans.l
244 Montmorillonite claYs
,^x"L
Claisen rearrangement,t3 The claris useful for accessto 2-prenylphenols. Ctuted site.
Mo(CO)6
Me3NO-EbN Et2O
p
7'1"/"
Et3N:Mo(CO)s, EtzO
85%
Cyclopentenones.a The Pauson-Khand reaction is also mediated by Mo(CO)6 in DMSO.
Mo(CO)6
\,cooEt .azJtcooer
Mo2SO-PhMe
o ,/\---1 a l x.COOET v-----\,/ COOET
1 0 0 0 ,1 2h I O-/o
Montmorillonite
'R. C . F . J o n e s ,G . B h a l a y , a n d P . A . C a r t e r , J C S ( P I ) l 7 l 5 ( 1 9 9 3 ) . 'F.8. M c D o n a l d , C . B . C o n n o l l y , M . M . G l e a s o n ,T . B . T o w n e , a n d K . D ' T r e i b e r , J O C 5 8 ' 6952 (1993). 3F. E . M c D o n a l d a n d C . C . S c h u l t z ,J A C S 1 1 6 , 9 3 6 3 ( 1 9 9 4 ) . oN. J e o n g ,S . J . L e e , B . Y . L e e , a n d Y ' K . C h u n g , T L 3 4 ' 4 0 2 ' 7 ( 1 9 9 3 ) '
Molybdenyl
acetylacetonate.
Dehydration.r
Tertiary
alcohols are dehydrated
presence of MoO2(acac)2. However, regioselectivity Etherification.
' M.L. Kantam, A . L . S a n t h ia, n dM . F . S d d t A. Loupy,A. Petit,M. Ramdani, C. Yranrfr 71.90 0993). 'D. Villemin,B. Labiad,andA. Loup1.5C I 'S. K. Dewan,U. Varma,andS.D. Malr\. .l( 'M. E. F. Braibante, H. S. Braibante. L. \lrsr nB. F. Texier-Boullet. andJ. Hrl - Rechsteiner, P. Ruault,J.-F.Pilard,B. Touaux,F. Terrr. 'H. K. Patney,SC 23, 1523(1993). 'H. K. Patney, SC 23,2229(1993). " rI K. SmithandG. M. Pollaud,"lCS(Plr-1519 O. Sieskindand P. Albrecht.TL 34. I197r l{ tA. K. Maiti, G. K. Biswas, andP. Bharrach '8. J. CoreyandL. I. Wu, ,/ACSl15. 9311' lt
in refluxing
dioxane in the
is not observed'
Mooz(acac)u is a catalyst for the formation
of tetrahydropy-
clays, metal ion dopcd Cleavageof thiol acetates.' Clal -sq of thiol acetatesand transformsthem rntr Cyanosilylation of carbonyl conporn ethers is catalyzed by the Fe-montmorrllo Alkylation of phenols and rearrl,4 t a n o n es e r v e sa s a n a l k y l a t i n ga g e n r g . rrr! r ieldr on heatingwith phenolin the prcsc -18h. The samecompoundis obtained rn treatedwith Zn(II)-montmorillonire and 1 Epoxidation.s Montmorillonire imp dation of alkenes(cooxidizedwith isobur
ranyl ethers2 and methoxymethyl ethers.t 'M. L . K a n t a m , A . D . P r a s a d ,a n d A . L . S a n t h i , S C 2 3 ' 4 5 ( 1 9 9 3 ) . 2 M. L. Kantam and A. L. Santhi, ,!C 23,2225 (1993). tM. L. Kantam and A. L. Santhi, SL 429 (1993).
Montmorillonite clays. 15, 213-214 Dehydration. Many dehydration processescan be performed in the presenceof montmorillonite. Besides generation of olefinsr from alcohols, the formation of esters,2 and anhydrides3 has been effected (preferably with microwave irradiation). Other reactions include enamination,4-7 acetalization,8 dithioacetalization,e and Friedel-Crafts alkylation with a[ylic alcoholsr0and tertiary alcohols'rr is catalyzed by B-Hydroxy sulfides.t2 Epoxide opening with benzenethiol clays.
H. M. Meshram,TL 34,2521(1993\. 'K. Higuchi,M. Onaka,and Y. Izumi.
8C5,1( J. Tateiwa. H. Horiuchi,K. Hashimoro. T Ye 'J. Tateiwa, T. Nishimura,H. Horiuchi.and S '8. Bouhlel,P. Laszlo,M. Levart,M.-T.Moo
Montmorillonite clays,metal ion doped 245
o. J
tl
85q.
elso mediatedbY Mo(CO)o
.=
\--\,cooEt
_^J"osE 76n"
"q.1r.
|
T .. rc. and K. D. Treiber'JOC 5t,
): J t
-
1993).
ric.: rn ref luxing dioxane in the : . 1 , , to b s e r v e d ' r l:: lirrmation of tetrahydroPy-
.l<
e')l).
rn !c performed in the Presenceof on: rlcohols, the formation of estf',r *ith microwave irradiation). , r l : , , n . ' d i t h i o a c e t a l i z a t i o n .aen d n J t ( ' r t i a r Ya l c o h o l s . r r rrh .cnzenethiol is catalYzed bY
Claisen reanangement.ts
The clay-catalyzed
is useful for access to 2-prenylphenols. C-C
aromatic Claisen rearrangement
bond formation occurs at the less substi-
tuted site. 'M. L . K a n t a m , A . L . S a n t h i ,a n d M . F . S i d d i q u i ,f L 3 4 , l l 8 5 ( 1 9 9 3 ) . 'A. L o u p y , A . P e t i t , M . R a m d a n i , C . Y v a n a e f f ,M . M a j d o u b , B . L a b i a d , a n d D . V i l l e m i n , C . / C 7r. 90 0993). rD. Viflemin, B. Labiad,and A. Loupy, SC 23,419 (1993). 'S. K. Dewan, U. Varma, and S. D. Malik,./CR(S) 2l (1995). 'M. E . F . B r a i b a n t e ,H . S . B r a i b a n t e ,L . M i s s i o , a n d A . A n d r i c o p u l o , S 8 9 8 ( 1 9 9 4 ) . 6B. R e c h s t e i n e rF , . T e x i e r - B o u l l e t ,a n d J . H a m e l i n , f L 3 4 , 5 O 7 l ( 1 9 9 4 ) . 7P. R u a u l t , J . - F . P i l a r d , B . T o u a u x , F . T e x i e r - B o u l l e t ,a n d J . H a m e l i n , S L 9 3 5 ( 1 9 9 4 ) . 'H. K . P a t n e y ,S C 2 3 , 1 5 2 3 ( 1 9 9 3 ) . "H. K . P a t n e y ,S C 2 3 , 2 2 2 9 ( 1 9 9 3 ) . "'K. S m i t h a n d G . M . P o l l a u d ,J C S ( p l ) 3 5 1 9( 1 9 9 4 ) . " O. Sieskind and P. Albrecht. TL 34, ll97 (1993). 'tA. K . M a i t i , G . K . B i s w a s ,a n d P . B h a t t a c h a r y y a ,J C R ( S ) 3 2 5 ( 1 9 9 3 ) . 't E. J. Corey and L. L Wu, "/ACS 115,9327 (1993).
clays, metal ion doped. 12,231;15, l0l, 178-179 Cleavage of thiol acetates.' Clay-supported Fe(NOr)r takes off the acetyl group of thiol acetatesand transformsthem into disulfides. Cyanosilylation of carbonyl compounds,' The formation of cyanohydrin silyl ethers is catalyzed by the Fe-montmorillonite. Enones undergo 1,4-addition. Alkylation of phenols and reaftangement of phenyl ethers. 4-HydroxybuMontmorillonite
in28Vo tanoneservesas an alkylating agent,giving 4-(4-hydroxyphenyl)-2-butanone yield3on heatingwith phenolin the presenceof Zr(IV)-montmorillonite at 100'C for 48 h. The same compoundis obtained in34Vo yield when 3-oxobutylphenyl ether is t r e a t e dw i t h Z n ( l l ) - m o n t m o r i l l o n i t ea n d p h e n o l . a Epoxidation.s Montmorillonite impregnated with Ni(acac)zcatalyzes the oxiin compressedair (10 bar). dation of alkenes(cooxidizedwith isobutyraldehyde) ' H. M. Meshram.TL 34.2521(1993\. 'K. Higuchi,M. Onaka,andY. Izumi, BCSJ66,2016(1993). 'J. Tateiwa, H. Horiuchi,K. Hashimoto, T. Yamauchi, andS. Uemura,JOC 59,5901(1994). 'J. (1994). T. Nishimura,H. Horiuchi,andS. Uemura,JCS(PI)336'1 Tateiwa, 58. Bouhlel,P. Laszlo,M. Levart,M.-T.Montaufier, andG. P. Singh,TL34, ll23 (1993).
Nickel-acetic acid. Lactams. Trichloroacetami&s I are induced to undergo cyclizatron. doles2directly, as benzylic C-Cl bofl
o
Nafion-H. 14,213 of a-carbomethoxy-cby estercleavage Oxindoles.t Cyclizationaccompanied supof yields. The place in variable takes diazoacetanilides Presence an o-substituent group. N-alkyl with the interaction presses the cyclizationdue to steric
r"oY) ",t"oo
ll
cl
pnr.r/-fo \-\ c
l
Meor2-1
l l t
\,4*\
t s o
\,,^rN
PhMe, A
Me
M€
'J. B o i v i n ,M . Yousfi, and S.Z. Zard. TL tJ. B o i v i n , M . Yousfi, and S. Z. Zard. TL
687o '
A. G. wee and B. Liu, I50, 609 (1994).
Nickel. 12, 335;13, 197;14, 213 from NiIz with Li-DTTB Trisadamantylidenel3]radialene.tNickel generated trimerizationof dibromomethyleneadamantane. in THF effectsdebrominative
Nickel(Il) acetylacetonate. 17, 201 B-Enamino lactones.' a-Aca;..l influence of Ni(acac)zto give p-enrn yields.
-4
o
o4oAn f7\
3 \}\/-1 \----ll
Bt
.
(A ",-{nAo
Ni
Br
' K. Komatsu, JOC58'3219(1991\. H. Kamo,R. Tsuji,andK. Takeuchi' Nicket, Raney. 13,265-266: 14,270: 15,278;17' 296 p-Ketoesters,'B;y-Unsaturated B-nitro estersundergoreductiveNef reactionin in a bufferedmedium. hypophosphite sodium nickel and Raney of the presence
Carbozincation.2 The catalyzcd results in the cyclized organomeraltr extension via organocopperinternrdl
r.(f qoi-
,".'\.!
c(
&.vA
fo, /'"zcoou"
R
o tl
RaNi-NaH2PO2 aq. EIOH
'R. Ballini andG. Bosica,.|CR(S) 435 (1993). 246
lpgJ
,,\,,cooMe I
R
Biphenyls.' The cross-couplingo constitutes a convenient method for as cessiblefrom directed o-metallarion er
247 Nickel(II)acetylacetonate Nickel-acetic acid. Lactams, Trichloroacetamides bearing an unsaturated substituent on nitrogen are induced to undergo cyclization.r Trichloroacetanilidesare converted to oxindoles2directly, as benzylic C-Cl bonds are susceptibleto reduction.
o lt
ll
.cl
pnru/-fcl \-\ c l
tr ..e,rrageof a-carbomethoxy-dc Fr..ence of an o-substituentsuprh rre .\-alkyl grouP.
n,
'n\^X"",
Ni-HOAc CzHrsC(Me)zSH iPrOH, A
76"/"
'J. Boivin,M. Yousfi,andS.Z. Zard,TL 35, 5629(1994). 'J. BoivinM . . Y o u s f ia, n dS . Z . Z a r d , T L3 5 , 9 5 5 3( 1 9 9 4 ) .
Nickel(Il) acetylacetonate. 17, 201 B-Enamino lactones.t a-Acetyllactones condensewith lactim ethers under the influence of Ni(acac)zto give B-enamino lactones in one step with low to moderate yields. !nerated from NiIz with Li-DTTB br.,nrrmethYleneadamantane'
-4
o
(/tl
/ \ o4oln
*'4"4o'"
Ni(acac)2 1100,110 h
10-65%
o( 5t. 3ll9 (1993).
l7:e6 in cr. u ntlergoreductive Nef reaction h.'.nhrte in a buffered medium'
Carbozincation.2 The catalyzed reaction from an unsaturated iodo compound results in the cyclized organometallic species,which can be functionalized. Chain extensionvia organocopperintermediatesis one possibility.
I ) aro"(o)
(/
Ni(acac)2-zn cucN'LicrcooEt tr, MCpBA
Jl
foEt .{* euo"(o) 7O"h
coot'1" Biphenyls.3 The cross-couplingof arylzinc chloride reagentswith aryl triflates constitutes a convenient method for assembling biphenyls. The zinc reagentsare accessiblefrom directed o-metallation and metal-metal exchange.
248 Nickelboride 1,2-syn Addition to alkynes. The synthesis of enynes by a catalyzed coupling processfeatures alkynyltin reagentsand diisobutylaluminum hydride in the presence of acceptors (enones,aallyl halides5). The catalytic cycle involves formation of zrallylnickel speciesand vinylnickel intermediates.
Bu \f
//r / Ph
Ni(acac)2-Me35iCl
\\
/snEt3
I--
'
+
+
//
iBu2AlH THF,
rt
,/-> \-
'O. Provot.J. P. Celerier, H. Petit,andG. Lhommet,S 69 (1993). 2 A . V a u p eal n dP . K n o c h e l , T L 3 5 , 8 3 4( 91 9 9 4 ) . 3C.A. quesnelle, SL 349(1994)' O. B. Familoni,andV' Snieckus' oS.Ikedaand Y. Sato,JACS116,5975(1994). ts. Ikeda,D.-M. Cui, andY. Sato,JOC 59'68'17(1994).
Nict2.6Hp NaBHa MeOH
'T. G. Back, D. L. Baron, and K. Yang..l : B . A l c a i d e , L . C a s a r r u b i o s ,G . D o m i n 3 r t H. H. Seltzman and B. D. Berrang, fL .} 'N. M. Yoon and J. Choi, SL 135(l99ll t N. M. Yoon, H. J. Lee, J. H. Ahn, and I 'R. H. Khan and R. C. Rastogi, IIC(8) 37 tS.K. A r m s t r o n g , E . W . C o l l i n g t o n .J . G ( 1993).
Nickelcarbonyl.13, 198-199;15,2 Carbonylation. Vinylic bromi& Wrr can be trappedintramolecularly. cyclopentenonesr and lactones2 can b
R
Nickel-aluminum. Arylamines from triazenes.t Arylamines can be protected as triazenes (formation by reaction of the diazonium salts with a secondary amine). Regenerationof ArNH2 is accomplished by reductive cleavageusing Al-Ni alloy in a basic solution. 'M. L. Gross,D. H. Blank,andW. M. Welch,JOC58, 2104(1993).
Nickel boride. 13, 197-198;16,288 DesulfuriZation. The scope, selectivity, and stereochemistry of this method (c-s - c-H) has been studied using a variety of organosulfur compounds as substrates.rB-Lactams unsubstitutedat C-4 arc formed in a two-stepprocessinvolving photocycloaddition of chromium carbene complexes and RN:C(SMe)z followed by desulfurization.2 Reduction of the nitro group and halides.3 Amines are obtained in good yields. The reduction can also be performed by a reagentgeneratedfrom borohydride resin.oThe latter reagentconverts alkyl bromides and iodides to the hydrocarbons,5 whereas chlorides, tosylates, esters,and nitriles are not affected' Reduction of anhydrides.6 Semireduction of anhydrides releases an alcohol and an acid. Homoallyic amines.l Isoxazolinesderived from allylic phosphine oxides can be converted by nickel boride to the saturated 1,3-amino alcohols. On further reaction' elimination of phosphinic acid occurs.
CHz=CHCHzBT
\
(MecN)2PdBr2 _ R
4 /
A H
'A. Llebaria,F. Camps, and J. M. Morcto :A. Llebaria,A. Delgado,F. Camps.ead
Nickel chloride. Un sy mm et r ic al ca rb o d iimid cc-' catalysis of NiCl2. Air is the oxidaot.
\ . ftnc ,
*
A H2N<\
o
) cl'|
Reduclion of nitriles.2 Primer reductionof nitriles with hydrazincr 'T. Kiyoi, N. Seko,K. Yoshino,and Y. lr tq.-D. You, H.-Y. Xhou, Q.-2. Wang,er
Nickel chloride
.'nynes bY acatalYzed couPling l ) . . rnunum hydride in the Presence l 1: : - ;rcle involvesformation of zl ! :
t
*:
, ' --. tegl). i/::.199,1)
o o-N
*'F)dx
NHr
Nict2.6H2o
NiOlz'6HzO
il : ll tn"\4A" I
NaBH4
NaBHa
249
\AA*
t -
MeOH
MeOH
'T. G. Back,D. L. Baron,and K. Yang,JOC 58,2407 (1993). 2B.Alcaide,L. Casarrubios, and M.A. Sierra,JOC 59,7934(1994). G. Dominguez, 'H. H. Seltzman andB. D. Berrang,rI, 34, 3088(1993). oN.M. YoonandJ. Choi,SI, 135(1993). tN. M. Yoon.H. J. Lee.J. H. Ahn, andJ. Choi,JOC 59,4687(1994). 'R. H. Khan andR. C. Rastogi,IIC(B)32B.,898(1993). tS.K. Armstrong,E.W. Collington,J.G. Knight, A. Naylor,and S. Warren,JCS(PI)1433 (l993).
Nickel carbonyl. 13, 198-199; 15,216-217 Carbonylation Vinylic bromides are carbonylated, and the primary products can be trapped intramolecularly. With proper functional groups as trapping agents, cyclopentenonesrand lactoneszcan be generated.
F: R
R
iJr he protectedas triazenes(forma1 -s,,,ndar) amine). Regenerationof u..:.; .\l-Ni alloy in a basic solution'
A \FR
CHz=CHCHzBT
I /ei
(M6CN)2PdB12
\
R
N(CO)4
EbN/ MeoH 30-350
MeOOC
27-95v.
55-98%
g - ,: ,1993).
'A. Llebaria,F. Camps,and J. M. Moreto,T 49, 1283(1993). 2A. Llebaria,A. Delgado,F. Camps,and J. M. Moreto,OM 12,2825(1993).
r:..t .tereochemistryof this method t\ : \\rganosulfurcomPoundsas suborr:cJ tn a two-stepprocessinvolving rgirr:. and RN:C(SMe)z followed bY
Nickel chloride. Ilnsymmetrical carbodiimides.t Isocyanides react with primary amines under catalysisof NiClz. Air is the oxidant.
Jcs. .{mines are obtained in good I s icr{BIl[ generatedfrom borohydride rj<. rnJ rodidesto the hydrocarbons'5 !. ::i llot affected. pr ,'l anhydridesreleasesan alcohol lu l:,,m allylic phosphineoxidescan be . n furtherreaction' - 1 - g : r r n ra) l c o h o l sO
al
\
/
/--J-NC t -
+
\
HeN{r \ ,
/
/:\ /
NiCi2(ah)
) PhH, ^
A
N=C=N<\ ) \ / CN 75"/o
Reduction of nitriles.2 Primary amines are obtained in a nickel-catalyzed reduction of nitriles with hydrazine as the hydrogen source. rT. Kiyoi, N. Seko,K. Yoshino,andY. Ito, JOC 58,5l18(1993). 'q.-D. You,H.-Y.Xhou, Q.-2. Wang,andX.-H. Lei, HX 51,85 (1993).
250 Nickel halide bis(triphenylphosphine)
Nickel chloride-phosphine complexes. 14, 125;15, 122; 16' 124 Hydroboration.t Regioselecive hydroboration of alkynyl sulfides with catecholborane to give bifunctional (E)-alkenes is catalyzed by NiClz(dppe)' substitutions. c-c bond formation to replaceallylic2'r and aryl C-o bondsais readily achieved. These catalysts also promote cross-coupling of vinyl Grignard reagentswith vinyl bromides.s
/'-q
Et2NMgBr-(dpp€)NiC12
l\-ol ] -
/-NEt2 l l \-oH
THF, 0o -> rt;
z l
.
i Sasaki, K. Nakao, Y. Kobayashi. \l Sr |CSJ 66,2446 (1993). : i K a g e y a m a ,T . M i y a z a k i , a n d Y . K t m u r e . . R 1 u , K . I k u r a , Y . T a m u r a ,J . M a e n a k a .A
\iobium(Ill) chloride.14,213-211:l( Pinacolformation,' Reductiveco in a highly stereoselec rlent proceeds
Et2N',\voH
KOH / H2O
57%(ratio85:15) THF,
N
Biaryls.6 Aryl triflates are self-coupled with the nickel catalysts in the presence of zinc powder. Excellent yields are obtained. '1. D. Gridnev,N. Miyaura,andA. Suzuki,OM 12,589(1993)' 2L. Lardicci,C. Malanga,F. Balzano,andR. Menicagli,750'12953(1994)' rY. Kobayashiand E. Ikeda,CC 1789(1994). oA. F. BrigasandR. A.W. Johnstone, CC 1923(1994). '8.C. Fulcher,M. L. Hunter,andM. E. Welker,SC 23'21'7(1993). 6A. JutlandandA. Mosleh,SL 568(1993)
Nickel cyanide. 16, 288 Under phase-transferconditions, propargyl and allenyl halides Carboxylation' Ni(CN)z are converted into allenic acids. Further reaction and of CO presence the in gives rise to 2-alkylidenesuccinicacids.
t(t
andC. Morsc.I J. Besancon, Szymoniak,
\itric acid. Nitration
of activated methinc. I :,i SO1slstem. Deacylationgives nitror
o
HNO3-H2SO.
cooEr
cHct3 ,
0e
rH. Arzoumanian, F. Cochini,D. Nuel,andN. Rosas,OM 12, l8'll (1993)'
)
Nickel halide bis(triphenylphosphine). 16' I 18 Halide coupling. Vinylic bromides undergo homo-coupling' when treated with the nickel catalyst and zinc powder. The cross-coupling of two aryl halides2in pyridine makes it possible to prepare a key intermediate for angiotensin II receptor antagonists. Rearrangement.3 Effective catalysis of the vinylcyclopropane-to-cyclopentenc rearrangementby a nickel complex in refluxing toluene renders siloxycyclopentenes
Oxidation of Hantzsch eslcrs.: l estersto the pyridines. Thc re .:'{.rntzsch Trifluorolactic acid.t This comp< ':riluoropropanein a Cu-catalyzedorrd a-Disulfones.o Oxidation of ,\1.\..rls to preparethesecompounds.
readily available.
d
OTBS
OTBS (Ph3P)2NiCl2-Zn
/ \
PhME, A 84o/o
9ozR' HN-l.iH Rsd2
x
13-2
Nitric acid 251
f-( lll: 16, 124 I : ,rlkynyl sulfides with catelrz.:J bv NiClddppe). ' I , . . . l r c : a n d a r y l C - O b o n d s ai s r, ..-.oupling of vinYl Grignard
'\i'
-:-
I
K . S a s a k i , K . N a k a o , Y . K o b a y a s h i , M . S a k a i , N . U c h i n o , Y . S a k a k i b a r a ,a n d K . T a k a g i , BCSJ 66,2446 (t993). t H. Kageyama, T. Miyazaki, and Y. Kimura , SL 371 (1994). tl. R y u , K . I k u r a , Y . T a m u r a , J . M a e n a k a , A . O g a w a ,a n d N . S o n o d a ,S L 9 4 1 (1994).
Niobium(Ill) chloride. 14, 213-214; 16, 229 Pinacol formation.t Reductivecouplingof aliphatic aldehydeswith this remanner. agentproceedsin a highly stereoselective
,,,*(-o^
Et
EI Nbct3
- ' . r a t i o8 5 : 1 5 ) :
ETCHO
H
dt',,b THF, rI
Et
Et +
\
.
j
H""/---rH HO
I
b ::.' nrckel catalysts in the Pres'
197o
CC-/6
(dl:meso 94:6\ t.
(1994). ; 50.11953 -
OH
Et
'J.
(dr:meso 90:10)
S z y m o n i a k , J . B e s a n c o n ,a n d C . M o i s e , T 5 0 , 2 8 4 1 ( 1 9 9 4 ) .
,r9l).
Nitric acid. Nitration of activatedmethine.' B-Keto estersare nitratedwith the HNOrH2SOasystem.Deacylationgivesnitroaceticesters. It 'l fropargyl and allenYlhalides i n t rllenic acids.Further reaction
^' ilt7l(1993).
or. l:
o
U
HNO3-H2SO1
cooEr
tl
,"'\r'cooEt cHct3 ,
0o
I
Noz
10% H2SO4 MoOH. t h
80"/"
85"/" I [.n:,,-coupling when treated with dr:: makesit possibleto PreParea Pn l.[.
r : :.r Ii r c lopropane-to-cyclopentene Dlucnc renderssiloxycyclopentenes
-t ,\ ;"
OTBS
(cooEl Noz
Oxidation of Hantzsch esters.' Nitric acid supported on bentonite oxidizes Hantzsch esters to the pyridines. The reaction is assistedby microwave irradiation. Trifluorolactic acid.t This compound can be prepared from 1,2-epoxy-3,3,3trifluoropropanein a Cu-catalyzedoxidation. a-Disulfones.a Oxidation of N,N'-disulfonylhydrazines is one of the simplest ways to prepare these compounds.
9ozR' HN-ilH RSb2
HNoa 15-250, 3-4h
q F O-S-s=o
i ' b
2H770
252 Nitrogen dioxide 'A. L . L a i k h t e r , V . P . I s k l y i , a n d V . V . S e m e n o v ,M C 2 0 ( 1 9 9 3 ) . 2O. G a r c i a , F . D e l g a d o ,A . C . C a n o , a n d C . A l v a r e z , T L 3 4 , 6 2 3 ( l g g 3 ) . rT. K a t a g i r i , F . O b a r a , S . T o d a , a n d K . F u r u h a s h i ,5 4 5 0 7 ( 1 9 9 4 ) . oE. A . B a r t m a n n ,S 4 9 0 ( 1 9 9 3 ) .
Nitrobenzaldehyde, polymer supported. Deprotection of oxathioacetals.t Catalyzed by trimethylsilyl triflate the polymer acts as an efficient acceptor of 2-mercaptoethanol. Although p-nitrobenzaldehyde is equally effective, product separationis much less convenient.
bY ozone. thc t I ately activated to deactivated arenes.' Nitration.
Mediated
can be preserved.o
R . R a t h o r e .E . B o s c h , a n d J . K . K o c h i . f l 3 'R. R a t h o r e .J . S . K i m , a n d J . K . K o c h i . . / C 9 'H. S u z u k i . T . M o r i . a n d K . M a e d a ,S E { l r I 'H. Suzuki, T. Murashima, L Kozai, and T ! 'H. Suzuki and T. Murashima,JCS(P/t 90-rt ^H. S u z u k i , S . Y o n e z a w a ,T . M o r i , a n d K \ l
rT. Ravindranathan, S.P. Chavan,and M. M. Awachat,7L 35, 8835(1994).
4-Nitrobenzenesulfenan ilide. Functionalization of multiple bonds. The sulfenylating agent attacks alkenes and alkynes; thus in the presenceof hydrobromic acid it results in bromosulfenyla-
llitronium triflate. N-Nitration.' The salt, preparedfl in CHzClzat0"C,canbeuscdd anhydride C. M. Adams,C. M. Sharts,andS.A. Shr-
tion.'Cyclic etherswith a phenylthioalkyl side chain are obtained from unsaturated alcohols.2
l-Nitrophthalic anhydride. Amino protection.t Primary amrm hydrazine.
\ox-
"{"N
ens-ruxS^o,
[\,"n
K. Tsuji,andH. Ishikaua.5 H. Tsubouchi,
BF3. OEt2/ PhH
SPh
.V-Nitrosodiphenylam i ne. Nitrosation.t This reagent is surte
rL. B e n a t i , P . C . M o n t e v e c c h i ,a n d P . S p a g n o l o ,I 4 9 , 5 3 6 5 ( 1 9 9 3 ) . 2L. B e n a t i , L . C a p e l l a , P . C . M o n t e v e c c h i ,a n d P . S p a g n o l o ,T S 0 , 1 2 3 9 5 ( l g g 4 ) .
f'il-V,n \-,.-t't
crf,coc
2-(4-Nitrobenzene)sulfonylethyl chloroformate. Amino protection.' The derived carbamates are readily cleaved by organic bases in aprotic solvents. The protected amino acids are useful for solid-phasepeptide synthesis. L. Cardellini, L. Greci, and P. Stipa.5C 2{
rV.Y.
Samukov, A.N. Sabirov,andP.l. Pozdnyakov, TL35,7821(lgg4\.
Nitrogen dioxide. Catalyzed autoxidation Hydroquinones and benzoquinone dioximes are converted to quinonesr and dinitrosobenzenes,2respectively,on autoxidation in the pres-
l{itrosonium tetrafluoroborate. 14. I I Nitrosation.t Aryl ethers and pol' reactions at room temperature. L2- Isoxazolines.z Allylsilanes uod
ence of NO2.
heterocycles.
Nitrosonium tetrafluoroborate253 ll, ta. l:
: ,1993). :t -r.t.623 (1993) ' < r ) t( l g g 4 ) .
lr.,:J bv trimethylsilyl triflate the poly:r:'.'rhanol. Although p-nitrobenzalder :. '-.ruchlessconvenient. s z - - : ' . .T L 3 5 , 8 8 3 5( 1 9 9 4 ) .
T-: .ulfenylating agent attacks alkenes k, ::r:i acid it resultsin bromosulfenylalr.:: .hain are obtained from unsaturated
Mediated by ozone, the method is suitable for nitration of moderNitration. ately activated to deactivatedarenes.3-sBecauseof the nonacidic conditions, acetals can be preserved.6 'R. Rathore,E. Bosch,andJ. K. Kochi,II 35, 1335(1994). 'R. Rathore. J.S. Kim. andJ. K. Kochi,JCS(P/)2675(1994). rH. Suzuki,T. Mori, and K. Maeda,S 841(1994). {H. Suzuki,T. Murashima, I. Kozai,andT. Mori, JCS(PI)l59l (1993). 5H. SuzukiandT. Murashima,JCS(P1) 903 ( 1994). 6H. Suzuki,S. Yonezawa, T. Mori, and K. Maeda,JCS(PI)1367(1994).
Nitronium triflate. N-Nitration.t The salt, prepared from tetrabutylammonium nitrate and triflic anhydridein CHzClzat OoC,can be useddirectly to nitratecompoundssuchas lactams. 'C. M. Adams,C. M. Sharts,andS.A. Shackelford, TL 34' 6069(1993).
4-Nitrophthalic anhydride. Amino protection,t Primary amines are liberatedfrom the imides with methylhydrazine. F'rl
rH. Tsubouchi, K. Tsuji,andH. Ishikawa,SL 63 (1994).
[\,"'n
"4\ SPh
N- Nitrosodiphenylamine. Nitrosation,t This reagent is suitable for nitrosation of indoles.
i l
: re it65 (1993). P t:,!nolo. T 50,12395(1994).
NOH
[z)1-"n \. tt' rmale. b.:-r,tc. are readily cleaved by organic rr:. J.rds are useful for solid-phasepep-
ct3ccooH / cH2c12 rl . t h
Z\r4 I
ll />-Pn
\.,^tt' 821o
lL.
zt
Ph2N-NO
Cardellini, L. Greci, and P. Stipa.SC 24,677 (1994).
(1994). rl.35.7821
xl.. ;nJ benzoquinonedioximes are con: :':.rcctively, on autoxidationin the pres-
Nitrosonium tetraf luoroborute. 14, 215 Nitrosation.t Aryl ethers and polymethylbenzenesgive nitroso derivatives in reactions at room temPerature. N-Isoxazolines,2 Allylsilanes undergo nitrosation and cyclization to form the heterocycles.
254 Nitrosyl chloride
I \Z\A"oo'" :
Me2SiPh
NOBF4/CH2Ct2
COOMe -80o-> rt,
5h
H 65%
'E. BoschandJ. K. Kochi,JOC59, 5573(1994). 2J.S. PanekandR.T. Beresis, "/ACS115,7898(1993).
Nitrosyl benzenesulfonate. Reductive deamination.r The reagent is prepared from benzenesulfinic acid and dinitrogen tetroxide in THF. Aromatic amines undergo deamination in the presence of CuCl2. ' H. H.
Organoantimony reagents. 17. l(N Allenic and acetylenic alcoholt. react with main-group organomeral t-erent alcohols are obtained on fu tri methylsilylpropargylantimony bmn reaction conditions (solvents,additrr used.etc.).2
Shin,Y. J. Park,andY. H. Kim, IlC 4,259 (t993). Br
Nitrosyl chloride. A convenient method for in situ generationr involves treatment of sodium nitrite with trimethylsilyl chloride in CHCIr. 'P. K.
eussi,rr.T
-SiMe3 R'M T}' RCf|o
Chowdhury, M. Barbaruah, andR. P. Sharma,IJC(B)33B.,7t(1994\.
L.-J.Zhang,Y.-2. Huang,andZ.-H Hu tL.-J. Zhang,X.-S.Mo, J.-L. Huang.and
Organobarium reagents. 17, 201 - 2 Allylation. Active barium is gcr of Li biphenylide in THF at room lem allylbarium reagents,which can be uc stereoselectivities.t hreo-Homoallr I rc hydesare obtained.' Siloxyallylbarium reagents(from : sec-Buli and BaIz) also show a high
e&.tr
,-rr3otv
l]
gaL rx @
rA. Y a n a g i s a w a ,S . H a b a u e ,K . Y a s u e .: t :A. Y a n a g i s a w a ,K . Y a s u e ,a n d H . Y a m e n
I
-,^..,,l. cooMe
.' - o/-. H
65%
Organoantimony reagents. 17, 204 Allenic and acetylenic alcohols. Propargyl- and allenylantimony(V) bromides react with main-group organometallics to form isomerized species; therefore, different alcohols are obtained on further reaction with aldehydes.r However, rotrimethylsilylpropargylantimony bromides give regioisomers in ratios dependent on )rcpared from benzenesulfinicacid r. undergodeaminationin the pres-
reaction conditions (solvents, additives, nature of the main-group organometallics used.etc.).2
F:
o Br
oH
.SiMes
Bvsb,\,.2
R'M / THF
I
R'\""
z
-siMe3 '
I
,,r".
BCHO
11r,.1restreatmentof sodium nitrite
J
R'Y"
60-88%(60:40-96:4)
i.'r tr, -138,7l (1994). tL.-J.Zhang, Y.-2. Huang,andZ.-H. Huang, IL 32'6519 (1991)tL.-J.Zhang, X.-S. Mo, J.-L. Huang, andY.-2. Huang, IL 34, 162l (1993).
Organobarium reagents. 17, 204 -205 Active barium is generatedby reduction of BaI: with 2 equivalents Allylation. of Li biphenylide in THF at room temperature. Allylic chlorides are converted to the allylbarium reagents,which can be used to effect allylation with excellent regio- and stereoselectivities.threo-Homoallylic alcohols from a 7-selectivereaction with aldehydesare obtained.' Siloxyallylbarium reagents(from allyl silyl ethers by consecutivetreatment with sec-Buli and BaIz) also show a high 7-selectivityin alkylation reactions'2
z\ r:-P13SiO
s-BuLi/ THF Bal2/THF, -78o
OH
R&\"osiP13
RCHO
'A. Y a n a g i s a w a ,S . H a b a u e ,K . Y a s u e ,a n d H . Y a m a m o t o ," / A C SU 6 ' 6 1 3 0 ( 1 9 9 4 ) ' :A. Y a n a g i s a w a ,K . Y a s u e ,a n d H . Y a m a m o t o , S t 6 8 6 ( 1 9 9 3 ) . 255
256 Organoceriumreagents
Organocerium reagents. 13, 206-207; 14, 217-218: 15, 221; 16, 232: 17, 205-207 Practically all these reagentsare prepared' in situ from RLi or RMgX with CeCl.r at -78'C or below. The organolithiums may also be made by reductive cleavageof phenyl sulfides. The presenceof some other anionic speciessuch as thiolates does not affect the reactivity of RCeCl2. Reaction with carbonyl compounds. Such additions are highly diastereoselective.2since the reagents are hard, they are well suited for addition to enolizable compounds,including B-diketonesrand a-phosphonylketones.a In the ketonesynthesis from lithium carboxylates and RLi the presence of ceCl: greatly increases the yields.s
? e
PhrPv\
Organocopper reagents. 13,207-209:l{ r7,207-2t8
Organocopper reagents can be madc d which is prepared by reduction of CuC\ r preparedfrom CuI . PQ. (R:Bu, Phr rs m
bromoaryl epoxides to give dihydrobcnzof Defunctionalization of heteroal Lc tc salts,21,2-bis(phenyltelluro)al kenes.i anrJI
an electron-deficientsubstituent,are rcb chalcogenidesis affected, and the kererr However,the alkenylcopperintermedrarcs
o
MeLrceCl3
Ph,A:_XH
THF, -78O
HOAo-H2O
R. -COOEI .f
l
Mes
7Z.S%
)bp.
r
'
Fcq
sMe
.E
Addition to the N:X bonds. Amine synthesis,particularly from chiral hydrazones, using RCeClz as nucleophiles is well established.6-8 The reagent formed from l: I RLi and CeClr is superior to RLi alone or RMgX.7 For conjugatedaldimines, enantioselective1,2-additionpredominates.Allylcerium halide reagentscan be prepared from allyl halides,CeClr . 7H2O, and zinc.e-"
Epoxide opening. A stereoselecrirei triethylsilyloxirane with an organocupralet the B-silyl alcohol to the aldehyde.Grigner The elimination leadsto either the (f t- or t
11 RM-CsCl3
.,""j,-Q.""
THF, -1000
HN-NY Lot't" Erov;\ l ' R oEr
M = Li, MgBr
N,N-Disubstituted organocerium
hydroxylamines
H2 Ni
OH
!H,
EtO.v;\ I ' oEt
o R
Bu2CuLi
B
Y
t
Et3Si
u
l
-
a
\
,
EttS
72-98/"
are reaction
reagents derived from RMgX
products
of nitroalkanes
and
and CeClr.r2
'Y. Ahn and T. Cohen,JOC 59,3142(1994). tN. G r e e v e s ,L . L y f o r d , a n d J . E . P e a s e ,Z L 3 5 , 2 8 5 ( 1 9 9 4 ) . rG. Bartoli, E. Marcantoni, and M. Petrini, ACIEE32, 106l (1993). 4G. Bartoli, L. Sambri, E. Marcantoni, and M. petrini, TL35,g453 (lgg4\. 5 Y. Ahn and T. Cohen, TL 35, 203 (lgg4\. 'D. E n d e r s ,M . K l a t t , a n d R . F u n k , 5 L 2 2 6 ( 1 9 9 3 \ . 7S. E . D e n m a r k a n d O . N i c a i s e ,J O C 5 8 , 5 6 9 ( 1 9 9 3 ) . tD. E n d e r s ,R . F u n k , M . K l a t r , G . R a a b e ,a n d E . R . H o v e s t r e y a d tA , CIEE32,4lg (1993). tD. E n d e r s ,J . S c h a n k a t ,a n d M . K l a t t , S L ' l g ' ( l g g 4 \ . 'oD. Enders and J. Schankat, HCA 76,402 (lgg3\. "T. B a s i l e , A . B o c o u m , D . S a v o i a ,a n d A . U m a n i - R o n c h i , J O C S g , 7 j 6 6 ( l g g 4 ) . 12G. B a r t o l i , E . M a r c a n t o n i , a n d M . P e t r i n i , C C 1 3 ' 1 3( l g g r .
Non-ate allylcopperis also useful in rhc chloridesand epoxides.t1,2-Amino alcoho with amide cuprate reagents.o
Chain extension. l,l-Diiodo-e and l, made from aldehydes,undergo dialkylarno acid as a general building block for p-amrno to an iodomethyl group. Subsequentrcrrr chain elaboration.rl
A series of 4-substitutedoxazolidin-1 by displacementreactions with organocopp are derived from serine12 or glycidol.r!Chrn mesyloxystannanes.'o
Organocopperreagents 257
1 .. 15.221:16,232;17,205-207 l r : - : r ( r mR L i o r R M g X w i t h C e C l r ) tr made by reductive cleavageof x .:ecies suchas thiolatesdoesnot r.iirtrons are highly diastereosell: .urted for addition to enolizable on. I [crones.aIn the ketonesynthei.<:.. c of CeCl., greatly increases
Organocopper reagents. 13, 207-209; 14, 218-219: 15, 221-227; 16, 232-238: t7,20't-2r8 Organocopper reagentscan be made directly from the bromides and active Cu, which is prepared by reduction of CuCN . nl-iX with lithium naphthalenide.'Copper prepared from CuI . PRr (R:Bu, Ph) is most suitable for intramolecular reaction of bromoaryl epoxides to give dihydrobenzofurans. Defunctionalization of heteroalkenes. The C-X bonds of alkenyliodonium salts,21,2-bis(phenyltelluro)alkenes,r and ketenebis(methylthio)acetals,a which carry an electron-deficient substituent, are selectively replaced. Only one group of the chalcogenidesis affected, and the ketene dithioacetals undergo reductive cleavage. However, the alkenylcopper intermediates can be acylated.s
o ?- p
RYcooEr
\roH
Me2Cu(CN)Liz R'COCI - 200
Mes,^sMe
72.50/6
s:. r.rrticularly from chiral hydra^* The reagentformed from Ir.heJ t\'lr\ For conjugatedaldimines, c.nunt halide reagentscan be pre-
RYcooEt ureslR' o
Epoxide opening. A stereoselectivealkene synthesis6starts from reaction of triethylsilyloxirane with an organocupratereagent,and it is concludedby oxidation of the B-silyl alcohol to the aldehyde,Grignard reactionand elimination of IEtjSi/OH]. The elimination leadsto either the (E)- or the (Z)-alkeneby using different reagenrs.
t'./tAr^oo.
\ru"
:-
THt ErOv;\ l R oEr
o /^
E13Si
Bu2cuLi
OH I
tuJ
t
E13Si
/,/
Bu
*
)I
OTBS
Er3Si
t
r.
/$oo"
Bu o:
ar()ducts of nitrOalkanesand
-c( .
t!:
r . I . ' - 1 5 .8 4 5 3 ( 1 9 9 4 ) .
o . : . ' : e r a d t . A C I E E 3 2 , 4 1 8( 1 9 9 3 ) .
ih
.t(rC 59.7766 (1994).
lvq:
Non-ate allylcopperis also useful in the synthesisof 5-hydroxyalkenesfrom allyl chloridesand epoxides.T1.2-Amino alcoholsare producedfrom reactionof epoxides with amide cupratereagents.8 Chain extension. l,l-Diiodo-'and l,l-bis(triflyloxy)alkanes,r0which can be made from aldehydes,undergo dialkylation or alkylative reduction. In using aspartic acid as a general building block for B-amino acids, the a-carboxyl group is converted to an iodomethyl group. Subsequentreaction with cuprate reagents completes the chain elaboration.rr A series of 4-substitutedoxazolidin-2-onesand 2-aminoalkanols are formed by displacementreactions with organocopperson tosyloxymethyl derivatives which are derived from serine12or glycidol.13Chiral stannaneshave been acquired from amesvloxvstannanes.la
25t Organocopperrcagents Replacementof an d-methoxy group of an amide (or carbamate) with RCu in the presenceof BFr . OEt2 probably involves an N-acyliminium intermediate.15 N-Boc amines are made from the metallated /-butyl N-tosyloxycarbamate.16 Allylic displacements. Applications of this process include vinyl- and allyltin Homoallylic alcohols asymmetrically substituted at the allylic posicompounds.rT'18
The syn-1,3-dimethylpattern is frcqrx the structuralmotif by an iterativeproce y-hydroxy a,B-unsaturatedsulfones.:^R
enemethanes are availablefrom allenrl su reagents.2T
tion are obtained from 4-bromo-2-alkenoyl derivatives of camphor sultam in two steps.le
qi!x,,
R2Cu(CN)Liz
,\,l. "
Phsoz
q,h-
*o^fi
Orl
OH R
Me3cuLi2 ,n.t1"
4-MeC6H4SO2
(tvtarsC
Propargyl acetatesundergo reductive isomerization to give terminal allenes.20 Conjugate additions. Interesting preparationspertain to the synthesisof 3-trifluoromethyl-3-hydroxyalkanoic acids,2r 3-aminomethylcycloalkanones,22and 4vinyl-2-acetoxy-2-cyclobutenones.tt Compounds of the last type give catechol derivatives on thermolysis.
^'r--y'o i l l R
'
O
A"(t, CN THF, .78O;
^H" /
R
n
R
*5oo"
BuCu/ Etp Me(hexynyl)Cuu / Erp -
630/.(R=nBu)
The conjugate addition using silylcuprate reagents enables B-hydroxy carbonyl compounds to be synthesized.2aFunctional group transformation is relatively simple when the silicon atom of such reagents bears an electron-withdrawing substituent (e.g., Ph). A homoallylic substituent (e.g., carbonate) imparts diastereoselectivity on the conjugate addition due to its interaction with the reagent.25
*o{,^,,r\r"oo"" - l
lPh2(EtaN)Sil2CuLi
(MqSi)2N\ L--_CONil€z
1000
Ac2O
o
Differences in stereochemicalapprorl rheadditionon 7-bis(trimethylsilyl)amin ketones.28 2-Alkynoic esters are conrcr estersby the addition-trapping techniq|r
O
PhrSiOH
,o\r"/'"oo"" :
1,6-Addition to alk-4-yn-2-enoic estc extendedenolate ions can be methylatc C-4. and the productscontain a conjugar A synthesisof a-substitutedy,6-unsa
rangement of allyl ester enolates, whrch organocopperreagentsto allyl 2-alkenoa Ketone synthesis. 6-Keto-c-amirrc tones" are accessiblefrom the functroor acid chlorides. Thioesters can be used insr Addition to the carbonyl group. Rc
estersis under chelation control.35The en chain in the 7-lactonesthus generated.Mr tivity in the reactionsof protecteda-amr
Organocopperreagents 259 rr::r. rtlr carbamate)with RCu in the r r . :m r n i u mi n t e r m e d i a t e . 1 5 | :,^:rrr I N-tosyloxycarbamate.16 r. ir\,!ess include vinyl- and allyltin rr.j..\ \ubstitutedat the allylic posi-
The syn-1,3-dimethylpattern is frequentlyfound in carbon chains.Elaborationof the structuralmotif by an iterativeprocessmay employ the addition of MeqCul-i2to 7-hydroxy c,B-unsaturated sulfones.26Potential precursors of substituted trimethylenemethanesare available from allenyl sulfones and bis(trimethylsilylmethyl)cuprate reasents.2T
t r : \ i : l \ e s o f c a m p h o rs u l t a m i n t w o .
OH i
OH I
MercuLi:
oR,
oni.|n:*6l/,
ens{Yn
.'^'no , Ho.^fi
EtzO
4-MeC6H4SO2
\-^ -U
o^o
(Me3SiCH2)2CuLi
PTolSo2
.12o.t h
73-851"
a8"h r r l r : : ( \ nt o g i v e t e r m i n a l a l l e n e s . 2 0 tr, :. pertain to the synthesisof 3-trin r : ' n r e t h y l c y c l o a l k a n o n e s ,a2n2d 4 ri. ,r the last tyPe give catechol
Differences in stereochemicalapproachof organocopperand cupratesare found in esters,amides,and the alkynyl the additionon 7-bis(trimethylsilyl)amino-o-alkynoic ketones.28 2-Alkynoic esters are converted into tetrasubstituteda,B-unsaturated estersby the addition-trapping technique.2e (MecSi),N (Me3Si)2N. r______-_CONMez
OAc
t-CONMez
BuCu/ Et2O, -20o
R = Bu 90"/. (E:Z 83:171
Me(hexynyl)CuLi /Et2O, -50o
R=Me 95% (EZ 10:90)
83"h
o?^-
rrr!.nt\ enablesB-hydroxy carbonyl rur :r.rnsformationis relativelysimple , i: r'lectron-withdrawingsubstituent | ::rfarts diastereoselectivityon the hc:r'rgent.25
t '
R
\-1\ /
O Ll "oAo
PhrSiOH -l cooMe
: 65-85%
The 1,6-Addition to alk-4-yn-2-enoic estersgives deconjugatedallenyl esters.30 extended enolate ions can be methylated at C-2. Interestingly, allylation occurs at C-4, and the productscontain a conjugatediene unit. A synthesisof a-substituted 7,6-unsaturatedacids exploits the facile Claisen rearrangement of allyl ester enolates, which can be generated by conjugate addition of organocopperreagentsto allyl 2-alkenoates.rl Ketone synthesis. 6-Keto-o-amino acid derivatives32and 2-oxathianyl ketonestt are accessiblefrom the functionalized organocoppersand relatively simple acid chlorides. Thioesters can be used instead of acid chlorides for ketone synthesis.r4 Addition to the carbonyl group. Reaction at the aldehydefunction of B-formyl estersis under chelationcontrol.rsThe entering group becomestrans to the original chain in the 7-lactonesthus generated.More readily understoodis the diastereoselectivity in the reactionsof protecteda-amino aldehydes.16
260 Organocopperreag€nts
>l
".\O
,ra
Me2CuLi EtzO,-78o;
Bu
-+"
COOtvte aq. H2SOa
(Me3Si)2Cu.LiCN Ph2N---E
lHF - HMPA
t ^ l * t P?bA' L
72o/o(trans:cis >95:51
BocNH
BocNH OH
\ / ..t--1,
B2CuLi
-.LCHO .j
BocNH OH
*\
. / ..-i
49-93% (89-98:11-2)
Other additions. 4-Substituted dihydropyridines are usually synthesized by addition reactions on activated pyridines. Derivatization of 3-pyridinecarbaldehyde into a C2-slmmetrical imidazolidine enables the addition enantioselectiver? by using soft nucleophiles, the attack of which is preceded by coordination to the chiral auxiliary.
ilzK' \-/ dn
, ,Ph N-l<
CICOOMe MeCuMgBl THF, .600
2") a-a
Ph , r,
90% (95% ee)
Alkynes can be transformedinto alkenylstannanes38'3e by reactionwith stannylcuprates.It is possibleto trap the 1,2-dimetallicalkene specieswith various electrophiles. The analogousvicinal difunctionalizationof alkynyl selenidesao has also been reported. A route to trisubstituted alkenes from phenylthioacetylenearstarts with cuprate addition, but a 1,2-metal rearrangment is involved. Enamines are obtained from N-ethynyldiphenylamine.a2The alkenylcopper intermediate is also reactive toward many electrophiles. Silylcupration of functionalized alkynes may lead to cyclic productsby virtue of intramolecularalkylation.a3
Bu3Sn(Me)Cu(CN)Li2
Ph----
| "u.
,snBue I
L'l- l
oc
o=r_\ \{
Y
Ph
7O7o
,snBu3
'R. D . R i e k e , D . E . S t a c k , B . T . D a w s o n .T - C t P .J . S t a n g ,T . B l u m e , a n d V . V . Z h d a n k r n . J , tA. Ogawa, Y. Tsuboi, R. Obayashi. K. \'r*'o 0994\. 'M. Holo, H. Harada, C. Watanabe, and A llo tM. H o i o , H . H a r a d a ,a n d A . H o s o m i . C l r , r oD. C. Chauret and J. M. Chong, Il 34. -1695, tD. E. Stack,W. R. Klein, and R. D. Rieke. fL "Y. Y a m a m o t o ,N . A s a o , M . M e g u r o . N . T s u \ r H. Nakamura, CC l20l (1993). 'A.G. Martinez, A. H. FernandezR , . M Ah S u b r a m a n i a n ,S 1 0 6 3( 1 9 9 3 ) . "'A. G . M a r t i n e z ,J . O . B a r c i n a ,B . R . D i e z . r n d " C.W. Jefford and J. Wang, TL 34, I I I I r 199-ir -M. P . S i b i , D . R u t h e r f o r d ,a n d R . S h a r m a . . / C ''S. I w a m a a n d S . K a t s u m u r a ,B C S J 6 7 . l - r 6 , i r I ''J. Y e , D . - S . S h i n , R . K . B h a t t ,p . A . S r a r n . e r 'tC. L u d w i g a n d L . - G . W i s t r a n d , A C S 4 t . - 1 6 -r ''C. Greck, L. Bischoff, A. Girard, J. Hatrce\.I ''F. B e l l i n a ,A . C a r p i r a .M . D e S a n r i s .u n a n I "S. W a t r e l o t ,J . - L . P a r r a i n , a n d J . - P . Q u i n r a r d . ''C. Girard, G. Mandville, and R. Bloch. L{ t. t"M. H . N a n t z , D . M . B e n d e r ,a n d S . J a n a \ r . S J :r M. Gautschi, W. B. Schweizer, and D. Seehr.t ttR. K . D i e t e r a n d C . W . A l e x a n d e r .S L 4 0 7 r 1 9 9 :rA. C u r s k i a n d L . S . L i e b e s k i n d ,J A C S l l S . 6 l l :t l. Fleming and S. B. D. Winter, TL 34.72t' , I tt M. R. Hale and A. H. Hoveyda, "IOC 59. {,r'\l :t E . D o m i n g u e z a n d J . C . C a r r e t e r o ,f 5 0 . ? 5 S ' M. Harmata and B. F. Herron, S 202 ( 199_1r " R. J. P. Corriu, C. Bolin, J. Iqbal, J.J. E. Ilorc 'D. G . H a l l , D . C h a p d e l a i n e ,P . p r e v i l l e . a n d p u'S. A r n d t , G . H a n d k e , a n d N . K r a u s e ,C B l 2 a . ''M. E r i k s s o n , M . N i l s s o n , a n d T . O l s s o n .S l l ' "R. F . W . J a c k s o n ,M . W i s h a r t , a n d M . J . r r U r r | l "J. wei. R. O. Hutchins, and J. prol. /OC Si. :1 ! B . F . B o n i n i , A . C a p p e r u c i ,M . C o m e s - F r a r r h and,P. Zani, SL 937 (1993). '5H.-U. R e i s s i g ,H . A n g e r t , T . K u n z , A . J a n < n r 6280 ( 1993). *M.T. Reetz,K. Rtilfing, and N. Griebenos. fl "P. M a n g e n e y , R . G o s m i n i , S . R a u s s o u .\ t C i994\.
Organocopperreagents 251
(MeaSi)zCu. LiCN
-\
,.
--\
THF. HMPA
S iMe3
MsBrz
ir^,'J I '"*
Ph2N 85"/"
"ans:cis>95:5)
BocNH OH
t-
' a
F,
Ph"N---.
o
c E',
""',-t'""] |
:
\ / .'-.. R
3 99 8 : 1 1 - 2 )
; r : j r n e r a r e u s u a l l y s y n t h e s i z e db Y ir:\ rrrlation of 3-pyridinecarbalde1f,..- the addition enantioselectiver? I r. nrecededby coordination to the
tr+f,Oc
ph
,,'Nl
'n
-r'r-'l{ \J,Ni
/n
90% (95%ee)
t' ln::nc's'E by reactionwith stannyllr. .ii.ene specieswith various elechas also 12:i',:roi alkynyl selenidesao starts r. l:{)m phenylthioacetylenear are obBm.nl r\ involved. Enamines reacis also r.n\ i..()pperintermediate lf :.lnctronalizedalkynes may lead to \li:l,rn.
:fl
o<1 Y
F
Ph
70v"
,snBus
' R . D . R i e k e , D . E . S t a c k , B . T . D a w s o n ,T . - C . W u , a n d W . R . K l e i n , J O C 5 8 ' 2 4 8 3 ( 1 9 9 3 ) ' 'P. J . S t a n g ,T . B l u m e , a n d V . V . Z h d a n k i n , S 3 5 ( 1 9 9 3 ) . tA. O g a w a , Y . T s u b o i , R . O b a y a s h i , K . Y o k o h o m a ' I ' R y u , a n d N ' S o n o d a ,J O C 5 9 , 1 6 0 0 ( l 994). oM. H o . | o ,H . H a r a d a ,C . W a t a n a b e ,a n d A . H o s o m i , B C S J 6 7 ' 1 4 9 5( 1 9 9 4 ) ' t M . H o j o , H . H a r a d a ,a n d A . H o s o m i , C L 4 3 7 ( 1 9 9 4 ) . uD.C. C h a u r e ta n d J . M . C h o n g , 7 t 3 4 , 3 6 9 5 ( 1 9 9 3 ) . 7D. E. Stack,W. R. Klein, and R. D. Rieke, 7L 34, 3063 (1993). tY. Y a m a m o t o , N . A s a o , M . M e g u r o , N . T s u k a d a ,H . N e m o t o , N . S a d a y o r i ,J ' G ' W i l s o n , a n d H. Nakamura, CC l20l (1993). eA.G. , . M . A l v a r e z , J ' O . B a r c i n a ,C ' G G o m e z , a n d L ' R ' Martinez, A.H. FernandezR ( 1 9 9 3 ) . S u b r a m a n i a n ,S 1 0 6 3 r 0 A . G . M a r t i n e z ,J . O . B a r c i n a ,B . R . D i e z , a n d L . R . S u b r a m a n i a nf, 5 0 ' 1 3 2 3 1( 1 9 9 4 ) " C.w. Jeffordand J. Wang,7L 34, I I I I (1993). 't M . P . S i b i , D . R u t h e r f o r d ,a n d R . S h a r m a ,J C S ( P I ) 1 6 7 5( 1 9 9 4 ) . 't S . I w a m a a n d S . K a t s u m u r a ,B C S " /6 7 , 3 3 6 3 ( 1 9 9 4 ) . 'oJ. Y e , D . - S . S h i n , R . K . B h a u , P . A . S w a i n ,a n d J . R . F a l c k ,S L 2 0 5 ( 1 9 9 3 ) . 'tC. L u d * i g a n d L . - G . W i s t r a n d ,A C S 4 8 , 3 6 7 ( 1 9 9 4 ) . '6C. G r e c k , L . B i s c h o f f , A . G i r a r d , J . H a j i c e k ' a n d J . - P .G e n e t ,B S C F l 3 l ' 4 2 9 ( 1 9 9 4 ) ' 'tF. B e l l i n a ,A . C a r p i t a ,M . D e S a n t i s ,a n d R . R o s s i ,I 5 0 ' 4 8 5 3 ( 1 9 9 4 ) ' '*S. W a t r e l o t ,J . - L . P a r r a i n , a n d J . - P . Q u i n t a r d , J O C 5 9 " 1 9 5 9 ( 1 9 9 4 ) ' loC. Girard. G. Mandville. and R. Bloch, TA 4,613 (1993)"'M. H . N a n t z , D . M . B e n d e r ,a n d S . J a n a k i , s 5 7 7 ( 1 9 9 3 ) . :r M . G a u t s c h i ,W . B . S c h w e i z e r ,a n d D . S e e b a c h ,C B 1 2 7 , 5 6 5 ( 1 9 9 4 ) . ttR. K . D i e t e r a n d C . W . A l e x a n d e r ,S L 4 0 7 ( 1 9 9 3 ) . rr A . G u r s k i a n d L . S . L i e b e s k i n d ,. r A C Sl 1 5 , 6 l 0 l ( 1 9 9 3 ) . II. Fleming and S. B. D. Winter, TL34,7287 (1993). t'M. R . H a l e a n d A . H . H o v e y d a ,J O C 5 9 , 4 3 ' 7 0( 1 9 9 4 ) 16E. D o m i n g u e z a n d J . C . C a r r e t e r o , . 7 5 0 , ' 1 5 5 7( 1 9 9 4 \ . r? M. Harmata and B. F. Herron, S 202 (1993). " R . J . P . C o r r i u , G . B o l i n , J . I q b a l , J . J . E . M o r e a u , a n d C . V e r n h e t' T 4 9 , 4 6 0 3 ( 1 9 9 3 ) ' t ' D . G . H a l l , D . C h a p d e l a i n e ,P . P r e v i l l e , a n d P . D e s l o n g c h a m p sS , L 660 (1994)' r"S. A r n d t , G . H a n d k e , a n d N . K r a u s e ,C B 1 2 6 ' 2 5 1 ( 1 9 9 3 ) t' M . E r i k s s o n . M . N i l s s o n , a n d T . O l s s o n ,S L 2 7 1 ( 1 9 9 4 ) . t'R. F . W . J a c k s o n ,M . W i s h a r t , a n d M . J . W y t h e s , S L 2 1 9 ( 1 9 9 3 ) . ttJ. wei, R. O. Hutchins, and J. Prol, JoC 58,2920 (1993)ra B . F . B o n i n i , A . C a p p e r u c i ,M . C o m e s - F r a n c h i n i ,A . D e g l ' l n n o c e n t i ,G . M a z z a n t i , A . R i c c i , a n d P . Z a n i , S L 9 3 - 1( 1 9 9 3 ) . t 5 H . - U . R e i s s i g ,H . A n g e r t , T . K u n z , A . J a n o w i t z , G . H a n d k e , a n d E ' B r u c e - A d j e i ' J o C S 8 ' 6280 ( 1993). t u M . T . R e e t z , K . R i j l f i n g , a n d N . G r i e b e n o w ,? L 3 5 , 1 9 6 9 ( 1 9 9 4 ) . t t P . M a n g e n e y , R . G o s m i n i , S . R a u s s o u ,M . C o m m e r c o n , a n d A (l994).
Alexakis, JOC 59' 1877
262 Organocopper/zincreagents 3*A.
B a r b e r o , P . C u a d r a d o ,I . F l e m i n g , A . M . G o n z a l e z , F . J . P u l i d o , a n d R . R u b i o , J C S ( P l ) 1 6 5 7( l 9 9 3 ) . t'1. B e a u d e t ,V . L a u n a y ,J . - L . P a r r a i n , a n d J . - P . Q u i n t a r d , f r 3 6 , 3 8 9 ( 1 9 9 5 ) . * A . L . B r a g a , A . R e c k z i e g e l , C . C . S i l v e i r a , a n d J . V . C o m a s s e t o ,S C 2 4 , 1 1 6 5 ( 1 9 9 4 ) . o'E. C r e t o n , L M a r e k , D . B r a s s e u r ,J . - L . J e s t i n ,a n d J . F . N o r m a n t , T L 3 5 , 6 8 7 3 ( 1 9 9 4 ) . o2L. C a p p e l l a ,A . C a p p e r u c c i ,G . C u r o t t o , D . L a z z a r i , P . D e m b e c h ,G . R e g i n a t o ,a n d A . R i c c i , TL34,33lt (1993\. o3l. Fleming and E. Martinez de Marigorta,TL34, l20l (1993).
Organocopper/zi nc rea gen ts. | 5, 229 - 230; 16, 238- 2 4l ; 17, 218- 223 The tolerance of functional groups in these organometallics makes Alkylation, them very valuable in synthesis.Thus their formation and reactivity are not affected by the presenceof a pivalate ester at the a-position.l Su2' Reactions. Methyl a-(t-butyl)acrylate is obtained from reaction of the 2-chloromethyl-3-methyl-2-butenoicester with a methylcopper/zincreagent'' Higherorder zinc cuprates or vinyl-ZnCl (with catalytic Cu salt) effect displacement reactions on 7-mesyloxy a,B-enoates, whereas reduction is observed with vinylCu(CN)M or (vinyl)zCu(CN)M z.l
1
\--J
,COOtvte
r
COOMe
MaLFCuBr-Me2S
--\-{
_-_-
/
\\
/-L"'
--
ZnCl2l'lHF
-70o -> 0o
OTBS I COOMe
Organocopper/zirconiumreagcntsConjugateaddition.' Alkylzircr l0 mol 7o)addto enones,enals,andco tolerated.
;ncoows
860/o
A*n"t'n""
Y OMs
P . K n o c h e l , T . - S . C h o u , C . J u b e r t .a n d D t L.-H. Xu and E. P. Ki.indig, HCA 77. t1t 'T. I b u k a , K . N a k a i . H . H a b a s h i t a .K B c r 9479 0993\. 'C. E. Tucker and P. Knochel,JOC 5t.11 'R. Duddu, M. Eckhardt, M. Furlong. H (t994). ^_L. Z h u , K . H . S h a u g h n e s s ya, n d R . D . R r S. E. Denmark and L. R. Marcin, JOC 5l 'M.-C. P . Y e h , C . - C . H w u , C . - H . U c n g .I 'M.-J. S h i a o ,K . - H . L i u , a n d J . - S .\ l b n 3 . . ' M . T . C r i m m i n s , P . G . N a n t e r m e t ,B . \ [ ' T . L . R e i n h o l d ,A . W . - H . C h e u n g ,K . . A 1 0 3 8( 1 9 9 3 ) .
OTBS I ,z':,.V2',u.COOMe
LiCl-CUCN
4
THF, OO
67"/"
:
I
Cross-coupling. Reaction partners containing various functional groups have been used, which include pairings of acetate/nitro groupo and oxazolidinone/ester.5 Functionalized 2-haloalkenes are also readily made." Acceptors include nitroalkenes,? (tropone)iron tricarConjugate addition. bonyl,8 and N-acylpyridinium saltsein the conjugate addition. It may be followed by
o
a"
P. Wipf, W. Xu, J.H. Smitrovich, R. L-ch
Organogermanium reagents. Allylation.' Aldehydes are con\li of allyl bromideand germanium(ll) pd lessreactive,requiring an excessof rh Y. Hashimoto, H. Kagoshima, and K. Se
a cycloacylation process.'n cooEr ErOOC r\"u"'
OMOM
9''"
) ...cooEt ( t l
CuBr . SMe2
V/-rr-CuHtt I OMOM
Me3SiCl
787o
Organoindiurn reagents. Allylation. Aldehydes and aldin and amines,2respectively,by the allyl and the metal. Starting from glycenl chain extension followed by ozonolysis tion of 2-deoxy sugarsin a straightforr
Organoindium r€agents 263
r 1 : . 1 . F . J .P u l i d o a, n dR . R u b i oJ, C S ( P I ) f u , : j r r 3 6 , 3 8 9( 1 9 9 5 ) . I \ ( i.nasseto, SC24, 1165(1994\. l: i i \ormant, TL 35,68'73(1994). G. Reginato, andA. Ricci, ,t i' Dembech, t. _ .,i993).
t6 l.i8-241: 17. 218-223 cr,,.rp. in theseorganometallicsmakes xmirron and reactivity are not affected
lP. K n o c h e l , T . - S . C h o u , C . J u b e r t , a n d D . R a j a o p a l , J O C 5 E , 5 8 8( 1 9 9 3 ) . tL.-H. X u a n d E . P . K i . i n d i g ,H C A 7 7 , 1 4 8 0 ( 1 9 9 4 ) . tT. I b u k a , K . N a k a i , H . H a b a s h i t a ,K . B e s s h o ,N . F u j i i , y . C h o u n a n ,a n d y . y a m a m o t o , T 4 9 , 9479 (993\. 'C. E. Tucker and P. Knochel, JOC 5E,4781 (lgg3\. tR. D u d d u , M . E c k h a r d t , M . F u r l o n g , H . p . K n o e s s , S . B e r g e r , a n d p . K n o c h e l, T 5 0 , 2 4 1 5 ( 1994\. u L. Zhu, K. H. Shaughnessy,and R. D. Rieke, SC 23, 525 (lgg3). 'S. E. Denmark and L. R. Marcin, JOC 58,3850 (1993). tM.-C. P. Yeh, C.-C. Hwu, C.-H. Ueng,and H.-L. Lue, OM 13, l7gg(lgg4). nM.-J. S h i a o , K . - H . L i u , a n d J . - S . W a n g ,J C C S ( T )4 0 , 1 7 5 ( t 9 9 3 ) . 'uM.T. C r i m m i n s , P . G . N a n t e r m e t ,B . W . T r o t t e r , I . M . V a l l i n , p . S . W a t s o n , L . A . M c K e r l i e , T . L . R e i n h o l d , A . W . - H . C h e u n g , K . A . S t e t s o n , D . D e d o p o u l o u ,a n d J . L . G r a y , J O C S t , 1 0 3 8( 1 9 9 3 ) .
O\:::,,n
!idr. r\ obtained from reaction of the Higherrh i :rerhylcopperlzincreagent.? carr.\rrc Cu salt) effect displacement r:. reduction is observed with vinyl-
Organocopper/zirconiumreagents. Conjugateaddition.t Alkylzirconocenesin the presenceof Cu(I) salt (3l0 mol vo)addto enones,enals,andconjugatedsulfones.Many functionalgroupsare tolerated.
cOOMe
o
-----\ \\
Cp2Z€l2
;^cootes
86q6
A t-"1='
o t t l
(\coorrps
CuBr . SM€2
OTBS R
I
,.rr,..Vl^.,u.COOUe
z
.
'P. Wipf,
W. Xu, J.H. Smitrovich, R. Lehmann,andL.M. Venenzi,TS0. 19350994).
67"/" lr::rns various functional groups have !n rrrr proup4and oxazolidinone/ester.s t n:rJc'." lc rrtroalkenes,?(tropone)iron tricarn.r,jjrte addition.It may be followed by
f'
lr,r:
rc.
o cooet ()Lt ,l
tay"u""
OMOM 78"/"
Organogermanium reagents. Allylation.t Aldehydes are converted to homoallylic alcohols by a combination of allyl bromide and germanium(Il) iodide (also in the presenceof znl). Ketones are less reactive, requiring an excessof the reagentsand longer reaction times. rY. Hashimoto, H. Kagoshima, andK. Saigo,TL 35, 4805(1994).
Organoindium reagents. Allylation. Aldehydes and aldimines are converted to homoallylic alcoholsl and amines,2 respectively,by the allylindium reagent generatedfrom allyl bromide and the metal. Starting from glyceraldehyde acetonide and related aldehydes, the chain extension followed by ozonolysis and simple manipulations allows the elaboration of 2-deoxy sugarsin a straightforward manner.l
264 Organozincreagents
o
"\vr_J\
2'.r''
gem- Functionalization of cldq propanes, the systematic metallatioo stereoselectiveformation of C-C bol
OH I
zuY'v
In
'-d
EroH ))))
'
90"/.
&* js I I
Ph
'W. H . B i n d e r , R . H . P r e n n e r ,a n d W . S c h m i d, T 5 0 , 7 4 9 ( 1 9 9 4 ) . tS.-J. J i n , S . A r a k i , a n d Y . B u t s u g a nB , C S J6 6 , 1 5 2 8( 1 9 9 3 ) .
B
Organoiron reagents. 16, 241 Ketones from acyl chlorides.t Either dialkylirons or lithium trialkylferrates can be employed to react with acyl chlorides to furnish ketones. These reagentsare prepared in situ from FeClr by reduction to FeCl2 and reaction with RLi or RMgX. Actually RMgX * FeCl: (cat.) is more convenientto use. 'T. Kauffmann,K.-U. Vob,andG. Neiteler, CB 126,1453(1993).
9-Organoth io-9-borabicyclo[3.3. 1]nonane. Vinyl sulfides.r 2-Organothio-l-alkenes are produced from a Pd(0)-catalyzed reactionwith terminal alkynes.
T
L
B
M . J . D u n n , R . F . W . J a c k s o n ,J . P i e r r u r r ( 1993). 'C. M e y e r , L M a r e k , G . C o u r t e m a n c h c .r 'T. H a r a d a ,T . K a t s u h i r a , K . H a t t o r i . a o d
Osmium trichloride. 17,235 u-Ketols.t Alkenesare oxidi;a OsClr.
S . - i . M u r a h a s h i , T . N a o t a .a n d H . H e o . r
@
,'n.',"0
Osmium tetroxide. 13,222-225: 11 r7.236-240 Asymmetric dihydroxylation. lr rure consistingof (DHQD)z-PHAL. K
II
\
PhCH=CHz/ THF
76"/"
MeOH
'T.
R. ,SPh Y
I s h i y a m a , K . N i s h i j i m a , N . M i y a u r a , a n d A . S u z u k i , " / A C S1 1 5 , 7 2 1 9 ( 1 9 9 3 ) .
Organozinc reagents.13, 220-222; 14, 233-235; 15, 238-240; 16,246-248; 17,228-234 Allenes.' The reactionof organozinc/copper reagentswith propargyltosylate furnishesallenederivatives. Carbocyclization,2An organozincderivedfrom the appropriateiodoalkeneis liableto cyclization. The newreactivecentercanbe functionalized or quenched.
I
Rcoo-u) \J
-1
'nEt2o
a'"' l,
Rcoo\^\ \-J
a
Rcoo\,,\\ LJ
71-73"/"
aqueous t-butanol can be applied su remotesubstituents. Theseincludealll enynes,rvinyl- and allylsilanes,'em noted that increasing the amounts o K:OsOz(OH)a(l mol Vo) leads to raF
.rmide.6 cls-Disubstituted and tetrasubstrtu .ubstrates for asymmetric dihydroxyl ihat a level of 1l-13%o ee is reachablc rhe formation of diols with 5-99% ec , rulfides,disulfides, 1,3-dithianes)rer lectivity (61-98qo)is highly depen&a Allyl aryl ethersundergoAD nrrt rhe aryl ring.r0An o-substituentis dc senerally exerts favorableeffects.
Osmiumtetroxide 265 OH
.
-'-rorr\ l ol \
.
gern- Functionalization of cyclopropanes.3 Starting from gem-dibromocyclopropanes, the systematic metallation to produce I -halocyclopropylzincates enables stereoselectiveformation of C-C bonds. Ph
90"/"
&'' BuLr i&'l
a9+t.
Br
L
B'l
lru
1_\'
l p I crrccrctr; BulnLi
n I /\ Bu
r l i r . r r \ ) n so r l i t h i u m t r i a l k y l f e r r a t e s ) :,-:rl\h ketones.These reagentsare C .,n,l reactionwith RLi or RMgX. lc:: :\\u\e.
'
M . J . D u n n , R . F . W . J a c k s o n ,J . P i e t r u s z k a ,N . Wishart,D. Ellis, andM. J. Wythes,SL 499 (1993). tC. Meyer,I. Marek,G. Courtemanche, andJ.-F.Normant,5L266 (1993). rT. Harada.T. Katsuhira,K. Hattori,andA. Oku,JOC 58,2958(1993).
:<: 1993). Osmium trichloride. 17, 235 a-Ketols.t Alkenes are oxidized to ketols by peracetic acid in the presenceof l:. .r{,duced from a Pd(0)-catalyzed
OsClr. lS.-i. Murahashi, CL 1767(1993). T. Naota,andH. Hanaoka,
R\ /sPh
f:
il
76"/"
/ 1('Sll5,
!-..
'1219(1993)
| 5. 238-240;16,246-248; 11.' i-casentswith propargyl tosylate ii ::,'rn the appropriateiodoalkeneis :::: ^l iunctionalizedor quenched.
tr,
RCOO
Osmium tetroxide. 13, 222-225; 14, 235-239: 15, 240-241; 16, 249-253; 17,236-240 Asymmetric dihydroxylation. In the preparation of chiral diols, a typical mixKrFe(CN)0,KzCOr, MeSOuNHzin ture consistingof (DHQD)z-PHAL, KzOsOz(OH)q, aqueous t-butanol can be applied successfully to many alkenes bearing different Theseincludeallyl halides,'tertiary allylic alcohols.2conjugated remotesubstituents. enynes,3vinyl- and allylsilanes,aenones,and a-substitutedstyrenes.sIt should be noted that increasing the amounts of the ligand (DHQD)2-PHAL (5 mol Vo) and KzOsOz(OH)a(l mol Vo) leads to rapid turnover in the presenceof methanesulfonamide.o cis-Disubstituted and tetrasubstituted double bonds are most difficult classesof substratesfor asymmetric dihydroxylation (AD), but several examples demonstrate that a level of 7l-'73%oee is reachable.'ln a survey of 23 cyclic disubstituted olefins, the formation of diols with 5-99Vo ee has been observed.sSulfur-containingalkenes (sulfides,disulfides, 1,3-dithianes)reacton the doublebondsonly, but the enantioselectivity (61-98Vo)is highly dependenton the substitution pattern of the olefin.e Allyl aryl ethers undergo AD with enantioselectivity affected by substituentsin the aryl ring.r0 An a-substituent is deleterious(28-63Vo ee), whereas a p-substituent generally exerts favorableeffects.
266 Osmiumtetroxide There are numerous applications of the method; perhaps mention should be made The dihyof the AD of a vinyldioxabenzosuberanerrand a lactone enolcarbonate.12 l-fructose to converted has been reaction former the from droxy aldehyde obtained by a chemoenzymatic procedure, and the latter transformation is related to synthesis of camptothecin. OH
v"lto-/"'v
AD-mix-P
( ,o-\A ,fo-L2
OH
^Y. L . B e n n a n i a n d K . B . S h a r p l e s s .f L 3 { . l { M . S . V a n M i e u w e n h z ea n d K . B . S h a r p l c s s '2.-M. Wang, K. Kakiuchi, and K. B. Sharpt 'P. J. Walsh, P.T. Ho, S. B. King, and K B I '2.-M. Wang,X.-L.Zhang, and K. B. Sharpl , nd C.-H. \*b I . H e n d e r s o n ,K . B . S h a r p l e s s a t D. P. Curran and S.-B. Ko, JOC 59. 6l19 I 19 'P. J. walsh, Y. L. Bennani, and K. B. Sharpt 'G.A. C r i s p i n o ,K . - S . J e o n g ,H . C . K o l b . Z ( 3785 1993). 'D. P i n i , A . P e t r i , a n d P . S a l v a d o r i ,f 5 0 . l l l o K . J . H a l e , S . M a n a v i a z a r ,a n d S . A . P e a \ . f
L-[ructose
90% (>95% ee)
Osmium tetroxide-Jonesreagent. Double bond cleavage.' The comb alkenes.affo mono-and 1,2-disubstituted
AD-mix-P OCOBuT
J . R . H e n r y a n d S . M . W e i n r e b ,J O C 5 t . { : r J
-1001"(787"ee\ Allylic and homoallylic amines in which the nitrogen atom is masked with two Boc groups provide valuable building blocks for synthesis not only because of the multiple functionalities after AD, but also becausethe two hydroxyl groups emergein an differentiated forms in the products. The proximal oxygen atom becomes part of r3 oxazolidinonesYstem.
iu m) f loocs Oxabis(triphenylphosphon Dehydration.r The salt (l) is an ero fication,amidation,and anhydrideforma
Ph3P. ,PF
rtl Boc
I
goc-N.','\-'R
AD-mix-P MSSO2NH2 tBUOH-H20
o. Y-o o^^-il.-r\'.-n l
D. G. Niyogi, S. Singh, and R. D. Yarme. JF
OH 7Y81"/" (75-98"/" eel
It has been found that pyrimidine ligands show superior enantioselectivity in AD of terminal alkenes.'aCovalent linkage of the quinine alkaloids to a polymer support r5 catalysts' generatesheterogeneous There is a report on the AD of l,l-disubstituted allylic alcohol derivatives that give diols having an absolute configuration opposite to that predicted by Sharpless' steric model.16 ' K. P.M. Vanhessche, TL 35' 3469(1994)' Z.-M' Wang,and K. B. Sharpless, tZ.-M. wang and K. B. Sharpless, TL 34' 8225(1993)' I K. Tani, Y. Sato,S. Okamoto,and F. Sato,TL 34' 49'75(1993). aJ.A. Soderquist, A. M. Rane,andC. !. Lopez,fL 34' 1893(1993)' '2.-M. wang andK. B. Sharpless, SL 603 (1993).
Oxalyl chloride. 17, 241-242 Acid chlorides.' Oxalyl chlori& cr very mild conditions. The preparation of L'ndr 2-Hydroxynaphthoquinones.: to chloridc with oxalyl react lacetic esters saponification. through is removable
cooEr crc AEr!
s
|
Oxalylchloride 267 [ .:. rerhaps mention shouldbe made s j.r\)ne enolcarbonate.''The dihytr. - rr\ been converted to l-fructose i s r e l a t e dt o s y n t h e s i s r:.-.l,,rs1u1ion
OH OHO
HO
on
oY. L. Bennaniand K. B. Sharpless, rL 34,20'19(1993). 'M. S. VanMieuwenhze TL 35,843(1994). and K. B. Sharpless, tZ.-M. Wang,K. Kakiuchi,and K. B. Sharpless, JOC 59,6895(1994). nP.J.walsh,P.T.Ho, S.B. King, andK.B. Sharpless, TL35'5129(1994). 'oZ.-M.Wang,X.-L.Zhang,and K. B. Sharpless, TL34,2267 (1993). I'1. Henderson, andC.-H. Wong,./ACSU6, 558(1994). K. B. Sharpless, ' t D . P .C u r r a na n dS . - B .K o , J O C5 9 , 6 1 3 9( 1 9 9 4 ) . 't P.J. walsh,Y. L. Bennani,and K. B. Sharpless, TL 34, 5545(1993). ' t G . A . C r i s p i n oK, . - S .J e o n gH, . C . K o l b ,Z . - M . W a n g D , . X u , a n dK . B . S h a r p l e s s , J OSCE ' 3785(l993). 't D. Pini. A. Petri.andP. Salvadori. 7 50, I l32l (1994). 'uK. J. Hale, S. Manaviazar,and S. A. Peak,TL 35,425 (1994).
LJructose
S ', 4€
Osmium tetroxide-Jones reagent. Double bond cleavage.' The combination of reagents can be used to cleave alkenes,affording carboxylic acidsdirectly' mono- and 1,2-disubstituted 'J. R. Henry and S. M. Weinreb,JOC 58, 4'145(1993). 100% (78% ee)
hc ^:lrosen atom is masked with two i , , : . r n t h e s i sn o t o n l y b e c a u s eo f t h e u.:' :hc two hydroxyl groupsemergein
Oxabis(triphenylphosphon iu m) f luorosulfate. Dehydration.r The salt (l) is an excellent dehydrating agent that effects esterification, amidation, and anhydride formation. + + Ph3P\ ,PPh3
r:l;l rr\\'!€Il atom becomespart of an
2 FSO;
(1)
o \_n /
l
o--N.rtr'-'R I
'
D . G . N i y o g i , S . S i n g h , a n d R . D . V a r m a , . / F C 6 8 , 2 3 ' 7( 1 9 9 4 ) .
OH
-3 81'/"(75-98% ee) th,,:r .upgvisl enantioselectivityin AD qL::.rncalkaloidsto a polymer support x:ru:c,J allylic alcohol derivativesthat pn,'-rte lo that predictedby Sharpless'
Oxalyl chloride. 17, 241-242 Acid chlorides.t Oxalyl chloride converts silyl esters to acid chlorides under very mild conditions. The preparation of pyroglutamoyl chloride is an example. 2-Hydroxynaphthoquinones.t under Friedel-crafts reaction conditions aroylacetic esters react with oxalyl chloride to give the quinone skeleton.The ester group is removablethrough sapohification.
cooEr t r : . . . r L 3 5 , 3 4 6 9( 1 9 9 4 ) . 9-i
a :--: ,1993). L -rl r\9-1( 1993).
ctcococl OH
AlClg/ MeNOz 800. 3 h 857o
268 Oxygen 'B. R i g o , S . E l G h a m m a r t i , P . G a u t r e t ,a n d D . C o u t u r i e r , S C 2 4 , 2 5 9 7 ( 1 9 9 4 ) . 2c. S a r t o r i , F . B i g i , G . C a n a l i , R . M a g g i , G . C a s n a t i ,a n d X . T a o , J O C 5 8 , 8 4 0 ( 1 9 9 3 ) .
0xygen. Oxidation of primary alcohols. The metal-catalyzed oxidation of primary alcohols (only) to carboxylic acids usually employs platinum, as shown in a procedure for the preparation of alkyl glucopyranuronates.rA palladium/carbon-lead(II) acetate systemis also serviceable.2 Ring cleavage.r Cyclic 1,3-diketonesand B-keto estersundergooxidative cleavage in a copper(Il) perchlorate-mediated process.
Oz Cu(ClOr)z MsCN rt, 12h
o tl 7,^."-cooMe
Oz-Cu(ClOr)z MeCN r t . 1 0 - 1 5h
oYcooM" Hooc \-/ 95"/"
Alkyl hydroperoxides.'o Under :ulfonhydrazides to oxygen resulrs il
""oGL*,r. Nt-tz
J. Fabre, D. Betbeder, F. Paul, and p V M . A k a d a , S . N a k a n o , T . S u g i y a m a .K 66, l5ll 0993). 'J. C o s s y ,R . D . B e l o t t i , V . B e l l o s r a .a n d 'C. Bolm, G. Schlingloff, and K. r*'erct fK. K a n e d a ,S . U e n o , T . I m a n a k a . E . S b ( t994). ^K. K a n e d a ,S . U e n o , a n d T . I m a n a l e . ( M . H a m a m o t o , K . N a k a y a m a ,y . N i s b r 'J. I q b a l ,S . B h a t i a ,a n d M . M . R e d d r . I 'P. M a s r r o r i l l i a n d C . F . N o b i t e , I L i t S .r "T. M o r i , T . S a n t a ,T . H i g u c h i , T . M e s h r 'Y. M a t s u s i t a ,K . S u g a m o t o ,a n d T . V e u 'S. N a k a t a n i , J . Y o s h i d a ,a n d S . l s o c . / , 'W Adam, M. Metz, F. Prechtl,and V 'L. Collazo, F.S. Guziec, W.-X. Hu. A t
( r993).
Baeyer-Villiger oxidation. Cyclic ketones are converted to lactones by molecular oxygen in the presenceof an aldehyde (benzaldehydemost frequently used), witha or without metal catalysts.sHydrotalcitecatalystshave also been evaluated.6 Epoxidation, Cooxidation of an alkene and an aldehydeoccurs in the presence of a metal catalyst.T'8Various other organic compounds are oxidized under selected
Oxygen,singlet. 13, 228-229: 14.2. Chloromethyl ketones.t The Cl pyridine/CH2Cl2 furnisheschloronrrl
conditions.e Hydration of alkenes, Iron-'0 and cobalt-porphyrinrr systems mediate the delivery of oxygen to organic substrates.Reduction of the intermediates result in alcohols. Additive oxidation of alkenylsilanes,t2 Electrochemical oxidation in the presence of thiophenol gives a-benzenesulfenyl carbonyl products.
q/rr
RA
nMo" 02-PhsH
Asiu"rpn
R
I
Brtff
3 ,l
Phs'.,,.\o
eEtaNOTs/ HOAC
a-Hydroxy amides and esters," Titanium enolates of amides and esters undergo hydroxylation on treatment with oxygen at -30'C.
Cleavage of alkenes.2 The rcai Ene reactions. Enones with e stituent4 are accessiblefrom alkenylsi with singlet oxygen and subsequenrdc
Oxygen,slnglet 269 ,\( :4. t597 (1994). | \ Tro. JOC 58,840(1993)
ia.\ /ed oxidation of primary alIt;:um. as shown in a procedure p:, lrd ium/carbon-lead(Il) ace-
Alkyl hydroperoxides.ta under basic conditions, the exposure of N-substituted sulfonhydrazidesto oxygen results in deamination and formation of hydroperoxides.
MeO-{r
Ts \\ //zFr \L N /'-
.NH,
'"o-\
ErOK-O2
LOOH
EtOH-H20 120, 17h
c !'.ter\ undergooxidative cleav-
)c.^
c\-COOMe
35"o
: . nrerted to lactonesby mori:rhrde most frequently used), -\r. nJ\e also been evaluated.6 hr de occursin the presence ai..le Ni. ;rr oxidized under selected
'J. Fabre, D. Betbeder, F. Paul, and p. Monsan, SC 23, 13.57(tgg3). 'M. A k a d a , S . N a k a n o , T . S u g i y a m a ,K . I c h i t o h , H . N a k a o , M . A k i t a , a n d y . M o r o - o ka . B C S J 66, 15ll 0993). tJ. C o s s y ,R . D . B e l o t t i , V . B e l l o s t a ,a n d D . B r o c c a , T L 3 5 , 6 0 g 9 ( l g g 4 ) . oC. Bolm, G. Schlingloff, and K. Weickhaldlt,TL34,3405 (1993). ' K . K a n e d a , S . U e n o , T . I m a n a k a , E . S h i m o t s u m a ,y . N i s h i y a m a , a n d y . I s h i i , J O C S g , 2 g l 5 0994\. 6K. Kaneda,S. Ueno, and T. Imanaka, CC 7g7 Ogg4\. tM. H a m a m o r o ,K . N a k a y a m a y, . N i s h i y a m a ,a n d y . I s h i i , J O C S g , 6 4 2 l ( 1 9 9 3 ) . "J. I q b a l , S . B h a t i a , a n d M . M . R e d d y ,S C 2 3 , 2 2 8 5 ( 1 9 9 3 ) . eP. Mastrorilli and C. F. Nobile, ZL 35,4193 (lgg4\. r0T. M o r i , T . S a n t a ,T . H i g u c h i , T . M a s h i n o , a n d M . H i r o b e , C p B 4 1 , 2 g 2 ( l g g r . " Y . M a t s u s i t a ,K . S u g a m o t o ,a n d T . M a t s u i , C L g 2 5 ( l g g 3 ) . '' S . N a k a t a n i , J . Y o s h i d a ,a n d S . I s o e , T 4 9 , 2 } l l ( l g g j , . '.'W. A d a m , M . M e t z , F . P r e c h t l ,a n d M . R e n z , S 5 6 3 ( 1 9 9 4 ) . 'oL. Collazo, F.S. Guziec, W.-X. Hu, A. Munoz, D. Wei, and M. Alvarado, JOC SE,6169 ( 1993).
Oxygen,singlet. 13, 228-229: t4, 249; I S, 243; 16, 25i--258: t7, 25| _253 chloromethylketones.t The cucl2-catalyzedphotooxidationof l-alkenesin pyridine/cH2cl2furnisheschloromethylketonesin moderateto goodyields.
r p \ r 1 1 n " s y s t e m sm e d i a t e t h e ..: rhe intermediatesresult in chr'nricaloxidation in the presr:, 'rlucts.
nMog R .> i _
pyridine-CH2C12
_cl
n
02llw ,CuCl2
tl
pyridinacH2C12
n\^ox
__-.aO
li:r'. rrf amides and estersun-
t'('
tl /\
O2llN, CuCl2
-/\
cleavage of alkenes.2 The reaction is sensitized by p-dimethoxybenzene. Ene reactions. Enones with an a-trialkylsilyl3 or a-trialkylstannyl substituent4 are accessiblefrom alkenylsilanes and stannanes,respectively,by reaction with singlet oxygen and subsequentdehydration. Instead ofdehydration, the addition
270 Ozone of titanium(IV) isopropoxide to the allylic hydroperoxide intermediates induces epoxidation of the transposed alkene linkage.5'6The hydroperoxides can also be reduced and used for other syntheticpurposes.t
SiMe3 l'9
SiMeq
A I
O2lhv,rPP
(iP'otr{H,d
-
Y
v
OH 65%(dr93:7)
TPP : tetraphenylporphyrin
Allylstannanesare convertedto hydroperoxideswith a vinylic stannylgroup.sThe reaction is stereoselective. The reaction is regio- and diastereoselectivefor allylic alcohols.'The effect of a neighboringcarboxyl group is also interesting.r0
Ph'l\^
# tAJ
1
Methyl esterc by degradation ol aILr stituted alkenes in methanolic NaOH afl Selective oxidation, 5-Hydropcro: acetals, undergo selective cleavagear rb themselvesare available from ene re*rr
MoOOC(CH2)7...
crH',..,..V
r
r€r
l o-o<-
E
OMe O2l hv,fPP pyridine-CHCl3 -30'. 24 h
'13'75 'T. (1994)Sato and S. Yonemochi, Z 50, ' U. T. Bhalerao and M. Sridhar , TL 34, 4341 (1993). t W . A d a m a n d M . J . R i c h t e r , S 1 7 6( 1 9 9 4 ) . ow. Adam and P. Klug, S 557 (1994). tW A d a m a n d M . J . R i c h t e r ,J O C 5 9 , 3 3 3 5 ( 1 9 9 4 ) . oW. Adam and P. Klug, CB 127, l44l (1994). tw. Adam and P. Klug. JOC 59,2695 (1994). 8P. H . D u s s a u l ta n d R . J . L e e , J A C S f f 6 , 4 4 8 5 ( 1 9 9 4 ) . oW. A d a m a n d B . N e s t l e r ,J A C S l l 5 , 5 0 4 1 ( 1 9 9 3 ) . 'nT. Linker and L. Frijhlich,ACIEE 33, l97l (1994).
The phenylselenogroup can be prcrcr quencher)at low temperaturesto girc Cleavage of oximes.6 Carbonll cor Cleavage of stabilized Wittig trzgc, ucts; therefore,a-keto estersTand l.-1-d
o
q M.Or01
*\"* PPh3
o .\coou" PhJ.oHlPh.
Ozone. 13. 229: 15, 243-244: 17, 253-254 Carbonyl compounds. Triethylamine is often superior to dimethyl sulfide as a quencher of ozonides, in terms of faster reactions and better yields of the products.l Tertiary amines,2 using a secondary amine to decompose an ozonide derived from l-alkene effects its alkylation. The amine initiates an eliminative fragmentation of the ozonide to generatean aldehyde and dialkylammonium formate. Schiff baseformation from the aldehydeand another molecule of the amine is then followed by reductionby the formate ion.
Esters f rom a- alkoxystanna ncs."
?^o* RAsngu.
;
Ozone 271
1..;','peroxide intermediatesinduces '' can also be re- re h1'droperoxides
o.!cq2ct2 Phl^* I I mor. HN-/ sievas
tn-T-) \-., 8570
SiMe3
,v9
CH ' . ( d r9 3 : 7 ) Ef
,"
Methyl estersby degradation of alkenes.3 Ozonolysis of mono-, di-, and trisubstituted alkenes in methanolic NaOH affords methyl esters. Selective oxidation. 5-Hydroperoxy 1,3-dienes, after protection as peroxyacetals, undergo selective cleavageat the remote double bond.aThe hydroperoxides themselvesare available from ene reaction of skipped dienes with singlet oxygen.
l rii. \\ rth a vinylic stannylgroup.8The v3
MeOH-CH2Cl2
rc :,'r allylic alcohols.eThe effect of a
s
cuHtt-.,.-\.cxo
o-oK
Ph3P
OMe
The phenylselenogroup can be preservedin ozonolysis with the workup (PhlP as quencher)at low temperaturesto give selenenylaldehydes.s Cleavage of oximes.o Carbonyl compounds are generated. Cleavage of stabilized Wittig reagents. Such compounds give carbonyl products; therefore,a-keto esters?and 2,3-diketo esters*are readily prepared.
o
O3
oA-r"* " l l
M€OH-CH2C12
PPh3 l-: t t.t
; ' . r : r n ' u p e r i o r t o d i m e t h y ls u l f i d ea s a r: :. .ind better yields of the products.' n: :!' to decomposean ozonide derived rrnc rnrtiatesan eliminative fragmentaar.1 Jralkylammonium formate. Schiff r -r ,l!'culeof the amine is then followed
o tl RAcooMe
- 780
o
o tl
,\cooMe l l l ph-\oHPPh3
(-\.cooMe x .'oH l-;
v3
Ph
E sters frotn o- alkox y stannan es.n
oAoMe RAsnBug
oAoM"
v3
cH2ct2 - lgo
a\ 74 - 100/0
272 Ozone 'Y.-S. H o n , S . - W . L i n , a n d Y . - J . C h e n , S C 2 3 , 1 5 4 3( 1 9 9 3 ) . 'Y.-S. Hon and L. Lu, TL34,5309 (1993\. rJ. A . M a r s h a l l a n d A . W . G a r o f a l o ,J O C 5 8 , 3 6 7 5 ( 1 9 9 3 ) . aP. D u s s a u l t ,A . S a h l i , a n d T . W e s t e r m e y e rJ, O C 5 8 , 5 4 6 9 ( 1 9 9 3 ) t D. L. J. Clive and M. H. D. Postema, CC 235 (1994). uY.-T. Yang,T.-S. Li, and Y.-L. Li, SC 23, ll2l (1993). t H. H. Wasserman and W.-B. Ho, JOC 59, 4364 (1994). t H . H . W a s s e r m a na n d G . M . L e e , T L 3 5 , 9 7 8 3 ( 1 9 9 4 ) . 'R.J. Linderman and M. Jaber,TL35,378 (1994).
Palladium. colloidal. Prepared from (CRCOCH:( an organic solvent,it is an acri genation of organic compounds
L. A. Fowley,D. Michos,X.-L. t-
Palfadium/carbon. 13, 230- 2. Heck and Suzuki coupling:
X,,, &
M€o,c'\A nilol
Dehydrogenation. Aconrr of heating mixtures of a couml Diels-Alder reaction is follo*ed Hydrocarboxylation and cl of carboxylic acids from conjug contains CO, HCOOH (or oxahc For chlorocarboxylation, an hydr
K. F. McClure,S.J. Danishefskr. e :G. Marck,A. Villiger.andR. Brrt 'Y.-i. Matsushita, K. Sakamoro. T. I 'G. g Vasapollo, A. Somasunderam '8. El Ali, G. Vasapollo, andH. A\ 'N. Benard,M.C. Bonnet,S. Lecol
Palladium, colloidal. Prepared from (CFTCOCH2COCF3)2Pd and SiH+ or a Si-H-containing polymer in an organic solvent, it is an active and stable catalyst for hydrogenationand dehydrogenationof organic compounds.l rL. A. Fowley,D. Michos,X.-L. Luo, andR. H. Crabtree, TL34,3075(1993).
Paf ladium/carbon. 13, 230-232: 15, 245 Heck and Suzuki couplings.t'z
107" Pd-a Et3N/ MeCN 800
Pd.c
.-Q Z-l R Ph3P-NazCO3 L X\---J, X r \--J zXrzf* \Ci F
F
oME, 800
85%(R=/FPent)
Dehydrogenation. A convenient route to 4-substituted benzoic esters3consists of heating mixtures of a coumalate ester with alkenes in the presenceof Pd/C. A Diels-Alder reaction is followed by decarboxylation and dehydrogenation. Pd/C catalyzes the formation Hydrocarboxylation and chlorocarboxylation. of carboxylic acids from conjugated dienesaand alkynes.s The reaction system also contains CO, HCOOH (or oxalic acid), PhrB and 1,4-bis(diphenylphosphino)butane. For chlorocarboxylation, anhydrous HCI is used as a coreagent.6 'K. F. McClure,S.J. Danishefsky, andG. K. Schulte,JOC 59,355(1994). 2c. Marck, A. Villiger, and R. Buchecker,TL 35,3277(1994). rY.-i. Matsushita,K. Sakamoto,T. Murakami,and T. Matsui,JCCS(T)41,33O'l(1994). aG. Vasapollo, A. Somasunderam, B. El Ali, andH. Alper,T.L35,6203(1994). tB. Ef Ali, G. Vasapollo,and H. Alper, JoC s8,4739(1993). "N. Benard.M.C. Bonnet,S. Lecolier,andI. Tkatchenko, CC 1448(1993). 27t
274 Palladium(II)acetate
Paltadium(Il) acetate. 13, 232-233, 14, 248; 15, 245-2 47; 16, 259-263 ; t7,255-259 Heck reaction. For this extremely valuable method of coupling unsaturated fragments, there are many variants with respectto substratestructures, additives, and reaction conditions. For instance, a solid-phasesynthesis of styrenecarboxylic acids has been reported.tThe employmentof diazonium salts2in the Heck reactionis successful; the presenceof water does not seemto affect the efficiency (and in fact it was reported that water facilitates reactions of some other types of substrates).3It is also possibleto conduct the coupling in tandem with diazotization,awhich is carried out with BuONO-HOAc in CH2Cl2 at room temperature. Since many other functional groups are tolerated in this reaction, a great variety of useful synthetic intermediates have been assembled:4-styryl-2-azetidinones,s4,5allylice and homoallylic aldiphenyl-3-styryloxazolin-2-ones,u B-alkoxystyrenes,i'8 cohols.rOThe coupling between vinylic iodides and tertiary allylic alcohols to
alkenes.The synthesisof unsymnnn nes'nis expediently accomplishedb1.rl rng agent when AgOAc is also presco Biphenyls are also produced whcn compounds.20 Reductiie acylation and tmnlrt reductant and acylating agent for o-sub zoxaztn-2-onest' from o-nitrobenzyl i rinyl esters of hydroxycarboxylic r
acetylating the hydroxyl group. 2- Benzenesulfenyl1,3- dicncs.'l Pd(Il)-catalyzed addition of PhSH ro c the sulfoxides, which are useful for rhc
constructisoprenoidsegmentshas also been demonstrated.rr
Oe"-.o"€.
Y
Pd(OAc)z-HGOONa BuaNCl iPr2NEi DMA, 8OO
70% (E:Z 69:31)
. a>(\ 'o'
)-\Z\r
Pd(OAc)2*HCOONa BuaNCl-iP12NEt oMA,
800
70"/" (E:Z 56:641 Secondary reactions sometimes also take place. Thus the arylation of 4-koHetalkenyl)-B-lactamsis accompaniedby ring openingto give the 3-alkenamides'r2 substrates. from functionalized are formed carbocycles15 and erocycles'3'ra
\z\,
+
,l' Ph
Boc I
..N FCOOM€ HO
o
Ph
ftcno
Allylic oxidation. Allylic alcoho DMF.24Allylic esters are obtained fn nent with Pd(OAc)z-benzoquinonc an Someunsaturatedcarboxylic acids uod .ridative cyclization leadsto bicyclrcI
Pd(OAc)z-AcONa BuaNCl-DMF 1000
o-J I
\./Xll
zFPh Ph
1,4-Difunctionalization of 1,3- Jit
847o
Interestingly, 4-bromo-N-tosylindole reacts with ethyl acrylate in HOAc in the presenceof Pd(OAc)zat C-3 only.16 Suzuki, Srille, and related couplings, The oxidative addition of the C-B bond in aryl and alkenyl boronic acids to Pd(0) initiates the coupling with aryl halides or
rf-al 0H \4
Pd(OAch
CNblrr THF
Palladium(II)acetate275 16,259-263:
l::-ll7r
mcrhod of couPling unsaturated lu5.rratestructures,additives,and llr lr'.r: of styrenecarboxylicacids . . . : . i n t h e H e c k r e a c t i o ni s s u c cl :hc efficiencY(and in fact it was It is also he: rr pes of substrates).3 out is carried ri z,,rrzation,awhich lrc e.j in rhis reaction,a great variety 4.5ilc..1J-rtyryl-2-azetidinones.s ' alhomoallylic n<. allylice and to alcohols JnJ tertiarY allYlic
alkenes. The synthesis of unsymmetrical biphenyls,rTvarious styrenes,r8and stilbenes'eis expedientlyaccomplishedby this method.Ph+BNacan be usedas a phenylating agent when AgOAc is also present. Biphenyls are also produced when diaryliodonium salts are coupled with aryltin compounds.20 Reductiie acylation and transesterification. Carbon monoxide acts as both reductant and acylating agent for o-substitutednitrobenzenes,delivering dihydrobenzoxazin-2-onest' from o-nitrobenzyl alcohols. Pd(OAc)z catalyzes formation of the vinyl esters of hydroxycarboxylic acids by reaction with vinyl acetatet' without acetylating the hydroxyl group. 2-Benzenesulfenyl-1,3-dienes. These compounds are now available from Pd(Il)-catalyzed addition of PhSH to conjugatedenynes.trThey undergooxidation to the sulfoxides, which are useful for the preparation of functionalized allylic alcohols.
rn.l r.ited.ll
Y
b
Pd(OAc)2 THF, 5OO
\,\
sPh I
I 72%
I
70% (E:Z 69:31)
Allylic oxidation. Allylic alcohols are oxidized to enones by Pd(OAc)2in wet DMF.24.Allylic esters are obtained from alkene/carboxylic acid mixtures on treatment with Pd(OAc)z-benzoquinoneand an oxidant (MnO2,25HrOr,'u or l-BuOOH). Some unsaturatedcarboxylic acids undergo cyclization to give lactones.2iAnalogous oxidative cvclization leads to bicvclic azacvcles.2E'2n
E I
70"/"(E:Z 56:Ml la..' Thus the arYlation of 4-(toHetlr :,, give the 3-alkenamides.12 [un. t ronalizedsubstrates.
Boc
H POC
I
,.N.
02-Pd(OAc)2
}_cooMe
HO
DMSO, 700
nJ-*, ( \-fo|
FcooMe
H 89% tar
1,4-Difunctionalization of 1,3- dienes.30 84"/o
rr:h cthyl acrYlatein HOAc in the
rf"-a'l OH \?
Pd(OAc)2
co-ErzNH
Et,NCO - ',-\-'\
\-tl
l | ) + i\-z4O :
coNEr2
THF
orLJativeaddition of the C-B bond c. :he coupling with arYl halidesor
72% (77:23)
276 Palladium(II)acetate and Cycloisomerization of enynes. Formation of 5-membered heterocycles3r'32 the 1,4-dienes by changing may lead to 1,3or carbocycles33from open-chain enynes by the reactions catalyzed product profiles different from are substratesslightly. The (dbahPdz . CHCI3-HOAc-(o-TolhP system.34
R
R
x\A
ll LiX-HOAc
o4o
o4o/
X=Cl,Br
75,507"
R=H,Me
J.-8. BZickvall and A. Ericsson. JOC Sr. ttV. B e l l o s t a ,R . B e n h a d d o u ,a n d S . C z c m :5N. F e r r e t , L . M u s s a t e - M a t h i e u J, . - p . Z e l :oB. A k e r m a r k , E . M . L a r s s o n ,a n d J . D C j R. C. Larock and T. R. Hightower. "lOC ! ttR. A . T . M . v a n B e n t h e m ,H . H i e m s t r a .J t'R. A . T . M . v a n B e n t h e m ,H . H i e m s r m .( (t994). ''P. G . A n d e r s s o na n d A . A r a n y o s . f L 3 5 . '' G. Zhu, S. Ma, and X. Lu, JCR(.ti366 , I 'S. Ma, G. Zhu, and X. Lu, JOC 5t. _169 "8. M. Trost, C. J. Tanoury, M. Lautens. 0994\. -B. M . T r o s t , D . L . R o m e r o ,a n d F . R r - . .
Pd(OAc)2
OMe
-N=CHPh -N=cHPh
OMe
Pd(OAc)2
oMe
-N=CHPh \N=CHPh
OM€
'K.-L. Y u , M . S . D e s h p a n d e ,a n d D . M . V a s , f Z 3 5 , 8 9 1 9 ( 1 9 9 4 ) . tS. S e n g u p t aa n d S . B h a t t a c h a r y a ,J C S ( P I ) 1 9 4 3 ( 1 9 9 3 ) . tH.-C. Zhang and G. D. Davies, OM 12, 1499 (1993). oM. B e l l e r , H . F i s c h e r ,a n d K . K i i h l e i n , T L 3 5 , 8 7 7 3 ( 1 9 9 4 ) . 5A. K a t a k e , K . O k a n o , I . S h i m i z u , a n d A . Y a m a m o t o ,S L 8 3 9 ( 1 9 9 4 ) . oC. A . B u s a c c a ,R . E . J o h n s o n ,a n d J . S w e s t o c k ,J O C 5 8 , 3 2 9 9 ( 1 9 9 3 ) . 7 M. Larhed, C.-M. Andersson, and A. Hallberg, ACS 47,212 (1993). "D. B a d o n ea n d U . G u z z i , T L 3 4 , 3 6 0 3 ( 1 9 9 3 ) . "R. C. Larock and S. Ding, JOC 58,804 (1993). "'R.C. Larock, S. Ding, and C. Tu, sf 145(1993). " H . B i e n a y m ea n d C . Y e z e g u e l i a n ,7 5 0 , 3 3 8 9 ( 1 9 9 4 ) . ''R.C. Larock and S. Ding, TL34,9'19 (1993). lr R. C. Larock and H. Yang, SL'148 (1994). 'oc. Dyker, JOC 58,6426 (1993). '5 R. C. Larock, M. J. Doty, and S. Cacchi, JOC 5t, 45'79(1993). 'uY. Yokoyama, M. Takashima, C. Higaki, K. Shidori, S. Moriguchi, C. Ando, and Y. Murakami, H 36, 1739 (1993). 'tT. L wallow and B. M. Novak, "/OC 59, 5034 (1994). 'tC. S . C h o , K . I t o t a n i , a n d S . U e m u r a ,J q M C 4 4 3 , 2 5 3 ( 1 9 9 3 ) . 'nC. S . C h o a n d S . U e m u r a ,J O M C 6 4 5 , 8 5 ( 1 9 9 4 ) . 'oN.A. B u m a g i n , L . I . S u k h o m l i n o v a , S . O . l g u s h k i n a , A . N . B a n c h i k o v , T . P . T o l s t a y a ,a n d I. P. Beletskaya, BRAS 41, 2128 (1992). 2rS. C e n i n i , S . C o n s o l e ,C . C r o t t i , a n d S . T o l l a r i , J O M C 4 S l , 1 5 7 ( 1 9 9 3 ) . "M. L o b e l l a n d M . P . S c h n e i d e r s, 3 7 5 ( 1 9 9 4 ) .
Palladium(II) acetate-tertiary pboe 15,247-248; 16,264 -268; t7. 259_ :a Heck and related reactions, ln , WhileEtN is usedasbasein manl He acetate or bicarbonate togetherwith a I tionof alkenesis subjectto a remarka
(^)f,'cootvte * 9ar
y'tpn
High-purity o- and p- methylstyrerrs toluenesby this method.aSome other u of 1,3-dioxep-5-ene,5 allyl carbamares
'/-o
Arr+ [i...--.K
Pd(O^.h
PrbP A&C( oMF 6at
Benzodihydropyransand tetrahydm 1,4-dieneswith o-iodinatedphenolsand [2,3-D]indolesfrom a-(o-bromoanili no le [CHICN] to form portion of the pyridin
Palladium(II) acetate-tertiary phosphine 277
and n .i 5-membered heterocycles3r'32 the changing by l,4-dienes or 1.3ri' d the by catalyzed reactions from licrent
h
X\
o4o) 75-90v"
h
OMe
h
\/< fi
t
RO
lt
_
-'J.-8. B ? i c k v a l la n d A . E r i c s s o n ,J O C 5 9 , 5 8 5 0 ( 1 9 9 4 ) . rlV. B e l l o s t a ,R . B e n h a d d o u ,a n d S . C z e m e c k i , S 4 8 6 1 ( 1 9 9 3 ) . ttN. Ferret, L. Mussate-Mathieu, J.-P. Zahra, and B. Waegell, CC 2589 (1994). 'o B. Akermark, E. M. Larsson, and J. D. Oslob, "/OC 59, 5729 (1994). :'R.C. L a r o c k a n d T . R . H i g h t o w e r ,J O C 5 8 , 5 2 9 8 ( 1 9 9 3 ) . ttR.A.T.M. v a n B e n t h e m , H . H i e m s t r a , J . J . M i c h e l s , a n d W . N . S p e c k a m p ,C C 3 5 ' 1 ( 1 9 9 4 ) . t'R.A.T.M. van B e n t h e m ,H . H i e m s t r a ,G . R . L o n g a r e l a a , n d W . N . S p e c k a m p ,T L 3 5 , 9 2 8 1 (t994\. "'P. G . A n d e r s s o na n d A . A r a n y o s , T L 3 5 , 4 4 4 1 ( 1 9 9 4 ) . t' c . Z h u , S . M a , a n d X . L u , J C R ( S )3 6 6 ( 1 9 9 3 ) . ttS. Ma, G.Zhu, andX. Lu, JOC58,3692(1993). "B.M. T r o s t , C . J . T a n o u r y , M . L a u t e n s , C . C h a n , a n d D . T . M a c P h e r s o n ,J A C S 1 1 6 , 4 2 5 5 ( 1994). '' B. M. Trost, D. L. Romero, and F. Rise, JACS 116,4268 (1994).
Palladium(II)acetate-tertiaryphosphine.13,91,233-234;14,249,250-253; 15,247-248; 16, 264-268; 17,259-269 Heck and relatedreactions. In certain couplingshigh pressureis required.l by alkali metal it canbe replaced WhileEt:N is usedasbasein manyHeckreactions, quaternary salt.2 Base-free arylaammonium or bicarbonate together with a acetate in thesystem. effectr:zincis present tionofalkenesis subject to a remarkable chelate
OMe
$. rel9 (1994). tlgqlr.
B] 7-r 1994). m.-tr.5L 839(1994). .r()( st. 3299(1993). A( \ {7. 212(1993).
)
($-,'coort't" ' 9er
Pd(OAc)2
y'tpn
Ph3P-Et3N THF-MoCN 10 kbar. rt
fi1'\zcoor'te %"n
il
High-flurity o- and p-methylstyrenes are obtained from the correspondingbromotoluenes by this method.aSome other useful preparationsare based on the arylation of 1,3-dioxep-5-ene,5 allyl carbamates,6 and cyclization of vinylphosphonites.T
9ar
I r:-9 (1993). SirJ(rn. S. Moriguchi,C. Ando, and Y'
/^O
Arl +
fi
\,,
U\vO /\
Pd(OAc)2 Ph3P-Ag2CO3 DMF, 600
o')'^oy
\_i \
9i.l B
l5t t 1993).
)
and T. P. Tolstaya, Oi:rr. A. N. Banchikov, . J ( , \ t C 4 5 1 , 1 5 7( 1 9 9 3 ) .
t
981o
Benzodihydropyrans and tetrahydroquinolines are obtainedn from reaction of 1,4-dieneswith o-iodinatedphenolsand anilines, respectively.Formationof pyridois unusual,as Et.rNcontributes from a-(o-bromoanilino)alkenenitrilese [2,3-D]indoles [CHTCN] to form portion of the pyridine unit of the products.
27t
P a l l a d i u m ( I l )a c e l a t e - t € r t i o r yp h o s p h i n e
f a, -'
cN I l.t'\ln Me
Ph3P-EtsN DMF, 1000
contains an additional double bond. lt slx popargylic carbonates to give enynest occ
,eorre, I
l(Y-r-^l | \-)-'u' I L
M
e
absenceof CO.
l OCOOMe
I
PdOA
-,-/Y
R=Me,Ph
@< IG
(/
An intramolecutarreductiveHeck reactionin the presenceof HCOONa is useful
1 1
for the accessto exocyclicallylsilanes'r0 MeO-42-1 I ll Meo,Vr
NCOCFa (
\ '\-sil"te'
Ph3P-HCOONa PraNBr / DMF
Meo-l\,-\ I ll rvreOV;-/
NcocF3 ll ":,-SiMe3
787" Heck reactions involving nonaromatic components are particularly versatile synthetic processes.For example, 1,2,4-trienesand 1,2-dien-4-ynesare readily prepared from propargyl carbonates.rr Intramolecular Heck cyclization followed by DielsAlder12or nucleophilic attackrs'raleads to bicyclic products. Substituted pyrrolidines and piperidines are formed by coupling of alkenyl sulfonamides with vinylic
In the acylcyanationof l-alkynes:: rso for Pd. For hydroarylation23ofenals and eu Deallylation. Allyl carbonates and c ment with Pd(OAc)2.There is a useful ch
dimethylallyl esters and cinnamyl esters I isoflavanonesand isoflavones from allll ch lation with ArPb(OAc)r and treatmenrrrrrh ester group to give isoflavanones:6rlhcn r HCOOH, and Et:N. Isoflavones are ob{art Pd(OAc) and Ph2PCH2CH2PPh2 in reflurra
oYo-Y
halides.r5
Etooctr-4 , + ErOOC'\
Pd(OAc)2
fcooMe
Ph3P-A92CO3
a) -N-
Erooc'r-]fycooMe
PdOacb Etzll{-fi| e l g
o4olv
Etooc'4-/
'Ph=sdb*
MocN,90P
WB'Z (-\,
"*t"
Pd(OAc)2 (tol)3P-Na2CO3 EuaNCl/ DMF 600. 48 h
The Stille coupling is useful for the synthesis of electron-deficient dienes such as hexadienoicesters.16 1,2-Additions. Hydrocarboxylation of alkenesrTand alkynes18with HCOOH under CO is accomplishedby Pd catalysis. A similar reaction undergoneby a propargylic carbonate after an Sr2' processleadsto an itaconic diester segment.reThe intermediate is converted into a cyclopentenone20when the propargyl carbonate
Allylic substitutions. The z-allllpalL lylation of (benzothiazol-2-ylthio)merhllI methyl carbonateas reaction partner. Thc ga methanefrom 2 - (tri methylsilyl methyl tall;-l
rhis speciesby imines gives 3-merhylcrrplr
o "\.-
x +
TMS.v,J]..v.OA.
phosphine279 Palladium(II)acetate-tertiary
t J L -r B r^
contains an additional double bond. It should be noted that simple elimination of popargylic carbonatesto give enynes2loccurs when the reaction is conducted in the
ll
,'- - a" I I
absenceof CO.
I _ I
,.tr:
l MeOOC
OCOOMe
-*/Y
I
dpptr€O MeCN-MeOH rt, th
(/
is useful of HCOONa n rn thepresence
\
,------a
l t tY -(
o 817.
u"o\2yl- ll r.neolX=/
rhi yt
NcocF3 lt lr \-SiMe3
78"h
np(,nents are particularly versatile synrnd l.l-dien-4-ynes are readily prepared r Heck cyclization followed by Diels:r;lrc products. Substituted pyrrolidines oi
alkenyl
sulfonamides
with
In the acylcyanation of l-alkynes22 two different phosphinesare used as ligands for Pd. For hydroarylation23ofenals and enonesthe sourceofthe aryl group is ArrSb. Deallylation, Allyl carbonates and carbamates are readily cleaved2aby treatment with Pd(OAc)2.There is a useful chemoselectivity for this reaction2sin that dimethylallyl esters and cinnamyl esters are not affected. An expedient route to isoflavanonesand isoflavones from allyl chroman-4-one-3-carboxylateinvolves arylation with ArPb(OAc)3 and treatment with Pd(OAc)2.The latter reaction removesthe ester group to give isoflavanones26when it is carried out in the presenceof Phf, HCOOH, and EtrN. Isoflavones are obtained when the keto esters are treated with Pd(OAc)zand Ph2PCH2CH2PPh2 in refluxing MeCN.
"Y"^r
vinylic
"Y"-Y Pd(OAc)2
\r.r/
etooc"^-3cooM"
!_
aq. MaCN
Aory
ETOOC' 4./
F...
-\ N /
Et2NH-'PhsP
'Ph = sulfonated phenyl
F
9H: -ts ^--J- N'
) H
-8""
Allylic substitutions. The a'-allylpalladium ions are electrophilic agents.Diallylation of (benzothiazol-2-ylthio)methylketones2Tis readily achieved using allyl methyl carbonateas reaction partner. The generationof a Pd-complexedtrimethylenemethane from 2-(trimethylsilylmethyl)allyl esters is well known; the interception of this species by imines gives 3-methylenepyrrolidines.28
r.r. of electron-deficientdienessuch as alkenesrTand alkynesrEwith HCOOH srmrlar reactionundergoneby a proparThe interan rraconicdiestersegment.re rrnc:
when the propargyl carbonate
o "\.
x +
Pd(OAc)2 (rPro)3P
rMS\.1-v,oAc dioxane, 1400
o
"Al-^ \-tl--,2
70"/.
?.1
280 Palladium(II)acetate-tertisryphosphine The gradated reactivities of allylic acetatesand carbonateshave been exploited in synthesis. Thus chiral cis-4-acetoxycyclohex-2-enolis converted into either one of the enantiomers of 2,4-cyclohexadien-l-ylacetic acid2eby direct displacement with sodiomalonate followed by acetylation, elimination, and saponification, or by disDlacementof the derived carbonate followed by elimination of the unreacted acetate.
6)4coo'"
' T. Mandai, J. Tsuji, Y. Tsujiguchi, and S S -.T. M a n d a i , Y . T s u j i g u c h i ,S . M a t s u o k e .e d 'K. Nozaki, N. Sato, and H. Takava. .fOC g C . S . C h o , K . T a n a b e ,a n d S . U e m u r a . f L ! ''J. P . G e n e t , E . B l a r t , M . S a v i g n a c .S . L c n r '' S . L e m a i r e - A u d o i r e , M . S a v i g n a c .E . B h \1994). D. M. X. Donnelly,J.-P.Finet, and B. A R ' V. Calo, V. Fiandanese,A. Nacci, and A g 'B. M . T r o s t a n d C . M . M a r r s , , I A C Sl t 5 . 6 6 '"J.-8. Biickvall, R. Gatti, and H. E. Schrnt. ' S . K u l a s e g a r a ma n d R . J . K u l a w i e c , . / O C g t
NaCHEz-Pd(OAc)z-PhsP;
O'"''coor',r"
Accl-py ; Pd(0); NaCN , aq. DMSO
Epoxide isomeriZation.3o Epoxides undergochemo- and regioselectiveisomerization to carbonyl comPounds.
Pd(OAc)2
*,$n4(o
-l
FG;;; I ,o,ooo, B u 3 P / P h HA
',9
pr,,^\r,.\aAJ. , 6 lt
Palladium(II) acetate-tin(II) ecetrrc. Side chain benzoyloxylation ol aryl t rs achievedin the presenceof oxygen trcnzoates.
phoMe +
Bzzo
o
* r!l
o I
on'\<1,A i l " o
6
'K. V o i g h t , U . S c h i c k , F . E ' M e y e r , a n d A . d e M e i j e r e ,S L 1 8 9( 1 9 9 4 ) ' 'T. Jeffery and J.-C. Galland, TL 35' 4lO3 (1994). tM. P o r t n o y , Y . B e n - D a v i d , a n d D . M i l s t e i n' O M 1 2 , 4 7 3 4 ( 1 9 9 3 ) ' oR. A. Devries and A. Mendoza, OM 13,2405 (1994). 5T. Sakamoto, Y. Kondo, and H. Yamanaka' H 36, 2437 (1993). o K . O n o , K . F u g a m i , S . T a n a k a , a n d Y . T a m a r u, T L 3 5 , 4 1 3 3( 1 9 9 4 ) ' t F. Hong, J. Xia, and Y. Xu, JCS(PI) 1665 ( 1994). t R . C . L - - a r o c kN , . G . B e r r i o s - P e n a ,C . A . F r i e d , E . K . Y u m , C . T u ' a n d W ' L e o n g , J O C S t '
T . O h i s h i , J . Y a m a d a ,Y . I n u i , T . S a k a g u c h r
Palladium(II) acetate-tin(II) chlort. Dimethylallylationofaldchydcs.t A prene,which then addto aldehydes ro aff
+
RCI-IO
4s09( 1993).
' C . - C . Y a n g , P . - J .S u n , a n d J . - M ' F a n g , C C 2 6 2 9 ( 1 9 9 4 ) . 'uL. F. Tietze and R. Schimpf, CB 127'2235 (1994). rr T. Mandai and J. Tsuji, SOC 50, 908 ( 1992)' ' ' F . E . M e y e r , K . H . A n g , A . G . S t e i n i g , a n d A . d e M e i j e r e ,S I l 9 l ( 1 9 9 4 ) ' 'r G. D. Harris, R. J. Herr, and S. M. Weinreb, JOC 58, 5452 (1993). 'oC.S. N y l u n d , J . M . K l o p p , a n d S . M . W e i n r e b ,T L 3 5 ' 4 2 8 ' l ( 1 9 9 4 ) ' '5 R. C. Larock, H. Yang, S. M. Weinreb, and R. J' Het, JOC 59, 4172 (1994)' 16l. N . H o u p i s ,L . D i M i c h e l e , a n d A . M o l i n a , S L 3 6 5 ( 1 9 9 3 ) ' 'tB. Al Ali and H. Alper, JOC 58,3595 (1993). trD. Zagarian and H. Alper, OM 12,712 (1993). (1994)' 'nT. Mandai, Y. Tsujiguchi, S. Matsuoka, J. Tsuji' and S' Saito, TL35' 5697
Y. Masuyama, M. Tsunoda, andY. Kurusu.C
Palladium(II) acetylacetonate-triboryl Eliminations. Allylic esters undcr!( gives82Voyield of a mixture of a-pinclr i propargylic formate is defunctionalized s
Palladium(II) acetylacetonate-tributylphosphine 2El
N ,Jrbonateshavebeen exploitedin 'c:.,,1r' convertedinto either one of I :.:J:- by direct disPlacementwith rr: r end saponification'or by disci:::.:nationof the unreactedacetate'
t>.
coon"
q)
9:
O""''"oot"
ts:
isomert' g,' . hc-mo-and regioselective
,.9
on'\rt\4\ '' il
Palladium(II) acetate-tin(II) acetate. Side chain benzoyloxylationof aryl methyl ethers.t Activation of the C-H bond is achievedin the presenceof oxygenand Bzzo, giving excellentyields of the benzoates.
Pd(OAc)2
PhOMe +
on'^V'^\4n . , 6 It
o
rT. Mandai, J. Tsuji, Y. Tsujiguchi, and S. Saito, ,IACS 115,5865 (1993). I T . M a n d a i , Y . T s u j i g u c h i ,S . M a t s u o k a ,a n d J . T s u j i , T L 3 4 , 7 6 1 5 ( l g g 3 \ . -'K. Nozaki, N. Sato, and H. Takaya, JOC 59,2679 (1994). t'C. S. Cho, K. Tanabe, and S. Uemura, TL 35, lZ']/5(lgg4). IJ. P . G e n e t , E . B l a r t , M . S a v i g n a c ,S . L e m e u n e ,a n d J . - M . p a r i s , I Z 3 4 , 4 l g 9 ( 1 9 9 3 ) . ::S. L e m a i r e - A u d o i r e , M . S a v i g n a c ,E . B l a r t , G . p o u r c e l o t , a n d J . p . G e n e t , T L 3 5 , g 7 g 3 (t994). 'oD. M . X . D o n n e l l y , J . - P . F i n e t , a n d B . A . R a t t i g a n ,J C S ( p l ) l j 2 g ( t g g 3 \ . t'V. C a l o , V . F i a n d a n e s eA , . Nacci, and A. Scilimati,TLg6, l7l (1995). " B . M . T r o s r a n d C . M . M a r r s , " / A C Sl l 5 , 6 6 3 6 ( 1 9 9 3 ) . )J.-E. Backvalt,R. Gaui, and H. E. Schink, S 343 (1993). ''S. K u l a s e g a r a ma n d R . J . K u l a w i e c , J O C 5 9 , 7 1 9 5 ( 1 9 9 4 ) .
Bz2O
',6
Sn(OAc)2-O2
PhOCH2OBz
1300, 120 h
OC-/o
T. Ohishi,J. Yamada,Y. Inui, T. Sakaguchi,and M. yamashita,JOC 59,'t521(lgg4).
o
; < ' : \ 1 -1 8 9( 1 9 9 4 ) ' l: :-r1 (1993).
Palladium(II) 6cetate-tin(II) chloride. Dimethylallylation of aldehydes.t Allyltin reagentsare formed in situ from isoprene, which then add to aldehydesto afford homoallylic alcohols.
q:
-;r- r1993). ,. y; .r5alll (1994). E\
\um, C Tu, and W' Leong,JOC CL
OH I
Pd(OAc)2-SnCl2
+
RCHO
HOAC-H20 400, 24h
-
A
'R
17 - 85% I Vl. .re. SL l9l (1994)'
: s t r - 1 5 2( 1 9 9 3 ) . t - r 5 1 : 8 7( 1 9 9 4 ) . Hc:: IOC 59,4172(1994)' 6r
e9J).
a-: S Saito, TL35,5697 (1994)'
'Y. Masuyama, M. Tsunoda, andY. Kurusu,CC l45l (1993).
Palladium(II) acetylacetonate-tributylphosphine. 17, 269 Eliminations. Allylic esters undergo reductive elimination. Myrtenyl formate gives 82Voyield of a mixture of a-pinene and B-pinener in a ratio of 2 : 98. However, propargylic formate is defunctionalized without isomerization.2
,
monoxide chloride-csrbon 282 Palladium(II)chloride-copper(II) It should be Thedisplacedformateanionisthehydridesourceforthereduction. In refluxing noted that HCOONH4 is addedto the reaction of propargylic carbonates. reduced'3 is also bond benzene the triple BnO\
l
Pd(acac)2-Bu3P
BnO--
97o/"
Pd(acac)2-8u3P
BnOI HO
PhH, 800
Vnnu"
Pez{./ NSAG-.q
co rl
tCsHr
HO/'J
,CsHrr
t z
o^{' )-6 o
2
aYz'^
CsHrr
I S. F. Vasilevsky, B. A. Trofimov, A . G. \lel'l tT.T. Zung,L.G. Bruk, andO.N. Temkrn..y rY. Kondo, F. Shiga,N. Murata, T. Sakamcx 'R. D. Walkup and M. D. Mosher,f 49. 9:t5 tM. K i m u r a , N . S a e k i ,S . U c h i d a . H . H a r a r e m 76n /L993).
760/o
Elimination of unactivated sulfones to give alkenesais mediated by Pd(acac)z' rT. Mandai,T. Matsumoto, andJ. Tsuji,SL ll3 (1993)' 2T. Mandai,T. Marsumoto,Y. Tsujiguchi,S. Matsuoka,and J. Tsuji,JOMC 473'343 (1994)' ,s._K. Kang,D.-C.park,D.-G.Cho,J.-U.Chung,andK.-Y. lung,JCS(PI)23'l (1994). oY. Gai, L. Jin, M. Julia,andJ.-N.Verpeaux, CC 1625(1993)' Palladium(II) chloride. 13' 234-235; 15,245-249; 16' 268-269 done using Pdcl2 Redox processes. Hydrodehalogenationof organic halides is hand' benzils are other the On catalyst.r as anchored on poly(N-vinyl-2-pyrrolidone) DMSO' and PdClz of presence obtained2from diarylacetylenes in the compoundsa in Biphenyls. Aryl halides can couple with aryltin3 and silicon of 4-bromocarbonylation from uqu.ou, media. The acylpalladium speciesobtained biphenyl can be rntercepted in situ by 2,6-di-t-butylphenoxides'5 coupling reactions Heck-type reaction. Aryl and vinylic mercurials undergo Ring oPening LiCl' and CuClz' with p-alkenyl-B-lactams6 in the presenceof PdClz'
Palladium(II) chloride-copper(I/ll r cl Oxid.ation. The system is besr kr ketones (Wacker oxidation). It has becn c
glycosidesdirectlyr or after phorolysisof droisobenzofuranis oxidized to phthalrd An electrochemicalversion{of ttr lt tris(4-bromophenyl)amine as mediator rnr
' H. B. MereyalaandS. Guntha,TL 34.6929t tJ. Ltining,U. Miiller,N. Debski,andP. \letrr 'M. Miyamoto,Y. Minami, Y. Ukaji, H. Kroo 'T. Inokuchi,L. Ping,F. Hamaue,M. lza*e. r
Palladium(II) iodide. p-Lactones.t Vicinal cis-dicarbonl served in the presenceof PdI2 and Kl urd
with double bond migration occurs during the reaction' 'Y. Zhang,S. Liao,andY' Xu, fL 35,4599(1994)' 'f .-w. Ctri, M. S. Yosubov,and V. D. Filimonov,SC24' 2119(1994)' r A. I. Roshchin, TL 36' 125(1995)' N. A. Bumagin,andI' P' Beletskaya' 4A. I. Roshchin, DC 334'602 (1994)' N. A. Bumagin,andI' P' Beletskaya' tY. Kubota,T. Hanaoka'K' Takeuchi,andY' Sugi'CC 1553(1994)' 6R.C. LarockandS. Ding,JOC SE,208l(1993)' e' 13' 235 -236 chloride - copper(Il) chloride carbon monoxid for This combination of reagents is commonly used carbonylatioiesters' methyl the obtained as homologation of alkynes.r,2The products are usually when a proper functional group is formation bond C-C attends ff"i..o."y.firutiont-5 present at a short distance.
Palladium(II) oxidative
/"^
co/taor f f 6 h
B . G a b r i e l e ,M . C o s t a , G . S a l e r n o ,a n d G . P (
tR)-Pantolactone.16, 269-270 a-Heterosubstitutedesters. Chiral 1 of tfl reactionswith racemica-haloesters give predominantllpn ular displacements
(R)-Pantolactone 2E3
ar it. I ior the reduction. It should be trer lic carbonates.In refluxing
N'-
COOMe
.Y, VttHtrrt"
PdCl2-CuCl2 NaOAc-KzCO3
Z\r-( I
ll
Ms 76"h
,CsH't'
*on/ N,. I
*.rAz\ "
l CsHl
>-Ph
\-,/-N'
CO/ MoOH
S.F. Vasilevsky, B. A. Trofimov,A. G. Mal'kina,andL. Brandsma, SC 24,85 (1994). 'T.T. Zung,L. G. Bruk, andO. N. Temkin,MC 2 (1994). Y. Kondo,F. Shiga,N. Murata,T. Sakamoto, andH. Yamanaka, (1994). I50, 11803 'R. D. Walkupand M. D. Mosher,T 49,9285(lgg3). 'M. Kimura,N. Saeki,S. Uchida,H. Harayama, S. Tanaka,K. Fugami,andY. Tamaru,IL 34, 76ll (r993).
76"/"
r.'
rr mediated bY Pd(acac)2.
n1 J Tsuji, JOMC 473'343 (1994)' - \ J u n g ,J C S ( P I ) 2 1 7 ( 1 9 9 4 ) ' 9{:
). 16.268-269 rnrc halidesis done using PdCl2 . On the other hand, benzils are PdCl; and DMSO. trn' and silicon comPounds4in I fr,)m carbonylation of 4-bromolphenorides.5 rrrl. undergo couPling reactions r.CuCl;,and LiCl' Ring oPening
Palladium(II) chloride-copper(I/II) chloride-oxygen. Oxidation. The system is best known for oxidation of l-alkenes to methyl ketones (Wacker oxidation). It has been employed to remove the allyl group of allyl glycosidesdirectly' or after photolysis of the products.2In the presenceof CO dihydroisobenzofuran is oxidized to phthalide in 86Voyield.3 An electrochemical versiona of the Wacker oxidation in an undivided cell uses tris(4-bromophenyl)amine as mediator insteadof a Cu salt. ' H. B. Mereyalaand S. Guntha,TL 34, 6929(tgg3'). tJ. Liining,U. Miilfer,N. Debski,andP. Welzel,TL34,58'1t(t993). 'M. Miyamoto,Y. Minami,Y. Ukaji, H. Kinoshita,andK. Inomata,CL ll4g (lgg4). 'T. Inokuchi,L. Ping,F. Hamaue;M. Izawa,andS. Torii, CL l2l (lgg4\.
Palladium(II) iodide. B-Lactones.' Vicinal cis-dicarbonylation of tertiary propargyl alcohols is observedin the presenceof PdI2 and KI under CO.
hrn \ . 2
Pdt2-Kl ll lq ,1994). . -16 1:5 (1995).
^.^
X
8 0 0 , 6h
: ,r-11602 (1994). !:r 1994).
lo iI o
54o/.
'B.
-236 rbon monoxide. 13' 235 Df reagentsis commonlY used for llr .rbtained as the methyl esters' rhen a proper functional grouP is
CO / MeOH
F\ Meooc
G a b r i e l e ,M . C o s t a , G . S a l e r n o .a n d G . P . C h i u s o l i . C C 1 4 2 9 0 9 9 4 \ .
(R)-Pantolactone.16. 269-270 a-Heterosubstitutedesters. Chiral productsare obtainedfrom displacement reactionswith racemica-haloesters of (R)-pantolactone. Both inter- and intramolecular displacementsgive predomlnantlyproductswith the (S)-configuration,tdue to
acid 2E4 Pentafluorobenzeneseleninic 1,4-asymmetric induction. It has been shown that the slow-reacting haloesterprefers epimerization to direct reaction with the nucleophile.2
qF5sdG Pl*t
I
D. H. R. BartonandT.-L. Wang,IL 35. 51.t9, I 6 0 0 / .( S : F l1 0 : 1 )
'K. Koh andT. Durst,JOC 59,4683(1994)' tK. Koh, R. N. Ben,andT. Durst,TL34,4473(1993).
Paraformaldehyde. Cleavage of oxime cthers,t The generationof carbonyl compounds in the presence of Amberlyst l5 in aqueousacetoneproceeds at room temperature' Synthesisof 5,6-dihydro-4 H-1,3-oxazines.2 Acid-catalyzed depolymerization and condensationof the resulting formaldehyde with an amide gives the acyliminium ion, which is capable of undergoing a formal Diels-Alder reaction with alkenes. Bromomethylation of arenes.' The introduction of up to three bromomethyl groups is achievablethrough varying the stoichiometry of paraformaldehydeand the reaction conditions. Homologation of carbon chains. By a Grignard reaction with formaldehyde an organic halide is converted to the homologous alcohol. A preparation of the useful building block, 2-trimethylsilylacrolein,a is an example. N-Halomethyl carboxamides. chloromethylation of amides is accomplished in one step under anhydrous conditions by heating with (HCHO), and MelSiCl in THF. These products are valuable synthetic intermediates;for example, they are converted to N-acyloxymethyl amides by reaction with sodium carboxylates.sA convenienr preparation of N-bromomethyl imides is by warming the parent imides with (HCHO),, HBr, and HOAc at 70-80"C for several hours.o 'T. Sakamoto andY. Kikugawa,S 563 (1993). 2A. R. Katritzky, I.V. Shcherbakova, R. D. Tack,and X.-Q' Dai, T 49' 3907(1993)tA.W. uan der Madeand R. H. van der Made,JOC 58' 1262(1993\. nR.P. Hsung,SC24, l8l (1994). 5R. Moreira,E. Mendes,T. Calheiros,M.J. Bacelo,and J. Iley, TL35,"ll07 (1994)' 6R.C. Desai,R. P. Farrell,G.-H. Kuo,and D. J. Hlasta,SL 933(1994).
Pentaf luorobenzeneseleninic acid. Allylic oxidation.t This novel oxidizing agent is prepared from CoFo and NaSeH followed by exposing the product to Oz, Or, and HzO in sequence.It converts alkenes to enones,besidesoxidizing alcohols to carbonyl compounds'
.\, N, 1,2,4 -Pentamethyl-1r4-dihydron icotfu Enantioselective reduction' This cor keto esters and imino esters in the presctrc have an (R) configuration. J. P.Versleijen, M. S. Sanders-Hoven, S.A. \aai T 49,7793(1993).
Perf luorodialkyloxaziridines. The reagentsare available in two stepsfft SbF5[to obtain RtN:g(F)R1'] and rhen s rrl Oxyf u n ction alizat ion of hyd rocarfui tertiary C-H bonds by these neutral ard sr ceedssmoothlv.
,q.tr|-\CrFg
F
Oxidation of sulfides and su[oxidct.: perature. For example, benzenesulfenvlnnl t96%oyield) at -40'C, but further oxidarbo
D. D. DesMarteau, A. Donadelli, B. Monrenen! (1 9 9 3 ) . : D. D. DesMarteau, V. A. Petrov,B. Monranen.I (t994).
Periodic acid. 13, 238-239;16,292 Acetonide hydrolysis-cleavagc. Tern lyzed and cleaved with H5IO6.Sometirnes.e
Periodic acid 2E5
ih.rt lhe slow-reactinghaloester prefers n P h Ii e . :
PhH,
'D. H. R. BartonandT.-L. Wang,TL 60% (SiP 10:1)
tai
presi.r , r iarbonyl compounds in the ac,'. Jf room temPeralure' {cid-catalyzeddepolymerization n. s u:th an amide givesthe acyliminium )lcl. - Alder reactionwith alkenes' crju;rton of up to three bromomethyl hr,,netry of paraformaldehydeand the
#'
C6F5Se(O)OH
\.,/
^
35,5149(1994).
N,N, I, 2,4-P entamethyl-1,4-dihyd ronicotinamide. Enantioselective reduction' This compound mimics NADH and reduces aketo esters and imino esters in the presenceof Mg(ClOc)2.The hydroxyl products have an (R) configuration. rJ.P. Versleijen, M. S. Sanders-Hoven, J.A. Vekemans, S.A. Vanhommerig, andE. M. Meijer, T 49,' 1793(t993).
Perf luorodialkyloxaziridines. The reagentsare availablein two stepsfrom commercial (RJrN on treatment with SbFs[to obtain RN:C(F)Rr'] and then with ArCOrH.' Oxyfunctionalization of hydrocarbons.' The insertion of an oxygen atom in tertiary C-H bonds by these neutral and stable reagents at room temperature proceeds smoothly.
an irrgnardreactionwith formaldehyde useful the s .rlcohol. A preparation of r crample. erhrlation of amides is accomplished ratrng with (HCHO), and MelSiCl in for example'they are conIrermediates; n *rth sodium carboxylates'5A conver. hr warming the parent imides with rcrr i hours'o f n,: \ -Q. Dai,T 49'3907(1993)' :5r. ll62 (1993). n : r J J l l e Y ' T L3 5 , 7 1 0 7( 1 9 9 4 ) ' { . r . : r . S L9 3 3( 1 9 9 4 ) '
.rns agent is prepared from C6F6 and D;. (),. and HzO in sequence'It converts s r, earbonYlcomPounds'
OH
.-+-
f* re
R -'c'r'
l'1-r ClFs
f-+oH
I
re
Oxidation of sulfides and sulfoxides.2 The oxidation can be controlled by temperature. For example, benzenesulfenylmethyl azide is converted to the sulfoxide {96Voyield) at -40'C, but further oxidation at -20"C gives the sulfone (93Voyield). D. D. DesMarteau, A. Donadelli, B. Montanari,V. A. Petrov,andG. Resnati, JACS115,4897 r 1993). : D. D. DesMarteau,V. A. Petrov,B. Montanari,M. Pregnolato,and Resnati, G. JOC 59,2762 ( 1994).
Periodic acid. 13. 238-239:16.292 Acetonide hydrolysis-cleavage. Terminal acetonides are selectively hydrolyzed and cleaved with H5IO6.Sometimes, a one-pot reaction can be accomplished.'
286 Phase-transfercatalYsts HO".^.rO.,rs"\ -
-t- ><"
H "x
H5l05
o
Et2O
/'-
92%
which Iodohyilrins.z In the presence of NaHSO:, hypoiodous acid is formed' NaBrOr' from generated adds to alkenes. Hypobromous acid is similarly 'W.-L. Wu andY.-L. Wu,IOC 58, 3586(1993). 2H. Masuda,K. Takase,M. Nishio,A. Hasegawa, and Y. Ishii, Joc s9,5550 Y. Nishiyama, (1 9 9 4 ) . 17' 271 Periodinane of Dess and Martin. 14,254; 15,252;16,271-2'72: oxidation.' The the on effect Alcohol oxidation, water has a rate-enhancing by way of directly oxidation of 2-alkenylcyclopropylmethanolgives dihydrooxepins ring-expanding undergo also a Claisen rearrangement.2The cyclobutane analogs rearrangement. 'S. D. Meyerand S. L. Schreiber'JOC 59"7549(1994)' ' R . K . B o e c k m a nJ,r . ,M . D . S h a i r J, . R . V a r g a sa,n dL ' A ' S t o l z ' J O C5 8 ' 1 2 9 5( 1 9 9 3 ) ' -253 Phase-transfer catalysts. 13, 239-240: 15, 252 as a mixture from the commercial obtained polipodands.r cyclophosphazenic Brij30,thesecheapandefficientcatalystsarecomparabletomostofthecommon catalYsts. phase-transfer
RQ -r'r-PR no-i'-i-on N-pzN Ro'' toR
dl oa )
CrzHzsO
(1) perfluorocarbon fluids.2 A commercially available liquid (b.p. 97'C) is successfully used in 9 different reactions. be conAlkylation of heterofunctionalities. Etherification of alcohols can l-perfluoroof O-alkylation The polyether.3 a using of solvent ducted in the absence the products alkyl-2-fluoroethanols is accompanied by dehydrofluorination; thus and an effiis observed,s o-aminophenols of O-alkylation are enol ethers.4Selective and phenolates sodium from phosphates triaryl of synthesis cient method for the
POCI: also involves the phase-transfer dibenzoIlSjcrown-6 as catalyst. CaHrz
50% ri.O{
t*o"
A remarkable t-butyl ester formatron iolid-liquid phasetransfer(t-BuBr. KsCO peroxidesare also readily synthesizedin t though the preparation of alkyl nitrates I rions requires somewhat higher temperatl irill useful.eThus 3-methyl-3-nitratonra N-Alkylation of azoleswith propargll normal product at room temperature. bur itronger base (KOH vs. K2COr).rop-\rt ultrasonicreactionof the azoleswith p-f . r n dB u a N B rw i t h o u t s o l v e n t . r l Sulfides are readily formed from thioll .rl halides)r2or epoxidesrrin the prescr
micellesof cetyltrimethylammoniumbrol eeneratessymmetrical sulfides.raAlk1n1 trophilesfor S-alkylationof O,O'-dialk;-l C-Alkylations. The alkylation of a neous application of microwave radiatioo from alkylation becauseseconiary rertr drolysis18 take place.
Cyclopropanation. A list of carbcr rionsincludes:CFz(from CHBTTCBT;F;r. C-SOzMe (from TolSCHCllSOuMel).:'u
casealso employsultrasound. l, I -Dihalo-2-aryltellurocyclopropan and alkenyl tellurides.23Tetramethylamn for gem-dichlorocyclopropanesynthesis fl Condensations. The transformalro , PhjP)2CoCl2and the direct synthesrsr alcohols, COz, and alkyl halides by solx expedient. Additions and eliminations. Sonr r .rrylacetonitriles,due to isomerizationer .'hiral micellar system (prepared from a ql
Phase-transfer catalysts 287 xO,*,O.rs"\-/\
H "x
!,:..
92"/o
POCIr also involves the phase-transfertechnique,6employing both BnNEtrCl a n d dibenzo[8]crown-6 as catalyst. CaHrz
t3o"
50% NaOH / CH2C|2 BUaNHSOa
!eHrz ?'o^o \
CnH
51"/"
lSo hr poiodousacid is formed, which 1:. . :cneratedfrom NaBro:. ,r \ \r.hiyama,and Y' Ishii' "/OC59' 5550
:: l5 l5l: 16, 271-272; 17, 2'7'l en:,:n.rng effect on the oxidation'' The s i r e c t l yb y w a y o f g : . : . J i h y d r o o x e p i nd F i:',rloss also undergo ring-expanding
- .-.: t. A. Stolz'JOC5E, 1295(1993)'
I
'
ld:r-.iJas a mixture from the commercial i r:j (()mparableto most of the common
= - - ) o) o) C 12H25O
rs.;.:r availableliquid (b.p' 97'C) is sucl:rerification of alcohols can be con1 !r3r!rc'r The O-alkylation of 1-perfluoror; .:ehrdrofluorination; thus the products and an effi, -r:rlnophenolsis observed,5 and phenolates sodium from r,t,,.phates
A remarkable t-butyl ester formation of N-protected amino acids is based on solid-liquid phasetransfer(l-BuBr, K2CO:, BnNEtrCl. MeCONMe2).7Mixed dialkyl peroxidesare also readily synthesizedin good yields and under mild conditions.E Although the preparation of alkyl nitrates from tosylates under phase-transferconditions requires somewhat higher temperatures and long reaction times, the yields are still useful.eThus 3-methyl-3-nitratomethyloxetane has been obtained in7lVo yield. N-Alkylation of azoles with propargyl bromide is interesting. Pyrazole forms the normal product at room temperature, but it gives N-allenylpyrazole at 40"C using a stronger base (KOH vs. K2CO.).r0p-Nitrophenylazoles may be obtained from an ultrasonic reaction of the azoles with p-fluoronitrobenzene in the presenceof KOH a n d B u , N B r w i t h o u ts o l v e n t . " Sulfides are readily formed from thiols on reaction with halides (including glycosyl halides)12 or epoxidesrrin the presenceof a phase-transfercatalyst. In aqueous micellesof cetyltrimethylammoniumbromide the reactionof Na2Swith haloalkanes generatessymmerical sulfides.ta Alkynyl phenyliodonium salts are suitable elect rophiles for S-alk ylatio n of O,O' - dial kyl phosphorodithiolates.15 C-Alkylations. The alkylation of ethyl phenylthioacetateis aided by simultaneous application of microwave radiation.16Sometimes unexpected products appear from alkylation becausesecon.iary reactions such as dehydrochlorinationrTand hydrolysisrEtake place. Cyclopropanation. A list of carbenes generated under phase-transfer conditions includes:CFz(from CHBrr-CBrzFz),re:C:C:CHCI (from HCCCHCI2),20 TolSC-SOzMe (from TolSCHCtlSOzMel),2r and :CHSePh (from CICHSePh).22 The last case also employs ultrasound. I,l-Dihalo-2-aryltellurocyclopropanesare the cycloadductsof dihalocarbenes and alkenyl tellurides.23 Tetramethylammoniumsalts are highly selectivecatalysts for gem-dichlorocyclopropanesynthesis from electrophilic alkenes.2a Condensations, The transformation of acid chlorides to anhydrides25 by (PhrP):CoClzand the direct synthesis of unsymmetrical carbonic esters26from alcohols,COz, and alkyl halides by solid-liquid phase-transferreactionsare most expedient. Additions and eliminations. Some arylpropenesare found to give adductswith arylacetonitriles,due to isomerizationand addition.2?Asymmetric induction by a chiral micellar system (prepared from a quaternary ammonium salt of ephedrine) has
288 Phase-transf€rcatalysts Cyclization of 2-alkynylanilibeen observedin the hydratomercurationof alkenes.28 nes in a two-phase system to give indoles2eis catalyzed by PdCl2 and takes place in the presenceof Bu+NCl. Bu.NBr
Ph
,
N/"'z
!cr.t h
aq. NaOH/PhCl
ortY Nc-1_R Ph 67-98%
In a convenient route to cyclic ketene acetalss0dehydrobromination is conducted in the presenceof BuaNBr while being irradiated with ultrasound. Oxidations. Allylic and benzylic alcohols are converted to the aldehydeswith great selectivity by a Cr-mediated oxidation with sodium percarbonate.rrThe phasetransferoxidation of anilines with KMnOq resultsin azoarenes.32 Amide degradation.3t In a liquid triphasic system made up of NaOCl, NaBr, a phase-tranfer agent, NarPO+, benzene, and water, primary amides are degraded to nitriles of one fewer carbon atom. After Hofmann rearrangementthe amine products undersobrominationand eventuallvelimination.
o/t"/**' " i l
NaOCI-NaBr
RCN BU4NHSOT-NasPOl PhH/Hzo
48-68o/"
'A. c o b b i , D . L a n d i n i , A . M a i a , G . D e l o g u , a n d G . P o d d a ,J O C 5 9 , 5 0 5 9 ( 1 9 9 4 ) . ,D.-W. Zhu, S 953 (1993). tB. A b r i b a t , Y . L e B i g o t , a n d A . G a s e t ,S C 2 4 , 2 0 9 1 ( 1 9 9 4 ) . oC. D r i s s , M . M . C h a a b o u n i ,a n d A . B a k l o u t i , J F C 6 7 , 1 3 7 ( 1 9 9 4 ) . 5R. C a r r i l l o a n d E . D i e z - B a r r a ,S C 2 4 , 9 4 5 ( 1 9 9 4 ) . uA.R. K o r e , A . D . S a g a r ,a n d M . M . S a l u n k h e ,B S C B f 0 3 , 8 5 ( 1 9 9 4 ) . 7 P . C h a v a l l e t .P . G a r r o u s t e ,B . M a l a w s k a , a n d J . M a r t i n e z , T L 3 4 , 7 4 0 9 ( 1 9 9 3 ) . 'C. , . C o l o m b a n i , a n d B . M a i l l a r d , S C 2 3 , 1 0 2 5( 1 9 9 3 ) . N a u a r r o ,M . D e g u e i l - C a s t a i n g D 'J.R. H w u , K . A . V y a s ,H . M . P a t e l ,C . - H . L i n , a n d J . C . Y a n g ,S 4 7 1 ( 1 9 9 4 ) . rt'8. D i e z - B a r r a , A . d e l a H o z , A . L o u p y , a n d A . S a n c h e z - M i g a l l o n ,H 3 E , 1 3 6 7 ( 1 9 9 4 ) . rlM. L . C e r r a d a ,J . E l g u e r o , J . d e l a F u e n t e ,C . P a r d o , a n d M . R a m o s , S C 2 3 , 1 9 4 ' l ( 1 9 9 1 ) . '' S. Cao, S. J. Meunier, F. O. Andersson, M. Letellier, and R. Roy, TA 5,2303 (1994). 'tA. K . M a i t i a n d P . B h a t t a c h a r y y a ,7 5 0 , 1 0 4 8 3( 1 9 9 4 ) , 'oC. D . M u d u l i a r a n d S . H . M a s h r a q u i ,J C R ( S ) 1 7 4 ( 1 9 9 4 ) . 'tz.-D. L i u a n d Z . - C . C h e n , J O C 5 8 , 1 9 2 4( 1 9 9 3 ) . 'uR.-H. D e n g a n d Y . - 2 . J i a n g ,S C 2 4 , l 9 l 7 ( 1 9 9 4 ) . 'tA. Jonczykand T. Kulinski, SC 23, l80l (1993). 'tC. Sarangi and Y. R. Rao, "/CR(S)392 (1994). 'eP. B a l c e r z a ka n d A . J o n c z y k ,J C R ( S )2 0 0 ( 1 9 9 4 ) . 2oK. N. Shavrin. L B. Shvedova,and O. M. Nefedov, MC 50 (1993).
t'K.
S c h a n k ,A . - M . A . A b d e l W a h a b .S
(r994)..
ttC. C . S i l v e i r a ,A . L . B r a g a , a n d G . L . F r -'X. H u a n g a n d S . - H . J i a n g ,S C 2 3 , 4 3 t r I -'M. F e d o r y n s k i ,W . Z i o l k o w s k a . a n d A ttJ.-X. Wang,Y. Hu, and W. Cui, SC 2a. . tnS. O i , Y . K u r o d a , S . M a t s u n o ,a n d y . t r :tW. L a s e k a n d M . M a k o s z a ,S 7 8 0 ( l 9 9 l t'Y.Zhang, W Bao, and H. Dong, SC 2J. f,S. Cacchi,V. Carnicelli, and F. Marrrl {A. Diaz-Ortiz, E. Diez-Barra,A. dc le t '' J. Muzart, A. A. Ajiou, and S. Air-Moht ''M. Hedayatullah and A. Roger, 8SC8 l( 'rJ. C o r r e i a ,S l l 2 7 ( l g g 4 \ .
Phenyl(cyano)iodine(III)tosylrrc. Alkenyl(phenyl)iodonium salu. nanesby reactionwith Phl(CN)OTirr '
R . J . H i n k l e a n d P . J . S t a n g ,S 3 1 3 ( 1 9 9 { l
Phenyliodine(III) bis(trif luororcrr 16,274-275 Cleavageof thioglycosidcs.' Or facilitatesreplacement of the thio gro ionsbut not the oxoniumions. Dearomatization of p- substilr,u dienonesare the major productsin rb formed in the presenceof pyridiniuu wateraaloneas additivebesidessolru
rf\r" R?J
h
R=Me.H
o-Keto esters.s Phenylhydrazoc at OoCin aqueousMeCN. The yields e Radical alkylation of hctcruta boxylation to generate free radicals. r 2-(l-adamantyl)-4-cyanopyridineis o boxylic acid and 4-cyanopyridine.
Phenyliodine(III) bis(trifluoroacetate) 2t9
:' Lere- Cyclizationof 2-alkynylanili,;"13,rzed by PdCl2and takes place in
ortY Nc-rR
prcl
| \"1-
Ph 67-98%
ta.. dehydrobrominationis conducted ar.J \\ tth ultrasound. o;. Jre convertedto the aldehydeswith The phase' r r::. .odium percarbonate.3l X-.:. tn azOareneS.3t l\r. .\\tem made up of NaOCI' NaBr, a ri:rr. primary amides are degradedto the amine products n3r n rearrangement lroll
6'
RCN
b,t:. 48-68%
1
| (,
P,'dda.JOC 59,5059 (1994)' qq-l).
Ir! f(
6'
]K.
S c h a n k , A . - M . A . A b d e l W a h a b , S . B u l g e r , P . E i g e n , J . J a g e r ,a n d K . J o s t , T 5 0 , 3 7 2 1
(r994). rrC.C. Silveira, (1994). A. L. Braga, andG.L. Fiorin,SC24,2074
ttX. H u a n g a n d S . - H . J i a n g ,S C 2 3 , 4 3 1 ( 1 9 9 3 ) . toM. Fedorynski, W. Ziolkowska, and A. Jonczyk, JOC 58,6120 (1993). ttJ.-X. Wang,Y. Hu, and W. Cui, SC 24,3261 (1994). tuS. O i , Y . K u r o d a , S . M a t s u n o ,a n d Y . I n o u e , N K r K9 8 5 ( 1 9 9 3 ) . :7W. L a s e k a n d M . M a k o s z a ,S 7 8 0 ( 1 9 9 3 ) . t' Y. Zhang, W. Bao, and H. Dong, SC 23, 3029 (1993). reS. Cacchi, V. Carnicelli, and F. Marinelli, JOMC 475,289 (1994). r0A. D i a z - O r t i z , E . D i e z - B a r r a , A . d e l a H o z , a n d P . P r i e t o , S C 2 3 , 1 9 3 5( 1 9 9 3 ) . I J . M u z a r t , A . A . A j i o u , a n d S . A i t - M o h a n d , T L 3 5 , 1 9 8 9( 1 9 9 4 ) . 12 M . H e d a y a t u l l a ha n d A . R o g e r ,B S C B 1 0 2 , 5 9 ( 1 9 9 3 ) . "J. Correia,S ll27 (1994').
Phenyl(cyano)iodine(III)tosylate. Alkenyl(phenyl)iodoniumsalts.' Thesesalts are preparedfrom alkenylstannanesby reactionwith PhI(CN)OT;in CHrCI2 at -23"C. 'R.
J . H i n k l e a n d P . J . S t a n g ,S 3 1 3 ( 1 9 9 4 ) .
Phenyliodine(Ill) bis(trifluoroacetate). 13, 241-242:' 14, 257; 15, 257-258; 16,274-275 Cleavage of thioglycosides.' Oxidation with the hypervalent iodine reagent facilitates replacementof the thio group. O-Glycosylation occurs via the sulfonium ions but not the oxonium ions. Dearomatization of p-substituted phenols and derivatives. 2,5-Cyclohexadienonesare the major products in the reaction. 4-Halo derivatives or p-quinols are formed in the presenceof pyridinium poly(hydrogen fluoride),2 aqueous NaCl,r or watera alone as additive besidessolvents.
ll7 (1994).
13 lit
6 103.85 (1994).
\1: :: rn€2.TL 34, 1409(1993). r. :-:l B. Maillard'SC23' 1025(1993)' e:: J C Yang,S471(1994)' S r : , h e z - M i g a l l oH n ,3 8 , 1 3 6 7( 1 9 9 4 ) ' rnd M. Ramos,SC 23' 194'l(1993)' t:i , A 5 , 2 3 0 3( 1 9 9 4 ) ' :l r: rnd R. RoYT ,
R'
taY'
RO'"<
Pht(ococF3)2
a/*t t ^ 62"/
R=Me,H
ql-l
7.3.v9-ll. i
: .3
4 . . r / C5 0 ( 1 9 9 3 ) .
a-Keto esters.s Phenylhydrazonesof a-keto esters undergo oxidative cleavage at 0'C in aqueousMeCN. The yields are good (7 examples, 74-98Vo). Radical alkylation of heteroaromatic bases.6 Carboxylic acids undergo decarboxylation to generate free radicals, which can be captured by heterocycles.Thus 2-(1-adamantyl)-4-cyanopyridine is obtained in 887o yield from l-adamantylcarboxylic acid and 4-cyanopyridine.
290 Phenyliodine(III) diacetate 'L. S u n ,P . L i , a n d K . Z h a o , T L 3 5 ' 7 1 4 7 ( 1 9 9 4 ) ' ' O . K a r a m , J . - C . J a c q u e s ya, n d M ' - P ' J o u a n n e t a u dT ' LSS'2541 (1994)' ' O . K a r a m , M . - P . J o u a n n e t a u da, n d J ' - C ' J a c q u e s yN ' JC 18' ll51 (1994)' 204'7 (1994)' o A. McKillop, L. Mclaren, and R. J' K' Taylor, JCS(PI) t TL 34"7191 (1993)' D. H. R. Baiton, J. C. Jaszberenyi,and T' Shinada, uH. Togo, M. Aoki, T. Kuramochi, and M' Yokoyama' JCS(PI) 241'l \1993)'
Phenyliodine(Ill)diacetate.13,24l-243;14,258-259;15'258;16'275-276: 17,280-281 method for aryl phenyliDiaryliodonium triflates.t An improved preparative of arenes with this reaction involves odonium triflates (10 examples, 74-987o yield) reagentin the presenceof triflic acid' givep-quinols. catechols and hyoxidation ofphenols.z p-Substituted phenols quinones' droquinones are oxidized to the corresponding from semicarbazones3and tocleavage of azones. The regenerationof ketones at room temperature in sylhydrazolesiis rapid and high yielding. It is4erformed are transformed into ketones uqu"ou, MeCN. The acylhydrazonesof o-hydroxyaryl 1,2-diacylbenzenes.s
l
n
6-f-*-*Ytn o
Ph0(oAc)21 CH2Cl2
\4o*
rt,3h
n*4" wo
a Hofmann rearrangement at Metttyl carbamates.6 Primary amides undergo MeOH in situ' 0"C to room temperature. The isocyanatesreact with 2.Aryl-4-quinolonesand3.hydroxyflavones.Thequinolonesareobtained from2,3-dihydrocompoundsandf|avonesarehydroxylatedatC-3.8KoHisaddedto the reaction medium. Phenylalkynylselenides.gPhenylselenylationofl-alkynesiseasilyaccom. plished with the PhI(OAc)z-PhSeSePhcombination' A method for introducing an iodine atom at a Bridgeheailfunctionalization'to the derived acetal such as (1) with bridgeheadadjacentto a ketone is by oxidation of PhI(OAc)z-Iz.
p' (1)
Phl(OAc)z-lz
\/ > 95%
Phenyliodine(Ill) dichloride -leed(II) O p-Thiocyanation of Phenols.' Thc s ally the reaction is complete within l h.
'Y. Kita, T. Okuno,M. Egi' K. Iio' Y. Takcdr
Phenyliodine(III) dimethoxide. (A re n esulf o nylimi n oi o d o)bc n zcu 6 (OMe)zwith elimination of methanol-Thc ence of 3A molecular sieves' and thcn io ( 'G. Besenyei, S. Nemeth,andL.I. Simandr.I
Phenylmanganese N'rnethylsnllidc. Ketones fom Kinetic enolization.' MnCll ' 2l from amide, which is prepared less effrr much ganesedialkylamides are 'G. Cahiez,B. Figadere,and P. Clery. IL 35.
61. /-x-'
'T. Kitamura,J.-i. Matsuyuki,andH. Tanigrd t A. Pelterand S.M. A. Elgendy'JCS(Pr,lt9l ' tD.W. ChenandZ.C. Chen,S'173(19941'H.ZengandZ.-C. Chen,SC 23'2497(1991 1R.M. Moriarty,B. A. Berglund'and M. S.C 6R.M. MoriartyC , ' K . V a i d 'O , . J . C h a n yR ( r993). 'O. Prakash,D. Kumar,R. K. Saini,andS.P 8O. Prakash,S. Pahuja,and M. P. Tanwlr. /.fC oM. Tingoli, M. Tiecco,L. Testaferri,and R I 'oU.P. Spitzand P.E. E^ron,ACIEE 3t,2220 t " 2 . - D . L i I a a d Z . - C .C h e n ,H C 3 , 5 5 9( l 9 9 l t .
Ph
90%
A
diacetates.tt This Diaryltelluronium dic:rl phenyliodine(Ill) common to various tt prepared be can etates of diaryltellurides
Ph3cBF4
q
9- Phenytphosphabicyclo[4.2.1]nonu(E)-Selectivc Wittig reactions. Ylt drophosphole (1) react with aldehydcs in t
291 9-Phenylphosphabicyclo[4.2.1]nonane
r : . 1 51 5 . 1(11 9 9 4 ) . \.i lt. ll5l (1994). : , r - 1(71 9 9 4 ) . iI ri -u.7l9l (1993). t, .t(SrPl) 2417(1993).
l. t:'
159;15,258;16,275-276;
I ;::perative method for aryl phenylilr .:.r,rlresreactionof areneswith this :n,'.. give p-quinols.Catecholsand hyI {julnoneS.
and to\e:,,nesfrom semicarbazones3 r.^ncrlbrmed at room temperaturein 11r1rrr\l ketonesare transformedinto
A .
:
'T. Kitamura,J.-i. Matsuyuki,andH. Taniguchi,S 147(1994). t A. PelterandS.M. A. Elgendy, JCS(PI)l89l (1993). tD.W ChenandZ.C. Chen,S 773(1994). 'H.ZengandZ.-C. Chen,SC 23,2497(1993). 5R. M. Moriarty,B. A. Berglund, andM. S.C. Rao,S 318( 1993). 6R.M. Moriarty,C.J. Chany,R.K. Vaid,O. Prakash,and S.M. Tuladhar,IOC 58,2478 (1993). 7O.Prakash,D. Kumar,R.K. Saini,andS.P. Singh,SC 24,2167(1994). 8O. Prakash,S. Pahuja,and M. P. Tanwar,IJC(B)33R,272(1994). oM. Tingoli,M. Tiecco,L. Testaferri, andR. Balducci,SL2ll (1993). 'oU.P. Spitzand P.E. Eaton,ACIEE 33,2220(1994). " 2-D. Liu andZ.-C.Chen,HC 3, 559(1992).
Phenyliodine(III) dichloride-lead(II) thiocyanate. p-Thiocyanation of phcnols.t The substitution occurs in CHzClz at 0'C. Usually the reaction is complete within I h.
I
/\Ao
.
Diaryltelluroniam diacetates,tt This carboxylate group transfer reaction is common to various phenyliodine(Ill) dicarboxylates. Accordingly, not only the diacetatesof diaryltellurides can be prepared in this manner.
i
l
'Y. Kita, T. Okuno,M. Egi, K. Iio, Y. Takeda,andS. Akai, SL 1039(1994).
l
?" 90%
unJc'rsoa Hofmann rearrangementat \r ir rth MeOH in situ. Eones. The quinolones are obtained : hr Jroxylatedat C-3.8KOH is addedto
Phenyliodine(III) dimethoxide. (Arenesulfunyliminoiodo)benzencs.t Arenesulfonamides condense with PhI(OMe)zwith elimination of methanol. The reaction is conducted in MeOH in the presence of 3,{ molecular sieves,and then in CH2CI2. lG. Besenyei,S. Nemeth,and L. L Simandi,TL 34,6105(1993).
r::rrtro of l-alkynes is easily accomOll lrJn
h,'J tirr introducingan iodine atom at a )n ,,! the derivedacetal such as (1) with
Phenylmanganese N-methylanilide. Kinetic cnolizotion.t Ketones form kinetic enolates with this manganese amide, which is prepared from MnClz -2LiCl, Ph(Me)NLi, and PhLi in ether. Manganesedialkylamides are much less efficient. 'c. Cahiez,B. Figadere,and P. Clery, TL 35,6295(1994).
:*o (
o Ph3cBF4
^X
Y' I
9-Phenylphosphabicyclo[4.2.1]nonane. (E)-Selective Wittig reactions. Ylides prepared from the bridged tetrahydrophosphole(l) react with aldehydesin an (E)-selective fashion.
292 N-Phenyltrifluoromethanesulfonimide ,\P,Ph
45
Phenyl vinyl sulfoxide. Ene reactions.l With (CFTCO):Oas i goeselectrophilicene-typereactionwirh rl
(1)
'E.
,nb-d V e d e i sa n d M . J . P e t e r s o n J, O C 5 8 , 1 9 8 5( 1 9 9 3 ) .
Phenylth iomethyl isocyan ide. Vicarious nucleophilic substitutions.' The reagentis useful for introducing an isocyanomethyl group to an o-position of nitroarenes in the presenceof t-BuOK in DMF. The products are readily converted into formamides or amines. 'M.
Makosza,A. Kinowski,andS. Ostrowski, S l215 (1993).
Phenyl tosyl selenide. Radical cyclizations.t Homolysis of PhSeTs(initiated by AIBN) in refluxing benzene in the presenceof a diene or enyne leads to difunctional cyclic products. r J . E .B r u m w e l lN, . S .
,')7
I
(cF3co)2o
"n!-ococr. )
J. Harvey, M.-H. Brichard, and H. G. Viehc. .l(
Phosphine. Addition to alkenes. PHr is generare at 50'C. In alkaline solutionit addsro elccrn to give tertiary phosphines.rIt also forms I
D. Semenzen, G. Etemad-Moghadem, D. Altto{ :8. A. Trofimov,L. Brandsma, S. N. Arburzore 7647 0994).
S i m p k i n sa, n dN . K . T e r r e t r , 2 5 0 1, 3 5 3 (31 9 9 4 ) .
Phenyl p-toluenesulfinylmethyl sulfone. Alkenyl sulfones.' The sulfonyl reagent condenseswith aldehydes (catalyzed by piperidine at -20'C).
Phosphorus(V) oxide-acetonitrile. Mukaiyama-Michael addition.t Tb. enonesis catalyzed with a speciesforrrcd fr 'V. Berl, G. Helmchen, and S. Preston,ff iS. :l
'J.C. Carretero andE. Dominguez, JOC58, 1596(1993).
Phenyl(2,2,2-trif luoroethyl)iodon ium trif late. N-Tritluoroethylation of amines.' The usefulnessof the reagent is shown by the selectivemono-N-alkylation of amino alcohols at room temperature. rV. Montanariand
Phosphorus oxychloride. 13, 249: 15. l6a. Isocyanates.t Primary amines form ua COz and a base.On treatmentwith POCI, rt 5-Chloro-3-furaldehydes.2 7-Keto n tion, and formylation with POCITDMF r\-rl
G. Resnati,IL 35, 8015(1994).
o tl
N-Phenyltrif luoromethanesulfonimide. Alkynes.t A method for synthesizing alkynes involves enoltriflylation of asulfinyl ketones and elimination. Both steps are done in one operation using LDA, PhNTf2 in the presenceof HMPA. rT. Satoh,N. Itoh,
(1994). S. Watanabe, H. Matsuno,andK. Yamakawa,CL56T
n,McooH
-c--t
;s 3 .
' T . E. Waldman and W. D. McGhee, CC 957 I l99r
tM.
V e n u g o p a l ,B . B a l a s u n d a r a n a , nd P.T. perun
Phosphorus oxychloride293 Phenyl vinyl sulfoxide. Ene reactions.' With (CFTCO)2Oas an activating agent, the sulfoxide undergoes electrophilic ene-type reaction with alkenes.
pnt-o
z
I
I
(cF3co)20
cF3coo PhS
\-J I
Ph? I
Y,\,\ I 627"
eagentis useful for introducingan nc. rn the presenceof l-BuOK in m r n r r d e so r a m i n e s .
'J.
Harvey,M.-H. Brichard,and H. G. Viehe,./CS(P,|) 2275(1993).
Phosphine. lvr:
, r n r t r a t e db y A I B N ) i n r e f l u x i n g t.' Jriunctional cyclic products.
Addition to alkenes. PH3 is generatedfrom red phosphorusand KOH in water at 50"C. In alkaline solution it adds to electron-deficient alkenes such as acrylonitrile to give tertiary phosphines.'It also forms l:2 adductswith styrenes.2 ' D. Semenzen, G. Etemad-Moghadem, D. Albouy,andM. Koenig, TL 35,3297(1994). :B. A. Trofimov,L. Brandsma, S. N. Arbutzova,S.F. Malysheva, and N. K. Gusarov,ZL 35, 7647 0994\.
) . : r : - 1( 1 9 9 4 ) .
xJcn.eswith aldehydes(catalyzed
Phosphorus(V) oxide-acetonitrile. Mukaiyama-Michael addition.' The reaction of silyl ketene acetals with enonesis catalyzed with a speciesformed from PaOlsand MeCN. 'V. Berl,G. Hefmchen, andS. Preston,fL 35,233(1994).
lui:rc.. of the reagentis shown bY s r: r\)om temPerature'
Phosphorus oxychloride. 13, 249 ; 15, 267; 17, 288 Isocyanates.t Primary amines form unstable carbamic acids in the presenceof C02 and a base. On treatment with POCl.r the acids afford isocyanates. 5-Chloro-3-furaldehydes.2 7-Keto acids undergo cyclization, chlorodehydration, and formylation with POCITDMF (Vilsmeier reagent).
oHC..,-
o POC|3
r,McooH n . :n\olves enoltriflylation of cri.ne rn one operationusing LDA'
'rr.i^r*a, CL 56'l (1994).
;;*
,
\\
n,Ae^ct
900, 3 h
70-45"/"
'T. E. waldman and W. D. McGhee, CC 957 (1994). r M. Venugopal, B. Balasundaran, and P.T. Perumal, SC 23, 2593 (1993).
|
294 Polyphosphoricacid Pivaloyl chloride. THF ring opening.t Pivaloyl chloride and acetyl chloride induce ring opening in of 2-substitutedtetrahydrofurans in different fashions. The Sr2 pathway is favored the reaction with l-BuCOCl.
AcCl-ZnC12
a--
o"oJ")_ 62%
ctJ
\
tBuCOO' 957o 'P.
4-Pyridones.' Thecondensation ofdu estersfollowed by acid treatment may lead t (with PPA, 70'C).
'T. Cablewski, P.A. Gurr, K. D. Raner.andC I :G. Bartoli,M. Bosco,C. Cimarelli,R. Dalpou (1993).
Polyphosphoric acid trimethylsilyl cstcr. Cyclic conjugated imines,t Cyclizarro bonds are properly distanced to the carbo'c preparedby heating P4Or0(0.l mol) and t lle
M i m e r o , C . S a l u z z o ,a n d R . A r m o u r o u x , T L 3 5 ' 1 5 5 3( 1 9 9 4 ) '
^)"PrO,r"053
(IS,3R)-2- Pivaloyl-3- methylbenzoisothiazoline 1-oxide' Asymmetric sulfinylation.r The reaction of ketone enolates with this reagent (1) gives chiral sulfoxides. With the chelation assistanceof the sulfinyl group the leads to reduction of the ketones is stereoselective,and a subsequentthermolysis allylic alcoholswith an (R) configuration'
\--NH
\"*r,
'A.L. Marquart,B.L. Podlogar, E.W. Hubcr.I and M. R. Angelastro,JOC 59,2092(l99at
Poly(4-vinylpyridinium) poly(hydrqcr I Solid equivalent of HF.t The extensrr conducted with the polymer-bound rcagenr
'c. A. Olah,X.-Y.Li, Q. Wang,andG. K. S, pn '1. D. Linney,H. Tye, M. Wills, andR. J' Butlin, II- 35' 1785(1994)'
Polymethylhydrosiloxane. Reduction of esters. Alcohols are produced fromZt-t and Ti-2 catalyzed reduction of esters at temperaturesranging from OoCto ambient' 'K. J. Barr, S.C. Berk, and S.L. Buchwald,JOC 59' 4323(1994)' 2S.W.Breeden SL 833(1994). andN. J. Lawrence,
Polyphosphoric acid. N-Acylanilines,t when electron-rich arenes are treated with a carboxylic acid' These are hydroxylamine hydrochloride in PPA, severalreactions occur in sequence. rearrangement' Beckmann and formation, oxime the Friedel-Crafts acylation, Anilides are obtained in 45-95Vooverall yields (ll examples)'
Potassium. 15,269 Cleavage of N- substituted 2- aryl- I,l t N-(2-hydroxycthyl)-N-benzylamines occur carbanions.
tnYil, oJ
jl.?o
Potassium 295
trl chloride induce ring oPenrng r. The S,v2Pathway is favored in
4-Pyridones.2 The condensationof dianions of acyclic B-enamino ketoneswith estersfollowe.dby acid treatment may lead to 4-pyranones (with HCI) or 4-pyridones (with PPA,70"C). tT. Cablewski, JOC 59' 5814(1994)' P.A. Gurr, K. D. Raner,andC. R' Strauss, 2G.Bartoli,M. Bosco,C. Cimarelli,R. Dalpozzo, G. Guercio,andG. Palmieri,JCS(PI)2081
(r e 9 3 ) . cL
.-
/\-
ct' 62%
//^\
€!COO
Polyphosphoricacid trimethylsilyl ester. l5' 269 Cyclicconjugatedimines.t Cyclizationof N-alkenylamidesin whichthedouble bondsare properlydistancedto the carbonylgroupis effectedby this reagent.It is (0.1mol) and(MerSi)rO(30 mL) in CCI+(70 mL) for l'5 h' preparedby heatingP4Orc
95%
I
qql).
?n
-or ide. kct,'ne enolateswith this reagent ,r\t.rnce of the sulfinYl grouP the .ub:equent thermolYsis leads to
\_.NH
PrOlo-(Ms3Si)2O
\cooE 97"/"
'A.L.
M a r q u a r t , B . L . P o d l o g a r ,E ' W . H u b e r , D ' A ' D e m e t e r , N ' P ' N e e t , H ' J ' R ' W e i n t r a u b ' and M. R. Angelastro, JOC 59,2092 (1994).
Poty(4-vinytpyridinium) poly(hydrogen fluoride). Solid equivalent of HF.t The extensivereactions mediated by pyH(HF), can be conducted with the polymer-bound reagent. 'c. A. Olah,X.-Y. Li, Q. wang,andG. K. S. Prakash,S 693 (1993). l.
-.5
t 1994).
fronr Zr-r and Ti-2 catalyzed reduc) I nl blent. l::
Potassium. 15,269 cleavage of N-substituted 2-aryl-1,3-oxazolidines.' This reduction to afford N-(2-hydroxycthyl)-N-benzylaminesoccurs at room temperature via o-amino carbanions.
:99'1)
ph_-tl,
Ph._-J t ) Hzo
i ire treatedwith a carboxylic acid' crr(\n\occur in sequence'These arc l. ind Beckmann rearrangement' II i :ramPles).
HOJ ao"k
'l).
Azzena, G. Melloni, and C. Nigra, JOC 5E' 6707 (1993).
296 Potassiumr-butoxid€
Potassium /-butoxide. 13, 252-254: 15, 271-272: 17, 289-290 Eliminations. Treatment of o-alkyl N'-(t-butylthio)azoarenes with t-BuOK accomplishescyclization and delivers lH-indazoles.rUnsaturateda-amino nitriles are obtained2on alkylation of 2-(N-methylanilino)-2-benzenesulfenylacetonitrile, due to elimination of benzenethiolin situ.
t-BUOK RCH2X
CN
pnsAruuepr,
B
C
'
N NMePh
61 -83%
Allylic phosphonates. A deconjugativeisomerization of vinylic phosphonatesl is catalyzed by t-BuOK in DMSO. Heterocyclizations. Hemiacetals derived from 5-hydroxy-2-alkenoic esters under basic conditions can cyclize to form 1,3-dioxanes.aThis'method is suitable for the synthesisof syr-1,3-diol units. The base-catalyzedreactionof 2-hydroxymethyl 1,3-enynesand the thiol analogsprovide furanssand thiophenes.6 2,3-Disubstituted furans are accessiblefrom isomeric enynes,t by way of an Sp2' reaction.
Ph OH t
rBuoK -
PhcHo
nA-\,'coou"
THF, OO
olo nAA-coo"" 71-790/o
4)
//
(. ""' (o"ot
r-BUOK-r-BUOH '18-crown-6 THF. rt
o J. A. Marshall and W. J. DuBay, SL 209 r t9 J . A . M a r s h a l l a n d C . E . B e n n e t t ,J O C S t . I 'G.W. Wijsman, W. H. de Wolf, and F. Brc!
Potassiumdicarbonyl(cyclopentrdicr Tishchenkoreaction.t Aromatrc benzylaroatesin THF. In somecars rl Pinacol silyl ethers.2 In the prcsca anotherpath, as the adductsare trirp (60"Cin benzene)d highertemperature 'T. Ohishi,Y. Shiotani, andM. Yamashr : R.M. Vargas andM. M. Hossain, TL y.. 2
Potassiumdiphenylphosphide. Functionalized arylphosphincs.' I with somearyl fluoridesgivessubsirua '
S. J. Coote, G. J. Dawson, C. G. Frost. tad .
Potassium fluoride. 13, 256-251: lS. 1 As base. In the absenceof solveot silylacetonitrile with aldehydesto girc r wave as energy source the reaction is cq l8-crown-6 successfully effects the Mi estersand propynoic esters also. An interesting olefination of electroo using KF probably involves sulfene forrn carbonyl (Fmoc) groupo-6from amilrc r not affect methyl, ethyl, t-butyl, bcnz;"1 scarbamoylation(into Boc and Cbz gruq senting the proper electrophiles in rhc n
X=O,S
o Hydrodebromination of I - bromo- 1- chlorocyclopropanes.n This chemoselective reduction is actually promoted by dimsyl anion, which is presentwhen r-BuOK is dissolved in DMSO. 'C. Dell'Erba, Novi, M. G. Petrillo,andC. Tavani,T 50,3529(tgg4). tC.-C. Chen,S.-T.Chen,T.-H.Chuang, andJ.-M. Fang,JCS(PI)2217(lgg4). 'J.J. KiddleandJ. H. Babler, JOC58, 3572(1993). oD. A. EvansandJ. A. Gauchet-Prunet, JOC 58,2446(199r. 5J.A. MarshallandW.J. DuBay, JOC5E,3435(1993).
ph
+
[l
ct{tsO/
cF3
As nucleophile. An enantiosclcctn responding sulfonates is based on en HCONH2. The replacementof activalcd r conditions(DMSO, l30t).8
Potassiumfluoride 297
:-: 17.289-290 -h,-rrlthio)azoarenes with I-BUOK aclc. I n\aturateda-amino nitriles are due to e I '^ c n zenesulfenylacetonitrile,
B
,'-/C
N NMePh
61 -83%
oJ. A. Marshall and W. J. DuBay, SL 209 (1993). -J. A . M a r s h a l l a n d C . E . B e n n e t t ,J O C 5 9 , 6 l l 0 ( 1 9 9 4 ) . 'G.w. wi.lsman, W. H. de Wolf, and F. Bickelhaupt, RTC ll3,53
(1994).
Potassium dicarbonyl(cyclopentadienyl)ferrate. Tishchenko rcaction.t Aromatic aldehydes undergo redox coupling to give benzyl aroatesin THF. In some casesthe yield can be as high as99Vo. Pinacol silyl etherc.z In the presenceof MerSiCl the reaction (vide supra) takes another path, as the adducts are trapped as c-siloxybenzyliron complexes. At a higher temperature (60oC in benzene)demetallative coupling occurs. 'T. Ohishi, Y. Shiotani,and M. Yamashita,OM 13,4641(1994). t R. M. Vargasand M. M. Hossain,TL 34,2'127(1993).
s,:r:rr zation of vinylic phosphonatesr d :r,'m 5-hydroxy-2-alkenoic esters -.jr,,'.rnes.{This'mbthod is suitablefor r i\ /ed reaction of 2-hydroxymethyl ;.3r:
Potassium diphenylphosphide. Functionalized arylphosphines.t PhzPK is highly nucleophilic, and its reaction with some aryl fluorides gives substituted triphenylphosphines.
2,3-Disubstituted n. rnd thiophenes.6 1r ,r rr of an SN2'reaction.
' S.J. Coote,G. J. Dawson, C. G. Frost,andJ. M. J. Williams,SL 509(1993).
Ph
I -o o' r l q\-\.cooi'" 71-790k
c> I
-{) \
X
lo"ot
Potassium fluoride. 13, 256-257 ; 15, 272 As base. In the absenceof solvent KF promotes the condensationof trimethylsilylacetonitrilewith aldehydesto give the B-cyanohydrinsilyl ethers.rWith microwave as energy sourcethe reaction is complete within minutes. KF in the presenceof l8-crown-6 successfully effects the Michael reaction2between a-acetamidomalonic esters and propynoic esters also. An interesting olefination of electron-deficient ketonesr by alkanesulfonyl halides using KF probably involves sulfene formation. The removal of the fluorenylmethoxycarbonyl (Fmoc) groupo-ufrom amino acids and peptides with KF/18-crown-6 does not affect methyl, ethyl, l-butyl, benzyl, andP-methoxybenzyl groups. Actually transcarbamoylation(into Boc and Cbz groups) can be accomplishedin one flask' by presenting the proper electrophiles in the reaction mixture.5
88"/"
oroc.r'clopropanes.8This chemoseleca:..:,,n.which is presentwhen l-BuOK is
(1994). n I 50. ,1529 i.- ; lcSt Pl ) 22t7 (1994). I
1::^ 1993). Qri
O ll Ph-
+ .CFE
K CHISOTCI
F 18{rown-6 : DMF. 1100
Ph
cFo
92% As nucleophile. An enantioselectivesynthesis of a-fluoro estersTfrom the correaction using KF in responding sulfonates is based on an essentially pure .S1v2 HCONH2. The replacementof activated aromatic nitro groups requires more vigorous conditions (DMSO. 130"C).t
29E Potassiumhexamethyldisilazide The silaphilicity synthesis
from
chloromethylsilanes.
ion has been used to advantage in the B-lactam and in the rearrangement of
of the fluoride
:
ketene acetals and imines,e
silyl
9 ?TBS
ro
rR. L a t o u c h e ,F . T e x i e r - B o u l l e t ,a n d J . H a m e l i n , B S C F 5 3 5 ( 1 9 9 3 ) . 'V. T o l m a n a n d P . S e d m e r a ,C C C C 5 8 , 1 4 3 0 ( 1 9 9 3 ) . tB. S . N a d e r ,J . A . C o r d o v a , K . E . R e e s e ,a n d C . L . P o w e l l , J O C 5 9 , 2 8 9 8 ( 1 9 9 4 ) . oJ. J i a n g , W - R . L i , a n d M . M . J o u l l i e , S C 2 4 , 1 8 7( 1 9 9 4 ) . 'W.-R. L i , J . J i a n g ,a n d M . M . J o u l l i e , T L 3 4 , l 4 l 3 ( 1 9 9 3 ) . uw.-R. L i , J . J i a n g ,a n d M . M . J o u l l i e , S Z 3 6 2 ( 1 9 9 3 ) . tE. F r i t t - L a n g h a l s ,T A 5 , 9 8 1 ( 1 9 9 4 ) . oA. J . B e a u m o n t ,J . H . C l a r k , a n d N . A . B o e c h a t ,J F C 6 3 , 2 5 ( 1 9 9 3 ) . eF. T e x i e r - B o u l l e t ,R . L a t o u c h e ,a n d J . H a m e l i n , T L 3 4 , 2 1 2 3 ( 1 9 9 3 ) . 'nJ. J. Eisch and C. S. Chiu, llC 5,265 (1994\.
Potassium fluoride-alumina. 16, 282 As base. Numerous reactionsthat are initiated by deprotonationhave been conducted with KF-AI2O3. These include the synthesisof diaryl ethers, amines, and sulfides by nucleophilic aromatic substitutions,' N-alkylation of 2,4-dinitrophenylhydrazones,2condensationof 3-phenylisoxazol-5-onewith aldehydes,3and ring cloand 1,3-oxazines.a sure of N-(ro-chloroalkyl)carboxamidesto afford 1,3-oxazolines A sequenceof Michael addition, iodination, and intramolecular alkylation is inesterssfrom volved in the formation of 2-substitutedcyclopropane-1,1-diphosphonate tetraethyl methylenediphosphonate.The reagentsare KF-Al2O3 and I2.
tl
Al203.KF
(ErO)2P\
/\
(EtO)rP ' ' - t l
+
\
ll
ot l
(ErO),P -\Z
ll
-H
12,THF, rl, 15 h
/\
(Eto)2P \_ i
l
H
5s"/.(R=cN)
'E. A . S c h m i t t l i n g a n d J . S . S a w y e r ,J O C 5 8 , 3 2 2 9 ( 1 9 9 3 ) . 2 K. Thangaraj and L. R. Morgan, SC 24,2063 (1994). rD. V i l l e m i n , B . M a r t i n , a n d B . G a r r i g u e s ,S C 2 3 , 2 2 5 1 ( 1 9 9 3 ) . 4M. A . M i t c h e l l a n d B . C . B e n i c e w i c z ,S 6 7 5 ( 1 9 9 4 ) . sD. V i l l e m i n , F . T h i b a u l t - S t a r z y k , a n d M . H a c h e m i , S C 2 4 , 1 4 2 5( 1 9 9 4 ) .
Potassiumhexamethyldisilazide.13, 257; 16, 282-283 the reaccondensation Usingchiral phosphonoacetates, Emmons-Wadsworth ketones2 leadsmainly to one type of product. tion with mesoaldehydesrand
. "\AA" : :
O
O
rueolai!\o.
f
Ph
Y
++" 4hI
\-coo
Cyclopropylation.s Introduction of e ketone in one operation is not easy. Surpnr ladium complexes to give such resuhs has central carbon of the alkylating agenrsrs r
N. KannandT. Rein,JOC 58,3802(199_rr :S. E. Denmark andI. Rivera,JOC S9.6gtt rt! 'A. W i l d e ,A . R . O t t e ,a n dH . M . R . H o f f m a n
Potassium hydride. 13, 25i -258: 14. 165 Alkylation of sulfoximines.t Deproro and addition of primary alkyl bromidesrq tion. Most of the solid-liquid phase-rran range. 1,3- Shift of nonenolizable p kctorsta induced by KH-crown ether at room remF mediates. B-Cyano ketones are decompor sulfones do not react.
KH - rtoo
COOMe
T H F I r
p-Nitro ethers.3 The Michael addirroo is strongly dependenton the metal ion. Lrrh due to competing reactions. Potassiumand I
Potassiumhydride 299 ts \..n
u\ed to advantage in the p-lactam
| ::::rc..'
and in the rearrangement of
h r : . ( ' I - r - 1 (51 9 9 3 ) . l-'. C - P u e l l . J O C 5 9 , 2 8 9 8( 1 9 9 4 ) . -
:. r: ,
la
"\AA" :
i
O (Meo)2P""\o"Y KHMDS r
I
* #
I
fl
,a*l'
.
-
.
-
r
H
F
OTBS
r|
i
l
O
I
/,\
Hry\o"Y : : 4
I
Ph
87% (ratio90:10)
1 9 9 - tt . i
' ( 6 3 .l 5 ( 1 9 9 3 ) . 1 - 1 . rl .l 2 3 ( 1 9 9 3 ) .
L:
?rBb
e9-lI i
. -
: o
_J_-./-\_
JGo. &j"""".
THF. -350
\J-tooM"
/
78% (86%ee S)
t:: :.Jredbv deprotonationhavebeencon. . , 1 r h e s i so f d i a r y l e t h e r s ,a m i n e s ,a n d rr, :.. .\'-alkylationof 2,4-dinitrophenyln z . - < - o n ew i t h a l d e h y d e s ,arn d r i n g c l o r s l t , ' r J 1 . 3 - o x a z o l i n easn d 1 , 3 - o x a z i n e s . { rtr,,:. rnd intramolecularalkylation is inc l . ' r : , ' p a n el -. l - d i p h o s p h o n a tees t e r s fsr o m e i . ' i t . a r e K F - A I 2 O 3a n d 1 2 .
tl
(EtO)2R !
-*;
1 15h
,\<1 /\
(EtO)cP ' ' - [ \R
o s5%(R=cN)
''
.
e QI r
:-r :t5l (1993). 9': trc: \C 24,1425(1994).
Cyclopropylation.l Introduction of a cyclopropyl group to an a-position of a ketonein one operationis not easy.Surprisingly,a direct alkylation with z-allylpalladium complexesto give such results has been observed. Nucleophilic attack at the central carbon of the alkylating agentsis involved. 'N. KannandT. Rein,JOC 58,3802(1993). rS. E. Denmark andI. Rivera,JOC 59,6887(1994). t A. wilde, A. R. Oue, andH. M. R. Hoffmann,CC 615( 1993).
Potassium hydride. 13, 257 -258: 14, 265; 17, 290 Alkylation of sulfoximines.t Deprotonation of sulfoximines with KH in DME and addition of primary alkyl bromides together with BucNBr complete the alkylation. Most of the solid-liquid phase-transfer reactions proceed in the 907o yield range. 1,3-Shift of nonenolizable p-ketoesters.z The very efficient ester group shift induced by KH-crown ether at room temperature proceedsvia cyclobutanone intermediates. B-Cyano ketones are decomposed under these conditions, while p-keto sulfones do not react.
n
o
ll r
af \-,/
KH - 18-crown-6
COOMe
T H F , r t , 1 5m i n
Meooc.'\-
t l \-./ 75%
: l6 182-283 L .:ns chiral phosphonoacetates, the reacr1. nainly to one type of product.
p-Nitro ethers.3 The Michael addition of alkali metal alkoxides to nitroalkenes is strongly dependenton the meral ion. Lithium alkoxides give only moderate yields due to competing reactions. Potassiumand sodium alkoxides are far superior (yields
300 Potessium nitrote in the 70-96Vo range) as dimerization and trimerization of nitroalkenes (even nitroethene) are not detected. 'C. R. Johnson and O. M. Lavergne,JOC 58, 1922(1993). tA. HabiandD. Gravel,TL35,4315(1994). tJ. L. Duffy, J. A. Kurth, and M. J. Kurth, 7L 34, 1259(1993).
Potassium 9-(O-[,2-isopropylidene-5-deoxy-o-xylofuranosyl])-9boratabicyclo[3.3.1]nonane. Reduction of a-keto acetals. Enantioselective reduction by this borohydride (1) in THF at -78'C gives alcohols of (S)-configuration with high enantiomer excess.
Potassium permanganate. 13, 258-159: I Cleavage of C:N and C--C bondt KMnO+ in aqueousMeCN at room temp€nl hy KMnOa in aqueousCH2Cl2.2
' A. wali, P.A. Ganeshpure, andS. Satish.8CS tE. Nomura,H. Taniguchi,andY. Otsuji.8CS
Potassium permanganate-aluminr. Cleavageof C:C bonds.' l-Alkcrs hydeswithout overoxidation. Selective oxidation of arenes.2 Sutxrr benzylic position.
D. G. Lee,T. Chen,andZ. Wang,JOC5t. :91 ' D . Z h a oa n dD . G . L e e ,S 9 1 5( 1 9 9 4 ) .
(1)
'B.T.
Potassium permanganate-copper(ll ) st Degradation of sugars,t The nes C nosidesleads to 7-lactones. The presenccc
Cho andY. S. Chun,IA 5, ll47 (1994\.
HOH
Potassium monoperoxysulfate. 13, 259; 14, 267: 15, 274 -27 5; 16, 285 Oxidation of sulfides and sulfoxides.t The oxidation with Oxone@is controllable by reaction temperaturg and time. For example, p-methylthiobenzoic acid is oxidized to the sulfoxide at temperature below 5'C in 5 min, and to the sulfone at room temperaturewhile extending the reaction time to I h. Both reactionsare carried out in aqueousacetone in the presenceof NaHCOT and NaOH. Epoxidation. Oxone@is used to generatedioxirane from a ketone added to the reaction medium. Such dioxiranes epoxidize alkenes stereoselectively.22-Cyclohexenol gives two epoxy alcohols in a ratio of 77:23 (trans:cis). 'K. S. Webb,TL 35,3457 (1994). 2M. Kurihara,S. Ito, N. Tsutsumi, andN. Miyata,TL35, 1577(1994).
\*ro'.,,,,., O
-
\
F ,^rv l
(r /
i
BzO
-
ct h
S . B . M a n d a l , B . A c h a r i , a n d P . P .G . D a s t r d : r
Potassiumpermanganate-montmorilh Aromatization.' Hantzsch1.4-drhld KMnOn,with ultrasonicirn the supported 'J.-J.
V a n d e nE y n d e , R . D ' O r a z i o , a n d \ ' . \
Hr
Potassium nitrate. Alkyl nitrates.' A convenient preparation of RONOz free of RONO uses KNO3 and boron trifluoride hydrate as nitrating agent in CH2C|2.
Potassium phenyltrif luoroborate. Stereoselective alkylation of amino o derivativesof o-amino acids form zsrttt which the phenyl group attaching to thc bor mize bonding interactions.Alkylation urtl
'G. A.
to the samesteric effects;entry of the alk;. the heterocycle is favored.
Olah,Q. Wang,X.-y. Li, andC. K. S. Prakash,S 207 (1993).
Potassiumphenyltrifluoroborate 301
rl.: :nmerization of nitroalkenes(even ni-
l!::1993). _1rt:59 (1993).
Itor r -o-xylofuranosyll)-9Itr,'.c'lectivereduction by this borohydride c"n l rr urationwith high enantiomerexcess.
I
-.-o
Potassium permanganate. 13, 258- 259; 14, 267; 15, 2'73 -27 4 Cleavage of C:N and C:C bonds. Cleavage of ketoximes' occurs with KMnOr in aqueousMeCN at room temperature.Calixarenes facilitate C:C cleavage by KMnOa in aqueousCH2Cl2.2 'A. wali, P.A. Ganeshpure, and S. Satish,BCS"/66, 1847(1993). tE. Nomura,H. Taniguchi,andY. Otsuji,BCSJ67,309(1994).
Potassium permanganate-alumina. Cleavageof C:C bonds.t l-Alkenes and 1,2-disubstitutedalkenesgive aldehydeswithout overoxidation. Selectiveoxidation of arenes.' Substituted arenes are selectively oxidized at a benzylic position. 'D. G. Lee,T. Chen,andZ. Wang,JOC 58,2918(1993). t D. ZhaoandD. G. Lee,S 915(1994). Potassium permanganate - copper(II) sulfate. 16, 283-284 Degradation of sugars.t The new C-C bond cleavageof 5-oxygenated furanosidesleadsto y-lactones.The presenceof CuSO+is essential.
l{ 167: 15, 274-275; 16, 285 The oxidation with Oxone@is control: F..r .'rample, p-methylthiobenzoicacid is brl ,r 5"C in 5 min, and to the sulfone at r),,n rrme to I h. Both reactionsare carried \.il.lCO, and NaOH. cr.re Jroxiranefrom a ketoneaddedto the r, . z: .rI kenes stereoselectivelv.2 2-Cvclo-r:23 (trans:cis). o "l
z:: I1, 35. 1577(199q.
zt:, n of RONO2 free of RONO uses KNO3 r!!'nl rn CH2Cl2. l:r:.h..S 207 (1993).
"""$.;y '"1\.Y tr
lS.
B . M a n d a l . B . A c h a r i . a n d P . P . G . D a s t i d a r , T L 3 4 , 1 9 7 9( 1 9 9 3 ) .
Potassiumpermanganate-montmorillonite. with undergodehydrogenation Aromatization.t Hantzsch1,4-dihydropyridines KMnO,r,with ultrasonicirradiation. the supported rJ.-J.
V a n d e nE y n d e , R . D ' O r a z i o , a n d Y . V . H a v e r b e k e ,T 5 0 , 2 4 7 9 ( 1 9 9 4 ) .
Potassium phenyltrif luoroborate. Stereoselectivealkylation of amino acids.t N-Alkylidene (including amidine) derivatives of a-amino acids form zwitterionic cyclic adducts with KlPhbF.; in which the phenyl group attaching to the boron atom is cis to the a-H in order to minimize bonding interactions.Alkylation with inversionof configuration occurs owing to the same steric effects; entry of the alkylating agent from the less hindered face of the heterocycleis favored.
302 Pyridinium chlorochromate
Nao-7o N)""./'Ph
u"rN)l
F..9-?o
K(PhBF3)
| _. ',11".,,.pn
KHMDs
phiB:-
F...P-?o
ph-B.-
'"r--* Me2N/
Me2N/
t
^.
ii;.-*
Elimination of silanes from a-silyl t can be prepared in two steps from esters an PCC oxidation. Secondarysilvl alcoholsan
86% (isomer ratio 5.8 : 1)
'E.
rcc
HOVSiMe2Ph R
a+*
siMe2Ph
V e d e i s ,S . C . F i e l d s ,a n d M . R . S c h r i m p f , J A C S l l 5 " l 1 6 1 2 ( 1 9 9 3 ) .
Potassium tetracarbonyl hydridoferrate. selective reduction.t selective reduction of electron-deficient carbonyl compounds with this reagenthas been reported. Trifluoroacetophenoneis reduced, while acetophenoneitself remains untouched. The more reactive carbonyl group of benzils. d-ketoesters,and N-methylisatinis reducedto the alcohol. 'J.-J.Brunet, R. Chauvin,F. Kindela,andD. Neibecker,TL35,880l (1994).
Propargyl chloride. N-Allenylation.' Pyrrole, 2-substituted and 2,3-disubstituted pyrroles are allenylated on reaction with propargyl chloride in DMSO, using KoH as base.Actually 2,3-dichloropropeneand 1,2,3-trichloropropaneare also effective allenylating agenrs
Oxidative cyclization of 6,e- unsatut units are formed in moderateyields br thrs
\r_\_/-\_/ -1 t-\
\ Celite / HOAC
4,
CH2Cl2
' F. A. Luzzio and W. J. Moore, "/OC 58. 2966 , 1 tK. B l a s z c z y ka n d Z . P a r y z e k , S C 2 4 , 3 2 5 5 , l 9 a '8. J. Parish,S. A. Kizits, and R.W. Heidcprrm '1. F l e m i n g a n d U . G h o s h , J C S ( P I ) 2 5 7 ( 1 9 9 . 1, 'F. E. McDonald and T. B. Towne,JACS l15. '9
at slightly elevated temperatures(40"-50"C). 'O. A. Tarasova, L. Brandsma, and B. A. Trofimov,S 571(1993).
Pyridinium
chlorochromate. 14, 269: 15, 276 Oxidation of allylic and homoallylc alcohols. A convenient route to 3thioalkyl-2-cycloalkenones'is based on the establishedpattern of transpositional oxidation of tertiary allylic alcohols. The substratesare readily prepared by reaction of the enoneswith phenylthiomethyllithiumor 1,3-dithian-2-yllithiumreagenrs.
o PCC-SiO2 CH2C|2,rt, 3 h
))))
Pyridinium tosylate.15,276;16,2E7-:& r Dehydrationof aldols.t Dehydratron (PPTS)andMsCl-EtrNgivevery differcn affordingmarnlytl tiveand stereoselective,
l*t''* -
q
sflq
,Y\ \,
pyHOTs MsCl-Et3N
82
,\
i l l sPh 75"/"
Homoallylic steroidal alcohols2and their THp ethers3give enediones.
Selective O-desilylation.z PPTS rn e from aliphatic silyl ethers in preferencero r tivity is oppositeto the reactionwith KfC
rK. Nakatani,T. Izawa,Y. Odagaki,and S lro< 2C. Prakash.S. Saleh.andI. A. Blair. fL 3-(.-J
303 Pyridiniumtosylate
KHMDS
tr
Mel
F...P-?o
Ph-B.-' N - vLr n
..
Elimination of silanes from a-silyl alcohols.a By this oxidation acylsilanes can be prepared in two steps from esters and amides: reaction with silyllithiums and PCC oxidation. Secondarv silyl alcohols are oxidized to aldehydes.
il*: Me2N,.-
o
86% (isomerratio 5.8 : 1)
Ho
.SiMe2Ph RAsiMerPh
CH2Cl2
RXsitr,terpn (1993). s ils. 11612
n , | !'lectron-deficient carbonyl com'rr is reduced,while :,!,)roacetophenone rh,r. rractivecarbonylgroup of benzils. o :hc alcohol. r . r c r f L 3 5 , 8 8 0 1( 1 9 9 4 ) .
.rnJ 1.3-disubstitutedpyrroles are alrn D\tSO, using KOH as base.Actually nc rre also effective allenylating agents
r . <-l (1993).
l-.-, alcohols. A convenient route to 3c.rrLrlishedpattern of transpositional 6lrirc'\ are readily preparedby reaction rr i I-dithian-2-yllithium reagents.
65-84v"
Oxidative cyclization of 6,e-unsaturated tertiary alcohols,s Tetrahydrofuran units are formed in moderatevields bv this oxidation.
X\\
'
o
XJSI*.x"\a}"
PCC
H
\
\
Celite / HOAc cH2cl2
9%
38o/.
' F. A. Luzzio and W. J. Moore, JOC 58, 2966 ( 1993). r K. Blaszczyk and Z. Paryzek, SC 24, 3255 (1994). rE.J. P a r i s h , S . A . K i z i t s , a n d R . W . H e i d e p r i e m ,S C 2 3 , 2 2 3 ( 1 9 9 3 ) . '1. Fleming and U. Ghosh, JCS(Pl) 25'7 (1994). 'F. E. McDonald and T. B. Towne, JACS 116,7921 (1994).
Pyridinium tosylate. 15, 276: 16, 287 -288 Dehydration of aldols.' Dehydration of B-silyl aldols with pyridinium tosylate (PPTS) and MsCl-EtrN give very different results. The PPTS reaction is regioselective and stereoselective,affording mainly the (Z)-isomers.
SiMe3
O.
b{'*'''
)-\Z\
1
\,
pyHOTs MsCl-Et3N
t
82
\
18 81
I
12
I
I SPh 750/o
f ll P c'thersrgive enediones
Selective O-desilylation.' PPTS in ethanol removes silyl groups (e.g., TBS) from aliphatic silyl ethers in preferenceto the aryl silyl ethers; thus the chemoselectivity is oppositeto the reactionwith K2COj-Kriptofix 222 (in MeCN). 'K. Nakatani,T. Izawa,Y. Odagaki,andS. Isoe,CC 1365(1993). 2C. Prakash.S. Saleh.andI. A. Blair,TL 35, 7565(1994).
304 Pyrylium tetrafluoroborate
Pyrylium tetrafluoroborate. Extensivelyconjugatedaldehydes.t The pyrylium salt reactswith CH2:PPhl at C-2. The resulting 2H-pyran-2-methylphosphonium salt is a precursor of the maskedo-formylpentadienyl Wittig reagent.
r\Y) 'K.
Ph3P=CH2
BFr-
BuLi_TMEDA
I
z-..'l
L"*"l"), I
*
^'AAA"^.
Rhenium(Vll) oxide. 17,296-297 Spirocyclization.t 2-(rrr-Hydroxya lk l l into hydroxyspiroketals.
H e m m i n g a n d R . J . K . T a y l o r , C C 1 4 0 9( 1 9 9 3 )
Ra 26{l o+,(
Bisbenzocyclooctadienes.2 The nonph lignan lactonesis accomplishedwith ReO-
R.zo CFP@r (tr@h( cH-p4..Vr
'R. S. Boyce and R. M. Kennedy,IL 35, 5ll-1 r 19 tD. P l a n c h e n a u l tR , . Dhal, and J.-p. Robin. f tl.
Rhodium carbonyl clusters. 13, 288: t5. _t Hydrogenation.t Rh6(CO),6 catallzcs compoundswith CO and H20 at atmosphcrr 1 Homologations. Hydroformylation: of ated by Rh4(CO)r2.Homologous carboxl.lic r obtained from allyl phosphates.3 Bicyclo[3.3.0]octenones.a Silylarive c1c easy accessto these substances.
? i\ r\ Iium salt reactswith CH2:PPh, n.phrrnium salt is a precursor of thc
RCHO
^.AAAc^o
,'
Rhenium(VII) oxide. 17,296-29'l Spirocyclizat ion.t 2- (r.r-Hydroxyalkyl)I -oxa-2-cycloalkenes are converted i nto hydroxyspiroketals.
3+76/"
CI-^,"-
2 ,6-lutidine cH2ct2 ,0o
a'Yo^
r.*J 56%
Bisbenzocyclooctadienes." The nonphenolic coupling used in the synthesis of lignan lactones is accomplished with Re2O7in TFA-TFAA media.
cF3cooH (cFsco)2o cH2ct2-BF3.oEt2
'R. S. Boyceand R. M. Kennedy,TL 35, 5133(1994). :D. Planchenault, R. Dhal,andJ.-P.Robin,?49,5823(1993).
Rhodium carbonyl clusters. 13, 288; 15,334 Hydrogenation.t Rh6(CO)'6 catalyzes the saturation of conjugated carbonyl compoundswith CO and HzO at atmosphericpressureand near ambient temperatures. Homologations. Hydroformylation2 of S- and O-containing alkenes is mediated by Rh4(CO)r2.Homologous carboxylic acids and derivatives (esters,amides) are obtainedfrom allyl phosphates.l Bicyclo[3.3.O]octenones.a Silylative cyclocarbonylation of alkynes provides an easv accessto these substances.
305 Rhodium corboxylates
Fh4(coh2 CO - t-BuMe2SiH MoCN, 95o
tBuSiMe2 I f--rZZ:t
( t F o 60%
'T. Joh,K. Fujiwara,andS. Takahashi, 8CS./66, 978(1993)' 2E. M. Campi,W R. Jackson,P. Perlmutter,and E' E. Tasdelen, AJC 46' 995 (1993)' 3Y. Imada,O. Shibata,andS.-i.Murahashi, JOMC4Sl, 183(1993). al. Matsuda, andN. Ii, TL36,241 (1995). H. Ishibashi, -292; 17, 298 -302 Rhodium carboxylates . 13, 266 -269 ; 15, 2'l 8 -280; 16, 289 esters undergo a-diazo from derived carbenoids Rhodium a-Alkoxy esters.t'2 asymmoderate phenols. to Low or with alcohols reaction O-H bond insertion in the is observed.r esters metric induction from chiral Insertion into si-H bonds.a o-Silyl esters are similarly obtained. From RrS(Cl)H the products are readily converted into o-(alkoxysilyl)alkanoic esters.t HetcrocycliZation. Formation of a-alkylidene lactams6 by carbonylation of alkynyl amines and cyclization of 2-allyloxybenzylamineswith allylic rearrangementT are reported.
Z)fo-'.\
Rhz(oAc)r-PPhg
\A,-NHa
co.H2 EtOAc. 40 - 600
rY*^ \.4--NH
90%
Other interesting cyclizations include the synthesis of oxazoles8 and 3-ketopyrrolidines.e
RCN
+
Nzl
/s02Ph
cooEt
Rhz(OAc)r
.N--zSOzPh
R_< tl
Silylfurmylation, from
a mixture
(Z)-Selectire
of RrSiH
ed
and CO
'G. G . C o x , D . J . M i l l e r , C . J . M o o d 1 .E - R tD. Haigh, T so,3l't'1 (1994). tE. Aller, G.G. Cox, D.J. Miller. and C J aY. , nd V. lActr L a n d a i s , D . P l a n c h e n a u l ta tO. Andrey, Y. Landais,and D. Planchcnr oE. M. Campi, J. M. Chong, W. R. Jac\srra '8. M . C a m p i , W . R . J a c k s o n ,Q . J . \ l c c ' r r o K. J. Doyle and C. J. Moody, f 50. 3'61 ,l nJ. E . B a l d w i n ,R . M . A d l i n g r o n .C . R A C ( 1993). "'M.P. D o y l e a n d M . S . S h a n k l i n .O . V 1 3 . l
Rhodium(I) chloride' COD-complcrr Insertion of CO r Carbonylation as rrcll amines: from unsaturated presclr, in the realized lyl)ethynesr are concur The aldehydes.a u-Siloxy proceeds e and CO by R:SiH aldehydes hldro: catalyzes Rh(cod)zBFq complex ( E ) - 7 - s i l y la l l y l i c a l c o h o l s . '
' K. Khumtaveeporn and H. Alper,IOC 3). t Z . Z h a n ga n dL O j i m a ,J O M C4 S 4 . 2 t l ' l rR. Takeuchiand H. Yasue,"/OC5t. 5-1E6 r 'M. E. Wrightand B. B. Cochran,./..tCS lll 5R.Takeuchi. S. Nitta.andD. Watanabc(
Rhodium-phosphine complexes. I J. 16, 86-88 Hydrogenation, The cationrc cal of proximal alkenylsilanesand stanne
b^oet
C H C I g ,A
22'71o/o
OH SnBu3
rtr
MSiMez
o. \ )-\ 6F.-""Acooan Boc
\\ Rhz(OCOCFg)r CICH2CH2CI
r
conditions.
\N'AcooBn I
Boc
ry
Rhodium-phosphine cornplexes 307 tBuSiMe2 I
Silylfurmylation. from
a mixture
(Z)-Selective
of RrSiH
and CO
addition of RrSi/CHO is promoted
fragments
to alkynesr0
by (CaFeCOO)+Rhz under mild
,,a--rz.\
l F o 60%
9-. le93). , JC 46,995 (1993). i F . T a s d e l e nA : r 5 r . l 8 - l( 1 9 9 3 ) . 9":
h lS0: 16,289-292; 17,298-302 s Jerrredfrom a-diazoestersundergo asymLow to moderate x.l. ,'r phenols. id
c.:.-r\ are similarly obtained. From rnt,, a-(alkoxysilyl)alkanoicesters.s trlrJene lactams6by carbonylation of rtenzvlamines with allylic rearrange-
aY")-\ \-'\--NH
r
p
90"/"
conditions. 'G. G . C o x , D . J . M i l l e r , C . J . M o o d y , E . - R . H . B . S i e , a n d J . J . K u l a g o w s k i ,2 5 0 , 3 1 9 5( 1 9 9 4 ) . 'D. Haigh, T so,3t77 (1994). t E. Aller, G. G. Cox, D. J. Miller, and C. J. Moody, TL 35, 5949(lgg4). aY. Landais, D. Planchenault, and V. Weber, IL 35,9549 (1994\. 'O. Andrey, Y. Landais, and D. Planchenault, ZZ 34,292'7 (lgg3). oE. M . C a m p i , J . M . C h o n g , W . R . J a c k s o n ,a n d M . V a n D e r S c h o o t , T 5 0 , 2 5 3 3 ( 1 9 9 4 ) . 7E.M. C a m p i , W . R . J a c k s o n ,Q . J . M c C u b b i n , a n d A . E . T r n a c e k , C C 2 ' 7 6 3 ( l g g 4 \ . " K. J. Doyle and C. J. Moody, 7 50, 3'161(1994). 'J. E . B a l d w i n , R . M . A d l i n g t o n , C . R . A . G o d f r e y , D . W G o l l i n s , a n d J . G . V a u g h a n ,C C 1 4 3 4 ( 1993). '"M. P. Doyle and M. S. Shanklin, OM 13, l08l (1994\.
Rhodium(I) chloride, COD-complexed. Carbonylation. Insertion of CO into a C-S bond,r and formation of lactams from unsaturated amines2 as well as indanones from l-aryl-2-(trimethylsilyl)ethynes3are realized in the presenceof [Rh(cod)Cl]2. u-Siloxy aldehydes.o The concurrent reductive formylation and O-silylation of aldehydesby R:SiH and CO proceedsat room temperature.Interestingly,the cationic complex Rh(cod)zBFqcatalyzes hydrosilylation of propargylic alcohols to give only ( E ) - 7 - s i l y la l l y l i c a l c o h o l s . s 'K. Khumtaueeporn and H. Alper, JOC 59, l4l4 (1994);JACS116,5662(1994). 'Z.Zhang andI. Ojima,JOMC454,281(1993). rR. TakeuchiandH. Yasue. JOC 58.5386(1993). oM. E. Wright andB. B. Cochran,JACS115,2059(1993). 5R.Takeuchi,S. Nitta,andD. Watanabe, 177'r. (1994). CC
.r nthesis of oxazolesE and 3-keto-
*. I
.N---SO2Ph
R_< ll b^oEt 22 - 717o
OH SnBu3
'V.,r".
o\ G . .
Rhodium-phosphine complexes.13, 144:14, 123-1241' 15,69-70, 90-92; 16,86-88 Hydrogenation. The cationiccatalyst(1)' is usefulfor OH-directedsaturation of proximalalkenylsilanes and stannanes.
f_\
\N'\cooBn
H2 (1500psi)/ CH2CI2
ra
HT Ph,l' 'ipn,
I
Boc 77'/o
(1)
tt.
OH SnBur
,\i.,"*
30E Ruthenium-carbonyl clusters
RrrL.l
Hydroformylation. A number of Rh complexes2-4have been studied. In situ generationof such complexesfrom others5-8are also effective for hydroformylation. ' M . L a u t e n sC, . H . Z h a n g B , . J . G o h , C . M . C r u d d e na, n d M . J . A . J o h n s o nJ,O C 5 9 , 6 2 0 8 0994\. t L. Kollar and P. Sandor,JOMC 445,25'r.(lgg3). rC. BotteghiandS. Paganelli, JOMC45f, Cl8 (1993). 4T.J. Kwok and D. J. Wink, OM 12, 1954(1993\. tG. D. Cuny and S. L. Buchwald, "/ACSll5, 2066(1993). uN. Sakai,S. Mano,K. Nozaki,andH. Takaya,./ACS 115,7033(1993). 7K. Totlandand H. Alper, JOC 58,3326(1993). 'H. Alper andJ.-Q.Zhou, CC 316(1993).
Ruthenium-carbene complexes. Metathetic ring closure. Five-, six-, and seven-memberedcarbocycles as well as N and O heterocyclesare constructed from dienes' in the presenceof a Ru-carbene complex. For unhindered amines, prior protonation is necessary. Fused bicyclic structuresare accessiblefrom dienynes.2
'nYo)
cr.fcvs c|-Tu\-/
R " r ( C O r . ,; O i
lll
I
COOMe
'M. Akazome, T. Kondo, and y. Waranatrc.,/C 'V. L . K . V a l l i a n d H . A l p e r , " / A C . tl l 5 . _ 1 - : l i, I 'M. Rotem and Y. Shvo, JOMC 448. 189 r lgel "N. M e n a s h ea n d Y . S h v o ,I l 3 5 , 6 1 1 ( 1 9 9 _ r r
Ruthenium(II) chloride, tris(triphospbi 15, 6, 126-128 Alkene isomerization Allytic alcot Isomerization of the allyl groupof .\.O-e amidoalkyl)propanals.2
',I"a
(Ph3P)3RuCt2
"n\-o\
PCv31
t
\/ ) \
COOMe
N
NaBH! / EIOH
,<
l
!
P h H ,2 0 0 , 5 h
86% ^, PCYs
Ph i)4,^ | \--1Ph _/ PCy3 c H 2 c l 2 ,2 5 o , 8 h
osiEt3
an \.-
I 95to
'G. C. Fu, S.T.Nguyen,andR. H. Grubbs, "/ACS115,9856(1993). 'S.-H. Kim, N. Bowden,andR. H. Crubbs,JACS116,10801(1994).
Perfluoroalkylation. Arenes and trrc upon reactionwith RlSO2Clunderruthenrun this reaction.a
Acylcyanides.s The oxidation of clao cyanides is catalyzed by (pphr)1RuCl;.Th acylationof amino alcoholsand polyamrrr-
Carbonylation A new route to lr5l/r l a t i o no f a l l y l i c a l c o h o l s . 6 Alkenylsilanes.l By metathesis rhe ro lanesis realized.
t\^./ ' 55555l-* Ruthenium-carbonyl clusters. Reduction. Rur(CO)12catalyzes the reduction of nitroarenes with CO. 4(3Il)Quinazolinones are obtained from N-(2-nitrobenzoyl)amides.' In the presence of montmorillonite-bipy. Pd(II) the reactionleadsto methyl carbamates.2 Condensation of alkynes with carboxylic acids. Addition of RCOOH to alkynes forms enol carboxylates.r On the other hand, heterocyclization occurs with acetylenedicarboxylic esters.o
'.,.,\'C"H|
h -l
Ph
'J.-8. B a c k v a l l a n d U . A n d r e a s s o n ,I L 3 4 . - ( { ! 9 'T. A , r e n z ,H . F r a u e n r a t h ,G . R a a b e ,a n d M . Z o a rN. K a m i g a t a , T . O h t s u k a ,T . F u k u s h i m a . I l . l b "N. K a m i g a t a , T . O h t s u k a ,M . y o s h i d a , a n d T g 'S.-1. M u r a h a s h i a n d T . N a o t a ,S 4 3 3 ( 1 9 9 3 r .
Ruthenium(II) chloride, tris(triphosphine) complex 309 xnoic'r€s:-a have been studied' In situ
k<-
COOMe
COOMe
,1, 'l tl l
tr. Jl.() effective for hydroformylation. r n d M . J . A . J o h n s o n ,J O C 5 9 , 6 2 0 8
Ru3(CO)12- HOAC A
COOMe
oA;coott'te t l
c;2€coon" 5O1o
9: l . ' ! , : ,
r ( \ l l 5 . 7 0 3 3( 1 9 9 3 ) .
d .c'rdo-fireftlberedcarbocycles as well drcnc.' in the presenceof a Ru-carbene x,,nrrion is necessary.Fused bicyclic
' M . A k a z o m e , T . K o n d o , a n d Y . W a t a n a b e ,J O C 5 8 , 3 1 0 ( 1 9 9 3 ) . 'V. L. K. Valli and H. Alper, ,IACS ll5, 37'78(1993). tM. R o t e m a n d Y . S h v o ,J O M C 4 4 8 , 1 8 9 ( 1 9 9 3 ) . aN. M e n a s h ea n d Y . S h v o , I l 3 5 , 6 l l ( 1 9 9 3 ) .
Ruthenium(II) chloride, tris(triphosphine) complex.13, 107;1 4 , 1 3 0 - 1 3 1 ; 15, 128;16,126-128 Alkene isomerization Allylic alcoholsare convertedto saturatedketones.' Isomerizationof the allyl group of N,O-acetals pavesway to a synthesisof 2-(aamidoalkyl)propanals.2
(Ph3P)3BuC12
tn\-o\ t
\v
NaBH! / EIOH
t
46"/"
osiEr3
?a :"
a-t-) \: 951"
n 5 e s 5 6( 1 9 9 3 ) . r r 6 r o 8 0 l( 1 9 9 4 ) .
t
cH2ct2 , 0o
A " l 67v"
Perfluoroalkylation. Arenes and heteroarenesgive perfluoroalkyl derivatives' upon reaction with RrSO2Clunder ruthenium complex catalysis.Pyrroles also undergo this reaction.a Acylcyanides.5 The oxidation of cyanohydrins with t-BuOOH to furnish acylcyanides is catalyzed by (PPhr)rRuCl2.The products can be used for selectiveNacylationof amino alcoholsand polyamines. Carbonylation A new route to 2(5H)-furanones is by oxidative cyclocarbonylation of allylic alcohols." Alkenylsilaies.l By metathesis the introduction of a carbon chain to vinylsifanes is realized.
I
Ph
aJ. rtr methyl carbamates.2 rc acids. Addition of RCOOH to alkYrr :rnd. heterocyclizationoccurs with
I 'ry'Y"to
Me35iOTf
93"/.
/\^,/ . t t . !tu;:ron of nitroareneswith CO. 4(3H)ni'i.cnzoyl)amides.rIn the presenceof
Y
try^o\ A "
- . +
A"ur.,,
(Ph3P)3BuC12 PhH, ^
CsHrt:/\
-
z
siPh
60% (E:Z 45:1) 'J.-E. B e c k v a l l a n d U . A n d r e a s s o n ,I L 3 4 , 5 4 5 9 ( 1 9 9 3 ) . 'T. A r e n z , H . F r a u e n r a t h ,G . R a a b e ,a n d M . Z o r n , L A g 3 l ( l g g 4 ' ) . rN. K a m i g a t a , T . O h t s u k a ,T . F u k u s h i m a , M . Y o s h i d a ,a n d T . S h i m i z u , J C S ( P l ) 1 3 3 9( 1 9 9 4 ) o N . K a m i g a t a , T . O h t s u k a , M . Y o s h i d a ,a n d T . S h i m i z u , S C 2 4 , 2 0 4 9 ( l g g 4 ) . 5S.-1. M u r a h a s h i a n d T . N a o t a ,S 4 3 3 ( l g g 3 \ .
310 Ruthenium(IV)oxide 'T. Kondo, K. Kodoi, T. Mitsudo, and Y. Watanabe, CC 755 (1994). 7B. Marciniec and C. Pietraszuk, JOMC 447, 163 (lgg3).
Ruthenium(III) a-Ketols.'
chloride-peracetic
acid.
The Ru-catalyzed oxidation of alkenes to ketols is useful for a syn-
Samarium.14,275:17,305-307 Reduction.t Carboxylicacids.es idly by Sm and hydrochloricacid.Yrrer reductionof c-halocarbonylcompoun aproticsystem(Me3SiCl-NaI/MeCNr: e Catalytic aldol reactions.s
thesis of cortisone acetate.
OAc
OAc
a) I
RuCl3- CH3CO3H CH2C!2- aq. MeCN rt,5h
A....on $o 7O"/"
o RCHO *
rS.-1.
M u r a h a s h i , T . S a i t o , H . H a n a o k a , Y . M u r a k a m i , T . N a o t a , H . K u m o b a y a s h i ,a n d S . Akutagawa, JOC 58, 2929 (1993).
Ruthenium(III) chloride-sodium R2S * Rz,SOot g4-l00vo) Dihydroxylation
periodate.
Cl1,r\ R
Alkylation of alkynes.a Ethynl.lsr! minus in the presenceof Sm and Sml;. Allylation. Amalgamated Sm pror iodide) with carbonyl compounds.5Dialll
of alkenes.2 (36-7650)
'w. Su,IL 35.4955(t994). 'T. K. M. Shing,V.W-F. Tai, andE. K.W. Tam,ACIEE33,23t2(lgg4).
Cyclopropanation.T The Sm-HgCl; the Simmons-Smith reactionon allvlic r
Ruthen ium(IV) oxide. 13, 268 -269 ; 14, 272 - 273; 15, 281; 16, 292 -293 : 17, 304 Nonphenolic coupling.t In TFA-TFAA media diarylbutanes afford mixtures of l-aryltetralins and dibenzocyclooctadienes.
..zvl\
, - l
OH
sm. rtch cH2t2 tTHF
MeO lrrteO-/\ RuO2.2H2O TFA .TFM cH2ct2-BF3.oEt2
MeO
Baeyer-Villger oxidotion t PhCHO.
\
\1\\ ,A Meoy'^\41 Meox MeO-
MeO
The oxidation system includes RuO2, Oz, and
'R. Dhal, Y. Landais,A. Lebrun, V. Lenain, and J.-P.Robin, I50, ll53 (1994). 2T. I n o k u c h i , M . K a n a z a k i , T . S u g i m o t o , a n d S . T o r i i , S a 1 0 3 7( 1 9 9 4 ) .
'Y. Kamochi and T. Kudo, CPB 42,402 (l9Ir. 'N. Akane, T. Hatano,H. Kusui, Y. Nishiun 'H. S a s a i ,S . A r a i . a n d M . S h i b a s ak i , J O t g aM. M u r a k a m i , M . H a y a s h i ,a n d Y . l r o , S L t ' i 'X. Gao, X. Wang,R.-F. Cai, J.-D. Wei. aod t uX. G a o ,! . Z e n g , J . - Y . Z h o u ,a n d S . - H . W u . I ?M. L a u t e n s a n d P . H . M . D e l a n g h e ,J A C S l N
Samarium(II) bromide. Pinacol coupling.' SmBr2preparcd agentfor cross-coupling of carbonylcorq
r . r .( ' ' 5 5 ( 1 9 9 4 ) . r :e.:
-1
\IJ o: :lkenes to ketols is useful for a syn-
Samarium. 14, 275: 17, 305 -307 Reduction.t Carboxylic acids,esters,amides, and nitriles are reduced very rapidly by Sm and hydrochloric acid. Ytterbium may be used instead of samarium. The reduction of a-halocarbonyl compounds and the pinacol coupling with Sm in an aprotic system (Me:SiCl-NaI/MeCN)' are as efficient as those mediated by SmIz.
OAc D-.H
rcN
A."ot
Cataly t ic ald ol react io n s.l
\,4.o
7O"/o
o
and S r3rrmr. T. Naota,H. Kumobayashi,
RCHo + clr.A '
Sm(HMDS)3 Fl'
THF, .3OO
9xo
*'Y* t t l
ct 50 - 100%
ae.
Alkylation of alkynes.o Ethynylsilanes are alkylated at the unsubstituted terminus in the presenceof Sm and SmI2. Allylation. Amalgamated Sm promotes reaction of allyl halides (bromide, iodide) with carbonyl compounds.sDiallylation of esters occurs.u
1(-tf,E 33.2fl2 (1994).
Cyclopropanation.T The Sm-HgCl2 couple can be used in place of Zn-Cu in the Simmons-Smith reactionon allylic alcohols.
'l l--r: 15,281;16, 292-293; 17,304 afford mixtures A mediadiarylbutanes 5
u r z
o"4
Sm - HgCl2 cH2t2 trHF
N,N OH
H OH
57"h (50 : 1)
MeO
l a r r , r n s y s t e m i n c l u d e s R u O z , 02, and
I J P R o b i n ,I 5 0 , l l 5 3 ( 1 9 9 4 ) . T : r ; . . l L 1 0 3 7( 1 9 9 4 ) .
'Y. Kamochi and T. Kudo, CPB 42,4O2 (1994). tN. A k a n e , T . H a t a n o ,H . K u s u i , Y . N i s h i y a m a , a n d Y . I s h i i , J O C 5 9 , ' 7 9 0 2 ( l g g 4 ) . rH. S a s a i ,S . A r a i , a n d M . S h i b a s a k i ,J O C 5 9 , 2 6 6 1 ( l g g 4 ) . aM. M u r a k a m i , M . H a y a s h i ,a n d Y . I t o , S L l 7 g ( l g g 4 ) . tX. Gao, X. Wang,R.-F. Cai, J.-D. Wei, and S.-H. Wu, rlIX 5f, ll39 (1993). uX. C a o , J . Z e n g , J . - Y .Z h o u , a n d S . - H . W u , H X 5 1 , I l 9 l ( 1 9 9 3 ) . 7 M. Lautens and P. H. M. Delanghe, JACS 116, 8526 (lgg4).
Samarium(II) bromide. Pinacol coupling.t SmBr2preparedfrom Sm2O3provesto be an excellentreagentfor cross-coupling of carbonylcompounds. 311
312 Samarium(II)iodide
( \--J
Fo
+ PhcHo
SmB12
OHOH (r---r v-t
THF
Ph 45"/"
'A.
Vinylsamarium speciesare generaredfr nation or alkylation may then be perfornr Si-tetheredglycosyl sulfone has been effccr radical intermediate is implicated.
Lebrun, J.-L. Namy, and H. B. Kagan, TL 34,2311 (1993).
(-g
Samarium(Ill) chloride. 14, 275 -27 6; 15, 282 Deacetalization.' Cleavageof acetals under anhydrous conditions (in the presence of AcCl) is catalyzed by SmCl:. Barbier-type reactions. The in situ generationof organometallic reagentsfrom organohalides and their reaction with carbonyl substratesare achievable electrochemically with a Mg anode and SmCl3as catalystin DMF.2'3
cl
R L E o t I R'' roAo
"{-l 6 / Mg anode DMF
t"rzt., N J
sBuLi i
,a.rr.._,
Mel
Treatment of bisbenzenesulfonylrncrh:a hydroxy sulfone.16Allylic sulfones arc r cleaved by SmI2 in HMPA; thus a ne* pcp
is available. However, the desulfurarive c1c bonyl group may belong to a differenr rrd
n' bAo 2 5- 7 6 /
' S . - H . W u a n d Z . - B . .D i n g , S C 2 4 , 2 1 7 3 ( 1 9 9 4 ) . 'H. H e b r i , E . D u n a c h , a n d J . P e r i c h o n ,C C 4 9 9 ( 1 9 9 3 ) . t H. Hebri, E. Dunach, and J. Perichon, TL 34, 1475(1993).
Samariu m(II) iodide. 13, 270 - 272; 14, 276 -281 ; 15, 282 -284 : 16, 294 -300 ; t7,307-311 Preparation.' From Sm and diiodoethane in tetrahydropyran, which is superior to THF. Reductions.z Aromatic carboxylic acids, esters, and amides are reduced to ATCHzOH and nitriles to ATCHzNHzby the SmI2-H2O system.Pyridine derivatives are completely reduced to afford piperidinesr in aqueousTHF. With MeOH as a proton sourcethe labile 2-aminonitroalkanesare convertedto the diamines.a Reaction oforganochalcogenides. Elemental seleniumis reduced by SmI2, and a subsequentreaction with RCOCI or arenediazonium salts gives diacyl diselenides and diaryl diselenides,6 respectively.On the other hand, diorganyldisulfides,Tdiselenides, and ditelluridess undergo reductive cleavage,furnishing acyl and alkyt chalcogenides.The samarium chalcogenidesare active Michael donors.e Thiolsulfonic acidsr0and thiocyanatesrrsuffer S-S and C-S bond severance, respectively,by SmI2 to furnish RS and thence disulfides. Similarly, the cleavageof sulfonamides12under these mild conditions makes such compounds more valuable as synthetic intermediates.
1r"t/',-.Sm
Vo il
sr
nl
''o
O rgan osamar ium rea ction s w ith catl organosamarium reagent from various halr conventionalmetals by sm. Actually sml: the active Sm(lII) reagentsfor such procesi lylation of ketenes22(with enantioselecrrr'e1
coupling of glycosyl halides with keroncs.: Intramolecular Barbier reactions harc b The conversion of iodoalkyl esters to h;-dn representsa reversal of the Baeyer-Villiger
tl PhlYo/\Ar
Sml
t
Acp-l v]
Organosamariumsalso add to enonesrn is present. a-Amino radicals generatedfroo alkenyllbenzotriazoles on exposureto Sml;
Sarnarium(II)iodide 313 Vinylsamarium speciesare generatedfrom vinyl sulfides'3 and sulfones.raProtonation or alkylation may then be performed. Formation of C-disaccharidesfrom a .Si-tetheredglycosyl sulfone has been effected with Sml2.15Intervention of a glycosyl
*_
radical intermediate is implicated.
Ie 9 3 )
sBuLi; ,"Vo\-.lo
rsV1,NJa?
Mer
l.l nJ.:r .rnhydrousconditions(in the presr:ir:r,n of organometallicreagentsfrom or.r. .ubstratesare achievableelectroati.\.rln DMF.23
R
l-
r^q aNJ
_#_ '-.-,
420/o
(Z:E 88:12)
Treatment of bisbenzenesulfonylmethaneand a ketone with SmI2 leads to a Bhydroxy sulfone.r6Allylic sulfones are a source of allyl anions because they are cleavedby SmI2 in HMPA; thus a new preparativemethod for homoallylic alcoholsrt is available. However, the desulfurative cyclizationrs of allylic sulfides toward a carbonyl group may belong to a different mechanistic category.
,^-\
x l n'
nl
bAo
b r-::€ w
//V\.sPh
.^,^
25 - 76"/o
rHF-HMPA
Vo
-ro'
il
/
-a) " " "
|
OH
le.: -. qq3).
t l.l:
15. 282-284: 16, 294-300;
tr j rn tetrahydropyran,which is superior ri. .\ters. and amides are reduced to S::rl H:O system.Pyridine derivatives ' ::. .lqueousTHF. With MeOH as a Pror r - ' n r e r t e dt o t h e d i a m i n e s . a rnli':rrrlseleniumis reducedby SmIz,and dr.u ',nium salts gives diacyl diselenides diser ' : ' r r h a n d ,d i o r g a n y ld i s u l f i d e s ' ? alkyl and acyl furnishing rc ,lr-Jra!€, I i : i . r i t i \ e M i c h a e ld o n o r s . e .-:tc'r S-S and C-S bond severance, :n. r J r'ulf ides.Similarly, the cleavageof rTlji\.'\ \uch compounds more valuable as
Organosamarium reactions with carbonyl compounds. The facile formation of organosamarium reagent from various halides makes it possible to substitute more conventionalmetalsby Sm. Actually SmI2 can be used insteadof the metal to form the activeSm(III) reagentsfor such processesas Reformatsky-typereactions,'o-2rallylation of ketenes22(with enantioselectiveprotonation of the resulting Sm enolates), coupling of glycosyl halides with ketones,23and preparation of B-hydroxy sulfides.2a Intramolecular Barbier reactions have been effected to give cyclic products.2s'26 The conversion of iodoalkyl esters to hydroxy ketones (isolated as the acetates)2?'2E representsa reversal of the Baeyer-Villiger reaction with transposition.
o ll
enA,/\oA,z\r
o
^
Sml2 I THF ,
*,o - **pv
Ph' v
tl ,{ ^ oAc \,/ \,/ 60"/o
Organosamariumsalso add to enonesin the Michael fashion2ewhen a copper salt is present.a-Amino radicalsgeneratedfrom cleavageof N-[1-(N',N'-dialkylamino)alkenyllbenzotriazoleson exposureto SmI2 may add to the electron-deficient double
314 Samarium(II)iodide bond.2eo The SpTylreaction of haloareneswith phenoneenolatesin DMSO is catalyzed by SmI2.3o Three-component coupling. A very efficient o-hydroxy imine synthesisrr is the SmI2-mediatedcouplingof an organichalide, an isocyanide,and a carbonylcompound. Such products readily undergo autoxidation, and unsymmetrical a-diketones are accessibleon hydrolysis.32On the other hand, the a-hydroxy imines can be reduced to provide 2-amino alcohols.rl
+ 5
Smlr-Pd(PPhr)cmay involve eliminatioo r cyclization.
r^"'{v'"
K*
9r5. rtr
HO
Hso* o\--f^) d \-/
Sml2 THF - HMPA 0o
+ RBr
Carbon radical generation. Radic:lr can be intercepted intramolecularly by a C, tene synthesiss2from l,l-dihaloalkenes q which is intervened by hydrogen abstracrro
Reductive enolization. Like a-halocarbonyl compounds, a-ketols3aand their esters35 are also subjectto reductive enolization, and some ofthese enolateshave been used in aldol condensations.36 Deconjugative deoxygenation of cephalosporins has been observed.3T Cyclic derivatives of y,6-dihydroxy a,B-unsaturated esters are also deoxygenatedwith double bond migration to afford the 6-hydroxy Bry-unsaturated esters.38 If Mg is used instead.ofSmIz, the doublebond also suffersreduction. Carbonyl couplings. Many variations of cross couplings are possible; these include aldehydeswith o-dicarbonyl compounds.se'40 Ketyl radicals derived from carbonyl compoundsalso add to alkenes such as acrylonitrile4ror N-allyl moieties.a2 Intramolecularcyclizationson terminal alkenesa3 or allene speciesaa have also been exploited for synthetic purposes.
Cyclopropane fission.s3 Cyclopropar andthis processcan be usedto genemteer&
MoOOC
M"oox pn&cHo
*
STq'f +
Mo2CO T } f I
Sml2 THF. HMPA
83"/o (anti:syn 83: 17\ OH Sml2 THF - HMPA
t t l
t-BUOH 817o
Eliminations. Alkenes are formed rapidly from yic-dibromides,asB-chloroethers,a6p-iodoethyl esters,aTand B-acetoxy sulfones4son treatment with SmI2. The formation of furan derivativesaefrom epoxypropargyl esters by reaction with
Other reactions. SmI2 serves as an cfl Diels-Alder reactions.s The reduction of phc cyclohexenolsby the SmI2-KOH system er n
' J.-L. Namy,M. Colomb,andH. B. Kagan.fL J I Y. KamochiandT. Kudo,CZ 1495(t9931 I Y. Kamochi and T. Kudo,I/ 36, 2383( l99lr o M. A. Sturgessand D. J. Yarberry,TL y. 17at t X. Jia, Y. Zhang,and X. Zhou,SC 23, ta0l r t9 " Y. Zhang, X. Jia, and X. Zhou,SC 24, l[.2alt$ t X. Jia,Y. Zhang,andX. Zhou,SC23,3t7 rtgl ' Y. Zhang, Y. Yu, and R. Lin, SC23. I89 ( l99ll ' H.-J. Jiangand Y.-M. Zhang,HX 14, 307 ( t99{ 'o X. Jia,Y.Zhang,andX. Zhou,SC24, 2E9-1 r t9
Samarium(II)iodide
ph.i, 'ne enolatesin DMSO is catalyzed f r . .::r a-hydroxy imine synthesis3ris .:n r\ocyanide,and a carbonYlcomh:. l.: ,r. and unsymmetricala-diketones l c : .i. the a-hydroxy imines can be re-
.\
HO
Hao*
HO R
I -\-,/
o. \.,.\ Yl I R
\z-
I
Smlz-Pd(PPhr)+ may involve elimination to give hydroxy enynes, which undergo cyclization.
Bu
r^"'{v"
K'
I Sml2 - (Ph3P)aPd ;
\-'Y
\
30"/"
Carbon radical generation. Radicals that are formed during dehalogenation can be intercepted intramolecularly by a C:C bondsoor C:N bond.sr A cyclopentene synthesiss2from I,l-dihaloalkenes apparently involves two-stage reduction, which is intervened by hydrogen abstraction.
tr'r.l compounds,a-ketols3aand their )n .:rd \ome of theseenolateshave been r Jc,'rrgenation of cephalosporinshas t\J:,r\\ d,B-unsaturatedestersare also ) :llrrrd the 6-hydroxy B,7-unsaturated ru\lc bond also suffersreduction' (,: -r()\s couplings are possible;these ''" Ketyl radicalsderivedfrom carnJ. a. .rcrrlonitrilea'or N-allyl moieties.a2 have also been n..' or allene speciesoo
315
Sml2 Ph
PhH, HMPA rt. 10 min
fYV'n 79"/.
Cyclopropane fission.53 Cyclopropane-l, I -diesters suffer reductive opening, and this process can be used to generateester bishomoenolates.s4
Meook
Sml2 - Fe* +
MeOOC
MoOOC
Me2CO THF, A
74"/" >t
83"/" (anti:syn 83 t'17) OH
, _ lt:
I
*,
l r l
D.
81%
pr.: r irom vic-dibromides,asB-chloror. .ultonesaEon treatment with Smlz. cr"\\propargyl estersby reaction with
Other reactions.. SmI2 serves as an efficient catalyst for aldol, Michael,55and Diels-Alder reactions.$The reduction of phenolss?to a mixture of cyclohexanolsand cyclohexenolsby the SmI2-KOH system at room temperature is intriguing. ' J.-L. Namy,M. Colomb, and H. B. Kagan,TL 35, 1723(1994). 2 Y. Kamochi and T. Kudo, CL l4g5 (lgg3). 3 Y. Kamochi and T. Kudo,H 36,2383(lgg3). o M. A. Sturgess andD. J. Yarberry,TL34,4'143(lgg3). 5 X. Jia, Y. Zhang, and X. Zhou,SC23, 1403(1993). " Y.Zhang, X. Jia, and X. Zhou,SC 24,1247 (1993). ? X. Jia, Y. Zhang,and X. Zhou, SC23, 387 (1993). " Y. Zhang,Y. Yu, and R. Lin, .lC 23, 189(1993). ' H.-J. Jiangand Y.-M. Zhang,HX 14,30'7(1994). 'o X. Jia, Y. Zhang,and X. Zhou,SC 24,2893(1994).
316 Samsrium(II)iodide " X. Jia, Y. Zhang, and X. Zhou, fZ 35, 8833 (1994). '' E. Vedejs and S. Lin, JOC 59,1602 (t994). ' M . H o j o , H . H a r a d a ,J . Y o s h i z a w a ,a n d A . H o s o m i , J O C S t , 6 5 4 l ( 1 9 9 3 ) . 'o P. L. Tbanez and C. Najera, fL 34,2003 (lgg3). 15 A . C h e n e d e ,E . P e r r i n , E . D . R e k a i , a n d p . S i n a y , S L 4 Z O( l g g 4 ) . '' S. Chandrasekar, J. Yu, J. R. Falck, and C. Mioskowski, ZZ 35, 5441 (1994). " J. Clayden and M. Julia, CC 2261 (1994). 't T . K a n , S . N a r a , S . I t o , F . M a t s u d a ,a n d H . S h i r a h a m a ,J O C 5 9 , 5 l l l ( 1 9 9 4 ) . re S . H a n e s s i a na n d C . G i r a r d , S t 8 6 5 f l 9 9 4 ) . tt'T. A r i m e , N . K a t o , F . K o m a d a t e ,H . S a e g u s a a, n d N . M o r i , J C C C ( T ) 4 1 , 3 3 1 5 ( 1 9 9 4 ) . t' S . F u k u z a w a a n d S . S a k a i , N i K i K5 1 3 f l 9 9 3 ) . 22 S. Takeuchi, A. Ohira, N. Miyoshi, H. Mashio, and y. Ohgo, TA S, 1763(lgg4). 2r P. de Pouilly, A. Chenede, J.-M. Mallet, and p. Sinay, BSCF 256 (1993). -' M . Y a m a s h i t a ,K . K i t a g a w a ,T . O h h a r a , Y . I i d a , A . M a s u m i , L K a w a s a k i , a n d S . O h t a , C L 6s3 ( 1993). " A . F a d e l ,r A s , 5 3 1 ( 1 9 9 4 ) . tu C. A. Molander and J. A. McKie, JOC St,7216 (1993). " G . A . M o l a n d e r a n d J . A . M c K i e , . / A C Sl l 5 , 5 8 2 1 ( 1 9 9 3 ) . " G . A . M o l a n d e r a n d S . R . S h a k y a , J O C S g , ' 3 4 4 5( 1 9 9 4 ) . t' P. Wipf and S. Venkatraman, JOC 58, 3455 0993). ""J. M . A u r r e c o e c h e aa n d A . F e r n a n d e z - A c e b e sI ,L 3 4 , 5 4 9 ( 1 g g 3 \ . to M . A . N a z a r e n oa n d R . A . R o s s i , I L 3 5 , 5 1 8 5 0 9 9 4 ) . 3r M . M u r a k a m i , T . K a w a n o , H . I t o , a n d Y . t t o , J O C S B , 1 4 5 80 9 9 3 ) . 32 M. Murakami, L Komoro, H. Ito, and y. Ito. SL 5ll fl993). 13 M. Murakami, H. Ito, and Y. Ito, JOC 58,6766 .lgg3\. t' S . H a n e s s i a na n d C . G i r a r d , S a 8 6 l ( 1 9 9 6 ) . tt E. J. Enholm and S. Jiang, H 32,224:. (lgg2). to E . J . E n h o l m , S . J i a n g ,a n d K . A b b o u d , J O C S B , 4 0 6 t ( 1 9 9 3 ) . ll H.-Y.Kang, Y.S. Cho, H.Y. Koh, and M.H. Chang, SC2t,2977 (1993). - * K a n g , S . - G . K i m , D . - C . P a r k , J . - S .L e e , W . - J . y o o , a n d C . S . p a r k , JCS(pt)9 (1993). ll S p N . M i y o s h i , S . T a k e u c h i ,a n d Y . O h g o , C L 2 l 2 g ( l g g 3 ) . o" N . M i y o s h i , S . T a k e u c h i ,a n d Y . O h g o , C L g 5 g ( t g g j ) . or M . K a w a t s u r a ,F . M a t s u d a ,a n d H . S h i r a h a m a ,J O C 5 9 , 6 9 0 0 0 9 9 4 ) . '2 J. E. Bafdwin, S.C. M. Turner, and M. G. Moloney,T 50, g4ll (1994). ot c. A. Molander and J. A. McKie, JOC 59, 3186 (1994). * J. M. Aurrecoechea and R. F.-S. Anton, JOC Sg, i,02 (lgg4). a5 R. Yanada, K. Bessho, and K. yanada, CL lli/g (1994). ou L. Crombie and L.J. Rainbow, JCS(pl) 6': 3 (lgg4.,. ot A . J . P e a r s o na n d K . L e e , J O C S g , 2 2 5 ] .( l g g 4 l . ot M . I h a r a , S . S u z u k i , T . T a n i g u c h i , y . T o k u n a g a ,a n d K . F u k u m o t o , S Z g 5 9 ( 1 9 9 4 ) . oo J. M. Aurrecoechea and M. Solay-lspizua, H 37,223 (lgg4). 5t' S . F u k u z a w a a n d T . T s u c h i m o t o ,S t 8 0 3 ( 1 9 9 3 ) . 5r C . F . S t u r i n o a n d A . G . F a l l i s , " I A C S1 1 6 , i 4 4 7 ( t g g 4 J . 52 M. Kunishima, K. Hioki, S. Tani, and A. Kato, TL35,'t253 (lgg4\. " Y . H . K i m a n d I . S . L e e , H C 3 , S O g( l g g } . 5a T . I m a m o t o , T . H a t a j i m a , a n d T . Y o s h i z a w a ,T L 3 5 , 7 E 0 5 ( 1 9 9 4 ) . tt P. Van de Weghe and J. Collin, TZ 34, 3881 (1993). tu P. Van de Weghe and J. Collin, TL35,2545 (lgg4). s7 Y. Kamochi and T. Kudo, TL 35,4t6g Ogg4l.
Samarium(III) iodide. Enone synthesis.t The Sml,_cet aldehydes(Reformatsky-type reaclionI
Cyclic ether cleavage.2 Sml, is e with acid chlorides. It also contributes er Boronate esters.3 Hydroboration r by SmL.
'Y. Yu, R. Lin, and y. Zhang,TL 34, 4S1:r 'Y. Yu, Y. Zhang,andR. Lin, SC 23, 1973I tD. A. Evans,A. R. Muci, andR. Sturrrr. . Samarium(II)
menthoxide. Aldol condensation.t Alkoxides o promoting aldolization,e.g., higher drel and (Z)-keteneacetals). Moderate enea L-menthoxideis used as catalyst. 'Y.
y. Taniguchr. Makioka,I. Nagkagawa, I
Samarium(II) triflate. Preparation.t The reagentis obrau EtMgBr at room temperature and uscd rl
Pinacol coupling.2 Comparcd r.-rr ciency has been observed.
'S. Fukuzawa, T. Tsuchimoto, andT. Kaoer 2T.Hanamoto, Y. Sugimoto, A. Sugino.eod Scandiun(III)
perchlorate. Glycosylation r a-Ribofuranosi&r and N-nucleophiles at room temperatune '1.
HachiyaandS. Kobayashi, IL 35, 3319r tt
Scandium(III) triflate. Aldol and Michael reactions.t Tbi reactions smoothly (20 examples.66_9 donors. The catalyst is recoverableand rc
Allylation.2 The highly efficienr rer tetraallyltin and carbonyl compounds rr homoallylic alcohols is promoted by Scr€
Scandium(III)triflate317 9: , / c 5 8 . 6 5 4 1( 1 9 9 3 ) .
rr:
I l\.. j:0(1994). r r 1 . f . 1 .T L 3 5 , 5 4 4 1 ( 1 9 9 4 ) . rj'i:',r. JOC 59,5lll (1994)' \ t o r i , J C C C Q ) 4 1 , 3 3 1 5( 1 9 9 4 ) '
rri \
(1994)' . i::: \ Ohgo, TA5, l'163 S : rr . ESCF256 ( 1993)' S' Ohta' CL r \ \ t a s u m i , I . K a w a s a k i ,a n d
! -uir qgl). J: a<
at)-l).
9\i
. r: -1{.5,19(1993).
Samarium(III) iodide. Enone synthesis.t The Smlrcatalyzed condensation of a-haloketones and aldehydes(Reformatsky-type reaction) leads to enones directly. Cyclic ether cleavage.2 SmI.r is a typical Lewis acid, which induces reaction with acid chlorides. It also contributes an iodide ion, giving oriodoalkyl carboxylates. Boronate esters.3 Hydroboration of alkenes with catecholboraneis catalyzed by SmI:. 'Y. Yu, R. Lin, andY.Zhang,TL34,4547(1993). 2Y. Yu, Y. Zhang,andR. Lin, SC 23,1973(1993). tD. A. Evans,A. R. Muci,andR. Sturmer,JOC 58,5307(1993).
Samarium(II) menthoxide. Aldol condensation.t Alkoxides of Sm(II) give better results than Sm(III) in promoting aldolization, e.g., higher diastereoselectivity(dnti-selective for both (E)and (Z)-keteneacetals). Moderate enantioselectivities are observed when Sm(II) L-menthoxideis used as catalyst. 'Y. Makioka,l. Nagkagawa, Y. Taniguchi,K. Takaki,andY. Fujiwara,JOC 58,4771(1993).
. e e _ : . |
. / , , r 5 E .1 4 5 8( 1 9 9 3 ) . 51< l r1993) i.\ lq9-1).
fg -,rf'l { 1993). C : , ' g . S C 2 3 , 2 9 1 ' 1( 1 9 9 3 ) ' 9 (1993) . n J Yoo, and C. S. Park' JCS(Pl) .v ia
q9-l). q93).
)(. 59.6900(1994). r _,'r l* rr. f 50,941I (1994)' h
rq{).
-rlt (1994).
s9 l-" lq94). lvq:i
rj (1994)' r i : . r n d K . F u k u m o t o 'S L 8 5 9 _r' ::l (1994). 9: 1- .r9-l). In, r1 35,7253 (1994\.
. r, -rs.7805(1994). I i""1,. r.va-ll. I
Samarium(II) triflate. Preparation.t The reagentis obtained by treatment of Sm(OTf ): with s-BuLi or EtMgBr at room temperature and used in situ. Pinacol coupling.2 Compared with Smlrmediated couplings, a higher efficiency has been observed. 'S. Fukuzawa,T. Tsuchimoto,and T. Kanai, CL 1981(1994). 'T. Hanamoto, SL3'l'l (1994). A. Sugino,andJ. Inanaga, Y. Sugimoto,
Scandium(III) perchlorate. a-Ribofuranosides undergo selective a-glycosylation with CGlycosylatiiinr and N-nucleophiles at room temperature in the presenceof Sc(ClO+):. '1. Hachiyaand S. Kobayashi,?L 35, 3319(1994).
Scandium(III) triflate. Aldol and Michael reactions.t This Lewis acid catalyzes aldol and Michael reactions smoothly (20 examples, 66-9'7Vo yield), using silyl enol ethers as the donors. The catalyst is recoverableand reusable. Allylation.z The highly efficient reaction (16 examples,77-98Vo yield) between tetraallyltin and carbonyl compounds in MeCN at room temperature to produce homoallylic alcohols is promoted by Sc(OTf)r.
318 Selenium dioxide Friedel-Crafts acllation.3 The reaction is carried out in nitromethane at 50oC. Yields are in the 79-997o range (6 examples). Diels-Alder reactions. The reaction can be performed in aqueousTHF at 0"C.4 is A chiral catalystpreparedwith (+)-l,l'-binaphthol, and 1,2,6-trimethylpiperidine useful for promoting enantioselectivereactions.s 'S. Kobayashi, I. Hachiya,H. Ishitani,andM. Araki, SL 472(1993). 21.HachiyaandS. Kobayashi, JOC5S,6958(1993). rA. Kawada,S. Mitamura,andS. Kobayashi, SL 545 (1994). a S .K o b a y a s hI i.,H a c h i y aM, . A r a k i ,a n dH . I s h i t a n i , T L 3 4 , 3 7 5(51 9 9 3 ) . 5S.Kobayashi, M. Araki, andL Hachiya,JOC 59,3758(1994).
Selenium. Dialkyl diselenides. The synthesis' involves treatment of an alkyl halide with Se and Zn dust in aqueousNaOH under nitrogen at 80"C. Access to dibenzyl diselenides2 by a phase-transfer process (Se, NaOH, polyethyleneglycol-400/benzene, 65"C) is also convenient(9 examples,T3-967a). Isoselenocyanatesand selenoamides. Formamides are converted to isoselenocyanates3by reaction with Se, EtrN, and phosgenein toluene. Selenoamidesare obtainedafrom secondaryamines, Se, and l,l-dihaloalkanes in the presenceof NaH in HMPA. An oxidation is involved.
R.
Se, NaH RTCHX2
pr R2R3NH
(X=Hal)
S-Alkylthiocarbamates.s
HMPA
lpzp3
'10-80%
Selenium is a catalyst for the condensation of amines
with S and carbon monoxide. Alkylation
of the adducts with alkyl halides gives the
thiocarbamates (12 examples, 4l-1007o yield). I P. Lue and X. Zhou, SC 23, l'l2l (1993). tJ. X . W a n g , C . - H . W a n g ,W . C u i , a n d Y . H u a , J C S ( P I ) 2 3 4 1( 1 9 9 4 ) . 'D.H.R. , nd C.-L. Tse,?50,639 B a r t o n , S . I . P a r e k h ,M . T a j b a k h s h ,E . A . T h e o d o r a k i s a 0994\. "Y. T a k i k a w a , M . Y a m a g u c h i ,T . S a s a k i , K . O h n i s h i , a n d K . S h i m a d a , C L 2 1 0 5 ( 1 9 9 4 ) . tT. M i z u n o , I . N i s h i g u c h i ,a n d N . S o n o d a ,? 5 0 , 5 6 6 9 ( 1 9 9 4 ) .
Seleniumdioxide. 13, 272 -27 3: 17,312-313 Dethioacetalization.t Excellentyieldshavebeenobtainedfor recoveringcarbonyl compoundsfrom dithioacetalsby oxidativecleavagewith SeOzin HOAc at (8 examples, roomtemperature 90-987o).
Allylic hydroxylation: The Sc( usein converting alkenesto allylic al ' S .A . H a r o u t o u n i a n , ( 1 9 9 5 ) . S 39 'K. Shibuya, SC 24,2923(lgg4r.
Silica gel. 15,285 Hydrolysis, The anomeric acael amino sugarson treatment with SiO:from proline are similarly cleaved.:etl products in a synthetic approach ro o.
4...n t\^r -,LO
X
Isomerization of epoxidcs. a.p undergoring opening to give a-dikao Desilylation.s Trimethylsily lcrhy gel chromatography. A desilylarion src sired products; on the other hand. orre
derivatives toward SiO2. Diels-Alder reactions ol invcw SiOr to promote such reactions(e.g.. c
'M. Avalos,R. Babiano,P. Cinras.J. L Jr ( l 993). r M. J. Genin.P.W Baures. and R. L. Jolrt tT. B. Rao andJ. M. Rao,.!C 23, l5lr r t9 'J. Boelle, R. Schneider, P. Gerardin.eod tZ. Chenand M. L. Trudell,SC 24. -11{9r oG.H. Posner, J.-C.Carry,J. K. Lcc. D S
Silver bromate. Oxidation.t Trimethylsilyl ertrt yields by varying the reactionrempcr tained, while in refluxing MeCN rhc c
rH. Firouzabadi and I. Mohammadpoor-
Silverbromate 319 n .. . Jrried out in nitromethaneat 50"C'
t The seoz-HCoOH Allylic hyilroxylation use in converting alkenes to allylic alcohols.
combination in dioxane has found
,I
In ^.' nertbrmed in aqueous THF at 0'C'a is rF:::,,1. and 1,2,6-trimethylpiperidine
' S . A . H a r o u t o u n i aSn 3, 9 ( 1 9 9 5 ) . 'K. shibuya,SC 24,2923 (1994).
rt\ r 1 -{ 7 2 ( 1 9 9 3 ) .
rjr
Silica gel. 15,285 Hydrolysis. The anomeric acetate is the only hydrolyzable group in polyacetyl amino sugarson treatment with SiO2-MeOH.r Oxazolidinones such as those derived from proline are similarly cleaved,2allowing for a very simple purification of the end
) l
i:<
rtj-
lq94).
r L 3 4 , 3 7 5 5( 1 9 9 3 ) '
r-
;
products in a synthetic approach to a-alkylprolines'
r . '.\ treatmentof an alkyl halide with rr,'j.Jnat 80'C. Access to dibenzyl dise\i( )tl. polyethyleneglycol-400/benzene' 6 I ::namidesare convertedto isoseleno-
^ / \...H 'l^;7o ld
X
silicaoel. Meoti/Hzo rt,ovemight
4...n tg4.oo" > 90%
ai. ,.!ene in toluene' Selenoamidesare I irhaloalkanesin the presenceof NaH Isomerization of epoxides. a.B-Epoxy ketonesr and B'7-epoxy nitroalkanesa undergo ring opening to give a-diketones and 7-hydroxy nitroalkenes, respectively. Desilylation.5 Trimethylsilylethynyl sulfones lose the silyl group on flash silica gel chromatography. A desilylation step is thus saved if the free alkynes are the desired products; on the other hand, one must be careful about the lability of such silyl
Se
il R',^NR2R3
derivatives toward SiO2. Diels-Alder reactions of inverse electron demands.o The catalytic activity of SiOz to promote such reactions (e.g., enol ethers with a-pyrones) has been noted.
10-80%
, ; -.,lelyst for the condensation of amines ri ::.e edducts with alkyl halides gives the
J t ' t ' l t 2 3 4 1( 1 9 9 4 ) ' F \ T h e o d o r a k i s ,a n d C ' - L
Tse, 7 50' 639
(1994)' h : ' : r a n d K . S h i m a d a ,C L 2 1 0 5 I ..nu I 1994).
'..,,* been obtained for recovering carat orrJ.rrive cleavage with SeO2 in HOAc ,.
'M. Avalos.R. Babiano,P. Cintas,J. L. Jimenez, andC. Valencia,TL34,1359 J.C. Palacios, ( l 993). : M. J. Genin,P.W.Baures,andR. L. Johnson, f L 35,496'7(1994). tT. B. Raoand J. M. Rao,SC 23, 152'1(1993). rJ. Boelle,R. Schneider, P. Gerardin,and B. Loubinoux,SC23, 2563(1993)tZ.Chen andM.L. Trudell,5C24,3149(1994). uG.H. Posner, J.-C.Carry,J. K. Lee,D. S. Bull, andH. Dai, TL35, l32l (1994).
Silver bromate. Trimethylsilyl ethers are oxidized to aldehydes or acids in good oxidation.t yields by varying the reaction temperature. In refluxing CH2CI2 an aldehyde is obtained, while in refluxing MeCN the carboxylic acid is produced. rH. Firouzabadi SC24, 1065(1994). andI. Mohammadpoor-Baltork,
320 Silvernitrate Silver carbonate. a"a-Dialkoxy ketones and imines.t Heating a-bromo-a-chloro ketones or imines with silver carbonate in an alcohol effects the replacement of the halogen atoms. Carbonyl regeneration from oximes.2 Silver carbonate on bentonite is a useful reagentto convert oximes in refluxing benzene to carbonyl compounds. 'N. De Kimpe,E. Stanoeva, andM. Boeykens, S 427 (1994). 2R. Sanabria, R. Miranda,V. Lara,andF. Delgado, SC 24,2805(1994).
Silver nitrite-iodine. Dethioacetalization.t The mild r are favorable for regeneration of rh dithioacetal. The AgClOa-I2 slsrem ri sion hazard on a large-scalereacrion.
'K. Nishide, yokota, K. D. Nakamura. T S (1 9 9 3 ) .
Silver fluoride. Cyclic azomethine ylides.t Saturated a,a'-bistrimethylsilyl azacycleslose both silyl groups to form the 1,3-dipolar specieson exposureto AgF. The silver salt apparently acts both as an oxidant and a desilylating agent. In the presenceof dipolarophiles 7-azabicyclol2.2.llheptane derivatives are readily prepared from N-benzyl-
Silver(I) oxide. RCONH2 - RCN.r The dehl.drr tions employs Ag20, molecular sier,es Condensation with thiocarbo:yl with Ag2O renders such compounds rc p-Quinone methides.r 4-Alk;. lp
2,S-bistrimethylsilylpyrrolidine. A short route to epibatidinebasedon this chemistry has been developed.
stances.It is a useful way to induce crc matic ring. OH
)Y
SiMes |
\
.Nan SiMe3
+ epibatidine
X X : COOEI, CHO,CN,No2
'G.
70-83/"
Y
^@
ar-
P a n d e y ,T . D . B a g u l , a n d G . L a k s h m a i a h , T L 3 5 , 7 4 3 9 ( 1 9 9 4 ) .
Silver nitrate Allenones to furans.t The isomerization typified by the following equation can be used to prepare 3-deuteriofurans.
A9NO3
r:C=f.
czHrs
J
[cuH,. v
"ffi
/\\ C7H1549'/-C6H13
o
Butenolides from p-(1-bromoalkyl)-B-lactones.' The dehydrobromination with ring expansion works in general. The bromo-B-lactonesare the kinetic products of bromolactonization of Bry-unsaturatedacids. 'J. A. MarshallandG. S. Bartley,JOC 59,7169(1994\. 2T.H. Black and J. Huang,TL 34, l4ll (1993).
'M. L. Sznaidman, C. Crasto,andS. M. llc '1. Shibuya,Y. Taguchi,T. Tsuchiya.A Or 'S. R. Angle,D. O. Arnaiz,J. p. Boyce.R p Rainier,K. D. Turnbull, and W. yang. .tO(
Silver(Il) oxide. Etherification.t Methyl and isopn zyl bromides are heated with AgO in rh '8. Ortiz, F. Walls,F. yuste,H. Barrros ( 1993).
Silver perchlorate. 16, 300-301 Replacement of anomeric u-halq with LiClOa or PhSnS provokes rhc hcr used as nucleophile for the glycosylarro
Sllverperchlorate321
Irn: rr-bromo-a-chloro ketones or r:. :hc replacementof the halogen ir..::l',onateon bentoniteis a useful h- -.,rhonyl compounds.
.': (1994). ( :{ rtsOs
t :.: :: rlethylsilyl azacycleslose both F ...r. to AgF. The silver salt appar| ::Jnt. In the Presenceof diPolarr: :L'rdily preparedfrom N-benzYl, cr:f,.rtrdinebasedon this chemistry
Silver nitrite-iodine. Dethioacetalization,' The mild conditions (aqueousTHF at room temperature) are favorable for regeneration of the carbonyl group from a monothioacetal or dithioacetal. The Agcloa-I2 systemis even better, but it suffers from potential explosion hazard on a large-scalereaction. 'K. Nishide,K. Yokota,D. Nakamura, T. Sumiya,M. Node,M. Ueda,andK. Fuji TL34,3425 ( 1993).
Silver(I) oxide. RCONH, - fiCN.' The dehydration of primary amides under nonacidic conditions employs Ag2O, molecular sievesand EtI. Condensation with thiocarbonyl compounds.z Activation of the C:S bond with Ag2O renders such compounds reactive toward nucleophiles. p-Quinone methides.3 4-Alkylphenols are oxidized to these reactive substances.It is a useful way to induce cyclization by a weak nucleophile such as an aromatic ring.
w Y LO or-l
,cl
Ageo
+
-
epibatidine
9
,eg-l)
:d hr the following equation can
' 3'\cuH''
w Y w OH
znch
/^Y\
93V"
'M. L. Sznaidman, C. Crasro, andS.M. Hecht,TL 34, lsgl (lgg3). 'I shibuya,y. Taguchi, T. Tsuchiya, A. oishi,andE. Katoh, BCSJ62,304g (rgg4). 's' R' Angle,D.o. Arnaiz, r.p. Boyce, R.p. Fruros, M. S.Louie,H. L. Mattson-A rnaiz, J.D. Rainier, K. D. ?urnbull,andW. yang,JOCSg,63220tgg4\. Silver(Il) oxide. Etherification.t Methyr and isopropylbenzyl ethersare formed when the benzyl bromidesare heatedwith AgO in the corresponding alcohols. 'lr:r?lil, F. Wa,s,F. yuste,H. Barrios,R. Sanchez-Obregon, pineto, andL. SC 23,74g
rr.
The dehydrobromination rtr)nesare the kinetic products
Sifver perchl orate. 16,300_301 Replacementof anomeric u-haloacetoxy groups. A combinationof Agcloa with Liclor or Phsns provokesthe heterorysi, or ru.h esters.rA silyl ethercan be usedas nucleophilefor the glycosylation.2
322 Silvertriflate Glycosylation bl trityl sugars.3 Disaccharide formation catalyzed by AgcloaSnCla makes it possible to use the more stable trityl sugars(in situ detritylation) as nucleophiles. Friedel-crafts acylation.a using the AgCloa-Sicla combination as catalyst, the acylation ofarenes with free carboxylic acids and an aroic anhydride proceedsvia the mixed anhydrides. 'T. MukaiyamaandN. Shimomura, CL 7gl 0993). 'N. Shimomuraand T. Mukaiyama,BCSJ 67,2532(1994). 3S. Houdierand P.J. A. Votrero,TL 34, 3283Ogg]D. 4 K. Suzuki,H. Kitagawa,and T. Mukaiyama, BCSJ66, 3:l2g(tgg3').
s'Glycosides.2 Thioglycosides can be prepared from glycosyl bromides by reaction with B-trimethylsilylethyl sulfides in the presenceof AgBFa. The silver salt provides Ag* to assist ionization of the halogen, and also a F to initiate removal of the silylethyl group of the intermediately formed glycosylsulfonium salts. rD. Barbry,C. Faven,andA. Ajana,SC 23,2647(lgg.J). 'A. Mahadevan, C. Li, andp. L. Fuchs,SC 24,30ggllgg4\.
Silver tri f lat e. 13, 274 -27 5: 14, 282- 283; 16, 302; t7, 314 Glycosylation Anomeric trichloroacetimidates,rphenylselenides,2 and carbonatesr are substituted by oxygen and nitrogen nucleophilesin the presenceof Agorf. For the displacement of glycosyl bromides,at-butyl ethers instead of the hydroxvl compounds have also been used successfullv.
?Po" Bzo A,
f"jot'
ffi
-f^YcoocoFs
a'o$-\-o''^\-)
NHFmoc
z\
ph_t/
\
OTs
.\,_h
.
^
d
TsO
Free radicals lrom a_halokerond.r alkenesresultsin coupling products.
M. whirfierd,andJ.J Krrprr ]l l:?:rr,':._o. -s. Mehtaand B. M. pinto,.fOCSt, 3269 r t99!r 'N. Shimomura, T. Matsutanr, andT. Muhrrtr A. vargas-Berenguel, M. Meldal,H. paul*a. X Lr.crarg and V. R. N. Munsinghe, CC 9Ol I l99j Burk.T.S. Cac,andM. B. Roof.rL $. t ;I lt Derzel.S. Goulet,L. Grenier,J. Bordclcrr. r ",x. R R T y k w i n s kai n dp . J .S r a n gf ,4 9 . 3 O { 1 , ; ; s.-H. Oh andT. Sato,JOC 59,3744(1991t
Silver trifluoroacetate. 16, 301_302: 17. -rl Photochemical t r if lu oromc thyta t iot. trifluoroacetic acid with AgOCOCF_TrO; rC. Lai andT. E. Mallouk,CC 1359(t99-1r
BzO 7110
Intramolecular C-glycosylation by tanes.5
Areneselenenyl triflates, Conr.enror AgOTf makes it possibleto avoid inrrodrr strates on their selenylation. For examp readily achieved.T
Functionalized alkynes lrom alty:7 , valent iodinated acetylenes are fornrd b P h l ( C N ) X ( X : O T s .O B z , S C N ) . Etimrn on rreatment with AgOTf. The reacrion rs
Silver tetrafluoroborate. 13, 273-27 4 Aliphatic Friedel-crafts acylations.t The Ag(I)-catalyzed reaction of an acyl chloride with functionalized alkenes proceeds under mild conditions. Functional groups such as halogens,ketone, and ester can be tolerated.
BzosT\ +
Etherification,6 Various alcohols rp fied with primary alkyl halides in . rca, t-butylpyridine.
silyl enol ether leads to bicyclic acyloxe-
Sodium. 13,277 Carbonyl reductions, In an alcohol sob related compounds. 3_Anisyl-methylercctrq isoborneol,rwhich is a potential chiral aurrlr from B-enamino ketones, but there is lrt of Carboxamides are usually reduced to prr tuted amino acid amides afford the 2-emrr propanol.
sodium 323
t i : j . : \ \ r m a r r o nc a t a l y z e db y A g C l o I l : : r . . u q 3 r c( i n s i t u d e t r i t y l a t i o n a) s g( r t- 5161.combination as catalysr, d. ::j ro aroic anhydrideproceedsvia
t.'-:
) / tO :-19 r 1993)
Etherification.6
Areneserenenyr trifrates. Conversionof serenenyr bromidesto the triflates by Agorf makesitpossibreto avoid introductionof the halogenatom to the alkenesub_ For example,stereoselective serenomethoxyration ::ffi is ntti}.i""nvlation' Functionarized arkynes froT arkynyr(phenyr)iodine(Ill) esters.s The hypervalentiodinatedacetylenes are formed uy ,.u",ion of tributyrstannylalkynes with PhI(CN)x (X : ors' oBz' scN). urminution or a., ,.o,n rhese derivativesoccurs on treatmentwith AgOTf. The reactionis applicableto diyne substrates.
) '-.:,
AgOTf
Ph-l
brr
Z\
t-Ph crucf, Lo,
rsd
OTs
210/"
Free radicars from a-haroketones.s photodechrorination in the presence of alkenes results in coupling products. ' S.P. Douglas,D. M. Whitfield, andJ.J. Krepinsky,JCC 12,l3t ( 1993). pinto,
andB.M. ,l; y,.n,u
9&:
arnnhnr" /--:*^_,.
ffililfii[1._,n,1i",?JiJ,T...niilTJnil#iJ;H ru.
bc {g I r-catalyzedreactionof an acyl b ::Jer mild conditions. Functional fr r 'lerated. f,(r::i'J from glycosyl bromides b-rh. r:!'\ence of AgBFa.The silver salr t- ::J also a F- to initiate removalof :.i i. r eosvlsulfoniumsalts.
variors
loc se.:zis iii'e3il^,'
r\. rnrmomura. T. Marsutani,.and T . M u k a i y a m a , B C S J 6 7 , 3 l O O( l g g 4 ) . '.A . V a r g a s - B e r e n g u eM l, . Meldal, H. p."l;;.;.; tD. : n s e n 'a n d K ' B o c k , J C S ( P I ) Craig and V. [. N. Munsrnghe, 3 2 8 7( l g g 4 ) . CC g1l (lgg3).
_ 1:, 1 7 .3 1 4 rJ,:e.. phenylselenides,2 andcarboncic,,nhilesin the presence of AgOTf. bt;:, I erhersinsteadof the hydroxyt
.l y.."".o, r. S.Gac,andM.B.nror,.r ji, ai'il (tss4).
.R.Deizel,S.Goulet.L.Grenier,J.B..d"l";;,ini'l.S"rni"., "R. JOC58,36l9(1993). R-.Tykwinski and p. J. Stang, , i;,;;;;li;;;. " -,' 'S.-H. Oh andT. Sato,JOC Sg,37440l994\t.' Silver irifluoroacetate. t6, 301_302; 17, 313_3t4 Photochemicar trifruoromethyration.t a*n", trifluoroacetic acid with AgOCOCFTTiOz.
tuior.-
fY^YcoocoFs
a.: )!1--o'^\"2
NHFmoc
'C.
undergo trifruoromethyration
in
Lai andT. E. Mallouk,CC l35g(lgg3\.
?zo 7go
D(.i .rher leads to bicyclic acyloxe-
Sodium. 13,277 carbonyr reductions. In an alcohol solvent sodium reduces ketones,esters,and related compounds. 3-Anisyl_methyleneca;o;;; gives 3_endo_(p_methoxybenzyl)_ isoborneol,rwhich is a potentiar chiral auxiriary. 1,3-Amino alcohors are obtained2 from B-enamino ketones,but there is lack of stereoserectiuity in the reduction. carboxamides are usually^reduced ,o p.iru.y amines. However, a,a-disubsti-
illil;l'""
acid amidesafford the 2-aminoethanorsi on ."ou.,ion*ui,hNa in
324 Sodiumarenesulfinates Sodium deposited on alumina is also a convenient reducing agent.4 A nonprotonic solvent such as THF is used in the reduction.
*-Q
'8. I. Seo,L. K. Wall,H. Lee,J.W.Burtrum,andD. E. Lewis,SC23, l5 (1993). :G. Bartoli, C. Cimarelli,andG. palmieri,JCS(pl)53: (lgg4). r H. M. Moody,B. Kaptein,e. B. Broxterman,W. J. H. Boesten,andJ. Kamphu ts,TL 35, 177.1 (1994). 'S. ,igg:'. SinghandS. Dev,T 49, l0g5g
Sodium amalgam. Redactive elimination.t A method for the synthesis of conjugated dienes and trienes involves reaction of r,4-dibenzoyloxy-2-alkenes and 1,6-dibenzovl oxv-2.4alkadieneswith Na-Hg.
OTBS
OBz
:
/
,
\-,/ Y i OBz
ii
\/:
/
6reS
Na(Hs) MSOH-THF
-2e
Replacement of an unsaturatcd phc4 sulfonesby a tandemMichael addition_clrn allows the synrhesisof (Z)_1,2_bis(benzcr fonyl)alkenyliodonium salts.2In pkerocrb withdrawing power of the ketone group rs .t carbene formation. Cyclopentenones are for alkynyl(phenyl)iodoniumsalts gives alkr nr
I OTBS
\r\. '/
rcao^
\ '\ion N
TfO'G.
Solladie, G. B. Stone,J.-M.Andres,andA. Urbano , TL 34,2g35fi993).
Sodium-ammonia. 16, 303-304 3-Arylbutyraldehydes.t These aldehydes are produced when 5-aryr-4,5dihydro-1,3-dioxepins are subjected to reduction with Na-NH3. The transformation may involve elimination to furnish dienolate ions, which undergo reduction at the styrenic double bond.
ot'-forr"
\-i"'
NaaH3
:E;-
-l.-
Ar
olot 's.
Free radical addition to alkencs. Gcr the presenceof proper alkenes leads to sulfo radical can be created in a remote position. rL C. Castedo, J. Delamano, C. Lopez,M. B Lol K . o s h i m a ,y . M a s a k iM , . Kun,*,J ,Y.o:lill: n . L . w t l t t a m s o nR. . R . T y k w i n s k i , p . and J Sre r 'R. R. Tykwinski,B. L. Williamson,D. R. Frs+.J (1993). 'C.-p. Chuang,5C23,23-n(tgg3). '1.W. HarveyandG.H. Whitham, JCS(plt tt5 rt9
-cHo 49- 810/o
I K.
Ta.SOrr
(ou"
_9rBS /\/\/\/\/ 96%(>95o/.EEg
/coot|/p-
Samizuand K. Ogasaw ara,TL 35, Tggg lgg4l.
Sodium arenesulfinates. Heteroarylmethfl p-toryr surfones.t These compounds can be prepared from the corresponding benzylic alcohols by reaction with 4-Mecotlaso2Na and HCooH. The method is useful for substratespossessingo* values between -1.90 to -0.95 in the aryl ring.
Sodium azide. a-Azido amides. An unusualprepanlrq with NaNr in the presenceof l5_crown_5. o-L the other hand, the displacement of a-(4_nirrd ate q.-azido ketones2is a simple S7y2reactron
o
tl Ph'v''\N-oMs cHs
N.rr3 t$om.: CH&
!
Sodiurn azide
!rent reducingagent.4A nonprotonic
,cooMe
Ho l-\
TolS02Na
\e-'\
/'
N
E - e * r s .S C2 3 , l 5 ( 1 9 9 3 ) . t_:- :99.1). I B. t.ten. andJ. Kamphuis,TL35,177'l
I-oM"
HCOOH
325
,cooMe
rotspzf-\ ^N'
(o"" 987.
; .r nrhesisof conjugateddienesand l-a.\enes and 1,6-dibenzoyloxy-2,4-
Replacement of an unsaturated phenyriodo groap, Formation of unsaturated sulfonesby a tandemMichael addition-elimination is a highly efficient processthat alfows the synthesisof (z)-r2-bis(benzenesulfonyl)alkenes from (Z)-F-bjenzenesulfonyl)alkenyliodonium salts.2In B-ketoethynyl(phenyl)iodonium salts the electron_ withdrawing power of the ketone group is weaker, the Michaer addition is foilowed by carbene formation. Cycropentenonesare formed.3 A seemingly direct substitution of alkynyl(phenyl)iodoniumsalts gives arkynyl sulfonesefficiently.a
Jr65
:
'V:/\^Y OTBS
16.. (>95% EEq
o \r\. / /
rotso2Na
\ \ \,._.- t P h
20o,
Tto-
t n . I L 3 4 , 2 8 3 5( 1 9 9 3 ) .
r,re produced when 5-aryl-4,5o * rrh Na-NH3.The transformation on.. *hich undergoreductionat thc
cHzct2
o r ll -Y'>r'Y ll
SO2Tol
15 min
72"/"
Free radicar addition to arkenes. Generation of the toluenesulfonyl radicar in the presenceofproper alkenes leads to sulfones,s and cyclization occurs6when a free radical can be created in a remote position. I L. C. Castedo,J. Delamano,-C . Lopez,M. B. Lopez,and G. Tojo,H 3g, 4g5(lgg4). K. oshima,y. Masaki,M. Kunishima,an
I
-cHo
49-81%
r .(rmpounds can be prepared from r rr rth 4-MeCeHrSOzNaand HCOOH. r ralues between-1.90 to -0.95 in
Sodium azide. a-Azido amides. An unusuarpreparationr is the reaction of N-mesyloxy amides with NaNr in the presenceof l5-crown-5. a-Lactams may be the intermediates.on the other hand, the displacementof a-(4-nitrobenzenesulfonyroxy) ketones to generate d-azid,oketones2is a simple 5172reaction.
o en._A".ous C",
NaN3 15-crown-5
cH2ct2, ^
tnl^T" N3
CHS
78y"
326 Sodiumborohydride Acyl azides.3 A one-pot synthesis of RCON3 from carboxylic acids is through reaction with Ph:B NCS, and NaNr in acetone. Tetrazoles. The transformation of secondary amides to tetrazoleso requires triflic anhydride and NaNr, probably to form imino triflates, which then undergo 1,3dipolar cycloaddition and elimination. Ketones are also converted to 1,S-disubstituted lIl-tetrazoles directly when they are heated with NaNr and TiCl+ in MeCN.s 'R.V. Hoffman,N. K. Nayyar,andW. Chen,JOC 58,2355(1993). 'T. Patonayand R.V. Hoffman,JOC 59,2902(1994). 'P. Froyen,PSS89, 57 (1994). oE.w. Thomas,s 767(1993). 5H. Suzuki,Y.S. Hwang,C. Nakaya,andY. Matano,S l218(1993). Sodium borohydride. 13, 278 -27 9 ; 15, 290; 16, 304 Ketones from nitroalkenes.' The reduction also enables the assembly of spiroacetalsrusing the Nef condensation.
NaBHa-M€OH,0o;
Reduction of C:N bonds. A simple method for the synthesis of a-stannylamines2 containing a secondary amino group involves borohydride reduction of the corresponding imidoylstannanes. 3-Unsubstituted 4-isoxazolines are available by a reductive elimination3 of 3-thioisoxazolium salts with NaBH,.
S-J // \\ + Ph-{o,N-/"'
Br
/It-\ ph-\O,N.-,'"'
pr'
Dh
EIOH, CHCIg -78o,30 min
100"/"
A polyamine synthesisdependson the reductive cleavageof 2,3-dihydropyrimidines. The products have a syn-1,3 configuration.o2-Aminocycloalkanoneoximes give aliphatic amino nitriles,s which are the reduction products from Beckmann fragmentation. Anthrones - anthrocenes,6 This reduction is carried out in two stages,first in diglyme and then in methanol. The addition of MeOH requires cooling to moderatc the exothermic reaction. o-Acyloxytoluenes.T Complete deoxygenation of the formyl group of several acylated salicylaldehydeshas been observed in the borohydride reduction in aqueous DMSO.
Debromination.s a_Bromoethcrs alkyl halidesremain untouched. Bt-_arO...,rr ^ \ / E x -
\
-
l
'R. B a l l i n i , G . B o s i c a ,a n d R . S c h a a f s r r e . L -H. A h l b r e c h t a n d V . B a u m a n n ,S 7 7 0 r t 9 9 t tH. B . J e o na n d K . K i m , T L 3 4 , 1 9 3 9r t 9 9 l t "J. Barluenga, V. Kouznetsov, E. Rubio. rd 'P. A. Petukhov and A.V. Tkachev, Sl 5tO r 6D. J. Marquardtand F. A. McCormick. ft l D . X i e , F . C h a o .X . _ D F c o ", 1 N. ^ " . r _ l o u , R . D e K i m p e , M . B o e l e n s .a n d J . B a e h . .tO
Sodium borohydride-aqueous bosc. Enone reduction.t 2,6_Di_r_burylFormation of aryl radicals.z Redu rntermediates.Addition to a side-chain d Organotelluride anions.3 Direllun are useful for phenylselenoremoval frorr
'A. Nishinaga, S. Kojima,T. Mashino.aod I -R. Rai andD. B. Coltum,TL 35,622t rtggt 'C.C. Silveira,E.J. Lenardao, andJ.V.Coor Sodium borohydride-bismuth(JJJ ) cll Reduction o! nitrogenous corspfr.l troarenesand imines to amines.
H. N. Borah,D. prajapati,and J. S. Sandhu.. Sodium borohydride-calcium chlort Stereoselective reduction.t Epoxl t rhe erythro alcohols. Lanthanum chlori&
\Ay'n
-
NaBHr CrCt .................... MeOl{. 6
M. Taniguchi,H. Fujii, K. Oshima, and K U
Sodlumborohydrlde-calcium chloride 327 )\
trom carboxYlic acids is through
Debromination.s a-Bromoethers undergo debromination, whereas ordinary alkyl halidesremain untouched.
de:; amides to tetrazolesarequires Llr.' ::rf lates,which then undergo1,3r j:i rlso convertedto 1,5-disubsti?d .i rlh NaNr and TiCla in MeCN.5
Br--.rO..,-,\^ \ / E -Y
\
r . 1 1 8t 1 9 9 3 ) ' 16 r"{ :rr"r also enables the assemblYof
(o)^r,' -1--
'R. Ballini,G. Bosica,andR. Schaafstra, LA 12350994\. I H. Ahlbrechr andV. Baumann, ( 1994). .t 770 'H. B. Jeonand K. Kim, TL 34, tg3g(tgg3\. 'J. Barluenga,V. Kouznetsov, E. Rubio,and M. Tomas,TL34, lggl (lgg3). 'P. A. PetukhovandA.V. Tkachev, Sl, 580(1993). ^ D. J. Marquardtand F. A. McCormick,TL 35, ll3t (lgg4). . H.-8. Zhou,R. D. Xie, F. Chao,X.-D. Feng,ande.-F. Zhou,HX S0, ll82 (t992). 'N. De Kimpe,M. Boelens, andJ. Baele,JOC Sg,54g50994). Sodium borohydride-aqueous base. Enone reduction.t 2,6-Di-r-butyl-p-quinols give the 4-hydroxycyclohexenones.
0c
Formation of aryl radicals.2 Reduction of aryl bromides proceeds via radical intermediates.Addition to a side-chain double bond in such reactions is observed.
crh,'J tbr the synthesisof a-stannyl11r,,lresborohydridereductionof thc are availableby e rrc.: -1-isoxazolines 1 1 .* r t h N a B H + .
tL'
:
DME'A
957o
l.:t'r '1993).
L ve:r
NaBH. r
th--\^,lr--" , v
-Ph
100% rr:r e cleavageof 2,3-dihydropyrimidir r , ' r l - A m i n o c y c l o a l k a n o n eo x i m e r I :ciuction Products from Beckmano th,.,:. carried out in two stages,first io li \lcOH requires cooling to moderatc Dc:r,\n of the formyl group of severrl n ::.c horohydridereductionin aqueoo
organotelluride anions.3 Ditellurides are reduced to generatethe anions that are useful for phenylselenoremoval from the a-position of a carbonyl group. S. Kojima,T. Mashino,andK. Maruyama,CL96l (1994). . A. Nishinaga, 'R. Rai andD. B. Collum,TL 35, 6221,l994.t. 'C.C. Silveira,E. J. Lenardao, andJ.V.Comasseto, SC 24, 575(lgg4D. Sodium borohydrlde-bismuth(III) chloride. Reduction of nitrogenous compounds.' This reducing system transforms nit r o a r e n ea s n d i m i n e st o a m i n e s . H. N. Borah,D. Prajapati,and J. S. Sandhu,JCR(S)229 ,lgg4\. Sodium borohydride-calcium chloride. stereoselectivereduction.t Epnxy ketones are reduced to give predominantly the erythro alcohols. Lanthanum chloride can be used instead of CaClz. \
/r. v t l
-Ph
tr# \3'a'. \q',* 93% (9 : 91)
M . T a n i g u c h i ,H . F u j i i , K . O s h i m a , a n d K . U t i m o t o , T S l , 6 7 9 ( l g g 5 \ .
32t
Sodium borohydride-manganese(II)chloride
Sodium borohydride- cerium(Ill) chloride. 15, 291; 17,314-316 Cyclic imide reduction.t The reagentreducesimidesto give hydroxylactams is manner,which is differentfrom LiBHEtr. The complementary in a regioselective verv usefulin svnthesis.
o
H
( ,-A !-N I Phj r{ N
'P.
C
'J. C. Fuller,S.M. Williamson,aod B. Sr 'J.C.Fuller, M . L . K a r p i n s k iS, .M . \ t ' r l l
OH
9 NaBHa-cecl3
L-
NPh EIOH / CH2Ct2
O
Sodium borohydride -pentaf luorogi Allylic alcohols. The tendencr c unsaturated compounds is greatll. rer TMEDA or l-hexene the selectivirl I tones and acid chlorides are reduccd t
Pri
_400
Sodium borohydride -propaned itl ir RN, * RNH2.t The isoxazolc rr attached is not affected by the reducro
D e p r e z ,J . R o y e r , a n d H . - P . H u s s o n ,f 4 9 , 3 7 8 1 ( 1 9 9 3 ) .
' Y. Pei Sodium borohydride-copper(Il) salts. 13, 279 RCONr - RCONHyt The presenceof CuSOqfacilitates the conversionof acyl azidesto amides (80-95Voyield) by NaBHa. Reductions in the presence of cu(II) exchanged resins.2 Activation of ketones toward reduction under such conditions has been claimed. 'H. S.P. RaoandP. Siva,SC24,549 (1994). 2A. Sarkar,B. R. Rao,andB. Ram,SC 23,291(1993).
and B. O. S. Wickham.IZ 34. -io{
Sodium borohydride-sulfuric ril r Reductive alkylation of arylanbt insteadof the more expensiveNaBHJ controlled.2 Reductive demetallation ol Cr-tr. suchcomplexesis cleavedand replred NaBHa-CFTCOOHat 0"C.
Sodium borohydride-iodine. 17, 316 2-Amino alcohols.t a-Amino acids can be reduced by this system, which is actually a borane generator. 'M.tJ. McKennon,A. I. Meyers,K. Drauz,andM. Schwarm'JOC 58' 3568(1993).
I
v
N--{
,prtcrOX
\
-
r ct
Ptl
chloride. B-Keto esters and amides undergo reduction with good stereoselectivity.Thus the 2-methyl derivatives give predominantly thc erythro products, which is opposite to the results of a BuaNBHa reduction.
Sodium borohydride-manganese(II) p-Hydroxy esten and -amides,t
o
rna"oot'
?"
OH
NaBHa- MnCl2 M8OH, 10o
I phlVCOOEt *
Ph/\/.cooEt
I
80 - 95% (90 1 0 )
I
G . V e r a r d o ,A . G . G i u m a n i n i . p . S r r a z z o l l rG. V e r a r d o ,A . G . G i u m a n i n i , p . S r r a z z o l l 'C. Baldoli, P. del Buttero, E. Licandro. S I 677 (t994).
M. Taniguchi, H. Fujii, K. Oshima, and K. Utimoto, T 49, I I169 (1993).
I
I
Sodium borohydride-tellurium. ArSO2Cl* ArSSAr.r The rellun rn situ.The reductive dimerization is cr H . S u z u k i , T . N a k a m u r a ,a n d M . y o s h i k n
Sodiumborohydride-tellurium329
5.lql:17.314-316 lactams xc. :midesto givehYdroxY . h e c o m P l e m e n t ai sr Y a : l r B H E t rT
o ( \-N on"
H /-,-\
'J. C. Fuller, S.M. Williamson,and B. Singaram, JFC 68,265(1994). tJ.C. Fuller,M.L. Karpinski,S.M. Williamson,andB. Singaram, JFC 66, 123(lgg4).
9 NPh
I
}-,-{ NC
Sodium borohydride -pentaf luorophenol. Allylic alcohols. The tendency of NaBHa to effect conjugate reduction of a,Bunsaturated compounds is greatly reduced by C6F.OH. With borane scavengedby TMEDA or l-hexene the selectivityis further improved.rOnly highly reactiveketones and acid chlorides are reduced by this reagent.2
OH
Sodium borohydride-propanedithiol-triethylamine. nNr * RNHz.' The isoxazole ring system to which an azidomethyl group is attached is not affected by the reducing milieu.
92"/"
t-':
l Y . P e ia n d B . O . S .W i c k h a m , T L 3 4 , 7 5 0(91 9 9 3 ) .
l s ()- t.rcilitatesthe conversionof acyl tnged resins.2 Activation of ketoncs tn.larmed.
) i
Sodium borohydride-sulfuric acid or trifluoroacetic acid. Reductive alkylation of arylamines. The NaBHa-H2SO4 system may be usedl insteadof the more expensiveNaBHTCN. Monoalkylation or peralkylation may be controlled.2 Reductive demetallation of Cr-aminocarbene complexes.t The C:Cr bond of such complexesis cleavedand replacedby the CH2 group when they are reduced with NaBH+-CFTCOOHat 0"C.
rc.lucedbY this system, which is s . - . \ r r m . J O C 5 8 , 3 5 6 8( 1 9 9 3 ) '
I
O-1
,p,r(co)5 N-{ cF3cooH, 0o Ph
700/o
ile. ) ..lr'r\ and amides undergo reductioo r. icrrratives give predominantly thc rlr. I a Bu+NBH+reduction' ,
rl
O cooEt
'
H ph,'\.cooEt
80- 95% (90: 10)
o:
'G. V e r a r d o ,A . G . G i u m a n i n i ,P . S t r a z z o l i n i ,a n d M . P o i a n a ,S l 2 l ( 1 9 9 3 ) . : G. Verardo, A. G. Giumanini, P. Strazzolin l, SC 24, 609 (1994). 'C. B a l d o l i , P . d e l B u t t e r o , E . L i c a n d r o , S . M a i o r a n a , A . P a p a g n i ,a n d A . Z a n o t t i - G e r o s a ,S L 677 0994\.
I19. ll169(1993)
l
l
Sodium borohydride-tellurium. ArSO2Cl* ArSSAr.r The tellurated borohydride NaBH2Tel is generated in situ. The reductivedimerizationis carriedout in DMF with moderateheatins. H . S u z u k i , T . N a k a m u r a , a n d M . Y o s h i k a w a ,I C R ( S ) ' 1 0 ( 1 9 9 4 ) .
330 Sodiumt-butylthiolate chloride. Sodium borohydride-trimethylsilyl Acetic acid a-radical.t The radical is generated through reduction of iodoacetic acid with this combination of reagentsin the presenceof AIBN. The radical is intercepted by acceptorssuch as acrylic esters. IF. Foubelo,F. Lioret, and M. Yus,T 49,8465(1993\.
Sodium bromate. N-Bromo amides and imidcs.' The very valuable brominating and oxidizing agentscan be regeneratedfrom the spent amides and imides by N-bromination. Using NaBrOr and HBr (or NaBr) in the presenceof sulfuric acid is an economical and convenient method. rS. Fujisaki,S. Hamura,H. Eguchi,andA. Nishida,BCSJ66,2426(1993).
Sodium cyanoborohydride. 14. lt, Reduction of cyclic imines. I cyclic aminesr by reduction have apl the reducing agent is the possiblc pr synthesisof perhydro_1,2_oxazinc Macrolactone formation.a rl-l lactones (10- to l6-memberedt br NaBH3CN.The yields fl3- 90?-t arc
M. L. Behenke. and L. Tong.rt I . lll. 'IR Z i m m e rT . . A r n o l d ,K . H o m a n ne. o 'W. Oppolzer,p. Cintas-Moreno, O, Ttn 'M. Abe,T. Hayashikoshi, anoT. Kunrr
Sodium bromite. 14, 287:'15, 292 Oxidation of alcohols. The oxidation of primary alcohols to aldehydes with aqueousNaBrOz is catalyzed either by Cu or BurSnCl.' a,ar-Diols give lactones(5495Vo)2when the oxidation is carried out with NaBrOz.3H2O-AI2O3 in an organic
Sodium cyanoborohydride_ borot t Deoxygenation of aryl ketonct. t i n g u i s h e db y i t s m i l d n e s s .i n c o m p reductions.
solvent. Vicinal tricarbonyl compounds have been obtained from 2,3-dihydroxy-alkanoic esterswith NaBrOz in combination with 4-benzoyloxy-2,2,6,6-tetramethylpiperidinl-oxyl.r In an alternative method bromide ion is used to mediate electrooxidation. Epoxidation of alkenes.o This reaction proceeds at room temperature in the presenceof CuSOn. 'J. Yatabe, NKK 359(1993). T. Sugisaki,O. Moriya,andT. Kageyama, 2T.Morimoto,M. Hirano,K. Iwasaki,andT. Ishikawa,CL 53 (1994). rT. lnokuchi,P. Liu, andS. Torii, Cf lp.ll (lps4). oJ.Yatabe,T. Sugisaki,O. Moriya, and T. Kageyama,NKK 1446(1992).
'A.
Sodium N-(r-butoxycarbonyl)-N-diethylphosphoram ide. Protected allylic amines. The reagent,which has been used in lieu of potassium phthalimide in the synthesisof primary amines,r is also active in Pd(0)-catalyzed substitution of allylic acetates.2The Boc group of the products can be cleaved by CFICOOH at 0oC, whereasboth protecting groups are removed by HCI in benzene.
Srikrishna,J. A. Sattigerr, R. \,rsrep
Sodium dithionite. 13, 2gl u-Hydroxy sulfinates.t The add and NaOH are similar to bisulfite coo Reduction of perfluoroalkyl idit tion takes place. Ifpropargyl alcohol rr hol derived from iodoperfluoroerharr 3-tri f Iuoromethylpyrazole_2-merhano
Nazsp. CF3CFzl + OH
NaHCOT M€CN, Hp Cr
' A. Zwierzakand S. Pilichowska,S 922 (1982). t R. o. Hutchins,J. Wei,andS.J. Rao,,/OC59,4007(1994).
Sodium /-butylthiolate. t-Butylsulfenamides.' Reductive sulfenylation of azoxybenzenes is achieved by this thiolate, but not by other alkanethiolates. Thus the reaction with i-PrSNa results in the anilines (due to the instability of the products). 'M.T. Dario,S. Montanari,C. Paradisi, andG. Scorrano,TL35,30l(1994).
ArNOz- ArNHz.3 Excellenr rrl in the reduction using viologen.whrch transfer agent.
' M. MulliezandC. Naudy,T 49,2469ttgg 'X.-Q. T a n ga n dC . - M .H u , C C 6 3 l ( t 9 9 r l 'K. K. Park,C. H. Oh, andW. K. Joung.fl
Sodium dithionite
lc. r. senerated through reduction of nr. rn the presenceof AIBN. The radiI C\ters. 91
rr reluable brominating and oxidizing !. and imides by N-bromination.Using sulf uric acid is an economicaland contz ECSJ66,2426 (1993).
of pnmary alcohols to aldehydeswith Bu,SnCl.r a,ar-Diolsgive lactones(54h \aBrO2' 3H2O-AI2O3 in an organic
M. L. Behenke.and L. Tong,TL 34, 620s(tss3). I 5 l:,. -R. Zimmer,T. Arnold,K. Homann,andH._U.Reissig, S 1050(1994). rw. oppolzer,p. cintas-Moreno,o. Tamura,and F. cardina ux,HCA 76, lgj (lgg3). 'M. Abe,T. Hayashikoshi, andT. Kurara,CZ lTgg(lgg4).
Sodium cyanoborohydride-boron trifluoride etherate. Deoxygenation of aryr ketones.t The convenient reduction is particurarry distinguished by its mildness, in comparison with cremmensen and worff_Kishner reductions. 'A.
..t,rarnedfrom 2,3-dihydroxy-alkanoic 1.r r.1loxy- 2, 2,6,6-tetramethylpiperidinn r. used to mediate electrooxidation. I proceeds at room temperature in thc rnr:. \'KK 359(1993)' r \ . r s a .C L 5 3 ( 1 9 9 4 ) . I
tm: \'KK 1446(1992).
asphoramide. r h rch has been used in lieu of potassium s16s'.' is also active in Pd(0)-catalyzed t'up of the products can be cleaved by ir(rup\ are removed by HCI in benzene.
331
Sodium cyanoborohydride. 14, 2g7_2Bg; 16, 305_306 Reduction of cyclic imines. More examples of stereoselective formation of cyclic aminesr by reduction have appearedin the literature. Another useful feature of the reducing agent is the possibrepreservation of the N-o bond, which permits the synthesisof perhydro-l ,2-oxazines2and N-alkyration of hydroxyramines.l Macrolactone formation.a ar-Iodoalkyl acrylates are transformed inro macrolactones (10- to l6-membered) by a photoinduced reaction in the presence of NaBH:cN. The yierds (i3-9ovo) are remarkabry high for the intramoleculo, p.o."rr.
Srikrishna,J.A. Sattigeri,R. Viswajanani, andC.V. yelamaggad, SL93(lgg5).
Sodium dithionite. lJ, 2gl a-Hydroxy sulfinates.t The adducts formed by admixture of RCHo, Na2S2oa, and NaOH are similar to bisulfite complexesof aldehydes. Reduction ofperfruoroarkyt iodides.2 In the presence ofa mird base deiodina_ tion takes place. Ifpropargyl alcohol is present, adductsare formed. The allylic alcohol derived from iodoperfruoroethaneand propargyr arcohor is a usefur precursor of 3-tri f luoromethylpyrazole-2-methanol.
Na2S2O4
CF3CF2| +
:--1 OH
I
NH2NH2.H2O
CFTCF,CH<
\L O H
NaHC03 MoCN,H2O,0o
ErOH,A. 3 h
920/0
96%
trl- 1994).
nrlation of azoxybenzenesis achieved ioi.ites. Thus the reaction with i-PrSl'{e of the products). i , . r r r n o , I L 3 5 .3 0 1( 1 9 9 4 ) .
ArNozArNHz.3 Excellent yields (9r-97vo) of aryramrnes are produced in the reduction using viologen, which acts as phase-transfer catalyst and erectron_ transfer agent. . M. Mulliez and C. Naudy,T 49,2469(tgg3\. -X.-Q. TangandC.-M. Hu, CC 631(lgg4\. K. K. Park,C.H. Oh, andW. K. Joung.IZ 34,7445(lgg3).
332 Sodiumhexamethyldisilazide Sodium ethoxide. Cationic aza-Cope rearrangement.t Doubly allylic ammonium salts may be induced to undergo sigmatropic rearrangement after equilibration to the allyl vinyl ammonium isomers. Hydrolysis of the resulting iminium ions leads to 7,6-unsatu-
OH
"rrr/-/
, r l
";
1c",
rated carbonyl compounds.
l
\,\r* _
l
l NaOEI
Me2N.v,\
Br 'K.
'D. Grandjean,P. Pale,and J. Chuchc.rI. J -W. Friesen andM. Blouin,./OCSt, 165lr t ETOH A
Sodium hydride. 14, 288; 16. 307-3G Enol carbonates.t O-Acylarion rs enolates,which are generatedwith NaH_
781o
Honda and S. Inoue, 5L739 (1994).
Sodium formate. Selective dehalogenation.t Aromatic halogen atoms can be removed catalytically while using sodium formate as hydrogen source. For example, N,N-diacetyl2,4,6-trichloroanilinegives the 2,6-dichlorocompoundon refluxing with Pd-C and HCOONa in MeCN. esters.2 The Pd(0)-catalyzed cleavage of Allylsilanes from trialkylsilylallyl allylic functionalities requires a nucleophile to complete a cycle. For reduction, HCOONa is adequate,and the presenceof l5-crown-5 is beneficial.
en:rzV'sirues OAc
Pd(o) - HCOONa
tn..,r\ PhV.\\/,SiMes
+
15-crown-5 / THF
SiMe3
47"/. Carboxylation of polyfluoroalkyl iodides.r Catalyzed by AgNOr, the functionalization of polyfluoroalkyl iodides by transfer of the carboxyl group from HCOONa is a valuable procedure becauseof its simplicity. 'R. G. Pews,J. E. Hunter,and R. M. Wehmeyer,T 49, 4809(1993). tJ. OlliuierandJ. Salaiin,5L949 (1994\. 'B.-N. HuangandF.-H.Wu, YII 13,403 (1993).
Sodium hexamethyldisilazide. 1-Bromoalkynes.t Dehydrobromination of l,l-dibromoalkenes with the base is quite efficient. An epoxide survives such treatment. a-Iodovinyl epoxides.2 Iodination of a-allenyl alcohols and treatment of the diiodides with the strong base lead to the epoxides.Under mild conditions the vinylic iodide does not undergo dehydroiodination.
esters at 0"C. Aryl and a,p-enone enol TMEDA at -78'. Allenes from o-hydroxyalkyt da elimination processto an allene svnttEr
\ro\$h c8H;\
;
Compler reagentfor trorsestcrif.d t-BuONa,and Ni(OAc)2is an effeclir.ecr
'L. M. Harwood,y. Houminer,A. Mane;r.r 'p.F. H u d r l i k ,A . M . K a s s i m E , .L.o. igr A. M. Hudrlik, OM 12,2367 0993\. 'Y. Fort,M. Remy,andp. Caubere,lCRtS a
Sodium hydrogen selenide. Aromatic selenoamides.r NaScH p situ in refluxing ethanol to achieve rhc rr Reduction of nitrogenous atvlr,.rk I soarenesare reduced to the anilines in ?(
. X.-R. Zhao,M.-D. Ruan,W.-e. Fan.eod X 'D. K. Dutta,D. Konwar,andJ. S. Sandhu. .f(
Sodium hydrogen telluride. 13. 2t2 Conjugate reduction.t NaTeH in at unsaturatedcarbonyl compounds in thc t. rated stepwise.
Sodium hydrogentelluride 333
a,lrlrc ammoniumsaltsmaY be Br r'qurlibrationto the allyl vinyl n:nrum ions leads to 7,6-unsatu-
\ - ,,\z\I o\,\
OH
"rr,/"a{'
o H l
NaN(SiMea)2
t2
c,n,/\)"'71
EIOH
Et2O,
0o
A\
CzHrs
rD. Grandjean, P. Pale,and J. Chuche,TL 35,3529(tgg4). 'W. Friesen andM. Blouin,JOC 58,1653(1993). I
Sodium hydride. 14, 288; 16, 307-308 Enol carbonates.t o-Acylation is accomplished by rapid addition of ketone enolates,which are generatedwith NaH-TMEDA in refluxing THF, to chloroformate esters at 0'C. Aryl and a,B-enone enolates are better prepared with NaN(siMer)zTMEDA at -78".
79./.
Allenes from a-hydroxyalkyl vinylsilanes.2 Successful extension of the pelimination process to an allene synthesis has been demonstrated. I sr,\rnscan be removed catalYtiur.r For examPle,N,N-diacetYlocnJ {)n refluxing with Pd-C and
1 ,oHrSiMee
h\
CaHrz
Tl:c Pd(0)-catalYzed cleavage of g,.slpletea cycle. For reduction, 'n-i r. beneficial.
tn..z\ S Ve3 SiMe3 87%
l:r,lr zed by AgNO3,the functionthe i.rrboxyl grouP from HCOONa
S.
1q9l).
\
@lana,
a
CeHrz il%
Complexreagentfor transesterification.3 The aggregatepreparedfrom NaH, t-BuONa,and Ni(OAc)2is an effectivecatalystfor transesterification. ' L. M. Harwood, Y. Houminer, A. Manage, and J. L Seeman, TL 35, g027 (lgg4). tP.F. H u d r l i k , A . M . K a s s i m , E . L . O . A g w a r a m g b o ,K . A . D o o n q u a h ,R . R . R o b e r t s ,a n d A. M. Hudrlik, OM 12,236'1 (1993). 'Y. F o r r , M . R e m y , a n d P . C a u b e r e ,J C R ( S )4 1 8 ( t 9 9 3 ) .
Sodium hydrogen selenide. Aromatic selenoamides,' NaseH prepared from NaBHr and Se can be used in situ in refluxing ethanol to achieve the transformation of nitriles to selenoamides. Reduction of nitrogenous aromatic compounds.2 Nitro-, nitroso- and dinitrosoarenesare reduced to the anilines in 70-94Vo yield. 'X.-R. Zhao,M.-D. Ruan,W.-Q.Fan,andX.-J.Zhou,SC 24, 176l(tgg4,). t D. K. Dutta, D. Konwar,and J. S. Sandhu,JCR/S)3gg0994).
with the bascir ,l -Jrhromoalkenes It nrr rlcohols and treatment of lli , L nJer mild conditionsthe vinYlr
Sodium hydrogen telluride. 13,282 Conjugate reduction.t NaTeH in ethanol at room temperature can reduce a,Bunsaturatedcarbonyl compounds in the 1,4 sense.conjugated triple bonds are saturated stepwise.
334 Sodlumhypochlorite Desulfonylation.2 (28)-a-Amido-d,B-unsaturated sulfones are converted to (22)-cinnamanilides in 67-BIVo yield (9 examples) in a mixture of EIOH and THF. Transesterification,3 Various esterscan be transformed into ethyl esters in hot ethanol and acetic acid in the presenceof NaTeH. 'M. Yamashita, Y. Tanaka,A. Arita, andM. Nishida,JOC 59,3500(1994). ' X . H u a n gJ, . - H .P i , a n d Z . - 2 .H u a n gI,/ C 3 , 5 3 5( 1 9 9 2 ) . 3J.R. Suresh,P.S. Mohan,andP. Shanmugam, IJC(B)33B,290 (1994).
Sodium hydroxide. Base-promotedcyclization of epoxy tosylamides Azetidines and pynolidines.' Thus productshaving either a primary is sensitiveto the structuresofthe substrates. or a secondary hydroxyl group may be obtained.
ArI - ArCl.3 The halogenexchang pH8.2-9.2.
A . M . d ' A . R . G o n s a l v e s ,M . M . p e r e i r a . A ( Nunes, "/CS(P.I/ 2053 (1994). 'J. M . K h u r a n a , A . R a y , a n d p . K . S a h o o .S C S J 'T. O . B a y r a k t a r o g l u ,M . A . G o o d i n g , S . F K h r JOC s8, 1264 (t993).
Sodium hypochlorite-2,2,6,6-tetrzwa\ Oxidation of primary alcohols., Ttl preparation of uronicacidsfrom monosac
H.oo.)
95%
N.r{Cq. &rrG C
Elimination/cyclization.z Propargyl alcohols in which the other propargyl position contains a benzotriazolyl group is subject to elimination by base to afford furans.
A-\.-\ t i l \-,/1ru'
Ph
N
\
-
/
ph
NaoH/EtoH --;*
Sulfuxides.z In the phase-transferorr added.The stoichiometry of NaOCI conrrols ,rf bis(phenylthio)alkanes.
A
(/o
OH
\. J. DavisandS.L. Flitsch,TL 34, I l8l r t99l 'R. Siedlecka andJ. Skarzewski. S 401r l99.tr
41"/6
'J. M o u l i n e s , J . - P . B a t s , P . H a u t e f a y e ,A . N u h r i c h , a n d A . - M . L a m i d e y , T L 3 4 , 2 3 1 5 ( 1 9 9 3 ) . 2A. R . K a t r i t z k y , J . L i , a n d M . F . G o r d e e v ,J O C 5 8 , 3 0 3 8 ( 1 9 9 3 ) .
Sodium hypochlorite. lS, 293; 16, 308; 17,316 Epoxidation.t NaOCI provides the active oxygen fordelivery to alkenesthrough interaction with metal-porphyrin complexes. Typically, 5,10,15,20-tetrakisarylderivativesform active catalysts porphyrins and their 2,3,7,8,12,13,17,I8-octahalo with metal ions suchas Mn. Another heterocyclicligand (e.g.,4-methylpyridine)and a phase-transferagent are also added to the reaction medium. Carbonyl regeneration from oximes.' This transformation is usually carried out in MeCN, but for aldoximes the basicity of the solution must be regulated to pH5-7 in order to avoid oxidation of the releasedaldehydesto carboxylic acids.
Sodium hypophosphite-Raney nickel. Ketones from nitroalkenes.t NaH;pO :nce of a catalyst.Its combinationwirh Rer :ones has been put to use in the general s1 : rom functionalizednitroalkanes. R . B a l l i n ia n dc . B a r t o l i s, 9 6 5( 1 9 9 3 ) .
Sodium methoxide. Cleavage of cyclic a- chloro- q- sullotl .ng to give methyl rr.r-chloro-c,r-sulfonrla :rarrangement is the favored pathwar. *hcn
Sodium methoxide
n.J:rri.tted sulfones are converted to n.1.. rn a mixture of EtOH and THF. r t c :rensformedinto ethyl estersin hot
ArI - ArCl.3 pH 8.2-9.2.
335
The halogen exchangeoccurs under phase{ransfer conditions at
\:r .t()C 59, 3500(1994). r..-l ( 5 -1-rB. 290 (1994).
A . M . d ' A . R . G o n s a l v e sM, . M . P e r e i r aA, . C . S e r r a ,R . A . W . J o h n s t o n e a ,n d M . L . p . G . Nunes,JCS(P/)2053(1994). 'J. M. Khurana,A. Ray,and P. K. Sahoo,BCS./67, l}gl (lgg4). 'T.O. Bayraktaroglu, M.A. Gooding,S.F. Khatib,H. Lee,M. Kourouma, andR.G. Landolt, JOC 58, t264 (r99r.
rn,'reJcyclizationof epoxy tosylamides . Thu. productshaving either a primary
Sodium hypochlorite -2,2,6,6-tetr amethylpiperidin -1-oxyl. Oxidation of primary alcohols.t This selective oxidation system allows the preparationof uronic acids from monosaccharidederivatives.
Icll
nc.1
cooH
NaOCI-
eno/+or,re
95"k OBn
NaHCO3- KBr BuaNCl/ CH2C|2
Ph EIOH
z\ l o v
OBn 61o/o
L . , h , ' l s i n w h i c h t h e other propargyl luf,rr'et to elimination by base to afford
'.?:-
*o.,Aq
Sulfuxides.2 In the phase-transferoxidation of sulfides, saturated NaHCOT is added.The stoichiometry of NaOCI controls the oxidation at one or both sulfur atoms of bis(phenyltIio)alkanes. \. J. DavisandS.L. Flitsch,IL 34, llSl (1993). :R. Siedlecka andJ. Skarzewski, S 401(1994).
81./"
h , : J { . - M . L a m i d e Y ,T L 3 4 ' 2 3 1 5 ( 1 9 9 3 \ ' 5 t I r 1 8( 1 9 9 3 ) .
,
i-6
\r' ,\\gen fordelivery to alkenesthrougl rrr'. Ty'pically, 5,10,15'20{etrakisaryl' rJrrl() derivatives form active catalysB ;r -,re ligand (e.g.,4-methylpyridine)ad r c J c t i o nm e d i u m . Thr\ transformationis usually carried irr ,'i the solution must be regulatedro lc,.cJ aldehydesto carboxylic acids.
Sodium hypophosphite-Raney nickel. Ketones from nitroalkenes.t NaHzPOz is a good hydrogen donor in the pres.nce of a catalyst.Its combinationwith Raney nickel to convert nitroalkenesto ke:oneshas been put to use in the general synthesisof 1,3-, 1,4-, and l,S-diketones : rom functionalizednitroalkanes. R . B a l l i n ia n dG . B a r t o l i S , 9 6 5( 1 9 9 3 ) .
Sodium methoxide. Cleavage of cyclic a-chloro-a-sulfunyl ketones.t The base causesring open.ng to give methyl [email protected] the other hand, Favorskii rarrangement is the favored pathway when piperidine is used instead of NaOMe.
335 Sodium nitrite-potassium ferricyanide
o ll
CH3ONa CH3OH
so,Ph
/,,Y-.;
t t " '
'10min
'A.P. Marchand, R . S h a r m aU , . R . Z o p c .$ ' (1 9 9 3 ) . tG. A. Olah,P. Ramaiah,G. K. S. prakash.rrd
PhSOry^.v,!,COOMe Cl 99%
Selective alcoholysis of acylureas.z Different modes of reactions are witnessed when acylureas are treated with either NaOMe in MeOH or BnOLi in ether. Methyl esters and amides are the respectiveproducts. I-(Benzylideneamino)cyclopropanecarboxylic esters.l 7-Chloro a-imino esters in which the B-position is fully substitutedundergo base-promotedcyclization.
t'v*"
R'r R"
cr\v&N
!
Ph
I cooR
/\ '-{
-N-
Sodium n itrosoferricyanide. Diazotization' 2-Amino alcoholsert to epoxides. The method has been applrd r lene oxides from threonine.
OH HzNa,,\
N&JF.(C'.UO f{ro .tf 't5-2tt
-Ph
cooR
2-Methoxy-4-haloquinolines.a Selective displacement of the 2-halogen from 2,4-dihatoquinolines may be achieved with solid NaOMe (or NaOEt) in refluxing toluene. IT. Satoh,K. Oguro,J. Shishikura, BCSJ66'2339 R. Okada,andK. Yamakawa, N. Kanetaka, ( 1993). 'K. Kishika*a.H. Eida,S. Kohmoto,M. Yamamoto, and K. Yamada's 173(1994). rM. Boeykens, N. De Kimpe,andK. A. Tehrani,JOC 59,6973(1994)' oA.G. Osborne andL. A. D. Miller, JCS(Pl)l8l (1993).
'
2
K . R o s s e n ,P . M . S i m p s o n , a n d K . M . \ , \ e l l r . J (
Sodium perborate. 14, 290-291: 16. _tto Oxidative deselenylationr In rhc prrr a-selenylcarbonylcompounds to thc con;tE
o-o
(^"o4
o-o
chloride-aluminum chloride. Sodium nitrate-trimethylsilyl Nitration o! arenes.t The active reagentmay be nitryl chloride (NOzCl). It can nitrate PhCOOMe and PhCF: in good yields at room temperature. 'G. A. Olah,P. Ramaiah,G. Sandford, A. Orlinkov,andG. K. S. Prakash,S 468 (1994).
Sodium nitrite-potassium ferricyanide. Nitration.t'2 The synthesis of gem-dinitroalkanes by reaction of nitronate anions with the combined salts is efficient.
Hydration of nitriles.2 Formarroo of r benzonitrilesin one step is shown. Oxidative reaftangements, In rhc pn g ive N,N-diarylformamides.3Benzylic ekol rdes,which split off the alkyl residuc ro fir rangementpathway.
Noz
rY*o' \.,-
NaNOz-KgFe(CN)o H2O(or M6OH-H2O)
(tf "o, V/ 81o/o
OH I
ta6r tr'8
rr*a\_
cn"o/"V
nac'
.-.^r-.COOMe
t..
39""
!n: m(rdesof reactions are witnessed ir: \!.'OH or BnOLi in ether. Methyl
Sodiumperborate 337 'A. P. Marchand,R. Sharma,U. R. Zope, W. H. Watson,and R. p. Kashyap,JOC Sg, t ) 9 ( 1993). tG. A. olah, p. Ramaiah.G. K S. Prakash,and R. Gilardi, JOC 58,763(t993't.
Sodium nitrosoferricyanide. Diazotization' 2-Amino alcohols are diazotized by this reagentand converted to epoxides. The method has been applied to the preparation of enantiomeric propylene oxides from threonine.
Jic esterc.t 7-Chloro a-imino esu nJergobase-promotedcyclization.
gH HzN.
.2H2O Na2[Fe(CN)sNO]
9,...
:
lrl'\
H2O / xylene a
B
"
v' "\
--1- N cooR
dr.piacementof the 2-halogenfrom lrJ \aOMe (or NaOEt) in refluxing
BCSJ66,2339 X:.ir. andK. Yamakawa,
48/" (>99/"
15-200,2h
-Ph
' K. Rossen, P.M.
Simpson, andK. M. Wells, SC23,l07t fl993).
Sodium perborate. 14, 290-291;16, 310 oxidative deselenylationr In the presence of Ac2o sodiumperborateconverts a-selenylcarbonylcompounds to the conjugatedsystems. The possibleoxidantis (1).
. i : i K . Y a m a d aS, 1 7 3( 1 9 9 4 ) . r s e 6 9 7 3( 1 9 9 4 ) .
P-qA(OAo)2
(AcO)2B.
):
o-o 2 Na+
tinum chloride. pr i.c'nitryl chloride (NO2CI).It can
(1)
n,,:n temperature. r : : ( i K . S . P r a k a s hS, 4 6 8( 1 9 9 4 ) .
Hydration
of nitriles.2
Formation
of the quinazolinone
system from o-amido
benzonitriles in one step is shown. Oxidative
rearrangements.
give N,N-diarylformamides.3
lalIdnes by reactionof nitronate an-
ides, which split off the alkyl
In the presence of an acid, CN-diarylaldimines Benzylic alcohols form the corresponding hyoroperoxresidue to furnish
phenolsa by the well-known
rangement pathway.
Noz -\t'*o,
,
-u
81"/.
OH I
rrw
cHso/\/
NaBO3.4H20 BF3.Ei2O T H F , 0 0 ,t h
r'Yo" cfto/\2
rear-
338 Sodium periodote ' G . W . K a b a l k a , N . K . R e d d y , a n d C . N a r a y a n a ,S C 2 3 , 5 4 3 ( 1 9 9 3 ) ' 2B. Baudoin, Y. Ribeill, and N. Vicker, SC 23'2833 (1993). 3P. N o n g k u n s a r na n d C . A . R a m s d e n , T L 3 4 , 6 7 7 3 ( 1 9 9 3 ) ' tG.w. Kabalka, N.K. Reddy,and C. Narayana,TL34,766'7 (1993)'
I M. G. Vetelino and J.W. Coe. IL 3!1.2 4 S. J. Coutts. J. Adams. D. Krowlikorrl 5R. S r e e k u m a ra n d C . N . P i l l a i . I A f . 2 6T. Kataoka, Y. Ohe, A. Umeda. T. trrr 7N. Hands and S. K. Grover, SC 23. 102
Sodium periodate. 15, 294 is chalcogenide oxidation. The oxidation and selenoxideelimination sequence claisen to prone are which alkenes applicable to the generation of functionalized accessirearrangement. Medium-sized rings including tetrahydroazepin-2-onesare
Sodium periodate-tetraphenygr Epoxidation of alkcncs.' Tb. conditions.
ble in this manner.' speAllylic sulfoxides are more stable then sulfenate esters;therefore, the former However, rearrangement. cies do not show tendency to undergo [2,3]sigmatropic geminal when the double bond belongs to an enol ether, the sulfenate ester becomes are isoaldehydes a,B-unsaturated to the alkoxy group and expellable. Accordingly, lated from oxidation of the alkoxyallyl sulfides.'
i
sPh I
Mohajer and S. Tangestanincjrd. C(
Sodium persulfate. Sulfunylationr The iodincuo thenreplacedby a sulfonicacidgrw with chlorineandthenwith KF rbc
OH
NalOr
c.H.|'tA'AZ-oEt
'D.
t
CsHi1t\-'\"CHo
l (CFa)n
rt, 1.5 h
NazSA- }rcq HP - ra.Ctr ctr- fto
n=3.4.6
cleavage of enamines.3 The reagentis particularly suitable for the preparation of o-nitroaraldehydesfrom o-nitrotoluenes via ar-aminostyrenes' Boronic acids from pinanediol boronates.a The liberation of a boronic acid the latter' from its estersis sometimeshampered by the favorableequilibrium toward NaIOa. The problem is solved by destroying the diol, and one method is to use reductive chiral amines.s Synthesis of chiral amines from ketones through Saccleavage. amination with (+)- or (-)-norephedrine requires selectiveC-N bond operation' rificial dissection of the chiron by periodate oxidation completes the
Ho H: en
H
xo-Len
phcoM€;
nrru,'l- ;F H
1n
flf
Ph -SNH" H
-
W. Qiu and D. J. Burton,JFC 6a, 93 ( I tA. C. Royer,R. C. Mebane, andA. M i 'C. Costantini,M. d'Ischia,andG. Pru
787o(59% eel
NaIO.Selenophenes.u Ring contraction of dihydroselenopyransis effected by in proceeds 2'-Hyilroxychalcones - flavones.l The oxidative cyclization DMSO at 100-120'C. 'P. A. Evans,A. B. Holmes,andK. Russell, JCS(PI)3397(1994)' tT. Satoand J. Otera,TL 35,6'101(1994).
Iodolactones.2 Iodolactoniz:ti sourceof iodine when Na2S2O;is rd Quinones.3 For the oxidarioo o rs efficient and mild. Good yields I
Sodium piperidtno(diethyl)elorh Aldchydes. The reduction of c triles is stopped at the aldehydc sr1 The reagentis prepared from NaAIH
rerestingly,acid chlorides can bc coo and then with NaAlH2Et2.2
l".r: l!-: ,!i
l.
Sodium piperidino(diethyl)aluminum hydride 339
t9g3).
----
andJ.w.coe. rL 3s,2ts(|ss4). iY;o;Y"i" . r. r. Lourrs,J. Adams,D. Krowlikowski,andR. J. Snow, "' Zl j:::llg Td c:N piilai.rA.,;;;b;;; .ir.. K?taoka, y. Ohe,A.
199-1)
35, 5109(1994).
7 ' N . H a n d s a n d s . K . cUmeda, r o v e rT. , s l,"amuru, c t,t. yosti m a t s u ' a n d H ' S h i m i z u , cc577(lgg3). 2 3 ,l o 2 l ( 1 9 9 3 \ . I -c.rn,rrideelimination sequenceis l\s::. *hich are proneto Claisen lr: :r Jrp3Tspin-2-onesare accessr_ lc..l.r\: therefore,the former speni: :,,f tc rearrangement.However. e s t e rb e c o m e sg e m i n a l E .J.tc.nate o r .rn\aturaledaldehydesare iso_
OH :,-..
Sodium periodate_tetraphenylporphyrin_MnCl. ""^::rr::::tion 'D.
of atkenes.t ir,.'o"touiion i, .ur.i"a out under phase_transfer
Mohajer and S. Tangestaninejad, CC 240 (lgg3\.
Sodium persulfate. surfunyrationr The iodine atomof fluoroalkyl iodidessuffers oxidationand is thenreplacedby a sulfonic acidgroupon reactio;;ith NazSzOr. On further trearment with chrorineand thenwith KF-the:urronyinuoridesare readilysynthesized.
t'r-.\,-CHO
l.
I (CFz),
;u,rrlr ruitablefor the preparation
n-3,4.6
Na2qos- NaHcor
.-_-_-_j
l. \
HzO- MoCN; ct2 - H2O
ctso2
SO2CI /
+
(CFdn I KF / MoCN t
,[
llrlinrtrt\I€rl€S.
T:r irherationof a boronic acid et-,.:rquilibrium toward the latter. onc :ncrhodis to use Naloa. ::, :.rrketones through reductive . j . . : r \ e C - N b o n d c l e a v a g eS. a c l r . : . . , ' m p l e t e sl h e o p e r a t i o n .
\;3: \,€OH
-SruH"
-
TBok (59% ee)
le:,'pi rans is effectedby NaIO1. L: r,.c cyclization proceeds in r
..vJ I
rroi
So2F
\ , /
(CFl),
xr r rr,reo.r
/so2F
(CFilN
73 - 83V.
74 - 860/0
Iodoractones.2 Iodolactonization of unsaturated acids may employ KI as the sourceof iodine when Na2S2Os is added to the reaction medium. Quinones.3 For th
isefficien t and mirdJ"Tfi i:","#|il;il]jffi
Ph I
H
t.
/sozcl
(CFd,
andp.
;'fi y;i:,ffi
cu(rr)svstem
JFCGo, s3(tss3). -A. C. lI 3t:Royer, J.Burron, R.C. Mebane, andA. M. Swafford, 'C. SL89g(1993). Costantini, M. d'Ischia, andG. prota,s tiiS (tSi+1. Sodium piperidino(diethyl)aluminum hydride. Aldehydes' The reductionor "u.uo*iti" u"ii a..luutiuessuch as estersand ni_ triles is stoppedat the aldehyde stage*iti tr,. ,noorfiedsodium aluminum hydride. The reagentis preparedfrom MAlizEt2 and pif"riain. in THF-toluene at 00c.rInterestingly, acidchloridescanbe converted to alOel hydesby treatmentwith piperidine and thenwith NaAlHz-Etz.,
340 Sodium trialkylborohydrides 'N. M. Yoon, J. H. Ahn, D. K. An, and Y. S. Shon,,/OC58, l94l (1993). 'N. M . Y o o n , K . I . C h o i , Y . S . G y o u n g , a n d W . S . J u n , S C 2 3 , 1 7 7 5( 1 9 9 3 \ .
Sodium telluride. Deoxygenation of epoxides.t Na2Te is generated from NaBHa and Te. The epoxide deoxygenationwith this reagentgiving alkenes is accompanied by ester hydrolysis when such a group is present. Reduction of ArCHO.2 N-Methyl-2-pyrrolidone is used as solvent. When an ArCN is treated similarly, a pyrrolo[2,3-d]pyrimidineis formed. ' D. C. Dittmer,Y. Zhang,andR. P. Discordia, JOC 59,1004( 1994). 2H. SuzukiandT. Nakamura, JOC58, 241(1993).
Sodium triacetoxyborohydride. 13, 283; 16, 309-310 p-Amino esters.t Diastereoselectiveand enantioselectivereduction of enamino esterswith a chiral N-substituentby this reagentmanifests 1,3-asymmetricinduction. The de values range from 39Voto 85Vafor 7 examples.
pnlnn .\,coo.,
NaBH(OAc)g HOAC- MeCN 00, 1- 3 h
pnlNx .l--,coott
Sodium tri-t-butoxyaluminum hydt Aldehydes.' Reduction of acid cl variety of aldehydescan be acquired r 'J. S.
ChaandH. C. Brown,"/OC5t. {'l:
Sodium trimethylsilanethiolate. Demethylation of methoryan 16 NaOMe, and the demethylation occun
dinone at 180"C.Certain phenolarcsr dibenzofuran derivatives.2 In situ method for reduction atl and Na2S successfully reduces arrl thioamides,alkyl halidesto sulfidcs., 'M.-J. S h i a oW , .-SK . u . a n dJ .R . H $ u . H tL.-L. L a i , p . - y .L i n , W . - H .H u a n sv. . l 'M.-J. S h i a oL. . - L . L a i , W . - S f. u . - p . f I
Succinimidyl diazoacetate. This new diazoacylatingagenrrll .V-hydroxysuccinimide with p-tosr lhlr
(
61% (58%de)
Reaction of carbonyl compounds with Reductive amination-lactamizfltion.z the proper ar-amino esters in the presenceof NaBH(OAc). leads to lactams directly. Diatkyl 1- aminoalkylphosphonates.3 Reduction of a-oximinophosphonate esters with NaBH(OAc)r and TiClr in a buffered MeOH solution constitutes a convenient method for the synthesis of the aminophosphonates. 'C. Cimarelli,G. Palmieri,andG. Bartoli,TA 5, 1455(1994). tA. F. Abdel-Magid, B. D. Harris,andC. A. Maryanoff,SL 8l (1994). 3A. RyglowskiandP. Kafarski,SC 24,2725(1994).
\
(
A . O u i h i a , L . R e n e ,J . G u i l h e m , C . P r s r
in reduction reactions.
Sulfur. 15,297 a-Keto dithio esters.t Starring fr rolves iodination, sulfurization (girh S Trifluoromethyl aryl sulfidcs.: 1 halidesrequiresa Cu(I)-catalyzedrer f luoroacetatein HMPA or N-merh1lp1 RCOOH * RSIL3 The degradar
'J.L. Hubbard, f49,83ll (1993). andB. Singaram, J.C. Fuller,T.C. Jackson,
the thiohydroxamates,further treatnEt and reduction with NaBHo. Good or.cn
Sodium trialkylborohydrides. Preparation.t From NaAlH2Et2 and RrB in the presenceof 1,4-diazabicyclo[2.2.2]octane. Such reagentswith bulky alkyl groups exhibit high stereoselectivities
Sulfur r . _ i ,r ( 5 E . l 9 4 l ( 1 9 9 3 ) . J - : \ ( - 2 3 . l ' l ' 7 5( 1 9 9 3 )
Sodium tri-l-butoxyaluminum hydride. Aldehydes.' Reduction of acid chlorides in diglyme proceedsat -78"C. A great variety of aldehydescan be acquired in very good yields. 'J.
3 :.nc'raled from NaBH+ and Te. The ing .)Lenesis accompaniedby esterhyWhen an l r : , ' . r d o n ei s u s e d a s s o l v e n t . r r r : r t r , l i n ei s f o r m e d . '( se lo0.{(1994). I
6:o9_310 nJ cnantioselectivereduction of enamino crgenr manifests 1,3-asymmetricinduci,': examples.
a
"nl*" |
rC\ l'
341
S. ChaandH. C. Brown,JOC 58, 4732(lggr.
Sodium trimethylsilanethiolate. Demethylation of methoxyarenes.t MerSiSNa is prepared from (MerSi)2S and NaOMe, and the demethylationoccurs in the presenceof 1,3-dimethyl-2-imidazolidinone at 180'C. Certain phenolatesthus generatedcan undergo cyclization to give dibenzofuranderivatives.2 In situ method for reduction and sulfurization,3 The combination of MerSiCl and Na25 successfully reduces arylamines and sulfoxides, converts nitriles to thioamides,alkyl halidesto sulfides,as well as demethylatesaryl methyl ethers. 'M.-J. S h i a oW , - S . K u , a n dJ .R . H w u ,H 3 6 ,3 2 8( 1 9 9 3 ) . tL.-L. Lai, P.-Y.Lin, W.-H.Huang,M.-J.Shiao,andJ.R. Hwu, IL 35, 3545(1994). 'M.-J. Shiao, L.-L. Lai, W.-S.Ku, P.-Y.Lin, andJ. R. Hwu,JOC 58,4742(lgg3\.
Succinimidyl diazoacetate. This new diazoacylatingagent (l) is preparedin 65Voyieldr by condensationof N-hydroxysuccinimide with p-tosylhydrazonoacetic acid (DCC merhod).
- cooe, o
61% (58%de)
il
--4 N-o I
\1 \\
Rcrction of carbonyl compoundswith rf \,tsH(OAc)r leadsto lactams directly. ReJuction of a-oximinophosphonateesercJ \leOH solution constitutesa conve}fh, '.phonates. 3 .:{< r1994). r r r i : , , 1 iS . L8 l ( 1 9 9 4 ) . F:
R U rn the presenceof l'4-diazabicyclolr I rroups exhibit high stereoselectivities
B : : : g a r a mf,4 9 , 8 3 l l ( 1 9 9 3 ) '
o
//\--//
N-e
O
(1)
'A.
O u i h i a , L . R e n e ,J . G u i l h e m , C . P a s c a r d ,a n d B . B a d e t ,J O C 5 8 , 1 6 4 l ( 1 9 9 3 ) .
Sulfur. 15,297 a-Keto dithio esters.' Starting from methyl ketones, the functionalization involvesiodination, sulfurization (with 58, EtlN in DMSO-DMF), and S-methylation. Tritluoromethyl aryl sulfides.2 The preparation of these substancesfrom aryl halides requires a Cu(I)-catalyzed reaction with sulfur and methyl fluorosulfonyldifluoroacetate in HMPA or N-methylpyrrolidinone. RCOOH * RS^EL3 The degradativethiolation is performed by conversion inro the thiohydroxamates,further treatmentwith sulfur underphotochemicalconditions, and reduction with NaBHa. Good overall yields (88-987o) of thiols are obtained.
342 Sulfuryl chloride rD. V i l l e m i n a n d F . T h i b a u l t - S t a r z y k ,S L 1 4 8 ( 1 9 9 3 ) . tq.-Y. Chen and J.-X. Duan, CC 918(1993). 'D. H. R. Barton, E. Castagnino, and J. C. Jaszberenyi,TL 35, 605'l (1994).
Sulfuric acid. Carbarnates from thiocarbamates.t O-Alkyl thiocarbamates undergo rearrangementto give the S-alkylthiol carbamates in refluxing CHCI: containing conc. HzSO+as catalyst. Replacementof the alkylthio group is accomplishedby heating the rearrangementproducts in an alcohol (+Na). HzSOton silica.2 Dehydration, acetalization, etherification, and many common acid-promoted processescan take advantageof the superb properties of the catalyst.
Tantalum(V) chloride-zinc. 16. jll: I Reductive coupling ol alkynes v.itL complexes,which add to unsaturaredak, complexeswith metalloiminessir.e allrlr
'S. K. Tandel,S. Rajappa,and S.V. Pansare,T 49,7479(1993). tF. Chauez,S. Suarez,and M. A. Diaz, SC 24,2325 (1994).
R facl5 - Zn , PhH ;
L Ch2=CH(CH2)PH2OH OME
Sulfur tetrafluoride. RCOOH - RCFI'
This transformation is suitable for the synthesis of trifluo-
romethylcyclopropanes. rY.M. Pustovit,P.I. Ogojko,V.P. Nazaretian, L.B. Faryat'eva, a.B. Rozhenko,and A.N. Alexeeko,JFC 69,225 (1994).
Suf furyl chloride. 13, 284:.14, 291-292; 16, 3ll Chlorination of sulfur compounds. Conversion of sulfides to carbonyl compounds by way of a-chlorination with SO2CI2is quite useful. Thus acetylenic aldehydes can be prepared by a two-step process.' In the presenceof AgNOr or KNO. sulfurvl chloride transforms sulfides directlv into a-chloro sulfoxides.2
so2cr2 Fn___--1
.Sprr eyteeta 00
| 1;n-----1
I
P' l |
senI
CUO- CuOl2
Ph---:-cHo ao. Me,CO d, I min
reaction,3
Lo*.-r.alcnr
K . T a k a i , M . Y a m a d a ,H . O d a k a . a n d K L r r -. K . T a k a i , H . O d a k a , Y . K a t a o k a ,a n d K t r r 'Y. Aoyagi, W. Tanaka,and A. Ohra. CC l::.
Tellurium. 15,298 Allyl- and benzyllithiums.t Wurrz o mationof the organolithiumreagenrs.shc and then BuLi. The one-pot process rnrol T. Kanda,S. Kato,T. Sugino,N. Kamb<.rri
470/"
Sulfinyl chlorides are produced3 when disulfides are treated with SOzClz and trimethylsilyl acetateat 0"C. 'c. c. Fortesandc. F. D. Garrote,sc 23, 2869(1993). 2Y.H. Kim, H. H. Shin,andY. J. Park,S 209 (1993). 3J.Drabowicz,B. Bujnicki, and B. Dudzinski,SC 24,1207 (1994).
Reformatsky
Tellurium(IV) chloride. 16, 316 Dialkyl chlorophosphates.t TcCl. u rerts dialkyl and trialkyl phosphiresrnro Y.J. Koh andD.y. Oh, SC23, l77l ( 199-r,
Tellurium(IV)
ethoxide. Nitriles.t Thioamides and ami&s e room temperatureand high temperatures.n
K. Omote,Y. Aso,T. Otsubo,and F. Ogun. I
r : e ! :
tb.:.:r\ r. TL 35,605'l (1994).
(/-A,lkyl thiocarbamatesundergo rearDatc'.in refluxing CHCIr containing conc. rl(hro group is accomplishedby heatingthc Na, llizatron.etherification,and many common r!:e (,i the superb properties of the catalysl.
Tantalum(V) chloride-zin c. 16, 312;.17, 321 Reductive coupling of alkynes with alkenes and imines. Alkynes form TaCl: complexes,which add to unsaturatedalcohols regioselectively.lThe reaction of such complexeswith metalloiminesgive allylic amines.2
- 1 7 9( 1 9 9 3 ) . r {e . ::15 (1994).
".'---* \-./
Tacls - Zn , PhH ;
R----R
Chz=CH1911r1P"r.t DME
''i t oJ)n
*\-J" /-\
g^l
R
R
NaOH
V)n
a HO-..
Dl"
Irrrrn r\ suitable for the synthesis of trifluoReformatsky
a'B. Rozhenko,and A.N. ru: . B. Faryat'eva,
: 16..rll (','nrersion of sulfides to carbonyl comO.('l is quite useful. Thus acetylenicaldeIn the presenceof AgNOr or KNO. xe.. t.!l\ rnto a-chloro sulfoxides.2
-
c l
CUO- CuCl2
."o ^ I |
aq. Mo2CO
l
reaction.s
Low-valent Ta instead of Zn can be used in this reaction.
' K . T a k a i , M . Y a m a d a ,H . O d a k a , a n d K . U t i m o t o , J O C 5 9 , 5 3 5 2 ( 1 9 9 4 ) . t K . T a k a i , H . O d a k a , Y . K a t a o k a , a n d K . U t i m o t o, T L 3 5 , 1 8 9 3( 1 9 9 4 ) . 'Y. Aoyagi, W. Tanaka, and A. Ohta, CC 1225 (lgg4).
Tellurium. 15,298 Allyl- and benzyllithiums.t Wurtz coupling of the halides is avoidedduring formation of the organolithium reagents,when they react with BuTeLi (from Te + BuLi) and then BuLi. The one-pot process involves RTeBu intermediates. 'T. Kanda, 5. Kato,T. Sugino,N. Kambe,andN. Sonoda, JOMC473,71(lgg4).
Ph:CHO 470/o
A, l mrn
a r . l r . u l f i d e s a r e t r e a t e d with SOzClu and
Tellurium(IV) chloride. 16, 316 Dialkyl chlorophosphates.t TeClq is an efficient chlorinating agent that converts dialkyl and trialkyl phosphites into chlorophosphatesat room temperature. Y.J. Koh andD. Y. Oh, SC23, l77l (199r.
6".q93). ) .,.r.1). r 't l{. 120'7(1994).
Tellurium(IV) ethoxide. Nitriles,t Thioamides and amides eliminate H2X on exposure to Te(OEt)qat room temperatureand high temperatures,respectively.Below 80oCamides give esters. 'K. Omote,Y. Aso, T. Otsubo,andF. Ogura,BCSJ67,1759(1994).
344 Tetrabutylammonium fluoride (TBAF)
Tetraallyltin. Homoallylalcohols.t The tin reagenteffectschemoselective allylationof carbonyl compoundsin aqueousacidicmedia. rA.
Y a n a g i s a w aH , . I n o u e , M . M o r o d o m e , a n d H . Y a m a m o t o ,J A C S l l 5 , 1 0 3 5 6( 1 9 9 3 ) .
Tetrabutylammonium borohydride. Reduction of conjugated iminum salts.t Amines are obtained in this reduction in acidic methanol. Thus, by reduction and demetalation, the alkylation product of an osmium complex of N,N-dimethylaniline is transformed into the 4-substituted cyclohex-2-enylamine.
-
'
Me,Nd
\-l-, /) " " ' , \LCOOMe
"","-{J,,,,,\
BuaNBHa/MeOH;
cAN - TfoH/ MscN
:
os2*
'J.
B"Nrl b^sr
"F\o""
B,4NF
;*t I
CroHzrQ
"F\
l
I |t
l
M€3Si
Miscellaneous rcactions. TB (Bu3Sn)2S to react with c.o{x (ROOC-CHS) emerge.rl
- 50"/"
Tetrabutylammonium f luoride (TBA F). 13, 286 -287 : 14, 293 -29 4 ; 15, 298, 304: l'1. 324-326 As base. Because of its high basicity in aprotic media, TBAF is capable of cleaving2-cyanoethylestersrin THF-DMF and actsas a catalystin epoxideopening.: Eliminations. When functionalized silanes in which a potential leaving group is attachedto a B-atom or to a vinylogously related atom are treated with rBAF, fragmentation ensues.New uses of this process are preparationsof 2,3-dimethylene-2,3dihydrothiophene,3substituted 1,2,3-butatrienes,a chiral allylic alcohols,5 and a-fluoroketones.oThe precursors for the allylic alcohols are the alkylation products (with aldehydes)of 2-(trimethylsilyl)ethyl sulfoxides, and those for the fluoroketones are l -silyl- I -hydroxymethyloxiranes.
..silri,te3
rue.sirl.AnX
LCOOMe
C o n z a l e z , M . S a b a t ,a n d W . D . H a r m a n , " / A C S1 1 5 . 8 8 5 ? 0 9 9 3 ) .
croHzlQ
Of some significance is the exrco als by reactionof a disilyl imirr.l carbanion.ro
o
croH'Jl .,\ ; F A7% (9770 eel
Generation of carbanion equivalents. The desilylation method enablesthe access to blocked aldols from a-trimethylsilyl a,p-unsaturated ketones.TThe conversion of 5-trimethylsilyl-2,3-dihydroisoxazoles to B-lactams8 is also initiated by desilylation, which is followed by fragmentation to ketene intermediates and reclosure of the rine.
Both the conversion of 2.2.2-rnf reductive allylation13of dithio csrcn mediated by TBAF. It is also uscd r< hydrosilanesor disilanes.
'Y. Kita, H. Maeda,F. Takahashi, S. Frl tD. Albanese, D. Landini,andM. Fcar t K. J. van den Bergand A. M. van [-crc 'H.-F. Chow,X.-P.Cao,and M.-K. Lcr 5S. Kusuda,Y. Ueno,and T. Toru, fSO. uM. M. Kabat,TA 4, t4t7 'lgg3t. t K. Matsumoto, K. Oshima,and K. Urr tA. Ahn, J.W.Kennington, and p. DcS "M. Bellassoued and A. Majidi, loltC I 'oS.Kohra, H. Ueda,and y. Tominell. I " T. Takahashi, N. Kurose,T. Koizumr.r '' Y. S. Choeand J. A. Katzencllcnbogc 'tA. Capperucci, A. deg'Innocenti, M. C. 3s, 16l (1994). 'oY.Tanabe, M. Murakami,K. Kirakhr. 0994\.
Tetrabutylam monium perorydirll Tetrahydrofuranyl ethen.t Fon refluxing THF is the result of radrce Cleavage of N, N - dimethylhyJra (7 examples, 89-977o yield).
Tetrabutylammoniumperoxydisulfate 345
/-\ BnN ll bAsitrrt".
allylation of carlit-:. chemoselective
BUINF =.--* THF
BnNr
,P
o'
00/1h
31%
1 1 5 ,1 0 3 5 (61 9 9 3 ) ' \ : ^ : i r o t o ." / A C S
\:lrnes are obtainedin this reduction den:crelation,the alkylation product of : :. rrunsformedinto the 4-substituted
ofsomesignificanceistheextensionofaromaticaldehydesintoconjugateddienthe (2-pyridylthio)methyl als by reaction of a disilyl imine,e and the generation of carbanion.lo
r.,r".sir1n:rX
- PhCHo BU4NF T H F ,A , 1 h
Me3Si
l r.:..
Me2N{
\:'/
)"
'
LCoOMe
- 50%
onAAr""o " 46"/"
anion from Miscellaneous re6,ctions. TBAF liberates a stannylthiolate a-(Alkoxycarbonyl)thioaldehydes (BulSn)zS to react with a,c-dichloroesters. (ROOC-CHS) emerge.r' mesylates,rzand the Both the conversion of 2,2,2-trifluoroethanesulfonates into allyl fluoride are with carbonates trithio and reductive allylation13of dithio esters by silazines or alcoholsra of silylation promote to mediated by TBAF. It is also used
t n 5 \ 8 5 7( 1 9 9 3 ) .
,-l l.f'-287; 14, 293-294:
hydrosilanesor disilanes. r:. Jfrotic media, TBAF is caPableof lc i .:.r r as a calalystin epoxide opening': hrr. rn which a potential leaving group r:il.J atom are treatedwith TBAF fragar. lrcparationsof 2'3-dimethylene-2,3l r : . : r j . . j c h i r a l a l l y l i c a l c o h o l s . 5a n d r.:. ,rlcoholsare the alkylation products ll:,'rrdes, and thosefor the fluoroketones
U
r'r: C
/\
C,oHz, Jl \,2
;=
\
a
'Y. Kita, H. Maeda,F. Takahashi,S. Fukui, T' Ogawa,and K' Hatayama'CPB 42' l4'l (1994)' 'D. Albanese, D. Landini,and M. Penso,S 34 (1994)' t K. J. uanden Bergand A. M. van Leusen,RTC 112'7 (1993)' 'H.-F. Chow,X.-P.Cao,andM.-K. Leung,CC 2l2l (1994)' 5S.Kusuda,Y. Ueno,and.t.Toru,750' 1045(1994)' uM. M. Kabat,TA 4, l4l7 (1993). t K. Matsumoto,K. Oshima,and K. Utimoto' CL l2ll (1994)' *A. Ahn, J.W. Kennington,and P. DeShong,JOC 59,6282(1994)' 'M. Bellassoued and A. Majidi, JOMC 444' C7 (1993)' 'oS.Kohra,H. Ueda,and Y. Tominaga,H 36' 1497(1993)' 'rT. Takahashi, N. Kurose,T. Koizumi,andM' Shiro'H 36' 160l(1993)' '' Y. S. ChoeandJ. A. Katzenellenbogen, TL 34, 1579(1993)' ,,A. Capperucci, M.C. Ferrara,B. F. Bonini,G.Mazzanti,andA. Ricci,IL A. deg'lnnocenti, 35, 16l (1994). ''Y.Tanabe,M.Murakami,K.Kitaichi,Y'Yoshida,H'Okumura'andA'Maeda'TL35'8409 ( 1994).
87% @7"/o ee)
Trc desilylation method enablesthe ace t o n e s 'T t he converr . . , . r J - u n s a t u r a t ek d initiated by is also tr'r
Tetrabutylammonium peroxydisulfate' (81-977o)from alcohols in Tetrahydroluranylethers.t Formation ofsuch ethers refluxing THF is the result of radical coupling' Ketones are formed in very good yields cleavage of N,N-dimethylhydrazones.2 (7 examples, 89-977o Yield).
346 Tetrakis(alkoxycarbonyl)palladacyclopentadiene 'J. C . J u n g , H . C . C h o i , a n d Y . H . K i m , I L 3 4 , 3 5 8 1( 1 9 9 3 ) . 'H. C. choi and Y. H. Kim, SC 24,2307 (1994).
Tetrabutylammonium perrhenate(VII) -triflic acid. Beckmann rearrongement.' The combined reagents catalyze Beckmann rearrangementof oximes in refluxing MeNOz. Addition of 20-50 mol 7oof NH2OH ' HCI preventshydrolysisof the oximes. rK.
andH. Sato,CC 489 (1993). H. Kusama,Y. Yamashita, Narasaka,
Tetrabutylammonium triphenyldif luorostannate. The conversionof alkane l,l-bistriflates to the gemI-Halo-(-fluoroalkanes.t fluorohaloalkanes is achieved by sequential treatment with [BuaN][PhrSnFz] in CH2Cl2at 0"C and then with [Bu+N]X (X : Cl, Br, I) at room temperature.
Tetrakis(triphenylphosphine)pdbdl 15, 300-304; 16, 317-323; 17, 327-l3l Allylic substitutions. The catal;r preparationof N-protected allylic amto Asymmetric o-all1 cyclic carbamates.2 the enamines d by treating ried out (PhrP)4Pdand subsequenthydroll'sis I bonatesto 1-allyl-2(lfl)-pyri midinorn
peptidessthrough ester enolate Clarsc set. l-Arylprop-2-enols are suitablc fq treatment with a t allyl ether cleavage6o suffices. N-\-& i l l t2 o)'.
lA. G. Martinez,J.O. Barcina,A.Z. Rys,andL. R. Subramanian, SL 587(1993).
/
/o'v Tetraethylammonium cyanoborohydride. Ketone reduction.t The diastereoselectivereduction by this borohydride can take advantage of oxygen substituents at a B-position. Addition of TiClq to form chelatesbefore reduction occurs leads to the syn isomers as major products-
n
l
Arylboronic acids and derivattres rr lenytmethyl carbonates and proparyllt and arylallenes,sresPectivelY.
rC. R. Sarko,I. C. Guch,andM. DiMare,JOC 59'705(1994). :Q1 Tetrachlorosilane. 16, 317 Esters.t The formation of esters RCOOR from RCOOSiMe3 and ROSiMer is catalyzedby SiCla and AgOTf (7 examples, 83-96Vo yield)' ' L shiina and T. Mukaiyama, CL 2319(1992).
Tetrakis(alkoxycarbonyl)palladacyclopentadiene. Enyne metathesis.t A profound skeletal transformation results in the formation of unusual ring systems. " t x COOMe
1\\
BnO
OM€
P d l / X X c6D5, a
X = COOCTFz 'B.
M . T r o s t a n d A . S . K Hashmi, JACS 116,2183 (1994).
90L
\-oco2Me
+
(HOlp-r
4
Allylation of carbonYl conPottlt However, other allylic components slr together with EtzZn. CouPling of otganozincs vitl ttl
synthesis of biaryls'r2 including tncrc and even Zn(CN)z16are reactive touard 17 alkenylzinc bromides and cyclopropc
iodoarenes. Coupling of organozincs with d functional groups. Thus (dialkoxlba iodoallyl alcohols need only to bc coat The alternative mode involving alkcn;dioxaborinanes can also be uscd su
moacrylic estersundergoregioselcctrrt with ArZnX.22
Tetrakis(triphenylphosphine)palladium 347 l!-1
ic acid. | :l.gents catalyzeBeckmann rearDn ,,110-50 mol 7oof NH2OH ' HCI
r.{(.1s9(1993).
l|le.
ol r:ikrne 1,l-bistriflatestothe qem]tilmL-nr with [BuaN][PhrSnFz]in , Br I r at room temperature.
Tetrakis(triphenylphosphine)palladium (0). 13, 289 -29 4; 14, 295 -299 ; 15, 300-304; 16, 317-323; 17, 327 -331 Allylic substitutions, The catalyzed substitution reaction is well suited for the preparationofN-protected allylic aminesr and the conversionof allylic carbonatesto cyclic carbamates.2Asymmetric o-allylation of cyclic ketonesr is conveniently carried out by treating the enamines derived from an allyl ester of proline with (Ph3P)4Pdand subsequenthydrolysis. The rearrangementof allyl 2-pyrimidinyl carand the introductionof allylic sidechainsto bonatesto l-allyl-2(111)-pyrimidinoneso belong to the same reaction rearrangement peptidessthrough ester enolate Claisen of 1,3-diketones.oFor aryl for C-cinnamylation set. l-Arylprop-2-enols are suitable the Pd(0) catalyst with NaBH+ of with a combination treatment allyl ether cleavage6o suffices.
iu.:,:rrnianS , t 5 8 7( 1 9 9 3 ) .
n-\rt'
Pd(PPh3)4
?A,/ ,
THF, rl,2 h
?-o'v=--
*a)r.tt l i l ^\' \z\
l
731o
reJuction by this borohydridecan x,\rlrr)n. Addition of TiCl+ to form r.,,nlersas major products.
Arylboronic acids and derivatives surrender their aryl moieties on displacing allenylmethyl carbonatesand propargylic carbonates,furnishing 2-aryl-1,3-dienesi and arylallenes,8respectively.
"v{ t.
6
:"1'o"or"" fr,'n RCOOSiMe3and R'OSiMer is 9a r ield).
:De. tn.r,,rmation results in the formation
r . COOCTFz
F:
9O"/"
Pd(PPh3)1
- tnoue$or"r"
benzen6.A
l-Go"" 88v"
Allylation of carbonyl compounds and imines. Allylzinc reagents are used.' However,other allylic componentssuch as benzoatesr0and sulfonesrrcan be used together with EtzZn. Coupling of organozincs with aryl halides. The method is very useful for the Vinylic,'a aliphatic zinc reagents,15 synthesisof biaryls,r2including heterobiaryls.13 presenceof (Phf)+Pd. Perfluoroin the ArX and even Zn(CN)2r6are reactive toward also couple efficiently with chlorides18 alkenylzinc bromidesrTand cyclopropenytzinc iodoarenes. Coupling of organozincs with alkenyl halides. The reaction tolerates many functional groups. Thus (dialkoxyboryl)methyl zinc reagentsrecan be used, and iodoallyl alcohols need only to be converted to the zinc alkoxides before coupling.2o The alternative mode involving alkenylzinc chlorides and 2-(B-bromoalkenyl)-l'3'22,3-Dibrodioxaborinanescan also be used successfully to afford 1,3-dienes.2r coupling (at stereoselective and the moacrylic estersundergoregioselective B-carbon) with ArZnX.22
T.lr.lirll
34t Tetrokis(triphenylphosphlne)palladium coupling
involving organoborons.2l'2|
Saturated and unsaturated organobo-
ranesaswellasarylboronicacidsareequallyeffectiveincouplingwithvarious support2sis successful' In some halides and enol triflates. Biaryl synthesison a solid other casesthe reaction is assistedby CsF'26 Couplingoforganotinswithunsaturatedhalides.Functionalizedreagentsare a-arylacrylic esters'28 widely applicablefor the coupling such that a-fluorostyrenes'2? are readily obtained' and cinnamyl amines2e'3o Enoltriflateshaveaboutthesamereactivityasvinylichalidesinthecoupling useful starting material'32 reaction.3rFor phenylations, (Bu4N)*(PhrSnFz)- is a Destannylativeacylation,Unsaturatedtincompoundsreactwithacidchlorides to a polymer,33the ketone to give unsaturatedketones.when the tin atom is attached products releasedinto solution are very easy to isolate' provides 1,4-diketones'34 The reaction of B-stannyl enones with acid chlorides This is a reductivecouPling. Couplingoforganosilancswitharylhalides.Disilanesaresplitandcoupledto When alkyltrifluorosilanes are aryl haiides under rather vigorous conditions.3s'3u used, the coupling3Talso requires Bu+NF as a promoter' Cyclopropanationofnorbornene.lEAnunusualandhigh-yieldingcycloaddiare heated with (PhrP)aPd tion occurs when a-ketol carbonates and norbornene in DMF.
ll ^ R&"'cooEt
(Ph3P)1Pd
+
DMF, 12OO
/r5 R=Me 99% R = Ph 82"/.
Intramolecular zinc-ene reaction.ls
's:
Metal exchange of a zr-allylpalladium
complextoformaa-bondedorganozincspeciespermitsenereactionwithaproximal alkene unit. The cyclic product can be functionalized'
(PhsP)rPd, EtzZn >
AcO
EtaO, A;
E=H 79"h
I R.O. Hutchins,J. Wei,andS.J. Rao,JOC59' 4007(1994)' 2 T. Bando,H. Harayama, M' Shiro' K' Fugami'S' Tanaka'and Y' Tamaru' Y. Fuzukawa, (1994). JOC 59,1465
3 K . H i r o i , J . A b e , K . S u Y a .S . S a t o . e r t M . L . F a l c k - P e d e r s e nT, . B e n n e c h c .r 5 U . K a z m a i e r ,J O C 5 9 ' 6 6 6 7 ( 1 9 9 { ' u M. Sakakibara and A. Ogawa. fl 35' toR. BeugelmansS , . B o u r d e t .A . B t g o r 7 T. Moriya, T. Furuuchi, N. ltlilaun- ' 8 T. Moriya, N. MiYaura'and A Surul n T . A . J . v a n d e r H e i d e ,J . L . r a n d c r B TL34,3309 (t993)ro K. Yasui, Y. Goto, T. Yajima. \' Ter '7619(1993).
il ' J . C l a y d e na n d M . J u l i a , C C l g o s l q 't K. Takagi, CL 469 (1993\. 't T . S a k a m o t o ,Y . K o n d o ' N . M u r a t e - t ' ' L . - L . G u n d e r s e n ,A . K . B a k k e s l u c n ' 't D . P . G . H a m o n ,R . A . M a s s l - \ l . c s r m 'u D.M. Tschaen' R. Desmond. A O V e r h o e v e n ,S C 2 4 ' 8 8 7 ( 1 9 9 { l 't P.A. Morken and D. J. Burton. ./OC 1 8 U n t i e d t a n d A ' d e M e i j e r e .C 8 l l S. 'e T . W a t a n a b e ,N . M i Y a u r a .a n d A S u r0 E. Negishi, M. A'Y.v. Gulertch ex :{) '' C. Mazal and M' Vaultier. fL 35' tt D e s a n t tr F. Bellina, A. Carpita, M. tt T . o h - e , N . M i Y a u r a ,a n d A . S u z u l t to q. Zheng, Y. Yang,and A. R. \lent rs R. Frenette and T.W' Friesen. fL t6 tu S . w . w r i g h t , D . L . H a g e m a n .a n d L 17 P. Matthews, P. P. Waid. J. S Srb D. t' J .l . L e v i n ,T L 3 4 , 6 2 l l ( 1 9 9 3 t t' R. J.P. Corriu, G. Bolin' and J J E t" R. J.P. Corriu, B. Geng, and J I E '' Y. Al-Abed, T. H. Al-Tel. c. st-hrii tt A . G . M a r t i n e z , J ' O . B a r c i n a .A d c tt H. Kuhn and W. P. Neumann.Sl ll 3 t A . M . E c h a v a r r e n 'M . P e r e z .A \ l t' P . B a b i n , B . B e n n e t a u 'M . T l r u r t S to S . C r o s , B . B e n n e t a u ,J . D u n o g r r s ' " H . M a t s u h a s h i ,M . K u r o b o s h r .\ ' I t8 S . O g o s h i ,T . M o r i m o t o , K . - r ' \ t s b I W. Oppolzer and F. Schrdder. fL ]
Tetrakis(triphenylphosph i nc lpc Coupling of alkYnes vith tt simplest stereoselectiveassembll added to neutralize the liberated I Allenes. AlkYnYl allenes er derivatives.a'5
(0)-copper(I) iodide 349 Tetrakis(triphenylphosphine)palladium
|turr:ed and unsaturatedorganobo' .::i.tive in coupling with various r.'. ; .upport25is successful.In some dides. Functionalized reagentsare a-arylacrylic esters,2t u.,:rr.trJ€o€S,27 r r. rinylic halides in the coupling :. .r ureful starting material.s2 c(\mDoundsreact with acid chlorides r. rrtached to a polymer,33the ketone 1 . ,' l a t e . | .hlorides provides 1,4-diketones.! r. I)isilanes are split and coupled to " When alkyltrifluorosilanes are tr\\nl()(ef. Lnu.uirland high-yielding cycloadditurnene are heated with (PhrP)rPd
B. f
,t:-
|
')a
^z}'/\ "
l
v2-\/
R=Me 99% R=Ph 82%
ta. trchange of a a'-allylpalladium pc:mits ene reactionwith a proximal l al l . / c d .
phSO2
SO,ph
1\
(
E =H
h
76t9/r99r.
" J . C l a y d e na n d M . J u l i a , C C 1 9 0 5( 1 9 9 4 ) . 12 K. Takagi, CL 469 (1993). 't T . S a k a m o t o ,Y . K o n d o , N . M u r a t a , a n d H . Y a m a n a k a , T 4 9 , 9 7 1 3 ( 1 9 9 3 ) . 'o L . - L . G u n d e r s e n ,A . K . B a k k e s t u e n ,A . J . A a s e n , H . O v e r a s ,a n d F . R i s e , T 5 0 , 9 7 4 3 ( 1 9 9 4 ) . 't D. P. G. Hamon, R. A. Massy-Westropp,and J. L. Newton, TL 34, 5333 (1993). 'o D . M . T s c h a e n ,R . D e s m o n d , A . O . K i n g , M . C . F o r t i n , B . P i p r i k , S . K i n g , a n d T . R . Verhoeven, SC 24,887 (1994). r7 P.A. Morken and D. J. Burton, JOC 58, l167 (1993). '8 S . U n t i e d t a n d A . d e M e i j e r e , C B 1 2 7 , 1 5 1 1( 1 9 9 4 ) . 'e T . W a t a n a b e ,N . M i y a u r a , a n d A . S u z u k i , J O M C 4 4 4 , C l ( 1 9 9 3 ) . r0 E . N e g i s h i , M . A . Y . V . G u l e v i c h , a n d Y . N o d a , T L 3 4 , 1 4 3 ' l( 1 9 9 3 ) . t' C . M a z a l a n d M . V a u l t i e r , T L 3 5 , 3 0 8 9( 1 9 9 4 ) . t' F . B e l l i n a , A . C a r p i t a , M . D e s a n t i s ,a n d R . R o s s i , T L 3 5 , 6 9 1 3 ( 1 9 9 4 ) . " T. oh-e, N. Miyaura, and A. Suzuki, JoC 58,2201 (1993). t' q. Zheng, Y. Yang,and A. R. Martin, TL 34,2235 (1993). tt R . F r e n e t t ea n d T . W . F r i e s e n , T L 3 5 , 9 l ' 1 7 ( 1 9 9 4 ) . to S . w w r i g h t , D . L . H a g e m a n ,a n d L . D . M c C l u r e , J o C 5 9 , 6 0 9 5 ( 1 9 9 4 ) . I D . P . M a t t h e w s ,P . P . W a i d , J . S . S a b o l ,a n d J . R . M c C a r t h y , f L 3 5 , 5 1 7 7 ( 1 9 9 4 ) . } J. I. Levin, TL 34, 62ll (1993\. t' R . J . P . C o r r i u , G . B o l i n , a n d J . J . E . M o r e a u , B S C F2 7 3 ( 1 9 9 3 ) . "' R . J . P . C o r r i u , B . G e n g , a n d J . J . E . M o r e a u ,J O C 5 8 , 1 4 4 3( 1 9 9 3 ) . '' Y. Al-Abed, T, H. Al-Tel, C. Schrijder, and w. Volter, ACIEE 33, 1499 (1994\. 'r , L 1 0 4 ' 1( 1 9 9 4 ) . A . G . M a r t i n e z ; ! . O . B a r c i n a ,A . d e F r e s n oC e r e z o ,a n d L . R . S u b r a m a n i a n S " H. Kuhn and W. P. Neumann, SL 123 (1994). " A . M . E c h a v a r r e n ,M . P e r e z ,A . M . C a s t a n o ,a n d J . M . C u e r v a , J O C 5 9 , 4 l ' 1 9 ( 1 9 9 4 ) . " P . B a b i n , B . B e n n e t a u ,M . T h e u r i g , a n d J . D u n o g u e s ,J o M C 4 4 6 , 1 3 5( 1 9 9 3 ) . 'n S. Cros, B. Bennetau, J. Dunogues, and P. Babin, JOMC 468,69 (1994). " H . M a t s u h a s h i ,M . K u r o b o s h i , Y . H a t a n a k a ,a n d T . H i y a m a , T L 3 5 , 6 5 0 7 ( 1 9 9 4 ) . rE S. Ogoshi,T. Morimoto, K.-i. Nishio, K. Ohe, and S. Murai, IOC 58,9 (1993). 'o W. Oppolzerand F. Schrijder,TL35,1939 (1994\.
\,--\ /
\-E
\\
)-
3 K. Hiroi, J. Abe, K. Suya, S. Sato, and T. Koyama, JOC 59,203 (1994). " M . L . F a l c k - P e d e r s e nT, . B e n n e c h e ,a n d K . U n d h e i m , A C S4 7 , 6 3 ( 1 9 9 3 ) . 5 U. Kazmaier. JOC 59.6667 0994\. o M . S a k a k i b a r aa n d A . O g a w a ,T L 3 5 , 8 0 1 3 ( 1 9 9 4 ) . oo R. Beugelmans, S. Bourdet, A. Bigot, and J. Zhu, TL 35, 4349 (1994). 7 T . M o r i y a , T . F u r u u c h i , N . M i y a u r a , a n d A . S u z u k i , T 5 0 , ' 7 9 6 1( 1 9 9 4 \ . " T. Moriya, N. Miyaura, and A. Suzuki, SL 149(1994). t T . A . J . v a n d e r H e i d e ,J . L . v a n d e r B a a n , V . d e K i m p e , F . B i c k e l h a u p t ,a n d G . W . K l u m p p , TL 34,3309 (t993). 'o K. Yasui, Y. Goto, T. Yajima, Y. Taniseki,K. Fugami, A. Tanaka,and Y. Tamaru,TL34,
79"/o
.q9-l). Fugami, S. Tanaka, and Y. Tamaru.
(0) -copper(I) iodide. Tetrakis(triphenylphosphine)palladium halides. This coupling representsthe with unsaturated Coupling of alkynes An amine is also and enynes.2'3 assembly of alkynylarenesr simpleststereoselective neutralize the liberated acid. added to Allenes. Alkynyl allenes are available from Siy2' displacementof propargylic derivatives.a'5
350 T€traphenylantimonYbromide
U4n9-:-\
/
Et
-:CsHrr
cl
Pd(PPh3)1 Cul
C+Hg
Et
(iPr)2NH rt.1h
Tetraphenylstibonium methox ilc. Alkylation of cyclic 1,3- diLetotcrts p substituted1,3-cycloalkanediones with BuI. 'M. Fuiiwara,K. Hitomi, A. Baba.and H
' R . w . B a t e s ,C . J . G a b e l , a n d J . J i , T L 3 5 , 6 9 9 3 ( 1 9 9 4 ) ' 2 M . A l a m i , B . C r o u s s e ,a n d G . L i n s t r u m e l l e , T L 3 5 ' 3 5 4 3 ( 1 9 9 4 ) ' (1993)' t R. S. Paley, J. A. Lafontaine' and M. P. Ventura, TL 34' 3663 oS. ( 1 9 9 3 ) ' 3 4 , 3 8 5 3 G u e u g n o ta n d G . L i n s t r u m e l l e ' T L 5C. D a r c e l , C . B r u n e a u , a n d P . H . D i x n e u f , C C 1 8 4 5( 1 9 9 4 ) '
TetramethYlammoniumf luoride. MeaNFin Arytfiuorides.t The fluorodenitrationof activatednitroareneswith dried in situ' DMSO leadsto ArF. The reagentis azeotropically lN.
B o e c h a ta n d J . H . C l a r k , C C 9 2 1 ( 1 9 9 3 ) .
-300; 16' 324; Tetramethylammonium triacetoxyborohydride'14' 299 17,331-332 by this syn-I,2-Amino alcohols.t The reductionof a-hydroxyoximino ethers LiAlHr with reduction the complements and borohydrideis iiigtrtydiastereoselective, or i-BuzAlH, which affordspredominantlythe anti products'
Tetrapropylammonium
Perruthn.l 16,325 Oxidation of sulfides.' The mrr co-oxidant) oxidizes sulfides to sulfol sieves.Isolated double bonds are gcrrr
Oxidation of amines and hYdm4 drogenation to afford imines. whertas nitrones at room temPerature. 'K. R. GuertinandA. S. Kende,fL ll. !l 2A. Goti, M. Romani,andF. De Sarkr-fi
Thallium(Ill) nitrate. 16. 326 Ring contraction of chromat'1't arylacetic esters from open-chain phc are obtained when chroman-4-oncs tri methyl orthoformate.
' D. R. williams, M. H. Osterhout' andJ. P. Reddy'It 34' 32'll (1993)' ,r\".O---h
-"Yl i
Tetramethylguanidinium azide. in 90-997o yields. Glycosylazides.t Invertive displacementto give the azides
t
l
o
'C. Li, A. Arasappan, andP.L. Fuchs,TL 34' 3535(1993)' 'M.
Tetranitromethane. of c(Noz)+' sulfuxides.t Sulfides undergo photooxidation in the presence temperature. room at c-nitration undergo ethers (r-Nitro ketones.2 Enol silyl r D . R a m k u m aar n dS . S a n k a r a r a m aSn1, 0 5 7( 1 9 9 3 ) ' 'R. Rathore, Z.Lin, andJ. K. Kochr,TL 34' 1859(1993)'
Tetraphenylanti monY bromide. condensation of Stereoselectivealdol condensation'l The Ph+SbBr-catalyzed aldol products predominantly furnishes tin enolateswith a-chlorocycloalkanones with a cis-chlorohYdrinunit. jM.
TL35'8627 (1994) Y a s u d a ,T . O h - h a t a , I . S h i b a t a ,A . B a b a ,M ' M a t s u d a 'a n d N ' S o n o d a '
S . K h a n n a ,O . V . S i n g h ' C . P . G a r g . e
Thallium(III) tosYlate. Dehydrogenation of 2'3-dihYJt ceedsin excellentyields(6 examplc rO.V.
Singh and R. S. Kapil, SC 23. l-- t
T hianth renium tetraf luorobrrtca-Hydroxy aldehYdeacctals. On reactiono oxidationof aldehydes. isolated.
Thianthrenium tetrafluoroborate 351
El
CqHg g^<
/
aA"
t
H
CsHrr
Tetraphenylstibonium methoxide. propargylation of 2Alkylation of cyclic l,3.diketones.' The C-allylation and occurs o-Butylation PhaSboMe. by substituted 1,3-cycloalkanedionesis promoted with BuI. ' M. Fu.liwara, ' rL 875(1994)' K. Hitomi, A. Baba,and H' Matsuda
s1"/.
< . !i
1994). ! a r r r . - tr 1 9 9 3 ) I l!e-:
\Jred nitroareneswith MeaNF in Jrrcdin situ.
L. l{.199-300;16'324; ,f ,,-hldroxY oximino ethersbY this the reductionwith LiAIH' !Fic'ments tr:r products.
N- oxide' 14' 302; Tetrapropylam monium perruthenate-N- methyl morpholine 16,325 catalyst, NMO as oxidation of sulfides.t The mixrure of reagents (TPAP as of 4A-molecular presence the in MeCN co-oxidant) oxidizes sulfides to sulfones in affected' not sieves.Isolated double bonds are generally undergo dehyoxidation of amines and hydrorylamines.2 secondary amines converted to are drogenation to afford imines, whereas N,N-dialkylhydroxylamines nitrones at room temperature. rK. R. cuertin andA. S. Kende,TL 34' 5369(1993)' 2A. Goti, M. Romani,andF. De Sarlo,Ti 35,6561'6571(1994)'
nitrate. 16' 326 Thallium(lII) as the formation of Ring contraction of chroman-4-ones.t In the same fashion esters arylacetic esters from open-chain phenones,dihydrobenzofuran-3-carboxylic areobtainedwhenchroman-4.onesareoxidizedwithTTNinthepresenceof trimethyl orthoformate.
L -r{ tlT l (1993).
.'t\t-Or
r,i=roYtn
w
) ri\c the azidesin 90-997o Yields'
o
ll HCIOr HC(OMe)3 rt. 30 min
\z\
|
>-Ph COOMe
75% l e " '
' M . S . K h a n n a ,O . V . S i n g h ,C . P . G a r g , a n d R ' P K a p o o r ' S C 2 3 ' 5 8 5 ( 1 9 9 3 ) '
th'n rn the presenceof C(NOz)+' p ( -nltration at room temperature' I
9. I
Thallium(III) tosylate. proDehydrogenationof 2,3-ttihydroquinol-4-ones.' The dehydrogenation DME' refluxing in ceedsin excellentyields(6 examples,90-96Vo) lO.V. Singh and R. S. Kapil, SC 23,27'l (1993)'
I Ph-SbBr-catalyzedcondensationof 0r.ie\ predominantly aldol products
T hianthrenium tetraf luoroborate. effects aa-Hydroxy aldehydeacetals.t The salt (1) is a radicalcationthat are acetals NaOMe-MeOH with products on reactionof the oxidationof aldehydes.
TLSS'862'l(1994)' r!-jj rnd N. Sonoda,
isolated.
352 Tin(IV) bromide
'z-)rt:r\ T\"./V
BFI
homoallylic alcohol productsal*ars dl lar efficiencv.3'a
(1)
'M.
S c h u l z , R . K l u g e , a n d J . M i c h a e l i s ,S Z 6 6 9 ( 1 9 9 4 ) .
Thionyl chloride. 16, 297 Reaction with alcohols.r Alcohols are converted into alkyl iodides by SOCIzKI in DMF at 50'C, but at 0"C only the formate esters are obtained (LiI is used instead of KI in these cases). Nitrile oxide preparation.2 Primary nitroalkanes undergo dehydration on treatment with SOCIz-EI3N in CH2Cl2. In the presenceof alkenes, isoxazolines are
RCHo + Bu3Sn4AA
?M"
sn&. o^e-
'J. S . C a r e y ,T . S . C o u l t e r , a n d E . J . T h o r n e 'J.S. C a r e y ,E . J . T h o m a s ,a n d S . J . S r e a r e tA. Terrawutgulrag and E. J. Thomas. ./C9 oA. H. McNeill and E. J. Thomas.s l:: , lc
formed. rl. Fernandez, B. Garcia,S. Munoz,J.R. Pedro,andR. de la Salud,SL 489 (1993). 'Y.-J. ChenandC.-N. Li, JCCS(T)40, 203 (1993).
Tin. 13, 298: 17, 333-334 Homoallylic alcohols. Allylic bromides are transformed into allyltin reagents that react with aromatic aldehydes with very high erythro-selectivity.r However, the stereoselectivityris only moderate in the reaction with aliphatic aldehydes.The intramolecular version is useful for the synthesis of cyclic alcohols.2 'J.-Y.Zhou.Z.-G. Chen,andS.-H.Wu, SC 24,2661(1994). 'J.-Y.Zhou,Z.-G. Chen,andS.-H.Wu, CC 2783(1994).
Tin(II) bromide. 14, 303-304 Transetherification and transesterification. Tin(II) bromide is a catalyst for converting p-methoxybenzyl ethersr into methoxymethyl ethers by cHz(oMe)z and MeOCHzBr. Benzyl ethers2and trimethylsilyl ethers3are cleaved and acetylated in one operation by the action of SnBrz-AcBr in CHzClz at room temperature. 'T. Oriyama,M. Kimura,andG. Koga,BCSJ67,885(1994). 'T. Oriyama,M. Kimura, M. Oda,and G. Koga, SL43'l (1993)tT. Oriyama,M. Oda,J. Gono,andG. Koga,TL35,202'l(1994\.
Tin(IV) bromide. Long-range asymmetric induction by an oxygen functionality is Altylation. observed in the reaction of allylstannanes with aldehydesusing tin(IV) bromide as catalyst.r'2Irrespective of the original configuration of the allylic double bond' the
Tin(II) chloride. 13, 298-299: 15. ,r0 Carbonyl masking and rcgcncnti for dithioacetalizationras well as hldn Reductions. Disulfides are clcrrr aminesa without affecting the nrtro unsaturatednitroalkenes are rcdred to arylacetaldoximes in the presenceof el
9r
\ nr__4;te
,
Reformatsky-type reactioas. la t hydes to form enones, SnCl: and \eS alone is used to effect synthesis of F. tromethaneand aldehydes.s Allylation of aldehydes. In thrr are also added to promote the actirrtl <
andMg.'l p-Keto esters.t2 The homologatn by tin(Il) chloride.The reaction*ith o useful for the synthesis of c-ac;-l-p-ta
Tin(II) chloride 353 homoallylic alcohol products always display the (Z) configuration' SnCl+ has a similar efficiency.3'a
+ eur*rv\X RCHO
l
*..rro-\3i--or" lw;l,\
# -7go
chair T.S.
'reJ rnto alkYl iodidesbY SOCI2e.rc'r\ are obtained (LiI is used rlkrner undergo dehYdration on iGnsc'of alkenes, isoxazolines are
rJ: : Salud,SL 489 (1993)'
rrrn :tbrmed into allyltin reagents gh t,rllhro-selectivity.r However, i.'n * ith aliphatic aldehydes.The
oH R
.
/ - \ V
R = Ph
V
9M" \
75ol.
' J . S .C a r e yT, . S .C o u l t e ra, n dE . J .T h o m a sT, L 3 4 , 3 9 3 3 3' 9 3 5( 1 9 9 3 ) ' 'J. S. Carey,E. J. Thomas,andS.J. Stanway, CC 283,285( 1994). r A. Terrawutgulrag and E. J. Thomas,JCS(PI)2863(1993). oA. H. McNeillandE. J. Thomas,S 322(1994).
Tin(II) chforide. 13,298-299:15, 309-310; 16' 329 Carbonyl masking and regeneration. Tin(II) chloride is effective as catalyst for dithioacetalizationr as well as hydrolysis of acetals.2 Reductions. Disulfides are cleaved,r and nitroaryl azides are reduced to the aminesa without affecting the nitro group or other substituents. However, B;ygive a-allyloxy unsatulated nitroalkenes are reduced to enones,5and
ri,relic alcohols.2 SnCl2.2H2O
yoH
9!:
Ar.:Z\NOz rt,4h
Trnrll) bromide is a catalYstfor rmcthvl ethersbY CHz(OMe)zand r.. are cleaved and acetYlatedin :Cl. et room temperature. -
.q9.J).
):-.e94).
ion hy an oxygen functionalitY is rUr'hrdesusing tin(IV) bromide as Ir.-n ,.f the allylic double bond, the
er1,,^-\ru.OH o--^ s3-69%
Reformatsky-type reactions. In the condensationof a-halo ketones with aldehydes to form enones, snclz and Nazsor can be used as promoters,Twhereas snClz alone is used to effect synthesis of B,B-dichloro B-nitroalcohols from trichloronitromethaneand aldehYdes.s Allylation of aldehydes. In this Barbier-type condensationdifferent catalysts are also added to promote the activity of tin(Il) chloride. These include NaI,e CuX,r0 and Mg." p-Keto esters.t2 The homologation of aldehydeswith diazoalkanes is catalyzed by tin(Il) chloride. The reaction with a-diazoacetic esters leading to B-keto esters is useful for the synthesisof a-acyl-B-tetronic acids.
354 Tin(IV) chloride
o il
SnC12
$"'o
N2CHCO2CH2CO2CH3 CH2C|2,rl,2 h
o tl
(-r,
ffo^co2cH, \-,
t \---.-otu corile
BU4NF T H F ,r t , 7 h
721"
of riboRibofuranosides and ribonucleosides. The anomeric substituents in nucleophiles various by replacement to subject and carbonatesraare furanyl esters13 selectively' p-Isomers formed are a reaction catalyzedby SnCl2. 3-Arylpyridines.ts The reduction of 6-aryl-5-nitrobicyclo[2.2.1]hept-2-enes moderate with Snclz in refluxing THF or dioxane generates 3-arylpyridines in yields. A 7-step tandem process is proposed. 'N. B. Das,A. Nayak,and R. P. Sharma'JCR(S)242 (1993)' 2K. L. Fordand E. J. Roskamp,JOC 5E' 4142(1993)' tY.-H. Chang,J. D. Peak,S.W.Wierschke' andW' A' Feld,SC23' 663 (1993)' oK. R. cee and J. F.W. Keana,SC 23,357 (1993). 5N. B. Das,J.C. Sarma,R. P. Sharma,andM. Bordolos, TL 34' 869(1993)' uA. Hassner,K. M. L. Rai, and W Dehaen,SC 24' 1669(1994)' tR. Lin, Y. Yu, andY.Zhang,SC 23,271(1993)sA.S. Demir,C. Tanyeli,A'S. Mahasneh, andH' Aksoy,S 155(1994)' eT. Imai andS. Nishida,S 395(1993). l0T. Imai and S. Nishida,CC 27'l (1994). 'rC. Sarangi,N. B. Das'andR. P' Sharma,./CR(S) 398(1994)' ''K. Nomura,T. Iida, K. Hori, andE. Yoshii,JOC 59'488(1994)' ''N. Shimomura,M. Saitoh,andT. Mukaiyama,CL 433(1994)' 'nT. Mukaiyama,T. Matsutani,and N. Shimomura,CL2089 (1994)' 'tT.-L. Ho andP.-Y.Liao,TL35'2211(1994).
Tin(IV) chloride. 13, 300-301; 14, 304-306; 15' 3ll-313; 17' 335-340 of Reaction with epoxy alcohols. The Lewis acidity of snclq induces opening structure. the epoxide ring. The subsequenttransformation depends on the nearby Thus rearrangementand cyclization products can be obtained'r'2 HeterocycliZations. Tetrahydropyran derivatives are formed3 stereoselectively genervia a-oxycarbenium ion intermediates through ?r-cyclization. The cations are 2with ated with the assistanceof SnCl+.In refluxing mesitylene,lactams condense bicyclic aminoacetaldehyde diethyl acetala in the presence of SnCl+ forming imidazoles.
A synthesisof B-lactamssfrom I volves reaction of tin enolates. Annulations involving allfl siltt pounds under the influence of Les rr ring formation the silyl group is mrg allyl fragment.Becauseof its highll the synthesisof complex structur"l.
"*o
Y BnO
* ao.r,,l."-, : MezsiPh
Silyltetralins are obtained from r of allylsilaneson benzylic cations
OH
w rl
\?
I
|
*
,4"'-.9hb
I-oH
Diels-Alder reactions. Drclscluding SnClq.Selectivecompleratro unsymmetricalchiral maleic esterdr Hetero-Diels-Alder reactionsof
presenceof SnCl+,as unactivatedall Ene reaction.tt Formation of quinolizidine derivativesfrom thc rr
ridinecarbaldehydeis mediated b1 S imines to bicyclic products that post cis arranqement.
Tin(IV) chloride 355
cl
'^"IJo^co2cH3
t
l'-c,
t
\^
; - ,
-
/\...Er l-o-,,"corM" l
'
oAc CO2Me
78o/"
I
SnCla
cH2ct2 -78o-> rt 3h
627.
A synthesisof p-lactamssfrom 2-pyridylthio esterswith imines apparentlyinvolves reaction of tin enolates. Annulations involving allylsilanes. Addition of allylsilanes to carbonyl compounds under the influence of Lewis acids results in tetrahydrofurans.6.T During the a1(,meric substituentsof riborcmcntby variousnucleophilesin
ring formation the silyl group is migrated to the central carbon atom of the original allyl fragment. Becauseof its highly stereoselectivenature, the process is useful for the synthesis of complex structures.
d.electively. - i,r rrrobicyclo[2.2. l]hept-2-enes
Me2SiPh
tc. .r-arylpyridinesin moderate r anA
-CHo
Y
\
I
,,\^ MezStpn
f9:
COOMe
-sncto -35o
BnO 750/o
i t i \ ( . 2 3 , 6 6 3( 1 9 9 3 ) . r/ -1{.869(1993). ' . - " . 1'
r.
Silyltetralins are obtained from a formal [3+3]cycloadditiono initiated by attack o f a l l y l s i l a n e so n b e n z y l i cc a t i o n s .
:5t1994).
OH
'w
OH
[
9-.1 Ii
. "9-11.
| -- - :
tr. -
YI
SnCl4
|
-oH
I e9.1).
7-...,/ '
Si(Ph)2t-Bu 2,6-di-r-burylpyridine, cH2ct2 0o.30 min
w \-\
t l .'$Si(Ph)2t-Bu
64"/"
llr-rllr 17.335-340 drrr oi SnClainducesopening of lcFendson the nearby structure. c ',hrained.l'2
Diels-Alder reactions. Diels-Alder reactionsare ca:alyzedby Lewis acids, including SnClr. Selectivecomplexation of SnCla to the less hindered ester group of an unsymmetricalchiral maleic esterdirects asymmetricDiels-Alder reactions.q Hetero-Diels-Alder reactions of unsaturated a-keto esters also benefit from the presenceof SnClr, as unactivated alkenes can be used as dienophiles.r0
rc. rre formed3 stereoselectively 1;:rzarion.The cationsare gener[\l.ne. lactamscondensewith 2xc ,'f SnCl+, forming bicyclic
Ene reaction.tt Formation of 8-benzylaminoindolizidineand l-benzylaminoquinolizidine derivatives from the imines of 2-pyrrolidinecarbaldehydeand 2-piperidinecarbaldehydeis mediated by SnCla.On the other hand, TiClq converts the same imines to bicyclic products that possessbenzylideneimino and isopropyl groups in a cls arrangement.
356 Tin(IV) chloride-tributylamine Glycosylation
Gtycosidation
with tin phenoxides12 and silyl ethers13 may use
SnCla as catalyst. It is interesting that either a- or B-glucosides are accessible from the same glycosyl donor by slight variation of conditions. 'C.M.
M a r s o n , A . J . W a l k e r , J . P i c k e r i n g ,A . D . H o b s o n ,R . W r i g g l e s w o r t h ,a n d S . J . E d g e , JOC 58, s944 (t993). tC. M . M a r s o n , S . H a r p e r , A . J . W a l k e r , J . P i c k e r i n g ,J . C a m p b e l l , R . W r i g g l e s w o r t h ,a n d S . J . Edge, T 49, 10339 (1993). tL. D . M . L o l k e m a , H . H i e m s t r a , C . S e m e y n ,a n d W . N . S p e c k a m p ,I 5 0 , 7 l 1 5 ( 1 9 9 4 ) . o D. H. Hua, F. Zhang, J. Chen, and P. D. Robinson, JOC 59,5084 ( 1994). sR. A n n u n z i a t a ,M . B e n a g l i a ,M . C i n q u i n i , F . C o z z i , a n d L . R a i m o n d i ,I 5 0 , 5 8 2 1 ( 1 9 9 4 ) . 6J. S . P a n e k a n d R . B e r e s i s ,J O C 5 8 , 8 0 9 ( 1 9 9 3 ) . 7T. Akiyama, K. Ishikawa,and S. Ozaki, CL 627 (lgg4). 8S. R. Angle and J. P. Boyce, IL 35, 6461 (1994). 'K. M a r u o k a , M . A k a k u r a , S . S a i t o , T . O o i , a n d H . Y a m a m o t o , J A C S 1 1 6 , 6 1 5 3( 1 9 9 4 ) . 'oA. S e r a , M . O h a r a , H . Y a m a d a , E . E g a s h i r a , N . U e d a , a n d J . - i . S e t s u n e ,B C S J 6 7 , l g l 2
'M. Y a m a g u c h i ,M . S e h a t a ,A . H a l e s h aA. H a y a s h i , M . Y a m a g u c h i ,a n d \ l H
Tin(II) hexamethyldisilazide. N,N-Dialkyl enamines. Upoo their reaction with ketones forms cr Amides and lactams. Conren the presenceof [(MerSi)2N]:Sn.Thr amino estersto give B-lactams.'
' C . B u r n e l l - C u r tayn dE .J . R o s k a m g 1 2 C .B u r n e l l - C u r tayn dE . J .R o s k a m pi tL. A. Smith,W.-B.Wang,C. Burncll oW.-B.WangandE.J. Roskamp../.4
,r994\-
" S. Laschat and M. Grehl, CB 127,2023 (1994). l2F. Clerici, M. L. Gelmi, and S. Mouadelli, JCS(Pl)985 (1994). rrK. Matsubara, T. Sasaki, and T. Mukaiyama, CL 13':.3(1993).
Tin(IV) chloride-tributylamine. Alkynyltrichlorotin reactions.t The reagentsare generatedfrom l-alkynes by treatmentwith SnClq-Bu:N in CHzCl2.Thus alkynylation of aldehydes,acetals,and enones(1,4-mode)is achievedunder mild conditionsusing a one-potoperation. Condensation of silyl enol ethen and ketones with 1-alkynes. Both alkylidenation2 and cyclopentenone formationr are observed. The annulation requires the treatmentof the initial condensationproductswith a strong base(e.g., DBU). Even with essentially the same reaction components, the "in situ" version produces p,7-unsaturatedketones.a
Sncla - Bu3N Ph----
M o C N .A :
o tl
,^v)/,\ \ t l
Ph 74"/"
o Ph:
Snola - Bu3N M%S|Cl
\ry
I 2tpn
73/" ' M. Yamaguchi, A. Hayashi, and M. Hirama, CL 24'19(1992). 2M. Yamaguchi, A. Hayashi, and M. Hirama, "/ACS 115, 3362 (1993)
Tin(IV) oxide-isopropanol. Deoxygenation of carboatl cd by precipitation with aqueousamrr The reduction of aliphatic carborl lr aromatic acids are further reduccd hydrocarbons.
rK. Takahashi, M. Shibagaki. H. Kum
T i n ( I I ) t r i f l a t e . 1 3 , 3 0 1 - 3 0 2 :l l . j Propargyl amincs.' a-Alkorl Sn(OTf)2,enabling reaction*ith all Glycosylation 2 Lactols tsuge with Sn(OTf)z and (MerSi):O Orh La(OTf):. Aldol reactions. Asymrnctrr lytic systemsconsistingof SntOTf r very efficient.3'aIt is interestingrl diamine ligand (derived from prol selectivity.5
PhcHo+ a":
t-^ T {
Tin(II) triflate 357 may use rr.,,\lJesr: and silyl ethers13 , accessible from are : rJ-glucosides r . J r t l o n s . c' k$.
r . R . W r i g g l e s w o r t h ,a n d S . J . E d g e .
g . - ' t r m p b e l l , R . W r i g g l e s w o r t h ,a n d S . J . T \ i p e c k a m p ,7 5 0 , 7 l l 5 ( 1 9 9 4 ) . . . " , r 5 9 . 5 0 8 4( 1 9 9 4 ) . r . : : J L . R a i m o n d i ,f 5 0 , 5 8 2 1 ( 1 9 9 4 ) . l ! v :
I \ : r : m o t o , J A C S 1 1 6 , 6 1 5 3( 1 9 9 4 ) . . I r i r . a n d J . - i . S e t s u n e ,B C S J 6 7 , l 9 l 2
1994). I '.i I r-i 1993).
Fr.l. are generatedfrom l-alkynes by 1lI r n1lation of aldehydes,acetals,and drrr()n\using a one-potoperation. ones vith I-alkynes. Both alkylidetr.crred. The annulation requires the u : i h a s t r o n gb a s e( e . g . ,D B U ) . "in the situ" version proDrnp,'ngn1..
4..
-\
n tl
3--N
'.
B-
/Y\,'\
\ t l Ph 74"/o
=i
b,.s,:
rM. Yamaguchi, M. Sehata, A. Hayashi,andM. Hirama,CC l':.08(lgg3). aA. Hayashi,M. Yamaguchi, andM. Hirama,SL 5l (1995).
Tin(II) hexamethyldisilazide. N,N-Dialkyl enamines. Upon transsilylation, amines are activated such that their reactionwith ketonesforms enamines.l Amides and lactams. Conversionof acids2and esters3to amides is quite easy in the presenceof [(MerSi)zN]zSn.This method is also applicable to ring closure of Bamino estersto give B-lactams.a 'C. Burnell-Curty andE. J. Roskamp, SL l3l (1993). 2C. Burnell-Curtyand E. J. Roskamp,TL 34, 5lg3 (1993). tL. A. Smith,W-B. Wang,C. Burnell-Curty, andE. J. Roskamp, SL 850(1993). oW.-B.Wangand E.J. Roskamp, "/ACS115,9417(1993).
Tin(IV) oxide-isopropanol. Deoxygenation of carbonyl compounds.' Hydrous SnOzis prepared from SnCla by precipitationwith aqueousammonia then drying and calcinationat 300'C for 5 h. The reduction of aliphatic carboxylic acids gives the correspondingalcohols, whereas aromatic acids are further reduced to the hydrocarbons. Aromatic ketones also give hydrocarbons. rK. Takahashi, M. Shibagaki, H. Kuno,andH. Matsushita, BC,L/67, ll07 (1994).
Tin(II) triflate. 13, 301*302; 14,306-307; 15, 313-314; 17,341-344 Propargyl amines.t o-Alkoxy amines undergo ionization in the presence of Sn(OTf)2,enabfingreactionwith alkynylstannanesto give propargyl amines. Glycosylation 2 Lactols (sugars)react with various nucleophileswhen activated with Sn(OTf)2 and (Me1Si)zO. Other effective catalysts are SnCl2, Yb(OTf):, and La(OTfh. Aldol reactions, Asymmetric aldol reactions of ketene silyl acetals with catalytic systemsconsistingof Sn(OTf)2,a chiral diamine, and SnO or Bu2Sn(OAc)2 are very efficient.t'o It is interesting that slight changes in the structure of the chiral diamine ligand (derived from proline) can have opposite effects on the enantioselectivity.5
..-/\z' I 2tpn 73/"
lr-. ls92). t ils r-162(1993).
PhcHo+ 4.,:
n '"\
P
uennf a'\
OSiMe" l -
OSiMe3
Sn(OTf)2
cosEt + h
"n&"ottt :
(95:5)
358 Titsnium(III) chloride '
T. Nagasaka,S. Nishida, K. Adachi, T. Kawahara, S. Sugihara, and F. Hamaguchi, H 36,265'l ( 1993). 'T. Mukaiyama, K. Matsubara, and M. Hora, S (Spec./ssue) 1368 (1994). 'T. M u k a i y a m a , I . S h i n a , H . U c h i r o , a n d S . K o b a y a s h i ,B C S . /6 7 , 1 7 0 8 ( 1 9 9 4 ) . ol. S h i n a , H . U c h i r o , S . K o b a y a s h i ,a n d T . M u k a i y a m a , T 4 9 , 1 7 6 l ( 1 9 9 3 ) . 5S. K o b a y a s h ia n d M . H o r i b e , A C S 4 8 , 9 8 0 5 ( 1 9 9 4 ) .
o
+
ll Ph^ct
'L.
PhxCC I
o
E . F i s h e r ,J . M . C a r o o n , J . S . R . S r e d
0993).
Titanium, low-valent. 13, 303-304, 310-311; 14,307-309;15, 315, 316,317; 16,330-332 Preparation.t Reduction of TiCl: by high-surface Na (supported on AlzOr, TiO2, NaCl, . . .) is a convenient procedure. In the McMurry reaction it shows a tem-
'Y. Kodera, S. Watanabe, Y. Imada. eld 3A. Clerici and O. Porta, JOC 5t. ltEg r nA. Clerici and O. Porta, S 99 ( l99lr tS. Araneo, A. Clerici, and O. Porre. rl
plate effect for the cyclization of dicarbonyl compounds. Cleavage of propargyl ethers.z With the low-valent Ti species (from TiCl3, Mg 'IHF) in the reductive cleavageof propargyl ethers is selective, since allyl, benzyl, and methyl ethers remain intact under these conditions. Indolesfrom o-acylanilides.3 The reductive coupling is brought about by TiClr
Titanium(IV) chloride. 13, 30{-ll t7,344-347
andZn in DME. Reductive elimination.a All (E) trienes are formed by treatment of 1,6-dibenzoyloxy-2,4-dienes with the low-valent titanium species prepared from TiClr and LiAlH4. This method is applicable to the synthesis of a leukotriene. 'A. FiirstnerandG. Seidel,S 63 (1995). 2S.K. Nayak,S.M. Kadam,andA. Banerji,SZ 581(1993). 3A. Fijrstner, JOC 59,5215(1994). A. Ptock,andE. Janssen, A. Hupperts, nC. Solladie, G. B. Stone,andA. Rubio,TL34, 1803,1807(1993).
Titanium(Ill) chloride. 13, 302; 16, 330 of N-O bonds. O-Methyl hydroxamates are reduced to primary Cleavage Hydroxylamines are transformed into secondary amines or in ethanol. amidesr imines.2 Benzoins. The cross-coupling of aroyl cyanides with aldehydes by aqueous TiCl: gives convenient access to benzoins,3 as well as 4-hydroxy-3-phenyl-
Nucleophilic reactions. Chinl dioxolanesrwith inversionof contq procedure for imine formation: frora Hydrolysis (or alcoholysis)of RCOfS media. Allylations. In reactions usrng most popular catalysts. It is nor a 8-phenylmenthyl pyruvate,i and .V-r that the four stereocentersof thc pro and two aldehyde molecules are tcl intramolecular reaction is most surtr lactones.E
z V^cgo
+
coumarins.a
+
oVPh l COOMo
Ticr3- HoAci TsoH/PhH
In the synthesis of a-hydroxy B-keto esterss from acid chlorides and methyl phenylglyoxylate the sensitivity of acid chlorides requires maintenance of an anhydrous condition and the presenceof pyridine to capture HCl.
For reactions involving eporl tll lyste (other catalysts such as BF. C ring). Tetrahydropyridinesr0result fr an iminium ion.
("'--'* RAtrtxgoc
Titanium(IV) chloride 359
H 36,2657 r. \ iJgfhara,andF. Hamaguchi,
o ll A
Sr.: I'ruel 1368(1994). r.'.::. SCSJ67,l'708(1994). u\r::r. f 49, 176l(1993). l.r
t I 14. -307-309;15, 315, 316,317; hr;h-:urface Na (supportedon Al2Or, n rhe \lcMurry reactionit showsa tem.,'mpounds. rc l{'u-\'alentTi species(from TiClr, Mg I erhersis selective,since allyl, benzyl, c,'nJltlons. u. r:\ r' couplingis broughtaboutby TiCl3 s r''e fbrmed by treatmentof 1,6-dibenInrum speciesprepared from TiCl3 and nrh..r\ of a leukotriene. lf . e9-r). tsc: IOC 59,5215(1994). l E , i r 8 0 7( 1 9 9 3 ) .
Ph-
Tict3
-ct
*
Ph- -COOMe Y
tl
-coo""
86o/"
'L. E. Fisher, J. M. Caroon,J. S.R. Stabler,S. Lundberg,andJ. M. Muchowski,JOC 58,3643 (1993). 'Y. Kodera, Watanabe, S. Y. Imada,and S.-i. Murahashi,BCSJ67,2542(lgg4'). 3A. ClericiandO. Porta, JoC 58,2889(1993). aA. ClericiandO. Porta,S 99 (1993). t S. Araneo,A. Clerici, and O. Porta,TL 35,2213(lgg4). chloride. 13, 304 - 309 ; 14, 309 -31 l; 15, 317- 320; 16, 332 -337 :
Titan ium(IY) 17,344-347
Nucleophilic reactions. Chiral epoxides are converted into 2,2-dimethyl-1,3dioxolanesr with inversion of configuration by reaction with acetone. An efficient procedure for imine formation2 from ketonesand amines specifies TiCla as promoter. Hydrolysis (or alcoholysis; of RCONH2Tis achievedin the presenceof TiCl4 in acidic media. Allylations. In reactions using allylsilane as nucleophiles TiCla is one of the most popular catalysts. It is now employed in allylating squaric acid derivatives,a 8-phenylmenthyl pyruvate.s and N-acyliminium ions.6 A remarkable observation is that the four stereocentersof the products from 1,S-bis(trimethylsilyl)-2,6-octadiene and two aldehyde molecules are generated with good control.T The stereoselective intramolecular reaction is most suitable for the synthesis of bicyclic d-methylene-7lactones.8
h\Jro\amates are reduced to primary t r r : . l r ) r m e d i n t o s e c o n d a r ya m i n e s o r il .renides with aldehydesby aqueous In.. as well as 4-hydroxy-3-phenyl-
pyridine THF rt, 15 min
o
"\
Ph-*X^r.. i l - "
SiMe3 TiOlr - MeNOa
z \r^cno
cH2ct2
o H v
- 900 -> - 600
MqSi
77"/. OH | o-
-lrc >d
Z;.,\ter' "=\Ao\
For reactions involving epoxy allylsilanes, TiCl4 is definitely the preferred catalyste (other catalysts suih as BF3 . OEt2 also induce transformations of the epoxide ring). Tetrahydropyridinesr0result from an intramolecular attack of an allylsilane on an iminium ion.
.rrer. from acid chlorides and methyl rrJe. requiresmaintenanceof an anhye 1 , ,r a p t u r eH C l .
(u"tu"" RANHBoc
t
cHo l
^
*^il^J-
360 Titanium(IV)chloride Cycloadditions. The ability of TiCl4 to catalyze [2+2)-, l3+2]-, and 14+21cycloadditionsis well known. The l2+21-tr and [3+2]-cycloadditionsr2'r3 involving allylsilanes are useful synthetic methods for assembling polyfunctional cyclic compounds. In Diels-Alder reactions,rathe catalyst not only promotes cycloaddition of specified addends,but cyclohexadienescan be obtained directly through B-elimination of the cycloadducts.r5
COOBn
Ticl4- cH2ct2
-)\:;.
""cooMe
- 78o-> rt
9lo/. (>96% ee)
Aldol reactions.
Highly functionalized carbonyl compounds are produced using diketenet6 and2,2-dialkoxycyclopropanecarboxylic esters't in these condensations. An intramolecularreactionprovidesaccessto 2-alkoxycarbonyl-2-cycloalkenones,'Eand an aromatic version completes the cyclopentannulation of a podocarpic acid derivative,remaking available anatogs of C-aromatic steroids. Aldols derived from propargylic aldehydesare also versatile synthetic intermediates. The anti-selectivecondensationis changed to a syn-selectivewhen the hexacarbonyldicobalt-complexedacceptorsare used.20 syn-Selectivealdolizationdue to chelationcontrol and the 4nti-selectivevariant due to nonchelation control are realized by changing catalysts as with a camphor derivative.2r
Or \
N--{
"a-J l J
.T\ LA - rPr2NEt;
(7^:
PhcHo, - 780
N-{
\ ; -
i
\'^
"s-J 1
\'^
r
Ph 84o/o 867"
Iai o<"\ Ho-a
Ho""(
LA = TiCl, LA = Bu2BOTt
.T\
R'
Nq
'T. Nagata, T. Takai, T. Yamada. K I 2R. C a r l s o n , U . L a r s s o n ,a n d L . H r l r 'L.E. F i s h e r ,J . M . C a r o o n , S . R S Sparacino, and J. M. Muchowskr. C./ nM. O h n o , Y . Y a m a m o t o ,Y . S h i b r d t M.-Y. Chen and J.-M. Fang, lCg pt r uY. Uka.ii, K. Tsukamoto, Y. Nasede. 7H. P e l l i s s i e r ,L . T o u p e t , a n d M . S r r r "K. Nishitani, Y. Nakamura,R. Orrr. tM. H o . ' o ,N . I s h i b a s h i , K . O h s u m r . I r0M. F r a n c i o t t i ,A . M a n n , A . M o r d r a r 1rH. Monti, G. Audran. J.-P.Montr. rt 'tH.-J. Kndlker, G. Baum, and R. Gn ''H.-J. Kniilker, N. Foitzik. H. Gocso 'oY. H a s h i m o t o ,T . N a g a s h i m a .K . K o l '51. A l o n s o , J . C . C a r r e t e r o .a n d J L ( 'uB. Loubinoux, A. C. O'Sullivan. J -L r7S. S h i m a d a ,Y . H a s h i m o t o , T . S e p r It R . L . F u n k , J . F . F i t z g e r a l d ,T . A . O l r reR. C . C a m b i e , P . S . R u t l e d g e .R . , S t 'oC. M u k a i , O . K a t a o k a ,a n d M . H e n r t' T.-H. Yan, C.-W. Tan, H.-C. Lcc. H. "G. Kumaran and G. H. Kulkarnr. rI. ttG. Kumaran and C. H. Kulkarni. f[
Titanium(IV) chloride-diisoprq Claisencondensation 2.3-D tramolecularcondensation wittrou
Ph 97 >99
: :
3 1
Oximoyl chlorides. Through simultaneous dichlorination and reduction, nitroalkenes are converted to a-chloro-oximoyl chlorides as precursors of nitrile oxides.22The presenceof the a-chlorine may be useful in some synthetic situations. Oximoyl chlorides are obtained when the reaction is conducted in the presenceof triethylsilane.23
H
o
\A o
l
\-JLol
p-Amino estersand &laclction on treatmentwith TiClri-Pr:
Titaniun(IV) chloride-diisopropylethylamine 361
a l r , , c f 1 + 2 1 - , 1 3 + 2 1 - ,a n d [ 4 + 2 ] involving [.: i -cycloadditions12'r3 rnr. :n:r polyfunctionalcyclic comx,: 'nlr promotes cYcloaddition of
Tict4
R NOz
R'
CH2Cl2 rt.1h
COOBn
"'cooMe 91'/" (>96% ee)
rr^, nrl compounds are Produced rl",.r r I ic esters'tin thesecondensas : l-rlkoxycarbonyl-2-cycloalker . . , ' r . ' n t a n n u l a t i o no f a p o d o c a r p i c l r , . n ' , r t i cs t e r o i d s . r :,.,, rersatilesyntheticintermedit(. J . \n-selectivewhen the hexacarrr,r:,,iand the anti-selectivevariant In-i:1g catalystsas with a camPhor
Or \
o-
,N-\
i
c
HO
N
OH 84-92q..
t a : : r J d i r e c t l Yt h r o u g hB - e l i m i n a -
F-.
R. .Ct
"'{-",
(1994)' rT. Nagata, T. Takai, T. Yamada, K. Imagawa, and T' Mukaiyama, BCSJ 67'2614 2R. Carlson, U. Larsson, and L. Hansson, ACS 46, l21l (1992)' . L . E . F i s h e r , J . M . C a r o o n , s . R . s t a b l e r , S . L u n d b e r g , S . Z a i d i , c . M . S o r e n s e n ,M . L . Sparacino, and J. M. Muchowski, CJC 72' 142 (1994)' oM. (1993)' Ohno, Y. Yamamoto, Y. Shibasaki, and S. Eguchi, JCS(PI) 263 'M.-Y. Chen and J.-M. Far€, JCS(PI) 1737 (1993). (1993). uy. u k a l i , K . T s u k a m o t o ,y . N a s a d a ,M . s h i m i z u , a n d T . F u j i s a w a ,c L 2 2 l 7 H. Pellissier, L. Toupet, and M. Santelli, JOC 59' 1709 (1994)' (1993)' sK. N i s h i t a n i , Y . N a k a m u r a , R ' O r i i , C . A r a i , a n d K . Y a m a k a w a ,C P B 4 l ' 8 2 2 (1994)' nM. H o l o , N . I s h i b a s h i ,K . O h s u m i ' K . M i u r a , a n d A . H o s o m i , J O M C 4 7 3 , C l t0M. (1993)' F r a n c i o t t i , A . M a n n , A . M o r d i n i , a n d M . T a d d e i ,T L 3 4 ' 1 3 5 5 rlH. M o n t i , G . A u d r a n , J . - P . M o n t i , a n d G . L e a n d r i' S L 4 0 3 ( 1 9 9 4 ) ' ' ' H . - J . K n i i l k e r , G . B a u m , a n d R . G r a f , A C I E E 3 3 , 1 6 1 3( 1 9 9 4 ) . ' t H . - J . K n i i l k e r , N . F o i t z i k , H . G o e s m a n n ,a n d R . G r a f ' A C I E E S 2 ' l 0 8 l ( 1 9 9 3 ) ' lay. Hashimoto, T. Nagashima, K. Kobayashi, M. Hasegawa,and K. Saigo, T 49,6349 (1993). '' 1. Alonso, J. C. Carretero, and J. L. G. Ruano' JOC 58' 3231 (1993)' (1994). 16B. L o u b i n o u x , A . C . O ' S u l l i v a n , J . - L . S i n n e s ,a n d T . w i n k l e r , r 5 0 , 2 0 4 7 (1993)' '7S. S h i m a d a ,Y . H a s h i m o t o , T . N a g a s h i m a ,M . H a s e g a w a ,a n d K ' S a i g o ' ? 4 9 ' 1 5 8 9 ( 1993). ,r 1 1 5 , 8 8 4 9 W o s , " / A C S A . J . a n d S . P a r a , K . R . L . F u n k , J . F . F i t z g e r a l d ,T . A . O l m s t e a d , reR.C. 133(1994). C a m b i e , P . S . R u t l e d g e ,R . J . S t e v e n s o n ,a n d P . D . W o o d g a t e ,J O M C 4 7 1 , ' o C . M u k a i , O . K a t a o k a , a n d M . H a n a o k a ,J C S ( P I ) 5 6 3 ( 1 9 9 3 ) ' t'T.-H. Yan, C.-W Tan, H.-C. Lee' H'-C. Lo, and T.-Y' Huang,JACSlf 5' 2613 (1993)' "G. Kumaran and G. H. Kulkarni, TL35,5517 (1994). ttG. Kumaran and G. H. Kulkarni, TL 35, 9099 (1994).
Titanium(IV) chloride-diisopropylethylamine' can be made'by an inclaisen condensation 2,3-Dihydro-44-pyran-4-ones stereocenters. existing affecting without condensation tramolecular
Ph
1
o \-lLol s ir.hlorination and reduction' ni;hl .r:Jesas precursorsof nitrile oxu.ct ul in some synthetic situations' lr,,: r\ conductedin the Presenceof
o
o tl
TiCl4- tsPr2NEt
l
.,.
/
cH2clz - 780
:'\
"
i l l
Vot""'..
81"/"
p-AminoestersandB.lactams.ChiralN.acyloxazolidinonesundergoenolizaand the resulting titanium enolates add to
tion on treatment with TiClri-Pr2NEt,
362 Titanium(lV)chloride-titaniumtetraisopropoxide The adducts are converted to B-lactams in two steps' On imines stereoselectively.2 gives B-lactams the other hand, reactron of the enolates derived from thioesters directly.3 lW. Oppolzerand l. Rodriguez,HCA76, 1282(1993)' t t. ,qUiufrurnr, M. Motevalli,A. J. Robinson,and P' B' Wyatt' T 50' 12755(1994)' (1994). rR. Annunziata, M. Bengalia,M. Cinquini,F.Cozzi,andL. Raimondi,?50,94'71
Titanium(IV)chloride-lithiumaluminumhydride'13'310;14'307-308; 15,320-32r givesthe products sulfidesfrom sulfones.t The reductionis rapid(30 min) and in high yields(62-937o\. generattng i_CUoro enones.2 The TiCl+-LiAlHa realent systemis capableof from CCI+,which reactswith silyt enol ethersto form a-chloro dichlorocarbene enones.
,P OSiMee -
Ticl. - LiAlH4
;"7*.
\_-/
0o , 30 min
71"/.
'E. Akgun,K. Mahmood,andC' A. Mathis'CC'761(1994)' 2M. Mitani and Y. Kobayashi,BCS"/67'284 (1994)' anhydride-silver(I) triflate' Titanium(IV) chloride-p-trifluoromethylbenzoic in the presenceof Transacylation. Silyl estersbehaveas acyl donors to aminesr instead of the alcothe dual-catalyst system and the aromatic anhydride. silyl ethers lactonization,3a simihols can be converted to estersunder these conditions,zand for lar system (AgClOa instead of AgOTf) is effective' rM. Miyashita,t. Shiina'andT. Mukaiyama,CL 1053(1993)' ' tvt. Ulyasfrita,I. Shiina,S' Miyoshi,andT' Mukaiyama'BCS"/66' l5l6 (1993)' tT. Muiaiyama,J. Izumi, M. Miyashita,and l' Shiina,CL9O'7(1993)' tetraisopropoxide' 14' 87-88; 15' 321-322' Titanium(IV) chloride-titanium 335-336: 16, 337 -338, 353-354 in situ' Admixture of these reagentsgenerateschlorotitanium isopropoxides 1,3-DiarYlallenes.l rP€TiClg - NaN(SiMeg)z
ArcHo
/THF (MezNlsP=cHz
ArCH=C=CHAr 17 - 6'l"k
cis- 4,5- Disubstituted E lactonct.'
-T-lI Meofl MeO
+ COOMe
2 - A r yI - 2, 3 - dihy drob c n zof u ra n s.' with styrenes is high yielding' and tt carpans and neolignans. Diels-Alder reactions. C:-St-ma dienophiles for asymmetric Diels-Ab Lewis acid catalyst(s) the dienophilcs r
Aldol condensation. The rcrtr ketene silyl acetals is syn-selective' ro tuted amides and thioamides bchare r (i-PrO)rTiCl is used as catalyst.6
' K . A . R e y n o l d sP,. G . D o p i c o M , .J. Surd 1 2 9 8( 1 9 9 3 ) . 2S.Shimada, ed I. Tohno,Y. Hashimoto. 3T.A. Engler,K.D. Combrink.M. A L4 (1994). aT. Sammakiaand M. A. Berliner.tOC f) 5S.Kiyooka,K. Suzuki,M. Shirouchr. Y uL.Z.Viteua,T.S.Gospodova' andY \ !
Titanium tetraisopropoxide. 13. ll I
r7.347-348
Alcoholysis of thiocsters.' \A tEl catalyst in an alcohol under rcflux. 6r Methylimines.2 An excellenl c: paraformaldehydeprior to reduction r (e.g., nitroanilines) do not reacl. p,y-EpoxY alcohols. Treatnrot r
molecular sieves results in the forrart atom comes from the OOH grouP: thc ing from an allylic alcohol, an ePor! centers can be PreParedthrough Ph transfer.
k
Titanium tetraisopropoxide 363
Irc:::J to p-lactams in two steps.On itcJ l1'()mthioestersgives B-lactams
cis- 4,5- Disubstit u ted & lactones.2
-+-
t"ofl^^^..
(1994). 8 .\ .:n. T 50, 12755 rr . -.: [- Raimondi,T 50,9471(1994).
MeO
COOMe
o U"n
iProTict3/ cH2ct2; TSOH/ PhMs 900
13, 310; 14,30'1-308;
lldride.
; rJ::.1,10 min) and gives the products ai.:.: \\stem is capableof generating h ...r1 enol ethers to form a-chloro
/"<
|
,P /fcl
\_---7
2'Aryl- 2,3- dihydrobenzofurans.3 The [3+2]cycloaddition of benzoqurnones with styrenes is high yielding, and it has been applied to the synthesis of pterocarpansand neolignans. Diels-Alder reactions. c2-symmetricar 2-alkenyl-1,3-dioxanes are exceilent dienophiles for asymmetric Diels-Alder reactions.4In the presenceof appropriate Lewis acid catalyst(s)the dienophiles ionize and are thereby activated. Aldol condensation. The reaction of N-protected a-amino aldehydes with ketene silyl acetals is syz-selectivesin the presenceof (i-pro)2Ticlz. N,N-Disubstituted amides and thioamides behave similarly, although the less acidic Lewis acid (i-PrO)rTiCl is used as catalyst.6 rK,.A.
|
"e]).
lzoic anhydride-silver(I) triflate. 'l J, ,11rps to aminesr in the presenceof drjc Silyl ethersinsteadof the alcor r i , , n . . ra n d f o r l a c t o n i z a t i o n ,a3s i m i lt\ a J:
."e.1).
rz^ '
ttCSJ 66. l516 (1993).
r.,/907(1993). p o r i d e . 1 4 ,8 7 - 8 8 ;1 5 ,3 2 1 - 3 2 2 , o:.:.rnrum i s o p r o p o x i dienss i t u .
ACH=C=CHAr 17 - 6170
Reynolds, P.G. Dopico,M.J. Sundermann, K.A. Hughes,and M.G. Finn,,/OC5E, 1298(r993t. 2S.Shimada, I. Tohno,y. Hashimoto, and K. Saigo,CL \llj (lgg3). rT.A. Engler,K.D. Combrink,M.A. Leravic,K.O. Lynch,and J.E. Ray,JOC Sg,656i (t994). oT. SammakiaandM. A. Berliner,JOC 59,6890(1994). 5s. Kiyooka, KiSuzuki, M. Shirouchi,y. Kaneko,andS. Tanimori,TL14,5729(rgg3). 'L.2. Yiteva, T. S. Gospodova, and y. N. Stefanovsky , T SO,7lg3(tgg4\. Titanium tetraisopropoxide. 13, 3l l-313; 14, 3lt-312; lS, 322; 16, 339: t7,347-348 Alcoholysis of thioesters.t when thioesters are reacted with (j-pro)+Ti as a catalyst in an alcohol under reflux, ordinary esters are formed. Methylimines.2 An excellent catalyst for the condensation of amines with paraformaldehydeprior to reduction with NaBHa is (i-pro)aTi. weakly basic amines (e.g., nitroanilines) do not react. B,y'Epoxy alcohols. Treatment of an allylic hydroperoxidewith (j-pro)aTi and molecular sieves results in the formation of the epoxy alcohol.3The epoxy oxygen atom comes from the ooH group; therefore, it has a defined stereochemistry. Starting from an allylic alcohol, an epoxy diol having at least three consecutive srereocenters can be prepared through photooxygenation and the catalyzed oxygen atom transfer.
364 Tltanocenederivatives
9Hl
OH 02, TPP
,\ il
'
HOO,,.,/\
l
.\l
hv, CCl4
are observedfor these reactions.:All;-lzro by hydrozincation with Cp2TiCl5Zn I 1 Li ' the carbonyl compoundto be alkylatcd Ug Pauson-Khand-tlpe reaclior.' monoxide, CpzTi(PMer)zscaffolds al ker
Ti(oiP04
|l CCli,-25o,10min
00,4h
'C. A. MerlicandH. D. Bendorf,OM 12.5t9 tT. K. Hollis,N. P. Robinson, J. whelan.tod 'Y. Gao.H. Urabe.and F. Sato,JOC 5t. 55:l 4 C. Berk, R. B. Grossman,and S. L. Brrbrr S.
9 3 : 7 I M. Muzard and C. Portella, JOC 5E,29 (1993)' 2 S. Bhattachary ya, TL 35, 2401 (1994). 'W. Adam and B. Nestler, JACS 115' 7226 (1993)'
Titanium(IY) chloride-zinc. Reductive cross-coupling of carbonyl compounds.r The low-valent titanium and speciescouples ketones to nitriles and carboxylic acid derivatives such as esters acid chlorides. The products representreductive acylation products of ketones.2
1-(p-Toluenesulfinyl)propy ne. 1,3-Dipolar cycloadditions.'
Thrs d rt irtcs. toluenesulfinyl-5-methylisoxazol piPcrd simple F-amino ketones. Some method. rC. Louis.S. Mill. V. Mancuso, andC llod.
o nr{
/
r
cooEt \
fcooEl
ri0lt-Zn;
cooEt
Ar
3%HCI
AT
AT 78 '87"/o
Amidines,3 Coreduction of nitroarenes and nitriles leads to amidines. For aliphatic 7-nitronitriles an intramolecular coupling furnishes 2-amino-l-pyrrolines. 'J. Gao,M.-Y.Hu, J.-X. Chen,S. Yuan,andW.-X. Chen,TL 34' 1617(1993)' 'o.-q. sni, J.-X. Chen,w.-Y. Chai, W.-X. Chen'and T.-Y' Kao, TL 34' 2963(1993)' t J.-X.Ch"n,W.-Y.Chai,J.-L.Zhu, J. Gao,W.-X. Chen,andT'-Y' Kao,S 87 (1993)' 72-' 17 Titanocene derivatives. 13, 102; 14, 120-l2l; 15,32-33,81-82, 120; 16' in Dielsunit 7-Hydrorynorbornenes.t Titanocene dichloride provides a diene c-7. group at Alder reactions. Hydrolysis of the adducts introduces a hydroxyl
/ro"
/COOMo 11 ll
THF; +
CP2TiCl2 aq.HzSor
rl\ "-Y
COOMe 38%
and Allylation. The reaction of allylsilanes with carbonyl compounds, acetals, good conversion ortho esters is catalyzed by cpzTi(oTf)r. Rapid reaction rates and
2- (p-Toluenesulfonyl)ethyle m i nc. Amides.t Reductivealkylation tril acylation and treatment with t-BuOK rn I 'D. DiPietro,R. M. Borzilleri,and S.V llb
p-Toluenesulfonylimino iodobcnrcrAziridines.' Alkenes arc transfrt transfer of the TsN group from TsN=lPl CuClOr are highly efficient catall'srs Allyl tosyl amides.2 Reaction of el\ the correspondinghalides (in situ) rrth amides.
'D. A. Evans,M. M. Faul,andM.T. Brlodct 'Y. Nishibayashi, K. Orc. a S.K. Srivastava. Trialkylaluminums. 15, 341-342: 15. i Addition to carbonyl compotndt gem-dimethylation of a ketone. It cao b Me:SiOTf combination.r In the prcscrc
gated ketones and aldehydesin the 1.4-a Chiral B-keto sulfoxides react *ith V present.aa-sulfonyl-a,B-unsaturatcd es even without a Cu catalyst.5
Trialkylaluminums365
>:-. t
"o""/\
OH I
.4
g f , : 5
ounds. The low-valent titanium a.:J derivativessuch as esters and f \ . J r r ( r n D r O d u c tO Sf k e t o n e S . 2
are observedfor thesereactions.2Allylzinc reagentsare obtained from dienes in THF by hydrozincation with Cp2Ticr2-znr2-LiH in a ratio of (0.1 :1.2:2.0) with respecrro the carbonyl compound to be alkylated.3 Pauson-Khand-type reaction.a using r-BuMe2SicN as a surrogate for carbon monoxide, cp2Ti(PMe3)2scaffolds alkene and alkyne units to form cyclopentenones. 'C. A. MerlicandH. D. Bendorf,OM 12,559(1993\. 2T.K. Hollis,N. p. Robinson, J. Whelan,andB. Bosnich , TL 34,4309(1993). rY. Gao,H. Urabe,and F. Sato,JOC Sg,SS21(tgg$. 'S. C. Berk, R. B. Grossman,and S. L. Buchwald,"/ACSll5, 4gl2 0lgg3). l-(p-Toluenesulfi nyt)propyne. 1'3-Dipolar cycloadditions.t This dipolarophile reacts with nitrones to give 4_ toluenesulfinyl-5-methylisoxazolines,which on hydrogenation are transformed into p-amino ketones. Some simple piperidine alkaloids can be synthesized by this method. IC. Louis,S. Mill, V. Mancuso, andC. Hootele , CJC 72, 1347(lgg/ir. 2-(p-Toluenesulfonyl)ethylamine.
AT 78 - 870/o
J :rtrrles leads to amidines. For rg I rrn ishes2-amino-l-pyrrolines. c : i 1 . 3 4 , 1 6 l 7( 1 9 9 3 ) . [ \ Kao.rL34,2963(1993). a . - l T - Y .K a o ,S 8 7 ( 1 9 9 3 ) .
i . i : - . r - 1 . 8 l - 8 2 , 1 2 0 ;1 6 , 7 2 - 7 7 nJ.' lrovides a diene unit in Dielsxe. r hvdroxyl group at C-7.
roH
r/\ =v .
I COOMo 38%
ci:bt)nvl comPounds, aCetals,and cr.::,'n
rates and good conversion
Amides.t Reductive alkyration (with an ardehyde and NaBHa) followed by Nacylation and treatment with t-BuoK in THF constitutes a route to RCONHCHTR,. 'D. DiPietro,R. M. Borzilleri,andS.M. Weinreb, (1994). JOC Sg,5g56 p-Toluenesulfonylimino iodobenzene. 17, 34g Aziridines.t Alkenes are transformed into aziridines by copper-mediated transfer of the TsN group from TsN:Iph at room temperature. Both Cu(OTf)z and CuClOa are highly efficient catalysts. Allyl toiyl amides.2 Reaction of allyl phenyl tellurides which are obtained from the corresponding halides (in situ) with rsN:Iph (or chloramine T) furnishes the amides. 'D. A. Evans,M. M. Faul,andM.T. Bilodeau, JACS116,2742(lgg4). 'Y. Nishibayashi,S. K. Srivastava, K. Ohe,and S. Uemura,TL 36, 6725Ogg5\. Trialkylalu minums. lS, 341-3 42; 16, 374: 17.3.tZ _375 Addition to carbonyl compounds. A useful group transformation is reductive gem-dimethylation of a ketone. It can be performed in one step using the Me3Al_ Me3Siorf combination.r In the presenceof cuBr, trialkylaluminums add to coniugated ketones and aldehydesin the 1,4-manner.2,3 chiral B-keto sulfoxides react with Me3Al under chelation control when Zncl2 is present.aa-sulfonyl-a,B-unsaturated esters undergo conjugate addition with Me3Al even without a Cu catalyst.s
366 Trtalkylaluminums Functional group exchange. A synthesis of cyanoguanidines6from O-substituted N-cyanoisoureasis promoted by MejAl.
"'*$c' NCN tl Ph.N/\o_Ph
AtMe3
l
l
-
tn-"Ar_{-)-", 1,2-dichloroethane. 650.2 h
H
H
H
\___/
62% Removal of chiral auxiliaries is very successful with lithium benzylthio(trimethyl)aluminate, which is prepared in situ from BnSLi and Me3Al.7 Carboalumination.n Alkylation of l-alkynes using a mixture of Me3Al and Cp2ZrCl2to afford 2-methyl-l-alkenes can be accomplishedin the presenceof water. The regioselectivity is excellent. p-Lactams." The cyclization of B-amino esters is induced by i-Bu3Al. Al-
' C. U. Kim, P.F. Misco, B. y. Luh, and M. V 'J. K a b b a r a ,S . F l e m i n g , K . N i c k i s c h , H . \ c h . 'J. K a b b a r a ,S . F l e m i n g , K . N i c k i s c h . H . N c h . -M. C . C a r r e n o ,J . L . G . R u a n o , M . C . M r c s r r o . 4 9 , 1 1 0 0 9( 1 9 9 3 ) . 'J. Roio, M. Garcia, and J.C. Carrerero. f ll_ "K. S . A t w a l , F . N . F e r r a r a ,a n d S . Z . A h n r d . 7O. M i y a r a , Y . F u j i w a r a ,A . N i s h i g u c h i . H . B c 637 0994\. t P. Wipf and S. Lim, ACIEE 33. 1068 ( 199{ , eH. Vorbri.iggenand R. B. Woodward. T at. t6. 'uK. I s h i h a r a , N . H a n a k i , a n d H . y a r n a m o r o .. l _ "H. Fujioka, M. Miyazaki, H. Kitagasa. T Y. Kita, cc 1634 (1993).
Trialkylsilyldiazomethane.13, 327-llt: Alkynes.' Deoxygenativehomologar treatmentwith lithiatedtrimethylsilyldraz
though the yields are not high, many functional groups are tolerated. Ring cleavage. Diastereoselectivecleavageof C2-symmetrical 1,3-dioxaneshas been effected by reagentsprepared from organoaluminums. For example, reduction with a speciesobtained from MerAl and CoROH is useful for synthesisof chiral secondary alcohols.ro
-(Y
Me3Al - C6F5OH
oYo
P h M e ,0 o , 3 - 1 2h
CoHre
"aY oH o)7cuH'' H'l
H
X
ir
I Znolz- ElzO lCHzClz; R3At, - 78o
.7!..,
Triarylbismuthines.
Esters and amides.t Condensationof c cohols and amines proceeds via triacylory. conditions.
Oxidation.2 Bismuthines accept or!.F irradiation. These Ar3BiO are mild oxidanrrondary alcohols to carbonyl compounds. hr. trast, oxides of lower pnictogen elements an substances.
cl
H.
THF.
'K. Miwa,T. Aoyama,andT. Shioiri,SL 107r lt 'J. A. Soderquistand E. I. Miranda,fL 34. 49OJ
Interception of Beckmann fragmentation products with RrAl completes homologation and skeletal changesof a-alkoxy oximes.rrThis transformation follows a highly stereoselectivecourse when a neighboring n-donor group is present to direct the attack of the aluminum reagent. The method has been applied to a synthesis of endo -brevicomin.
\ -o I .r'l-d 4 X o_J ) .'\ /
\
Esteritication 2 Trisopropylsilyldiazor stable. Contrary to Me3SiCHN2,its rerlrol esters.
70%
O P \
Mcascnr
'ni
CN
w
(c,si lrans - 10: 1)
'T. Ogawa,T. Hikasa,T. Ikegami,N. Ono, aod H 'H. Suzuki,T. Ikegami,and y. Marano.fL lS. S
Triarylbismuthines367 | . i :nrrsuaoidines6from O-substi-
NCN
--
* r
^t-{' H
\___/
,}-cr
627o cc..:ul with lithium benzYlthioon: BnSLi and MerAl.T r. d\rng a mixture of Me3Al and onrpir'hed in the presenceofwater. c . r c r ' . i s i n d u c e db Y i - B u r A l . A l !r,'Jl\ aretolerated. has oi ( -\\'mmetrical 1,3-dioxanes reduction llurr rnums. For example' r. u..-iul for synthesisof chiral sec-
lH
a
o'a/cuH''
'C. U. Kim, P.F. Misco,B.Y. Luh, andM. M. Mansuri,TL 35,3017(1994). 'J. Kabbara,S. Fleming,K. Nickisch,H. Neh, ?50,743(1994). andJ.Westermann, 'J. Kabbara,S. Fleming,K. Nickisch,H. Neh, and J. Westermann, SL 679(lgg4). 'M. C. Carreno, L. A. B. Bueno,andJ. Fischer, J. G. Ruano,M. C. Maestro, M. P.Gonzalez, I 49, 110090993). 'J. Ro.|o,M. Garcia,and J.C. Carretero,T 49,9787(1993). uK. S. Atwal, F. N. Ferrara, andS.Z. Ahmed,TZ 35, 8085(1994). tO. Miyata,Y. Fujiwara, Nishiguchi, I. Ninomiya,andT. Naito,SL A. H. Honda,T. Shinada, 63'7(1994). 'P. Wipf and S. Lim, ACIEE 33, 1068(1994). eH. Vorbriiggenand R. B. Woodward,T 49, 1625(1993). 'oK. Ishihara,N. Hanaki,andH. Yamamoto, JACSll5, 10695(1993). "H. Fuiioka,M. Miyazaki, H. Kitagawa,T. Yamanaka,H. Yamamoto,K. Takuma,and Y. Kita, CC 1634(1993).
13, 327 -328; 15, 344; 16, 361 Alkynes.t Deoxygenative homologation of ketones is accomplished simply by treatment with lithiated trimethvlsilvldiazomethane. Trialkylsilyldiazomethane.
,o
<,
Me35iC(Li)=N2
Ph
THF, .78O.> A
Ph---58"/.
Esterification ' Trisopropylsilyldiazomethane is very easy to prepare and stable. Contrary to Me3SiCHN2,its reaction with acids yields the pure i-Pr1SiCH2esters.
H l
'K. Miwa, T. Aoyama,and T. Shioiri, SL 107(1994). 2J. A. Soderquistand E. I. Miranda,TL 34, 4905(1993).
7Q70
du.:. r',ith RrAl completeshomoloThis transformationfollows a c\ g r J()norgroup is presentto direct d :,,. heen aPPliedto a synthesisof
Triarylbismuthines. Estersand amides.t Condensationof carboxylic acids bearing an o-H with alcohols and amines proceeds via triacyloxybismuthines and ketenes under neutral conditions. Oxidation.2 Bismuthines accept oxygen from iodosylbenzeneunder ultrasonic irradiation. These Ar3BiO are mild oxidants, which convert benzylic, allylic, and sec-
>o r (cis: trans - 10 : 1)
ondary alcohols to carbonyl compounds, hydrazobenzenesto azobenzenes.By contrast, oxides of lower pnictogen elements are devoid of oxidizing power for organic substances. 'T. Ogawa,T. Hikasa,T. Ikegami,N. Ono,andH. Suzuki,CZ 815(1993). 2H. Suzuki,T. Ikegami, and Y. Matano,TL 35, 8lg'l (1994).
36t
Tributyltlnhydride
Tribromomethyl(trimethyl)silane. Methylketonesfrom aldehydes.t The homologation is mediatedby Cr(II). 'D.
M . H o d g s o na n d P . J . C o m i n a , S L 6 6 3 ( 1 9 9 4 ) .
Tributylstannyloxyalkenes. y-Imino ketonesand diketones.t Tin enolatesare very reactivetowarda-halo imines,forming iminoketonesthat are readilyhydrolyzed. rM.
Y a s u d a ,Y . K a t o h , I . S h i b a t a ,A . B a b a , H . M a r s u d a ,a n d N . S o n o d a ,I O C S g . 4 i E 6 . l g g 4 i t .
readily available, assembly of difunctrooi now a recognized avenue. Furthermore. r chain extensionprocess.'2.'3 Free radical cyclization of 1,6-diencs" ,
double bonds is much valued becauserbc rr orated further. Stannylformylation is olr 1 A very important tactic for c-amino n hydrogen abstractionby an aromatic frec n
away. Thus chain extension at the a-posrrr plished with great success.
Tributyltin
halides. 13, 315 Vinyltins. BurSnCl is commonly used as an electrophile to trap alithioimines,' enolatesoftrimethylsilylaceticesters,2 and alkynyltrialkylboratesalts.3 p,y-Epoxy ketones.4 The reaction of tin enolates with o-halo carbonyl compounds generally affords l,4-dicarbonyl products. However, in the presence of
,nr)
b
Bu3SnBr and BuaNBr the major pathway is switched to attack on the carbonyl group instead of on the a-carbon, resulting in Bry-epoxy ketones. 'B. Jousseaume, M. Pereyre, N. Petit,J.-B.Verlhac,andA. Ricci,JOMC443,Cl (1993). ' A. J. Zapata, C. Forroul,and R. C. Acuna,JOMC 448,69 (lgg3). t M.-2. Deng,N.-S. Li, andY.-2. Huang,JOC58, 1949( 1993). oM. Yasuda, T. Oh-hata,l. Shibata,A. Baba,andH. Matsuda,JCS(|t) 859(1993).
Tributyltin
hydride. 13, 316- 319; 14, 312-318; 15, 325 -333; 16, 343-350;
17,35r-361 Reductions. BurSnH is capable of reducing epoxidesr in the presenceof MgI2, giving alcohols. on the other hand, epoxy ketones suffer reduction at the carbonyl group.t BurSnH-SiOz is useful for reduction of aldehydes.3 Hydrodehalogenation. A synthesis of chiral epoxidesa from trichloromethyl ketones is through enantioselectivereduction to the trichloromethyl carbinols and tinhydride-mediated conversion to the chlorohydrins before base treatment to close the three-memberedring. Dehalogenationof halocarboxylic acidssin water is apparently a method that deserveswide application. other defunctionalizations. Deoxygenation of alcohols via thioxocarbamate derivativesoor benzothiazol-2-yl sulfidesT(formed by Mitsunobu reaction) is readily achieved. Isonitriles have been preparedfrom carboxylic acids via selenocarbamates.8 when a leaving group is presentat the B-position of the seleniumatom, the homolysis of the C-Se bond is followed by expulsion of the B-substituent.Glycal formatione from azidosugar selenideson treatment with Bu3SnH occurs in excellent yields. Chain extension. a-Alkoxy radicals and B-acetoxy radicals generatedfrom the selenidesr0and iodides,r'respectively, add to alkenes. Since the precursorsare quite
,
&rrsr* . ea
crlz=c{r.|coc Pt*r s
Construction of carbocyclcs. Formetr by treatment of unsaturatedthiocarbametc Bu3Sn11.te-zt When the radical adds ro a rn is formed.
Although the goal ofconstrucring rhc lyr cyclization by a tandem free radical crclrz the remarkable power of such process.s.
ueooc.-f phs-/
/ t
\
ftar
i
lrr@ N-
\Me \
r'1
l
l
V"/
Bu3SnH l
-
A" A three-component free radical reruoo, ester is also quite useful. ETOOC: ,OBu r l \ + COOMe
Brrsrt{
Tributytttnhydride 369
il, g.tron is mediatedby Cr(II).
It.. Jre very reactivetoward a-halo i . 1 : ,I r z c ' d . r :rJ \ Sonoda,JOC 59,4386(1994).
-i\ rn electrophile to trap q.I rnd alkynyltrialkylboratesalts.3 n,'lrr('\ with o-halo carbonyl com)r-r. However, in the presence of h.J r() attack on the carbonyl group r.
readily available, assembly of difunctional compounds by free radical reactions is now a recognized avenue. Furthermore, alkenyl radicals can be used to initiate the chain extensionprocess.''.13 Free radical cyclization of 1,6-dienesrawith functionalization at the termini of the doublebonds is much valued becausethe two different functional groups can be elaborated further. Stannylformylation is one possibility. A very important tactic for a-amino radical generationinvolves translocation via hydrogen abstractionby an aromatic free radical generatedfrom a halogen five bonds away. Thus chain extension at the a-position of an amide15or amine16can be accomplished with great success.
l,i ,
h\v
^TU"oo'"
Bu3SnH- AIBN CH2=C1iil.lggttt
)-
PhH, A
95o/.
l\ iL-t()nes. o; \ Ricci, JOMC 443,Cl (1993). L a" 1993). l ! , q 9 3) . t l : r . u J a .J C S ( P I )8 5 9 ( 1 9 9 3 ) .
t 5 t l 5 - 3 3 3 ; 1 6 ,3 4 3 - 3 5 0 ; | .t (\\idesr in the presenceof Mgl2, x. .uft'er reduction at the carbonyl 'r r l i c h rd e s . r r.l cpoxidesafrom trichloromethyl ) rh. trichloromethylcarbinols and lr:n. before basetreatmentto close x : r h r r r y l i c a c i d s si n w a t e ri s a p p a r rn , l alcohols via thioxocarbamate :.J i.r Mitsunobu reaction) is readily When I r. rJs via selenocarbamates.8 r<',i'nium atom, the homolysis of the []:Lcnr. Clycal formationefrom aziur. rn excellentyields. .a!cr()xyradicalsgeneratedfrom the cn.. Since the precursorsare quite
v
constraction of carbocycles. Formation of cyclopentanerings can be initiated by treatment of unsaturatedthiocarbamates,t?selenides,rtand halo compounds with Bu3snH.re-2rwhen the radical adds to a triple bond, an alkylidenecyclopentane unit is formed. Although the goal of constructing the lysergic acid skeletonwas thwarted. the tricyclization by a tandem free radical cyclization of an aryl bromide22still attests to the remarkable power of such processes.
MeOOC
r.leooc-/- \Me
Phs-! a ..y'-t\ t i l l V*/ A"
NMe
Phs\u..r
o-kH
H BusSnH
i'\ N Ac
lysergicacid
36Vo
A three-component free radical reaction23leading to a cyclohexene-dicarboxylic ester is also quite useful. ErOOC---:
\
I
COOMe
ro"
Etooc Bu3SnH- AIBN PhH, A
370 Tributyltinhydride HeterocycliZations. Tetrahydrofuran rings,2a-26tetrahydropyran ethers,2?inand even p-lactams2eare formed in high yields by intramolecular free radical doles,2E cyclizations. Much work has been devoted to the synthesis of the pyrrolidine and pyrrolidone systemsby free radical methods. For pyrrolidine derivativesit is preferableto initiate the cyclization from an aminyl radical generated from N-chloro-30 or N-sulfenylamine.3l'32 A formal intramolecular displacementappearsto be the most favorable pathway available to an a-amide radical.33Such an a-amide radical also adds to a distal unsaturated ester.3aHigher yields of cyclized products are obtained when the a-amide radical is stabilized, for example, by a benzenesulfenylgroup.35
("' il oAtrAcorlu" I Bn
Bu35nH AIBN
o4"Acorlrt" PhcH3 8 0 0 , 4h
Bn 52"/"
The cyclization involving carbon radical and a remote azide group opens a route to pyrrolidines.r Macrolactams are formedsTby the addition of an aminyl radical to a B-keto ester. Aldehydes form O-stannyl ketyls with the Bu3Snradical. A B-alkoxyacrylate unit five bonds away from the ketyl is well positioned to be involved in a radical transfer process;therefore, cyclization ensues.tsFused oxacyclesof well-defined stereochemistry are assembledby this reaction. Heterocyclic 1,2-amino alcohols are similarly procured from dialdehyde monooxime ethers.3e
ao-l-cuo |
|
\-Aol,cooet
- AIBN Bu3snH P h H ,^ ;
cooEt
qc2o - DMAP
pv
Rearrangements, Some rearrangement processes start from intramolecular addition reactions. These include the formation of ketones from enol ethers,aoararylalkanols from ar-bromoalkyl aryl ethers,arand cycloalkyl silyl ethers from
Arr9 9r
B
r
'G. Guanti, L. Banfi, V. Merlo, and E. tarrsrr :T. K a w a k a m i , I . S h i b a t a ,A . B a b a , H . M e r s u d rB. F i g a d e r e ,C . C h a b o c h e ,X . F r a n c k . J . - F P " 'E. J. Corey and C. J. Helal, TL 34, 522? r l99l tU. M a i t r a a n d K . D . S a r m a . ? l , 3 5 . 7 8 6 1r l 9 9 { o M. Oba and K. Nishiyama,S 624 ( 1994r. tl. D a n c y , L . L a u p i c b l e r ,P . R o l l i n , a n d J . T h r t A. G. M. Barrett, H. Kwon, and E. M. \f,'alh-r eF. S a n t o y o - G o n z a l e z ,F . G . C a l v o - F l o r c s . F I s a c - G a r c i a ,a n d M . D . P e r e z - A l v a r e z .S L l ! '"Y. ' Nishiyama,H. Yamamoto,S. Nakata.end " F . F o u b e l o ,F . L l o r e t , a n d M . Y u s , I 5 0 . 5 l - r l I 't K. Miura, D. Itoh, T. Hondo, and A. Hosomr. 'tF. F o u b e l o ,F . L l o r e t , a n d M . Y u s , f 5 0 . 6 : t ! '' 1 . R y u , A . K u r i h a r a , H . M u r a o k a , S . T s u n o r .\ 't L. williams. S.E. Booth. and K. Undhcrm. f '' K. Undheim and L. Williams, CC 883 ( 199r, ''T. M o r i k a w a , M . U e j i m a , Y . K o b a y a s h i .a n d 1 '' D. L. J. Clive, H.W. Manning, T. L. B. 8on ro. ''Y. T a n a b e ,Y . N i s h i , a n d K . - i . W a k i m u n . C t t"L. A. Buttle and W. B. Motherwell. fL 35. -r9{ t'C.-K. S h a ,C . - Y . S h e n ,T . - S .J e a n ,R . - T . C h r u r: Y. i)zlii, D. E. Cladingboel, and P. J. Parsoar. tt E. Lee, C. U. Hur, Y. H. Rhee,Y. C. Part. ead t'D. S c h i n z e r ,P . G . J o n e s ,a n d K . O b i e r e l - .f [ ! 15V.H. Rawal, S.P. Singh, C. Dufour, and C V :oS. D . B u r k e a n d K . W . J u n g , I L f ! , J $ - 1 7r t 9 9 l t'J. C . L o p e z , A . M . G o m e z , a n d B . F r a s c r -R c r d t'T. F u k u y a m a , X . C h e n , a n d G . P e n g ,. r . . l C St t 3H. I s h i b a s h i ,C . K a m e o k a , A . Y o s h i k a r e . R 649 0993\. 'M. Tokuda, H. Fujita, and H. Suginornc. .lC9r " W. R. Bowman, D. N. Clark, and R. J. Merm "J. B o i u i n , E . F r o q u e t ,a n d S . Z . Z a r d . T S | . . l i . 'r K . G o o d a l l a n d A . F . P a r s o n s .J C S / P / r - 1 1 5 -r t A. F. Parsons and R. J. K. Taylor, JCSIPI t l9a: ttT. S a t o , K . T s u j i m o t o ,K . - i . M a t s u b a y a s h rH . I *S. K i m , G . H . J o e , a n d J . Y . D o , . / A C Sl t a . J ! : tt s . K i m , G . H . J o e , a n d J .Y . D o , J A C S l 1 5 . - r ttE. Lee, J.S. Tae,Y.H. Chong, Y.C. Part. V reT. Naito, K. Tajiri, T. Harimoto, I. Ninomrre. *D. Crich and Q. Yao, CC 1265 (1993t.
Tributyltinhydride 371
-' rerrahydropyran r.'ethers,2?inr :tr.:. br int;amolecularfree radical ls . : :le pvrrolidine and pyrrolidorE r Jc: rrtrres it is preferableto initiatc tc.: ::(!m N-chloro-m or N-sulfenyt;. : ' !'e rhe most favorable pathway liJc rudrcalalso adds to a distal unr.rri. :r€ obtainedwhen the a-amidc ; r i - : t r rI g r o u p . 3 5
--] I4'*'\co'Me Bn 5?o
a r.mote azide group opens a route thc .:,JJirionof an aminyl radicalto a ,Sn rrdical. A B-alkoxyacrylateunir d r,, he involvedin a radical transfer ih r ,lc'r of well-defined stereocheml-amino alcoholsare similarly lx
.-o\i..^)....oAc *o-\-"oo.t 910/"
f\..\e\ start from intramolecular {'t [etones from enol ethers,aoar| ;rcloalkyl silyl ethers from arrnJ x.alIr lcycloalkanonesa3 is synthetir.,r-Jrehlorocyclobutanoneis trans-
Bu3SnH- AIBN PhH,^; DBU
H
(,-l/-\ t \--t\__/) Hil
o
74/"
Guanti, L. Banfi, V. Merlo, and E. Narisano,250, 22lg Ogg4\. '.TG. . K a w a k a m i , I . S h i b a r a ,A . B a b a , H . M a t s u d a , a n d N . S o n o d a , 0 ,, g 6 2 5( l g g 4 ) . ' B . F i g a d e r e , C . C h a b o c h e , X . F r a n c k , J . _ F . p e y r a t , a n d A . CTa v5 e JOCSg,Tl3g(1994). 'E. J. Corey and C. J. Helal, TL 34, 522:. .lg%;. 'U. M a i t r a a n d K . D . S a r m a , ? t 3 5 , 7 8 6 10 9 9 4 ) . ^ M. Oba and K. Nishiya ma, S 624 (1994). I. Dancy, L. Laupichler, p. Rollin, and J. Thiem, LA 343 ,1993\. 'A. G. M. Barrert, H. Kwon, and E. M. Wallace, CC li6} o993\. oF. S a n t o y o - G o n z a l e z ,F . G . c a r v o - F l o r e s , F . H e r n a n d e z - M a t e o , p . Garcia-Mendoza,J fsac-Garcia, and M. D. perez-Alvarez, SL 454 (lgg4). 'Y. N i s h i y a m a , H . Y a m a m o r o ,S . N a k a t a , a n d y . I s h i i , C L g 4 l . l g g 3 . , . 'F. F o u b e l oF , . L l o r e t ,a n d M . y u s , Z S 0 , 5 l 3 l ( 1 9 9 4 ) . tK. M i u r a , D . I r o h , T . H o n d o ,a n d A . H o s o m i , T L 3 5 , 9 6 0 5 ( 1 9 9 4 ) . 'F. F o u b e l o ,F . L l o r e t , a n d M . y u s , f S 0 , 6 7 1 5 0 9 9 4 ) , 'I. R y u , A ' K u r i h a r a , H . M u r a o k a , s . T s u n o i ,N . K a m b e , a n d N . s o n o d a , Joc sg,75io (rgg4). 't L . W i l l i a m s , S . E . B o o t h , a n d K . U n d h e i m, T 5 0 , 1 3 6 9 7 l g g $ . oK. Undheim and L. Williams, CC 883 fi994). M. Uejima, y. Kobayashi, and T. Taguchi, JFC 65,79 (tgg3). ' .I ' D ' LY._.'!i*", J Clive,H'w.Manning,T.L.B.Boivin,andM.H.D.posrema, Jocsg,6857(1993). nY. T a n a b e ,Y . N i s h i , a n d K . - i . W a k i m u r a , C L 1 7 5 7( l g g 4 ) . "L. A. Buttle and W. B. Morherwell, TL 35, 3gg5 (lgg4). t'C.-K. S h a , C . - y . S h e n ,T . - S . J e a n , R . - T . C h i u , a n d W . _ H . T s e n g ,Z L 3 4 , i 6 4 1 ( l g g 3 ) . ::Y. 6 z l i i , D . E . C l a d i n g b o e l ,a n d p . J . p a r s o n s ,T S 0 , 2 l E 3 ( l g g 4 \ . -'8. Lee, C.U. Hur, Y.H. Rhee, y.C. park, and S.y. Kim, CC 1466(lgg3). ttD. S c h i n z e r ,P . G . J o n e s ,a n d K . O b i e r e y ,T L l l , 5 g 5 3 ( 1 9 9 4 ) . S . P . S i n g h , C . D u f o u r , a n d C . M i c h o u d , J o C S E ," t 7 1 8( t g g 3 ) . -; j"yS .1 1 a * a l , D . B u r k e a n d K . W . l u n g , T L 3 5 , 5 8 3 7( t 9 9 4 ) . ttJ. C. Lopez, A. M. Gomez, and B. Fraser-R eid, CC 1533(lgg4). ttT. F u k u y a m a , X . C h e n , a n d G . p e n g , J A C S1 1 6 , 3 t 2 7 ( t g g 4 ) . t'H' I s h i b a s h i ,c . K a m e o k a , A . y o s h i k a w a , R . U e d a , K . K o d a m a , T . S a t o ,a n d M . t k e d a , s L 649 (1993). 'oM. T o k u d a , H . F u j i t a . a n d H . S u g i n o m e ,J C S ( p l ) 7 7 j ( t g g l ) . '' W. R. Bowman, D. N. Clark, and R. J. Marmon, T 50, lZ75 (lgg4). t'J. Boivin, E. Froquet, and S. Z. Zard, T 50, l74S (lgg4). "K. Goodall and A. F. parsons, JCS(\I) 3257 (t9g4\. "A. F. Parsons and R. J. K. Taylor, JCS(pl) lg4| (lgg4). ttT. sato, K. Tsujimoto, K.-i. Matsubayashi, H. Ishibashi, and M. rkeda, CpB 40,2308 (rgg2). 'os. Kim, G. H. Joe,and J.y. oo, ;eis n6,552t (tggl). ttS. Kim, G. H. Joe,and J.y. Do, JACS fls, 332g (1993). ttE. Lee, J. S. Tae, Y. H. Chong, y. C. park, M. yun, and S. Kim, TL 35, l2g (lgg4). ttT. Naito, K. Tajiri, T. Harimoto, I. Ninomiya, and T. Kiguchi,TL35,2205 (lgg4\. 'oD. Crich and e. yao, CC 1265 ugg3).
372 Tributyl(trimethylsilyl)stannane o'8. L e e , C . L e e , J . S . T a e ,H . S . W h a n g , a n d K . S . L i , T L 3 4 , 2 3 4 3 ( 1 9 9 3 ) . o'Y.-M. T s a i , K . - H . T a n g , a n d W . - T . J i a a n g ,I Z 3 4 , 1 3 0 3 ( 1 9 9 3 ) . ntW. Zhang, Y. Hua, S.J. Geib, G. Hoge, and P. Dowd,750, 125'19(1994).
Tributyltin hydride -tetrakis(triphenylphosphine)palladium. Reductions,t Thioesters undergo chemoselectiveconversion to aldehydes. A conjugated vinylic thio group is not affected. 'H. Kuniyasu, A. Ogawa,andN. Sonoda,TL34,2491(1993).
'R. K . B h a t t ,J . y e , a n d J . R . F a k \ . -H. Sato,N. Isono, K. Okamura.T 'A. Kinoshita and M. Mori. Cl l{rl tM. M o r i , N . I s o n o , N . K a n e t a .a o d tT. H o n d a a n d M . M o r i . C I t o l _ r, t {
Tricarbonylruthenium( Cycloisomerization
JJ) chk of
ctyt
CO to afford the cyclic rsonrn lRuClz(CO):lz.
15, 333; 16, 350; 17,363-364 Tributyltin hydride-triethylborane. Episulfides are converted into alkenes under very mild conDesulfurization.t ditions (-78'C). Reductive cyclization of a-ethynyl a,p-unsaturatcd esters.2 The Lewis acidcatalyzed radical cyclization is subject to 1,3-asymmetric induction by the chiral moiety of the ester. Thus ()-8-phenylmenthyl esters give mainly the 2-methylenecycloalkylacetic esters of (R) configuration. 'J. Uenishiand Y. Kubo, TL 35, 6697(1994). tM. Nishida,E. Ueyama,H. Hayashi, E. Yanaginuma, O. Yonemitsu, Y. Ohtake,Y. Yamaura, JACSff6, 6455(1994). A. Nishida,andN. Kawahara,
N. Chatani,T. Morimoto,T. Muro.r Trichlorosilane. Homoallylic alcohols.' -:
Tributyl(trimethylsilyl)stannane. a-Hydroxystannanes.t Aldehydes but not ketones are converted into atrimethylsiloxystannaneson treatment with Bu:SnSiMe3 in the presenceof Bu+NCN. The silyl ether groups of the adducts are readily hydrolyzed to afford the hydroxylstannanes. o-Quinodimethanes.? The tributylstannyl anion triggers 1,4-elimination of a,a'-dibromo-o-xylenes. A fluoride source(CsF or [EtzN]:S*SiMe3Fl) is required to generatethe anion from the silylstannane. Barbier-type rcactions.3 Cyclization of iodoketones in which the iodine atom is allylic or vinylic can be accomplished with the same combination of BulSnSiMer and CsF.a reaction.s Ring construction Cyclization by tandem Michael-Dieckmann from compounds with juxtaposed ketone (or ester) and conjugated ester groups is made easy. It is rendered irreversible by trapping the alkoxide ion as a trimethylsilvl ether.
Z\
',.rct
o ;
EI Z\/"ws')h
Semihydrogenation of alLytc drosilanegroups on reactionn ith t hydrogenationof alkynes to (Zl-ea
'S. Kobayashi and K. Nishio..S{5r r t 'S. Kobayashi and K. Nishio,Ca 17"'A. D . K i n i , D . V .N a d k a r n ia, n dJ .L I
o y
-COOMe
tl
4_r-"o
OM€
Bu3sn-SiMo3 (Et3S)+(Mo3SiF2)'
)fi-coorvre 1snBr.
DMF 68o/o
Triethylsilane. 14, 322;15, 3jt: l{ Reductions. Ionic reducrion t acid to help ionize the substrate.Tt uses a EI3SiH-TMSOTf combinar
Triethylsllane
t TL 34.2343(t993). l _ r , ' t1 9 9 3 ) . d r s0. t2579(1994).
ttinetpalladium. clc.rr\e conversionto aldehydes.A
'R.
373
K. Bhatt,J. ye, andJ. R. Falck,TL 35,4081(1994\ N. Isono,K. Okamura,T. Dare,and M. Mori, rL35, ,T !_",", 2035(lgg4). 'A. KinoshitaandM. Mori, CL 1475(lgg4). N. Isono,N. Kaneta,andM. Shibasa ki, JOC SE,2g7Z (1gg3). l1t ytori, 'T. Hondaand M. Mori, CL l}l3 Qgg4\. Tricarbonylruthenium(lI)
) l ." e - 1 ) .
chloride. cycloisomerization of enrnes.t cyclization of 1,6- and l,7-enynes under co to afford the cyclic isomers proceeds in excellent yierds in the iresence of lRuClz(CO)rlz.
16. .r50:17,363-364 ;d rnto alkenesunder very mild con[FuC12(CO]312
,sturutcd esters.z The Lewis acidl.rmmetric induction by the chiral citer' give mainly the 2-methylene-
CO, PhM€ 800, t h
u ketones are converted into cSnSr\te r in the presenceof BurNCN. t hrdrolyzed to afford the hydroxylL rnron triggers 1,4-elimination of ' *SiMe3Fl) or Et:NhS is requiredto
Chatani,T. Morimoto,T. Muto,andS. Murai, JACS116,60490]tgg4\.
Trich lorosilane. Homoallylic alcohols.t.2
y'\y'\,,ct
t Ring tsn reaction construction lrcr'and conjugatedester groups is Dg the alkoxide ion as a trimethyl-
"'%di'^t' """O, Ofrr,
Ei. I U /\y'\ursiMe.
d(r[etonesin which the iodine atom E \.ime combinationof Bu3snsiMcr
ETOOCJ 977.
'N. l'r:rsura,E. Yanaginuma, O. Yonemitsu. a
ETOOC\ /^)yN.Ph
ricloFCHO
83 - 8770
OH
r'\r'\/\^
semihydrogenation of arkynes.3 The surface of sirica gel is covered with hydrosilane groups on reaction with trichrorosirane. The solid-supported sirane effects hydrogenationof alkynes to (Z)_alkenesselectively. lS. Kobayashi and K. Nishio,S 457(tgg4\. 'S. Kobayashi and K. Nishio,CL 1773(tg,g4t. tA. D. Kini, D.V. Nadkarni,andJ. L. iry,'ri ss, t507 {t994).
o '
.il \,r-_cooMe ),/ \ / 1sn"u. 68'/o
Triethylsilane. 14, 322; 15, 338; 16, 356 Reductions. Ionic reduction by EtrsiH usualry requires a protic acid or Lewis acid to help ionize the substrate.Thus reduction of vinylstannanesto alkylstannanes uses a Et3SiH-TMSorf combination.r A preparation of 4-hydroxy a_amino acid
374 Triethylsilane derivatives from the corresponding ketones by such reduction is cis-selective.2Reductive etherification of ketones is accomplished in the presence of silyl ethers' which supply the alkyl moiety. Isobornyl ethers are obtained in good yields from camphor.i Deoxygenation of allylic alcoholsa without affecting isolated tertiary alcohols, double bonds, and acetals is accomplishedby reaction with Et3SiH in the presenceof Liclo4. A route to p-c-glycosyt aldehydes involves reaction of sugar lactones with 2-lithio-1,3-dithiane,reductionwith EtrsiH, and hydrolysisof the dithiane.s Deoxygenation of alcohols by the radical pathway requires prior conversion into derivatives such as thionocarbamates.6The reduction is carried out in the presenceof (t-BuO)u.Alkenes are obtained from 1,2-dixanthatesTunder such conditions. oxazolidin-5-ones are readily cleaved to give amino acids.EThe lactam carbonyl group can be removed from the N-Boc derivatives in a two-stage reduction, the
'-Y. Z h a o , P . Q u a y l e ,a n d E . A . K u o , f L J S . { l ' 'R. F.W. Jackson, A. B. Rettie, A. Wood. and ! tS. H a t a k e y a m a ,H . M o r i , K . K i t a n o . H . t . e a n 'D. J . W u s t r o w ,W . J . S m i t h , a n d L . D . W r s c . f i tM. E . L . S a n c h e z ,V . M i c h e l e t , I . B e s n r e r .e n d uK. Nishiyama and M. Oba, It 34, 37:15r 1997 D . H . R . B a r t o n , D . O . J a n g ,a n d J . C . J a s z b c r tJ.A. R o b l , M . P . C i m a r u s t i ,L . M . S i m p t r o r . DiMarco, JACS 116,2348 (1994J. eC. P e d r e g a l ,J . E z q u e r r a , A . E s c r i b a n o . ! l ( (1994\. 'uL Simonou, SC 24, tggg (lgg4). rrT. C o u m b e , N . J . L a w r e n c e ,a n d F . M u h a m m r 2P.T. H o a n d K . - Y . N g u , J O C 5 8 , 2 3 1 3( r 9 9 _ r , '''L. S . R i c h t e r , J . C . M a r s t e r s ,J r . , a n d T . R G d
in the aretolerated Estergroups agent.q silaneasreducing featuring stage second
'oR. Takeuchi andN.Tanouchi, JCS(pll lg0g,l rsM. P.Doyle andM.S.Shanklin. OM12.lt ,l
transformation. with EtjSiH-BFj ' OEtz'In Diaryl ketonesaredirectly reducedto hydrocarbonsr0 acidcatalyst' the redUctionof phosphineoxidesrr(i-PrO)aTiis usedas the Lewis
N-(Trirthylsilylethylidene) t.butylrnir.
reductive 0f aminoacidsundergo esters s-Benzylthio c-x Bondcleavage.
'uC. C. Mak, M. K. Tse,and K. S. Chan..foC g
a,p-Unsaturatedaldehydes.'Th€ t
ofPd-C. The 2-arylthiazolidines in the presence to providethe aldehydest2 cleavage a Thusthis processcompletes bond.r3 C-N the at obtainedfrom cysteinearecleaved
reagentwith carbonylcompoundsfollowed pletesa two-carbonhomologation.
s-protection. two-$ep
'D.
TFA, Et3SiH CHzClz;
BoczO pHg
(-(^
Triethylsilyl iodide. A convenientpreparationmethodrinr< Otk silaneand MeI at room temperature. manner(6 examples,77-97Voyield).
*.--I-;*
rA. Kunai,T. Sakurai, M. Ishike E. Toyoda,
82olo(R=Me)
Silylation.Hydrosilylationofl-alkynesinthepresenceofaRh(I)catalystis is possibleby adding PhrP and A ,euerralof the stereoselectivity regioselective. Silylformylationis conductedat I atm' CO at Ooc'rs "n"*rt", ,* solvent.ra
Bu--:
+
Bu
SiEt3
Bu. \:./
+
El3SiH
lFh(cod)Cllz/Et0H -Ph3P/ MeCN lRh(cod)cll2
85'/o
94
1
93o/o
2
:
+
andJ,W.Leahv.JOC59.5{% P.Provencal
J
Bu \
siEt3
SiEr3 4
:
97
:
2 I
hydrosilylation' It can be Fischer carbene complexes undergo demetallative adapted to a synthesis of allylsilanes''6
Trifluoroacetic acid. 14, 322-323:15. 3: Trifluorocetates.t Alkenes undergo of VzOsat reflux temperatu the presence De-O-tritylation.2 Trityl ether clca without affectin CF3COOH-(CF.CO)2O
functionalities. Diarylamines.3 A method for Phen PhN3-TfoH. Desulfurization of 3'indolyl sulfida usesCF:COOHto protonatethe 3-indolyl: a thiol reagent(e.g., o-mercaptobenzo indolesare produced.
I r.Juction is cis-selective.'Rern rhe presenceof silyl ethers, t ,,brainedin good yields from rr:ng isolatedtertiary alcohols, n $ rrh EtiSiH in the presenceof i reretion of sugar lactoneswith dr,'lr.is of the dithiane.5 rr rcquiresprior conversioninto r :. i.rrried out in the presenceof s- under suchconditions. The lactam carbonyl rrn,, aciCs.E s :n a two-stage reduction, the i.rer'groups are toleratedin the on. * ith Et:SiH-BFr . OEt2.In :.i u. the Lewis acid catalyst. :nrrno acids undergo reductive oi Pd-C. The 2-arylthiazolidines . Thus this processcompletesa
a''(^ ('* x:',-
-COOH
32".(R=Me) c nr!'\enceof a Rh(I) catalystis i. p,rrsibleby adding PhrP and d rt I atm. CO at 0'C.r5 Bu SiEt3
SiEt3
2 97
1
rtrre hydrosilylation. It can be
Trifluoroaceticacid 375 ',!.7\!o, P. euayle, and E. A. Kuo, Zt 35, 4t7g (tgs4). 'R. F.W. Jackson, A. B. Rettie, A. Wood, and M. J. Wythes, JCS(pl ) lj 19 (lgg4). ts' H a t a k e y a m a ,H . M o r i , K . K i t a n o , H . y a m a d a , a n d M. Nishizawa,TL3s,4367 (1gg4). oD. J . W u s r r o w ,W . J . S m i t h , a n d L . D . W i s e , I Z 3 5 , 6 l ( 1 9 9 4 ) . t M. E. L. Sanchez,V. Michelet, L Besnier, and J. p. Genet, SL 705 (lgg4). u K. Nishiyamaand M. Oba, TL 14,3745 (1993). tD. H . R . B a r t o n , D . O . J a n g ,a n d J . C . l a s z U e r e n y i ,f 4 9 , Z 7 g 3( l g g 3 ) . tJ.A. R o b l , M . p . C i m a r u s t i ,L . M . S i m p k i n s ,H . N . W " t t . . , y . y . p a n , M. Malley,andJ.D. DiMarco, JACS 116,2348 (tgg4\. 'c' P e d r e g a r ,J ' E z q u e r r a . A . E s c r i b a n o , M . c . C a r r e n o , and J.L.G. Ruano, rL 3s,2053 (t994). 'ol. Simonou, SC 24, lggg (lgg4). " T. Coumbe, N. J. Lawrence, and F. Muhamm ad, TL 35, 625 (1994). 'tP.T. Ho and K.-y. Ngu,./OC Sg,2313 Ogg3\. ''L.S. R i c h t e r , J . C . M a r s t e r s .J r . , a n d T . R . G a d e k , T L 3 5 , 1 6 3 l( t g g 4 ) . 'oR. Takeuchi and N. Tanouchi, JCS(pI) 2g}g (tgg4). 15M. P. Doyle and M. S. Shanktin, OM 12, ll (lg%);. 'oC. C . M a k , M . K . T s e , a n d K . S . C h a n ,J O C 5 9 , 3 5 8 5 fl994).
N- (Triethylsitylethylidene) t- butylamine, r_BuN:CHCH 2SiEtr. a,B-Unsaturated ardehydes.' The LDA-promoted peterson reaction of the reagentwith carbonyl compounds followed by mird acid (citric acid) hydrorysis com_ pletes a two-carbon homologation. 'D. P. Provencaland J.W. Leahy,JOC Sg,5496Ogg4\. Triethylsilyl iodide. A convenient preparation methodr involves pdCr2-cataryzed reaction of triethyr_ silane and MeI at room temperature. other silyr iodides are obtainable in the same manner (6 examples, 77-97Vo yield). rA' Kunai,T' sakurai,E' Toyoda,M. Ishikawa,and y. yamamoto, oM 13,3233(rgg4). Triff uoroacetic acid. 14, 322- 323: 15. 338_ 339 Trifluorocetates.t Alkenes undergo Markovnikov addition with cFrcooH the presenceof VuOsat reflux temperature. De'O'trityration.2 cFlcooH-(cF,co)ro functionalities. Diarylamines.3 PhN3-TfOH.
in
Trityl ether creavagecan be performed by treatment with without affecting other reducible and acid-hydrolyzabre
A method for phenyramination of arenes is by warming with
Desulfurization of 3-indoryr surfides.a Nonreductive removar of thio groups usescF3cooH to protonate the 3-indolyl sulfides, thus allowing thiophilic artack by a thiol reagent (e.g., o-mercaptobenzoic acid). The corresponding 3-unsubstituted indoles are produced.
Trifluorocr|r
376 Trifluoroac€ticanhydril
t M. Kawase, TL 15, 149 (1994). o L. El Kaim. rL 35, 6669 (1994\. 5D. C r a i g , K . D a n i e l s ,a n d A ' R . M a c K e n z i c . f f uJ. Montgomery and L. E. Overman, JOC S' 6J' tC. Ates, Z. Janousek,and H. G. Viehe' IL .]1. 5 *P. A . E v a n s a n d J . M . L o n g m i r e , T L 3 5 . E - 1 { 5' I
rB. M. ChoudharyandP.N. Reddy'CC 405 (1993)' 28. Krainer,F. Naider,and J. Becker,TL34' l'l13 (1993)' tc. A. Olah,P. Ramaiah,Q. Wang,andG' K' S' Prakash'JOC 58' 6900(1993)' aP.Hamel,N. Zajac'J.G. Atkinson,andY' Girard' TL34'2059 (1993)'
Trif luoroacetic an hYdride. Trifluorobutynamides.t c-Acylation of triphenylphosphoranylideneacetamides 2OO-240"C provide the alkynoic with (CFTCO)2Ogives adducts that on pyrolysis at used' be can amides. Other perfluoroalkanoic anhydrides
(cF3co)20
NEt2
21o-24oo
Et3N,THF rt.1h
CFs
2mmHg
a c v , J
Ph3P=CHC(O)NEt2
-
-
( \
NEt2
95%
are obtained from a-hydroxy a-Trifluoromethyl acyloins.2.3 These compounds benzene' in acids on treatment with (CFTCO)2Oand pyridine compounds is from the l: I Trifluoropyruvamides.a A simple synthesisof these temperature' adducts of isocyanidesand (CFTCO)zOat low
Trifluoromethanesulfonicacid (triflic ri Trimethylsilyltriflate.t Admixture c or CO(NHSiMe3)2 leneratesTMSOTf rn s
reactions. Vinyl triflates.2 l-Alkynes addTfOtl i fashion. Allyl sulfones- vinyl sulfoncs-' sJ with TfOH or lowed by protodesilylation majorproductshavean (E) configuration Intramolecular Schmidt reactions'' azides. from unsaturated
ncH c
o.Hydroxyaldehydes.sThePummererreactionofalkenylsulfoxidesisabnorwhich are readily hydrolyzed' mal, as it furnishes c,B-bistrifluoroacetoxy sulfides,
o t\r6lrn
ococF3 (CF3CO)2O/ CHzClz;
I
. .\
I ,,SPh
aq. NaHCO3
OCOCF3
Et3N MeOH - CH2C12
|
OH
0o, 5min
are reduced in very sulfoxide reduction.6 In the presenceof Me2s sulfoxides highyieldstosulfides.Thisprocessasafollowupreactiontosulfinylethylationof cyclic ketones is synthetically useful' TrifluoroethylidenationofactivatedCHz.lThePolonovskireactionof in the presenceof a compound dimethyl(trifluoroethyl)amine oxide with (CFTCO)zO containinganactivemethylenegroupaccomplishestrifluoroethylidenationatthat slte. by (cFrCO)zO toward Nitration of silyl enol ethers.s BuaNNOr is activated 'Y. ShenandS. Gao,JFC 6l' 105(1993). tM. KawaseandT. Kurihara'TL35,8209(1994)'
tao{
/)- cHo
881"
reaction with triisopropylsilyl enol ethers'
o ) o
rM. E l G i h a n i a n d H . H e a n e y ,S L 5 8 3 ( 1 9 9 - r l tC.T. Crisp and A.G. Meyer, S 667 (l99at r R . L . F u n k , J . U m s t e a d - D a g g e t ta, n d K . \ l B r oW. H . P e a r s o n ,R . W a l a v a l k a r ,J . M . S c h k c r l u
r l s . 1 0 1 8(31 9 9 3 ) .
Trif luoromethanesulfonic anhydrklc t tr 14, 324-326; 15, 339-340; 16' 357- 35t cstcTL Perfluoroalkynylphosphonate tones are dehydrated to give the alklrrs
triflyl ethers. Isoquinolines.' A one-step synthcsrs phenylaceticesters,nitriles' and Tf:O. Reaction of I Coniugated triflones.r with Tf2O and then with aldehydesgir.est
Trifluoromethanesulfonicanhydride (triflic anhydride) 377
r . - / ( ) c 5 8 ,6 9 0 0( 1 9 9 3 ) . t - r 1 : 0 5 9( 1 9 9 3 ) .
tM. Kawase, TL35, l4g (lgg4). oL. Et Kaim, TLls,6669 (lgg4). 5D. Craig, K. Daniels, and A. R. MacKenzie, T 49, 11263(lgg3). 'J. Montgomery and L. E. Overman, JOC 58,6476 (1993). tC. A t e s , Z . J a n o u s e ka, n d H . G . Y i e h e , T L 3 4 , 5 7 l l ( 1 9 9 3 ) . tP. A. Evansand J. M. Longmire, TL35,8345 (1994).
phcr r lphosphoranylideneacetamides 3' lrr{)-240oC provide the alkynoic r t " cu . e d .
Trifluoromethanesulfonic
9i
2co-2400
.o
r c ^ - (
v ' J
\
NEt2
95"/o
p..rnJ\ are obtainedfrom a-hydroxy
14, 323-324: 15, 339 Trimethylsilyl triflate.t Admixture of FSOfi and MeC(OSiMer):55iy., or CO(NHSiMe3)2 generatesTMSOTf in situ, whicir is useful in various caralytic reactions. Vinyl triflates.2 1-Alkynes add TfOH at room temperarurein the Markovnikov fashion. Allyl sulfunes - vinyl sulfones.3 a-Trimethylsilylation (BuLi/TMSCI) followed by protodesilylation with TfOH or TsOH achieves the transformation. The major products have an (E) configuration. Intramolecular Schmidt reactions.a Bicyclic tertiary amines are obtained from unsaturatedazides.
:1nhenzene. 1 , ,: r hesecompoundsis from the I : I n"airsture. xrr,,n of alkenyl sulfoxidesis abnor[r:c. uhich are readily hydrolyzed.
acid (triflic.acid).
z^ru. I -
--i-Yi
**;t --{Gi
TfOH/PhH
>\
\?-d !
F
r.
Et3N MeOH- CHrCb 0o, 5min
OH
82"/.
I ,r-ctto 85"/"
It: S .ulfoxides are reducedin verY 5 -i. reaction to sulfinylethylation of The Polonovski reaction of H:. :( ) ( ) in the presenceof a comPound lr.r.'. trifluoroethylidenationat that . :. .rctivated by (CFTCO):O toward
IM. E l G i h a n i a n d H . H e a n e y ,S L 5 8 3 ( 1 9 9 3 ) . tc.T. Crisp and A. G. Meyer,S 667 (lgg4). 'R. L . F u n k , J . U m s t e a d - D a g g e t ta, n d K . M . B r u m m o n d , T L 3 4 , 2 5 6 7 ( l g g 3 ) . nW H . P e a r s o n ,R . W a l a v a l k a r ,J . M . S c h k e r y a n t z ,W . - K . F a n g , a n d J . D . B l i c k e n s d o r f ,J A C . ! l 1 5 , 1 0 1 8 30 9 9 3 ) .
Trifluoromethanesulfonic anhydride (triflic anhydride). 13, 324 -325: 14, 324-326: 15, 339-3401 16. 357-358 Perfluoroalkynylphosphonate esters.t Phosphonylmethyl perfluoroalkyl ketones are dehydrated to give the alkynes on reaction with Tf2O and /-Pr2NEt via triflyl ethers. Isoquinolines.2 A one-step synthesis of these heterocyclic compounds requires phenylaceticesters,nitriles, and TfzO. Conjugated triflones.s Reaction of MerSiCHzl-i (from MerSiCH2I and r-Bul-i) with Tf2O and then with aldehydesgives the triflones in 56-84Va yleld.
37E (Trifluoromeihyl)trimethylsilsne 'Y. ShenandM. Qi, JCS(PI)2153(1993)' Sl andL' R' Subramanian' 'A. G. Martinez,A. H. Fernandez, D' M' Vilchez'L' L' Gutiererez' 229 (t993). t A. Mahadeuan and P.L. Fuchs,?L 35' 6025(1994)'
'G. K . S . P r a k a s h ,D . D e f f i e u x , A . K . \ ' u d r r rK. I s e k i , T . N a g a i , a n d Y . K o b a y a s h r .f L J tC. P. Felix, N. Khatimi, and A. J. Laurrnr. oT. B r i g a u d , P . D o u s s o t ,a n d C . P o r r e l l a .C (
S-(Trif luoromethyl)dibenzothiophenium trif late' Trifluoromethylationofenolates,Bulkyenolboronatesundergotrifluoro. such as the dienolatesof 8amethylation with (1) in a stereoselectivemanner in cases
Triisopropoxytitanium
methyl-A4-octal-3-one.
vising a route to 2-deoxy-o-ribose.
Regioselective PrO):TiOAc
'Y.
.q,".q, *o-eb ffi(2.5 : 1)
cFs T'o-
(1)
acetate. cleavage
of
epn
regioselectively to give -1-e
E. Raifeld, A. Nikitenko, and B. \l
An
2,4,6.Tri isopropylphenylboreD€ (trit Hydroborations.' This boranc rs
with alkenes to form either TripBHR I mixed boranesTripBRR'. Oxidation of TripBR2 with cyanide leadsto R. =O ' K. Smith,A. Pelter,andZ. Jin. JCS| PI ' 9
'T. Umemotoand K. Adachi,JOC 59' 5692(1994)'
(Trifluoromethyl)trimethylsilane'
B-(Trimethylsilyl)alkyl phenyl sulfor Vinyl anion equivalents.t Afrcr t trophiles,elimination of the sulfonllAr as electrophilethe treatmentwith r-aH transsilylationto preludeexpulsionof tl
15' 341
Preparation.' 2 e-, BulNPF6
B€F3
+
Me3SiCl
PhOMe - HMPA
Me3SiCFg 73"/"
converted into the trifluoroTrifluoromethylation.2 carbonyl compounds are presenceof a quaternary the in reagent methyl carbinols in excellent yields by this ammoniumfluoride.Moderateasymmetricinductionisobservedwhenachiralcatalyst is used. is also smooth. Addition to azirinesl giving 2-trifluoromethylaziridines is promoted by acylsilanes from The synthesis 2,2-Difluoroeroryrllonri.o *(Ph.SnF2)-. with Bu+NF the primary products undergo further aldol BuoN
-,/-\..OR
o
+
MesSi-
_:.*
R=SiPhzt-Bu
' B. Achmatowiczand J. Wicha.IA 4. ,r99,
reactions.
o
t
ll Ph
SiMe2f-Bu
Bu.N+Ph3SnF2
F,
THF, -780-> -20p,t h
F
/OSiMeat-Bu
CF3SiMe3 P
h
79/"
Trimethylsilyl azide. 13,24-25'. 11. ! Tetrazoles. Formation of tetrazolr Me,Al.t B-Glycosyt azides.3 A high-1 rcld volvesMerSiNr, SnCla,and AgClO. as r
Trinethylsilyl azide 'G.K.S. P r a k a s h , D . D e f f i e u x , A . K . y u d i n , a n d G . A . O l a h , S L l O 5 7( l g g 4 ) . 2K. Iseki, T. Nagai, and y. Kobayashi, fZ 35, 3137(lgg4). 'C. P . F e l i x , N . K h a t i m i , a n d A . J . L a u r e n t , T L 3 5 , 3 3 0 3( l g g 4 ) . oT. B r i g a u d , P . D o u s s o t ,a n d C . p o r f e l l a , C C 2 l l 7 . l g g 4 t .
, L C : r r e r e r e z ,a n d L . R . S u b r a m a n i a n S
bte. cnol boronates undergo trifluoroin ;a:es such as the dienolatesof 8a-
Triisopropoxytitanium
acetate. Regioselective cleavage o! epoxides.t 2,3-Epoxy alcohols react with (rPro)rTioAc regioselectivelyto give 3-acetoxy 1,2-diols. This result is useful for devising a route to 2-deoxy-o-ribose. ' Y. E.
--l-^..., l
t, "Y
l
*
a^J.^.. l l l
2,4,6-Triisopropylphenylborane (tripylborane, TripBH2). Hydroborations.t This borane is a stable solid that can react regioserectively with alkenes to form either TripBHR or TripBR2; TripBHR can be converted into mixed boranes TripBRR'. Oxidation of the adducts furnishes alcohols. Treatment of TripBR2 with cyanide leadsto R2C:O.
o4'€'/
CFS
CFO
(2.5 : 1)
'K.
Smith,A. pelter,andZ. hn, JCS(pt)395(1993).
B-(Trimethylsilyl)alkyl phenyl sulfones. vinyl anion equivalents.t After the derived sulfonyl anions react with electrophiles,elimination of the sulfonyl/silylgroups may be induced.with an epoxide as electrophile the treatment with NaH in refruxing hexane actually triggers a c/otranssilylationto preludeexpulsionof the sulfinate anion.
,?<, at^
Raifeld,A. Nikitenko,andB. M. Arshava,T 49,z5l} .|gg3\.
Me3SiCFg 73"/"
guLi/THF -78o-> rl;
rJ. are converted into the trifluoropnr rn the presenceof a quaternary rrr(\n ls observedwhen a chiral cata-
--_,--^r,..-oR
+
MesSi\Asorpt
o
NaH, a
R=SiPhzl-Bu
r l . r r r r r d i n e si s a l s o s m o o t h . I lrom acylsilanesis promoted by ! products undergo further aldol
bs. '
\
> ?t* .r
F
/OSiMe2l-Bu P
h
797o
'
B . A c h m a t o w i c z a n dJ . W i c h a , Z A 4 , 3 g g
19gr.
Trimethylsilyl azide. 13, 24-25; 14, 25; 15, 342_343:16. 17 Tetrazoles. Formationof tetrazolesfrom nitriles is catalyzedby Bu2Sno, MerAl.2 B'Glycosyl azides-3 A high-yielding preparation from peracyrated sugars involves MerSiN3, SnCla,and AgClOa as reagents.
3t0
TrimethYlsilYlbromide
Pd(0)-catalyzed ionizatt:i t",itt^1t.1rr-allYlPalCleavage of allyl esters'4 The an active state' The processedto return the metal in ladium species' which must be fulfills this purpose' MerSiNrBunNF combination is catalyzed by (rThe epoxide opening by Me3SiNr F-Azido alcohols'5 BuN)zCrCl:. (1993)' I S.J. Wittenberger andB' G' Donner'JOC 58'4139 (1993)' 80ll 34' r/tS.;. H"ff anO-tU. e' Staszak' '[, plit."uutu andT' Mukaiyama' CL 247 (1994)' 'c. irt.pi- andD. Buechler'TL35'5421(199!)'-Yeung'?L 36' 107(1995)' ,w.-H. Leung,E. r. F. cnow, M.-i. W", p.w.y' furn' andL'-L' 17' 378 .. Trimethylsityl azide-iodosylbenzene' is subjectto rapid and atom of MN-dialkylanilines o-"-Uon n. f Azidonation, also undergo this u"Ot group'r Similarly' carbamates efficient introduction oiun transformation.2 with a temperature in a reaction azides3u' p-Alkyl anisoles lbrm benzylic I1ot instead of PhIo)' ,i*itu. reagentpair (PhI[oCoCFr]z v i c . D i a z i d e s . n T h e r a p i d a d d i t i o n o f t w o a z i d o g r o u p s t oThe t h e al-azido - a n d B - group p o s i t i oofn s proceeds in a trans manner' of triisopropylsilyl enol ethers nucleophiles' replacedby-various carbon these compounds is realily group to the carbon atom azide Introduction of an a-Azidonatioo o7 oia'i't attachedtothenitrogenutotofamides'carbamates'andureascanusethePhlOions are the intermediates' MerSiNr combination' N-Acyliminium (1993)' 'P. Magnus,J' Lacour'and W' Weber'JACS115' 9f4'l (19-9? 'p. f"fuinu, unOC' Hulme' TL 35' 8097 .. sL 42't (t994)' Mitoh, S' F"jill:1nd M' Gvoten' , y. Kita, H. Tohma,T. T.fi":;. (19'95)' 'P. Magnus,M' B' Roe' and C' Hulme' CC 263 (1994)' 'P. Magnus'C' Hulme'unOW' W'bt'' JACSf 16'4501
Trimethylsityl chloride. 15' 89: 16. & Iminiunt salts.t The preparation t moted bY MerSiCl. Cleavage of oximes and senicarl DMSO in refluxing MeCN, the clearrl Deconiugation of acYclic Pholo t of B-halo a,B-unsaturated ketones to t Silyl nitronates.a Intramolecular is induced by Me3SiCl-Et3N.It is a c dropyranaldehydesare obtainable fron Nitration of arenes's The mirtu fective nitrating agent in CClr' whrch yield).
' w. Jahnand W. Schroth, TL 34.5863t 19 tF. Ghelfi,R. Grandi,andU' M. Pagnoo tF.-T.Luo andL.-C. Hsieh,TL 35' 9Jt5 t oJ.L. Duffy andM. J. Kurth,JoC 5t' 3lt tG. A. olah, P. Ramaiah,G. Sandford'A
TrimethylsilYt cYanide. 13, 8?-88: I CyanohYdrins and ethcrc' Tan catalyst for the carbonyl derivatizatto derivatization of p-hydroxy ketorrs.: T MSOTf-catalyzed processis subicr duct of benzoquinonescan be redtra
iP'o..,,1
OMe I
MqSi}I'rrt
\
ct+&
T -
i-Pto 15' 5l; 16' 50 N-Trimethylsilyl(bisfluorosulfonyt)imide' Mukaiyamaaldoliaation.|Thissubstancecatalyzesreactionsbetweensilyl enol ethers and acetals' (1993)' S' Trehan'TL 34"1335 I A. Trehan,A' VU' M' Walia' G' Kaur' R' D' Verma'and Trimethylsilyt bromide' .-L:-^.:^n ^r Me.SiRr with an oxtThe combination of MerSiBr vic-Dibromid" ooi t'o^olactones' it converts carvone to the Thus with a RN*Mnot dant represent' u u'otin" source' acids is accomplished of unsaruratedcarboxylic 7,g-dibromide., B-.;j;;;zation in DMSO with Et3N as base'(1994)' andS' Basu'JCS(PI)166'l 'B.G. Hazra,M'D' Chordia'B'B' Bahule'V'S"Pore' (1994)' 841 JCS(P1) Iwata' C' no' runuka' and 2K. Miyashita,l. r.".i.,'ri."r"rlru*
Nitriles. AtlYlic cYanides arc (PhrP)aPd-catalyzedtransformatioo provides a way of controlled functiol tic.6 a-Cyano selenidesare products I with MerSiCN. Seleno-ortho esters I Ph\
/Ph
o-si-cl
llqs4t
Trimethylsilyl cyonide 3tl
,lr z:J ronizationgenerateszr-allylpalThe Iurr. the metal in an active state' ''. ?, (tin; nr MerSiNr is catalyzed bY
' J '
:
(1995)' [,u:: rnd L.-L. Yeung'IL 36, 107
5 Jr.rlkylanilinesis subjectto rapid and this rrnrLarlr.carbamatesalso undergo with a I i.,,'nr temperaturein a reaction o : P hI O ) . 0 slrJrr groupsto the a- and B-positions group of a '.(rfr.\manner. The l-azido xr-,rrbon nucleoPhiles' atom rn ,'l rn azide group to the carbon PhIOthe r.i\rnrles, and ureas can use ar. lhe intermediates' '.ir-
1993).
Trimethylsilyl chloride. 15, 89; 16, 85-86 Iminium salts.t The preparation from aldehydesand silyldialkylamines is promoted by Me:SiCl. Cleavage of oximes and semicarbazones.' Using MerSiCl in combination with DMSO in refluxing MeCN, the cleavagemethod is relatively simple. Deconjugation of acyclic B-halo enones.t MerSiCl catalyzesthe isomerization of B-halo d,B-unsaturated ketones to the corresponding B,y-unsaturatedketones. Silyl nitronates.a Intramolecular cycloaddition of p-propargyloxy nitroalkanes is induced by Me3SiCl-Et3N. It is a convenient way to dihydrofuraldehydes. Dihydropyranaldehydesare obtainable from the homologousnitro ethers. Nitration of arenes.s The mixture of Me.rSiCl, NaNOr, and AlClr form an effective nitrating agent in CCI+, which is probably NO2*AlCl4- (8 examples, 62-97Vo yield). 'W JahnandW. SchrothTL 34,5863(1993). , tF. Ghelfi, R. Grandi,and U. M. Pagnoni,SC 23,2279(1993). tF.-T.Luo andL.-C. Hsieh,7L 35, 9585(1994). o L. Duffy and M. J. Kurth, "/OC59,3783(1994). J. t G . A . O l a h .P . R a m a i a hG. . S a n d f o r dA.. O r l i n k o va. n dG . K . S . P r a k a s hS, 4 6 8 ( 1 9 9 4 ) . Trimethylsilyl cyanide. 13, 87-88; 14, l0'7; 15, 102-104;17,89 Cyanohydrins and ethers, Tetracyanoethylenehas been introduced as a new catalyst for the carbonyl derivatization.r KCN-ZnI2 is used to achieve 'tyrl-selective Exchangeofone alkoxy group ofan acetalin a derivatizationofB-hydroxy ketones.2 TMSOTf-catalyzed processis subjectto remote asymmetric induction.r The monoadduct of benzoquinonescan be reducedby SmI2 to give p-hydroxybenzonitriles.o
rt: ,rJ V. GYoten,SL 427 (1994)' l.-< .3i :,1994).
. l 5 5 l : 1 6 ,5 0 silyl leree catalyzes reactions between (1993)' ;r-': rnd S. Trehan'TL34,'7335
an oxif hc iombination of MelsiBr with -MnOq converts carvone to the it h . R.\ acids is accomplished carboxylic rturared (1994)' , P r.'. and S. Basu,JCS(PI)166'l (1994)' r[. rnd C. Iwata,JCS(Pl)847
9M"
9M"
OMe FPro. n A \/\,/\ I iPro
Me3SiCN- M63SiOTf cH2ct2, - 78o
N C z . n N C . n A
Y V \
*
t tsPrO
967"
Y V
: FPrO
(5 : 1)
Nitriles, Allylic cyanides are formed from the acetates or carbonates in (Phf)aPd-catalyzed transformations.5 Intramolecular cyanosilylation of alkynes provides a way of controlled functionalization of such compounds using a tether tactic.6 a-Cyano selenidesare products from SnCla-catalyzedreaction of diselenoacetals with MerSiCN. Seleno-ortho estersalso exchangeone selenogroup for the cyanide.T Ph
Ph
Ph
o-si-cl I \:
MegSiCN - (dba)gPde. CHCIa
o-bi'Ph (,\,"*
PhMe, A, 10h 57o/o
382 Trimethylsllylfluorosulfonate Isonitriles. In anodic reactions of o-heterosubstituted organotin compounds the CN group is delivered to the position vacated by the tin atom in the form of an isonitrile.s Interestingly, nitriles are obtained when the supporting electrolyte is changedfrom BuqNBFo1in THF) to Bu+NClOq(in CH:CI:t. t-Butylation of amines.e The condensation of acetone, amine, and MerSiCN affords an a-aminonitrile, which on further reaction with MeLi results in the formation of a t-butylamine. Pauson-Khand-type reaction.to In a cyclopentenone synthesis catalyzed by the titanoceneCp2Ti(PMer)2,trimethylsilyl cyanide suppliesthe carbonyl unit. 'T. MiuraandY. Masaki,JCS(PI)1659(1994). 'M. S. Batra,F.J. Aguilar,andE. Bruner,7 50, 8169(1994). 3c. A. MolanderandJ. P. Haar,JACS115,40 (1993). nS.H. OlsenandS.J. Danishefsky, TL 35,7901(1994) 5J.Tsuji,N. Yamada,andS. Tanaka,JOC SE,16(1993). oM. Suginome, andY. Ito, 7L 35, 8635(1994). H. Kinugusa, 7M. Yoshimatsu, H. Shimizu,M. Hori, andT. Kataoka'SL l2l (1993). T. Yoshiuchi, EJ.Yoshida,M. Itoh, Y. Morita,andS. Isoe,CC 549(1994\. tM. J. Genin.C. Biles,andD. L. Romero,TL34,43Ol (1993). 'uS.C. Berk,R. B. Grossman, JACS116'8593(1994). andS.L. Buchwald,
Tri methylsilyl(d iethyl)amine. a-Alkylation of conjugated carbonyl compounds.t Upon Mukaiyama aldolization and silica gel chromatography. The 1,4-adductsfrom reaction of enones with the original chromophore.A net a-alkylation on nonenolizable MerSiNEtz regenerate
Trimethylsilyl iodide. 16, 188-189 Vinyl iodides,r A convenient s)-nthcs tion and treatment of the products u ith \le
minutes at room temperature. Conjugate addition.2 z'-Altyliron cc gated carbonyl compounds in the prescncc Iodination of B-lactams. The.\-tcx1 51y2'displacementon the enol form.
' K. Lee andD. F. Wiemer,It 34, 24-1-1 r 199i, t K. Itoh, S. Nakanishi,andY. otsuji.lovc t t M . T e n ga n dM . J . M i l l e r ,J A C S1 1 5 . 5 . 1rtl 9 9
Tri methylsilyl trif luoromethanesu lforl 15, 346-350; 16,363-364: 17. 379--1t6 Dealkoxylative condensations. \un lyzed with TMSOTf. Glycosyl donors rrx and phosphinoxyglycosides.l
Under the influence of TMSOTf aclclx clic counterparts remain unaffected. Fcrm becausenew O-C and C-C bonds are crcr to mixed acetalsand oxathioacelalsrs nr nium ions, which then undergo S.l' rcr-r other hand, oxathioacetalsare clealed ulr
enals and enonesis realized.
OMe
I
,r._zY" o
Me3SiNEt2
R'r'-\'R' NEt2 OSiMe3
R3cH(oMe)z TiClr, CHzClz;
silica gel
RYoMe s"n^?\i{ o
'M. Hoio,M. Nagayoshi, K. Miura,andA' Hosomi'CL'719 A. Fujii,T. Yanagi,N. Ishibashi, (1994).
\-,
Lefo
OMe
-l
I B. H. Lipshutz,J. Burgess-Henry, andG. P. Roth,TL 34' 995(1993).
,/
The Mukaiyama aldolizationof o-sulfc A relatedreactionis the opening of p-o involving C-N bond cleavage.trappingrn TBSO
Tri methylsilyl f luorosulfonate. silyl donor and catalyst.' This compound FSOrSiMer, readily obtained by -78', is comparable and reaction of allyltrimethylsilane with fluorosulfonic acid at sometimessuperiorto trimethylsilyl triflate in catalytic activity.
\
llels'
1fou"
l )(tru" H Y u
l|:r9Ci
a
U
Carbonyl con d en sat ion s. Two-carbo condensation with B-silyl enol elhcrs trv
Trimethylsilyltriftuoromethanesulfonate
n .,h'tituted organotin compounds of an d :" rhe tin atom in the form is electrolyte supporting *r':r rhe ( ' H : C l : ) ' ir. n : rcetone' amine, and Me:SicN 11,5,$ tth MeLi results in the formaby k i : r r e n o n e s y n t h e s i sc a t a l y z e d unit' carbonYl .uPPlies the rrjt
383
Trimethylsilyt iodide. 16, 188-189 featuresenolphosphorylaVinyi iodides.L A convenient synthesis from ketones in MecN) for a few (or MerSiCl-NaI MelSiI with products tion and rreatment of the minutes at room temperature. Conjugateaddition.2n'.Allylironcomplexesdonatetheallylgrouptoconjugated carbonyl compounds in the presenceof Me:SiI' IoilinationofB-lactams.TheN-tosylatesgive3.iodo-B.lactamssasaresultof S7y2'displacementon the enol form' ' K. Lee and D. F. Wiemer,TL 34,2433 (1993)' 'K. Itoh, S. Nakanishi,andY. otsuji,JOMC473'215(1994)' tM. TengandM. J. Miller,JACSll5, 548 (1993)'
9
): F
: 9
: *9Jr ' L l2l (1993)' .-: T KataokaS .qJ |. q9l).
, a , . i l 6 . 8 5 9 3( 1 9 9 4 ) .
rtunds. UPon MukaiYamaaldolizawith !J,.t. from reaction of enones nonenolizable on c -\ net a-alkylation
13' 329- 33I ; 14' 333- 335; Trimethylsilyl trif luoromethanesulfona te' 15, 346-350; 16, 363-364; 17, 319-386 glycosylation reactions are cataDealkoxylative condensafions' Numerous isopiopenyt'r trichloroacetimidinyl,2 lyzed with TMSOTf. Glycosyl donors include and phosphinoxYglYcosides.r react with allylsilanes'owhile cyUnder the inf luence of TMSOTf acyclic acetals of 5,6-dihydropyranstis interesting clic counterpartsremarn unaffected.Formation becausenewo-CandC-Cbondsarecreated,Thetransformationofally|icacetals by MezS via l'3-transposedsulfoto mixed acetalsand oxathioacetalsis mediated niumions,whichthenundergosly2,reactionswithalkoxidesorthiolates,nonthe otherhand,oxathtoacetalsarecleavedwhenp-nitrobenzaldehydeispresent'7
z,^--rr\olrr" a'CH(OMe)z - Cl1.CH2C|2;
R3Y.oMe
+
(-.J
Me3sil Me35iO
CHzQlz .7go -> 00 2h 76o/o
R"nz\e b
srl@gel
o
CL'l19 . | . , . r r . K . M i u r a , a n d A ' H o s o m 'i
is an'i-selective'o The Mukaiyama aldolizationof a-sulfenyl acetals with TMSOTf-MeCN of B-methoxy-B-lactamse A related reaction is the opening of a water molecule' transfer and MeCN with t'upping involving C-N bond .l"uuug", TBSO I
obtained bY ou:J FSOrSiMer, readilY -?8', and comparable is rl:,,rre acid at In,rtrl\tic activitY' r . . . ' - l t . 9 9 5( 1 9 9 3 ) .
OMe I
a\ NH H- !,'" il
o
OMe
TBSO MecSioTf/MecN oo
.
1 l -v
-NHAC
.
CN 71./.
Carbonylcondensations.Two-carbonhomologationofcarbonylcompoundsby a,B-unsaturated aldehydes.r0Dual-site condensation with B-silyl enol ethers gives
384 Triorganoboranes re1,3-butadiene condensationof 1,4-ketoaldehydeswith l, 1,3-tris(trimethylsiloxy)sults in the oxabridged system.rr
-cHo
V
Ph
t"tt'o>-o""
*
MessiOTf
fo"*""
CH2Q!2
.T! ,/ Ph 87"/o
Conjugated thionium species are generated from allyl sulfoxides. Trapping of these specieswith silyl enol ethers leads to vinyl sulfides.12 Rearrangements. lreland-Claisen rearrangementof allyl fluoroacetates,rrformation of p-(N-acylamino)aldehydes from O-vinyl-N,O-acetals,'o 1,2-group migra-
Stereoselective radical addition to dl EtrB has been usedas a catalystfor the rertrc Benzyl alcohols.a The preparation tntt zones with RrB in the presenceof an amrtr [yielding ArCH(OH)R]. As a variation of tl and addition of H:O prior to workup gives ,
Electrophilic activation ol allylic dct triphenylborates enables the Pd(O)-catallzc nucleophiles such as malonate ester enolatc
' R . - Y .Y a n ga n dL . - X D a i ,S 4 8 1( 1 9 9 3 ) . rE. BaciocchiandE. Muraglia,TLS4'5015| 19 t K. Miura,K. Oshima,and K. Utimoto, ECSJa tG.w Kabalka,J.T.Maddox,andE. Bogas..lo( ' 1 . S t a r y I, . G . S t a r aa, n dP . K o c o v s k y ' T L J { .l '
tion/trapping are some of the useful transformations initiated by TMSOTf.rs16 'H. K. ChenaultandA. Castro,ft 35,9145(1994). ' J . - A . M a h l i n ga n dR . R . S c h m i d ts, 3 2 5( 1 9 9 3 ) . rH. Kondo,S. Aoki, Y. Ichikawa,R'L. Halcomb,H. Ritzen,andC.-H. Wong,'/OC59' 864 (1e94). os. Kim. J.Y. Do. S.H. Kim, andD. Kim, JCS(PI)2357(1994). 5I. E. MarkoandD. J. Bayston,r 50, 7l4l ( 1994). uS.Kim. J. H. Park,andJ. M. Lee,TL34' 5'169(1993). 7T.Ravindranathan, S.W.Dantale,andR.B. Tejwani,CC 1937 S.P.Chavan,J.P.Varghese, ( 1994). tK. Kudo,Y. Hashimoto, andK. Saigo,JOC 58,579(1993)' M' Hasegawa, M. Sukegawa, tY. Kita. N. Shibata,N. Yoshida, JOC59' 938(1994)' N. Kawano,andK. Matsumoto, l"L. Duhamel,J. Gralak,andA. Bouyanzer'TL34'7'145 (1993)' " G. A. MolanderandK. O. Cameron, JACS115'830(1993). 'tR. Hunter,J. P. Michael,C. D. Simon,?d D. S. Walter,T 50,9365(1994)' lrK. Arak and J.T. Welch,IL 34,2251 (1993). roH.Frauenrath, T. Arenz,G. Raabe,andM' Zorn,ACIEE32'83 (1993)' 'tq. Liu, M.J. Simms,N. Boden,andC. M. Rayner,JCS(PI)1363(1994). 'ul. ColdhamandS. Warren,JCS(Pl)1637(1993).
Triphenylphosphine. Deoxygenation of alcohols.' Aldohok ence of PhrP to give alkanes. 2,4-Alkadienones and 2,4,6' alhatrica 4-hydroxyl derivativesare converted to thc a
temperaturein benzene.4-Hydroxy-2-alk1t A cocatalyst for the isomerization of al phenol.3 Reducti.on-substitution of 2-alLytit triple bond of 2-alkynoic acid derivativesrt ung senseis effected by catalytic amounts I
Drocessesinvolve 2,4-dienoic intermediatcr
^ w
r| Ji
\\
COOMe \ -cooM"
+
"|\t io
\ X = OMe,NMea
Trimethylsilylmethylmagnesium chloride- l5' 343 Treatment of the conjugate (Jnsaturated nitriles from L-nitrocycloalkenes.r fragmentation. desilylative PClr triggers with reactions adducts from the Grignard ' H . - H . T s o ,B . A . C i l b e r t a , n dJ .R . H w u ,C C 6 6 9( 1 9 9 3 ) . Trlorganoboranes. 15, 337 N-Tosylamines,t Reaction of R3B with TsN:IPh in THF gives RNHTs in 6099Vo yield.It is not known whether ArrB would undergo the same transformation. Homolytic heteroaromatic substitutions.2 EtrB is often used in promoting free radical reactions, including alkylation of heteroaromaticssuch as pyrrole derivatives with alkyl halides.
o J
l
trleo'\ \..2R
*
^
r
y
R'Ofl ;
o
O|l \
COOMe
Ph3P-HOAG/ Or|SO dppp-HoAc / Phra
3E5 TriphenYlPhosPhine re-r::. lilmethylsiloxy)-1,3-butadiene
E.s.:-'
,,T\ l b F o t/ 87"/o
tcJ !r()m allyl sulfoxides' Trapping of r n rI . u l f i d e s . r 2 forrulgement of allyl fluoroacetates,13 )-r rni l-MO-acetals,ra1,2-groupmigramrt r\,nsinitiated by TMSOTf'rs'r6 IJ
864 b fi Rrrzen,andC.-H' Wong,JOC 59' P. :1r' (1994). 193'l ! \ \\ Dantale,and R. B' Tejwani'CC (1993)' i ; ; . : . . r o dK . S a i g oJ, O C 5 E , 5 7 9 (1994)' 938 59' JOC N l, \latsumoto' --r5 (1993). ]!{ , ri
1993).
i \ \ : . : e r .f 5 0 .9 3 6 5( 1 9 9 4 ) '
stereoselective radicul addition to alkynes und reduction of iodoalkynes.3 EtrB has been usedas a catalystfor the reactionswith (MetSihSiH to yield (Z)-alkenes' Benzyl alcohols.a The preparation involves reaction of araldehyde tosylhydrazones with RrB in the presenceof an amine base (e.g., DBU) followed by oxidation [yieldingArCH(OH)R].Asavariationofthismethod,theuseofBu+NOHasbase and addition of HzO prior to workup gives ATCH2R' Electrophilic activation of atlytic alcohols.s Formation of lithium allyloxytriphenylborates enables the Pd(0)-catalyzed substitution of allyl alcohols with soft nucleophiles such as malonate ester enolates. ' R . - Y .Y a n ga n dL . - X D a i ,S 4 8 1( 1 9 9 3 ) . 2 8 . B a c i o c c hain dE . M u r a g l i a ' T L 3 4 , 5 0 1(51 9 9 3 ) ' 'K. Miura, K. Oshima,and K. Utimoto,BCSJ66' 2356(1993). oc.w. Kabalka,J.T.Maddox,andE. Bogas,JOC 59,5530(1994)' t l. Stary,I. G. Stara,andP. Kocovsky,TL 34, 179(1993)' TriphenylphosPhine. Deoxygenation of alcohols.' Aldohols undergo double electrolysis in the presence of PhrP to give alkanes. 2,4-Alkadienones and 2,4,6-alkatrienoic esters. Both 2-alkynones and their 4-hydroxyl derivativesare converted to the dienones'by treatment with Ph:P at room temperature in benzene.4-Hydroxy-2-alkynoic esters behave analogously. A cocatalyst for the isomerization of alkenynoic esters to the trienoic esters is phenol.3 Reduction-substitution of 2-alkynoic acid derivatives.a Reduction of the triple bond of 2-alkynoic acid derivatives with functionalizaiion at C-4 in the umpolThese ung senseis effected by catalytic amounts of PhrB HoAc, and a nucleophile. processesinvolve 2,4-dienoic intermediates. n
r'. \ ( r E E 3 2 , 8 3( 1 9 9 3 ) . tCstPI)136l(1994) Int
X
\
,Adcoor"
NaOAc/ PhMe
!
COOMe
O
PhsP -HOAC
80-1100
X = OMe,NMez
r. 15.l-13 lulkenes.t Treatment of the conjugate trrugersdesilylativefragmentation' {. 6!
o *o\*
+
R'OH
Ph3P-HOAC
o
r"oA7y*
PhMe,90-1100
oR'
!q11.
rh T.\:IPh in THF givesRNHTsin 60rou.J undergothe sametransformation' lr.' Et.B is oftenusedin promotingfree irer\'rromaticssuchas pyrrolederivatives
COOMe PheP-HOAc/DMSO 91 3 dpip-HOAc/ PhMe
: :
9 97
tetrahalides 3E6 Triphenylphosphine-carbon
Tritfr
4- Pentenenitriles and benzoff lindoles. Allyl iminophosphoranesare formed from the corresponding azides upon treatment with PPhr (Staudingerreaction). Condensation of these products with diaryl ketenes leads to 4-pentenenitrilessby a sigmatropic rearrangement. In the homoallyl series the Wittig reaction is followed by an intramolecular Diels-Alder reaction. Mild dehydrogenationof the products gives benzo[/]indoles."
PPh3
Ph2c=c=o
Ph-.22-v.N3 PhH, t h, A
]
rt, 15 min
,5
['frl
l " en^en.J ?f i1 I
['n,.,..--*="'*
Monoesterification
o .Mo(CO)5
rlr
lll OMe
I Ph
Ph3P
-*
T H F ,A
of saccharidcs.
sugarsare selectively acylated under Mitsu Alkylations. The reagent effects redr indole derivatives3 with alcohols. Thc Mi acrylic estersaand that of glycals wirh ph
2,4-Cycloheptadienones.l Cyclopropylcarbene-Mo complexesreact with alkynes in the presenceof Phf under relatively mild conditions. The products are 2,3di substituted4 -alkoxy-2,4-cycloheptadienones.
1
'Y. Kikugawa, L. H. Fu, andT. Sakamoro. 5C i 'K. Tamura,H. Mizukami,K. Maeda,H. \tnre t A. K. Saikia,N. C. Barua,R. P. Sharma.andI oY. Kubota,M. Kodaka,T. Tomihiro, and H O Triphenylphosphine -diethyl ezodictrbr 17, 389-390
reaction) 51%(one-pot
Ph
Conjugated nitroalkenes.3 Dehydrrr combination in the presenceof RN is ao r Cyclic urethanes.a Carbon dioxi& ir from amino alcohols in the presenceof P the halides with other P(III) reagentssut effective.
,-)L_JP\ / \ \ . - , ^pn bue 52"/"
'H. Maeda,T. Maki, K. Eguchi,T. Koide,andH. Ohmori,TL35,4129(1994). 'C. Guo andX. Lu, JCS(PI)l92l (1993);CC 394(1993). rS. D. Rychnovsky andJ.Kim, JOC 59,2659(1994). 4B.M. TrostandC.-J.Li, JACS35, 3167,10819 (1994). tP. Molina,M. Alajarin,C. Lopez-Leonardo, andJ. Alcantara,I49,5153 (1993). 'P. Molina and C. Lopez-Leonardo, TL 34,2809 (1993). 7J.W.HerndonandM. Zora,SL 363(1993).
Triphenylphosphine-carbon tetrahalides. 13, 331-332; 15, 352; 16, 366-368 Acid halides. The relatively mild conditions of converting acids to halides by Phf-CX4 can be exploited for a one-flask synthesis of N-methoxy imidoyl bromides,r which give rise to nitriles on photolysis. In the presenceof Et:N the Ph:rPCXa combination converts amines and CFTCOOHto trifluoroacetimidoyl halides.2
has been applied to the inversion of col whereas alkyl nitriles are prepared by thrs
the source of nucleophile. The C-alkylatro zylic position is easily controlled. Inversion of hindercd alcohols.t lo tl ship between dissociation constant of th. r efficiency is indicated. Product yields en Among substituted benzoic acids, 4-nirro. tives give better results.
'A. Bourhim,S. Czernecki, andP. Krausz..fC 2A. Garcia,L. Castedo,and D. Domingrrs. S{. 'S. S. Bhag*at and C. Gude,It 35, 1847( t99a oA. B. Charetteand B. Core,It 36, 6833( t99! tA. Sobtiand G. A. Sulikowski,IL 35. 3661( | uE.G. J.C. Warmerdam, J. Brussee, C. G. Krur tJ. E. Macorand J. M. Wehner.H 35. 349 ( l99l tJ. A. Dodge,J. I. Trujillo, and M. Presncll. .lO
Triphenylphosphine-diisopropyl erodb Gaanidines.t An exceptionally mild r of a modified Mitsunobu reagent comhl derivative. Closure of oxacycles. Terminal cpor l, 2, 3-tr iol s. B -Lactonization I proceeds r rrI the yields are poor.
3E7 azodicarboxylate Triphenylphosphine-diisopropyl are formed 11. rnrrnophosphoranes rh PPh, {Staudingerreaction)'Conby a sig.3J. to -l-pentenenitriles5 111 \\'rttig reaction is followed bY hri:,'senation of the productsgives
Conjugated nitroalkenes.3 Dehydration of p-nitro alcohols by this reagent combination in the presenceof R3N is an improved method' Cyclic urethanes.a Carbon dioxide is activated for the heterocycle formation from amino alcohols in the presenceof PhrP and CCI+ or C2Cl6. Combinations of the halides with other P(III) reagentssuch as Bu:B (MeO)rB and (PhO)rP are also effective.
"
'l .t _ ppho
Ph2c=c=o rl' 15 min
I
:"'"
rea:: on )
xnc \to comPlexesreactwith alkYLi -,'nditions. The products ate 2,3-
o II
f
l
./'\r/
Ph
\ OMe
52"/.
b: ::. fL 35'4129(1994)' Q*i I
): { -jrtrra, f49,5153 (1993)' F:
-t : II --132;15,352;16,366-368 acidsto halidesby nr.. \,f converting r):rhe\is of N-methoxYimidoYlbroof EtlN the Ph3Pr. ln the presence halides'2 OH l,r trifluoroacetimidoyl
'Y. Kikugawa,L. H. Fu, andT. Sakamoto, SC23, 106l(1993)' 'K. Tu.u.u, H. Mizukami,K. Maeda,H. Watanabe, JOC 58,32(1993)' and K. Uneyama' ' A . K . S a i k i aN , . P .S h a r m aa, n dA ' C . G h o s hS, 6 8 5( 1 9 9 4 ) ' , . C . B a r u aR oY. Kubota,M. Kodaka,T. Tomihiro, and H' Okuno,JCS(P|)5 (1993)' -337 : Triphenylphosphine-diethyl azodicarboxylate. 13, 332; 14, 336 17. 389-390 Monoesterification of saccharides.t The primary hydroxyl groups of these sugarsare selectively acylated under Mitsunobu reaction conditions' Alkylations. The reagenteffects reductive N-alkylation of N-tosylamines2 and indole derivatives3with alcohols. The Mitsunobu reaction of 2-(l-hydroxy-alkyl)acrylic estersaand that of glycals with phenolssfollow an Siy2'course. The reaction has been applied to the inversion of configuration at an a-cyanohydrin center'n whereasalkyl nitriles are prepared by this method using acetonitrile cyanohydrin as at the benthe sourceof nucleophile.The C-alkylation of o-nitroarylacetonitrilesT zylic position is easily controlled. Inversion of hindered alcohols.s In the Mitsunobu reaction a positive relationship between dissociation constant of the acid component (nucleophile)with reactron efficiency is indicated. Product yields are higher when using acids of lower pK"' Among substituted benzoic acids, 4-nitro, 4-methanesulfonyl, and 4-cyano derivatives give better results. fA. Bourhim,S. Czernecki, andP. Krausz,JCC 12,853(1993). 2A. Garcia,L. Castedo, SL 271(1993). andD. Domingues, tS. s. Bhagwatand C. Gude,TL35, 184'l(1994). oA. B. ChareueandB. Cote,TL 36, 6833(1993). t A. Sobtiand G. A. Sulikowski,TL 35,3661(1994). oE.G.J.C.Warmerdam, C.G. Kruse,andA. van derGen,749' 1063(1993)' J. Brussee, tJ. E. Macorand J. M. Wehner,H 35,349 (1993). tJ. A. Dodge,J. L Trujillo, and M. Presnell,JOC 59' 234 (1994)' Triphenylphosphine -diisopropyl azodicarboxylate. 15, 352 353; 17' 390 Guaniilines.t An exceptionally mild alkylation method for guanidine is the use of a modified Mitsunobu reagent combination and an alcohol en i15 fy',1ty''-diBoc derivative. Closure of oracycles, Terminal epoxides are formed2 selectively from acyclic 1,2,3-triols.p-Lactonization3 proceedswith total inversionofconfiguration, although the yields are poor.
3E8 Triphosgene ' D. S. Dodd and A. P. Kozikowski, TL 35,9'l'l (1994). 2C. Gravier-Pelletier, Y. Le Merrer, and J'-C' Depezay, SC 24' 2843 (1994). tS. C a m m a s , I . R e n a r d , K . B a u t a u l t ,a n d P . G u e r i n , f A 4 , 1 9 2 5 ( 1 9 9 3 ) .
Triphenylphosphine-dipyridyl disulfid e. 13' 332-333 Amides.t Activationof carboxylicacidsby this reagentcombinationfollowed by reactionwith MerSiNR2constitutesan efficientmethodof amidesynthesis. 'R.
Di Fabio, V. Summa, and T. Rossi, TL 49' 2299 (1993).
16' 369 Triphenyltin hydride-trialkylborane. Radical cyclization.t The intramolecular free radical addition to an aldehydein order to form a cyclohexanol is induced by Ph:SnH-EtrB in the presenceof air. Hydrostannylation,2 Alkenes do not generally undergo this reaction. However, cyclopropenesare hydrostannylatedwith Ph3SnH-Bu38 becauseof their ring strain. 'D. L. J. Cliveand M. H. D. Postema, CC 429(1993). 'S. Yamago,S. Ejiri, andE. Nakamura, CZ 1889(1994).
Triphosgene. Anhydrides and cyclic carbonates. Symmetrical anhydrides are formed when acids are rreated with (ClrCO)zCOand Et3N.r The transformation of the terminal glycol unit of a 1,2,3-triolto the cyclic carbonate2can be accomplishedwith triphosgene and pyridine; on the other hand, the internal diol system is protected using NaH and
Tris(4-bromophenyl)aminium selts. l{. Glycosylation' The one-electronort
fides toward coupling with alcohols tinclrr 1,2-Rearrangements. Efficient prnr temperature.a-Substituted arylacetabc\ dicarbonyl compounds with an analogorr t
Desulfurization.a Allyl and diallll t temperatureto give dienes and trienes. rcsp
' Y . - M . Z h a n gJ, . - M .M a l l e t ,a n dP . S i n a 1C .f tL. Lopez,G. Mele,andC. Mazzeo.JCSPl , ' tL. Lopez,G. Mele,A. Nacci,andL. Trcxsr./ oV.Calo,L. Lopez,A. Nacci,andG. Ileb. f !
Tris(dibenzylideneacetone)d ipallrd ir r. Adtlition lo unsaturated systcas. A lyzed reaction of conjugated dienes. orge chloride componentis incorporatedrnto tl
P h c o c +l V \ + f b l 9 - s ' -
(MeO)zCO.
Addition of Bu3SnHto enynesis regro readily available.C1cl rretr nyl- 1,3-dienes2 carbonylation is a useful way to acces fuo enes undergo reactions at both ends: r tth allylamines bearing an crr-arylgroup'
o o
o
"H,,'" BnO.--
\OX
(MeO)rCO rl
65"/"
chlorides.t
A combination
of triphosgene and PhrP is effective in the conver-
sion of alcohols to chlorides. Conditions are mild (typically 0'C, 5 min., in CHzClJ. 'R. Kocz, J. Roestamadji, and S. Mobashery, JOC 59' 2913 (1994). 'S.-K. Kang, J.-H. Jeon,K.-S. Nam, C.-H. Park, and H.-W. Lee, SC 24,305 (1994)' t l . A . R i u e r o , R . S o m a n a t h a n ,a n d L . H . H e l l b e r g ,S C 2 3 ' 7 l I ( 1 9 9 3 ) '
Allylic substitutions. Allllic carbo ethers,5amines,6 sulfides? on exposurt tr Pdz(dba)r,and a tertiary phosphine, Allylic compoundscontaining orhcr lc stitution. Thus alkoxycarbonylationof ell tion, on which an interesting p-lrtam
nucleophile in the displacement.2.'t-hcrd dienyloxiranes. Desilylation of the prodrx Either the S1y2or the S1y2'path*a1 for propane" can be selectedby using .\'-nrrl
Tris(dibenzylideneacetone)dipalladiun
389
Tris(4-bromophenyl)aminium salts. 14, 338; 16,369-370:' l7' 391 The one-electron oxidant promotes activation of glycosyl sulGlycosylation' fides toward coupling with alcohols (including sugars). 7,2-Rearrangements. Efficient pinacol rearrangement2is completed at room temperature. a-Substituted arylacetaldehydes undergo rapid oxidation to give d-
t ,r! \( 2{. 2843(1994). r 1 . l 1 9 2 5( 1 9 9 3 ) .
!r :rr. reagentcombinationfollowed irer.: methodof amide sYnthesis.
f frrc radicaladditionto an aldehydein ;Snl{-EtrB in the presenceof air. lr.rilr undergothis reaction.However,
salt.r dicarbonyl compoundswith an analogoustris(2,4-dibromophenyl)aminium Desulfurization,a Allyl and diallyl thiiranes undergo desulfurization at room temperatureto give dienes and trienes, respectively,on exposureto the aminium salt. 'Y.-M. Zhang,J.-M. Mallet,andP. Sinay,CR 236,73(1992). tL. Lopez,G. Mele,andC. Mazzeo,JCS(PI)779(1994). 'L.Lope., G. Mete,A. Nacci,andL. Troisi,TL34,389'l (1993). o V .C a l o ,L . L o p e z ,A . N a c c ia, n dG . M e l e , 7 5 1 , 8 9 3 5 (1995).
rH Uu,B becauseof their ring strain.
Tris(dibenzylideneacetone)dipalladium.14,339;15,353-355;16,372;17,394 Addition to unsaturated systems. Allylsilanes are produced' in a Pd(0)-catalyzed reaction of conjugated dienes, organodisilanes, and acid chlorides. The acid
F:
chloride componentis incorporatedinto the product after decarbonylation.
mcrrrcalanhydridesare formed when hc :rensformationof the terminal glyca.. b!' accomplishedwith triphosgene i.l .rrtem is protectedusing NaH and
ct3co)20 -7tr
H O H ^
13"7o
Bno)
Lo 77"/"
r ::J PhrP is effective in the converi l r : r p i c a l l y0 ' C , 5 m i n . , i n C H : C l z ) . t9 :.lr (1994). N ll ,\t' Lee, SC24,305 (1994). 'l t( :-r. I ( 1993).
pd(dba)2
phcoo
+ \A
+
Me3si-siMe3
,*"T0"
zr
Ph/ \/
,2,^
\/-
. _SiMes
86"/"
thus making 2-stanAddition of BurSnH to enynesis regio- and stereoselective, readily available.cyclization of allyl 2-alkynoateswith simultaneous nyl-1,3-dienes2 dicarbonylationis a useful way to accessfunctionalized7-lactones.'Nonconjugated enes undergo reactions at both ends; with aryl iodides and amines the products are allylamines bearing an a-aryl group.o Atlylic substitutions. Allylic carbonates are converted to the corresponding ethers,samines,6 sulfidesT on exposure to various nucleophiles in the presenceof Pdz(dba)r,and a tertiary phosphine. Allylic compounds containing other leaving groups are also reactive toward substitution. Thus alkoxycarbonylation of allylic phosphates8is a method of homologation, on which an interesting B-lactam synthesisqis based. using PhrSioH as from butaare synthesizedr0 nucleophilein the displacement,2,4-hexadiene-1,6-diols dienyloxiranes. Desilylation of the products is achieved with KF. Either the Sry2or the Sry2'pathway for the substitution of l-tosyloxy-l-vinylcyclopropane" can be selectedby using N-nucleophiles of different sizes.
390 Tris(dibenzylldeneacetone)dlpalladium NaNg/Pd(dba)z-PPhs 1s-crown-s; PPh3/ aq. NaOH
OTs
x,
NHc
60"/"
X/
Bn2NH/Pd(dba)2-dppf 1s-crown-s ;
PPfu/ aq.NaOH
rNBnr
NJ l/' 85"/.
Intramolecular substitutionsinvolving an allylsilane moiety12as well as following a metallo-ene reaction pattern13have been reported. Tandem metallo-ene cyclization and vinylstannane coupling serve to construct cycloalkanes with vicinal alkenyl chains.ro
Arylquinones,2rarylallenes,22dienl'l sul more unusual molecules whose assemblr tr cross coupling with a-alkoxyalkenylstan proach to enol ethers of defined configurer A technical modification of the Stillc c
polymer support.26 Suzuki coupling. This coupling usc preferred in the preparation of drug cea
In a synthesis of methll I carbapenems.2T pling is aided by AgrO." Heck coupling. An intramolecular ll pare 4-methylcoumarin2eand related coml chiral BINAP to mediatecyclization.an rl 86Voee.3o
Pd(dba)2
s02Ph r_kso2Ph
2) a.o)
ll
/rl \ Pt(^) \
"
/
,/3
Bu3SnCH=CH2 2nol2,IHF th, A
s02Ph
f-tso,Ph
fr
PivO_.
a-(-\ ,o."Q-,,oJ
)
Pd2(dba)3.CHCl3
(F)€rNAP/Kpq - CICH€HP I-BUOH
76%
Nucleophiles for the substitutioncan be generatedin situ. For example, a synthesis is conductedusing amines and alcoholsunder of allylic carbamatesand carbonates15 COz. Since disilanes are cleaved in the presenceof Pd(0) complexes,their use in the synthesisof allylsilanes'6is feasible. The formate anion reducesallylic acetatesin the ,Sp2'mode. Acquisition of allylic geln-bimetalliccompoundsrT is facilitatedby this process.
tlessiylronc BusSn
Pdz(dba)s- PPha HCOOH - EISN dioxane, A
Messi.ul I BusSn 99lo
Deallylations. The facile cleavageof the allyl group from esters,rscarbonates,re and carbamatesby nucleophiles(amines and thiols) in the presenceof a Pd(0) complex makes them useful derivatives for protection purposes. Stille coupling. The many examplesdescribing applicationsof this C-C bondforming method attest to its versatility. A comprehensivestudy of the coupling of arylstannanes with sulfonates has appeared.2oOf course, various combinations of aryl/aryl, aryl/vinyl, and vinyl/vinyl couplings are equally possible. PhrAs is often added to the reaction media. and in other casesCuI acts as a cocatalyst.
6-endo-trig Cyclization has been rcalrz
"a\
.d
Br--.2-pt
Y
Molecules with activc ( Alkylations. compounds that are activated by Pd catel and allenes.3rBy a thr lated by aldehydes32 ester, an allene, and a vinylic bromide. thc tutes a convenient preparation of a l..l.l Some aryl(hydro)silanesalso undergoar;.' R \==---
.cooEl I
?.. -.\
or'\
Fa|.
Tris(dibenzylidencacetone)dipalladiun .9+ *
,NHA
l>\/
F
60% r tc'
NBn2
65-/o
2s w e l l a s f o l l o w i n g t i i r l . r l a n e m o i e t y 1a p,'rred.Tandemmetallo-enecyclization ru.r cycloalkaneswith vicinal alkenyl
391
Arylquinones,2rarylallenes,22dienyl sulfoxides,23and dienynes2aare some of the more unusual molecules whose assembly is greatly simplified by this method. The cross coupling with a-alkoxyalkenylstannanes2s (and zincs) provides another approach to enol ethers of defined configuration. A technical modification of the Stille coupling is to anchor the aryl iodide on a polymer support.26 Suzuki coupling. This coupling uses nontoxic boronic acids; therefore, it is preferred in the preparation of drug candidates such as z-aryl- and 2-alkenylcarbapenems.2T In a synthesis of methyl 2-aryl-2,3-butadienoatesthe Suzuki coupling is aided by AgrO." Heck coupling. An intramolecular Heck coupling is a convenient way to prepare 4-methylcoumarinzeand related compounds. Through ligand exchange with a chiral BINAP to mediate cyclization, an intermediate for vernolepin is accessiblein 86Voee.3o
SO2Ph
I
f-tso2Ph
(Y
:l-
.Y^\ ,o""Qrro!
j
)
Pd2(dba)3.CHCl3 (F)€tNAP/K2CO3 I-BUOH- CICH2CH2CI 600
76"h
'ncr.rtedin situ. For example,a synthesis du;red using amines and alcoholsunder n;c "f Pd(0) complexes,their use in the r ::r rhe Sp2'mode. Acquisitionof allylic ' r5r\ process.
I
:
:
"
;...'I
'
g
Me3Si.,1 Y \ ' aussrl g
%
carbonates,le c .r.lrI group from esters,18 I rr:,'l\) in the presenceof a Pd(0) comC l t , ' nP u r P o s e s . s":rf'rng applicationsof this C-C bonditrmFrehensivestudy of the coupling of l.: oi course,various combinationsof rg. :re eQuallypossible.Ph:As is often lc. C'ul acts as a cocatalyst.
o. \_o
PivO..
PivO..
76"/. (86"/" eel
6-endo-trig Cyclization has been realized.rl
"a\ + tr..Z-rn
(dba)gPdz€HClg
Ph3P Et3N-PhMe
Y
62"/"
Alkylations. Molecules with active C-H and Si-H bonds add to unsaturated compounds that are activated by Pd catalysts. Substituted malononitriles are alkylated by atdehydesr2and allenes.33By a three-component coupling of an acetoacetic ester, an allene, and a vinylic bromide, the construction of a diene keto ester constitutes a convenient preparation of a 2,4,S-trisubstituted benzoic ester precursor.3a Some aryl(hydro)silanes also undergo arylation.35 R R
I \^v't\ Br I
-.,\
acooEl o7--
Pd2(dba)3- dppe
\.^.'.cooEr t l .^{-,
THF
- 70"/"
392 Tris(dibenzylldenercetone)dipalladium Cyclization of polyenynes.36 Very impressivereaction sequencesof ring formation from properly distanced multiple bonds are revealed. OMe
Pd2(dbah.CHC13
Ph3P/THF, A
Phso2
Phso2 n = 2.3.4
n= 4
77"/"
Other synthetic reactions. Catalyzedelimination of allylic carbonatesrToccurs in the absenceof nucleophiles.Alkynediols undergo isomerization and dehydration, furnishing 2,S-disubstituted furans3Eas a result. l-Carboranyltributyltin adds to aldehydesunder the influence of the Pd catalyst to form carbinols.seThe Pd version of a Pauson-Khand cyclopentenonesynthesis is accomplishablein the presenceof CO, and actually this version is specially suited for a one-step construction of d/methylenecyclopentenones.ao
(dba)3Pd2€HCl3
z
-X E
\
-//'..-oA" -
Ph3P, LiCt, CO
E
THF, H2O 700,24h
E
E=COzMe 'Y. O b o r a , Y . T s u j i , a n d T . K a w a m u r a ,J A C S 1 f 5 , 1 0 4 1 4( 1 9 9 3 ) . 'B. M. Trost and C.-J. Li, S(Spec. Issue) 1267 (1993). rJ. Ji and X. Lu, I50, 9067 (1994). a R . C . L a r o c k , Y . W a n g , Y . - D . L u , a n d C . E . R u s s e l l ,J O C 5 9 , 8 1 0 7( 1 9 9 4 ) . tR. Lakhmiri, P. Lhoste, B. Kryczka, and D. Sinou,JCC 12, 223 (lgg3). 6H. Inami, T. Iro, H. Urabe,and F. Sato,TL34,5glg (lgg3). tC. G o u x , P . L h o s t e , a n d D . S i n o u , T 5 0 , 1 0 3 2 1( 1 9 9 4 ) . 8S.-i. M u r a h a s h i , Y . I m a d a , Y . T a n i g u c h i , a n d S . H i g a s h i u r a , J O C 5 E , 1 5 3 8( 1 9 9 3 ) . eH. T a n a k a , A . K . M . A b d u l H a i , M . S a d a k a n e ,H . O k u m o t o , a n d S . T o r i i , J O C 5 9 , 3 O 4 O 0994\. 'oB. M. Trost, N. Ito, and P. D. Greenspan, TL 34, l42l (1993). "P. A u f r a n c , J . O l l i v i e r , A . S t o l l e , C . B r e m e r , M . E s - S a y e d ,A . d e M e i j e r e , a n d J . S a l a u n ,? L 34,4193 (1993\. 12M. T e r a k a d o ,M . M i y a z a w a , a n d K . Y a m a m o t o ,S t 1 3 4 ( 1 9 9 4 ) . 'tK. H i r o i a n d K . H i r a s a w a ,C P B 4 2 , 7 8 6 ( 1 9 9 4 ) . ''W. Oppolzer and J. Ruiz-Montes, IICA 76, 1266 (lgg3,. 'tW. D. Mcchee, D. P. Riley, M. E. Christ, and K. M. Christ, OM 12, l42g (lgg3). 'uY. Tsu.|i,S. Kajita, S. Isobe, and M. Funato, JOC 58,3607 (1993). " M. Lautens and P. H. M. Delanghe, ACIEE 33,2448 (1994).
'tS. Okamoto, N. Ono, K. Tani, Y. Yoshide. rr 'tJ. P. Genet, E. Blart, M. Savignac, S. L-cmr 680 0993). 20V. Farina, B. Krishnan, D. R. Marshall, eod r 2r L. S. Liebeskind and S.W. Riesinger. .rOC Sl "D. Badone, R. Cardamone, and U. Cuzzr. rI, "R.S. Paley and A. de Dios, IL 34,2429 (t9{, 2aB. H. Lipshutz and A. Alami, IL 34, I4ll r tr tt S. Casson and P. Kocienski, JCS(Pt) l lt? r t9 26 M. S. Deshpande, TL 35, 5613 (1994). ''N. Yasuda, L. Xavier, D. L. Rieger, Y. Lr. A ( 1993). "T. Cillmann and T. Weeber. SI 649 fl99ar 2eM. Catellani, G. P. Chiusoli, M. C. Fagoolr. r sK. K o n d o , M . S o d e o k a ,M . M o r i , a n d M . S b i 3'B. M. Trost and J. Dumas, TL 34, 19 (199f t 12H. Nemoto, Y. Kubota, and Y. Yamamoro. C( 13Y. Y a m a m o t o ,M . A l - M a s u m , a n d N . A s a . . / 3V. G a u t h i e r ,C . G r a n d j e a n ,B . C a z e s ,a n d J . ( "Y. U c h i m a r u , A . M . M . E l S a y e d ,a n d M . T e r 'uB. M. Trosr and Y. Shi, "/ACS ll5, 9421 ( l9{)l "S.-K. K a n g , D . - C . P a r k , C . - H . P a r k , a n d R .- l ttJ. Ji and X. Lu, CC 764 (lgg3). 'nH. Nakamura, N. Sadayori, M. Sekido. eod Y *N. C. Ihle and C. H. Heathcock. JOC St. ffi
Tris(dimethylamino)sulfur trimcthybill p-Keto sulfoxides.t TAS-F prornorc S-aryl arenethiosulfonate .S-oxides. 'R.
Caputo, C. Ferreri, L. Longobardo. G hh
Tris(pentaf luorophenyl)boranc. Aldol and Michael reactions. (Cfrl lyst for these reactions.Thus the aldol cood aldehyde can be conducted at -78"C.' Agl
The analogouscondensationwith imines p Epoxide rearrangement.a With rhe t favored during the rearrangement.
o
oA" Ar3&Phlb.6f SbF/Pht e. -7f
Tris(pentafluorophenyl)borane 393
of ring formar.i. r t(rnsequences rc:lcJ. o{,e I
- - .1
77"/o
l r : , n , \ f a l l y l i c c a r b o n a t e s roTc c u r s 8,, r.()merizationand dehydration, .,(-arboranyltributyltinadds to The Pd versionof f.':nr carbinols.rn in the presenceof CO, rrr.;.lr.hable tr r 1)ne-stePconstruction of d'-
'tS. Okamoto, N. ono, K. Tani, Y. Yoshida, and F. Sato, CC 2'19(1994). 'tJ.P. G e n e t , E . B l a r t , M . S a v i g n a c ,S . L e m e u n e ,S . L e m e u n e - A u d o i r e ,a n d J . M . B a r n a r d , S L 680 0993). 20V. Farina, B. Krishnan, D. R. Marshall, and G. P. Roth, JOC 5E, 5434 (1993). 2rL. S . L i e b e s k i n d a n d S . W . R i e s i n g e r ,J O C 5 E , 4 0 8 ( 1 9 9 3 ) . "D. B a d o n e ,R . C a r d a m o n e ,a n d U . G u z z i , T L 3 5 , 5 4 7 7 ( 1 9 9 4 ) . " R. s. Paley and A. de Dios, It 34,2429 (1993). 2aB. H . L i p s h u t z a n d A . A l a m i , T t 3 4 , 1 4 3 3( 1 9 9 3 ) . "S. Casson and P. Kocienski, JCS(PI) ll87 (1993). 26M. S . D e s h p a n d e ,T L 3 5 , 5 6 1 3 ( 1 9 9 4 ) . "N. Y a s u d a ,L . X a v i e r , D . L . R i e g e r , Y . L i , A . E . D e C a m p , a n d U . - H . D o l l i n g , T L 3 4 , 3 2 l l ( I993). ttT. Gillmann and T. Weeber, 5L649 (1994). 2eM. C a t e l l a n i , G . P . C h i u s o l i , M . C . F a g n o l a ,a n d G . S o l a r i , Z L 3 5 , 5 9 1 9 ( 1 9 9 4 ) . 'oK. K o n d o , M . S o d e o k a ,M . M o r i , a n d M . S h i b a s a k i ,S 9 2 0 ( 1 9 9 3 ) . rl B. M. Trost and J. Dumas, TL 34, 19 (1993). 12H. Nemoto, Y. Kubota. and Y. Yamamoto, CC 1665 (1994). "Y. Y a m a m o t o ,M . A l - M a s u m , a n d N . A s a o , , / A C Sf 1 6 , 6 0 1 9 ( 1 9 9 4 ) . 3aV. Gauthier, C. Grandjean, B. Cazes, and J. Gore, BSCF 131, 381 (1994). "Y. U c h i m a r u , A . M . M . E l S a y e d ,a n d M . T a n a k a , O M 1 2 , 2 0 6 5 ( 1 9 9 3 ) . 'uB. M. Trost and Y. Shi, "|ACS 115, 9421 (1993\. ttS.-K. Kang, D.-C. Park, C.-H. Park, and R.-K. Hong, IL36,405 (1995). 38J. Ji and X. Lu. CC 764 (1993\. t'H. N a k a m u r a , N . S a d a y o r i ,M . S e k i d o ,a n d Y . Y a m a m o t o , C C 2 5 8 l ( 1 9 9 4 ) . nuN. C . I h l e a n d C . H . H e a t h c o c k ,J O C 5 8 , 5 6 0 ( 1 9 9 3 ) .
Tris(dimethylamino)sulfur trimethylsilyldifluoride (TAS-F). 13,336:15, 355 p-Keto sultoxides.t TAS-F promotesthe sulfinylationof silyl enol etherswith ,5-arylarenethiosulfonate S-oxides. 'R. r\.)11
t:
/ r r r 5 9 .8 1 0 7( 1 9 9 4 ) . ( ( l : . 1 2 3( 1 9 9 3 ) . l
'- i
I
r ' : , : t . J O C5 8 , 1 5 3 8( 1 9 9 3 ) . ) r - - : ' r L r . a n d S . T o r i i ,J O C 5 9 , 3 0 4 0 |
.
qa i I
Tris(pentaf luorophenyl)borane. Aldol and Michael reactions. (CuFs)3Bis an air-stable and water-tolerantcatalyst for these reactions.Thus the aldol condensationbetween a silyl enol ether and an aldehyde can be conducted at -78'C.rAqueous HCHO can be used as electrophile.2 The analogouscondensationwith imines provides a route to p-amino esters.l Epoxide rearrangemenL4 With the borane in nonpolar solvents,alkyl shift is favored during the rearrangement.
\. de Meijere, and J. Salaun, IL
rrri -::
C a p u t o , C . F e r r e r i , L . L o n g o b a r d o ,G . P a l u m b o , a n d S . P e d a t e l l a ,S C 2 3 , l 5 l 5 ( 1 9 9 3 ) .
. e9-l).
?-, ... OM 12, l42g(lgg3). :^ - 1993).
| -".,.
o
o
r'Y\ t l
cHo Bu
Bu Ar3B/PhMe,600 SbFs/PhMe,-78o
'.
/'Y^eu t l
98
2
t5
oc
394 Tungsten Pentacarbonyl 'K. Ishihara,N. Hanaki, and H. Yamamoto' SL 577 (1993)' l72l (1995). K . I s h i h a r a , N . H a n a k i , M . F u n a h a s h i ,M . M i y a t a , a n d H . Y a m a m o t o ,B C S . I6 8 , ( 1 994). ,K. 9 6 3 S l Y a m a m o t o , I s h i h a r a , M . F u n a h a s h i ,N . H a n a k i , M . M i y a t a , a n d H . oK. ( 1 9 9 5 ) ' 7 2 1 S L Y a m a m o t o , I s h i h a r a ,N . H a n a k i , a n d H ' ,
Tris(trimethylsilyl)silane. 15, 358-359; 16' 374-3'15 by a Alkanesfrom alcohols.t RoH is deoxygenatedvia the thioxocarbamates benzene' in refluxing (MerSi):SiH-AIBN free radical reaction with Ketone synthesis.2 The assemblyof RCOCHzCH2R from RI, CO' and electrondeficientalkenesCHr:611p' is mediatedby (MerSi)rSiH-AIBN' 'M. ObaandK. Nishiyama'250, 10193(1994)' '1. Ryu, M. Hasegawa, A. Kurihara,A. Ogawa'S' Tsunoi,andN' Sonoda'sL 143(1993)'
Trityl chloride. 15, 359-360 Polyols form monotrityl ethers with limited amount Selective O-alkylation.r (10 mol vo) of TrCl and pyridine. A primary hydroxyl is favored over a secondary derivatized. alcohol, and only one of the two primary hydroxyl groups of a diol is sc 24'2399 'v. E. M. Kaats-Richters, andL.w. Jenneskens, J.w. Zwikker,E. M. D. Keegstra, (1994).
Tritylperchlorate.13'339-340;14,344-345;15'361-362;16'375-376 r Unusual chemoselectivity is revealedusing trityl ethers as glyGlycosylation In this cosyl acceptors.secondary ROTr have higher reactivity than primary ethers. reaction, TrCIO+ acts as a catalyst.
?Poo"
?Poo. AcoSi\
+
Bno
rrcro4 n"o$-!,61,
cHd
o.?"o_$fl
*,,,,("
Bnodu" s4yo
ry.
(1993). E . T s v e t k o v ,p . I . K i t o v , L . v . B a c k i n o w s k y ,a n d N . K . K o c h e t k o v , T L 3 4 , 7 9 ' 1 7
Tungsten pentacarbonyl.14, 345-346 pauson-Khand reaction.t The w(co)s . THF complexpromotesformationof from 1,6-enynes. bicyclicdienones 'T. R. HoyeandJ.A. Suriano, (1993)' 115'1154 "/ACS
Ultrasound. 15, 363; 16' 37'7-3'19 Reduction of esters't Primarl akot gllcol-{ tion with the NaBHn-Polyethylene t triacthylsilyl of Reductive coupling tl b} yield 89'9% in (Me3Si), is formed tlr biphenyl as an electron-transferagent' r 1,4-cyclohexadrr 3,6-bistrimethylsilylL'hn cyanidcs"' alkyl of Alkylation all'ots t of nitriles with Na in toluene and hYdroxYu and HYdrostannYlation ts organotin hydride to a multiple trcnd p-hldrot a is product presenceof air. the Wittig rcactions.s Vinylic chakoirr tions using KzCOr as base' Carbene formation'b DecomPosrt which are intercePtedbY alkcnes' Diels- Alder reaction of l- azalieut ily synthesizedin high Yields'
'H. Liu, x.-L. Ji, andK. Huang'l't' 13'{:l tE. A. MistrYukov, MC 251(1993)' rJ. Berlan,H. Delmas,I' Duee'J' L' Luch' t oE. Nakamura, Y' Imanishi,andD' Mrhtt' 5C.C. Silveira,G. Perin,andA' L' Bnge' l( uA. K. BertramandM'T' H' Liu' CC {6i ' lq 'M. Villacampa'J.M' Perez,C Avcndeoot
1,": o i i l \ a m a m o t o , B C S J 6 3 '1 7 2 1( 1 9 9 5 ) ' r : ; l l Y a m a m o t o ,S t 9 6 3 ( 1 9 9 4 ) ' l9e<
0r!('J \ia the thioxocarbamatesby a
15' 363; 16,3'77-379 Ultrasound. --primary alcohols are obtained in good yields by reduciraurtion of esters.t
I r e :l u \ i n g b e n z e n e . 'H CH:R' from RI' CO, and electroni c S rr , S i H - A I B N .
tionwiththeNaBHa-polyethyleneglycol-400systemundersonochemicalconditions' and l,4-disilylation of benzene.2 Reductive coupling of trinetiyisityl chloriile coupling' Using 4'4'-di-t-butylWurtz the (MerSi)z is formed in Ag.gqoyield by
l u : , , r .r n d N . S o n o d aS, L 1 4 3( 1 9 9 3 ) '
biphenylasanelectron-transferagent,thesonochemicalreactionwithbenzenegives quantitatively' l,i-Uisirimetlylsilyl-1,4-cyclohexadiene almost irradiation facilitates deprotonation Ultrasonic Alkylation of alkyl cyanides.3
{-r-5
)nr,rrrt)l ethers with limited amount trJr,'rll is favoredover a secondary rrr i rroups of a diol is derivatized' s, SC24,2399 ci.: rr. andL.W. Jennesken
i. t5. 361-362; 16, 3'75-3'16 r r. r*ealed using trityl ethersas glyrtr.rr\ ity than primary ethers'In this
?Foo" >c. o.o\3-!-or,
F:
o'?^o\$ BnOjr" 54"/"
(1993)' TL34,'19'17 | \ K Kochetkov,
Tl{F complex promotes formation of
ofnitrileswithNaintolueneandallowsthealkylationwithhalogencompounds. The radical addition of an Hydrostannylation and hydroxystannylation'a ultrasonic irradiation' In the by promoted organotin hydride to a multiple bond is stannane' of air, the product is a B-hydroxy presence ''-formed under sonochemicalcondiirrrrr rroctions.5 Vinylic chalcogenidesare tions using K2CO: as base. gives arylchlorocarbenes' Carbene formation.6 Decomposition of diazirine which are intercePtedbY alkenes' derivativesare readDiels- Alder reaction of I' azadienes'1 Tetrahydropyridine ily synthesizedin high Yields' 'H. Liu, X.-L. Ji, andK. Huang,YH 13,421(1993)' 'E. A. Mistryukov,MC 251(1993)' rJ. Berlan,H. Delmas,I. Duee,J' L' Luche'and L' Vuiglio' SC 24' 1253(1994)' (1994)' nE. Nakamura, Y' Imanishi,andD' Machii'JOC 39'8178 sC.C. silveira,G. Perin,and A' L' Braga,JCR(S)492(1994\' uA. K. Bertramand M.T' H' Liu, CC 467(1993)' t M. Villacampa,J. M. Perez,C' Avendano'and J' C Menendez'T 50' 10047(1994)
Vanadyl fluoride. 16, 381-382 9,10-Phenanthrenequinones.' Subg tion on treatmentwith vanadyl fluorr& a rangefrom tll the phenanthrenequinones
'8. Mohr,V. Enkelmann, andG. wegner.,ltx Valine f-butyl ester. 14, 347 Asymmetric Michael addition of B-keto esters is achievAs chiral auxiliary.t and able via the chiral enamines. The stereoselectivity is dependent on solvent additives.
(Yo
,V"ootu' ,'-t-,-
NH
(A"oo*
LDA; CHz=G(COOBulz
\-
aq. HCI
-Acooer
\acooau'
..k,tl
COOBuT
t Ph
860/. (95o/oee) 'K.
A n d o , K . Y a s u d a ,K . T o m i o k a , a n d K . K o g a , J C S ( P I ) 2 7 7 ( 1 9 9 4 ) '
Vanadium(III) chloride-zinc dust. with diMonodebromination of gem- dibromocyclopropanes.t In conjunction in a atom bromine one removes reagent the ethyl phosphonateor triethyl phosphite, stereoselectivemanner. highly Cross pinacol coupling.2 The VCITTHF complex gives [V2Clr(thf)e]z(ZnzCle) on treatment with zinc dust. coupling of aldehydesfurnishes syn-1,2-diols. ' T. Hirao, K. Hirano,T. Hasegawa, Y. Ohshiro'and I' Ikeda,JOC 58' 6529(1993)' '8. A. KraynackandS.F. Pedirsen, (1993);A'W' Konradi'S' J' Kemp'andS F JoC 58,6114 (1994). l316 116, JACS Pedersen,
Vanadium(V) oxide. is used in Oxidation of alcohols.t Supported on zirconia, vanadium(V) oxide give aldehydes to (e.g., CHzClz) solvent organic in an oxidation the heterogeneous and ketones. 'H. Nakamura, and K. Arata,CL'149(1994)' H. Matsuhashi,
Vanadyl 3-butylacetylacetonate. is a catalyst for aerial oxidation euinone synthesis.t The oxovandium complex of polynuclear arenes and aryl ethers. 'T. Takai,E. Hata,andT. Mukaiyama,CL 885(1994)' 396
Vinylselenonium salts. Cyclopropane sYnthesis.' The rexr ceeds by addition, proton exchange.ard propane derivatives.
rit _
>r Tlt
I
BFI
.-c! .
Aldehldcs et Epoxide formation'' p-selenonium ordc from the cation.The nation, resultingin epoxideproductr'
rY. Watanabe, Y. Ueno'andT. Toru.8CS./1
Vinylzinc reagents. Preparation. These reagentsarc r the metal,r or by transmetallationof r r nium,3and boron.o : I Coupling with vinYlic iodidcs-
by Pd(0) speciesat room temperalure Allylic alcohols.3 Alkenylzirconor into the zinc reagents(with MelZn at
rR. Rossi,A. Carpita,F. Bellina'andP C'r r B . H . L i p s h u t zM, . A l a m i ,u n 6g . g . S u i f r t P. Wipf andw. Xu, TL 35, 5 197( 199{t aK. A. AgriosandM' Srebnik,JOMC141'
Vitamin Brr-zinc. Ring cleavage.r CYcloProPancsan
Vitamin
BlTzinc
397
Vanadyl fluoride. 16, 381-382 9,10-Phenanthrenequinones.' Substituted benzils undergo oxidative cyclization on treatment with vanadyl fluoride and boron trifluoride etherate.The yields of the phenanthrenequinonesrange from 827ato 9lVo in 4 examples. '8. Mohr,V. Enkelmann, andG. Wegner, JOC 59,635(1994). :tr".'. .rddition of B-keto esters is achievclc;:rrity is dependenton solvent and
aY"
\.,icooet \1cooeul COOBuT 86% (95%ee)
Vinylselenonium salts. Cyclopropane slnthesis.t The reaction with active methylene compounds proceeds by addition, proton exchange,and intramoleculardisplacementto form cyclopropane derivatives.
.l/
NaH, CH2(COOMe)2
COOMe
I
Ph
'._ ,cooMe
BFr-
THF. OMPA - 70o -> rl
55%
. .t( , Pl) 277(1994).
Tclopropanes.r In conjunction with dir.Jldnt removesone bromine atom in a H F,,'mplex gives IV2Clr(thf)c]z(ZnzClc) l c r r J e s f u r n i s h e ss y n - 1 , 2 - d i o l s .
Aldehydes are attacked by the selenium ylides derived Epoxide formation.t from the cation.The B-selenoniumoxide intermediatesdecomposeby selenideelimination, resultingin epoxideproducts. rY. Watanabe, Y. Ueno,and T. Toru, BCSJ66, 2042(1993).
e-: I Ikeda,IOC 58, 6529(1993). I vqi r A.W. Konradi,S.J. Kemp,andS.F.
Vinylzinc reagents. Preparation. These reagentsare accessiblefrom vinyl halides by reaction with the metal,r or by transmetallationof vinyl derivativesof tin (via lithium),2 zirco-
z : r . , r n i a .v a n a d i u m ( V )o x i d e i s u s e di n sr' rrnt (e.g., CH2CI2)to give aldehydes
nium,3and boron.o Coupling with vinylic iodides,t'2 Formation of conjugated dienes is caralyz'ed by Pd(0) speciesat room temperature. Allylic alcohols.3 Alkenylzirconocenes derived from alkynes are converted into the zinc reagents(with MezZn at -65'), which reactwith aldehydes.
L
-r-
199.1).
'R. Rossi,A. Carpita,F. Bellina,and P. Cossi,JOMC451,33(1993). 2B.H. Lipshutz,M. Alami, andR. B. Susfalk,SL 693 (1993). tP. wipf andW. Xu, TL 35,5197(1994). 'K. A. AgriosandM. Srebnik,JOMC444, l5 (1993);idem.,JOC59, 5468(1994).
c,.r:rplexis a catalyslfor aerial oxidation
l q ! :
Vitamin B12-zinc. Ring cleavage.r Cyclopropanesare isomerized to give chiral alkenes.
398
Vitamin Blazinc
o \\^
ar^.V u Fd'
o
vitamin-B12 / Zn NHICI/ THF rt.2h
o \-o
a)< Y' \:t >-d
o
87"/" (81"/" ee\ rT.
,l994't. Troxler and R. Scheffold. HCA 77. ll93
Water. 16, 383 Waterhasbeenusedas a solvent.n Thesc rt and pressures. temperatures elimination.rte hydrolysis, processes: 'B.
K u h l m a n n ,E . M . A r n e t t , a n d l l
Srsr
o /-or., X
Fd'
o
87q" (81% ee)
Water. 16, 383 reactions at high water has been used as a solvent, reagent,or catalyst for organic base-catalyzed or acidtypically temperatures and pressures.These reactions are etc'' proaarra., hydrolysis, elimination, rearrangements, ' B . K u h l m a n nE, . M . A r n e t t ,a n dM . S i s k i nJ' O C 5 9 , 3 0 9 8( 1 9 9 4 ) '
Xenon(II) fluoride. 13, 345 afford Fluorination ofaromatic compounds. Phenolsrand pyrrole derivatives2 XeF2. with fluorinated products on reaction Fluorodemetallation. Replacementof silyl and stannyl substituentsfrom arylin the silanes3and B-trialkylstannyl enonesois rapid. The latter reaction is effected presenceof AgOTf as catalyst. Fluoroselenylation.s The combination of XeF2 with RzSezor RSeSiR: delivers the RSe/F groups to alkynes in the tans fashion' a,at-Diphenylperfluoroalkanes.6 The treatment of an n-perfluoroalkanedicarto boxylic acid and benzene with XeFz in cHzclz at room temperature is sufficient 41-65Vo). (3 examples, moderate bring about the transformation. Yields are Fluorinated methyl aryl ethers. The facile rearrangementof oxygenatedbenzyl to derivativeseffected by XeFz to give fluorinated methyl ethers,i.e., benzyl alcohols inmay ethers'E aryl to difluoromethyl fluoromethyl aryl ethersTand benzaldehydes ions' volve the formation of fluoroxy intermediates and thence oxaspirobenzenium
Ytterbium. 14,348;15, 336: t5. l Reduction of sulfur co;181 ytterbium and disulfides is catal;conjugate addition to enonesDiaryl thioketones are rcd$c(
desulfurized Products. Reductive couPling of Lcta both saturated and conjugated k4
respectivelY. Silyl ketones behave different a-silyl alcohols, aromatic congc Melsicl, the PurPorted oxaYttctl another PathwaYaPPearswhcn tb
ketone. A tandem deoxYgenatno donating the acYl moieties.r
o'.-F XeF2l QH2CI2
.o
R = H,2-NOz,3-F,4-CFg
75 - 85"/"
Ph<
SaHe!
ot""r,
cHo XaFz-HFlCHzQlz
67 - 86"/o
' 1 . T a k e m o t oa n d K . Y a m a s a k i , B B B 5 8 ' 5 9 4 ( 1 9 9 4 ) . 'J. Wang and A. I. Scott, IL 35,3679 (1994). 'A. P . L o t h i a n a n d C . A . R a m s d e n ,S L 7 5 3 ( 1 9 9 3 ) ' oM. A. Tius and J. K. Kawakami, St 207 (1993)' 5H. (1994)' P o l e s c h n e rM , . H e y d e n r e i c h 'K . S p i n d l e r ,a n d G . H a u f e , S 1 0 4 3 6 58' 6922 (1993)' JOC Caple' R' and Stang, P. J. V. K. Brel, V. L. Uvarov, N. S. Zefirov, 7 S. Stavber and M. Zupan, TL 34, 4355 (1993). 8S. S t a v b e r ,Z . K o r c n , a n d M . Z u p a n , 5 L 2 6 5 ( 1 9 9 4 ) .
rY. Taniguchi,M. Maruo.K. TrLeL tY. Makioka,S.-Y.Uebori'M. Trr
(1994). 3Y. Taniguchi, T' Ku M. Nakahashi. 35.4lll (1994). 4Y. Taniguchi, N. Fujii' Y. Matiotr 5Y.Taniguchi, A. Nagatiji'Y Mrlt
>1. und pyrrole derivatives2afford nnt.rennyl substituentsfrom aryl_ c i:rrer reactionis effected in the :: * rrh R:Sezor RSeSiRr delivers en! (\f an n-perfluoroalkanedicar_ n', 'rt remperatureis sufficient to c : eramples,47-6580). rrr n-!ementof oxygenatedbenzyl h r : c r h e r si.. e . ,b e n z y la l c o h o l st o l u , ' : ' m e r h y la r y l e t h e r s , m E ay in_ thcnir' oxaspirobenzenium rons. N
Ytterbium. 14,348;15, 336; f6. 384 Reduction of sulfur compounds. Formation of the metal(Ill) thiolates tiom ytterbium and disulfides is catalyzed by benzophenone.rThe thiolates are useful in conjugate addition to enones. Diaryl thioketones are reduced to mercaptans2together with minor amounts of desulfurized products. Reductive coupling of ketones.3 In the presence of trimethylsilyl bromide both saturated and conjugated ketones undergo coupring, at ipso and B-positions, respectively. silyl ketones behave differently. while aliphatic silyl ketones are reduced to a-silyl alcohols, aromatic congeners give 1,2-diarylalkynes.a In the presence of Me:Sicl, the purported oxaytterbiacyclopropaneintermediate can be trapped. yet another pathway appears when the reaction is conducted in the presenceof another ketone. A tandem deoxygenation-acylation reaction occurs with the silyl ketones donating the acyl moieties.s
F
_.-"\_.r
Ph_Ph -: . 85e.
67"h
.o
Ph<
SiMe3
.)
OSiMe3
/-'cHF.
ph-tSiMe3 SiMeg
l_
80"/"
a-.86e.
htH
,o SiM€3
,P
Yb - Ph2co THF
cHPh2
400. 2 h
78"/.
. .l.r-t il994). ( ::re. JOC 58,6922(1993,)
'Y. Taniguchi, M. Maruo,K. Takaki,andy. Fujiwara,TLlS, :'lgg (lgg4). 2Y. Makioka, S.-Y.Uebori,M. Tsuno,y. Taniguchi,K. Takaki,and y. Fujiwara,cL 6rl (1994). 3Y. Taniguchi,M. Nakahashi,T. Kuno,M. Tsuno,y. Makioka,K. Takaki,andy. Fujiwara,rr 35,4lll 0994). nY. Taniguchi,N. Fujii, Y. Makioka,K. Takaki,andy. Fujiwara,CL 1165 (1993). 'Y. Taniguchi, A. Nagatiji.Y. Makioka,K. Takaki,and y. Fujiwara,TL35,6g9l(lgg4\. 401
402 Ytterbium(III)triflate
Ytterbium(III) chloride. Hydroperfluoroolkylation of alkenes.t A perfluoroalkyl group is transferred to the terminal carbon of a l-alkene when the perfluoroalkyl iodide is treated with the YbClr-Zn system. ' Y. Ding, G. Zhao, and W. Huang,TL 34, l32l (lgg3).
Cyanohydrin formation.t The transfer of a cyano group from acetone cyanohydrin to other carbonyl compounds is rapidly accomplished with the alkoxide catalyst.
Cross-aldol reactions. ln the pn dense with aldehydesat room temp€nrr reactivitiesin the aldolization.'and tt t o u t i n m e d i ac o n t a i n i n gw a t e r . ' Allytation of aldehydes.6 \itcrtrr
'H. Ohno,A. Mori, andS. Inoue,CL375 (1993\.
group from allyltributyltin to aldehl&s to excellent(66-937o,6 examplest.
Ytterbium(III)
isopropoxide.
Ytterbium, tris(1,1,1,2,2,3,3-heptaf luoro-7,7-dimethyl- 4,6octanedionato).. Ene reactions.t The Yb(fod)3 complex promotes the ene reaction between an aldehyde and a vinyl ether at room temperature.
r OMe PhCHO +
Yb(fod)3- SiO2 HOAC. rl
OMe
xo
oM€
PhA...\ - 1OO"/.
'M.V.
DeatonandM. A. Ciufolini,TL 34,2409(1993\.
Ytterbium(III) nitrate. Oxidation catalyst. The oxidation of alcohols to aldehydesor ketones by iodosylbenzeneis catalyzed by this salt. Other lanthanide(Ill) nitrates are also effective, but LnClr are inferior. 'T. Yokoo,K. Matsumoto, K. Oshima,andK. Utimoto,CL 5'11(lggr.
Ytterbium(III) triflate. Conjugate addition. The catalyzed addition of an amine to an unsaturated ester to afford a B-amino ester (precursor of B-lactam) is subject to stereocontrolby the environment at the 7-carbon atom of the ester.r High pressure has a favorable effect on reactions of hindered reactants.'
Isomerization of silyl ketcnc accta by migration of the silyl group from or alkanoic esters,is very facile (5 mrn. n Thc Friedel-Crafts acylation.' recoveredand reused without decrcarc
Cleavage of small heterocyclct. openedwith amines when catallzed b w i t h t h e p r e s s u r er e a c t i o n . r r Glycosylation The l-O-mertxtrtr by a selectedalkoxy unit in a catalltci needto be present,as addedmelho\!' cosylationof the sugarswith alcoholr
'S. Matsubara. M. Yoshioka, and K t trrl t C . Z e n n e .T, L 3 6 , 2 3 3( 1 9 9 5 1 . tS. Fukuzawa. T. Tsuchimoto. andT Kea 1S.Kobayashi, I. Hachiya,andT. Ta\elxr 5S.Kobayashi JOC5t. ry andl. Hachiya. 6H.C. Aspinall,A. F. Browning.\ Grc< t Y . M a k i o k aY i , . T a \ a \ r .e r , . T a n i g u c hK tA. Kawada, S. Mitamura,and S. Kohey 'M. Meguro,N. Asao,andY. Yamamcrt "'M. Chini. P. Crotti.L. Favero.F. \lacch " M. Meguro,N. Asao,andY. Yamamoro 't P. Crotti,L. Favero,F. Macchia.and \l 'tJ. Inanaga, Y. Yokoyama, andT. Hanen ''J. Inanaga, andT. Hanen Y. Yokoyama,
Yttrium(III) chloride. Cate Oxazolidinone formation.' mal [3+2]cycloadditionto isoclanatcs
Yttrium{III)chloride 403
rf iurrroalkylgroup is transferred ilu,,r,ralkvl iodide is treated with
s_^.
pooEt
Yb(oT03 BnNH2 PhMe
9/fcooet NHBn
rt, 1.5 h
781" 06/o de\
lrrnrr !roup from acetonecyanoa.'.,.mplishedwith the alkoxide
rthr'l-4,6n(e. the enereactionbetweenan
Cross-aldol reactions. In the presence of Yb(OTf)r and EtrN, ketones condensewith aldehydesat room temperature.tAs expected silyl enol ethers show better reactivities in the aldolization,aand it is remarkable that the reaction can be carried o u t i n m e d i ac o n t a i n i n gw a t e r . 5 Allylation of aldehydes.6 Ytterbium triflate promotes the transfer of an allyl group from allyltributyltin to aldehydesat room temperature. Yields range from good to excellent (66-937o, 6 examples). Isomerization of silyl ketene acetals.T Reaction of these ketone acetalsproceed by migration of the silyl group from oxygen to carbon, with the formation of a-silylalkanoic esters,is very facile (5 min, room temperature). Friedel-crafts acylation.8 The catalyst has the advantage of being readily recoveredand reused without decreasein activity. Cleavage of small heterocycles. Aziridines,e epoxides,ro'rrand oxetanes12are openedwith amines when catalyzedby Yb(oTf)r. The method has been compared with the pressurereaction.rl Glycosylation The l-O-methoxyacetoxyl group of sugarderivatives is replaced by a selectedalkoxy unit in a catalyzedreaction.rsActually, the estergroup does not need to be present,as added methoxyaceticacid can be used as cocatalyst for the gly-
- 100%
or ketonesbY iodos :,' .rldehydes xje lll r nitratesare also effective,
t , <-l t1993).
D ,,: rn amine to an unsaturated I.rn: r\ subjectto stereocontrolbY ?r Hrgh pressurehas a favorable
cosylationof the sugarswith alcohols.'o 'S. Matsubara. and K. Utimoto,CL827 (1994). M. Yoshioka, tG. Zenne..TL36,233 (1995). t S. Fukuza*a,T. Tsuchimoto, andT. Kanai,BCSJ67,2227(1994). 4S.Kobayashi, l. Hachiya,andT. Takahori'S 371(1993). 5S.Kobayashi andl. Hachiya,JOC 59,3590(1994) 6H. C. Aspinall,A. F. Browning,N. Greeves' TL 35' 4639(1994)' andP. Ravenscrcft, t Y. Makioka,Y. Taniguchi,K. Takaki,andY. Fujiwara ' CL 645(1994)' 8A. Kawada,S. Mitamura,andS. Kobayashi, CC ll57 (1993). 'M. Meguro,N. Asao,andY. Yamamoto, IL 35, 7395(1994). "'M. Chini. P. Crotti,L. Favero,F. Macchia,andM. Pineschi,TL35'433 (1994). " M. Meguro,N. Asao,andY. Yamamoto, JCS(Pl)259'l(1994). '2P.Crotti,L. Favero, (1994). F. Macchia,andM. Pineschi,TL35,7089 't J. Inanaga, (1993). TL 34,2"191 andT. Hanamoto, Y. Yokoyama, 'oJ.lnanaga,Y. Yokoyama, CC 1090(1993). andT. Hanamoto,
Yttrium(III) chloride. Catalyzedepoxide opening and the subsequentforOxaZolidinone formation,t mal [3+2]cycloadditionto isocyanatesconstitutea useful synthetictransformation'
404 Yttrium(III) triflate Biscyclopentadienylyttrium chloride also promotes epoxide cleavagewith acyl chlorides.giving chlorohydrin acetates.2
fct YCt3
,["'
o
+ PhN=c=o
cH2Qt2
PhNvO il 99%
'C. qian andD. Zhu,SL 129(1994). 'C. qian andD. Zhu,SC 24,2203(1994).
Zeolites.15,367 Etherification.' The N:' tion of alcohols. Trans-N-acylation.: Ao anilineson reactionwith thc r
o Yttrium(III) triflate. y-Hydroxy ketones.t With Yb(OTfh as catalyst, lithium enolates attack epox-
nrf,lXA
ides regioselectively. rP. Crotti,V. Di Bussolo, (1994)' F. Macchia,andM. Pineschi'TL35'653'7 L. Favero,
r The rcgr Benzoylation with d.0.d-trichlorotoluerrc ra lyzed by HZSM-5 zeolite. Oxidative dimerizatiot q
amines and hydrogen peroxrd TS-l zeolite. Ac et aliza t i ont ld it h i u ccu a as catalystfor this reaction Nitroketene S,N- acelaltl zeolite, one of the meth!lthro Cyclization.e A macrocl
from I 5-hydroxypentadecanc and six-memberedheteroclck zeolite (from 18-30 mesh H For example, N-methylPl rroli
methylamine.ro Bromination.rr The rcg using the HZSM-S zeolite. Sulfoxides.t2 Oxidatron assistedby zeolite.
' P . K u m a rS , . V .N . R a j u .R . S I ' H . R . S o n a w a nA e ., V . P o l .P P rV. Paul,A. Sudalai,T. Danrl. oH.R. Sonawane, A.V. Pol.P P
x.:i. epoxidecleavagewith acyl chlo-
fcl
*
PhN
\r tl
o
o
99"/"
Zeolites. 15,367 The Na-Y zeolite is an efficient catalyst for methoxymethylaEtherification.t tion of alcohols. N-(a-chloropropanoyl)Trans-N-acylation.z Anilides can be converted to zeolite' anilines on reactionwith the acyl chloride over HZSM-5
o tl
Ycocr cl
cJlrl\\(. lithium enolatesattack epox, TL 35,653'l(1994)' n: \1 Prneschi
clcH2cH2cl 5h,A
ATNHAy'
I
cl 58% (Ar=4-MeC6Ha)
of activated arenes BenZoylationr The regioselectiveFriedel-Crafts reaction (53-9'7Voyield) is cata1,2-dichloroethane in refluxing with d.do.d-rrichlorotoluene lyzed by HZSM-5 zeolite. are formed when the oxidative dimerization of arylamines.o Azoxybenzenes aminesandhydrogenperoxideareheatedunderrefluxinacetoneinthepresenceof TS-l zeolite. is most commonly used Acetalizations/dithioacetalization,6 The H-Y zeolite of alcohols.T tetrahydropyranation includes which as a catalyst for this reaction, NitroketeneS,N.acetals.Elnrefluxingnitromethaneandinthepresenceofa is replaced' zeolite, one of rhe methylthio groups of bis(methylthio)methylenimines up to 32Vo) (with yields acquired been has lactone Cytclization.s A macrocyclic froml5-hydroxypentadecanoicacidbyexposuretodealuminatedHYzeo|ite.Fiveandsix.memberedheterocyclescanbesynthesizedfromdiolswithamodifiedZSM-5 at 420"c for 4 h)' zeolite (from 18-30 mesh HZSM-5 and crzo., and activated Forexample'N-methylpyrrolidineisobtainedin64Voyieldfroml,4-butanedioland methylamine.ro can be controlled by Bromination.Lr The regioselectivity of NBS bromination the HZSM-S zeolite. using -sulfuxides.,2 . solvents is oxidation of sulfides with NaBrOz 3HzO in aprotic assistedby zeolite. 'P. Kumar,S.V.N.Raju,R.S. Reddy'andB' Pandey'TL35'1289(1994)' 'H.R.Sonawane,A.V.Pol,P.P.Moghe,A'sudalai'andS'S'Biswas'?L35'8877(1994)' 3V. Paul,A. Sudalai,T. Daniel,and K'V' Srinivasan'TL 35' 2602(1994)' (1994) ' nH.R. Sonawane, A'V. Pol,P.P.Moghe'S'S' Biswas'andA' Sudalai'CC l2l5
406 Zinc 'P. Kumar,K. R. Reddy,and R. S. Reddy,JCR(S)394(1994)' uP.Kumar,R. S. Reddy,A. P. Singh,andB' Pandey, S 67 (1993)' tP. Kumar.C.U. Dinesh,R.S' Reddy,andB' Pandey' S 1069(1993)' tT. I. Reddy,B. M. Bhawal'and S. Rajappa,T 49,2101(1993)' nT. T"t.uti, H. Sakashita,and K. Asano,CC 1264(1993)' and A'V' Rama Rao'JoC 59' 3998 roY.V.SubbaRao, S.J. Kulkarni,M' Subrahmanyam'
iodides12have been demong to induce the transPosition Concurrent metallation dibromo-2-butene is trcata agent, which maY be aPPlicd zinc metal for this PurPos.
(1994). (1994)' l" .L35'7055 lrV. Paul,A. Sudalai,T. Daniel,andK'V' Srinivasan' 'tM. Hirano,H. Kubo, andT. Morimoto,BCSJ67' 1492(1994)' RCHO .
17' 406-407 Zinc. 13, 346- 347; 14, 349-350;16, 386-387; of carboxylic acids and amines Protection group) p-nitrobenzyl Cleavage o! astheestersandcarbamatescantakeadvantageoftheselectivereduction.induced and bonds' S-N bonds' benzyloxycarbonyl' fragmentation by zinc dust, as C:C during the operation' diphenylmethyl groups are not affected
The electrolYtic method proach to a-methYlene-7-le ReformatskY and fu
Elimination,Animprovedsynthesisofunsaturatedpyranosidesbyeliminawith microwave heating'2under such tion of vic-ditosylates is mediated by Zn-NaI conditionshigheryieldsandfasterratesareobserved.DechlorinationofB-chloro-pdifluoroallyl ketones is effected with (chlorodifluoromethyl)vinyi ketones to afford
accessibler?by a Reformats reagents. In some cascs bo as catalYst.rE The Reformatsky rcrt thionesProvidesa route to I in acetonitrileon a zinc an
assistanceof ultrasound'' G l y c a l f o r m a t i o n f r o m a c y l a t e d g l y c o s y l b r o m i d e s o n t r e a t m e n t w i t hAz i n cdust similar Uy ttre aOaitlonof l-methylimidazole'a under aprotic conditions is favored into a method procedure has been incorporated process based on the traditional chiral allvlic of synthesis anilides5 and the for the hydrolysis "f ,';;;;t;t"ted alcohols.6 OH
o
tr/
DME - H2O
o )
\l
t
gives acetoaceticester dcrn Coniugate addition to induced bY zi lar versions,22 Co(lII),23 have been rePorr
o2Y
I
HOAC. 650
68%
with zinc 1'4-bis(perfluoroalkyl)-l'2'3-butatrienes Long-ranged defluorination of in DMF establishesa dienyne system' the species are generated from Organozinc reagent:s' '-Phenylenedizinc(Il) are stabilized by irradiation'8 These compounds o-diiodo precursors*itn "rt'"to""J complexation with TMEDA' Riekezincisusefulforthepreparationofsecondaryandtertiaryalkylzincbro. mides.gTheemploymentofactivatedzincdepositedonTioz'whichisobtainedfrom reductionofZnC|zoysodiumdispersedonTioz,isanotherpossibi|ity(forsec.Rand benzylic bromides)'ro aldehydes of cinnamyl chloride with Alkylation. Zinc-mediated reaction andketonesinaqueousTHFtlandBarbier-typereactionsinvolvingperfluoroalkyl
DeoxYgenation of Lcl AlClr ' 6HzO in aqueousI hand, ultrasound Promorc 3-oxosteroidsin the Presc duction of steroidal 4-en-l Reductions. The rcd combination in aqueousD
rT. Kumagai,T' Abe,Y FU 'L. H. B. Baptistella, A' z I tT. Okano,T. Shimizu.K I
Zinc 407 )j..r9.1). . i ^- ,1993). r . . t 1 6 9( 1 9 9 3 ) . l r . :9 9 3 ) . ( : ! q :
n
.
:nd A.V. RamaRao,JOC 59,3998
iodides12have been demonstrated.Another method employs pyridinium perchlorater3 to induce the transpositional allylation of aldehydeswith allyl bromides. Concurrent metallation and 1,4-debromination occur when 2-bromomethyl-1,4dibromo-2-butene is treated with zinc. The resulting species is an isoprenylating agent, which may be applied to the synthesisof ipsenol and ipsdienol.toA more active zinc metal for this purpose can be produced by electrolysis.'5
|. 11.-15.7055(1994). .!:
t')
t994).
RCHO +
t1 106-407 :trr\nof carboxylic acids and amines !e ,rf rhe selectivereduction-induced i-\ bonds, benzyloxycarbonyl,and thc.(rperation. un.aturatedpyranosidesby eliminar rrh microwaveheating.2Under such ar\ ed. Dechlorinationof B-chloro-Blrfluoroallyl ketonesis effected with r,mrdes on treatment with zinc dust Ir.n ()f l-methylimidazole.aA similar ls t'een incorporated into a method ! rnd the synthesisof chiral allylic
Bt
t\' -
Zn
?'
DMF,OO
R
34 -99v. The electrolytic method is extendable to other systems, including a direct approach to a-methylene-y-lactones.r6 Reformatsky and Blaise reactions. 2-Fluoro-3-hydroxyalkanoic esters are by a Reformatsky reaction using a-fluorinated haloestersto prepare the accessiblerT reagents. In some cases better results are obtained with diethylaluminum chloride as catalyst.rE The Reformatsky reaction with N-acyloxazolidin-2-onesand -thiazolidin-2thiones provides a route to B-keto esters.reThe electrolysisof a-bromoalkanoic esters in acetonitrile on a zinc anode with ZnBr2and Bu4NBF4 as supporting electrolytes The acetonitrile solvent is partially consumed. gives acetoaceticester derivatives.20 conjugate addition to unsaturatcd esters, Intramolecular2r and intermolecuinduced by zinc alone or in the presenceof an additive such as Fe(III), lar versions,22 Co(III),2r have been reported.
OH
zn ;oAq;"
'n-
ozY \.,\ 687o
with zinc x-r,'aIkyl)- 1,2,3-butatrienes r II , species are generated from the .' Thesecompoundsare stabilizedby rc(rndaryand tertiary alkyl zinc brosrredon TiOz, which is obtainedfrom r. i. another possibility (for sec-R and crnnamyl chloride with aldehYdes r< reactions involving perfluoroalkyl
\--\.cooaut
rHF
aV-\.-cooBuf ) 60v"
Deoxygenation o! ketones. A modified clemmensen reduction uses zinc and Alclr . 6Hzo in aqueousTHF.24Hydrochloric acid is generatedin situ. on the other hand, ultrasound promotes the reduction with Zn-HOAc in a selective manner (of 3-oxosteroidsin the presenceof ketone group at C-17 or C-20).2sTranspositional recan be achievedin l5 minutes. duction of steroidal 4-en-3-ones (to 3-enes)26 by the Zn-CoClz and aldehydes2s'2e of nitroarenes2? Reductions. The reduction some advantages. offer to or THF seems combination in aqueousDMF rT. Kumagai,T. Abe, Y. Fujimoto,T. Hayashi,Y. Inoue,and Y. Nagao,H 36' 1729(1993). tL.H. B. Baptistella, A.Z. Neto,H. Onaga,andE.A.M. Godoi,TL34'840'l (1993\. tT. Okano,T. Shimizu,K. Sumida,andS. Eguchi,JOC 58' 5163(1993).
408 Zinc-coPPer couPle aL. Somsak and L Nemeth' JCC 12,6'79 (1993)' 'P. Metz, 7 49, 6367 (1993). u S . - K . K a n g , S . - G . K i m , D . - G . C h o , a n d J ' - H ' J e o n 'S C 2 3 ' 6 8 1 ( 1 9 9 3 ) ' 7 P . A . M o r k e n , D . J . B u r t o n ' a n d D ' C ' S w e n s e n 'J O C 5 9 ' 2 1 1 9 ( 1 9 9 4 ) ' (1994)' sK. Takagi, Y. Shimoshi, and K' Sasaki' CL2055 'M.V. Hanson,J. D. Brown, R. D' Rieke, and Q'J' Niu' ?L 3S"l2O5 (1994)' P' Knochel' S69 (1995)' toH. S t a d t m u l l e r ,B . G r e v e , K . L e n n i c k , A ' C h a i r ' a n d " R. Sioholm,R. Rairama' and M' Ahonen, CC l2l7 (1994j' ''Y. Shen and M. Qi, JFC 66' l'15 (1994)' 'rH. Maeda, J. Kawabata, and lI' Ohmori , CPB 40' 2834 (1992)' 'oM. Tokuda, N. Mimura' K. Yoshioka,T' Karasawa'H' Fujita' and H' Suginome'S 1086 ( 1993). ''M.Tokuda,N.Mimura,'I.Karasawa,H'Fujita'andH'suginome'TL34"160'7(1993)' (1993)' ' u Y . R o l l i n , S . D e r i e n , E . D u n a c h ,C ' G e b e h e n n e a ' n d J ' P e r i c h o n' T 4 9 ' 7 7 2 3 'tY. Shen and M. (1993)' 222 JCR(S) Qi, ' ' T . I s h i h a r a , T . M a t s u d a ,K . I m u r a , H ' M a t s u i ' a n d H ' Y a m a n a k a ' C L 2 1 6 7 ( 1 9 9 4 \ ' 58' 793 (1993)' ''C. K a s h i m a , X . C . H u a n g , Y . H a r a d a ,a n d A ' H o s o m i ' J O C J 0MC 444' I (1993)' '"N. P e r i c h o n J ' ' Zylber, J.Zylber'Y. iollin, E' Dunach' and (1993)' 3 3 4 0 t'B. 1 2 ' O M D a n h e i s e r ' L ' R ' a n d S. Bronk, S.J. Lippard, 2 2 P .B l a n c h a r d ,A . D . D a S i l v a , M ' S ' E l K o r t b i ' J ' - L ' F o u r r e y ' a n d M R o b e r t - G e r o 'J O C 5 E ' 6 5 1 7( 1 9 9 3 ) . ttJ. C h e n a n d J . - M . H t , J C S ( P I )l l l l ( 1 9 9 4 ) ' 2oP.K. Chowdhury and P. Borah, JCR(S) 23O (1994)' Neves'IL 34' 361 (1993)' t'J. A . R . S a l v a d o r 'M . L . S a e M e l o , a n d A ' S ' C a m p o s Neves'IL 34' 357 (1993)' 'uJ. C a m p o s A ' S ' a n d e M e l o ' S a L . A . R . S a l v a d o r ,M . 2 7 R .N . B a r u a h I J C ( B ) 3 3 8 , 7 5 8 ( 1 9 9 4 ) ' , 2 8 R . B a r u a h , I J C ( B ) 3 3 B ' 1 8 2( 1 9 9 4 ) ' N. ' n A . G o s w a m i a n d N . B o r t h a k v u rI' J C ( B ) 3 3 8 ' 4 9 5 ( 1 9 9 4 ) '
'8. Balmer, A. Germain, w. P. h^l 'N. De Kimpe, R. Jolie,and D. Dc rS. B e n e f i c e - M a l o u e t ,H . B l a n c o o . 4 A . F [ i r s t n e r ,R . S i n g e r ,a n d P . K o o
Zinc bismuthate. Deoximation.' The conrc oximes. rH.
F i r o u z a b a d ia n d I . M o h a m m r d
Zinc borohydride. 14, 351: 16 Reduction of azides.t Th temperature.AcYl azidesgirc P
Reductive amination.: A condensationof the amine I rth
'B.C. RanuA , . S a r k a ra' n dR C b 2S.Bhattacharyya, A. Chatterlcc
Zinc bromide. 13, 349; 15. 5t Aldol-tyPe reaclions. Tt condensationof ketene bis(trru amino acids,' and in the forme
acetaldimine and aldehYdes.:
17' 407 Zinc-copper couple.13,348;15' 367-368;16' 387-388: Elimination.sometimeszincdustaloneisinadequateforachievingorganic effects.The Zn-cu coupleis usereactions.Surfacemodificationcan havedramatic from epoxy tosylatesand of allyful for the synthesisof chiral allylic alcoholsr (with sonication)' from 2-(bromomethyl)aziridines lamines2
*)
Zn (Cu)
(((
N
zl\..8r
1t,"f;.5i,",9
H R--N-.\ 50-71"/'
shows higher reactivity than zinc Organozinc reagents' Zn-Cu couple often dusttowardsalkylhalides.Thusperfluoroalkylzinciodidesarerapidlyformedinthe in situ by DMF gives perfluoroalkyl presenceof AIBN, and quenching such reagents aldehydes.:.(NotethatZn.Agongraphiteiswellsuitedforthepreparationofarylzinc species).4
ilqg. PhCHO+
v'
l/brS
subslitttior Electrophilic penem intermediatesin 92-9 thiocarboxylic acid salts. He te ro - Diel s- Aldc r rcta
reaction between a'1,,2,3'trtzz tion of fusaric acid.
'M. Mladenova andM' Bellas:o tM. Bellassoued andA. Majidr.J tw. Cabri,I. Candiani,F.Zarro oJ.Koyama,T. Ogura'and K. Tl
Zinc bromide 409
, r r l - r . 6 8 1( 1 9 9 3 ) . . se :ll9(1994). F: ru .-,' -r5.1205(1994)' 'P d i.nochel,S 69 (1995). |
-
'8. Balmer, A. Germain, W P. Jackson, and B' Lygo, JCS(PI) 399 (1993)' ' N . D e K i m p e , R . J o l i e , a n d D . D e S m a e l e ,C C l 2 2 l ( 1 9 9 4 ) ' I (1993)' S. Benefice-Malouet, H. Blancou, and A. Commeyras, JFC 63,21'7 nA. F i i r s t n e r ,R . S i n g e r ,a n d P . K n o c h e l ' T L 3 5 ' 1 0 4 7( 1 9 9 4 ) '
Zinc bismuthate. Deoximation.'
* ! :
The conversion seems to be limited
to allylic
and benzylic
oximes. e9lt. !:: e l: Fujita, and H. Suginome'S 1086 i ii :uginome, fL34,'1607 (1993). f . I ' r r r c h o n . T 4 9 , ' 7 7 2 3( 1 9 9 3 ) . H \rrrrnaka, CL2167 (1994). n . / r) ( ' 5 8 , 7 9 3 ( 1 9 9 3 ) ' !: -: f,. JOMC 444, I (1993). I t: : iJO(1993). I . . : : * . a n d M . R o b e r t - G e r o ,. l O C 5 E .
1 ' . \ . . c . . f L 3 4 . 3 6 1( 1 9 9 3 ) . 1 . .\ . , 1 . . f L 3 4 , 3 5 7( 1 9 9 3 ) .
F:
l H . F i r o u z a b a d ia n d I . M o h a m m a d p o o r - B a l t o r k ,S C 2 4 , 4 8 9 ( 1 9 9 4 ) '
Zinc borohydride. 14, 351; 16' 388-389 Reduction of azides.t The reduction, which affords amines, proceeds at room temperature.Acyl azidesgive primary amides. Reiluctive amination.2 An N-methylation method consists of ZnCl2-catalyzed condensationof the amine with paraformaldehydeand treatment with Zn(BHr)z' '8.C. Ranu,A. Sarkar,andR. Chakraborty, JOC59' 4l14 (1994)' 2S.Bhattacharyya, JCS(Pl)I (1994)' andS.K' Duttachowdhury, A. Chatterjee,
Zinc bromide. 13,349;15, 368; 16' 389-391 Alttol-type reactions. The catalytic effect of ZnBr2 is demonstrated in the with aldimines in a synthesisof Bcondensationof ketenebis(trimethylsilyl)acetals amino acids,r and in the formation of (E)-enals from N-(t-butyl) bis(trimethylsilyl)acetaldimine and aldehYdes.2
Jtl8: 17, 407 r. :. r. .nrdequatefor achieving organic tr. r:f c'cls.The Zn-Cu coupleis use:',,m epoxy tosYlatesand of allY-
Me3Si. P h C H o +
N - ^
50-71%
cn .h()\r'shigher reactivity than zinc lr: r, rodidesare rapidly formed in the i :i -rtu by DMF gives perfluoroalkyl rli .urted for the preparationof aryl-
I
Me3Si
| .,':l l.l]ltlOrt).
r
\ z ,.... ,{ Y - N ' '
ZnBhlrHF]. Zntu2l aq. El2O i
Ph"\-'cHo 86%
Electrophilic substitution of p-acetoxy- B-lactams.3 The preparation of penem intermediates in 92-95Vo yields is realized by the catalyzed reaction with thiocarboxylic acid salts. Hetero-Diels-Alder reactions. A method of pyridine synthesis by catalyzed reaction between a 1,2,3-triazine with an aldehydeenamine4is useful for the elaboration of fusaric acid. ' M. Mladenovaand M. Bellassoued, SC 23,'125(1993)' tM. Bellassoued andA. Majidi,JOC58' 2517(1993). tW. Cabri,I. Candiani,F.Zarini, andA' Bedeschi,TL35,33'19 (1994)' oJ.Koyama,T. Ogura,and K. Tagahara, Il 38' 1595(1994)'
410
Zincchloride
Zinc p-(f-butYl)benzoate. alcohols is cataGlycosylation' The reactionbetween glycosyl chlorides and lyzed by the zinc carboxYlatewith fair to good B-selectivitY' 'M.
(1993)' N i s h i z a w a , D . M . G a r c i a , T . S h i n , a n d H ' Y a m a d a ,C P B 4 l ' 7 8 4
Zinc chloride. 13, 349-350; 15' 368-371; 16' 391-392 in alumina is an Tetrahydropyranylation of alcohols.t Zncl2 impregnated effective catalYst. 2 Glycosyl phosphitesare converted to ethers' Glycosylation into forHydrolysisof formamidines.3 Ethanolic ZnCl2 converts formamidines released' are amines mamides at room temperature. However, at reflux temperature good yields Friedel-crafts benzylation. The benzylation of arenesproceedsin of a ketone' with benzyl chloride as reagentwhen ZnCl2 is activated by the addition a primary alcohol, or water.o with p-Nitrobenzenesulfonyloxylation.s B-Keto esters undergo this reaction are products the bis(p-nitrobenzenesulfonyl)peroxide in the presence ofZnClz' and readily converted to o-(p-nitrobenzenesulfonyloxy) ketones' transmetallaa-phenylthioalkylation,6'1 The standardized procedure involves the thioalkyl with treatment and enolates zinc give the to enolates potassium tion of ketones'" chlorides. The method is suitable for both saturated and unsaturated acceptors Michael with ethers enol silyl of condensation The addition. Michael 5 min at temis subjectro catalysisby ZnClr/AlrO:.eThe reactionis completewithin peratures between 0" and 5oC. is The most expedientaccessto mono-dithioacetalsof 3-cyclohexene-1,2-diones the with by union of 2-acyl-1,3-dithianeswith enonesand subsequentaldolization. first step assistedbY ZnCl2.ro
ctr".?
Et2O- CH2C|2
C*"r us
\,uAo
o S,.I\ 'lA
C
s u
60%
respect to their Lithium enolates of esters are inferior to the zinc enolates witb reactivitiestowards 6-amino nitroethenes.rl are catalyzed Asymmetric Michael additions involving chiral B-enamino esters'2 by ZnCl2. with aldeDestannylative reactions. 1-Trimethylstannyl-2,4-pentadienereacts generated are hydes and ketonesin a 7-selectivemanner,'l whereasconjugateddienes pyrans''o from 3-(tributylstannyl)propenyl
t Hetero-Diels-Aldcr i as dienoPhilcs laldimines
moiety of 2-amino- 1,3-bu 4-Amino-I-azadictc consistsof reaction of thc I F,
F #
As radical
initiator.
with allyltributyltin
aPPan
capto-dative radical interr agent and radical initiator Aza-Claisen dimethoxyanilines
rearn r to tbc
substituent to direct thc tt
'8. C. Ranu and M. Sahr. .l 2Y. watanabe, C. Nakanrolr t D. Toste, J. McNultY. and nE. H a y a s h i ,Y . T a k a h a s h t tR.v. Hoffman, H.-o. Krn nU. G r o t h ,T . H u h n . a n d S . ?R. Arnecke, U. Groth. lo< 8U. Groth, T. Kohler. and l ' B . c . R a n u ,M . S a h a .a n d 'n P .C . B . P a g e ,A . P . M a r c h (1993). " K. Fu.|i, T. Kawabata. \' ! ''A. Guingant and H. Hemr rrY. Nishigaichi,M. Fu;irr r r E . K o z l o w s k aa n d S . J a r o '5J. B a r l u e n g a ,F . A z n a r . C 4403 (1993). ' u J . B a r l u e n g a ,C . d e l P o z o 't Y . Y a m a m o t o ,S . O n u l r . i 'tA. C . M u s t a f i n ,l . N . K h (t992).
Zinc fluoride. Glycosyltluoridct. usingZnF2in the Prcsc 'K.
D . G o g g i n ,J . F . L a m b r
Zinc fluorlde 411
is cata1.. ,hlorides and alcohols J'-. :itivitY. I
: 5 . 1 1 .7 8 4( 1 9 9 3 ) '
synthesis of 4-piperidones using N-silyHetero-Diels-Alder reactions' The by a chiral by ZnCl-2'Excellentstereoinduction laldimines as dienophiles tt Ot"**tO evident''' moiety of 2-amino-1,3-butadienesis A direct approachto this class of compounds ssynthesis't6 4-Amino-1-azadienc nitriles' derived from N-arylketimines with consistsof reaction of the zincoenamines R2 R2
al
:|pregnated in alumina is an
FN
\
R3
! n r : : t c ' Jt o e t h e r s ' forD( . ')nvertsformamidinesinto released' are !\ :.:llperatureamines good yields r.:. ,: rrenesproceedsin a ketone' of |. r: . -rlctl by the addition with o .'.1.r\ undergo this reaction are products the sr--'i rr[ ZnClz, and o \ .' k c t 0 n e S . uc.: :'r,'cedureinvolvestransmetallathioalkyl ar:- .rodtreatmentwith the ketones'" ru:rJ .rnd unsaturated acceptors lr rn,rl etherswith Michael at temmin 5 ,,, ,r, 'r completewithin is r:1.:1. of 3-cyclohexene-l'2-diones the with a:,1 -ubsequentaldolization'
R1
LDA.THF; 2nQl2'OEl2; R4-cN
R'J",rn, I R4ANH 54-95%
Asradicalinitiator.Thesubstitutionreactionofd.bromoN-acylaminoesters withallyltributyltinapparentlyoccursbyaradicalmechanism(formingthefavorable capto-dativeradicalintermediates;''tZincchlorideplaysadoubleroleofachelating agent and radical initiator' Aza-Claisenrearrangement'tsThecatalyzedrearrangementofN-allyl-2'5indicates participation of the o-methoxy dimethoxyanilines to ttrei-attyt isomers at the ipso position' substituentto direct the initial reaction '8. C. Ranuand M. Saha,JoC 59' 8269(1994)' 2Y.Watanabe, andS' Ozaki'SL ll5-(1993)' C. Nakamoto, t D. Toste,J. McNulty,andI'W' J' Still' SC 24' 1617(1994)' (1993)' aE. Hayashi,Y. Takahasni,H. Itoh, and u' vole!1' B.csJ66' 3520 (1994)' 'R.V. Hoffman,H.-o. Kim, andJ' C' Lee'JOC59' 1933 uU. Groth, T. Huhn, and N' Richter'LA 49 (1993)' 7R. Arnecke,U. Groth,andT' Kohler'tA 891(1994)' sU. Groth, T. Kohler,and T' Taapken ' LA 665 (1994) '8.C. Ranu,M. Saha'andS' Bhar'JCS(H)219'l(1994).' Wood'T49' 10369 'oP.C.B.Page,A.p' r"ru'ii"gi"n' L J' Graham'S'A' Harkin'andW'W
' lll?l]i, r. Kawabata, r' ohmori'andM' Node'cPB42'eee(lee4)' Y Naniwa' o NaOEt
--o
t.,I\
n . r
s w
60"/.
to their rli /rnc enolateswith respect catalyzed :h.:,11lJ-enaminoestersr2are reactswith aldetr:'rr l-1.4-pentadiene are generated dienes rhc:r'.r: conjugated
'',1,.Guingantand H. Hammami' TA 4' 25 (1993)' 'ti. Nirr,ilui"ti, M. Fujimoto'andA' Takuwa'SL 731(1994)' 'oE.Kozlo-wska JCC 13' 889(1994)' andS. Jarosz, andE' Martin' JACS115' ''J. Barluenga, A' Martin' S' Garcia-Granda' F. Aznar,;' *;"'' 4403(1993). 16J.Barluenga,C. del PozoLosada'and B' Olano'TL34' 549'1(1993)' '?Y. Yamamoto,S. Onuki' M' Yumoto'and N' Asao'JACS116' 421(1994)' and G'A' Tolstikov'JOCU 28' 1231 '8A.G. Mustafin,I.N' Khalilov'I'B' Abdrakhmanov' (1992). Zinc fluoride at the anomeric center ts successful Glycosyl fluorides't Halogen exchange using ZnF2 in the presenceof 2'2'-bipyridine' 'K. D. Goggin,J. F. Lambert,and S'w' Walinsky'SL 162(1994)'
Zirtorht,
412 Zirconium(IV)bromide
Zinc iodide. 13. 350-351 formation of cyanohyAddition to hindered ketones.t With ZnIz as catalyst the
that react with carbonyl compounds. reactants.
drinsilylethersusingeitherl-butyldimethylsilylor'-butyldiphenylsilylcyanideisremarkably efficient. p ummerer rearrangeme nt.z The o-silyl ketene acetal-induced rearrangement of sulfoxides also requires a catalyst such as ZnI2' Hetero.Diels-Alderreactions.Dihydropyransynthesisbythecondensationof endo-selective'' enones and vinyl ethers in the presence ofZnl2 is reacts with 33,3-Dimethyl-l-trimethylsilylmethylcyclohexene Ene reaction.4 butyn-2-oneselectivelytoaffordavinylsilaneproductthatiseasilyconvertedto y-ionone.
b..\ SiMe3
""1 ./V ueo'! I
rS.
-cooEr ' Dl
S h i m a d a ,Y . H a s h i m o t o , a n d K - S e r g
Zirconium(IV) chloride. Rearrangement.t vic-HYdrorl rearrangement.
Znl2
HO
mol. siaves
rM. Golinski,C. P. Brock,andD. S. Watt,IOC 58' 159(1993)' 'Y. Kita, N. Shibata,N. Yoshida,andS. Fujita,JCS(Pl)3335(1994)' tE. wada,H. Yasuoka, CL 145(1994)' andS. Kanemasa, oG. Audran,H. Monti,G. Leandri,andJ'-P'Monti' Il 34'3417(1993)'
/SOPfi
r#o. i l l \z\
cH2c12
Hom ologat ion - conde n satiot -: acylacetylglycine esters. In turn thc diazo acetamidederivativesand aldel chloride is a useful catalYst.
Zinc triflate. 16, 392-393 triflate alone' or in Glycosylation Selectiveglycoylation is promoted by zinc combinationwith Me.SiCl.2 Ene reaction.3 'K. Nakayama,K. Higashi'T. Soga,K' Uoto, andT' Kusama' CPB 40' 2909(1992)' 2H. SusakiandK Higashi,CPB 4l' 201(1993)' rE. Hayashi,Y. Takahashi, H. Itoh, andN' Yoneda'BCSJ67'3040(1994)'
Zirconium(II) borohydride, polymer'supported' by mixing with Reduction., The instability of Zr(BHa)z is greatly improved poly(4-vinylpyridine). The consumed reagentcan be regenerated' rB. TamamiandN. Goudarzian, CC 1079(1994)'
Zirconium(IV) bromide. Formal[3+2]cycloaddition.|Aone-stepsynthesisofT-lactonesconsists ofringopeningof2,2-dia|koxycyclopropaneesterstogeneratel,3-dipolarspecies
*';
"oo""
o/-N,) Bn
RC||c|, Cxft
c
'J. G . M o n t a n a , N . P h i l l i P s o n ,a n d R J 'T. Iida, K. Hori, K. Nomura, and E. Yo
Zirconium ditriflate' tetramcihyl Aldot-type reaction.t Thc lo. ketene acetals with aldehydes lced mediates allylation of aldehydes-
rP.G. Cozzi.C. Floriani,A. Chicsr'\'r
413 Zirconiumditriflate,tetramethyl(dibenzo)tetraazesnnulene
r. ,rrrl)'st the formation of cyanohyor :-t utyldiphenylsilylcyanideis re-
that react with carbonyl compounds. Zirconium bromide apparently activates both reactants,
t"1 ar.nc' acetol-inducedrearrangement
".oT
t: 13:r.\ nthesisby the condensationof t. r,:J.)-selective.3 reacts with 3lr !:lerhvlcyclohexene convertedto is easily prr,Juct that
-cooEr + RCHo
oYoY*
zrBra
;;
/-roo,,
-7go
'S.
S h i m a d a ,Y . H a s h i m o t o , a n d K . S a i g o ,J O C 5 8 , 5 2 2 6 ( 1 9 9 3 ) .
Zirconium(IV) chloride. Rearrangement.t v/c-Hydroxysulfonesgive ketonesanalogous to the pinacol rearrangement. HO so2Ph \J
SiMe3
,.'\-t1-1 -l \ ll \Z\
707.
oMe
O.
\ \ /
zau
OMe
a\r,\
cH2cr2 n, iomin
).,) 99%
: " :q 9 - 1 ) . P. :rr5 (1994). f9: 1993). / i - r 4 . . 1 . 1 1( 7
Homologation-condensation.2 3-Acyltetramic acids are accessible from Nacylacetylglycine esters. In turn the latter compounds may be assembledfrom odiazo acetamidederivativesand aldehydeswith elimination of dinitrogen. Zirconium chloride is a useful catalyst.
R\n'i'tcd by zinc triflate alone' or in
"1
N2
) cooM€ o/'N)
\|.,.:iDd. CPB 40,2909 (1992).
Bn 8( .l 67. 3040 (1994).
RCHO / CH2C|2 00
O
"oor"
odN) Bn
il;
O
*4Jo* odN) Bn
31 - 79o/o
t.d. r. sreatly improved by mixing rn ^. regenerated.
ZtCl4
.
with
p .\ nthesis of 7-lactones consists r.ir3:. ro generate 1,3-dipolar species
'J. c. Montana, N. Phillipson, and R. J. K. Taylor, CC 2289 (1994). 'T. I i d a , K . H o r i , K . N o m u r a , a n d E . Y o s h i i , I I 3 E , 1 8 3 9( 1 9 9 4 ) .
Zirconium ditrif late, tetramethyl(dibenzo)tetraazaannulene. Aldol-type reaction.t The low-temperature-catalyzedcondensation of O-silyl ketene acetals with aldehydes leads to B-hydroxy esters. The same catalyst also mediates allylation of aldehydes. 'P.G. Cozzi,C. Floriani,A. Chiesi-Villa, andC. Rizzoli,SL 857(1994).
414
Zirconocene, Zr-alkYlated
13' 352 Zirconium(IV) isopropoxide. (i-PrO)qZrmediatesthe reductionof carbonyl Reduction.t Silica-supported isopropanol' in refluxing to alcohols compounds rK.
(1993)' I n a d a , M . S h i b a g a k i ,Y . N a k a n i s h i , a n d H . M a t s u s h i t a ,C L l ' 1 9 5
rT. Takahashi, and N Surc z.xi'C.J. Rousset, rT. Takahashi, andN' Suzukt' D.Y. Kondakov, rT. Takahashi,M. Kotora,and K' Kasai' CC 16 aJ.Barluenga, and F J F R. Sanz,R' Gonzalez, t F.R. AskhamandK. M. Carroll,'96' 53' :-r:t oH. Ito, Y. Ikeuchi,T. Taguchi,Y' Hanzaur'rr
Zirconium(IV) oxide-trimethylsilyl chloride' r ar-Hydroxy estersundergocyclization with the modified ZrOu LactoniZation at room temperature. and PhCHO Oxidation.2 Aldehydes and ketones are produced using the reagent
Zirconocene ?t-comPlexes. Reductive alkylations't'z Reaction o philes followed by protonation accomplrs zirconocene-ethenecomplex effects clcl
as hydrogen accePtor.
bromobutene.3
'H. Kuno,M. Shibagaki'K. Takahashi, BCSJ66' 1305(1993)' andH' Matsushita, ,H. Kuno,M. Shibalaki,K. Takahashi, BCS./66,1699(1993). andH. Matsushita,
cp2zr-ll +ncno;
R..-
Zirconium phosPhate. the solventNef reaction.t The layered metal phosphateis an active catalyst for alcohols. free synthesisof B-nitro rU. Costantino, M. curini, F. Marmottini,o. Rosati,andE. Pisani,cL2215 (1994).
Zirconocene, Zr'alkYlated. 15, 8l Cp2ZrBu2 is most often employed to couple coupling of alkeneslalkynes.t and dienes.2An intramolecularversionis alkenesr provide to unsaturatedcompounds synthesisof cis-1,2-dimethylcyclic systems.l useful for a stereoselective
cp2zrBu2-BuLi THF, rt
other carbonyl comPounds.s into cis-3Ring contraction.6 Vinylmorpholine derivatives are converted hydroxy-4-v inylPYrrolidines'
gn
BF3'OEI2
*
R-
r N . S u z u k i , C . J . R o u s s e t 'K . A o y a g i ' M K u t M . S a b u r i ,J O M C 4 7 3 ' l l 7 ( 1 9 9 4 ) ' 2 T . T a k a h a s h i ,N . S u z u k i , M . K a g e y a m a ' D Y r T . T a k a h a s h i , D . Y . K o n d a k o v ,a n d N S u l u \ t
Zirconocene dichloride. 14' 122: 15' l]( Aminolysis.t CpzZrClz is a uscful <
gr'r'\-'\
-aza-|,3-dienes'o Dehydrogenation gnd pinacol coupling. Allylamines give | with whereas aldehydes fuinish a-hydroxycarbanion equivalents, which condense
Cp2ZtBu2 |
M.,
"uJi-/
881"
'r'..r"'"
cp2zr-ll*
y'\Jo \*/
lidinones. Deallylation,2 The combinatisn $ rtl cleavageof allyl ethers and amines' Thc allyl ethers.
'T. Yokomatsu, A. Arakawa,andS. Shibole 'H. Ito, T. Taguchi,andY. Hanzawa'JOC9l
Zirconocene hydride. 13, 108; t{' -1?'l: Tishchenko reaction't Aldehldcs r with CpzZrH2 at 0"C.
Bn 821o
rK.-i. Morita,Y. Nishiyama, andY' lshrr'O
415 ZirconocenehYdride
rr:..
the reduction of carbonYl
r, r1 1795(1993).
'cirlriron with the modified ZrO2 ceJ u.ing the reagentand PhCHO
rT. Takahashi, andN' Suzuki,CL l00l (1993)' Z. Xi, C.J' Rousset, 2T.Takahashi, andN. Suzuki,CL259 (1994)' D.Y. Kondakov, rT. Takahashi,M. Kotora,and K. Kasai,CC 2693(1994)' aJ.Barluenga,R. Sanz,R. Gonzalez,and F' J' Fananas,CC 989 (1994)' tF. R. AskhamandK. M. Carroll,JOC 58' 7328(1993)' uH. Ito, Y. Ikeuchi,T' Taguchi'Y. Hanzawa'and M' Shiro' JACS116'5469(1994)'
Zirconocene ?t-comPlexes. species with electroReiluctive alkylations.t'2 Reaction of the complexed However, the alkylations. reductive accomplishes philes followed by protonation with 4alkynes of cyclopropylmethylation zirconocene-ethene complex effects bromobutene.r
r r , B ( . S J6 6 , 1 3 0 5( 1 9 9 3 ) ' r : , B ( - S J6 6 . 1 6 9 9( 1 9 9 3 ) .
\ nAon
c p z z r - l l+ n c H o ; I r:'. retive catalyst for the solvent-
tt\
r r ci
P r . a n iC , L2215(1994)'
cprz,- ll
.
//\/\B(
+
Pr--z-Pr
.780 -> 00
PrJ
/r-\ 68%
, nr,,.t often emPloyed to couPle tn.- An intramolecularversionis nct rr I cyclic systems'3
.'-t Y i l :
'N.Suzuki,C.J.Rousset,K.Aoyagi'M'Kotora,T'Takahashi'M'Hasegawa'Y'Nitto'and M. Saburi, JOMC 473, ll'l (1994). ' T. R H a r a ' T L 3 4 ' 4 8 1 1( 1 9 9 3 ) ' T a k a h a s h i ,N . S u z u k i , M . K a g e y a m a ,D ' Y ' K o n d a k o v ' a n d ( 1 9 93)' rT. 6 5 7 1 T L 3 4 ' N . S u z u k i , a n d T a k a h a s h i ,D . Y . K o n d a k o v ,
^\-/\
Zirconocene dichtoride. 14, 122:15, lzD-lzl of N-acyl-2-oxazoAminolysis.t CpzZrClz is a useful catalyst for aminolysis
ffi"k
lidinones. "Cp2Zr" which is effective for Deallylation.2 The combination with BuLi forms
,l:\ ..:rriines give 1-aza-|,3-dienes,a c;:.rrllents, which condensewith r3r:\c\ are converted into cis-3-
^
o
\J / \ \ N2 Bn 82%
H
cleavageofallylethersandamines.Thereagentshowsahigherreactivitytowards allyl ethers. 'T. Yokomatsu, JOC 59,3506(1994)' A. Arakawa,andS. Shibuya, 'H. Ito, T. Taguchi,and Y. Hanzawa,JOC 58,'174(1993)'
: 4 .3 7 : 1 5 , 5 2 ZirconocenehYdride. 13' 1 0 8 1 dimerizedon reaction are disproportionately Aldehydes reaction.l Tishchenko with CpzZrHzat 0'C. rK.-i. Morita,Y. Nishiyama, andY. Ishii, OM 12,3748(1993)'
416
Zirconocenehydrochloride
Zirconocene hydrochloride. 14, 81; 15, 80-81 Hydrozirconation.t Acylsilanes containing a vinyl or ethynyl group undergo hydrozirconation instead of reaction at the carbonyl if the silyl group is hindered (e.9.,r-PrrSi).
F
CpzZt0l Cp2Z(H)Cl ,t/
cH2ct2, 2e
\
r{
8u/
In the presenceof Ag(I) catalyst the zirconylalkenes react with aldehydeswhich on hydrolysis give enals. conjugated aldehydeswith many double bonds are accessible by iterative operation of the process.2
Cp2z(H)Cl
:_oEt cat. A9C|O4; Hso*
R'\/cHo Allylzirconocene chlorides. Thesc ra l-alken-4-ols by reaction with aldehydcsh derived from allenylstannanescondensc rr
Cp2Z((H\CI
:--\
\\
MeO
R-\--\.CHO cat. AgCIO{ Hao' Cp2Z(H)Cl
a,.cAsnBu" Imines.' Secondaryamides and large-ring lactams are convertedinto imines on sequentialtreatmentwith KH and Cp2Zr(H)Cl. Alkenylzinc reagents. Hydrozirconation of l-alkynes followed by treatment with MeLi, MetznLi provides alkenylzincates, which are useful for transfer of alkenyl groups to enones.tProstaglandinsand substancesof similar skeletonare accessibleby a 3-componentcoupling.
o )( l l
LI
CpzZ(H)Cl:
\
9or,""
Me"Zn -
Ms2Cu(CN)Li2, Me3ZnLi;
\z\,... -
OTIPS
o""a**...."".------*r"oo""
Allylic alcohols. When alkenylzirconocene chlorides derived from l-alkynes react with epoxides in the presenceof Agcloa, isomerization of the epoxides to carbonyl compounds intervenes; therefore, allylic alcohols result.5However, epoxy carbonyl compoundsare attackedat the C:O group.6
Reaction
c$zcr2, zc
with phosphorus
Z-t/
ca?Z,
conpottl
phosphine at C-le is feasible, while ring cb to give homoallylic phosphinesr0 is obscn furan also undergo similar cleavage .)
' B . H . L i p s h u t z , C . L i n d s l e y ,a n d A . B h a n d . r r r 'H. M a e t a a n d K . S u z u k i , T L 3 4 , 3 4 1( l g g ] l 3D.J.A. S c h e d l e r ,A . G . G o d f r e y , a n d B . G e m oB. H . L i p s h u t z a n d M . R . W o o d , , / A C Sl 1 5 . l f , tP. Wipf and W. Xu, JOC 58,825 (1993). 6P. Wipf and W. Xu, JOC 58,5880(1993r tM. C h i n o , T . M a t s u m o t o ,a n d K . S u z u l r . S l i 8H. M a e t a ,T . H a s e g a w aa , nd K. Suzukr.Sl -r. 'M. Z a b l o c k a ,A . I g a u , J . - P . M a j o r a l , a n d K V 'oN. C e n a c ,M . Z a b l o c k a ,A . I g a u ,J . - P . M a ; o n l .
Zirconyl chloride. Cyclopentenones.tBothaldolcon&or sequentNazarovcyclizationof the prodrrrs are catalyzedby zirconylchloride.
Zirconyl chloride 417
| ;.:\l or ethynyl group undergo r\ :: the silyl group is hindered
Cp2ZrCl
/
Bu'
Phlao *AAzB'
Cp2z(H)cl cH2ct2, 2oo
\ Br/
ler:. reactwith aldehydeswhich h ::'.,nr doublebonds are accessl-
I OH
AgClOr, CHzClz
ErOOC\zvol
tr6
87%
=t"t"?""k
AgClOr, CHzClz
*oH
) 56%
:
\v
-CHO
Allylzirconocene chlorides. These reagentsare formed from allenes. A route to I,l-Bimetallic species l-alken-4-ols by reactionwith aldehydeshas been developed.T form 1,3-dienes.8 derived from allenylstannanescondensewith aldehydesto
^ \-.\,cHo
Cp2Z(H)Cl
zrcAsnBu,
cH2cl2, 2oo
y'\:lsnaus cp2zrcl
RCHO; BF3. oEt2
Z\/\
R
. : . : : l l \ a r e C O n v e r t e di n t O i m i n e s
l-,. i.r nes followed by treatment r l : .rr are useful for transfer of b . .:ncCSof similar skeletonare
74"/o
h l , r r J e r d e r i v e df r o m l - a l k y n e s D<'::zrtionof the epoxidesto carh' ,. rc-.ult.5However,epoxy car-
Reaction with phosphorus compounds. Hydrozirconation of vinyl(diphenyl)phosphine at C-le is feasible,while ring cleavagoof l-phenylphospha-3-cyclopentene to give homoallylic phosphinesr0is observed.(l-Benzyl-3-pyrroline and dihydrofuran also undergo similar cleavage.) 'B. H. Lipshutz,C. Lindsley,andA. Bhandari,TL 35,4669(1994). 'H. MaetaandK. Suzuki,TL 34, 341(1993). t D. J. A. Schedler,A. G. Godfrey,and B. Ganem,TL 34, 5035(1993). aB.H. LipshutzandM. R. Wood,"/ACSll5, 12625(1993)lJACS116,11689(1994). tP. wipf andW. Xu, loc 58,825(1993). uP.wipf andW. Xu, JoC 58,5880(1993). tM. Chino,T. Matsumoto, andK. Suzuki,sL 359(1994). tH. Maeta,T. Hasegawa, andK. Suzuki,SL34l (1993). eM. Zablocka,A. Igau,J.-P.Majoral,and K. M. Pietruziewicz,OM 12,603 (1993). 'oN.Cenac,M. Zablocka, OM 13' 5166(1994). A. Igau,J.-P.Majoral,andK. M. Pietruziewicz,
Zirconyl chloride. Cyclopentenones.t Both aldol condensationof ketones with aldehydesand subsequentNazarov cyclization of the products to yield polysubstitutedcyclopentenones are catalyzed by zirconyl chloride.
418 ZirconocenehYdrochloride
,,1-.r,2
\
),
ZrQCr2
* PnCnO 13oo
[fr;l
o
AUTHOR INDE)
^/
\tl Frn
'T. Yuki, M. Hashimoto,Y. Nishiyama,and Y Ishii, JoC 58' 449'l (1993)'
Aasbo,K., 227 Aasen,A. J., 349 Abarbri,M., 45 Abboud,K., 316 AbdelWahab,A.-M. A.. 2E9 A. F., 340 Abdel-Magid, L B., 4l I Abdrakhmanov, A b d u lH a i ,A . K . M . , 3 9 1 Abe,H., 45 Abe,J., 349 , 31 A b e ,M . , 1 3 0 3 Abe, T., 12O,40'l Abel,T., 120 Abood,N. A., 223 134 About-Jaudet,8., Aboytes,R., 68 Abraham,A. C., 14 I., 362 Abrahams, Abribat,B., 288 Achari,B., 301 Achiwa,K., 28,96 B., 379 Achmatowicz, Acuna,R. C., 368 Adachi,K., 358,378 Adachi,T., 180 Adam,W., 145,146,185.l{: A d a m sC , . M., 253 Adams,J., 339 Adger,B. J., 146 A d l i n g t o nR, . M . , 3 0 7 Agarwal,D. D., 73 Agati,V., 67 Aggarwal,V. K., 155 Aguilar,F. J., 382 E. L. O.. 3l-r Agwaramgbo, Ahlberg,P., 193 Ahlbrecht,H., 85,327 AhmedG , ., l5l A h m e d ,S . 2 . , 3 6 7 Ahn,A., 345 Ahn, J. H., 249,34O A h n ,K . H . , 8 9 Ahn, Y., 256 Ahonen,M., 408 Aichner,J., 2 A i d h e n I, . S . ,2 2 1 Aiken.J. W., 178
AUTHOR INDEX 'Ait AUouA , . N . ,7 3 Aasbo,K., 227 Aitken, D. J., 158 Aasen,A. J., 349 A i t k e n ,R . A . , 4 Abarbri,M., 45 Ait-Mohand,S., 289 Abboud,K., 316 A i z p u r u aJ, . M . , 3 8 AbdelWahab,A.-M. A., 289 Ajana,A.,322 A. F., 340 Abdel-Magid, A j i o u ,A . A . , 2 8 9 I. B., 4ll Abdrakhmanov, Akada,M., 269 AbdulHai, A. K. M., 392 A k a i ,S . ,2 9 1 A b e ,H . , 4 5 A k a k u r aM , . , 2 1 ,3 5 6 Abe,J., 349 AkaneN , . ,3 l l , 31 A b e ,M . , 1 3 0 3 Akazome,M., 129,309 Abe,T., 12O,407 Akermark,B., 277 Abel,T., 120 A k g u n ,8 . , 3 6 2 Abood,N. A., 223 Aki, s.,63 A b o u t - J a u d e t , 81.3, 4 A k i t a ,H . , 2 0 3 Aboytes,R., 68 A k i t a ,M . , 2 6 9 Abraham,A. C., 14 A k i y a m aT, . , 2 0 , 3 5 6 I., 362 Abrahams, Akritopolou,I., 6 Abribat,8., 288 Aksoy,H., 354 Achari,B., 301 A., 196 Akutagawa, Achiwa,K., 28,96 A k u t a g a w aS,. ,4 1 ,3 1 0 B., 379 Achmatowicz, Al Ali, B.,280 Acuna,R. C., 368 A l D u l a y y m iJ, . R . , 2 4 0 Adachi,K., 358,378 Al-Abed,Y., 349 Adachi,T., 180 Adam,W., 145,146,185,242,269,2'10,364 Alajarin,M., 48, 386 A l a m i ,A . , 3 9 3 A d a m sC , . M., 253 Alami, M., 350,397 Adams,J., 339 A l - B a d r iH , ., 134 Adger,B. J., 146 D., 180,345 Albanese, A d l i n g t o nR, . M . , 3 0 7 J., 239 Albaneze, Agarwal,D. D., 73 A l b o u yA , ., l9l Agati,V., 67 Albouy,D., 293 Aggarwal,V. K., 155 Albrecht,P.,245 A g u i l a rF , .J.,382 Alcaide,B., 249 E. L. O., 333 Agwaramgbo, J., 386 Alcantara, Ahlberg,P., 193 Alcaraz,L., 149 AhlbrechH t,.,85,327 Alcudia,F.,95, 123 AhmedG , ., l5l Alexakis,A., 261 A h m e d ,S . 2 . , 3 6 ' 7 C. W., 261 Alexander, A h n ,A . , 3 4 5 A. N., 342 Alexeeko, Ahn, J. H., 249,340 Ali,M. A., 153 A h n ,K . H . , 8 9 A l l a i n ,E . J . , 1 8 3 Ahn, Y., 256 A l l a n ,R . D . , 1 0 2 Ahonen,M., 408 Allard,C., 173 Aichner,J., 2 Allegretti,M., 230 A i d h e n I, . S . ,2 2 1 A l l e n ,J . V . , 4 6 , 9 7 Aiken,J. W., 178
420 Author Index Aller, 8., 307 Allevi, P., 203 A l - M a s u m ,M . , 3 9 3 A l m e n a ,J . , 2 1 1 , 2 1 8 Almond,M' R.' 138 A l o n s o ,A . , 1 0 0 A l o n s o ,I . , 3 6 1 Alpegiani, M., 87 A l p e r , H . , 4 " 7 , 6 7 , 1 O 9 ,1 2 9 , 1 5 5 ' 2 ' 7 3 ' 2 8 0 ' 3 0 7 , 3 0 8 ,3 0 9 A l t a m u r a ,A . , 1 4 5 Al-Tel, T. H., 349 Al'tman, E. Sh.' 64 A l v a r a d o ,M . , 2 6 9 AlvarezC , .,2ll'252 A l v a r e z ,R . M . ' 2 6 1 Alvarez, S. C., 209 A l v a r e z - B u i l l a J, . ' 2 3 8 Amii,H.,70 Ammadi, F., l8l Amouroux, R., 59 Amri, H., l8l An, D. K.,340 Anac,O., 156 A n a n t h a n ,S . , 8 7 A n a s t a s i a ,M . , 2 0 3 A n d e r s e n ,M . W . ' 8 A n d e r s o n ,J . C . , 3 6 A n d e r s s o n ,C . - M ' 2 ' 1 6 A n d e r s s o n ,F . O . ' 2 8 8 A n d e r s s o n ,P G . ' 2 ' 7 ' 7 Ando, C., 276 Ando, H., 18l Ando, K., 178 Ando, M., l16 A n d r e a s s o n ,U . , 3 0 9 Andres,J. M., 97 Andres,l.'M.' 324 Andrews,D. M.' 96 Andrews,I. P., 187 Andrey, O., 307 A n d r i c o P u l o ,A ' 2 4 5 Andrievskii, A M.' 64 Anelli, P. L., 233 Ang,K. H',280 A n g a r a ,G . A . ' l 9 l A n g e l e s ,M . R . , 6 7 A n g e l l ,R . , 1 7 l A n g e r t ,H . , 2 6 1 Angibaud,P., 3
A n g l e ,S . R . , 3 2 1 ,3 5 6 A n k e r ,D . , 1 8 l R., 356,362 Annunziata, AnsariM , . H.,28 AnsonM , . S . ,6 6 P.,40 Antognazza, A n t o n ,R . F . - S . 3, 1 6 R., 73 Antonioletti, Antonov,D. M., 197 A o k i ,K . , l 0 l A o k i ,M . , 2 9 0 A o k i ,S . , 4 4 , 3 8 4 Aoki, Y., 140 11 ,5 A o y a g iK, . , 1 7 4 , 1 9 4 Aoyagi,Y., 343 A o y a m aT, . , 2 2 2 , 3 6 7 A p l i n ,R . T . , 1 2 5 U', l2l Appelberg, A r a i ,C . , 3 6 1 A r a i ,N . , 8 7 A r a i ,S . ,3 l l Arai,T.,42 A r a k a w aA, . , 4 1 5 Araki, K., 384 A r a k i ,M . , 9 5 ,3 1 8 Araki, S., 9'7,189'264 Araneo,S.,73, 359 Aranyos,A., 277 A., 350 Arasappan, A r a s eA , ., 58 Arata,K., 396 Arbutzova,S. N.' 293 ArenzT , . , 3 0 9 '3 8 4 Argade,A. B., 200 A r i e n t i ,A . , 2 0 Arif, A. M., 325 Arime,T., 316 A r i s t a ,L . , 7 3 A r i t a ,A . , 3 3 4 A r m i t a g eM , . A.' 143 Armouroux,R., 294 Armstrong,S. K., 99' 249 A r n a i z ,D . O . , 3 2 1 A r n d t ,S . ,2 6 1 A r n e c k eR, . , 4 l l Arnett,E. M., 399 Arnold,T., 331 Arnone,A., 285 Arshava,B. M., 379 A r t i s ,D . R . , 1 8 5
A r t s ,H . J . ,2 H., 250 Arzoumanian A s a m i ,M . , 9 7 ,2 1 9 Asano,K., 406 4 '0 3 , 4 1 1 A s a o ,N . , 2 1 5 , 2 6 1 , 3 9 3 Asensio,G., 53,242 A s h e ,A . J . ,8 l A s k h a mF , . R . ,4 1 5 Aso,Y., 343 A s p i n a l lH , . C . ,4 0 3 Astorga,C., 204 Astudillo,L., 186 Atanabe,M., 96, 97, l29, 2lO'216 Ates,C., 377 Atherton,J. 1.,4 A t k i n s o nJ, . G . , 3 7 6 A t k i n s o nR , . S . ,1 7 9 A t l a m s a nA i,., I 16 Attardo,G., 130 A t w a l ,K . S . ,3 6 7 Aubert,C., 126 Audin,P., 240 A u d r a nG , .,361,412 A u e r b a c hJ ,. , 6 7 Aufranc,P.,392 A u l c h e n k ol ., S . , 2 4 J. M" 316 Aurrecoechea, A v a l o sM , ., 319 C., 186,395 Avendano, AveryM , . A.,220 Avidon,S. V., 64 Awachat,M. M., 252 A z n a rF , .,4ll Azzena,U.,206,295 ' 51. B a b aA, . , 5 4 , 8 5 ,1 7 6 , 2 O 9 ' 2 3395' 0 3 368,37I Baba,Y., 367 Baban,J. A., 85,209 Babiano,R., 319 B a b i nP , .,206,349 Babler,J. H., 296 Babudri,F., 173 B a b yA , ., 154 Baccin,C., 40 Bacelo,M. J., 284 B a c h k iA , ., l9l, 2ll E', 385 Baciocchiv, Back,T. G.,249 B a c k h a uD s ,. , 2 2
AuthorIndex 421 Arts, H. J.,2 A r z o u m a n i a nH . , 2 5 0 Asami,M., 97,219 Asano, K., 406 Asao, N., 215,261, 393, 403, 4tl AsensioG , ., 53,242 A s h e ,A . J . , 8 l A s k h a m ,F . R . , 4 1 5 Aso, Y., 343 A s p i n a l l ,H . C . , 4 0 3 A s t o r g a ,C . , 2 O 4 A s t u d i l l o ,L . , 1 8 6 A t a n a b e , M . , 9 6 , 9 7 , 1 2 9 ,2 1 0 , 2 1 6 A t e s ,C . , 3 7 7 A t h e r t o n ,J . I . , 4 A t k i n s o n ,J . G . , 3 7 6 A t k i n s o n ,R . S . , 1 7 9 A t l a m s a n iA, . , l l 6 Attardo, G., 130 Atwal, K. S.,367 A u b e r t ,C . , 1 2 6 Audin, P., 240 A u d r a n ,G . , 3 6 1 , 4 1 2 A u e r b a c h ,J . , 6 7 A u f r a n c ,P . , 3 9 2 A u l c h e n k o I, . S . , 2 4 A u r r e c o e c h e a J, . M . , 3 1 6 A v a l o s ,M . , 3 1 9 A v e n d a n o ,C . , 1 8 6 ,3 9 5 A v e r y ,M . A . , 2 2 O Avidon, S. V., 64 A w a c h a t ,M . M . , 2 5 2 Aznar, F., 4ll A z z e n a ,U . , 2 0 6 , 2 9 5 B a b a ,A . , 5 4 , 8 5 , 1 7 6 , 2 0 9 , 2 3 9 , 3 5 0 , 3 5 1 , 368, 37l B a b a ,Y . , 3 6 7 B a b a n ,J . A . , 8 5 , 2 0 9 B a b i a n oR , ., 319 Babin, P., 206,349 B a b l e r J, . H . , 2 9 6 B a b u d r i .F . , I 7 3 Baby,A., 154 B a c c i n ,C . , 4 0 B a c e l o ,M . J . , 2 8 4 B a c h k i ,A . , l 9 l , 2 l l B a c i o c c h i v ,E . , 3 8 5 B a c k ,T . G . , 2 4 9 B a c k h a u sD , .,22
Backinowsky, L. V.,394 Biickvall,l.-E., 126,172,183,2t4,231,277, 281,309 B a d e aL, , 8 7 Badet,B., 67, 341 Badone, D.,276, 393 Badparva, H., 2 Baeg,J.-O.,47 Baele,J.,327 Baghel,S. S., 164 B a g n o l iL, . , 2 9 , 1 5 2 Bagul,T. D., 320 Bahule,B. 8., 380 Baik, W., 28 Bailey,P. L.,227 Bailey,W. F., 80 Baird,M. S., 240 B a k k eJ, . M . , 1 5 0 Bakkestuen, A. K., 349 B a k l o u t iA, . , l 8 l , 1 8 2 2 , 88 Balasubramanian, M., 34 B a l a s u n d a r aBn. , 2 9 3 Balavoine, G. G. A., 73 Balcerzak, P., 288 B a l d o l iC , .,329 Balducci,R., 291 Baldwin,1. E., 172,307,316 Balicki,R., 186 B a l l ,D . , 1 4 2 B a l l ,R . G . , 1 5 0 B a l l i n i ,R . , l 2 l , 1 7 0 ,1 8 4 ,1 9 5 , 2 4 0 , 2 4 6 , 117 11s Balmer,8., 409 BalzanoF., 250 B a n a s z e k ,A . , 2 O 9 B a n c h i k o v ,A . N . , 2 7 6 B a n d o ,T . , 3 4 8 Banerji, A., 358 Banfi, A., ll0 Banfi, L., l4l,371 Banfi, S.,73 Banfiv, L., 141,3'lI Banik,B. K., 23 Banks, R. 8., 100 Banwell,M. c., l, 106,236 B a o ,W . , 2 8 9 B a p t i s t e l l a ,L . H . 8 . , 4 0 7 B a r a g a n a ,B . , 1 0 0 B a r a k a t ,K . J . , 2 3 Baraldi, D., 20
422 AuthorIndex V.' 327 Baumann, C., 239 Baumgartner, P. W., 319 Baures, Bautault,K', 388 Bayle,C., 98 T' O', 335 Bayraktaroglu, D. J.' 384 Bayston, B B o n i n iB , . F . , 2 6 1 '3 4 5 B e a k ,P ' , 7 8 '7 9 D., 58 BeardsleY, Beau,J.-M', 49 B e a u d eIt',, 2 6 2 S-,77' 96 Beaudoin, F-, 16l,2l4 Beaulieu, A. J.' 298 Beaumont, B e c k ,A . K . , 2 0 8 B e c k ,C ' , 7 3 B e c k ,J . P . , 2 1 9 Becker,H.' 132 Becker,J'' 376 B e c k m a n nM, . , 2 4 1 B e d d o e sR,. L . ' l 1 6 A., 409 Bedeschi, M' L.' 331 Behenke, Behnen,W., 96 Beholz,L. G., 63 Bei,M.-2.'225 Belen'kii,L. I.' 197 A. I. P'' 174 BeletskaYa, 324,335,340 l .aP, ' ' 2 8 2 B e l e t s k a Y 3 1 8 ' 2 9 0 ' 2 8 5 ' B a r t o nD , ' H ' R . , 2 ' 1 , 7 31' 5 4 ' B e l i s eC, ' M . ' 2 0 9 342,3'15 M'' 88,345'409 Bellassoued, Barua,N. C', 387 M., 276 Beller, Baruah,J. B.' 109 F., 150'231 Bellesia, B a r u a hR, . N ' . 1 8 24' 0 8M, . ' 9 6 ' 2 2 2 B e l l e Y D'' l7l Basavaiah, Bellina,F.' l'72,261,349' 397 Basile,T., 256 Bellisia'F., 199 S., 142 Baskaran, Bellora'8., ll0 Bassir,M., 203 Bellosta,V.' 269' 27'7 232 Basu,B., Belotti,R. D., 269 Basu,S., 380 Beltrami'A., 233 A., 87 BatabYal, Ben,R. N', 284 Bates,R. B., 77 M.' 356 Benaglia, Bates,R. W., 68' 350 Benalil,A., 175 Batra,M. S., 382 Benard,N.' 273 Bats,J.-P.'334 Benati,L., 252 Battaglia'A., 180 Benazza,M'' 2' 180 B a u d i nJ, . - 8 . '5 ' l 7 l M'' 207 Bencheqroun' Baudoin,B., 338 Y', 280 Ben-David, Bauer,W.' 230 Bender,D' M'' 261 Baum,G., 361
Barani,M., 88 Barbaro,G.' 180 M.' 254 Barbaruah, Barbero,A',262 Barbero,M'' 223 BarbrY,D., 322 Barcina,J. O., 261,346' 349 Bareket,Y., 188 Bar-Haim,A., 64, 188 Barlaam8., 103 4ll' 415 nurtu"ngu,J., 53, S0, 100,2t8' 32'l' Barnard,J' M.' 393 Barnier,J' P.' 210 Barnier,J.-P.'203 Barock,R. A.' 34 Baron,D. L., 249 Barr,K. J', 294 Barrett,A. G. M., 142'3'll Barrett,C.' 146 Barrettv,A. G. M , 142'3'71 Barrios,H.' 321 Bartels,8., 59 Bartley,G. S.' 320 B a r t m a n nE, ' , 1 3 5 B a r t m a n nE, . A . ' 2 5 2 Bartoletti,L., 45 Bartoletti,M.' ll0 Bartoli,G., 170,l'll,22l' 24O'256' 295'
Bendorf,H. D., 16 Benefice-Malouct. B e n g a l i a ,M . , 3 6 2 B e n h a d d o u ,R . , 2 ' B e n i c e w i c z ,B . C . Bennani,Y., 96 Bennani,Y. L., 7:
Benneche, T., 8E. B e n n e t a u ,B . , ? 9 . B e n n e t t ,C . E . . 2 9 B e r e s i s ,R . , 3 5 6 B e r e s i s ,R . T . , 2 t Bergamini, F.. 2! B e r g e r ,S . , 2 6 3 B e r g t u n d ,B . A . . . Berk, S. C., 29'1. BerkesselA , ., lt!
Berl, V., 293 Berlinerv,M. A., B e r n a r d ,P . L . . l ( B e r n a r d i n c h i .G , Bernardini, C. B. B e r n a t o w i c z ,M , B e r n i e r ,J . , 3 2 3 B e r n s t e i n ,M . A . B e r r a n g ,B . D . . : Berrios-Pena, li. Berry, M. B., 7? Berte-Verrando. B e r t r a n d ,G . . 2 0 B e s a n c o n ,J . , 2 5 B e s e n y e i ,G . , 4 7
B e s n i e r ,I . , 3 7 5 B e s s h o ,K . , 2 6 3 . B e s t m a n n ,H . J . B e t a n c o r ,C . , l 9 Betbeder, D., 26 Bethell,D., 96. B e u g e l m a n sR , .. 'l B e v i e r e ,S . D . . B e y e r m a n n ,M , .
Bezuidenhoudt. B h a g w a t ,S . S . . B h a l a y ,G . , 2 4 { Bhalerao, U. T.. Bhamidipati.R" B h a n d a r i ,A . . i l Bhar, D., 39 B h a r ,S . , 4 l l Bhat. N. G., lfi
AuthorIndex 423 Bendorf,H. D., 365 Benefice-Malouet, S., 409 B e n g a l i aM, . , 3 6 2 B e n h a d d oR u ., , 2 7 7 Benicewicz, B. C., 298 Bennani,Y., 96 B e n n a nYi ,. L . , 7 7 , 2 6 7 Benneche, T., 88,349 Bennetau, 8.,'19,206,349 B e n n e tC t ,. 8 . , 2 9 7 Beresis, R., 356 Beresis, R. T., 254 Bergamini,F., 230 Berger,S.,263 Berglund, B. A., 291 Berk, S. C., 294, 365,382 Berkessel, A., 185 Berl,V., 293 Berlinerv,M. A., 363 Bernard,P. L., 100 B e r n a r d i n c hGi ,. , 9 5 B e r n a r d i nCi ,. 8 . , 2 4 2 Bernatowicz, M. S., 236 Bernier,J., 323 Bernstein M, . A . , 2 1 9 Berrang,B. D.,249 Berrios-Penn, N. G., 280 Berry,M. 8., 77 Berte-Verrando, S., 214 Bertrand,G., 20 B e s a n c o Jn.,, 2 5 1 Besenyei, G., 47,291 Besnier, I., 375 B e s s h oK, . , 2 6 3 , 3 1 6 B e s t m a n nH,. J . ,2 3 0 Betancor, C., 192 Betbeder,D., 269 Bethell,D., 96, 183 B e u g e l m a nRs.,, 3 4 9 Beviere,S. D., 73 Beyermann, M., 36 Bezuidenhoudt, B. C. B., 95 Bhagwat, S. S., 387 Bhalay,G.,244 Bhalerao, U. T.,270 Bhamidipati, R. S., 183 Bhandari, A., 417 Bhar,D., 39 B h a rS , .,4ll Bhat,N. G., 100
Bhat,S., 73, 109,269,276,364, 409 Bhatia,B., 108,109 Bhatia,S., 109,269 Bhatt,R. K., 129,261,3'73 Bhattacharya, L, 63 Bhattacharya, S., 276 Bhattacharyya, P., 245, 288 Bhattacharyya, S., 364,409 Bhattarai,K. M., 255 B h a u m i kA, . , l 1 6 B h a v a nA i,. K. D., l7l Bhawal,B. M., 406 Bhuma,V., 73 B h u y a nP, . J . , 5 2 Bickelhaupt,F., 11,297, 349 Bienayme, H., 276 Bienert,M., 36 B i g g ,D . C . H . , 2 0 , 2 3 1 Bigi, F., 20, 268 B i g n o t t iM , ., ll0 Bigot,A., 349 B i h a r i ,M . , l 9 l Bijpost,E. A., I I B i l e sC , .,382 Bilodeau, M. T., 365 B i l s t e i nB, . , 1 4 6 Binder,W. H.,264 B i r a n ,C . , 1 8 Birkert,M. A., 194 Bisarya,S. C., 84, 178 Bischoff,L., 40, ll9,261 Bishop,P., 147 B i s h t ,K . S . ,2 0 3 Bissolino, P.,87 B i s w a sG, . K . , 2 4 5 Biswas,S. S.,405 Bjork,P., 129 Black,T. H., 320 B l a c k l o c kJ,. J . , 6 7 B l a i r ,I . A . , 3 0 3 Blanchard, P.,408 Blanco,L., 203 Blancou,H., 409 Blank,D. H., 248 Blank,S., 234 B l a r t ,E . , 2 8 1 , 3 9 3 Blaskovich, M. A., 170 Blass,B. 8., 183 Blaszczyk, K., 303 Blazis.V. J.,214
424 AuthorIndex Blickensdorf,J. D'' 3'7'7 Bloch,R., 261 Bloemhoff'W., 36 B l o u i nM , ., 333 B l u m ,C . A . ' 8 2 B l u m ,D . M . , 1 6 7 Blume,T., 261 Boaz,N. W., 203 B o b b i t tK, . L " 9 6 ' 1 4 2 B o c k ,K . , 3 2 3 B o c o u mA, . , 2 5 6 Boden'N., 384 Boechat,N., 350 Boechat,N. A', 298 Jr, R' K" 97' 286 Boeckman, M ,29,32'l Boelens, Boetle,J.' 319 W. J H', 324 Boesten, M', 320'336 BoeYkens, E.' Bogas, 385 Bohac,A., 200 B o h l m a n nR, ' , 1 8 2 B o i r e a uG, . , 2 2 2 Boivin,J.' lO3,24'l' 3'lI B o i v i nT , . L' B'' 371 Boland,W.' 104 B o l i n ,G . , 2 6 1 , 3 4 9 Bollaert,W., 178 B o l m ,C . ' 9 5 ' 9 6 ' 2 6 9 Bols,M., 148 Bolton,G. L', 77 B o m b r u nA' , 1 7 2 B o n ,8 . , 2 0 ,6 7 F','ll' 2lT Bonadies, Bonfand'E'' 67 B o n i ,M . , 9 6 , 1 9 9 B o n i n ,M ' ' 9 6 B o n i n i ,B ' F ' ' 2 6 1 '3 4 5 B', 231 Bonnaud, F', Bonne, 207 Bonnet,B', 137 Bonnet,l'tl' C'' 2'13 K' I'' 197 Booker-Milburn' Boons'G'-J" 84' 125 Booth,S' E'' 371 Borah,H' N'' 52' 327 Borah,P , 408 Borbas,A', 208 M'' l8 Bordeauv, J'' 323 Bordeleau,
Bordoloi,M.'225 M'' 354 Bordolos, Borghi,D., 87 Borhan,B., 192 Borloo,M.' 178 Borthakur,N', 185'408 Bortolotti,B., 130 Borzilleri'R' M'' 365 BoschE., 253'254 295 Bosco,M., l'7l, 221' 240' B o s eA , . K., 23 B o s i c aG, . , 1 8 4 ,1 9 5 2' 4 6 ' 3 2 ' l Bosman,C., 87, 152 Bosnich,B.' 40, 365 Botteghi,C., 308 Bouhlel,8., 245 Boulton,L. T'' 104 K', 98 Boumizane, B o u r d e tS' . , 3 4 9 Bourdin,B., 95 M'-J ' 73 Bourgeois, A Bourhim, ', 387 B o u y a n z eAr ,' , 8 0 ' 3 8 4 g o u z i d eA ' , l 0 ? ' l l 0 ' 2 3 0 B o v i c e l l iP' , 6 , 1 4 5 P., l9l' 194 Bovonsombat, Bowden,N', 308 Bowman,W'R'371 ' 56 B o Y c eJ, . P ' , 3 2 1 3 305 S', R' BoYce' Bovd,E.A,178 M' F" 228 Brackeen' 395 n r u g a n, . L ' ' 2 9 ' 2 6 2 ' 2 8 9 ' 245 S'' H' Braibante, E F'245 Braibante.M Brandes'B' D'' 95 Btandi, A',239 t'' 3' 204' 283' 293' 302 ir."ittt, I'' Braschi' 216 R'' 221 Braslau, Brasseur,D ' 262 Braun,M', 77 S" l2l Braverman' BraY,A' M" 23 S' W'' 294 Breeden, J'-M" l16 Bregeault, Brel,V' K'' 400 Bremer'C'' 392 Brennan,J', 146 Breuilles,P'' 231
Breutel,C., 96 Brichard,M.-H.. 19 Brickmann,K.. l19 Bridges,V. S.' I Brieva,R., 203' l(X Brigas,A. F., 250 Brigaud,T., 379 B r i g g sA , . D.' 221 Brimble,M. A.. I l1 Brocca,D., 269 BrockC , . P . ,4 1 2 Broder,W., l8l Brodie,A. C.' 146 Bronk,B. S.' 40E BrookM , ' A.. 12. B r o o k h a r tM, . . l l l Brouard,C" 63 Brown,H' C'. 6. lt l7l, 199,34 Brown,J. D.' 4O8 Browne,E. N. C . Browning,A. F.. { Broxterman,Q. B E-. 3 Bruce-Adjei, Brudel,M., 36 B r u k ,L . G . ' 2 8 1 Brum-Bousque! Brummond,K. M Brumwell,J. E.. I B r u n e a uC, . ' 5 1 .I BrunerE., 382 Brunet,J.-J..l5{, Brusse,J.,96. l0 J.' 207.: Brussee, B r y c e ,M . R . ' 3 l BrYson,T' A.. l0 M.. l Bucciarelli, R.. ll Buchecker, Buchwald'S. L . 382 Buechler,D.. 38 Bueno,A. B.' ll Bujnicki,B.' 342 Bulger,S.,2E9 B u l l ,D ' S " 3 1 9 B u m a g i nN, . A ' . Bunn,B. J.,20E B u n t ,R . C ' ' 9 7 BurdenP. M.' ll Bureau,R., 237
AuthorIndex 425 Breutel,C., 96 Brichard,M.-H., 293 Brickmann,K., 129 V. S., I Bridges, Brieva,R.,203,204 Brigas,A. F., 250 Brigaud,T., 379 Briggs,A. D., 227 B r i m b l eM , . A., l19 Brocca,D., 269 Brock,C. P.,412 Broder,W., l8l Brodie,A. C., 146 Bronk,B. S.,408 BrookM , . A . , 1 2 ,1 5 B r o o k h a r tM, . , l l l Brouard,C., 63 BrownH , . C . , 6 , 2 0 , 5 8 , 9 9 ,1 0 0 ,1 3 3 ,1 4 2 , t7 t, 199,341 Brown,J. D., 408 Browne,E. N. C., 135 Browning,A. F., 403 Broxterman, Q. B., 324 Bruce-Adjei, E., 261 Brudel,M., 36 B r u k ,L . G . , 2 8 3 Brum-BousquM e t.,, 1 5 8 Brummond,K. M., 7'1,37'7 Brumwell,J. 8., 153,292 Bruneau, C., 51, 142,350 Bruner8., 382 Brunet,J.-J.,154,3O2 Brusse,J., 96, 20'7,387 Brussee, J.,207,387 BryceM , . R.,3l Bryson,T. A., 208 Bucciarelli, M., 203 B u c h e c k eRr ,. , 2 7 3 Buchwald, S. L., 44, 54, 129,294,308,365, 382 Buechler, D., 380 B u e n oA, . 8 . , 1 4 1 , 3 6 ' 7 Bujnicki,B., 342 Bulger,S., 289 B u l l ,D . S . , 3 1 9 Bumagin,N. A., 174,2'76,282 Bunn,B. J., 208 B u n t ,R . C . , 9 7 BurdenP. M., 102 Bureau,R., 237
K., 85 Burgess, Burgess-Dean, L., 158 Burgess-henry, J., l5 Burgess-Henry, J., 382 B u r k ,R . M . , 3 2 3 B u r k eS , .D.,371 Burkhardt,E. R., 209 Burnell,D. J., 56 Burnell-Curty, C., 357 Burrows,C. J., 88 B u r t o nD , . 1 . , 2 5 , 3 3 9 , 3 4 94,0 8 B u s a c cC a ,. 4 . , 2 7 6 Buss,D., 204 Butcher,K. J., 88 Butlin,R. J., l'7O,294 Butsugan, Y., 97, 189,264 B u t t k eK , ., 133 B u t t l e L, . A . , 3 7 1 B u t t r u mJ, . W . , 3 2 4 B u z b yJ, . , 3 7 Bycroft,B. W., 179 ByrneM , . P . ,1 2 9 B y u n ,I . S . ,9 6 Bzowej,E. I., 5l Cabezas, J. A., 80 T., 295 Cablewski, Cabri,W., 155,409 C a c c h iS, . , 2 ' 1 6 , 2 8 9 Cadamuro, S., 223 C a h i e zG , .,69,230,291 C a i ,R . - F . , 3 l l C a i n ,P . A . , 7 9 C a i n e l l iG , ., l4l Cajone,F., 203 Caldera,S., 77 C a l h e i r o sT,. , 2 8 4 C a l i f a n oJ, . - C . , 2 2 2 C a l o ,V . , 1 7 2 , 2 8 1 , 3 8 9 Calvo-Flores, F. G., 371 C a m b i eR, . C . , 3 6 1 Cameron,K. O., 384 Cammas,S., 388 Campbell, J. A., 82 Campi,E. M., 306,307 CamposNeves,A.S.,408 Campos,P. J., 53 Camps,F., 249 C a n a l iG , . C a n ,2 6 8 Cancho,Y., 50
426 Author Index Candiani, I., 409 C a n e p a ,C . , 7 8 C a n o ,A . C . , 2 5 2 C a n t e l i ,R . - M . , 8 0 Cantrill,A. A., 154 C a o ,P . , 1 3 8 C a o ,S . , 2 8 8 C a o ,X . - P . , 3 4 5 C a p d e v i e l l e ,P . , I l 3 C a p d e v i l a ,A , 1 7 C a p e l l a ,L . , 2 5 2 C a p l e ,R . , 4 0 0 Capozzi, G.' 215 Cappella, L.' 262 C a p p e r u c c i ,A . , 5 6 , 5 7 , 2 1 5 , 2 6 2 ' 3 4 5 C a p p e r u c i ,A . ' 2 6 1 C a p u t o ,R . , 7 6 , 1 9 3 '3 9 3 Carboni, 8., 60' 175 C a r d a m o n e ,R . , 3 9 3 C a r d e l l i n i ,L . , 2 5 3 Cardilli,A., 217 C a r d i l l o ,G . , 2 1 6 C a r d i n a u x ,F . , 3 3 1 C a r e Y ,J . S . , 3 5 3 C a r l s e n ,P H . I . ' 2 2 " 7 C a r l s o nR , .,361 C a r l s o n ,R . M . ' 2 1 0 Carnicelli, V., 289 Caroon, J' M.' 359' 361 Carpinov,L. A.' 36 CarPita, A-, l'72' 261' 349' 39'7 C a r r a s c o ,R . , 1 0 9 C a r r e n o ,M . C . , l 4 l , 3 6 7 ' 3 7 5 36'l C a r r e t e r o ,J . C . , 3 2 , 2 6 1 , 2 9 2 ' 3 6 1 ' 2 8 8 R . , Carrillo, C a r r o l l ,J . D . ' 9 6 C a r r o l l ,K . M . ' 4 1 5 Carroll, P. I.' 214 C a r r Y ,J - C . , 3 1 9 C a r t e r ,D . S . , 2 2 1 C a r t e r ,P . A . ' 2 4 4 C a s a r i n i ,A . , 5 6 C a s a r r u b i o s ,L . , 2 4 9 C a s i r a g h i ,G . ' 6 9 C a s n a t i ,G . , 2 0 ' 2 6 8 C a s s a n o ,E . , 1 9 3 C a s s o n ,S . , 7 7 ' 3 9 3 C a s t a g n i n oE ' .,342 C a s t a n o ,A . M ' ' 8 3 ' 3 4 9 C a s t e d o ,L . , 3 8 7
C a s t e d o ,L . C . ' 3 2 5 C a s t e l i j n s ,A ' M . ' 2 C a s t l e ,G . H . ' 9 5 , 1 2 5 C a s t r o ,A . , 3 8 4 C a s t r o ,J . L . , 1 5 0 Catellani,M.' 393 C a t i v i e l a ,C . , 8 ' l 2 l C a t t e a u ,J . - P . ' 8 7 C a u b e r eP , .,333 C a v e ,A . , 6 3 , 3 7 1 C a z e s ,B . , 3 9 3 C e l e r i e r ,J ' P . ' 2 4 8 C e n a c ,N . , 4 1 7 Cenini,S., 276 C e r r a d a ,M . L . ' 2 8 8 C e r r e t a ,F . , 5 7 C e s a r o t t iE, , 4 0 Cha, J. S., 20' l'15,341 C h a a b o u n iM , . M., l8l' 288 C h a b a n e n k o 'K . Y ' ' 1 7 7 C h a b o c h e ,C . , 3 7 1 C h a d h a ,M ' S . ' 1 5 2 Chai, W.-Y., 364 Chair,A., 408 C h a k r a b a r t Y ,M . , 8 7 C h a k r a b o r t Y ,R . , l 7 ' 4 0 9 Chamberlin,A.R'214 Chan, C.,2'71 Chan,K., 230 Chan,K. S., 375 Chan,T.H,183 C h a n ,T . - L . , 1 2 2 C h a n ,W . C ' ' 1 7 9 C h a n ,W . H . , 2 3 2 l'10' 316 Chandrasekar, S.' 39' 73' 142' 1 4 2 3 9 , 7 3 ' S ' , Chandrasekaran, C h a n d r a s e k h a r a mM , , 149 C h a n g ,C ' - J . ' 2 1 4 C h a n g ,F ' - J . , 1 2 3 C h a n g ,H . - X , 3 4 C h a n g ,M . H . ' 3 1 6 C h a n g ,S . , 9 5 Chang, Y.-H., 354 C h a n Y ,C . J . ' 2 9 1 Chao, F., 327 C h a o ,H . - G . , 2 3 6 C h a o ,L . ' 1 5 5 C h a P d e l a i n eD , ', 261 C h a r e t t e ,A . B . ' 1 0 0 ' 1 4 0 ' 3 8 7 Chatani, N., 373
Chatterjee, A., 409 C h a t t e r j e e ,A . K . . l 7 Chau, K., 32, 69 C h a u h a n ,K . , 3 2 C h a u r e t ,D . C . , 2 6 1 Chauvin, R., 302 C h a v a l l e t ,P . , 2 8 8 Chavan,S. P., 251. C h a v a n t , P . - Y . ,9 7 . l . C h a v a s i r i ,W , 7 - 1 C h a v e z ,F . , 3 4 2 CheeserightT , .. I 16 Chemla, F., 82 C h e n ,B . - L . , 5 7 . 6 - r . Chen, C.-C., 296 C h e n ,D . W . , 2 9 1 Chen, D.-W., 153 C h e n ,F . , 2 l l Chen, G. J., 88 Chen, H., 98 C h e n , H . - J . ,2 4 1 C h e n ,J . , 1 8 , 3 5 6 . 4 Chen, J.-W.,195 C h e n ,J . - X . , 3 6 4 Chen, K., 186 C h e n ,K . - L . , 8 7 C h e n ,L . M . , 7 4 Chen, L. S., 88 C h e n ,M . - Y . , 3 6 1 C h e n ,Q . - Y . , l l 5 . l 3 Chen, R.-Y., 170 C h e n ,S . - Q . , l 8 l C h e n , S . - T . ,2 9 6 C h e n ,T . C h e n . l l . Chen, T.-A., 205 Chen, W., 326 Chen, W.-X., 364 C h e n , X . , 4 4 , 1 8 6 .. Chen, Y.-J., 272. l! C h e n ,2 . , 3 1 9 Chen,Z. C.,291 C h e n , Z . - C . , 1 3 8 .I C h e n ,Z . - G . , 3 5 2 Chenal,T., I29 C h e n a u l t ,H . K . . - l t C h e n e d e ,A . , 3 1 6 C h e n g ,W . - L . , l 7 l . C h e s n e y ,A . , 3 l C h e u n g ,A . W . - H . . C h h a b r a .S . R . . l 7 !
Author Index 427
:.'
::.170,316 - i. l-12 _:U
'6/
C h a t t e r j e e ,A . , 4 0 9 C h a t t e r j e e ,A . K . , 1 7 Chau, K., 32, 69 Chauhan,K., 32 C h a u r e t ,D . C . , 2 6 1 C h a u v i n ,R . , 3 0 2 ChavalletP , .,288 C h a v a nS , .P.,252,384 Chavant, P.-Y., 97, 120, 175 C h a v a s i r i ,W . , 7 3 Chavez, F.,342 C h e e s e r i g h t ,T . , l 1 6 Chemla, F., 82 Chen, B.-L., 57,63, l'73,193 C h e n ,C . - C . , 2 9 6 C h e n ,D . W . , 2 9 1 Chen, D.-W., 153 C h e n ,F . , 2 l l C h e n ,G . J . , 8 8 C h e n ,H . , 9 8 C h e n ,H . - J . ,2 4 3 C h e n ,J . , 1 8 , 3 5 6 , 4 0 8 Chen, J.-W.,195 C h e n ,J . - X . , 3 6 4 C h e n ,K . , 1 8 6 Chen,K.-L., 87 C h e n ,L . M . , 7 4 C h e n ,L . S . , 8 8 C h e n ,M . - Y . , 3 6 1 C h e n , Q . - Y . , I 1 5 , 1 3 8 ,2 3 8 , 3 4 2 Chen, R.-Y., 170 C h e n ,S . - Q . ,l 8 l C h e n , S . - T . ,2 9 6 Chen, T. Chen, 12, 129,301 Chen, T.-A., 205 Chen, W., 326 Chen, W.-X., 364 C h e n ,X . , 4 4 , 1 8 6 , 3 ' 7 1 C h e n ,Y . - J . , 2 ' 1 2 , 3 5 2 Chen,2., 319 Chen,Z. C.,291 C h e n , Z . - C . , 1 3 8 ,1 5 2 , 1 5 3 ,2 8 8 , 2 9 1 Chen,Z.-G.,352 Chenal,T., 129 C h e n a u l t ,H . K . , 3 8 4 C h e n e d e ,A . , 3 1 6 Cheng,W.-L., l7l, 173 C h e s n e y ,A . , 3 l C h e u n g ,A . W . - H . , 2 6 3 C h h a b r a ,S . R . , 1 7 9
chi, K.-w, 282 Chiba,M., 96 Chibale,K., 42 N., 73 Chidambaram, Chieffi,A., 172 A,. , 4 1 3 Chiesi-Villa C h i k a ,J . , 2 0 3 C h i n i ,M . , 2 2 O , 4 O 3 C h i n o ,M . , 4 1 7 C h i u ,C . S . ,2 9 8 Chiu,R.-T.,371 Chiusoli,G. P., 283,393 J., 147 Chmielewski, Cho,B. T., 300 C h o ,C . 5 . , 2 5 , 2 7 6 , 2 8 1 Cho, D.-G., 172,282, 408 C h o ,H . - S . ,1 7 7 C h o ,I . - S . ,1 8 5 Cho,Y. J., 68 Cho,Y. S., 316,345 Choe,Y. S., 345 C h o i ,E . 8 . , 2 2 5 , 2 2 6 Choi,H. C., 346 Choi,J., 249 C h o i ,K . I . , 3 4 0 C h o n gJ, . M . , 9 , l 4 l , 2 6 1 , 3 0 7 Chong,Y. H., 371 Chordia,M. D., 380 Chou,T.-S.,263 B. M., 73, 185 Choudary, B. M., 376 Choudhary, Choueiry,D., 174 Chounan,Y., 263 Chow,E. K. F., 380 Chow,H.-F.,345 C., 129 Chowdhury, P. K., 2, 22'7,254,408 Chowdhury, S., 108 Chowdhury, C h r i s t ,K . M . , 3 9 2 ChristM , . 8., 392 C h u ,K . S . ,8 0 Chuang,C.-P.,325 Chuang,L.-W.,215 Chuang,T.-H.,296 J.,77,333 Chuche Chun,Y. S., 300 Chung,J.-U.,l'12,282 Chung,K. H., 20, l0l, 134 Chung,Y. K., 132,244 Church,K. M., 124
428 AuthorIndex Cicchi,S., 239 Cimarelli,C., l7l, 221'24O,295,324' 340 Cimarusti,M' P.' 375 Cinquini,M', 356'362 Cintas,P., 319,331 P.' 331 Cintas-Moreno, Cipres,L, 129 Cirillo, F. F', 63 Citterio,A.,230 Ciuffreda,P.,203 Ciufolini,M. A', 84' 402 D. E.' 371 Cladingboel, G', 85' 209 Claeson, C l a r k ,D . N ' , 3 7 1 Clark,J. H., 298' 350 C l a r k ,J . S . , l l 0 Clark,R. D., 80 C l a s eJ, . A . , 1 2 5 Claudia,C., 145 C l a y , R .1 . , 2 2 7 Clayden,1.,45, l'13,316'349 Clerici,A., 359 Clerici,F., 356 Clery,P.,69, 291 C l i v e ,D . L . J . , 8 7 '2 ' 1 2 , 3 7 1 ' 3 8 8 Coan,P. S., 227 C., 214 Cochennec, CochiniF., 250 Cochran,B' B.' 307 C o e ,D . M . , l 5 ' 9 8 Coe,J. W., 339 C o h e nT, . , l l l , 2 l l , 2 2 3 '2 5 6 V. J.' I 14 Colandrea, 8., 204 Colclough, C o l d h a m1, . , 7 ' 7 ' 3 8 4 C o l e ,D . L . , 1 5 3 Collazo,L.,269 Collazo,L. R.' !02 Colletti,S. L., 95 C o l l i n ,J . ,3 1 6 Collington,E. W., 96, 99' 249 Collington,N., 134 Collins,S., 95 C o l l o mT , . A.'227 C o l l u mD , '8.'32'l Colomb,M., 315 D., 288 Colombani, Colombier,C., 49 Colson,P.-J.'103 C o m a s s e Jt o. V ' , 1 5 1 ,1 " 7 2 , 2 6 2 ' 3 2 ' l
Combrink, K. D.' 363 C o m e s - F r a n c h i n i ,M . , 2 6 1 Cometti, G., 155 Comina, P. J., 104' 368 C o m i n s ,D . L . ' 1 7 0 C o m m e n i l ,M . - G ' ' l 7 l C o m m e r c o n ,M . ' 2 6 1 C o m m e Y r a s ,A . , 4 0 9 Compain, P., 45 C o n c e l l o n ,J . M . ' 1 0 0 C o n c e p c i o n ,A . B ' , 2 1 , 9 5 , 2 3 1 ' 2 3 8 C o n g r e v e ,M . S " 6 0 C o n n o l l Y ,C . B " 2 4 4 C o n s i g l i o ,G . , 9 7 C o n s o l e ,S . , 2 7 6 C o n s t a n t i e u xT, . , 5 6 C o n t e n t o ,M . , l 4 l C o o g a n ,M . P ' , 1 7 9 Cooke,Jr, M. P.' 170 Cooke, M. P', 65, 80, 170 C o o n e Y ,J ' J . A . ' 1 7 3 C o o p e r ,A . B . ' 1 0 2 C o o t e ,S . 1 . , 4 6 ' 2 9 7 Coppa,F., 24 C o r d e r o ,F . M . ' 2 3 9 C o r d o v a ,J . A . ' 2 9 8 C o r e y ,E . J . ' 1 0 , 9 6 , 2 4 5 ' 3 7 1 Corley,E. G., 96 Cornell, C. L., 179 C o r r e i a ,J . , 2 8 9 C o r r i u ,R . l . P . , 2 6 1 ' 3 4 9 C o s s i ,P . , 3 9 7 C o s s y ,J . , 3 0 , 1 0 7 ,l l 0 , 1 9 1 , 2 3 0 ' 2 6 9 Costa,A. L., 44 Costa,M., 283 C o s t a n t i n i ,C . , 3 3 9 C o s t a n t i n o ,U . ' 4 1 4 Cote, B., 140' 387 C o t e l l e ,P . , 8 7 C o u l t e r ,T . S . ' 3 5 3 C o u m b e ,T . , 3 7 5 C o u r t e m a n c h e ,G . , 2 6 5 Courtois,G., l6 C o u s t a r d ,J . - M . ' 2 5 C o u t t s ,S ' J . , 3 3 9 Couturier,D., 268 Couty, F., 166 Cox, G. G., 307 Cozzi, F.,356' 362 Cozzi, P. G., 413
Crabtree,R. H., 27,1 Craig,D., 7'1,323.t1 Crandall,J. K., 145 Crane,C. G., 88 Crasto,C., 321 Crawford,K. B.. l5t Crestini,C., 179,lt9 Creton,8., 262 Crich,D., 371 C r i c h ,l . 2 . , 2 0 3 C r i m m i n ,N . J . , 2 0 t C r i m m i n sM , . T.,26 Crisp,G. T., 377 Crispino,G. A., 267 Cristau,H.-J.,173 Critcher,D. J., l70 N. J.. l7[ Crittenden, Crivici,A., I I Crociati,E., 203 C r o m b i eL, . , 3 1 6 Cros,S., 349 R., 62 Croteau, Crotti,C., 276 C r o t t i ,P . ,2 2 O , 4 0 3 B., 350 Crousse, Crowe,G. D., l2 Crowley,P. C., 16 Cruciani,P., 126 Crudden,C. M.. ]G CrumpR , . A. N.C. I., l2l Csoregh, C s u k ,R . , 1 4 6 Cuadrado,P., 262 Cubero,l. 1.,66 Cuerva,J. M., E3.] C u i ,D . - M . ,2 4 8 Cui, W., 127,289.\ Cundy,D. J., 35 Cuny,G. D., 30t C u r c i ,R . , 1 4 5 C u r i n i ,M . , 4 1 4 Curotto,G., 262 Curphey,T. J., lt6 Curran,D. P., 14.l Currie,B. L., 76 M., 185 Cuscela, Czemecki,S., 27?
, . D.,4O D aS i l v aA Da Silva,F. S. Q.. :
AuthorIndex 429
9< 1.17.238
230.269
Crabtree, R. H.,2'73 C r a i gD , .,77,323,377 Crandall,J. K., 145 Crane,C. G., 88 Crasto,C., 321 Crawford,K. B., 158 Crestini,C., 179,189 Crcton,8.,262 Crich,D., 371 C r i c h ,J . 2 . , 2 0 3 C r i m m i n ,N . J . ,2 0 8 Crimmins,M. T., 263 Crisp,G. T., 377 C r i s p i n oG, . A . , 2 6 7 Crisrau,H.-J.,173 Critcher,D. J., 170 Crittenden, N. J., 178 C r i v i c i ,A . , I I Crociati,E., 203 Crombie,L., 316 Cros,S., 349 Croteau, R., 62 Crotti,C., 276 Crotti, P., 220, 403, 404 Crousse, 8., 350 Crowe,G. D., l2 Crowley,P. C., 16 C r u c i a n iP, . , 1 2 6 Crudden,C. M., 308 C r u m p ,R . A . N . C . , 2 2 2 Csoregh, I., l2l Csuk,R., 146 , Cuadrado, P.,262 Cubero,L I., 66 Cuerva,J. M., 83,349 C u i ,D . - M . , 2 4 8 C u i ,W . , t 2 7 , 2 8 9 , 3 1 8 Cundy,D. J., 35 C u n y ,G . D . , 3 0 8 Curci,R., 145 C u r i n i ,M . , 4 1 4 C u r o t t oG , .,262 Curphey,T. J., 186 C u r r a nD , .P., 14,267 Currie,B. L., 76 Cuscela, M., 185 Czemecki,S., 277 Da Silva,A. D., 408 Da Silva,F. S. Q., 58
Da Silva,R. B., 58 D'A. R. Gonsalves, A. M., 335 D'Accolti,L., 145 Daeuble, J. F., 219 Dahl,S., 67 D a i ,H . , 3 1 9 D a i ,L . - X . , 3 8 5 D a i ,X . - Q . , 2 8 4 D a l e ,C . M . , 2 4 O Dalpozzo,R., 221,240, 295 D ' A m i c oD , . C.,70 D a n c yI,. , 3 7 1 Dang,H.-S.,58 Danheiser, R. L., 408 Daniel,T., 405,406 D'Aniello,F., 16,172 Daniels,K., 377 Danishefsky, S. J.. 273,382 D'Annibale,A., 87, 152,230 D'Annibale,D., 87 Dan-oh,N., 49 Dantale,S. W., 384 D a r a nJ, . - C . ,1 2 9 Darcel,C., 350 Dario,M. T., 330 Das,B. C., 170 Das,I., 108 D a s ,M . K . , l 1 6 Das,N. 8., 354 Das,P. J., 195 Dasgupta F,. , 6 3 Dastidar, P. P. G., 301 Date,T., 373 Da-te,T., 109 Datta,A.,214 Dauelsberg, C., 96 Davies,F. A., 16l Davies,G. D., 276 Davis,A. P.,255 Davis,F. 4., 134,214 Davis,N. J., 125,335 Davison,E. C., 60 Dawson,B. T., 261 Dawson,G. J., 46,29'7 De Dios,A., 393 De FresnoCerezo,A.,349 De Groot,A., 178 De Kanter,F. J. J., ll De Kimpe,N., 29, 320,327,336,409 D e K i m p e ,V . , 3 4 9
430 AuthorIndex De Kort, M.' 170 De la Fuente,J., 288 De la Hoz,A., 288'289 De la Salud,R., 352 De Lang,R.-J.'204 De las Heras,M' A'' 238 i. *"tj"t", A"g'l' 132'l'14'280'349'392 De Meio,G., 63 De Munno'G',240 De Nicola,A', 214 De PouillY,P., 316 ' ., l'72'261 D e S a n t i sM De Sarlo,F., 351 D'' 409 De Smaele, De Vries,E. F J', 96'2O'l De Wolf, W. H" 297 J'' 85' 209 Deadman, D e a l ,M . J . , 1 4 6 Deaton,M' V., 402 Deb,C.,232 DeberlY'A',222 Debski,N., 283 DeCamP,A'E,393 Dechoux'L'30'78 I.-P'' 42 Declercq, D', 263 DedoPoulou, Deffieux,D'' l8' 379 D e e a n iI,. ' 2 2 3 215'261 o"iirnno."nti, A'' 45' 5'1' 288 M ' Delueil-Castaing' Dehaen'W.' 354 D e i z e lR , .,323 Del Buttero'P', 329 l Del PozoLosada'C ' 4l Delair'P.,96, 183 J , 325 Delamano, I'' 137 Delamarche' P' Delanghe, H' M ' 3ll'392 A', 50' 249 Delgado, F',252'320 Delgado, F ' 231 Delsardo, o e t i ' E r u ac. . . 8 2 , 2 9 6 Delmas,H'' 395 Delogu,G', 288 DemaillY,G', 2' 180 D e M a r c oA, ' M " l 5 l P', 56'262 Dembech, D' Demeter, A'' 295 Demir,A S', 230' 354 Deng,L', 183
D e n gM , .-2., ll9, 368 DengR , . - H . '2 8 8 D e n i f l ,P . , 1 4 6 D e n i sR , . C., 176 V. E.' 201 Denisenko, Denisov,V., 174 s. E., 1s' 80,e8' 2s6' 263'2ee ;;;;;,n, J.-C DepezaY, ' 388 DePrez,P.,328 Derien,S.,408 D e s a iR , . C.,284 M.' 349 Desantis, ' 45 D e s h o n gP' , 1 6 3 3 M S" 276'393 DeshPande' 261 DeslongchamPs,P'' DesMarteau'D'D'285 R'' 349 Desmond, A'' 145 Detomaso, J . Deutsch, ,l16 Dev,S" 324 B , 26 Devadas, A" l0?' 120' 155 DruuruguYu'ui, D e v a u dM ' ',225 DeVries,R.A,280 Dewan,S. K',245 D h a l ,R . , 3 0 5 ,3 1 0 Dhar,R. K', 58 D' D" l7 Dhavale, Dhokte,U.P,199 V', 404 Di Bussolo, Di Fabio,R', 388 D i a z 'l 2 l P i - O . V i l l e g a sM' D ' Diaz,M. A" 342 D i a z ,R . R ' , 6 6 Diaz-Ortiz,A" 289 Dicker,I'B'233 Didiuk,M' T" 97 Dieter,R' K', 170'261 D i e z ,B . R ' , 2 6 1 E'' 288'289 Diez-Barra, DiMarco,J' D" 375 DiMareM , ',346 DiMichele,L" 280 Dinesh,C' U" 406 Ding,S , 276'282 Ding,Y', 402 Ding, Z -B',312 DiPietro,D', 365 D'lschia,M'' 339 Discordia,R' P'' 340
,di*od$'ilirtri
I n' "{t|#f,
Dittmer,D. C.' 340 D i x n e u fP , . H . , 5 1 .l { : D o , J . Y . , 3 7 1 '3 8 4 Dodd,D. S., 388 D o d d ,R . H . , 1 8 2 Dodge,J. A., 387 Doecke,C. N.' 4E Doecke,C' W.' 48 Dohya,H., 130 DollingU , . - H . .3 9 1 D.. 381 Domingues, D o m i n g u e zE,. . 3 1 .l t G.' l'19 Dominguez, D o m m i s s eR, . , l 7 t Donadelli,A.' 285 Dondoni,A., 205 Dong,H., 289 D o n g ,Y . , 2 2 3 D. M. X . : DonnellY, Donner,B. G.' 380 DonohoeJ" 172 T. A.. 109 Donovan, K. A.. -1 Doonquah, 361 C.' P. Dopico, D'Orazio,R., l0l Doris,E.' 78 Dorner,W'' 129 Diirr, P., 146 Dorsch,D.' 234 D o r t a ,R . L . , l 9 l Doty,M. J., 276 D o u c e tH, . , 5 l Douglas,A. W.. 96 S. P.' 3:l Douglas, Doussot,P., 379 D o w d ,P . ,2 , 2 1 5 .1 l Doyle,K J.' 307 Doyle,M. P., 30?.l J.. 341 Drabowicz, Drager,G., 187 Drake,B., 123 Drauz,K., 328 Dreisbach'C., 2Ol Driss,C.' 288 G.. l Drut-Grevoz' Du Vosel,A.. 155 D u ,H . , 7 8 Duan,J. J.-W..l9l D u a n J, . - X . 'l l 5 . I Dubac,J., 52
AuthorIndex 431
:.^
| ::
:6,1.:99
Dittmer,D. C., 340 Dixneuf,P. H., 51, 142,35O Do, J. Y., 371,384 Dodd,D. S., 388 D o d d ,R . H . , 1 8 2 Dodge,J. A., 387 Doecke,C. N., 48 Doecke,C. W, 48 Dohya,H., 130 DollingU , . - H . ,3 9 3 D o m i n g u e sD,. , 3 8 7 Dominguez, 8., 32, 261,292 D o m i n g u e zG, . , 2 4 9 D o m m i s s eR, . , 1 7 8 D o n a d e l lA i ,. , 2 8 5 D o n d o n iA, . , 2 0 5 Dong,H., 289 D o n g ,Y . , 2 2 3 D o n n e l l yD, . M . X . , 2 7 , 2 8 1 Donner,B. G., 380 DonohoeJ., 172 Donovan,T. A., 109 Doonquah, K. A., 333 Dopico,P. G., 363 D'Orazio,R., 301 Doris,8., 78 Dorner,W., 129 Diirr,P., 146 Dorsch,D., 234 D o r t a ,R . L . , 1 9 2 Doty,M. J., 276 D o u c e tH, . , 5 l Douglas, A. W., 96 D o u g l a sS, . P . , 3 2 3 D o u s s oP t ,. , 3 7 9 D o w dP , .,2,215,372 Doyle,K. J., 307 D o y l eM , . P.,30'1,3'15 Drabowicz, J., 342 Drager,G., 187 D r a k eB , ., 123 Drauz,K., 328 Dreisbach, C., 204 Driss,C., 288 D r u t - G r e v oG z ,. , 2 4 0 Du Vosel,A., 155 D u ,H . , 7 8 Duan,J. J.-W.,193 D u a n J, . - X . ,l l 5 , 1 3 8 , 2 3 8 , 3 4 2 D u b a cJ, . , 5 2
DuBay,W. J., 206, 296, 297 D u b b e r tR, . A . , 1 9 6 Duchene, A., 45 Duclos,J.-F.,64 D u c o u xJ, . - P . 1 , 73 Dudash,Jr, J., 36 Duddu,R., 263 Dudinov,A. A., 197 DudzinskB i , . ,3 4 2 D u e eI,. , 3 9 5 D u f f y ,J . L . , 3 0 0 , 3 8 1 Dufour,C., 371 D u g a tD , .,215 D u g h e r aS, . , 2 2 3 Duhamel,L., 3, 80, 137,384 Dulcere,J. P.,6'1 Dumas,J., 393 D u n a c hE, . , 5 3 , 2 2 5 , 3 1 24,0 8 D u n n ,M . J . ,2 6 5 Dunogues, J., 18,56, 206,349 D u p u c h eJ,. R . , I Durst,T., 284 D u s s a u lP t ,. , 2 7 2 Dussault, P. H., 235,2'10 D u t t a ,D . K . , 3 3 3 Duttachowdhury, S. K., 409 Dyker,G., 276 E a p e nK , . C . ,8 8 Earon,P. E., 145,291 Ebert,G. W., 109 E c h a v a r r eA n ., M . , 5 1 ,8 3 ,3 4 9 Eckenberg,P., 38 Eckhardt,M., 129,263 Edge,S. J., 356 Edwards, J. O., 145 E d w a r d sJ,. P . , 2 5 6 Effenberger, F., 135,239 E g a s h i r a8,. , 3 5 6 E g g ,H . , 2 E g i ,M . , 2 9 1 E g u c h iH , .,330 E g u c h iK , ., 386 E g u c h iS, . , 3 6 1 , 4 0 7 Ehrlich,A., 36 Eida,H., 336 E i g e nP , .,289 E i n h o r nC , .,96,214 E i n h o r nJ, . , 9 6 , 2 1 4 Eisch,J. J., 298
432 AuthorIndex C.' 97 Eisenberg, M. A'.,22 Eissenstat, Ejiri, S., 388 El Ali, 8., 273 E l A n z i ,A ' , 1 8 0 El Baba,S'' 96 E l F a k i h ,H . ' 1 3 7 ElGhammarti'S,268 El Kaim, L., 377 A. M. M" 393 El SaYed, E t e e n d yS,. , 8 5 . 2 0 9 Elgendi.s. M. A.. 204.291 E l g u e r oJ,. , 4 8 '2 8 8 Elinson,M. N.' 228 Ellervik,U., 63 E l l e s t a dK, . E . ' 7 7 E l l i s ,D . ' 2 6 5 El-Saidi,M.'202 228' 256 enJ"rr, P', 22, l4O,214' 221' Endo,T., 74' 89 Eneler,T. A., 363 E n l m a n ,L . , 2 9 , 8 0 , 1 5 2 V., 397 Enkelmann, E n n a ,M ' , l l 5 Erickson,W'R'240 A., 277 Ericsson, A. M', 183,214 Ericsson, Eriksson,M.' 261 E r m a nM , . B',24 A., 375 Escribano, J. J.' 16 EshelbY, M.' 186 EsPada, I'L'' 123 Espartero, M..9'7'392 Es-SaYed, M. A'' 196 Esteruelas, G" 293 Etemad-Moghadem' E t k i n ,N . , 8 7 365 Evans,D. A', 36, 37' 296' 3l'7' Evans'G. R', 42, 160 Evans,P. A''318'3'l'l E v a n sS, . A . ' 1 8 3 Evans,T. T., 184 J., 375 Ezquerra, F. Langer'F., 120 Fabre,J., 269 Fabretti,A', 231 Fadel,A.' 316 M. C'' 393 Fagnola, Faita,G', 20
F a k u e ,Y . , l l 5
r " i " t , l . R . , 1 2 9 ,l 4 g , l ' t 1 ' 2 6 t ' 3 1 6 ' 3 ' 1 3 M' L', 88' 349 Falck-Pedersen, FallisA , . G.,316 Familoni,O. B.' 248 Fan,W'-Q.' 34, 333 F. J.' 415 Fananas, 361 Fang,J'-M., 203, 214,280' 296' Fang,W.-K., 377 Fang,Y., 20 Fantin,M., 28 Fanv,W.-Q.'34, 333 Farina,F., l0l Farina,V., 393 Farrell,R' P.,284 L. B',342 Faryat'eva, Faul,M. M.' 365 Faure,R., 67 F a v e nC, . , 3 2 2 Favero,L., 220, 403, 404 M'' 289 FedorYnski, Fehr,C', 199 l. A",222 Fehrentz' Fei,C.-P.,145 Feixas,J', 17 Feld,W. A.' 354 Felder,M., 96 Felix,C. P.' 379 J', 42 Feneau-DuPont, Feng,H., 18 Feng,W. M., 135 Feng,X.-D., 327 Fenude,M.' 206 Ferderigos,N'C,16l G., 102 Ferguson Ferinqa,B. L" 45 A' H'' 261'378 Ferna-ndez' 1.,95' 352 Fernandez, A'' 316 Fernandez-Acebes' Ferrara,F. N" 367 Ferrara,M. C" 345 Ferreira,F.' l19 F e r r e r iC, ' , 7 6 , 3 9 3 F e r r e tN , .,277 Ferron,B.' 25 Feucht,T', 46, 97 V', 112' 173'281 Fiandanese, Fields,S. C',240'302 Figadere,B., 63, 69' 291'3'71 F i g u e r a sF,. , 8
F i g u e r o a ,J . J . , 1 5 7 Filimonov, V. D.. 6{- l F i l i p p i n i ,L . , 1 2 9 F i l i p p i n i ,M . - H . ' l 2 l Fillion,H., 137 Fina, C., 206 F i n e t ,J . - P . , 2 7 , 2 8 1 Finn, M. G., 363 F i o r a v a n t iS , .,88. l!9 Fiorin, G. L., 289 F i r o u z a b a d i ,H . ' 2 . l ' 7
F i s c h e r ,D . R . , 3 2 5 F i s c h e r ,H . , 2 7 6 F i s c h e r J, . , 3 6 7 F i s c h e r ,M . - R . ' 2 0 9 F i s h e r ,G . 8 . , 5 8 . 8 - 1 .:
F i s h e r ,L . 8 . , 3 5 9 ' ] , 6 l Fitch, R. W., l8 F i t z g e r a l d ,J . F . ' 3 6 1 Fitzpatrick, B. M.. :l Fleming, F. F.' l7l
F l e m i n g ,1 . , 2 2 2 . 2 6 1 Fleming, S., 367 F l e t c h e r ,R ' J . ' 1 7 6 F l e u r y ,M . - B . , l 3 l F l i p p i n ,L . A . , 2 2 1 F l i t s c h ,S . L . , 1 2 5 .l l F l o r e z ,J . , 8 0 , 2 1 8 F l o r i a n i ,C . , 4 1 3 F l y g a r e ,J . A . , l l t F o a ,M . , 1 5 5 F o c h i ,R . , 2 2 3 F o g a g n o l o ,M . , 2 8 Foitzik, N., 361 F o l m e r ,J . J . , l 3 l Fong,S., 122 FontanaF , .,24,'13 Foote,C. S., 146 Ford, K. L., 354 Fordon,K. J.. 88 Forni, A., 203 Fort, Y., 333 F o r t e s ,C . C . , 3 4 2 Fortin, M. C., 349 Fortoul, C., 368 F o u b e l oF , ., l9l' lll F o u c h e ,G . , 2 8 F o u r r e Y ,J . - L . ' 4 0 E F o w l e r ,C . 8 . , 1 7 0 F o w l e y ,L . A . , 2 7 3
AuthorIndex 433
5. i.h. -173 av
Ph.
i6l
F i g u e r o a ,J . J . , 1 5 7 Filimonov, V. D., 64, 282 F i l i p p i n i ,L . , 1 2 9 F i l i p p i n i ,M . - H . , l 2 l Fillion,H., 137 Fina, C., 206 F i n e t ,J . - P . , 2 7 , 2 8 1 Finn, M. G., 363 F i o r a v a n t iS , .,88, 159 Fiorin, G. L., 289 F i r o u z a b a d i ,H . , 2 , 1 7 8 , 3 1 9 ,4 0 9 F i s c h e r ,D . R . , 3 2 5 F i s c h e r ,H . , 2 7 6 F i s c h e r ,J . , 3 6 7 F i s c h e r ,M . - R . , 2 0 9 F i s h e r ,G . B . , 5 8 , 8 3 , 2 0 9 F i s h e r ,L . E . , 3 5 9 , 3 6 1 Fitch, R. W., 18 F i t z g e r a l dJ, . F . , 3 6 1 F i t z p a t r i c k ,B . M . , 2 7 Fleming, F. F., 173 Fleming, 1.,222, 261,262, 303 F l e m i n g ,S . , 3 6 7 F l e t c h e r ,R . J . , 1 7 6 F l e u r y ,M . - B . , l 3 l F l i p p i n ,L . A . , 2 2 1 F l i t s c h ,S . L . , 1 2 5 , 3 3 5 F l o r e z J, . , 8 0 , 2 1 8 F l o r i a n i ,C . , 4 1 3 F l y g a r e ,J . A . , I l 8 F o a ,M . , 1 5 5 Fochi, R., 223 F o g a g n o l o ,M . , 2 8 Foitzik, N., 361 F o l m e r ,J . J . , l 3 l F o n g ,S . , 1 2 2 F o n t a n aF, . , 2 4 , 7 3 F o o t e ,C . S . , 1 4 6 Ford, K. L., 354 F o r d o n ,K . J . , 8 8 F o r n i ,A . , 2 0 3 Fort, Y., 333 F o r t e s ,C . C . , 3 4 2 Fortin, M. C., 349 Fortoul, C., 368 F o u b e l oF, . , l 9 l , 2 l l , 2 1 8 ,3 3 0 , 3 7 1 F o u c h e ,G . , 2 8 F o u r r e y ,J . - L . , 4 0 8 F o w l e r ,C . B . , 1 7 0 F o w l e y ,L . A . , 2 7 3
Fox,D. N. A., 2lg F., 155 Francalanci, Franciotti,M., 361 F r a n c kX, . , 6 3 , 3 7 1 Franck-Neumann, M., 20 F r a n k l i nR , . J.,155 B.,371 Fraser-Reid, H., 309,384 Frauenrath, Frechou, C., 180 Frenette, R., 349 Frenking,G., 56 Freskos, J., 79 Fresse, 1.,203 Fried,C. A., 280 Fried,J. A., 9 Friesen,T. W, 349 Friesen,W., 333 F r i n g u e l l iF, . , 7 3 Frisch,J., 145 Fritz-Langhals , 8., 298 Friihlich,L., 270 Friihlich,O., 96 Froquet,8.,371 F r o s tC , . G.,46,97,297 F r o y e nP, . , 3 2 6 Frutos,R. P.,321 F r y ,J . L . , 3 7 3 Fu, G. C., ll'7,243,308 F u ,H . - W , 2 1 5 F u ,L . H . , 3 8 7 F u c h i g a mTi ,. , 1 5 3 ,l 8 l Fuchs,P. L., 57,80, 322,350,378 F u e r t eA, . , 1 4 l Fuest,M., 174 Fugami,K., 280,283,348, 349 F u h r y ,M . A . M . , 6 0 Fuji, K., 25,97,235,306,321,4ll Fujie,N., 96 Fujii, A., 382 F u j i i ,H . , 9 , 3 2 7 , 3 2 8 Fujii, N., 263,401 F u j i i ,T . , l 3 l Fujimori,C., 156,200 Fujimoto,M., 4l I Fujimoto,Y., 407 F u j i m u r aO, . , 2 4 3 Fujioka,H., 367 F u j i s a k iS, . , 1 9 5 , 3 3 0 Fujisawa, T., 28, 361 Fujishiro,M., 185
434 AuthorIndex
: rl
Fujita,H., 371'408 Fujita,K., 25' 97 Fujita,S., 200,380,412 F u j i t aT , . , 1 7 l ,l 8 l ' 2 0 3 Fujita, Y., 214'233 Fujiwara,K., 306 Fujiwara,M., 18l' 351 Fujiwara,T.' 9 Fujiwara,Y., 317,36'1,401' 403 Fukase,K., 67 S., 87 Fukazawa, T., 203 Fukazawa, F u k u i ,S . , 1 5 6 , 2 0 03' 4 5 Fukumoto,1.,95'23'l Fukumoto,K., 316 T', 309 Fukushima, T., 178'371 Fukuyama, F u k u z a w aS,. , 3 1 63, 1 74' 0 3 S.-i.'96 Fukuzawa, F u k u z u m iS, . ,2 1 4 '2 3 3 Fulcher,B. C.' 250 Fuller,J. C., 209,329'340 F u n a h a s hM i ,. , 2 3 1 , 3 9 4 Funato,M., i92 F u n k ,R . , 2 5 6 F u n k ,R . L . , ' l ' l ' 1 3 6 , 3 6 1 ' 3 7 ' l Furet,N., 30 Furlong,M.'263 Flirstner,A.' 358'409 Furth,P. A., 63 Furuhashi'K., l8l' 252 Furukawa,N., 19l Furukawa,S.' 129'210'216 F u r u t aK , ., 97 Furuta,T., 63, 147 Furutani,H., 28 Furuuchi,T.' 349 F u r u u n eM, . ' l l 5 Fusco,C., 145 Fuse,M., 47 Y.' 348 Fuzukawa' Gabbutt,C' D.,'77 Gabel,C. J., 350 Cabriele,B., 283 Gac,T. S., 323 Gadek,T. R.' 375 A', 98 Gadelle, Gadgil,V. R.' 32 Gagne,M. R.' 37
G a g n o nJ,. , 3 7 Gai, Y., 282 Gajda,T., 96 L. R.' 106 GalagovskY, Galindo,A., 186 Galindo,J., 199 Gall,T. L., 149 P. T.' 7l Gallagher, Galland,J.-C.'280 Galopin,C.' 40 Galpin,I. J., 83 G a n e mB, . , 4 1 7 K., 58' 133 Ganesan, P. A'' 301 GaneshPure' A', 218 Gansaur, Gao,C., 129 Gao,J., 364 Gao,Q', 95,97 G a o ,S . , 1 7 1 , 3 7 6 GaoX , .,3ll Gao,Y., 49,96' 365 Gapp,D., 2 Garcia,A., 387 Garcia,B., 352 Garcia,D. M.' 410 Garcia,J. I., 8 Garcia,J. M., 38 Garcia,M., 38,367 Garcia,M. J., 204 Garcia,O., 231'252 S', 4l I Garcia-Granda, Garcia-Martin,M.A'53 P'' 371 Garcia-Mendoza, D., 215 Gardette, Garg,C. P., 351 Gariboldi'P. V.' 240 R' Yu'' 55 GartYauskajte, G a r o f a l oA, . W . ' 2 ' 1 2 8., 298 Garrigues, Garrote,C- F. D ' 342 P.,288 Garrouste, G a s cM , . - B . ,1 7 3 Gasco,A., 199 Gasco,A. M.' 199 Gaset,A., 288 H" 52 GasPard-lloughmane Gatti,N., 230 Gatti,R., 281 l' A"' 296 Gauchet-Prunet, P., 177 Gauthier,
Gauthier, V.. 19 G a u t r e t ,P . , 2 6 t GautschiM , .. lr G a w l e y ,R . E . . i
GebehenneC . .. Geden,J. V.. 95 Gee, K. R., l5'l Geib, S. J., 371 Gelmi, M. L.. i G e n e t ,J . P . . 1 0 G e n i n ,M . J . . l G e n i s s o nY , .. I G e n u s ,J . F . . l C Geoffrey, P.. ll G e r a c i ,L . S . . { Gerardin, P.. J G e r m a i n ,A . . { Ghelfi, F.. 150 C h o s h ,A . C . . G h o s h ,S . K . . I Ghosh,U.. 30G i a c o m i n i .D
Giammaruco G i e b ,S . J . . l { G i e s e n ,V . . I 7 ' G i e s s e l i n kJ. . Gihani,M. El c i l , J . F . ,2 l l . Gilardi,R.. 3l Gilbert,B. A. Gillard,J. rA. Gillmann.T.. Gilman, J. \*. Giorgianni. P G i o v a g n o l i .D C i o v a n n i n i .I G i r a r d ,A . . l ( G i r a r d ,C . . l ( G i r a r d ,M . . 9 Girard, Y.. -1 Giri, V. S.. l! G i r r e s e r ,U . . Giudicelli, M Ciumanini. . G l a d s t o n e ,B . G l a e s k e ,K . \ C l a s s ,R . S . . G l e a s o n ,M . G l e n ,A . , l l i Cobbi, A.. ll
Author Index 435
l.
I \
< l
:' :
rt{
52
A 196
G a u t h i e r ,V . , 3 9 3 G a u t r e t ,P . , 2 6 8 G a u t s c h iM , .,261 G a w l e y ,R . 8 . , 7 9 G e b e h e n n eC, . , l 2 l , 4 0 8 G e d e n ,J . V . , 9 5 G e e ,K . R . , 3 5 4 G e i b ,S . J . , 3 7 2 G e l m i ,M . L . , 3 5 6 C e n e t ,J . P . , 4 0 , I 1 9 , 2 8 1 , 3 7 5 , 3 9 3 G e n i n , M . J . , 3 1 9 ,3 8 2 G e n i s s o nY , ., 170 G e n u s ,J . F . , 2 0 8 Geoffrey, P.,20 G e r a c i ,L . S . , 4 4 G e r a r d i n ,P . , 3 1 9 G e r m a i n ,A . , 4 0 9 G h e l f i ,F . , 1 5 0 ,1 9 9 , 2 3 1 , 3 8 1 G h o s h ,A . C . , 5 2 , 3 8 7 G h o s h ,S . K . , 1 5 2 Ghosh,U., 303 G i a c o m i n i ,D . , l 4 l G i a m m a r u c o ,M . , 1 0 4 C i e b ,S . J . , 1 4 G i e s e n ,V . , 1 7 4 G i e s s e l i n k ,J . P . M . , 1 2 4 Gihani,M. El, 57,377 cil, J.F.,2n,2t8 Gilardi,R., 337 G i l b e r t ,B . A . , 3 8 4 G i l l a r d ,J . W . , 1 3 0 G i l l m a n n ,T . , 3 9 3 Gilman,J. W., 154 G i o r g i a n n i ,P . , 1 8 0 G i o v a g n o l i ,D . , l 4 l G i o v a n n i n i ,R . , 1 7 0 G i r a r d ,A . , 2 6 1 G i r a r d ,C . , 2 6 1 , 3 1 6 G i r a r d ,M . , 9 6 Girard, Y., 376 Giri, V. S., 195 G i r r e s e r ,U . , 2 0 6 G i u d i c e l l i ,M . - 8 . , l 8 l G i u m a n i n i ,4 , . G . , 3 2 9 G l a d s t o n e ,B . G . , 1 0 3 G l a e s k e ,K . W . , 1 0 9 G l a s s ,R . S . , 1 4 5 G l e a s o nM , . M.,244 G l e n ,A . , 1 2 5 Gobbi, A., 288
Goda, K.-i., 45 G o d a r d ,A . , 2 1 4 G o d d a r d ,R . , l l 7 Godfrey, A..G.,4l'7 Godfrey, C. R. A., 307 Godfrey, J. D., l14 Godjoian,G.,209 Godoi, E. A. M., 407 G o e h r i n g ,R . R . , 1 7 0 G o e s m a n n ,H . , 3 6 1 G o g g i n ,K . D . , 4 l I Goh, B. J.,308 G o l d b e r g ,Y . , 6 7 Golding, P., 150 G o l i n s k i ,M . , 4 1 2 G o l l i n s ,D . W . , 3 0 7 Gomez,A., 68 G o m e z ,A . M . , 3 7 1 G o m e z ,C . , 2 1 8 G o m e z ,C . C . , 2 6 1 G o m e z - B e n g o a8, . , 5 l G o m t s y a n ,A . , 7 7 Gong, Y.-D., 100 Gono, J., 352 Gonzalez, A. G., 186 G o n z a l e z ,A . M . , 2 6 2 G o n z a l e z ,J . , 3 4 4 Gonzalez, J. M., 53 G o n z a l e z ,M . P . , 3 6 7 C o n z a l e z ,R . , 4 1 5 G o n z a l e z - N u n e z ,M . F , . ,2 4 2 G o o d a l l ,K . , 3 7 1 G o o d i n g ,M . A . , 3 3 5 G o o d w i n ,C . A . , 8 5 G o p a l a n ,A . S . , 2 1 6 Goralski, C. T., 58, 209 G o r d e e v ,M . F . , 3 4 , 3 - 5 ,3 6 , 3 3 4 Gordon, N. J., 183 G o r e ,J . , 4 5 , 7 6 , 3 9 3 Gorelik, M. V., 64 G o r m a n ,R . R . , 1 7 8 G o r m a n n s .M . , l l 9 G o s i m i n i ,C . , l 2 l G o s m i n i ,R . , 2 6 1 G o s p o d o v a ,T . S . , 3 6 3 G o s s e l i n ,P . , 6 7 G o s w a m i , A . , 1 8 5 ,4 0 8 Cothelf, K. V., 95 Goti, A.,239,351 Goto, Y., 349
436 Author lndex Gotor, V., 2O3,204 G o t t l i e b ,H . 8 . , l 2 l G o u d a r z i a n ,N . , 4 1 2 Goulet, S., 323 Goux, C., 392 G r a b o w s k i ,E . J . J . ' l 5 l Graf, R., 361 G r a h a m ,A . E . ' 1 8 3 G r a h a m ,L . J . ' 4 l l Gralak, J., 80, 384 G r a m a i n ,J . - C . ' 2 1 5 G r a n d a s ,A . , 3 G r a n d i ,R . , 1 5 0 ,2 3 1 ' 3 8 1 C r a n d j e a n ,C . , 3 9 3 G r a n d j e a n ,D . , 7 ' l ' 3 3 3 G r a p s a s ,I . , 6 8 G r a s s l ,Y . N ' , 9 G r a t c h e v ,M . K . ' l 7 l Gratkowski,C., 97 C r a v e l , D . , 1 7 6 '3 0 0 G r a v e n ,A . , 6 7 G r a v i e r - P e l l e t i e rC , .' 388 G r a y ,J . L . , 2 6 3 G r a y ,M . , 3 l G r e c i ,L . , 2 5 3 Greck, C., ll9,26l Green,D., 85, 209 Green,J' R., 140 G r e e n ,N ' J . , 5 4 G r e e n h a l l ,M . P . ' 1 6 l Greenhilt, J. V.' 34' 35 GreensPanP , . D.' 192 G r e e v e s ,N . , 4 2 , 2 5 6 ' 4 0 3 Grehl, M., 78, 356 Grelier,S., 56 Grellier, M., 45 Grenier,L., 323 Greve,B., 408 Gribble,G. W.' 214 Grice,P., 125 Gridnev,l. D., 129'25O G r i e b e n o w ,N " 2 6 1 Grieco, P. A.' 84,206' 219 G r i e d e l , B . D . , 1 5 ,9 8 ' 1 0 0 G r i e r s o n ,L . ' 1 2 2 G r i n d l e Y ,T . B . , 6 6 ' 1 2 5 C r i n s t e i n ,D . ' l 2 l Gronowitz, S" 129 Gros, E. G., 106 Gros, P., 177
Gross,M. L., 248 R. B', 365'382 Grossman, croth, U., 38,4ll Grover,S. K.' 339 Grubbs,R. H., 243' 308 Grushin,V. V., 129'155 Gu, D., 145,2ll'218 G u , J . - H . ,2 3 3 G u , R . - L . ,2 0 3 Guanti,G., 141,3'll GuarnieriW.' 78 Guch,I. C., 346 Gude,C., 387 Guercio,G., 295 Guerin,P.,388 Guerrero,A., 17'80 G u e r r i n iA , ', 56 G u e r t i nK , . R.' 351 S., 350 Gueugnot, Guibe,F., l3 E., 203 Guibe-JamPel, Guifa,S., 179 G u i j a r r oD , .,2ll' 218 Guilbert,B., 125 Guilhem,J', 341 G u i l l e n aG, . , 2 1 8 GuinganA t,.' 4ll G u i r g u i sD, . B ' ' 1 2 3 Guiry,P. J., 27 Gulevich,M. A. Y. V'' 349 G u l y i ,S ' E . ' 2 4 G. U.' l2l Cunawardena, L.-L.' 349 Gundersen, Guntha,S., 283 G u o ,C . , 3 8 6 G u o ,Y . - L . ,8 5 Gupta,S., 203 G u r a mA, ' S . , l l l ' 1 2 9 Gurr, P. A., 295 G u r s k iA , ', 261 A. V" 204 Gusarov, N. K., 204' 293 Gusarov, N. K.' 204 Gusarova, M.' 129 Gusmeroli, Gusso,A., 40 L. L.' 378 Gutiererez' G u t m a nA, . L . ' 2 0 3 Guziec,F. S., 102'269 G u z z i , l J . , 2 7 63' 9 3 Gyoten,M', 380
Gyoung,Y. S., 340
H a a i m a ,G . , 1 2 2 H a a r ,J . P . , 3 8 2 H a b a s h i t a ,H . , 2 6 3 H a b a u eS , .,255 Habi, A., 300 H a c h e m i ,M . , 2 9 8 H a c h i y a ,1 . , 9 5 , 1 7 5 .- r H a c k m a n n ,C . , 1 0 3 H a c k s e l l ,U . , l 2 l H a d d a d ,N . , 1 0 6 H a e m e r s ,A . , 1 7 8 H a g e m a n ,D . L . ' l { 9 H a g e r ,L . P . , 1 8 3 H a h n , J . - T . ,2 8 Haight, D., 307 H a j i c e k ,J . , 2 6 1 Hajko, J., 208 H a k i m e l a h i ,G . H . . r (
Halcomb,R. L.. 381 H a l e ,K . J . , 2 6 7 H a l e ,M . R . , 2 6 1 H a l l ,D . G . , 2 6 1 H a l l b e r g ,A . , 2 7 6 H a l l e r ,S . , 2 H a l l e t t ,D . J . , 1 4 H a l t e r m a n ,R . L . . 9 5
H a m a d a ,M . , 2 4 H a m a d a ,T . , 9 5 H a m a g u c h i ,F . , 3 5 t H a m a m o t o ,T . , l 3 { H a m a u e ,F . , 2 8 3 Hamel, P., 376 Hamelin, 1., 245. 29 H a m m a m i ,H . , 4 l I H a m m o c k ,B . D . . 1 9 Hamon, D. P. G.. }{ Hamura, S., 330 H a n ,G . , 8 3 , l l 3 . 1 6 Han,J. L., 28 Han,S.-M., 85 Han,W., l6l Han,Y., 415 H a n a k i ,N . , 2 1 , 1 6 7 H a n a m o t o ,T . , 1 3 0 . H a n a o k a ,H . , 2 6 5 . l H a n a o k a ,M . , 3 6 1 H a n a o k a ,T . , 1 2 9 . : l H a n c o c k ,G . , 8 3
Author Index 437 Gyoung,Y. S., 340 Haaima,G., 122 H a a r ,J . P . , 3 8 2 H a b a s h i t a ,H . , 2 6 3 H a b a u e ,S . , 2 5 5 H a b i ,A . , 3 0 0 H a c h e m i ,M . , 2 9 8 H a c h i y a ,1 . , 9 5 , 1 7 5 ,3 1 7 ,3 1 8 ,4 0 3 H a c k m a n n ,C . , 1 0 3 H a c k s e l lU , ., l2l H a d d a d ,N . , 1 0 6 H a e m e r s ,A . , 1 7 8 H a g e m a nD , . L.,349 H a g e r ,L . P . , 1 8 3 H a h n , J . - T . ,2 8 Haight, D., 307 H a j i c e k ,J . , 2 6 1 H a j k o ,J . , 2 0 8 H a k i m e l a h i ,c . H . , 7 6 Halcomb,R. L., 384 H a l e ,K . J . , 2 6 7 H a l e ,M . R . , 2 6 1 H a l l ,D . G . , 2 6 1 H a l l b e r g ,A . , 2 7 6 H a l l e r ,S . , 2 H a l l e t t ,D . J . . l 4 H a l t e r m a n ,R . L . , 9 5 H a m a d a ,M . , 2 4 H a m a d a ,T . , 9 5 H a m a g u c h i ,F . , 3 5 8 H a m a m o t o ,T . , 1 3 4 H a m a u eF. . . 2 8 3 Hamel,P., 376 Hamelin, J., 245, 298 H a m m a m i ,H . , 4 l I H a m m o c k ,B . D . , 1 9 2 H a m o n ,D . P . G . , 3 4 9 H a m u r a ,S . , 3 3 0 Han,G., 83, l13,261 H a n ,J . L . , 2 8 Han,S.-M., 85 Han,W., 16l H a n ,Y . , 4 1 5 H a n a k i , N . , 2 1 , 3 6 ' 7 ,3 9 4 H a n a m o t o ,T . , 1 3 0 , 3 1 7 ,3 6 ' 7 , 4 O 3 H a n a o k aH, . , 2 6 5 , 3 1 0 H a n a o k a ,M . , 3 6 1 H a n a o k a ,T . , 1 2 9 , 2 8 2 H a n c o c k ,G . , 8 3
Handke,G., 261 H a n d s ,N . , 3 3 9 Handy,S. T., 219 H a n e s s i a nS, . , 7 7 , 9 6 , 3 1 6 H a n s e n ,J . , 2 0 8 H a n s o n ,M . V . , 2 1 8 ,4 0 8 H a n s s o n L, . , 3 6 1 H a n z a w a ,Y . , 4 1 5 Hara, M., 25 H a r a ,R . , l 9 l , 4 1 5 H a r a ,S . , 6 , 1 8 l H a r a d a ,H . , 2 6 1 , 3 1 6 H a r a d a ,N . , 1 0 0 , 1 2 9 H a r a d a ,T . , 2 2 2 , 2 6 5 H a r a d a ,Y . , 4 0 8 H a r a y a m a ,H . , 4 5 , 2 8 3 , 3 4 8 H a r d e r s ,J . , 1 8 7 H a r d i n g e r ,S . A . , 7 l Hardy, P. M., 179 Harimoto, T., 371 H a r k i n ,S . A . , 4 l l H a r m a n ,W . D . , 3 4 4 H a r m a t a ,M . , 2 6 1 H a r m s ,K . , 5 6 Harnett,J., 149 Harnett,J. J., 149 H a r o u t o u n i a nS, . A . , 3 1 9 H a r p e r ,S . , 2 3 3 , 3 5 6 Harpp, D. N., 58, 145 H a r r i n g ,S . R . , 6 4 Harris, B. D., 340 H a r r i s ,C . 8 . , 5 8 H a r r i s ,G . D . , 2 8 0 Harrison,J., 209 Hart, D. J.,82 Hartley, R. C., 78 H a r v e y , D . F. , 2 4 3 Harvey,I. W., 325 Harvey,J.,293 H a r w o o d ,L . M . , 3 3 3 H a s e ,T . , 1 5 3 , 3 9 6 , 4 1 7 H a s e g a w aA , ., 286 H a s e g a w aH , . , 1 4 ,5 3 H a s e g a w aM , . , 1 6 6 ,3 6 1 , 3 8 4 , 3 9 4 , 4 l s H a s e g a w aT , .,396, 417 H a s h i g u c h iS , .,2t7 Hashimoto,K., 129,245 H a s h i m o t o ,M . , 2 4 , 4 1 8 H a s h i m o t o ,T . , 2 0 3 Hashimoto,Y., 263, 361,363, 394, 4t3
43E AuthorIndex T., 100 Hashiyama, H a s h m iA , . S .K . , 1 9 6 , 3 4 6 A., 354 Hassner, A., 67 Hasuoka, Hata,8., 107,396 Hatajima,T., 316 S., 375 Hatakeyama, T., 181 Hatakeyamav, M., 13,88 Hatanaka, H a t a n a k aY,. , 4 5 , 3 4 9 Hatano,K., 193 Hatano,T., 3l I K., 345 Hatayama, Hattori,K., 41,221,265 Hattori,T., l7l Haufe,G., 400 P.,334 Hautefaye, Y. V., 301 Haverbeke, S., 231 Hayakawa, T., 96 Hayase, Hayashi,A., 356,357 H a y a s hE i,.,4ll, 412 Hayashi,H., 16,2O4,372 Hayashi,K., 50 H a y a s hM i , . , 2 0 , 9 6 ,9 ' l ' l 4 l ' 3 l l Hayashi,T., 39,45, 96' 9'l' 331'407 Hayashi,Y., 9,'16,8l' 9'7 T., 331 Hayashikoshi, Hayman,D. F., 146 Hazra,B. G., 380 He, Y., 77 H., 57,377 Heaney, C. H., l19' 393 Heaihcock, Heaton,S. B., 96 H e b r i ,H . , 2 2 5 , 3 1 2 H e c h tS , .M., 321 M., 289 Hedayatullah, HedhliA , ., l8l, 182 Heer,J. P.,96 Hegbom,I., 150 L., 132 Hegedus, Hegedus,L. S., 103,lO4' 172 Heidepriem,R. W., 303 Heider,K.-J.,221 H., l5l Heimgartner, Heintz,M.,225 Helal,C. J., 371 Held,R. M., 95 Hell,2., l9l Hellberg,L. H., 388
G., 46,97,293 Helmchen, H e m m i n gK, . , 3 0 4 L, 267 Henderson, J' B.,58 Hendrickson, Henry,J. R., 267 Henry,Jr, K. H', 219 Hepworth,J. D.,77 Herion,H., 4 Hermans,8., 16, 173 R., 68 Hernandez, F., 371 Hernandez-Mateo, Herndon,J. W, l9l, 386 Heron,B. M., 77 Herr,R. J., 280 B., 125 Herradon, Herrmann,W. A., 185 Herron,B. F., 261 Herve,Y., 77 P.,63 Heshmati, Hevesi,L., 16,173 P., 137 Hewawasam, Heydari,A., 14,219 M', 400 Heydenreich, H i b i n oH , ., l7l H i d a i ,M . , 1 2 9 H i e m s t r aH, . , 1 2 ,l 5 ' l l 3 ' 1 2 4 ' 2 7 ' 1 , 3 5 6 Higaki,C., 276 H i g a s h iK, , 4 1 2 T., 147 Higashino, S., 392 Higashiura, T. R.,277 Hightower, H i g u c h iK , .,245 Higuchi,S., 97 Higuchi,T., 269 Hikasa,T., 367 Hikosaka,T., 2l I H i l l ,D . R . , 7 3 Himeda,Y., 13,88 Hinkle,R. J., 129'289 H i n o ,T . , 4 2 , 6 3 , 9 6 H i o k i ,K . , 3 1 6 H i o k i ,R . , 1 4 8 Hirai, K., 87,233 Hirai, N., 107 Hirama,M., 96, 356'357 Hirano,K., 138,192'396 Hirano,M., 330,406 Hirao,T., l3l, 138 K., 392 Hirasawa, Hirashima,T., 212
Hirata, K., 166 H i r a y a m a ,H . , I l l Hirayama, M.. 6-3 H i r o b e ,M . , 2 6 9 Hirofuji, H., 20 Hiroi, K., 349. -19 H i r o s e ,A . , 2 0 Hirose, Y., 63. 9? H i t o m i ,K . , 3 5 1 H i w a t a r i ,Y . , 2 H i y a m a ,T . , 4 5 . 5 : . H l a s t a ,D . J . , 2 8 4 Ho, P.T., 267.31J Ho, T.-L.. 73. 35{ Ho,W.-B.,272 H o b s o n ,A . D . , 3 5 { H o d g s o n ,D . M . . l l H o d g s o n ,P . 8 . . l l l Htifer, J., 5l Hoffman, R. v.. l( Hoffmann, H. M I Hoffmann, R. l*..
H o g e ,G . , 3 7 2 H o j j a t ,M . , l 7 l Hojo, M., 88. 185 H o k e ,J . B . , 4 l H o l k a r ,A . G . . 8 { H o l l i n s h e a d ,D . V H o l l i s ,L . S . , 4 l Hollis, T. K.. 365 H o l m e s ,A . 8 . . 6 0 H o l o b o s k i ,M . A . . H o l z a p f e l ,C . r l . . Homann, K., 207. H o n , Y . - S . , 1 2 3 .l H o n d a ,H . , 3 6 7 Honda,K., 332 H o n d a ,S . , 1 3 4 H o n d a , T . , 1 8 3 .- 1 Hondo,T., 371 Hong, D.-G., E5 Hong, F., 280 Hong, Q., l?0 H o n g ,R . - K . , 3 9 3 Hong, Y., 49. 95. Hongu, M., 100 H o o g s t e e n ,K . , 6 ' H o o t e l e ,C . , 3 6 5 Hoppe,D., 78 Hora. M., 358
AuthorIndex 439 Hirata, K., 166 H i r a y a m a ,H . , l l l Hirayama,M., 63 Hirobe, M., 269 Hirofuji, H., 20 Hiroi, K., 349,392 Hirose,A., 20 Hirose, Y., 63, 97 H i t o m i ,K . , 3 5 1 Hiwatari, Y., 2 Hiyama, T., 45, 52, 182,349 H l a s t a ,D . J . , 2 8 4 Ho, P. T., 267,3'75 Ho, T.-L., 73, 354 Ho, V,l.-B.,272 H o b s o n ,A . D . , 3 5 6 H o d g s o n ,D . M . , 1 0 4 , 1 0 5 ,3 6 8 HodgsonP , . B., ll0 Hiifer, J., 5l Hoffman, R. V., 16,217,326,4ll H o f f m a n n ,H . M . R . , 2 9 9 Hoffmann, R. W, 174 H o g e ,G . , 3 7 2 Hojjat, M., 17l Hojo, M., 88, 185,261, 316, 361, 382 Hoke,J. B., 4l H o l k a r ,A . G . , 8 4 H o l l i n s h e a dD , . M., 84 H o l l i s ,L . S . , 4 l Hollis, T. K., 365 H o l m e s ,A . B . , 6 0 , 3 3 8 H o l o b o s k i ,M . 4 , . , 2 0 2 H o l z a p f e l ,C . W . , 1 2 0 H o m a n n ,K . , 2 0 7 , . 1 3 1 Hon,Y.-S.,123,272 H o n d a ,H . , 3 6 7 H o n d a ,K . , 3 3 2 H o n d a ,S . , 1 3 4 H o n d a ,T . , 1 8 3 , 3 7 3 H o n d o ,T . , 3 7 1 H o n g ,D . - G . , 8 5 Hong, F., 280 Hong, Q., 170 H o n g ,R . - K . , 3 9 3 H o n g ,Y . , 4 9 , 9 5 , 9 6 Hongu, M., 100 H o o g s t e e n ,K . , 6 ' 7 , 9 6 H o o t e l e ,C . , 3 6 5 H o p p e ,D . , 7 8 Hora, M., 358
Horaguchi, T., 130 HorakR , . M., 28 Horak,V., 123 H o r i ,K . , 3 5 4 , 4 1 3 Hori, M., 97,358,382 Hori, Y., 8, 4l Horibe,M., 97,358 Horiguchi,A., 233 Horiguchi,Y., 8 Horiuchi,C. A., l9l H o r i u c h iH, . , 2 4 5 H o r m u t h5, . , 7 6 , 2 3 4 Hornfeldt,A.-8., 129 Horsburgh, C. E. R., 4 H o s h iM , .,58 Hoshino,O., 97 Hosokawa, S., 67 Hosokawa, Y., 245 Hosomi,A., 88,261,316,361,371,382,408 H o s o m iK , ., 235 Hosoya,N.,95, 185,194 Hossain,M. M., 126,29"7 H o u ,X . - L . , 8 5 H o u d i e rS, . , 3 2 2 H o u l t o nJ, . 5 . , 1 2 2 Houminer,Y., 333 Houpis,I. N., 10,280 H o u s eS, . ,2 1 4 Hovestreyadt, E. R., 256 H o v e y d aA,. H . , 9 ' 7 , 2 6 1 H o w a r t hJ, . A . , 8 l Howson,B., 99 Howson,W., 154,172 Hoyle,T. R., 103 H o y o sM , . A., l4l Hrnciar,P.,200 Hruby,V. J., 172,180 H s i e hL, . - C . ,3 8 1 Hu, C.-M., 18,122,331 H u ,J . - M . ,4 0 8 Hu, M.-Y.,364 Hu, W.-X., lO2,269 Hu, Y., 127,289,318,372 H u a ,D . H . , 3 5 6 Hua,Y., 318,3'72 Huang,B.-N.,332 H u a n gJ, . , 3 2 0 H u a n gJ, . - X . ,1 9 5 Huang,K., 395 Huang,T.-Y.,361
440 AuthorIndex Huang,W', l'll' 402 Huang,W.-H.,341 Huang,X., 12,24, 46' 129'289' 134 Huang,X. C., 408 Huan!,Y.-2., 12, tl9, l5l, 165'255'368 Huang,Z.-H., 255 Huang,Z.-2.,334 J., 158 Hubbard, J. L.' 340 Hubbard, H u b e lM , ., ll7 Huber,E. W, 295 H u d r l i k ,A ' M ' ' 3 3 3 Hudrlik,P. F.' 333 Huff, B. E., 380 K. A.' 363 Hughes, H u g h e sR, . C . ' l 5 l Huglin,J. A., 106 H u h n ,T . , 3 8 '4 l l Hulme,C., 380 G. R.' l5l HumphreY, Hunter,J. 8., 332 Hunter,M. L., 250 Hunter,R., 59, 384 A.' 358 Hupperts, H u r ,C . U . , 3 7 1 H u r t ,C . R . ' 1 4 l H u s k e n sJ ,. , 2 0 1 M. S.' 58 Hussoin, Husson,H.-P.,96' 158'328 Hutchins,R' O., 261,330'348 J., 16l Hutchinson, Hirval,C. C.' 124,176 Huyser,J. J., 120 Hwang,S' H', 132 Hwang,Y. S'' 326 H w u ,C . - C ' ,2 6 3 H w u ,J . R . , 5 7 ' 6 3 ' 7 6 , 8 7 , 2 8 83'4 1 '3 8 4 lbarzo,1.J.,122 Ibuka,T', 263 Ichihara,A., 134 lchikawa,S.' 153 Ichikawa,Y., 384 Ichitoh,K., 269 T" 174 Igarashi, IgauA , ', 417 lgushkina,S. O.' 276 I h a r a ,M . , 3 1 6 Ihle, N. C., 393 Ii, N.,306
Iida,K., 96 Iida,T., 354' 413 Iida, Y., 316 I i o ,K . , 2 9 1 Iitaka,Y., 96 Ijichi, S., 2lO'216 Ikeda,8., 250 I k e d a I, . , 3 9 6 Ikeda,M., 371 I k e d aS , .,248 Ikegami,T., 367 Ikeuchi,Y., 415 I k u r a ,K . , 2 5 1 Ila, H., 16, 149,205 Iley,J.,284 Imada,Y., ll3, 306,359'392 K'' 95' 361 Imagawa, I m a i ,N . , 9 5 , 1 3 8 '1 4 8 Imai,T., 354 I m a m o t oT,. , 2 1 1 , 3 1 6 Imamura,M.' 130 Imanaka,T., 269 Imanishi,Y.' 395 Imashiro,R., 88 I m i ,K . , l 1 8 I m o t o ,H . , 2 1 ,2 3 7 Imura,K., 408 I n a d aK , ., 414 Inaga,J., 130 Inami,H., l'14'392 Inanaga,l.' 317,367' 403 A', l18 Indolese, A. F.' 97' ll8 Indolese, Inoguchi,K.' 96 Inokuchi,T., l0l, 283,310'330 Inomata,K', 95' 140'283 Inoue,H., 42,344 lnoue,K., 228 Inoue,S., 45' g'1,201,219,332' 4O2 Inoue,T., 5'96'97, 192'235 Inoue,Y', 115,289'40'l I n u i ,Y . , 2 8 1 loele,M', 185 I p a k t s c h iJ' - ,1 4 . 2 1 9 I q U a tt.. ' 1 0 8 '1 0 9 , 2 6 1 ' 2 6 9 l r a n P o o rN, . , 8 7 ' 1 9 7 Irie, H., 63 Irie, R., 95, 185'194 Irie, S., 67 J., 371 Isac-Garcia,
I s a m i ,T . , 2 3 Iseki, K., 379 lshibashi,H.. 306. I s h i b a s h i ,N ' , 8 8 . l l s h i d a ,A . , 4 2 tshida, S., 39 I s h i d a ,T . , 2 0 3 l s h i h a r aH , .,216 I s h i h a r aK , .,2. ll.
394 I s h i h a r a ,T . , 1 6 .{ ( lshii, Y., 129'185 415,418 Ishikawa,H.. 25,r Ishikawa,K.' 356 I s h i k a w a ,M . . 1 7 5 Ishikawa,T.. 330 l s h i k u r a ,M . . 8 0 l s h i m a r u ,M . . - l E I s h i t a n i ,H . , 9 5 . - 1 I s h i y a m a ,T . . l 1 9 . l s h i z a k i ,M . . 9 7 I s h i z a k i ,T . , 2 1 9 I s h i z u k a ,T . , l l O I s o b e ,K . , 2 3 1 I s o b e ,M . , 6 7
I s o b e ,S . , 3 9 2 l s o e ,S . , 2 6 9 . 3 0 1 I s o n o ,N . , 3 7 3 ItabashiM , .. 96 I t o ,H . , 3 1 6 , ' l l l Ito, K,, 95 Ito, N., 42, 291. Ito, S., ll6, 30O I t o , T . , 1 4 , 5 - 1 .: ( Ito, Y., 20, 30. 7
Itoh,A., 63 Itoh, D., 371 I t o h ,H . , 4 l l . { l i Itoh, K., 47. 95. Itoh, M., 228. -T Itoh, N., 42' 291 Itoh, T., 14,51. Itoh, Y., 95 Itotani, K., 276 Itou,K., 180 Iwahara, Y.' 2-1 I w a m a ,S . , 2 6 1 l w a m u r a ,H . . 9 ( lwamura,T.. -l-
Author Ind€x 441 lsami, T., 23 I s e k i ,K . , 3 7 9 I s h i b a s h iH , ., 306,371 IshibashiN , . , 8 8 , 3 6 1 ,3 8 2 I s h i d a ,A . , 4 2 I s h i d a ,S . , 3 9 I s h i d a ,T . , 2 0 3 I s h i h a r aH , .,216 Ishihara,K., 2, 21, 28, 41, 43, 95' 91' 36'7' 394 I s h i h a r a ,T . , 1 6 , 4 0 8 I s h i i , Y . , 1 2 9 , 1 8 5 ,1 9 5 , 2 6 9 , 2 8 6 , 3 t 1 ' 3 7 1 ' 415,418 I s h i k a w a ,H . , 2 5 3 I s h i k a w a ,K . , 3 5 6 l s h i k a w a ,M . , 3 7 5 I s h i k a w a ,T . , 3 3 0 l s h i k u r a ,M . , 8 0 I s h i m a r u ,M . , 3 8 I s h i t a n i ,H . , 9 5 , 3 1 8 lshiyama,T., 129,264 l s h i z a k i ,M . , 9 7 I s h i z a k iT , .,219 l s h i z u k a ,T . , 1 3 0 I s o b e ,K . , 2 3 1 l s o b e ,M . , 6 7 I s o b e ,S . , 3 9 2 I s o e ,S . , 2 6 9 , 3 O 3 , 3 8 2 Isono,N., 373 I t a b a s h i ,M . , 9 6 I t o , H . , 3 1 6 ,4 l l , 4 1 2 , 4 1 5 Ito, K,, 95 Ito, N., 42, 292,392 Ito, S., I16,300,316 Ito, T., 14, 53,203,392 I t o , Y . , 2 0 , 3 0 , 7 0 , 9 5 , 2 4 9 , 3 1 1 ,3 1 6 ' 3 8 2 Itoh,A., 63 Itoh, D., 371 Itoh,H., 4ll, 412 Itoh, K., 47, 95, 96, 383 Itoh, M., 228,382 Itoh,N., 42,292 Itoh, T., 14,53,2O3 Itoh, Y., 95 I t o t a n i ,K . , 2 7 6 Itou,K., 180 lwahara,Y., 230 I w a m a ,S . , 2 6 1 l w a m u r a ,H . , 9 6 I w a m u r a ,T . , 3 3 9
I w a o ,M . , 2 5 , 7 1 , 8 0 , 1 2 9 Iwaoka,M., 25 I w a s a k i ,K . , 3 3 0 I w a s a k i ,M . , 1 2 9 lwasaki, T., 9, 109 I w a s a w a ,N . , 1 0 0 , 1 3 2 , 2 3 1 Iwata, C., 87, 380 lwata, 8., 203 Iwata, K., 228 Iyer, V. S., 17l Iyoda, M., 74 Izawa, M., 283 Izawa,T., 303 lzumi, J.,362 Izumi, Y., 198,245 J a b e r ,M . , 1 0 0 , 2 7 2 J a b l o n o w s k i ,J . A . , 6 3 J a c k s o nR , . F. W.,227,261'265'375 J a c k s o n ,T . C . , 3 4 0 J a c k s o n ,W . P . , 4 0 9 J a c o b ,L . A . , 1 9 3 J a c o b sH , . K., 216 J a c o b s ,P . A . , 1 8 5 J a c o b s e nE, . N . , 4 9 , 9 5 , 1 8 3 J a c q u a u l tP, . , 2 1 0 J a c q u e s yl,. - C . , 2 5 , 1 8 2 ,2 9 0 JaegerR , ., I 17 l a g e r ,J . , 2 8 9 Jahangir,80 J a h n ,U . , 2 3 J a h n ,W . , 3 8 1 Jaime-FigueroaS , ., 185 J a i n ,N . F . , 6 3 J a i n ,R . , 7 3 Jakiwczyk,O. M., 179 J a m e s ,K . , 1 7 8 J a n a k i ,S . , 2 6 1 J a n d a ,K . D . , 3 0 J a n d e l e i t ,B . , 1 4 0 J a n g ,D . O . , 1 5 4 ,3 7 5 J a n o s i ,A . , 4 J a n o u s e k2 , ., 377 J a n o w i t z ,A . , 2 6 1 J a n s s e nE, . , 3 5 8 J a r o s i n s k i ,M . A . , l ' 1 2 J a r o s z ,S . , 4 l I Jarvi, E. T., 100 J a s p a r s ,M . , 8 5 J a s z b e r e n y iJ, . C . , 1 5 4 , 2 9 0 ' 3 4 2 , 3 ' 7 5
442 Author Index J a u d ,J ' , 5 2 J a w ,J . - Y . ,6 5 J e a n ,T ' - S . , 3 7 1 JefferY, T., 280 J e f f o r d ,C . W . ' 2 6 1 J e g o ,J . M . , 6 0 J e n k i n s ,D . J . , 1 2 5 J e n k i n s ,P . R ' ' 2 1 4 J e n k i n s ,T ' J . ' 5 6 Jenneskens'L'W'394 J e n s e n ,K . J . , 3 2 3 J e o n ,H . B . , 3 2 7 J e o n ,J . - H . , 3 8 8 ' 4 0 8 J e o n g ,I . H . , 2 5 J e o n g ,K . - S . , 2 6 7 J e o n g ,N ' , 1 3 2 ' 2 4 4 J e s t i n ,J . - L . ' 2 6 2 J h i n q r a n ,A . G ' ' 2 3
2e8'3so'3e2'3ej 1r,'il,i,ts'36,138, Ji, x.-L., 395 J i a , X ' , 3 1 5 '3 1 6 J i a a n g ,W . - T ' ' 3 7 2 JiangY ' 201 J i a n g 'H . - J . ' 3 1 5
tian!,t., 2't'35,36'138'298
I
2 ,
J i a n gS , . ,l 2 ' 3 1 6 Jiang,S.-H.'289 Iiang,Y.-Z',170'288 Jiao,X.-Y., 178 J. L" 319 Jimenez, J i m e n oM , L'' 48 J i m i n e zA, ' l " l 2 l J i n ,F . , l 7 l J i n ,L . , 1 9 6 '2 8 2 Jin, S'-J' 264 Iin,2.,379 J o e ,G . H . , 3 7 1 B. R'' 200 Joglekar' Joh,T., 306 M'' 198 Johannsen, J., 14l Johansen, A. T'' 97 Johnson, C' R', 300 Johnson, D'K', l'72 Johnson, M J' A" 308 Johnson, R' A', 178 Johnson' R' E" 276 Johnson, Johnson'R'L'319 R' A' W" 250' 335 Johnstone, 409 R', Jolie,
A.,288' 289 JonczYk, Jones,C' W., 145 Jones,G. B', 96 Jones,P. G., 371 Jones,P. S., 77 J o n e sR, . C . F ' , 2 4 4 Jonq,T.-T..170 198 lori.nr.n. K. A'. 65' 67' 95' S. P., 170 JosePh, Joshi,S. K., 84 Jost,K., 289 M'-P'' 25' 182'29O Jouannetaud, Joullie,M. M'' 36' 298 Joung,W. K', 331 B', 368 Jousseaume, Jovner,H. H', 186 A" 7l Juan-Montesinos, 1 4 8 , 2 08 JuaristE i, ., J u b e r tC, . , 2 6 3
3t6' i"iJ,'i"., t:' 82'173'ts6'2t4'282' 349 J u l i a ,S . A . , 5 ' 1 7 l J u m n a hR, ' , 4 5 J u n ,J . - G . ,l 8 ? Jun,W. S., 340 J u n ,Y . M . , 7 9 Jung,J. C., 346 Jung,K. W', 371 Jung,K'-Y., 282 Jung,L., 30 June'M.E,70 H . 16' 149'205 JunfaPPa. S' K', 183 Juntunen' Jursic,B. S', 36 Jutland,A.' 250 V' E' M'' 394 Kaats-Richters, 85' 184'338'385 W'' G' riuUur*u, S' T'' 32 KabanYane, Kabat,M. M'' 345 Kabbara,J', 367 Kacan,M', 197 L'' 186 Kaczmarek, Kadam,S. M" 358 K a f a r s k iP, ' , 3 4 0 K a g a nH , ' B ' ' 9 6 ' 3 1 2 '3 1 5 H', 251 KageYama, M', 415 KageYama' T ' 330 KaqeYama. fulornitu' H" 166'263
Kai. \.. l' Kaiso. K , Kajita. S .
Kajtar'Pe Kakikarr Kakrucht ' Kakkar. Kalbachc Kalc\. P
Kalinosr Kalra. S K a l t r a .S Kall anl
Kamahr Kamade Kamatr Kamttc. Kamcol Kancll Karnczr Kamtgr Kamtto Kanrc. Kamoc KamPl Kan. I
Kaned Kanrt Kanrt l.anet Kaner Xendl Krtrt Xert Xrnd Xer Xec Xra Xrr Xrr
x.q lrrq Xrt lrrr
Xer hrr Xrr l\r X{
AuthorIndex 443 K a i ,N . , 2 4 Kaiso,K., 204 Kajita,S., 392 M., 208 Kajtar-Peredy, Kakikawa,T., 96 Kakiuchi,T., 140 Kakkar,V. V., 85,209 H., 164 Kalbacher, Kalck,P., 129 Kalinowski,H.-O., 14 Kalra,S. J. S., 109 KaltiaS , . ,1 5 3 Kalyanam,N., 189 A., 142 Kamabuchi, Kamada,T., 130 Kamata,K., 157,214 K a m b eN , . , 5 , 1 4 ,1 1 6 , 3 4 3 ' 3 7 1 C., 371 Kameoka, Y., l16 Kameyama, M., 203 Kamezawa, Kamigata,N., 309 Kamitori,Y., 185 K a m oH , .,246 , 16 K a m o c h iY, . , 3 l l , 3 1 5 3 K a m p h u i sJ,. , 1 5 , 3 2 4 Kan,T., 102,316,317,343,403 Kanada,A., 14 K a n a iG , ., 129 K a n a i ,M . , 9 7 Kanai,T., 317,403 K a n a z a k iM, . , 3 1 0 Kanda,T., 102,343 K a n e d aK, . , 2 6 9 M., 43 Kaneeda, Kaneko,C., 97 Kaneko,Y., 16,97,141,363 K a n e m a sSa.,. 9 5 , 4 1 2 Kanerva,L. T., 203 Kaneta,N., 336,373 K a n e t a k aN, . , 3 3 6 KangJ.,91, 172 Kang,H.-Y.,316 Kang,1.,97,172 388'393' Kang,S.-K.,85, 172,282,316' 408 Kann,N., 299 K a n t a mM , . L.,244,245 Kanth,J. V. B., 96 Kao,T.-Y.,364 Kapil,R. S., 351
Kapoor,K. K., 73 Kapoor,R. P.,351 Kaptein,8., 15,ll3,324 N. I., 202 Kapustina, Karam,O., 25, 182,290 D. S., 228 Karanewsky, T., 408 Karasawa, K a r i m i ,B . , 1 7 8 U., 231 Karlsson, Karpiesiuk,W., 209 K a r p i n s k iM , . L.,329 K a r r i c kG , . L.,22'l K a s a iK , ., 415 Kashima,C., 408 H., 63 Kashiwagi, R. P., 337 Kashyap, K a s s a mK, . , 2 0 2 K a s s i mA, . M . , 3 3 3 T. M., 194 Kasumov, Katagiri,T., 252 Katake,A., 276 Kataoka,M., 179 Kataoka,O., 361 T., 63, 339,382 Karaoka, K a t a y a m aH,. , l 2 l S., 149 Katayama, Y., 185 Katayama, KatoS., 1O2,216,343 K a t o ,A . , 3 1 6 K a t o ,8 . , 4 3 , 3 2 1 K a t o ,K . , 2 1 5 Kato,N., 316 Kato,S., 1O2,216,343 Katoh,E., 321 Karoh,Y., 368 K a t r i t z k yA, . R . , 2 5 , 2 7 , 3 4 , 3 53 '6 ,1 3 8 ' 171,334 K a t s u h a rT a ,. , 5 0 K a t s u h i r aT,. , 2 2 2 , 2 6 5 , 94 K a t s u k iT, . , 9 5 , 1 8 5 1 S., 261 Katsumura, J. A., 345 Katzenellenbogen, KauffmannT., 120,143'264 Kaufman,M. D., 84 Kaur,C., 380 Kawabara,T., 73 J.,408 Kawabata, T., 4l I Kawabata, A., 318,403 Kawada, Kawada.Y., 70
444 Author Index Kawafuchi, H., l0l K a w a g u c h i ,T . , 1 0 0 K a w a h a m a ,R . , 2 4 2 K a w a h a r a ,N . , 3 7 2 K a w a h a r a ,S . , 1 4 K a w a h a r aT , .,358 Kawai, Y., 28 K a w a k a m i ,J . K . ' 4 0 0 K a w a k a m i ,T . , 3 7 1 K a w a m u r a ,T . , 3 9 2 K a w a n o ,N . , 1 5 6 , 2 0 0 ' 3 8 4 K a w a n o ,T . , 3 1 6 K a w a s a k iI,. , 3 1 6 K a w a s e ,M . , 3 1 6 ' 3 7 ' 7 K a w a s h i m a ,T . , 1 3 2 Kawashiro,K.' 204 K a w a t a ,K . , 3 l K a w a t e ,T . , 6 3 , 9 6 K a w a t s u r a ,M . ' 3 1 6 K a y s e r ,F . , 5 6 Kazmaier,U., 349 Keana,J. F. W.' 354 K e a y ,B . A . , 8 K e c k ,G . 8 . , 4 4 ' 1 7 6 K e e g s t r a ,E . M . D . ' 3 9 4 K e k a P r i l e v i c h ,M . O . ' 2 2 8
I
p n I
I
K e l l y ,T . A . , 4 8 Kemp,S. J., 396 K e n d e ,A . S . , 1 8 3 '3 5 1 K e n f u n e n ,S . K . ' 1 2 6 K e n n e d YK , . E.' 130 K e n n e d Y ,R . M . ' 3 0 5 K e n n i n g t o n ,J . W . ' 3 4 5 Kephart, S. E.' 98 K e r s t e n ,M . , 2 3 8 K h a l i l o v ,I . N . , 4 l I Khan, M., 230 K h a n ,R . H . , 2 4 9 K h a n n a ,M . S . ' 3 5 1 K h a n n a ,R . N . , l l 4 ' 1 2 6 Khatib, S. F., 335 Khatimi, N., 379 Khiar, N., 95 K h o u n d ,S . , 1 9 5 K h u m t a v e e P o r n ,K . ' 3 0 7 K h u r a n a ,J M . , l 8 ' 3 3 5 Kice, J. L., 29 Kiddle, J. J., 296 K i e r s ,N . H . , 4 5 K i g u c h i ,T . , 3 7 1
Kihara,K., 203 Kihara,N., 166 Kiji, J., 129, l6s Kikooka,S., l4l Kikugawa, Y.,284' 387 Kim,B. H.,28 Kim, C. U., 367 Kim, D., 384 Kim, D. Y., 138 Kim,H. R.,20 K i m , H . - O , 2 1 7 '4 l l Kim, J., 386 Kim, J.8., 135 Kim, J.I.,97 Kim, J.M., 175 Kim, J.N.,20, l0l' 134 Kim, J. S.,77,253 Kim, K..327 Kim, K. M.,20 Kim, K. S.,123 '/'7,311,384 Kim, S., ' 84 H Kim, S. ., 1873 Kim, S.Y.,371 K i m , S . - G . ,3 1 6 '4 0 8 Kim, S.-H.,308 Kim, S.-W.,2ll Kim,Y.C.,77 K i m , Y . H . . 9 6 , 2 5 4 , 3 1 6 .3 4 2 ' 3 4 6 Kim, Y. M., l0l K i m b o n g u i l a ,A . M . ' l 3 Kimura, H., 99 K i m u r a , M . , 4 5 , 1 9 3 ,2 8 1 ' 3 5 2 Kimura,N., 183 Kimura,T., 129 Kimura,Y., 251 Kinart, W. J.,219 Kindela, F., 302 K i n d e l a ,F . B . ' 1 5 4 King, A. O.' 349 King, D. B.' 63 King, S., 349 King, S. B.' 267 Kini, A. D., 373 Kinoshita, A , 373 K i n o s h i t aH , .,283 K i n o s h i t a ,M . ' 1 6 5 K i n o w s k i ,A . , 2 9 2 KinugasaM , ., 130 K i n u g u s a ,H . , 3 8 2 Kira. H., 16
K r n l en l Krrschn K r s e .\
K r s el l o Krshtno Kita. \' Kitagar K itaga
Kitager K rtaha Kitarch Krtam Kitamr Kitano K i t a ru
KitohK itor . Kr1ot
Krlod K il otl Kiza\ Krzrl K rz t l r
Krzlt Klolh Klatt Klern Kletn Klcm Klctt Kltr Klop Klug KluS K lun Kne Knet KoG Knt Knq Knr Knc
Ktx Xoi Ko.
xd
l(c{ Kcr
Author Index 445 K i r i l e n k o ,A . G . , 3 7 K i r s c h n i n g , A . , 1 8 7 ,2 0 9 Kise,N., 16 K i s e l y o v ,A . S . , l 7 l K i s h i n o ,H . , 8 K i t a , Y . , 2 0 0 , 2 9 1 , 3 4 5 , 3 6 7 , 3 8 0 '3 8 4 ' 4 1 2 K i t a g a w a ,H . , 1 5 4 , 1 5 7 , 3 2 2 , 3 6 ' l K i t a g a w a ,K . , 3 1 6 K i t a g a w a ,O . , 1 9 2 Kitahara, T., 233 K i t a i c h i ,K . , 3 4 5 K i t a m u r a ,M . , 4 5 Kitamura, T., 129,291 Kitano,K., 375 K i t a z u m e ,T . , 1 7 l Kitoh, Y., l'70, l7l Kitov, P. I., 394 Kiyoi, T., 249 K i y o o k a ,S . , 1 6 , 9 7 ,3 6 3 Kiyota, H., 233 Kizaki, H., 129 Kizil, M., 176 Kizits,S. A., 303 Kizlink, J., 125 K j o l b e r g ,O . , 1 3 0 K l a t t ,M . , 2 5 6 Klein,W. R., 261 Kleiner, K., 189 K l e m e n t ,I . , 2 3 0 K l e t t k e ,F . W , 8 3 Klinekole, B. W, 16 Klopp, J. M., 280 Klug, P., 270 K l u g e ,R . , 1 8 3 ,3 5 2 Klumpp, C. W., 349 Knapp, S., 239 K n a u s ,E . 8 . , 2 2 5 , 2 2 ' l Knecht, M., 104 Knight, D. W., 194 Knight,J. G.,249 K n i g h t ,J . H . , 2 3 6 K n o c h e l , P . , 9 ' 1 , 1 2 0 , 1 2 9 ' 1 4 0 , l ' 7 1 '2 3 O ' 248, 263,408, 409 K n o e s s ,H . P . , 2 6 3 Kniilker, H.-J., 361 K o , S . - B . ,2 6 7 K o b a t a k e ,Y . , 3 9 Kobayashi Y., 102, 250, 251' 362, 37 l' 3'79 K o b a y a s h i ,K . , 3 6 1
K o b a y a s h iS , ., 15,44,95,97, 138'175'317' 3 1 8 ,3 5 8 , 3 " 1 3 , 4 0 3 Kobayashi, Y., 102, 250, 251, 362' 3'7l, 379 K o b a y s h i ,S . , 1 4 8 Koch, G., 46, 97 Koch, K., 207,394 Koch, S. S. C., 214 Kochetkov, N. K., 394 Kochi, J. K., 253, 254, 35O K o c i e n s k i , P . , ' l ' 7 ,3 9 3 K o c o v s k y ,P . , 3 8 5 Kocz, R., 388 Kodaka, M., 387 K o d a m a ,K . , 3 7 1 Kodera,Y., 359 Kodoi, K., 310 K o d o m a r i ,M . , l 1 4 K o e l l e r ,K . J . , 2 1 4 K o e n i g ,M . , 2 9 3 Koga, G., 70, 193,352 Koga, K., 96,9'7, l'78,396 Koh,H. Y.,316 Koh, K., 284 Koh, Y. J., 343 Kohler, T., 4l I Kohmoto, S., 336 Kohno, Y., 28, 50, 53 Kohra, S., 345 Koide, T., 386 Koike, H., 87 K o i k e ,N . , l 7 l Koike, T., 102 Koizumi,T., 14,345 Kojima, S., 327 Kol, M., 188 Kolb, H. C., 267 Kollar, L., 308 K o l o m e i t s e v ,A . A ' , 1 7 7 Kolp, G., 18l K o m a d a t e ,F . , 3 1 6 Komarov, I. V., 201 K o m a t s u ,K . , 2 4 6 K o m a t s u ,N . , 7 4 , l 0 l Komiotis, D., 76 Komota, M., 97 K o m o t o ,I . , 3 1 6 K o n d a k o v ,D . Y . , l ' 7 4 ' 4 1 5 Kondo, H., 47, 384 K o n d o ,K . , 1 0 9 , 3 9 3 Kondo, S., 28, 216
446 Author Index Kondo, T., 129,309' 310 Kondo, Y., 80, 218, 222, 280, 283' 349 Kong, M. S., 138 Kong,X., 66 K o n n o , A . , 1 5 3 ,l 8 l Konno, H., 99 K o n o p e l s k i J, . P . , 8 0 Konradi, A. W., 396 Konwar, D., 333 Kordik, C. P., 176 Kore,A. R., 288 K o r e e d a ,M . , 2 0 6 Koren, 2., 400 Kornilov, M. Yu., 201 K o s e r ,G . F . , 1 8 6 K o s k i n e n ,M . P . , l l 5
p
; l {
K o s u g i ,M . , 3 1 , 4 5 , 1 2 9 K o t o r a ,M . , 4 1 5 K o t s u k i ,H . , 1 7 9 Kourouma,M., 335 K o u z n e t s o v ,V . , 3 2 7 K o v a r o v a ,I . , 2 0 6 Kowall,B., 179 K o y a m a ,J . , 6 3 , 4 0 9 Koyama, K., 180 Koyama,T., 349 K o z a i ,I . , 2 5 3 K o z h u s h k o v ,S . I . ' 1 7 4 Kozikowski, A. P., 388 K o z i m a ,S . , l 4 Kozlowska,8., 4l I Koz'min, A. S., 194 Krainer, 8., 376 K r a s n o k u t s k a Y aE, . A . ' 6 4 K r a s s ,N . , 9 7 K r a u s e ,H . - W . , 9 6 K r a u s e ,J . , 1 3 5 K r a u s e ,N . , 2 6 1 K r a u s z ,P . , 3 8 7 Krawczyk, H., 136 K r a y u s h k i n ,M . M . ' 1 9 7 K r e p i n s k Y ,I . 1 . , 3 2 3 K r i s h n a m u r t h YD , .' 44 K r i s h n a n ,B . , 3 9 3 Kristoff, E. M., 179 Krolikiewicz K., 102 Krowiak,S. A., ll0 Krowlikowski, D., 339 Kruijtzer, J. A. W., 36 K r u s e ,C . G . , 9 6 , 3 8 7
Kryczka,B., 392 K r y s a nD , . J . ,1 4 l K u , W . - S . 3, 4 1 KuboA , .,39,2ll Kubo,H., 20,406 Kubo,Y., 129,282,372'38'7'393 Kuboki,H., 20 Kubota,Y., 129,282, 387' 393 Kudo,K., 384 , 16 K u d oT , . ,3 l l , 3 1 5 3 Kuehl,C., 188 Kiihlein,K., 276 K u h l m a n nB, . , 3 9 9 Kuhlwein,J., 239 K u h n ,H . , 3 4 9 Kukhar,V. P., 37 J. J., 307 Kulagowski, S., 281 Kulasegaram, Kulawiec,R. J.,281 Kulinkovich,O. G.' 174 Kulinski,T., 288 K u l k a r n iG , . H.,361 K u l k a r n iS , .J . '4 0 6 K u l k a r n iS , .V . , 9 9 ' 1 5 3 K u m ,P . W . Y . , 3 8 0 Kumagai,T., 407 T., 2 Kumamoto, KumarB , ., 198 Kumar,D., 187,291 KumarH , ., 198 Kumar,P.,405,406 Kumaran,G., 361 ' 10 K u m o b a y a s hHi.,, 4 0 , 4 l ' 1 9 6 3 K u n a i ,A . , 3 7 5 Kunath,A., 189,203 Kiindig,E. P.,95' 263 Kundu,8., 26 K u n d uN , . G., 129 N., 173 Kunesch, K u n i s h i m aM, . ' - 1 1 63'2 5 H., 372 Kuniyasu, Kuno,H., 35'7'414 Kuno,T., 401 K u n t z ,B . A . , 9 5 K u n z ,H . , 9 , 1 4 7 'l 8 l Kunz,T., 261 K u o ,E . A . , ' l ' 7 , 3 ' 1 5 K u o ,G . - H ' ,2 8 4 T., 290 Kuramochi, Kurata,H., 233
Kurata. T.. Kurihara. A Kurihara. M Kurihara. T. Kurobashi. I Kuroda, Y.. Kurosaki. R Kurosawa. I Kurosawa. ! Kurose,N.. Kurth, J. A Kurth, M- J Kurusu Y.. Kusama,H K u s a m a .T . K u s a n o ,K . K u s u d a ,S K u s u i ,H . .
Kusumoto. Kusumoto. Kutateladz Kutateladz Kuwajima Kuzemko. Kwok, T. J Kwon, H.. Kwon. O.
Labadie. S Labiad.B Labrie. F, Labroli, l Labroui lk
Lacombc. Lacour. J Laffitte. Lafontatr Lai,C.. l Lai, G. S Lai, L.-t
Laikhter Lajoie. € Lajoie. C Lakhmil Lakshml Lam. J. l
Lambcrt Lambusl Lamidcl Lamotlr
AuthorIndex 447
Kurata,T., 331 K u r i h a r aA, . , 3 ' l l ' 3 9 4 Kurihara,M.' 300 K u r i h a r aT, . , 3 7 6 M., 52 Kurobashi, Kuroda,Y., 289 Kurosaki,R., 235 K.' 230 Kurosawa, S" 16l Kurosawa, Kurose,N., 345 Kurth,J. A., 300 Kurth, M. J', 192,300' 381 K u r u s uY . , 4 7 ,l O 2 , 1 2 9 , 2 8 1 Kusama,H., 346 K u s a m aT, . , 4 1 2 K u s a n oK, . - H . '4 l K u s u d aS, . , 3 4 5 K u s u iH , ., 3ll K u s u m o t oN, . , l 1 6 S., 6? Kusumoto, A G.'29 Kutateladze' T. G.' 29 Kutateladze, K u w a j i m aI ,. ' 8 ' 2 l l Kuzemko,M. A.' 223 Kwok,T. J., 308 Kwon, H., 239' 3'71 Kwon,O. O., 175 Labadie,S. S.' 129 Labiad,B., 245 Labrie,F., 210 Labroli,M., 37 M., 52 Labrouillere, J. M.' 227 Lacombe, Lacour,J., 380 Laffitte,J. A., 40 J. A.' 350 Lafontaine, L a i ,C . , 3 2 3 L a i ,G . S . , 1 0 0 Lai, L'-L.' 341 L a i k h t e rA, . L . , 2 5 2 Lajoie,G., ll Lajoie,C. A., 170 L a k h m i r i ,R . , 3 9 2 C.' 32O Lakshmaiah, L a m ,J ' N . ' 3 4 Lambert,J. F.' 4ll D''204 Lambusta, A.-M.' 334 LamideY, Lamothe,S., 78
Lamture, J. B., l7 Lan, X., 34 L a n d a i s ,Y . , 3 0 7 ' 3 1 0 L a n d e r ,P . A . , 1 7 2 Landert, H., 96 Landi, l. L.,223 Landini,D.,288' 345 Landolt, R. G., 335 Lang,H., 34, l7l Langler,R. F.' 102 L a p i t s k a Y a ,M . A . ' l l 5 Lara, V., 320 LarchevequeM , ', 240 Lardicci, L., 250 L a r h e d ,M . , 2 7 6 392 Larock, R. C., 232, 276, 27'1,28O' 282' 4 9 F . , J . Larrow, L a r s s o n ,E ' M . , 2 ' 7 7 L a r s s o n ,U ' , 3 6 1 L a s c h a t ,S . , 3 5 6 Lasek,W., 289 L a s z l o ,P . , 2 4 5 L a t h b u r Y ,D C . ' 1 4 3 Latini, D', 87 L a t o u c h e ,R . , 2 9 8 La$anzi, A., 159' 217 L^truada , L.,'17 L a u , T . - C . ,2 9 Lau, X., l7l L a u n a Y ,Y . , 2 6 2 L a u p i c h l e r ,L . , 3 ? l Laurent, A. J.' 379 392 L a u t e n s ,M ' , 1 0 7 , 1 4 1 , 2 ' 1 ' 1 , 3 0 38 l' l ' L a v e r g n e ,O . M . ' 3 0 0 L a w r e n c e , N . J . , 6 7 , 1 0 0 ,2 1 4 ' 2 9 4 ' 3 ' 1 5 Lazzari, D.' 56' 262 Le Bigot, Y., 288 L e B o i s s e l i e r ,V . ' 5 3 Le Gallic,Y., 137 LeHyaric,M'182 Le Menez,P., 173 Le Merrer, Y., 388 L e P e r c h e c ,P ' , 1 7 7 Le Roux, C., 52 Leahy,J. W., 375 L e a n d r i ,G . , 3 6 1 , 4 1 2 L e a n n a ,M . R . ' 6 7 L e a r d i n i ,R " 1 3 0 L e b e a u ,E . ' 1 3 0 ' 2 2 5 Lebl.M., 123
44E Author Index
Lenain,V., 310 Lenardao, E. J.,32'1 Lennick,K., 408 Lentz,R., 129 Leong,W., 280 Lepoittevin, l.-P.,62 Lerman,O., 64 Leslie,R., 84 Letavic,M. A., 363 Letellier,M., 288 Leung,C. W., 221 Leung,M.-K., 345 Leung,W.-H.,380 Levart,M., 245 L e v i n ,J . I . , 3 4 9 Levy,D. E., 63 Lewis,C. 8., 80 L e w i s ,D . 8 . , 3 2 4 L e w i s ,N . J . , 1 8 7 L e y ,S . V . L e y , 1 7 , 8 4 , 9 5 , 1 2 5 Lhermitte,F., 175 L h o m m e tG, . , 2 4 8 L h o s t eP, . , 3 9 2 Li,8.,20,246 L i , c . , 5 7 ,7 6 , 2 t 2 , 3 2 2 , 3 5 40 t, ' 7 L i , c . J . ,5 8 Li, c.-J., 386,392 L i , c . - N . ,3 5 2 Li,G., t72,180,350 Li, J.. -36,99. t66. t85,334 L i , K . S . ,3 7 2 Li, L. H., 74, 183 L i , N . - S . ,l 1 9 ,3 6 8 Li, P. Li, t09,290,330 Li, T., 64, t'78,210,270 Li, T.-5.,272 Li, w., 120 L i , w . - R . ,2 9 8 Li, x., 2r0 Li, X.-y., 300 Li, x.-y.,295 Li, Y., 122,)4s, 179,243,393 Li, Y. L., l9l Li, Y.-L.,272 L i a n g ,S . , l l L i a o ,L . - F . ,2 1 4 Liao,P.-Y.,354 Liao,Q., 145 Liao,S., 282 Liao,Y.,243
U Lr ti Lr Lr Lt Lr L{ Lt
AuthorIndex 449 L i c a n d r oE, . , 7 7 , 3 2 9 L. S., 129,154,261'393 Liebeskind, L i l l i e ,B . M . , 2 2 0 Lim, S., 104,367 L i n , C . C . ,7 6 L i n , C . - H . ,1 4 ,2 8 8 L i n , H . - S . ,1 7 0 L i n , J . , 1 6 6 ,1 8 5 L i n , L . - C . ,6 3 L i n , N . - H . ,7 7 L i n , P . - Y .3, 4 1 , 1 7 3, 5 4 Lin,R.,3153 L i n , S . ,3 1 6 Lin, S.-W.,272 Lin,2., 350 R. J', 100'272 Linderman, Lindsley,C., 417 Y., 179 Lingchong, Linker,T., 270 Linney,I. D., l'10,294 G., 350 Linstrumelle, Linz, C.,212 Lioret,F., 330 Lipke,M., 183 Lippard,S. J.,408 Lipshutz,B. H., 15,393'4l'l Liptak,A., 208 Liu, B., 246 L i u , H . - J . ,8 7 , 1 3 5 L i u , K . - H . ,2 6 3 L i u ,M . T . H . , 3 9 5 Liu, P., 330 Liu, P.-Y.,56 Liu, Q., 384 L i u ,T . , 2 1 0 Liu;.Y., 145 Liu, Z.-D., 138,152'288'291 T., 64 Livinghouse, Lizunova,T. L.,228 Llebaria,A., 50,249 Llorente,1.,53 Lloret,F., 371 L o , H . - C . ,3 6 1 Lobell,M., 276 Locati,L., 73 Loffet,A., 13,222 Lofstrom,C., 126 L o h r a yB , .B',22 O., 97 Loiseleur, Lolkema,L. D. M.' 356
Lollo, M., 233 Long,Q.-H.,34 G,. R . , 2 7 ' 7 Longarela L o n g m i r eJ, . M . , 3 7 7 L.,'16' 193'393 Longobardo, Lopez,C.,325,386 Lopez,C. J.,266 L o p e z J, . C . , 3 7 1 Lopez,L.,389 Lopez,M. 8., 325 L o p e zM , . C., 15 M' T. P.' 66 Lopez-EsPinoza, C.' 386 Lopez-Leonardo, Loreto,M. A., 159 Lorne,R., 5 Lothian,A. P.,400 L o u b i n o u x , 8 .3,1 9 , 3 6 1 L o u i e ,M . S . ,3 2 1 Louis,C., 365 LoupyA , .,210,245,288 Love,B. 8., 155 Lovey,R. G., 102 Lowen,G. T., 138 L u , L . , 9 6 , 1 2 3 ,t 3 7 ' 2 1 4 ' 2 7 2 L u , S . ,1 2 , 3 5 9 , 3 6 1 Lu, X., 47, 129,2'l'7,386,392' 393 Lu,Y.-d.,232 L u , Y . - D . ,3 9 2 Lu,Z.-H.,'14 Lubell,W. D., 40 Luche,J. L., 96, 137,214'395 L u d w i gC , .,261 Ludwig,R., 189 L u e ,H . - L . ,2 6 3 Lue,P., 318 Luh, B. Y., 367 , 5 ,1 7 l ' 1 7 3 L u h ,T . - Y . 6 Luisetti,M., 203 Luke,G. P.,63 S.,359'361 Lundberg, Ltining,J., 283 L u o ,F . - T . ,l 1 4 ,3 8 1 L u o ,W . , l l L u o ,X . - L . , 2 7 3 Lupatelli,P.,6 Lusby,W. R., 89 L u v ,S . - M . ,1 2 Llzzio, F. A., 18' 106'303 Lyford,L., 42,256 Lygo,B., 3, 409
450 Author Index L y n c h , J . - J . ,1 2 2 Lynch,K. O., 363 M a , S . , 1 7 , 2 3 , 4 0 ' 4 3 , 4 4 ' 4 7 ,6 2 , ' 7 7 ' 8 3 ' 1 2 9 ,2 l t , 2 6 7 , 2 7 7 ' 2 8 0 , 2 8 1 , 2 8 2 , 2 8 9 308,329,403 Maas, P. J., 2 Mabic, S., 62 Mabuchi,T., 16 Macchia,F.,220, 403' 404 Machii,D., 395 M a c K a Y ,M . F . ' 1 0 6 M a c K e n z i e ,A . R . ' 3 7 7 M a c K i n n o n ,J . , 2 0 8 Macor, J. 8., 387 M a c P h e r s o nD, . T . , 2 1 7 Maddox,J' T., 385 M a d h a v a n ,S . , 8 3 M a d s e n ,J . O . ' 2 8
; I
'[2 -
M a e d a ,A . , 3 4 5 M a e d a ,H . , 3 4 5 , 3 8 6 ' 4 0 8 M a e d a ,K . , 2 ' 2 5 3 ' 3 8 7 M a e j i ,N . J . ' 2 3 Maejima, K.' 222 M a e n a k a ,J ' , 2 5 1 M a e r c k e r ,A . ' 2 0 6 M a e s t r o ,M . C . , l 4 l , 3 6 7 Maeta,H., 125' 417 M a g g i ,R . , 2 0 , 2 6 8 M a g n u s ,P . , 3 8 0 M a g n u s s o nG , ., 63 M a g u i r e ,A . R . , 1 0 2 M a g u i r e ,M . P . ' 1 7 6 M a h a d e v a n ,A . , 8 0 , 3 2 2 ' 3 7 8 M a h a j a n ,A . R . ' 1 4 6 M a h a j a n ,J . R . ' 6 8 M a h a s n e h ,A . S ' ' 3 5 4 Mahindroo, V. K.' 6 M a h l i n g ,J . - A . ' 3 8 4 Mahmood, K., 362 Mahon,M. F.' 170 Maia, A., 288 Maier, L., 18 M a i g n a n ,C . , 6 7 M a i k a P ,G . C . ' 1 0 8 Maillard, B., 73' 288 Maiorana, S."l'7 ' 329 Maiti, A. K"245'288 Maiti, P. K., l16 M a i t r a ,U . , 3 7 1
Maity,G., 87 M a j d o u b ,M , 2 4 5 M a j e t i c h ,G . , 2 2 1 Majewski, M., 208 Majidi, A., 345' 409 Majoral, l.-P.' 417 M a j u m d a r ,K . K . ' l l 9 Mak,C. C., 375 Mak, C.-K., 29 Mak, T. C. W.' 60 Maki, T., 386 M a k i o k a , Y . , 3 1 7 ,4 0 1 ' 4 0 3 Makosza,M',289,292 M a l a c r i a ,M . ' 1 2 6 M a l a n g a ,C . . 2 5 0 M a l a w s k a ,B . , 2 8 8 M a l h o t r a ,N . , 3 4 M a l i ,R . S , t 7 Malik, S. D., 245 M e P k i n a ,A . G . , 3 ' 2 8 3 M a l l a i a h ,K . , l 6 Mallart, S.,40 M a l l e t , J . - M . , 3 1 6 '3 8 9 M a l l e t ,M . , 2 1 4 ' 3 1 6 M a l l e Y ,M . , 3 7 5 M a l l o u k ,T . E . ' 3 2 3 Malm,J., 129 M a l y s h e v a ,S . F . , 2 9 3 M a m b u ,A . , 2 4 0 MamdaPur,V.R,I52 Man, T.-O., 122 M a n a g e 'A . , 3 3 3 M a n a v i a z a r ,S . , 2 6 7 M a n c h e n oB, . , 2 l l ' 2 1 8 M a n c u s o ,V . , 3 6 5 Mandai, T.' 280, 281,282 M a n d a l ,S . B . ' 3 0 1 M a n d v i l l e ,G . , 2 6 1 M a n g e n e YP , .' 261 M a n h a s ,M . S . ' 2 3 M a n i u r Y ,8 . , 7 3 M a n n , A . , 1 6 , 1 7 2 ,3 6 1 M a n n i n g ,H . W . ' 3 7 1 Mano,S., 308 M a n s i t l a ,H . , 1 8 6 M a n s u r i ,M . M ' ' 3 6 7 M a r a z a n o ,C . , 1 7 0 M a r c a n t o n i ,E . , l ? 0 , l ' 7 1 ' 2 4 O ' 2 5 6 M a r c h a n d ,A . P . ' 3 3 7 M a r c h e s e ,G . , 1 7 3
March March Marct Marcr MarcL Marco Marcl \!arr o \larrr \ l a r ra Marrl |\la r\r \la rn \larn Mard \larq Marq \larq Marq \larr \larr \lan \lan
\tan \lan \lart \lart \lart \lar' \ler \ler \ler \ler \ler \ler \ht \lrl \hl \|ll \hl \ltr
\le \tr Vr \lr \1.
\|| Ur \l|
Author Index 451 Marchetti, M., 206 M a r c h i n g t o n ,A . P . , 2 3 4 , 4 l l Marcin,L. R., 263 M a r c i n i e c ,8 . , 3 1 0 Marck, G., 273 Marcoux, J.-F., 100, 140 M a r e k ,I . , 2 6 2 , 2 6 5 Marinelli, F., 289 Marini, F., 152 Marini, 8., 56 Marino,J. P., 14l, l5l Marko, L 8 ., 42, 160, 221, 384 M a r m o n ,R . J . , 3 7 1 M a r m o t t i n i ,F . , 4 1 4 Marolewski,A. 8., 9 M a r q u a r d t ,D . J . , 3 2 7 M a r q u a r t ,A . L . , 2 9 5 Marquart, P., 203 M a r q u e s ,C . 4 . , 1 4 4 M a r r s ,C . M . , 2 8 1 M a r s a i s ,F . , 2 1 4 M a r s h a l l ,D . R . , 3 9 3 M a r s h a l l , J . A . , 8 , 6 3 , 1 7 0 ,2 2 ' 7 ,2 - 1 2 ,2 9 6 , 297,320 M a r s o n ,C . M . , 2 3 3 , 3 5 6 M a r s t e r s ,J r , J . C . , 3 7 5 Martel, J. P., 149 M a r t e n s ,J . , 9 6 , 9 7 , l 1 7 M a r t e n s ,T . , l 3 l M a r t i n ,A . , l 0 l , 4 l l Martin, A. R., 349 Martin, B., 298 Martin, C. J.,46 Martin, E.,262, 4ll Martin, M. V., l0l Martin, R. P., 125 Martir, S. F., l7l, 243 M a r t i n - A r a n d a ,R . M . , l 0 l M a r t i n e z d e G u e r e n u ,A . , l 0 l Martinez de Marigorta, 8., 262 M a r t i n e z ,A . G . , 2 6 1 , 3 4 6 , 3 4 9 , 3 7 8 M a r t i n e z ,J . , 2 2 2 , 2 8 8 M a r t i n e z ,L . A . , 2 3 1 Martinez, M. A., 97 Martorell, G., 129 MarumotoS , .,2ll Maruo,M.,401 M a r u o k a ,K . , 2 1 , 9 5 , 1 3 5 ,2 0 8 , 2 3 ' 1 , 2 3 8 , 3 5 6 Maruta,M., 43 M a r u y a m a ,K . , 2 0 , 3 2 7
M a r u y a m a ,T . , 9 5 , 9 7 Maryanoff, C. A., 340 M a s a k i , Y . , 6 3 , 1 3 3 ,3 2 5 , 3 8 2 M a s h i m a ,K . , 4 1 , 1 9 6 M a s h i n o ,T . , 2 6 9 , 3 2 ' 7 Mashio, H., 316 M a s h r a q u i ,S . H . , 2 8 8 M a s s o u i ,M . , 2 M a s s y - W e s t r o p pR, . A . , 3 4 9 Mastroianni,D., 76 Mastrorilli, P., 269 M a s u d a ,H . , 2 8 6 M a s u d a ,R . , 1 8 5 M a s u m i ,A . , 3 1 6 M a s u y a ,K . , 8 Masuyama, Y ., 47, 102, 129, 281 Matano, Y.,326, 367 Matare, G. J., 200 M a t a s s a ,V . G . , 1 5 0 Mathew,L., 130 M a t h i s ,C . A . , 3 6 2 M a t h r e ,D . J . , 9 6 , l 5 l M a t h u r ,K . B . , 2 6 M a t i l a i n e n ,J . K . , 1 5 3 M a t s u b a r a ,K , , 3 8 0 M a t s u b a r a ,S . , 4 0 3 M a t s u b a y a s h i ,K . - i . , 3 7 I M a t s u d a ,F . , 3 1 6 M a t s u d a ,H . , 5 4 , 1 4 7 , l ' 1 6 , 2 3 9 , 3 5 1 , 3 6 8 , 3 7 1 M a t s u d a ,I . , 3 0 6 M a t s u d a ,M . , 3 5 0 M a t s u d a ,T . , 4 0 8 M a t s u e d a ,G . R . , 2 3 6 M a t s u h a s h i ,H . , 3 4 9 , 3 9 6 Matsui, H., 408 Matsui, T., 96,269,273 M a t s u k a w a5 , .,43,44 M a t s u k i ,K . , 4 2 M a t s u k u m a ,A . , 6 3 M a t s u m i y a ,K . , 2 1 4 M a t s u m o t o ,H . , 9 5 M a t s u m o r o ,K . , 6 7 , 8 1 , l 1 6 , 1 4 0 , 2 0 0 , 3 4 5 , 384,402 M a t s u m o t o ,T . , 1 2 5 , 2 O 3 , 2 8 2 , 4 1 7 M a t s u m o t o ,Y . , 3 9 , 9 6 M a t s u m u r a ,K . , 4 0 M a t s u m u r a ,Y . , 4 l Matsuno,H., 292 M a t s u n o ,S . , 2 8 9 Matsuo.G., 130
452 Author Index Matsuo, K., 39 Matsuo, T., 97, 132, 233 M a t s u o k a ,M . , 1 6 5 M a t s u o k a .S . , 2 8 0 , 2 8 1 ,2 8 2 M a t s u o k a ,T . , 2 3 3 M a t s u s h i t a ,H . , 3 5 7 , 4 1 4 M a t s u s h i t aY , .-i.,273 M a t s u s i t a ,Y . , 2 6 9 M a t s u t a n i ,T . , 3 2 3 , 3 5 4 M a t s u u r a ,I . , l l 4 M a t s u y u k i ,I . - i . , 2 9 1 Matt, P. V., 97 Matr, T., 208 M a t t h e w s ,D . P . . 1 0 0 ,3 4 9 Martii, D., l6 Mattson, M., 126 Mattson-ArnaizH , . L., 321 M a u m y ,M . , I l 3 Mauri, A., 40 Maw, G. N., 104 Mayer, S. C., 36 M a y o r a l ,J . A . , 8 Mazal, C.,349 Mazurkiewicz,R., 35 Mazzanti, G.,261,345 Mazzeo, C.,389 Mazzone, L., l'13 M b i a n d a ,X . Y . , 1 7 3 M c C a l l u m ,J . S . , 1 5 4 M c C a r t h y , J . R . , 1 0 0 ,3 4 9 McCarthy, N., 146 McCarthy, T. D., 120 M c C l o s k e y ,P . J . , 1 6 4 M c C l u r e ,K . F . , 2 7 3 M c C fu r e , L . D . , 3 4 9 M c C o r m i c k ,F . A . , 3 2 ' 7 M c C r e a d i e ,J . G . , 4 McCubbin,Q. J., 307 M c D o n a l d ,C . E . , 8 4 , 1 3 0 McDonald, F. 8., 244, 3O3 M c G e a d y ,P . , 6 2 M c G h e e ,W . D . , 2 9 3 , 3 9 2 McGuigan, P., 146 M c l n t o s h ,M . C . , l l 3 McKennon, M. J., 328 M c K e r l i e ,L . A . , 2 6 3 McKervey, M. A., 146 McKie,J. A., 316 M c K i l l o p , A . , 1 8 7 ,1 9 7 ,1 9 9 , 2 9 0 Mclaren, L., 290
McNamara, K., 223 M c N e i l ,D . W . , 4 8 McNeill,A. H.,353 McNelis, 8., l9l, 194 M c N u l r y ,J . , 4 l l M c P e e ,D . J . , 1 7 9 McVety, K., 176 Meanwell,N. A., 137 M e b a n e ,R . C . , 3 3 9 M e d a n a ,C . , 1 9 9 Medici, A., 28 Meffre, P., 96 M e g u r o ,M . , 2 1 5 , 2 6 1 , 4 0 3 Mehler,T.,96,9'7, ll7 Mehta, S., 323 M e i j e r ,E . M . , 2 8 5 Meldal, M., 323 Mele, G., 389 M e l g a r e j o ,C . R . , 6 6 M e l i k y a n ,G . G . , 2 3 0 Mella, M., 20 Mello, R., 242 M e l l o n i ,G . , 2 0 6 , 2 9 5 Mellor, J. M., 230 M e n a s h e ,N . , 3 0 9 M e n d e s ,E . , 2 8 4 M e n d o z a ,A . , 2 8 0 M e n e n d e z ,J . C . , 3 9 5 M e n e z e sP , . H.,29 M e n g e ,W . M . P . 8 . , 7 6 M e n i c a g l i ,R . , 2 5 0 M e r e y a l a ,H . B . , 2 8 3 M e r l i c , C . A . , 1 0 3 ,3 6 5 Merlo, V., 371 M e r m e r s k y ,Y . , 1 2 3 Merzouk, A., 13 M e s h r a m ,H . M . , 2 4 5 Meth-Cohn, O., 28 Metz, M.,269 Metz,P.,212,4O8 M e u l e m a n s ,T . M . , 4 5 Meunier,S. J., 288 Meyer,A. G., 377 Meyer, C., 265 Meyer, F. E., 280 Meyer, S. D., 286 Meyer,T.,241 M e y e r s ,A , . 1 . , 6 7 , ' 7 8 , 9 ' 7 , 1 5 6 ,2 4 1 , 3 2 8 Mezzina,8., l4l Mi, A.-Q., 170
M i c h a e l .J Michaelis Michel, T. ' Michelet. M i c h e l s .J Michida. 1 Michos. D Michoud.t
M i c o , 1 . .l Miethchcn Miginiac. Migita,T. Mikaeloff. Mikami. I Mikhalerr Miki, M. Mikina. V Mikolajcz Mill, s.. -1 Millar, R. Miller, C.. Miller, D. Miller, J. r Miller, L. Miller, M. M i l s t e i n .I Mimero. P Mimura. ! M i n , S .J . Minami.' Minamikr Minato. D Mincionc. Minisci.F Miosko*'sl Miranda. I Miranda. I Misco, P. I M i s h a n i .I M i s s i o .L . Misumi,0 Mitamura. Mitani. M Mitchell. Mitchell. Mitchell. Mitchell. Mitchell. Mitchell. Mitoh, S..
Author Index Michael,J. P., 384 M i c h a e l i s ,J . , 3 5 2 Michel, T., 209 Michelet, V., 375 M i c h e l s ,J . J . , 2 7 7 Michida, T., 67 Michos, D., 273 Michoud, C., 371 M i c o ,L , 2 1 2 M i e t h c h e n ,R . , l 8 l M i g i n i a c ,L . , 1 6 , 6 3 Migita, T., 45, 129 Mikaeloff, A., 166 Mikami, K., 8, 43, 44, 160 M i k h a l e v a ,A . 1 . , 3 Miki, M., 96, 147 Mikina, M., 147 Mikolajczyk, M., l4'7 Milt, s., 365 Millar, R. W., 150 Miller, C., 100 Miller, D. J.,307 Miller, J. A., 129 Miller, L. A. D.,336 Miller, M. J.,383 Milstein, D., 280 Mimero, P., 294 Mimura, N., 408 Min, S. J., 175 M i n a m i ,Y . , 2 8 3 M i n a m i k a w a ,J . , 6 3 Minato,D.,2O4 Mincione, E., 6, 145 M i n i s c i ,F . , 2 4 , ' 1 3 M i o s k o w s k i ,C . , 7 8 , 1 4 9 ,3 1 6 M i r a n d a ,E . 1 . , 3 6 7 Miranda, R., 320 Misco, P. F., 367 M i s h a n i ,8 . , 6 4 , 1 8 8 Missio, L., 245 Misumi, O., 157 M i t a m u r a , S . , 3 1 8 ,4 0 3 M i t a n i ,M . , l l l , l l 3 , 3 6 2 M i t c h e l l ,C . M . , 1 8 5 Mitchell, H., 55 M i t c h e l l ,M . A . , 2 9 8 Mitchell, M. B., 143, 194 M i t c h e l l ,R . H . , l 7 l Mitchell, T. N., 179 Mitoh. S.. 380
Mitra, A., 63 Mitsudo, T., 310 M i t s u z u k a ,M . , 2 2 8 M i u r a , K . , 6 9 , 3 6 1 ,3 7 1 ,3 8 2 , 3 8 5 Miura, M., 47, ll3, ll5, l9'7 Miura, T., 133,382 Miwa, K., 222,36'7 M i y a g a w a ,J . , 9 Miyake, H., 82 Miyake, R., 97 M i y a m o t o ,M . , 2 8 3 Miyamoto, Y., 96 Miyano, 5., 95, 17l, 237 Miyashita, A., 147 M i y a s h i t a , K . , 1 4 8 ,3 8 0 Miyashita, M., 63, 362 M i y a t a ,M . , 4 1 , 3 9 4 Miyata, N., 300 Miyata, O., 367 M i y a u r a ,N . , 1 2 9 , 1 4 2 , 2 5 0 , 2 6 4 , 3 4 9 Miyazaki,M., 367 M i y a z a k i ,T . , 2 5 1 M i y a z a w a ,M . , 3 9 2 M i y o s h i ,N . , 3 1 6 Miyoshi,S.,362 M i z o g u c h i ,K . , 1 0 2 Mizu, Y., 81, 132 Mizukami, H., 387 Mizuno, H., 380 Mizuno,T.,212,318 M l a d e n o v a ,M . , 4 0 9 Mo, X.-S.,255 M o b a s h e r yS , .,68,388 Mochizuki,K., l4 M o c h i z u k i ,T . , 2 3 1 Moghe, P. P., 405 Mogi, K. Mogi, l14 Mogyorodi, F., 132 Mohajer,D., 339 M o h a m m a d p o o r - B a l t o r k ,1 . , 3 1 9 ,4 0 9 Mohammed, S., 230 Mohan, P. S., 334 M o h e r ,E . D . , 2 1 9 Mohri, K., 16l M o i s e ,C . , 2 5 1 M o i s e e k o v ,A . M . , 1 5 9 M o k h a l l a l a t i ,M . K . , l 7 l M o l a n d e r ,G . A . , 9 6 , 1 4 2 , 3 1 6 , 3 8 2 , 3 8 4 M o l i n a , A . , 2 3 8 ,2 8 0 Molina, P.. 48, 386
454 Author Index Moller, B. S., 88 Mtiller, U., 283 Molloy, K. C., 170 M o l o n e y ,M . G . , 3 1 6 Moltke-Leth, C., 65 Moniatte, M., 129 M o n s a n v ,P . , 2 6 9 M o n t a n a ,J . C . , 6 6 , 4 1 3 Montanari, B., 285 Montanari, F., 144 Montanari, S., 330 Montanari, V., 193,292 M o n t a u d o n ,E . , 7 3 M o n t a u f i e r ,M . - T . , 2 4 5 M o n t e v e c c h iP , .C.,252 Montgomery, D., 104 M o n t g o m e r y ,J . , 3 7 7 Monti, H., 361,412 Monti, J.-P.,361,412 M o n t s e r r a t ,J . M . , 2 1 8 Moody, C. J., 307 Moody,H. M.,324 M o o r e , W J . , 1 0 6 ,3 0 3 Moormann, A. 8., 58 Mora, N., 227 M o r c u e n d e ,A . , 1 2 5 Mordini, A., 45, 56, 57,215,361 M o r e a u ,I . J . 8 . , 2 6 1 , 3 4 9 Moreto, J. M., 50, 249 Moretti, L, 203 Morgan, A., 83 M o r g a n ,J . , 2 7 , 6 3 Morgan, L. R., 298 Mori, A., 45,2O1,402 Mori, H.,210,216,375 Mori, K., 39, 233 M o r i , M . , 5 0 , 1 7 5 ,3 ' 1 3 , 3 9 3 Mori,N.,316 Mori, T., 96, 142, 253, 269, 330, 349, 3 71, 373,406 M o r i a r t y ,R . M . , 2 9 1 Moriguchi, K., 39 Moriguchi, S., 276 Morikawa, T., 371 Morikawi, M., 175 M o r i m o t o ,H . , 2 1 0 , 2 1 6 Morimoto, T., 96, 330, 349,373,406 Morishita, S., 24 Morita,K.-i., 415 Morita. Y., 382
M o r i y a ,O . , 7 4 , 3 3 O Moriya, T., 142,349 Morken, J. P.,97 Morken, P. A., 349,408 Morodome,M.,344 Morooka, K., 134 Moro-oka, Y., 269 Morrone, R., 97 Mortier, J., 79 Morton,H. E.,67 M o s h e r ,M . D . , 2 8 3 Mosleh,A., 250 M o s s ,W . O . , 7 7 M o s s e t ,P . , 1 3 7 Motevalli, M.,362 M o t h a g h i n e g h a d ,8 . , 8 7 Motherwell, W. 8., 122, 3'71 M o t o f u s a ,S . , 2 5 Motoki, S., 20 Motoyama,Y., 43 M o t t a d e l l i , S . , 1 8 0 ,3 5 6 Moulines,J., 334 M o u l o u d ,H . A . H . , 7 3 Mouri, M., 95, 97 Moyroud, J., 79 M u a t h e n ,H . A . , 1 9 3 Muccioli, A. 8., 88 M u c h o w s k i , J . M . , 1 8 5 ,2 2 1 , 3 5 9 M u c i , A . R . , 3 7 ,3 1 7 Mudryk,8.,2ll Muduliar, C. D., 288 M u e l l e r ,R . H . , l 1 4 Mueller-Westerhoff, U. T., 148, 17l M u h a m m a d ,F . , 6 7 , 3 7 5
T., 25, 44, 52,95, l0'1,154, Mukaiyama, 322, 323,346, 354,356,358,361,362, 380,396 M., 108 Mukhopadhyay, T., 208 Mukhopadhyay, Miiller.M.. 146 Miiller,T. J. J., ll8 MulliezM . .. 331 Munakata,Y., 203 Munoz.A.. 269 M u n o z L. . . l l 5 Munoz,S., 352 V. R. N., 323 Munsinghe, Muraglia,8., 385 Murahashi.S.-i., 73, 107,265,306, 359,392
M u r a h a s hr . Murai, S.. I Murai, T.. I Murakamr Murakamr Murakamr Murakamr Muralidhan Muraoka. H M u r a s e ,f i . . Murashime M u r a t a ,N . . Murata. S.. Murphy C. Murphy. J. Murphy, M Mussate-M Musselman Mustafin.. Muto, T.. -1 Muzard. V Muzart. J . Myers, A- ( Mynen, D.
Nacci, A.. l Nader, L S N a d k a r n i .I N a g a h a r a .! N a g a i ,S . - r N a g a i ,T . . ! Nagamatsu N a g a o ,Y . . , ' Nagasaka. Nagashimr N a g a t a ,K . . N a g a t a ,T . . Nagatiji. A Nagayoshr Nagkagawe Nagumo.S N a i d e r .F . . Naidu, B. lt N a i g r e ,R . . Nair, K. B, Naito, M.. Naito, T.. 3 N a j e r a .C . . Nakagawa. Nakai.K..
Author Index 455 M u r a h a s h i ,S . - 1 . ,l l 3 , 3 0 9 Murai, S., 116,349,373 Murai, T., 102,216 M u r a k a m i , M . , 2 0 , 7 0 , 3 l l , 3 1 6 ,3 4 5 M u r a k a m i ,N . , l 1 4 M u r a k a m i ,T . , 7 4 , 2 7 3 Murakami, Y., 276, 310 MuralidharanK , . R., l7l Muraoka,H., 371 Murase,N., 95, 237 Murashima,T., 253 M u r a t a , N . , 2 1 8 ,2 8 3 , 3 4 9 M u r a t a ,S . , l l 3 , 1 9 7 Murphy C. K., 16l, 162 M u r p h y ,J . A . , 1 7 6 Murphy, M. E., 102 M u s s a t e - M a t h i e t uL,. , 2 7 7 M u s s e l m a nR , . A., 97 M u s t a f i n ,A . G . , 4 l l Muto, T., 373 Muzard, M., 364 M u z a r t ,1 . , ' 7 3 , 2 8 9 Myers, A. G., 98 Mynett,D. M., l7
|. {:
Nacci, A., l'72, 281, 389 N a d e r ,B . S . , 2 9 8 Nadkarni, D. V., 373 N a g a h a r a ,S . , 2 0 8 N a g a i ,S . - i . , l 1 4 N a g a i ,T . , 2 4 , 3 7 9 NagamatsuT , ., 164 Nagao, Y., 407 N a g a s a k aT, . , 3 5 8 N a g a s h i m a ,T . , 3 6 1 N a g a t a ,K . , 1 4 , 5 3 N a g a t a ,T . , 9 5 , 3 6 1 N a g a t i j i ,A . , 4 0 1 N a g a y o s h i ,M . , 3 8 2 N a g k a g a w a ,L , 3 1 7 Nagumo,S., 63 N a i d e r ,F . , 3 7 6 Naidu, B. N., 109,ll0 Naigre, R., 129 Nair, K. 8., l9l Naito, M., 96 Naito, T., 36'1,371 Najera, C., 183, 212, 316 N a k a g a w a ,M . , 4 2 , 6 3 , 9 6 Nakai, K., 263
Nakai, T., 44, 160, 174,233 N a k a j i m a ,M . , 9 6 , 9 ' l Nakajima,T., 148 Nakamoto,C., 4l I Nakamura,D., 321 Nakamura,E., 388 Nakamura,H., 4, 261, 393 N a k a m u r a ,I . , l l 3 Nakamura,K., 28 N a k a m u r a ,T . , 3 2 9 , 3 4 0 Nakamura,Y., 361 Nakanishi, H., 58 N a k a n i s h i ,S . , l 9 l , 3 8 3 Nakanishi,Y., 414 N a k a n o ,K . , 2 1 4 Nakano,S., 269 Nakao, H., 269 N a k a o ,K . , 2 5 1 N a k a s a k a ,K . , 1 0 3 N a k a t a ,M . , 1 3 0 N a k a t a ,S . , 2 6 9 , 3 7 1 Nakatani,J., 4 N a k a t a n i ,K . , l 4 l , 3 0 3 N a k a t a n i ,S . , 2 6 9 N a k a y a ,C . , 3 2 6 N a k a y a m a ,K . , 9 ' 7 ,2 6 9 , 4 1 2 N a m , K . - S . ,3 8 8 N a m b i a r ,K . P . , 6 3 N a m b u ,Y . , 8 9 Namy, J.-L., 312,315 Naniwa, Y., 4l I Nanni,D., 130 N a n t e r m e t ,P . G . , 2 6 3 N a n t z ,M . H . , 2 6 1 N a o s h i m a ,Y . , 2 0 3 N a o r a ,T . , 7 3 , 1 0 7 , 2 6 5 , 3 0 9 , 3 1 0 Nara, S., 83, 316 N a r a s a k a ,K . , 9 , 5 0 , 5 3 , 8 ' 7 ,2 3 1 , 3 4 6 N a r a s i m h a n ,S . , 8 3 N a r a y a n aC , .,85,338 N a r a y a n n a ,C . , 1 8 4 Narender, N., 73 N a r i s a n o ,8 . , 3 7 1 N a r i z u k a ,S . , l 8 l N a s a d a ,Y . , 3 6 1 Naso,F., 173 N a u d y ,C . , 3 3 1 Naumann,D., 55 N a v a r r o ,C . , 2 8 8 Navio, J. L. G., 238
456 Author Index Nayak, A., 354 Nayak, S. K., 358 Naylor,A., l'11,249 Nayyar, N. K., 16,326 N a z a r e n o ,M . A . , 3 1 6 N a z a r e t i a nV , . P.,342 Nazarian,S., 192 Neary, A. P., 3l Nedelec, J. Y., 129 Neet, N. P., 295 N e f e d o v ,O . M . , 2 8 8 Negishi,8., 129,349 Negishi,E.-1., 174 Neh,H., 174,367 N e i b e c k e rD , ., 154,302 Neil, D. A.,243 Neiteler, G., 120, 264 N e l s o n ,J . A . , 1 2 9 N e l s o n ,S . G . , 3 7 Nemeth,I., 408 N e m e t h ,5 . , 4 ' 7 , 2 9 1 N e m o t o ,H . , 2 6 1 . 1 9 3 N e s t l e r ,8 . , 2 7 O , 3 6 4 N e s t o r ,N . B . , 8 4 Neto, A. 2., 407 N e u m a n n ,K . , 1 3 0 Neumann,W. P., 20, 349 N e u s t a d t ,B . R . , 6 9 N e v e u x ,M . , 1 4 2 Newton, I. L., 349 N e y e r ,G . , 2 0 Ngu, K.-Y., 375 Nguyen,S. T., 308 Nguyen,T., 142 N i b b e ,H . , 1 5 7 N i c a i s e ,O . , 2 5 6 N i c e ,L . 8 . , 8 4 , I 3 0 N i c h o l a s ,K . M . , 1 6 2 , l 9 ' 7 , 2 3 O N i c h o l s o n ,L . W . , 5 8 Nickisch, K., l'74, 36'7 N i c l a s ,H . - J . , l l 6 , 1 3 3 Nicoletti, R., 145, 189 N i c o l i n i ,M . , 2 3 0 N i c o l o s i ,G . , 9 ' 1 , 2 0 4 N i c u l e s c u - D u v a z ,I . , 5 Nie, X., 49, 96 Nief, F., 214 N i e l s e n ,J . K . , 2 8 N i e s t r o j ,M . , 2 0 Nigra, C., 295
Nikishin, G. 1., 202, 228 Nikitenko, A., 379 N i l s s o n ,M . , 2 6 1 N i n o m i y a ,1 . , 3 6 7 , 3 7 1 N i s h i , Y . , 6 f , ' 7 4 , t D l , 1 8 5 , 2 6 9 '2 8 6 ' 3 l l ' 365,3'71,411,415,418 N i s h i b a y a s h i ,H . , 9 6 N i s h i b a y a s h i ,Y . , 7 4 , l 0 l ' 3 6 5 N i s h i d a , A . , 1 9 5 ,3 3 0 N i s h i d a ,M . , 3 3 4 , 3 ' 1 2 Nishida,S., 354, 358 N i s h i d e ,K . , 2 3 5 , 3 2 1 N i s h i g a i c h i ,Y . , 6 3 , 4 l I N i s h i g u c h i ,A . , 3 6 7 N i s h i g u c h i ,H . , 1 8 0 Nishiguchi, 1.,212, 318 Nishiguchi,T., 195 N i s h i j i m a ,K . , 2 6 4 Nishikawa,T., 67 N i s h i m u r a ,M . , 9 7 Nishimura,T., 245 N i s h i n o ,H . , 2 3 0 N i s h i o , K . , 1 5 , 1 4 8 ,3 7 3 N i s h i o ,K . - i . , 3 4 9 N i s h i o ,M . , 5 4 , 2 8 6 Nishio, T., 52 Nishioka, E., 39 N i s h i t a n i ,K . , 3 6 1 Nishiyama,H., 95, 96 Nishiyama,K., 371, 3'15,394 N i s h i y a m a ,S . , l 2 l , 2 0 3 N i s h i y a m a , Y . , 1 8 5 ,2 6 9 ' 2 8 6 , 3 l l ' 3 ' 7 1 '4 1 5 , 418 N i s h i z a w a ,H . , 1 7 9 N i s h i z a w a ,M . , 3 7 5 ,4 1 0 Nitta,H., 45 Nitta, S., 307 Nitto, Y., 415 Niu, Q. J., 408 N i y o g i ,D . G . , 2 6 ' 7 N o b e l ,D . , l l 2 Nobile, C, F., 269 N o d a ,K . , 9 5 Noda, Y., 349 Node, M., 235,321, 411 Nodugov, A. N., 47 N o g a m i ,K . , 2 1 0 , 2 1 6 N o h e d a ,P . , 5 l N o h i r a ,H . , l 8 l Nomura, E., 301
N o m u r a ,K . . l t N o m u r a ,M . . 4 N o m u r a ,N - . l l Nongkunsarn. Normant, J. F. Normant, J--F Novak,B. M.. Novi, M., 81. i Novo, B., 2E5 Nowak,K.. ll Noyori, R.. {5 Nozaki,H.. {9 Nozaki,K.. {l Nuel D., 250 N u h r i c h ,A . l N u n e s ,M . L I N y l u n d ,C . S . N y m a n n .K . . .
O b a ,M . . 3 7 1 Obara,F.. l5l O b a y a s h i .R . O b i e r e y ,K . . 3 Obora, Y.. .l9i O c a n a ,B . . l & Ochiai,K.. l9 Ochiai,M.. li Oda,H., 129 Oda,M.. 351 Oda, Y.. 73. l Odagaki,Y.. Odaka, H.. 31 Oehlschlagc Ogami,M.. 1 O g a s a w a r aX . O g a w a ,A . . 5 . O g a w a ,H . . l i O g a w a ,S . . 1 5
Ogawa, T.. -{ O g o j k o .P . 1 . Ogoshi,S.. -r Oguku, T.. l( Oguni, N.. 9( Ogura, F.. ,1{ Ogura,T., 6J Oguro, K.. 3 oh, c. H.. lJ oh, D. Y.. ll
o h , s . - H . 3.
Ohara,M.. J
AuthorIndex 457 Nomura,K., 185,354,413 N o m u r aM , . , 4 7 ,l l 3 , l l 5 , 1 9 7 N o m u r aN, . , l 1 4 , 1 7 l Nongkunsarn, P.,338 N o r m a n tl ,. F . , 2 6 2 Normant,J.-F.,265 NovakB , . M.,276 Novi, M., 82, 296 Novo,B., 285 Nowak,K., 236 N o y o r iR , .,45,217 N o z a k iH , .,49,124 N o z a k iK , . , 4 1 ,2 8 1 ,3 0 8 NuelD., 250 N u h r i c hA , ., 334 N u n e sM , . L . P .G . , 3 3 5 Nylund,C. S., 280 N y m a n nK, . , 2 l l
,! <
O b a ,M . , 3 7 1 , 3 7 5 , 3 9 4 O b a r aF, . , 2 5 2 O b a y a s hR i ,. , 2 6 1 Obierey, K., 371 Obora,Y., 392 Ocana,B., 186 OchiaiK , ., l9l O c h i a iM , ., 325 Oda,H., 129,343 Oda,M., 352 Oda,Y., 73,303 Odagaki,Y., 303 Odaka,H., 343 Oehlschlager, A. C., 80 O g a m iM , .,216 Ogasawara, K., 174,324 Ogawa,A., 5, 14,I 16,251,261,349,372,394 O g a w aH, . , 2 2 2 , 2 2 5 Ogawa,S., 45 Ogawa,T., 30, 121,345,367 O g o j k oP, . 1 . , 3 4 2 Ogoshi,S., 349 Oguku,T., 109 O g u n i ,N . , 9 6 , 9 7 ,l 4 l Ogura,F., 343 Ogura,T., 63,409 Oguro,K., 336 oh, c. H.,331 oh, D. Y., t37,343 o h , s . - H . ,3 2 3 Ohara,M., 356
Ohe,K., l0l, 349,365 Oh-e,T., 349 Ohe,Y., 339 Ohga,Y., 145 Ohgo,Y., 316 Ohhara,T., 316 Oh-hata,T., 350,368 O h i r a ,A . , 3 1 6 Ohishi,T., 281,297 Ohkubo,T., 20 O h k u m aM, . , 8 8 O h k u m aT, . , 2 1 7 O h m i z uH , ., 109 Ohmori,H., 386,408 O h m o r iT, . , 2 3 5 ,4 l l O h n i s h iK , ., 318 O h n o ,A . , 2 8 O h n o ,H . , 2 0 1 , 4 0 2 O h n oM , .,361 O h n o ,R . , 1 9 8 Ohno,Y., 97 Ohra,T., 87 Ohsawa, A., 14,53 O h s h i m aM, . , 8 8 O h s h i r oY, . , l 3 l , 1 3 8 3, 9 6 O h s u m iK, . , 3 6 1 Ohta,A., 343 O h r aH , .,6 O h t a ,S . ,3 1 6 Ohta,T., 40, 129 Ohtake,Y., 372 Ohtsuka, T., 309 oi, s., ll5, 289 O i s h i ,A . , 3 2 1 O i s h i ,M . , 1 3 5 , 2 3 7 Oishi,T., 96, 203 O j i m a ,I . , 9 6 , 3 O 7 Okada,M., 53 Okada,R., 336 Okahara,Y., 45 O k a m o t oS, . , 1 6 4 ,2 6 6 , 3 9 3 Okamura,K., 109,373 Okano,K., 276 Okano,T., 129,4O7 Okauchi,T., 87 O k u ,A . , l 3 O , 2 2 2 , 2 6 5 O k u m aK, . , 6 Okumoto,H., 129,392 Okumura,H., 345 Okuno,H., 387
458 AuthorIndex Okuno,T., 291 O k u r o ,K . , l l 5 Olah,G. A.,20, t45, 182,194,295,300, 336,337,376,3'79,381 O l a n oB , . ,4 l l Oliver,J. E., 89 O I l i v i e rJ, . , 3 1 2 , 3 9 2 T. A., 361 Olmstead, Olsen,S. H., 382 Olsson,T., 261 Omeara,J., 8 O m o t eK , .,343 Onaga,H., 407 Onaka,M., 198,245 OndaK , ., 170 OndaK , . - 1 . ,l 7 l O n i m u r aK, . , 1 3 8 Ono,K., 141,280 O n o ,M . , 6 Ono,N., 67, l2l, 164,367,393 OnukiS , .,4ll Ooi, T., 237,356 O p d e n b u s cKh.,, 7 7 W., 331,349,362,392 Oppolzer, O ' R e i l l yB , . 4.,21 , 17 O r e l l i ,L . R . , 1 5 9 2 O r e n aM , ., 216 O r g a nM , . G.,45,97 Orii,R.,361 Oriyama,T.,70, 193,352 Orlinkov,A., 336,381 O'Rourke,D., 99 Ortaggi,G., 185 O r t i z ,B . , 3 2 1 0 r t u n o ,R . M . , 1 2 2 Osada,A.,222 O s a k a b eY,. , l l 3 Osborn,H. M. 1.,99, 154,l'12 A. G., 336 Osborne, O s h i m aE, . , 1 4 7 Oshima,K., 9, 69, 76, 81, 140,325,32'7, 328,345,385,402 Oshio,A., 97 Oslob,J. D., 277 K., 138 Osowska-Pacewicka, M. H., 350 Osterhout, Ostrowski,S., 292 Ostwald,R., 97 O ' S u l l i v a nA, . C . , 3 6 1 Otera,J., 49, 124,214,233,338
Otonari, Y. A., 154 O t s u b o ,T . , 3 4 3 O t s u j i , Y . , l 9 l , 3 0 1 ,3 8 3 O t t e ,A . R . , 2 9 9 Ouihia,A., 341 Outurquin, F., 64 Ouvrard, N., 88 O v a s k a ,T . V . , 8 0 O v e r a s ,H . , 3 4 9 Overman, L. E., 14,37'l O w t o n ,W . M . , 7 1 , 8 l Ozaki,F., l16 O z a k i , S . , 2 0 , 3 8 , 3 5 6 ,4 l l Ozaki, Y., 2ll O z a w a ,F . , 3 9 , 4 5 Ozlii, Y., 371 P a g a n e l l i ,S . , 3 0 8 P a g e ,P . C . 8 . , 9 6 , 1 7 0 , 1 8 3 ,4 l I P a g n o n i ,U . M . , 1 5 0 , 1 9 9 ,2 3 1 ,3 8 1 P a h u j a ,S . , 2 9 1 Pai, Y.-C., 203 Pak, C. S., 225,226 P a k u l s k i ,2 . , l 7 l Pal,K., 331 Pal, M., 40, 129 P a l a c i o s ,J . C . , 3 1 9 Pale,P.,'7'1,240,333 P a l e y ,R . S . , 3 5 0 , 3 9 3 P a l l a v i n c i n i ,M . , 4 0 Palmieri, G., I7l, 221, 240, 295, 324, 34O P a l o m o ,C . , 3 8 , 5 6 P a l u m b o , G . , ' 1 6 , 1 9 3 ,3 9 3 Pan, Y. Y., 375 P a n d e y ,8 . , 4 0 5 , 4 0 6 P a n d e y ,G . , 9 , 1 5 2 , 3 2 O P a n e k ,J . S . , 6 3 , 2 5 4 , 3 5 6 P a n k a y a t s e l v a nR , ., 102 P a n s a r e ,S . V . , 3 4 2 P a n t k o w s k i ,G . , 9 8 PanunzioM , ., 14l P a n z a ,L . , 2 0 3 P a o l o b e l l i ,A . B . , 8 7 PapagniA , .,77,329 P a q u e t t e ,L . A . , 1 7 0 P a r a ,K . S . , 3 6 1 P a r a d i s i ,C . , 3 3 0 P a r d o ,C . , 2 8 8 P a r d o ,D . G . , l 9 l P a r e k h ,S . I . , 3 1 8
P a r i s ,J . . 1 4 P a r i s ,J . - M P a r i s h ,E . J Park, B. K . P a r k ,C . S . . P a r k ,C . - H P a r k ,D . H . Park, D.-C . P a r k ,J . H . . Park,K.. ll Park, K. H Park, K. K P a r k ,S . B . P a r k ,S . - B . Park, Y. C . P a r k ,Y . J . . P a r k e r ,M . I Parkinson Parlow. J. J Parmar,A . Parmar.\' P a r q u e t t e .J P a r r a i n .J . P a r r i l l a .A P a r s o n sA .. P a r s o n s .P Paryzek. Z P a s c a r d .C . P a s t u c h a .I P a t e k ,M . P a t e l ,D . . l i P a t e l ,G . . t P a t e l ,H . \ l P a t e r s o n .I P a t i l ,P . \ . P a t i n o .R . . Patney, H Patonay. T. Patro,8.. I P a t t i ,A . . 9 P ? i t z e lM , .. P a u l ,F . . l ( P a u l ,N . C . Paul,V.. {( P a u l m i e r .( P a u l s e n ,H P a u t e t ,F . . P a v i a ,A . . Pavlova. \' P a y n e ,A . .
{uthor Index 459
ti
). .r. Jll l'. :.r1.381
:: l-
t
i,
t95.324,340 i
P a r i s ,J . , 2 4 0 P a r i s ,J . - M . , 2 8 1 Parish,E. J., 303 P a r k ,B . K . , 1 8 3 P a r k ,C . 5 . , 2 2 6 , 3 1 6 P a r k , C . - H . , 3 8 8 ,3 9 3 P a r k ,D . H . , 9 6 P a r k , D . - C . , 8 5 , 2 8 2 , 3 1 6 ,3 9 3 Park, J. H., 384 P a r k , K . , 1 7 3 ,1 8 3 Park,K. H., 195 Park,K. K., 331 P a r k ,S . B . , 9 P a r k ,S . - B . , 9 5 , 9 6 P a r k ,Y . C . , 3 7 1 P a r k ,Y . J . , 2 5 4 , 3 4 2 P a r k e r ,M . H . , 2 4 0 P a r k i n s o nC, . 1 . , 2 7 P a r l o w ,J . J . , l 9 l P a r m a r ,A . , 1 9 8 Parmar,V. S., 203 P a r q u e t t e ,J . R . , 2 4 1 P a r r a i n ,J . - L . , 4 5 , 2 6 1 ,2 6 2 P a r r i l l a ,A . , 8 0 P a r s o n sA, . F . , 3 7 1 P a r s o n sP , . J . , 1 6 ,3 1 , l 7 l , 3 7 1 Paryzek, Z-, 303 P a s c a r d ,C . , 3 4 1 P a s t u c h aI,. , l 2 - 5 P a t e k ,M . , 1 2 3 P a t e l ,D . , 1 8 0 P a t e l ,G . , 8 - 5 ,2 0 9 P a t e l ,H . M . , 2 8 8 Paterson,1.,29 P a t i l ,P . N . , l 7 PatinoR , .,231 PatneyH , . K . , 5 7 , 1 0 7 ,1 9 8 , 2 4 5 P a t o n a y ,T . , 1 3 2 , 3 2 6 Patro,B., 149 P a r t i ,A . , 9 7 P r i t z e l ,M . , 2 4 3 P a u l ,F . , 2 6 9 P a u l ,N . C . , 1 5 0 Paul,V., 405, 406 P a u l m i e r ,C . , 6 4 P a u l s e n ,H . , 3 2 3 P a u t e t ,F . , 1 3 7 PaviaA , . 4.,227 P a v l o v a ,N . N . , 4 7 P a y n e ,4 . , 7 7
P a y n e ,A . N . , 6 0 P a z e n o kS , . V.,55 Peak,J. D., 354 P e a k ,S . A . , 2 6 7 PearceM , ., 125 P e a r s o nA , . J . , 1 9 6 ,3 1 6 P e a r s o nW , . H.,77,377 P e a s eJ, . E . , 4 2 , 2 5 6 P e c c h iS , .,215 P e d a t e l l aS, . , 7 6 , 3 9 3 P e d e r s e nS, . F . , 3 9 6 P e d r e g a l ,C . , 3 7 5 P e d r i n i ,P . , 2 8 P e d r o ,J . R . , 3 5 2 P e d r o c c h i - F a n t o nG i ,. , 2 8 P e d r o s aR , ., 97 P e d r o s o ,E . , 3 P e f i a ,B . , 1 4 l P e g o r i e rL, . , 2 4 0 Pei,Y., 329 PellacanL i ,. , 8 8 , 1 5 9 P e l l e g r i n oR , .,73 P e l l e t i e r ,J . D . , 5 9 P e l l i s s i e rH, . r , 3 6 1 P e l l o n ,R . F . , 1 0 9 P e l t e r ,A . , 1 4 3 ,2 0 4 , 2 9 1 , 3 7 9 P e l t o n ,E . A . , 9 PengG , ., 178,371 P e n g ,W . - S . , 1 7 0 P e n s o ,M . , I 8 0 , 3 4 5 P e r c y ,J . M . , 8 l P e r e i r a ,M . M . , 3 3 - 5 P e r e y r e ,M . , 2 3 9 , 3 6 8 P e r e z l, . M . , 3 9 5 P e r e z ,M . , 3 4 9 P e r e z ,P . J . , I I I P e r e z - A l v a r e z ,M . D . , 3 7 1 P e r e z - E n c a b oA,. , 9 7 P e r i a s a m y ,M . , 8 5 , 9 6 , 1 0 7 , 1 5 5 P e r i c h o n ,J . , 1 2 9 , 3 1 2 , 4 0 8 P e r i c h o nT , ., l2l P e r i n ,G . , 3 9 5 P e r k i n s ,M . 1 . , 1 2 2 P e r l m u t t e r ,P . , 1 2 0 , 3 0 6 Perrin,8.,215 P e r r i n ,E . , 3 1 6 P e r r o n e ,D . , 2 0 5 P e r r o n e ,8 . , 8 7 P e r s s o n ,E . S . M . , 1 7 2 P e r u m a l ,P . T . , 2 9 3
460 Author Index P e s c i ,S . , 1 5 9 P e t a s i s ,N . A . , 6 , 5 l P e t e r s ,D . , 1 3 7 P e t e r s ,D . D . , 2 0 8 P e t e r s ,J . A . , 2 0 1 P e t e r s o nM , . J.,292 Petit, A., 245 Petit, H., 248 Petit, N., 368 Petit,Y., 240 P e t r i ,A . , 2 6 7 P e t r i l l o ,G . , 8 2 , 2 9 6 P e t r i n i ,M . , 1 7 0 ,l 7 l , 2 4 0 , 2 5 6 P e t r o v ,V . A . , 2 8 5 PetukhovP , . A.,327 P e w s ,R . G . , 3 3 2 P e y r a t ,J . - F . , 3 7 1 Pf^ltz, A., 46,97 P f e n n i g ,D . R . , 1 0 9 P h a d k e ,A . S . , 1 0 0 Pham, T., 40 P h i l l i p s o n ,N . , 4 1 3 P i , J . - H . ,3 3 4 P i a t t e l l i ,M . , 9 7 , 2 O 4 Piazza,M. G.,44 P i c a r d ,J . - P . , 5 6 P i c k e r i n g ,J . , 3 5 6 P i c k e r s g i l l l, . F . , 2 3 4 Picq,D., 18l Piermatti,O., 73 P i e r o z y n s k iD , ., l7l P i e r r e ,J . - L . , 2 1 4 P i e r s , 8 . , l l 3 , 1 7 3 ,1 7 6 P i e t i k a i n e n ,P . , 9 5 , 1 8 5 P i e t r a s z u k ,C . , 3 1 0 P i e t r u s z k a ,J . , 2 6 5 P i e t r u z i e w i c z ,K . M . , 4 1 7 Pietruzka, 1., 227 P i g e o n v ,P . , 2 1 0 P i l a r d ,J . - F . ,2 4 5 Pilcher,A. S., 163 P i l i o h o w s k a ,S . , 3 3 0 Pillai, c. N., 339 P i n e l ,C . , 4 0 , I 1 9 , 1 2 5 P i n e l o ,L . , 3 2 1 P i n e s c h i ,M . , 4 0 3 , 4 0 4 P i n e t t i ,A . , 1 5 0 ,2 3 1 Ping, L., 283 P i n h e y ,J . T . , 2 ' 1 , 6 3 Pini, D., 114,267
P i n n a ,F . , 4 0 Pinna, L., 69 P i n s k e r ,O . A . , 1 5 9 Pinto,A. C., 58 Pinto,B. M.,321 Piprik, B., 349 Pires,E., 8 P i r r u n g ,F . O . H . , l l 3 Pirrung, M. C., 144 P i s a n i ,E . , 4 1 4 P i s a n o ,L . , 2 0 6 Piva, O., 22 P i v e t e a u ,8 . , l l 9 P i v n i t s k y ,K . K . , l l 5 Pizzo, F.,'13 P l a n c h e n a u l tD , ., 305' 307 Plant, A., 228 P l e ,G . , 3 , 1 3 7 P l o b e c k ,N . A . , 2 1 4 P o d d a ,G . , 2 8 8 P o d l o g a r ,B . L . , 2 9 5 Poel,T.-J., 9 P o i a n a ,M . , 3 2 9 Poirier,D., 59 Pol,A. V.,405 P o l e ,D . L . , 2 0 2 P o l e s c h n e rH , .,400 Poli, S., 28 P o l l a u d ,G . M . , 2 4 5 Pollock,C. M., 170 P o n o m a r Y o v ,A . B . ' 1 2 9 P o o n ,C . - D . , 1 2 2 P o o r a n c h a n dD , .,205 P o p p l e w e l l ,A . L ' , 1 0 0 P o r e ,V . S . , 3 8 0 P o r n e t ,J . , 6 3 Porta, C., 20 P o r t a ,F . , 7 3 , 1 8 5 Porta, O., 359 P o r t e l l a ,C . , 3 6 4 , 3 ' 7 9 P o r t n o Y ,M . , 2 8 0 P o r t o n o v o ,P . S . , 1 3 4 Porzi, G., 216 P o s n e r ,G . H . , 3 1 9 P o s t e l ,M . , 5 3 P o s t e m a ,M . H . D . ' 2 7 2 ' 3 ' l l . 388 Pothion,C.,222 P o t t e r ,B . V . L . , 1 2 5 Poulin, J.-C.,96 P o u l t e r ,G . T . , 1 2 9
Pourcelot. C Poursoulis. Powell,C, I
Pozdnyakot Pozo, M.. l Prajapati D. P r a k a s h ,C . P r a k a s h ,G 336. l: P r a k a s h .O Prandi, C.. P r a s a d .A . P r a s a d ,A . P r a s a d ,A . P r a s a d ,K . Prati, F.. ll Pratt, N. E Prechtl.F.. P r e d i e r i .C
Pregnolato P r e n n e r .R P r e s n e l l .I P r e s t o n ,S Pretor,M.. Preville. P Price, W. I Pridgen. L P r i e p k e .H Prieto. P.. Procopiou Prodger. J Prol, J., l( Prota,G.. Provencal Provot, O. Ptock,4. P u e r t a s .S Pulido. F. Pulido, R Punniyan P u n z i ,A . Pustovit.
Qabar, M Qasmi. D Qi,M..l' Qian,C.. Qian,L.. Qin, H.. Qiu, W..
AuthorIndex 461 P o u r c e l o t ,G . , 2 8 1 P o u r s o u l i s ,M . , 1 6 6 Powell,C. L., 298 P o z d n y a k o vP, . 1 . , 2 5 2 Pozo,M., 203,204 P r a j a p a t iD . , 5 2 , 8 3 , 1 4 6 , 3 2 7 P r a k a s h ,C . , 3 0 3 P r a k a s h ,G . K . S . , 1 4 5 , 1 8 2 , 1 9 4 , 2 9 5 , 3 0 0 , 336, 337, 376, 3'19,381 P r a k a s h ,O . , 1 8 7 ,2 9 1 Prandi, C., 78 PrasadA , . D.,244 P r a s a d ,A . K . , 2 0 3 P r a s a d ,A . S . B . , 9 6 P r a s a d ,K . G . , 8 3 P r a t i ,F . , 2 0 3 P r a t t ,N . 8 . , l 5 Prechtl, F., 145,146,269 Predieri,G., 20 P r e g n o l a t o ,M . , 2 8 5 P r e n n e r ,R . H . , 2 6 4 P r e s n e l l ,M . , 3 8 7 P r e s t o n ,S . , 2 9 3 Pretor,M., 7 Preville, P., 261 Price, W. A., 140 P r i d g e n ,L . N . , 1 7 l , 2 0 2 P r i e p k e ,H . W M . , 8 4 Prieto, P., 289 P r o c o p i o u ,P . A . , 1 4 6 P r o d g e r ,J . C . , 1 7 0 Prol, J., 261 Prota, G., 339 P r o v e n c a lD , . P.,375 Provot,O., 248 Ptock, A., 358 P u e r t a s ,S . , 2 0 4 Pulido, F. J., 262 Pulido, R., 203 P u n n i y a m u r t h y ,T . , 1 0 9 P u n z i ,A . , 1 7 3 P u s t o v i t ,Y . M . , 3 4 2 Q a b a r ,M . , 1 5 l Q a s m i ,D . , 6 7 Qi, M., 378,408 Qian, C., 404 Qian,L., 123 Qin, H., 125 Q i u ,W , 3 3 9
eua'ich, G. J., 96 Quayle,P.,77,116,3'75 G., 214 Queguiner, C. A.,248 Quesnelle, Q u i c i ,S . , 1 9 3 Q u i n g ,F . - L . ,1 2 2 Quintard,I.-P.,261,262 Quiron,J.-C.,96 Raabe,G., l4O,221,256, 309, 384 Racherla, U. S.,99 Rachwal, S., 34 U., 155 Radhakrishnan, R a h m a nM , . A., 158 R a h m a nM, . M . , 7 7 R a h m a nN, . A . , 8 1 ,1 4 0 R a h m a nS, . ,7 7 R a i ,K . M . L . , 3 5 4 R a i ,R . , 3 2 7 , 4 0 8 R a i f e l dY, . 8 . , 3 ' 1 9 RaimondL i ,. , 3 5 6 , 3 6 2 Raimondi,S., 159 Rainbow,L. J., 316 Rairama,R., 408 Rajaopal, D., 263 R a j a p p a5,. , 3 4 2 , 4 0 6 F., 206 Rajarison, Raju,S. V. N., 405 R a k o w i t zD, . , 2 Raku,T., 203 Ram,B., 63, 328 R a m ,R . N . , l 1 4 R a m aR a o ,A . V . , 4 0 6 Ramachandran , P. V., 142 Ramaiah,P., 336,337,376,381 P. S., 14 Ramamoorthy, Rambo,8., 145 R a m d a n iM , .,210,245 RamigK , .,223 Ramkumar,D., 350 R a m m ,M . , 2 0 3 R a m o nD , . J . ,2 l l , 2 1 8 Ramos,8., 63 R a m o sM , .,288 C. A., 338,400 Ramsden, Ramser,M. N., 243 U., 2 Ramspacher, R a n eA , . M.,266 Raner,K. D., 295 Ranu.B. C., l'7,23,409,4ll
462 AuthorIndex R a o ,B . R . , 3 2 8 R a o ,C . S . , 1 4 9 Rao,G. V., 189 Rao,H. S. P', 23, 328 R a o ,J . M . , 3 1 9 Rao,K. K., 73 R a o ,K . R . , 2 3 2 R a o ,M . S . C . , 2 9 1 R a o ,N . R . , 1 5 4 R a o ,R . , 1 7 8 RaoS , .J . , 3 3 0 , 3 4 8 Rao,T. B., 319 Rao,V. J., 154 Rao,Y. R., 288 R a s s uG, . , 6 9 Rastogi,R., 73 Rastogi,R. C., 249 R a t h o r eR, . , 2 5 3 , 3 5 0 Y., 40, 129 Ratovelomanana, V'' 40 Ratovelomanana-Vidal, V.' l2l Ratovelomannana, R a t t i g a nB, . A . , 2 8 1 S,. , 2 6 1 Raussou Raut,S. V., 4 P.,403 Ravenscroft, R a v i ,D . , 1 5 4 Ravikumar,K. S., 142 Ravikumar,V. T.' 153 , T., 252' 384 Ravindranathan R a w a lV , . H . , 1 3 4 '3 7 1 Ray,A., 335 Ray,J. 8., 363 R a y n e rC, . M . , 2 3 4 ' 3 8 4 F., 204 Rebolledo, B.,245 Rechsteiner, R e c k z i e g eAl ,. , 2 9 , 2 6 2 F., 73 Recupero, R e d a e l lS i,.,28 R e d d i n gM, . T . , 2 9 4 ReddyG. V. S.' 73 Reddy,G. S', 154 Reddy,J. P., 350 Reddy,J. S., 185 Reddy,K. R., 406 Reddy,K. S., 23 Reddy,M. M., 108'269 Reddy,M. R., 107'155 Reddy,N. K., 85,338 Reddy,N. P., 129 Reddy,P. N., 185'376
Reddy,R. E., 134 Reddy,R. S., 405'406 Reddy,T. I., 406 R e d m a nA, . M . , 1 2 6 Reese,K. 8., 298 R e e t zM , . T . , 5 6 ,l 1 7 , 2 O 4 ' 2 1 8 ' 2 6 1 R e g a nA, . C . , 1 7 8 G., 45, 56, 5'1'215,262 Reginato, G. M., 103 Rehberg, ReidM , . D., l9l Reiher,T., 203 Rein,T., 299 234' 261'331 H.-l).,'16'2O'7, Reissig, R e k a iE , . D.,316 Remy,M., 333 R e n a r dI ,. , 3 8 8 Rene,L., 67,341 P. A., 14 Renhowe, R e n z ,M . , 2 6 9 R e s c kI,. S . ,6 8 R e s e kJ,. 8 . , ' 7 8 ' 2 4 1 R e s n a tG i , . , 3 7 ,1 9 3 '2 8 5 ' 2 9 2 Resta,S., 87, 152 Rettie,A. B., 375 R e u mM , . E', 106 ReynoldK s ,, 1 0 4 K. A.' 363 Reynolds, R e z a n k aD, . S . ,9 R h e eY , . H., 371 R h o ,H . - S . ,8 5 Ribeill,Y., 338 R i c c i ,A . , 5 6 , 5 7 , 2 1 5 , 2 6 1 , 2 6324' 5 '3 6 8 R i c h a r d sD, . H . ' 1 5 0 R i c h a r d sI ., C . ' 1 5 7 S. L', I Richards, P' F.' 183 Richardson, Richter,L. S.' 375 R i c h t e rM , . J.,270 R i c h t e rN, . , 3 8 '4 l l Rieger,D. L., 393 4O8 Rieke,R. D., 205,218'225,261,263' S. W.' 393 Riesinger, R i g b y J, . H . , l 5 l Righetti,P. P.' 20 Rigo,B., 268 R i h s ,G . , 9 7 Riley,D. P., 392 R i n a l d iA , ., l2l Ringe,K., 195 R i s e ,F . , 2 ' 7 7 , 3 4 9
R i t t e r ,H . . I l 9 Ritzen, H.. f& Riva,R., 129. Riva, S., 201 Rivera,I.. 299 R i v e r o ,I . A . . . R i z z o l i ,C . . { l R o b b i n s ,M . J R o b e r t - G e r o .l R o b e r t s ,B . P . R o b e r t s ,R . R Roberts, S. Il R o b i n ,J . - P . .l R o b i n s o n .A . R o b i n s o n .N . R o b i n s o n ,P . I R o b i n s o n .R . Robl, J. A.. -1 R o b l e s ,J . . l R o c c a ,M . C . Rochet, P.. 76
Rockenbauer R o d e s ,L . . l 0 Rodriguez.A R o d r i g u e z .l R o d r i g u e z .l . Roe,M. 8.. l
Roestamadlr R o g e r ,A . , 2 t R o g e r s ,C . . E Rogers-Evanl R o j o ,J . . 3 6 7 Riilfing, K.. , Rollin, P.. 3' Rollin, Y.. ti R o m a n i .M . . Romero, D. I Roof, M. 8.. R o o s ,E . C . . Rosa,A.. 14 R o s a s ,N . . l i R o s a t i ,O . . { Riischentha R o s h c h i n .A R o s k a m p .E . R o s s ,B . C . . RossenK , .. R o s s e r .R . I R o s s i ,R . . l ' 1 R o s s i ,R . A .
AuthorIndex 463
6.
R i t t e r ,H . , I l 9 R i t z e n ,H . , 3 8 4 Riva, R., 129, l4l Riva, S., 203 Rivera,I., 299 Rivero, I. A., 388 R i z z o l i ,C . , 4 1 3 R o b b i n s ,M . J . , 1 3 5 R o b e r t - G e r o ,M . , 4 0 8 R o b e r t s ,B . P . , 5 8 R o b e r t s ,R . R . , 3 3 3 R o b e r t s ,S . M . , 1 8 3 R o b i n ,J . - P . , 3 0 5 ,3 1 0 R o b i n s o n ,A . 1 . , 3 6 2 R o b i n s o n ,N . P . , 3 6 5 R o b i n s o n ,P . D . , 3 5 6 RobinsonR , . A., 60 Robl, J. A., 375 R o b l e s ,J . , 3 R o c c a ,M . C . , 1 4 5 Rochet, P., 76 R o c k e n b a u e rA , ., l9l R o d e s ,L . , 1 0 9 R o d r i g u e z ,A . , 6 3 R o d r i g u e z ,I . , 3 6 2 R o d r i g u e z ,J . , 8 8 , l 2 l Roe, M. B., 380 R o e s t a m a d j i ,J . , 3 8 8 R o g e r ,A . , 2 8 9 R o g e r s ,C . , 8 R o g e r s - E v a n sM , ., 79 Rojo, J., 367 Riilfing, K., 261 Rollin,P.,371 Rollin,Y., l2l, 408 R o m a n i ,M . , 3 5 1 R o m e r o ,D . L . , 2 7 7 , 3 8 2 Roof, M. 8., 323 R o o s ,E . C . , l 5 R o s a ,A . , 1 4 5 R o s a s ,N . , 2 5 0 R o s a t i ,O . , 4 1 4 R i i s c h e n t h a l e rG , .-V., l7'7 R o s h c h i n ,4 . 1 . , 2 8 2 R o s k a m p ,E . 1 . , 3 5 4 , 3 5 7 R o s s ,B . C . , 1 2 2 R o s s e n ,K . , 3 3 7 R o s s e r ,R . M . , 1 4 3 R o s s i ,R . , 1 7 2 , 2 6 1 , 3 4 9 R o s s i ,R . A . , 3 1 6
Rossi,T., 388 R o t e mM , .,309 Roth,G. P., 15,393 Rothemund, S., 36 Roush,W R., 97 Rousseau, G., 49,203 Rousset, C. J.,415 Routledge, 4., 122 R o w l a n d sM, . , 2 0 4 Roy,C., 130 Roy,R., 288 R o y ,S . , 1 0 8 ,l 1 9 Roy,S. C., 87 Royer,A. C., 339 Royer,J., 328 Royo,A. J., 8 Rozema,M. J., 140 R o z e nS, . , 6 4 , I 8 8 Riihrig,D., 56 R u a nM , . - D . ,3 3 3 R u a n oJ, . L . G . , l 4 l , 3 6 1 ,J 6 7 , 3 7 5 Ruault,P., 245 Rubinstein, H., 74 R u b i oA , . , 1 4 l ,3 5 8 Rubio,8., 327 Rubio,R., 262 R u c k ,K . , 9 RuelO , . ,5 Ruiz-Montes, J., 392 Runsink,1.,22,214 R u r u s eS, . ,8 7 R u s s e lCl ,. 8 . , 3 9 2 R u s s e lD l, . R.,214 R u s s e lG l, . A., 153 Russell,K., 338 Russo,J. M., 140 Rutherford, D., 261 Rutledge, P. S., 361 R u y ,E . K . , l 0 l R u z z i c o nR i , . ,8 7 R y a n J, . H . , 1 0 6 Rychnovsky, S. D., 386 Ryglowski, A., 340 Rys,A. 2., 346 R y u ,E . K . , 2 0 , 1 3 4 R y u ,I . , 5 , 1 4 ,1 1 6 , 2 0 2 , 2 5 1 , 2 6 t , 3 7 1 , 3 9 4 Sae Melo,M.L., 408 S a a J, . M . , 1 2 9 A., 230 Saatcioglu,
464 Author Index S a b a ,A . , 1 4 5 S a b a t ,M . , 3 4 4 S a b i r o v ,A . N ' , 2 5 2 S a b o l ,J . S . , 1 0 0 , 3 4 9 S a b u r i ,M . , 4 1 , 4 1 5 S a c c h i ,L . , 7 8 S a d a ,K . , 9 5 , 1 4 0 Sadakane,M., 129' 392 S a d a y o r iN , .,261,393 S a e g u s aH , ., 316 S a e k i ,N . , 2 8 3 S a f a r o v ,F . S . , 1 7 4 S a g a r ,A . D . , 2 8 8 S a h a ,A . K . , 1 2 6 S a h a ,M . , 4 l I S a h a - M o l l e r ,C . R . ' 1 8 5 S a h l i ,A . , 2 7 2 S a h o o ,P . K . , 3 3 5 S a h u ,D . P . , 5 5 S a i d i ,M . R . , 2 1 9 S a i g o ,K . , 1 6 6 , 2 6 3 '3 6 1 , 3 6 3 , 3 8 4 '4 1 3 S a i k i a ,A . K . , 3 8 7 S a i n i ,N . , 1 8 7 S a i n i ,R . K . , 2 9 1 S a i n t - J a l m e s ,V . P . ' 7 3 S a i t o ,A . , 2 1 9 S a i t o ,K . , 1 5 4 Saito, S., 21,238,280' 281' 356 Saito, T., 20, 9'7, 310 S a i t o h ,M . , 3 5 4 S a k a g u c h i ,S . , 1 8 5 S a k a g u c h iT, ' , 2 8 1 S a k a i ,K . , 6 3 , 2 1 5 S a k a i ,M . , 2 5 1 Sakai, N., 308 S a k a i ,S . , 3 1 6 Sakai,T., 28 S a k a k i ,J . - i . , 9 6 S a k a k i b a r a ,J . , I 1 4 S a k a k i b a r a ,M . , 3 4 9 S a k a k i b a r a ,Y . , 2 5 1 S a ' k a k u r a ,T . , 2 5 S a k a m o t o ,K . , 9 5 ' 2 ' 7 3 SakamotoM , ., l7l' 203 Sakamoto, T., 80, 164' 218, 222, 280, 283' 349,38'7 S a k a s h i t a ,H . , 4 0 6 S a k a t a ,K . , 2 4 S a k a t a ,Y . , 1 8 5 S a k a u e ,S . , 1 8 5
S a k a y a ,T . , 4 5 S a k o ,K . , 4 S a k u r a i ,H . , 1 0 3 ,2 3 1 S a k u r a i ,T . , 3 7 5 S a l a d i n o ,R . , 1 4 5 , 1 7 9 ' 1 8 9 S a l a i i n ,J . , 1 3 2 , 3 3 2 S a l e h ,S . , 3 0 3 S a l e h i ,P . , 8 7 , 1 9 7 S a l e m k o u r ,M . , 8 8 S a l e r n o ,G . , 2 8 3 S a l k e r ,R . , 1 4 3 S a l u n k h e ,M . M . ' 2 8 8 S a l u z z o ,C . , 5 9 , 2 9 4 S a l v a d o r ,J . A R . ' 4 0 8 S a l v a d o rJ, . M . , l 1 6 S a l v a d o r iP , ., ll4'267 Sambri, L., l'71,256 S a m i z u ,K . , 3 2 4 S a m m a k i a ,T . , 3 6 3 S a m p a t h k u m a rH, . M . ' 2 3 2 S a m u e l ,P . M . , 1 0 8 S a m u e l s o n ,A . G . ' 1 0 9 S a m u k o v ,V . Y . , 2 5 2 S a n a b r i aR , .,320 S a n c e a u J, . - Y . , 9 6 S a n c h e z ,J . M . , 6 8 S a n c h e z ,M . E . L . ' 3 7 5 S a n c h e z - A n d r a d aP' . ' 4 8 S a n c h e z - M i g a l l o n ,A . ' 2 8 8 S a n c h e z - O b r e g o nR, . ' 3 2 1 S a n d e r s - H o v e nM ' . S.' 285 S a n d e r s o nW , ' R.' 145 S a n d f o r d ,G . , 1 9 4 , 3 3 6 ' 3 8 1 S a n d h u ,J . S . , 5 2 ' 8 3 , 1 4 6 , 3 2 ' 7 ' 3 3 3 S a n d h u ,5 . , 5 2 , 1 4 6 , 1 2 7 Sandor, P., 308 S a n d r i ,S . , 2 1 6 S a n e t t i ,A . , 1 4 5 S a n f i l i p P o ,C . , 2 0 4 S a n g h a ,P . , 7 3 Sankar,P' J., 195 S a n k a r a r a m a n ,S . , 1 3 0 ' 2 1 9 ' 3 5 0 S a n k e Y ,J . P . , 1 4 5 S a n o ,H . , 3 l S a n t a ,T . , 2 6 9 S a n t e l l i ,M . , 8 8 ' 3 6 1 S a n t h i ,A . L ' , 2 4 4 ' 2 4 5 Santi,C., 29, 152 S a n t i ,R . , 1 5 5 , 2 3 0 S a n t i a g oB , .,78
Santoyo-Gon Sanvito,A. \l S a n z ,R . , , l l 5 S a p p ,S . G . . l S a r a n g i ,C . . I S a r a s w a t h ) .\ S a r d a r i a n .A .
Sarin,G.S S a r k a r ,A . . l . Sarko,C. R . S a r m a ,J . C . S a r m a ,K . D Sarma, P. K S a r r a z i n .L . . Sartor, K.. I S a r t o r i ,G . . ! S a s ,W . . I 8 1 S a s a i ,H . . { l S a s a k i ,A . . t S a s a k iH , ..9 S a s a k i ,K . . l S a s a k i .R . . 5 S a s a k i ,T . . - 1 S a s u g a ,K . . i S a t a k e ,A . . { S a t i s h ,S . . - q Sato,F., 16l Sato,H.. 3lt S a t o ,M . . : 9 S a t o ,N . . { 1 . ,u,o, 5.. -1{ S a t o ,T . , { 1 . 292. 3l Sato,Y.. 50 S a t o h ,T . . { ' S a t o m u r a .I S a t t i g e r i .J S a t y a n a r aIl S a u l n i e r .M S a u t e rM . . I S a u v a g e tF . Sauvetre. R Savignac. !9 S a v i g n a c .P Savla, P. M S a v o i a ,D . . S a w y e r .J . ! S a y o ,H . . 6 Sayo,N.. 4 S c a r s e l l a .I
Author Index Santoyo-Gonza lez, F., 37| S a n v i t o ,A . M . , 2 0 3 S a n z ,R . , 4 1 5 S a p p ,S . G . , 7 3 S a r a n g iC , .,288,354 S a r a s w a t h yV , . G., 219 S a r d a r i a nA , . R., 2 S a r i n ,G . S . , 4 7 S a r k a r ,A . , 2 3 , 3 2 8 , 4 0 9 Sarko,C. R., 346 S a r m a ,J . C . , 3 5 4 S a r m a ,K . D . , 3 7 1 S a r m a ,P . K . S . , l 7 l S a r r a z i n ,L . , 6 3 S a r t o r ,K . , 9 6 S a r t o r i ,G . , 2 0 , 2 6 9 S a s ,W . , 1 8 7 S a s a i ,H . , 4 2 , 3 l I S a s a k i ,A . , 8 S a s a k i ,H . , 9 5 S a s a k i ,K . , 2 5 1 , 4 0 8 S a s a k i ,R . , 5 7 S a s a k i , T . , 3 1 8 ,3 5 6 S a s u g aK, . , 2 S a t a k e ,A . , 4 6 S a t i s h ,S . , 3 0 1 S a t o , F . , t 6 4 , 1 7 4 ,2 6 6 , 3 6 5 , 3 g 2 , 3 g 3 S a t o ,H . , 3 4 6 , 3 7 3 S a t o ,M . , 2 9 , 9 7 S a t o ,N . , 4 1 , 2 8 1 Sato,S., 349 S a t o ,T . , 4 7 , 7 6 , 8 t , t 2 4 , t 3 2 , 1 7 0 ,t i l , 2 7 0 , 292, 323,336, 338, 371 S a t o ,Y . , 5 0 , 2 4 8 , 2 6 6 S a t o h ,T . , 4 7 , 7 6 , 8 1 , 1 3 2 , 1 7 0 ,t 7 1 , 2 g 2 , 3 3 6 S a t o m u r a ,M . , 2 9 S a t r i g e r i ,J . A . , 3 3 1 S a t y a n a r a y a n aJ, . , 1 6 , 2 0 5 S a u l n i e rM , . G.,214 S a u t e rM . , 1 4 6 S a u v a g e rF. . . 1 9 7 S a u v e t r e ,R . , 1 3 5 , l 3 g S a v i g n a cM, . , 2 8 1 , 3 9 3 S a v i g n a cP , .,214 S a v l a ,P . M . , 8 l S a v o i a ,D . , 2 5 6 S a w y e r ,J . S . , 2 9 8 Sayo,H., 67 Sayo,N., 40, 4l S c a r s e l l a ,M . . 1 8 5
Scettri, A., 73, 159,217 S c h a a f s t r aR, . , 3 2 7 S c h a e f f e rM . , 1 0 2 S c h i i f e rH . - J . , 1 0 3 S c h Z i f e rB , ., 84 S c h i i f e r ,H . , 1 2 0 S c h a f e rT , .,22 SchankK , .,289 S c h a n k a t ,J . , 2 5 6 Schaumann,8.,209 S c h e d l e rD , . J. A., 417 S c h e e r e n ,H . W . , 9 5 S c h e f f o l d ,R . , 1 0 6 ,3 9 S ScheloskeM , ., I9l S c h e n k ,W . A . , 1 4 5 S c h e r e r ,H . J . , 2 1 4 S c h e u l l e rM , ., 27 S c h i c k ,H . , 1 8 9 ,2 0 3 Schick, U., 280 Schimpf, R., 280 S c h i n k ,H . 8 . , 2 8 1 S c h i n k o w s k iK, . , 9 6 S c h i n z e r ,D . , 1 9 5 ,3 7 1 S c h k e r y a n t zJ, . M . , 3 7 7 Schlingloff, C., 95, 269 S c h l o g lK , .,97 S c h l o s s e rM , . , 1 7 5 ,l g 0 S c h m e c k ,C . , 3 8 , 1 0 4 S c h m i d ,W . , 2 6 4 S c h m i d t ,R . R . , 2 1 4 , 3 8 4 S c h m i t t ,C . , 8 5 S c h m i t t l i n g ,E . A . , 2 9 8 SchneiderC , ., 7 S c h n e i d e rM , . p.,276 S c h n e i d e rR, . , 3 1 9 SchnuteM , . 8., 98 S c h n y d e r ,A . , 9 6 S c h o e m a k e rH, . 8 . , I l 3 S c h o f i e l d ,C . J . , t i 2 S c h o l l ,M . , t l 7 S c h d l l k o p f ,U . , 3 8 S c h o l t eo p R e i m e r , A . W . A . , 9 5 S c h o r p ,M . K . , 1 4 7 S c h r e e r ,M . , 1 2 0 S c h r e i b e r ,M . , l 2 O S c h r e i b e rS, . L . , 2 8 6 S c h r i m p f ,M . R . , 3 0 2 S c h r o d e rC , .,349 S c h r i i d e r ,F . , 3 4 9 Schroth,W., 23, 381
466 Author Index S c h u g a r ,H . 1 . , 2 3 9 SchulteG , . K',213 S c h u l t z , A ' .G . , 2 0 2 S c h u l t z ,C . C . , 2 4 4 S c h u l z ,F . , 2 4 1 S c h u l z ,M . , 1 8 3 ,1 9 6 ' 3 5 2 S c h w a r m ,M . , 3 2 8 S c h w a r z ,K . - H . , 1 8 9 S c h w a r z e ,D . , 1 2 0 S c h w e i z e r ,W . B . , 9 6 ' 2 6 1 S c h w e n k r e i sT , ., 185 S c h w i c k h a r d t ,R . , l l 7 S c h w i n k ,L . , 9 7 Scilimati, A., l'12' 281 S c o r r a n o ,G . , 3 3 0 Scott, A. I., 400 Scott,W. J., 157' 173 Scully, M. F.' 85 S e b a s t i a n oR , .,230 Sechi, 8., 206 Seconi,G., 56 S e d e r g r a n ,T . L . ' l l 4 S e d m e r aP , .,298 Seebach,D', 96, 97, 120, 148, 2O8, 234' 261 S e e f e l d ,M . A . ' 1 4 2 S e e g e r ,A . , 9 6 S e e m a n J, . I . , 3 3 3 S e e r d e n ,J . - P . G " 9 5 S e g a t i n ,N . , 6 4 S e g a w a ,K . , 9 6 S e g i ,M . , 1 4 8 S e h a t a ,M . , 3 5 7 S e h g a l ,A . , l 8 S e i d e l ,G . , 3 5 8 Seifert,K., 73 S e i t z ,W . J . , 1 2 6 S e k h a r ,B . B . V . S . ' 1 5 2 S e k i d o ,M . , 3 9 3 S e k i g u c h i ,M . ' 1 8 l ' S e k i y a ,A . , 1 6 l Seko,N., 249 SeletskYB , . M.,22'l S e l l ,M . S . , 2 1 8 S e l l ,M . W . , 2 2 5 S e l t z m a n ,H . H . ' 2 4 9 S e l v a ,M . , 1 4 4 S e m e n o v ,V . V . , 1 6 3 ' 2 5 2 S e m e n z e n ,D . , 2 9 3 S e m e y n ,C . , 3 5 6 S e n e t ,J . P . , 1 7 7
S,. , 2 7 6 Sengupta S e o ,B . I . , 3 2 4 Sera,A., 356 E. P'' 105 Serebryakov, S e r e d aS, . V . , 5 5 Serra,A. C., 335 Servi,S., 28 SethS , . ,4 J.-i.,356 Setsune, Severin,T., 156 Seyferth,D., l0 Sezaki,T., 164 S h a ,C . - K . ,3 7 1 A'' 64 Shaabani, S. A.' 253 Shackelford, Shah,K., 63 Shah,S., l0 S h a i rM , . D.,286 S h a k y aS, . R ' ' 3 1 6 Shang,X., 87 Shanklin,M. S., 307'375 J. M'' 16 Shankweiler, P., 334 Shanmugam, I ' ,J . , 4 Shannon S h a oL, . , 4 l Shapira,M', 203 Shapiro,G., 380 Sharma,R., 261'337 Sharma,R. P.,254,354'387 K. B.' 266' 26'7 Sharpless, Sharts,C. M., 253 K. H.' 263 ShaughnessY, Shavrin,K. N.' 288 S h a wA , . W.,84 I. V., 284 Shcherbakova, K. R., 176 Sheets, S h e nC , . - X . ,1 2 2 Shen,W., 14 Shen,Y., 10,83, l7l, 376,378'408 D., 142 Sherman, S h e uB, . A ' , 2 1 5 s h i , D . - Q . ,3 6 4 s h i , L . - L . ,1 5 1 s h i , L . - P . ,l 2 s h i ,x . - x . , l 1 4 408 shi, Y., 16,104,29'1,361,393' Shiao,M.-J.' 263,341 M.' 357,414 Shibagaki, M'' 16l Shibakami, M., 42, 105,3ll' 3'73'393 Shibasaki,
S h i b a s a k i ,Y . . S h i b a t a ,I . . 5 { S h i b a t a ,N . . I S h i b a t a ,O . . 3 S h i b u y a , 1 . .3 S h i b u y a ,K . . . S h i b u y a ,S . . ( Shidori, K.. l S h i g a ,F . . 2 t 3 S h i g y o ,H . . I shih, H.. l9{ S h i i n a , 1 . .1 4 S h i m a ,K . . l . S h i m a d a .C . . S h i m a d a ,C , . S h i m a d a ,1 . . S h i m a d a ,K , . S h i m a d a ,S . . S h i m a d z u .H
Shimamoto. Shimanouch S h i m i z u .H S h i m i z u .1 . . S h i m i z u ,M " S h i m i z u .l i . S h i m i z u .T . .
Shimomura Shimoshi. Y Shimotsum Shin,C.-C. Shin,D.-S. Shin,H. H. Shin,H. S.. Shin,T.. 29 Shin,W. S. S h i n a ,1 . . l ! S h i n a d a ,T . Shing,T. K
Shinhama Shinokubo. S h i o h a r a .I Shioiri, T.. S h i o m i ,Y . . Shiotani.Y
Shirahama Shirai, K.. Shiro, M.. Shirouchi. Shishikura S h i u ,L . L .
Author Index
S h i b a s a k i ,y . , 3 6 1 S h i b a t a ,1 . , 5 4 , 1 7 6 ,2 3 9 , 3 5 0 , 3 6 8 , 3 7 1 S h i b a t a ,N . , 1 5 6 ,2 O 0 , 3 8 4 , 4 1 2 S h i b a t a ,O . , 3 0 6 S h i b u y a ,I . , 3 2 1 S h i b u y a ,K . , 3 t 9 S h i b u y a ,5 . , 6 7 , 7 0 , 9 ' 1 ,4 1 5 Shidori, K., 276 Shiga,F., 283 S h i g y o ,H . , 1 2 9 shih, H., t94 S h i i n a ,I . , 3 4 6 , 3 6 2 S h i m a ,K . , 2 3 , 5 7 , 3 1 8 S h i m a d a ,C . , 9 6 S h i m a d a ,G . , l l 4 S h i m a d a ,t . , 2 l S h i m a d a ,K . , 5 7 , 3 1 8 S h i m a d a ,S . , 5 0 , 3 6 1 , 3 6 3 , 4 t 3 S h i m a d z u ,H . , 9 S h i m a m o t o ,M . , 9 7 S h i m a n o u c h i ,T . , 1 7 9 Shimizu, H., 30, 63, 339,382 S h i m i z u ,1 . , 4 6 , t 6 4 , 2 7 6 S h i m i z u ,M . , 2 8 , t 4 6 , 3 6 1 Shimizu,N., 129 S h i m i z u , T . , 1 0 5 ,3 0 9 , 4 0 7 S h i m o m u r a ,N . , 5 2 , 1 5 4 , 3 2 2 , 3 2 3 , 3 5 4 Shimoshi, Y., 408 S h i m o t s u m a ,E . , 2 6 9 Shin,C.-G., 134 Shin,D.-S.,t49,261 S h i n ,H . H . , 2 5 4 , 3 4 2 Shin,H. S., 187 Shin,T., 29O,367,410 Shin,W. S., 137 S h i n a ,I . , 3 5 8 S h i n a d aT , .,290,367 S h i n g ,T . K . M . , 3 1 0 S h i n h a m a ,K . , 6 3 S h i n o k u b o ,H . , 6 9 , 7 6 S h i o h a r aK. . , 2 3 7 Shioiri, T., 222, 367 S h i o m i ,Y . , l 6 Shiotani, Y., 297 S h i r a h a m a ,H . , 3 1 6 S h i r a i ,K . , 2 S h i r o ,M . , 9 7 , 1 4 1 , 3 4 5 , 3 4 8 , 4 1 5 S h i r o u c h i ,M . , 1 4 l , 3 6 3 Shishikura,J., 336 S h i u ,L . L . . 1 7 3
Shon,Y. S., 340 S h o n o ,T . , 1 6 , 9 7 S h o o k ,C . , l l l S h o s t a k o v s k yM , . V., 129 S h u k l a ,M . , 2 6 Shukla,S., 26 S h u m ,C . C . , 6 3 S h v e d o v aI,. 8 . , 2 8 g Shvo,Y., 164,3O9 sibi, M. P.,261 S i d d i q u i ,M . F . , 2 4 5 S i d d u r i ,A . , 1 4 0 S i e ,E . - R . H . 8 . , 3 0 7 S i e d l e c k a ,R . , 3 3 5 S i e r r a ,M . A . , 2 4 9 S i e s k i n dO , .,245 sih, c. J.,203 Silveira, C. C., 262, 289, 327 S i m ,M . M . , 4 7 S i m a n d iL , .1.,47,291 S i m m s ,M . J . , 3 8 4 S i m o n ,M . , 2 0 8 Simonot,8., 49 S i m o n o u ,I . , 3 7 5 S i m o n v ,C . D . , 3 8 4 S i m p k i n s ,L . M . , 3 i . 5 S i m p k i n s ,N . S . , 8 8 , t 5 3 , 2 0 8 , 2 g 2 S i m p s o n ,P . M . , 3 3 7 S i n a y ,P , , 3 1 6 S i n g a r a m ,8 . , 5 8 , 1 4 2 , 2 0 4 , 2 O g , 3 2 g , 3 4 0 S i n g e r ,M . , 5 8 S i n g e r ,R . , 4 0 9 Singh, A. P., 406 Singh,C. p., 245 Singh, J. D., 96 S i n g h ,K . P . , 1 2 6 S i n g h ,L . , l t 4 S i n g h ,O . V . , 1 8 7 ,3 5 1 S i n g h ,P . K . , l 1 4 S i n g h ,S . , 2 6 ' 1 , 3 2 4 S i n g h ,S . M . , 2 1 0 S i n g h ,S . P . , 1 4 6 , t B 7 ,Z g t , 3 7 1 S i n g h ,U . , 1 5 2 S i n g l e t o n ,D . A . , 1 2 4 , 1 2 6 , 1 7 6 S i n h a ,R . , 2 0 3 S i n i g a g l i a ,M . , 2 8 S i n n e s J, . - L . , 3 6 1 Sinou,D., 392 Siskin, M., 399 S i u ,A . F . - H . . I 6 5
467
46E AuthorIndex
-
Siva,P., 328 Sjoholm,R., 408 J., 335 Skarzewski, Skerlj,R. T., 176 S k i n n e rC, . J . ' 1 6 l T., 49 SkrydstruP, S l a s s iA, . , 5 9 Slawin,A. M. Z.' 122 Sleiter,G., 185 S m a i l l J, . B . , 2 9 S m a r t J, . P . , 1 2 5 S m i t h ,A . B . , 1 9 3 S m i t h ,D . C . , 5 7 S m i t h ,F . C . , 4 Smith,K., 2O4'245,3'19 S m i t h ,L . A . , 3 5 7 Smith,W. J.' 375 I. H., 20'1,263 Smitrovich, V., 79' 214,248 Snieckus, Snow,K., 96' 222 Snow,R. J., 339 Soai,K., 96' 97 sobri,A., 387 R'' 9 Sochanchingwung, M.' 105'393 Sodeoka, B. C.' 103 Soderberg, I. A.' 266' 36'7 Soderquist, M., 2 Soenosawa, Soga,T., 412 Sokova,L. L" 202 S o l a r iG , .,393 M.' 316 Solay-lsPizua' S o l eD , .,50 G.' 324,358 Solladie, A.' 2O'7 Solladie-Cavallo, V- A.' 3'7,97 Soloshonok, Solow,M., 142 S o m a nR , . , 1 9 l ,2 4 1 '3 8 8 R., 388 Somanathan, A'.,273 Somasunderam, S o m e Y aM, . , 9 5 ' 2 3 ' l Somsak,L.' 408 Son,D. Y., l0 H. R'' 405 Sonawane, S o n gZ, . 2 . , 6 0 ' 1 9 2 S o n o d aN, . , 5 ' 1 4 ,2 O 2 , 2 5 1 , 2 6 1 , 3 1384'3 ' 350,368,3'11,372'394 Sood,C., 107 Sorajo,K', 18 C' M.' 361 Sorensen,
Sorokin,V.D., 194 Souma,Y., l8l N., l14 Soundarajan, R.' l7l Soundararajan, F., l3l Souquet, Spada,A. P., 176 Spaeth,T., 174 Spagnolo,P., 252 Spanu,P.,69 M' L.' 361 Sparacino, Spavold,2., 208 W. N., l5' ll3, 124'27'7'356 SpeckamP, S p e kA , . L., 45 M., 97 Spescha, S p i l t i n gC , 'D.'214 Spindler,F., 96 Spindler,K.' 400 Spitz,U. P.,291 Spivey,A. C., 172 S p r i n g eC r ,. J . , 5 Sprinz,J.,97 Srebnik,M., 397 R., 339 Sreekumar, S r i d h a rM , .,270 Srikrishna,A., 331 K' V.' 405' 406 Srinivasan' A', 26 Srivastava, R.S.' 197 Srivastava, S' K.' 365 Srivastava, J. S' R.' 359 Stabler, Stabler,S. R.' 361 Stack,D. E., 261 H., 97, 129'408 Stadtmuller, A.'228 J. Stafford, Stallman,l. 8.,'17' 136 J. F.' 30 Stambach, R., 126 Stammler, A', 67 Stanczak, Stang,P. 1.,27,129'r94'216'261'289,t23. 325,400 E. L.' 209 Stangeland, Stanoeva,8.,320 S. J'' 353 StanwaY, Stara,I. G., 385 S t a r y I, . , 3 8 5 M. A., 48' 380 Staszak, Stavber,S., 400 Stec,D., 193 Steel,P' J.' 27 J. L.' 102 Steeves,
Stefanovsk S t e i n i g ,A . S t e l z e r ,U . . Stempf,1.. S t e r n ,D . . E Stern, E. \l
S t e t s o n ,K . S t e v e n s .C S t e v e n s .E Stevenson Stevenson S t i l l ,I . $ . S t i l l e ,J . R . Stipa, P.. 3 Stocking.I S t o l l e ,A . . S t o l z ,L . A S t o n e ,G . I Stramiello S t r a u s s ,C S t r a z z o rl n r S t r e e t .L . J S t r e i n z .L . Strekows|t Strickland S t r o h l ,D . . Struchkor S t r u k u l .C Studeman S t u r g e s s !. Sturino. C S t u r m e r .I Su, D.-8.. S u ,H . , l . 367.3 Su, W.. -1 S u a r e z ,E . S u a r e z ,S . Subba Rac Subrahma Subraman S u c h a n .S S u c h e t a .I S u d a ,S . . Sudalai., S u d h a ,\ ' . S u e h i r o .I Suemune Suffert. J Sugamoto
Author Index 469
li"
r-
S t e f a n o v s k y ,y . N . , 3 6 3 Steinig,A. G., 280 S t e l z e r ,U . , 1 3 5 Stempf,I., 199 S t e r n ,D . , 8 0 , 1 5 2 S t e r n ,E . W . , 4 l StetsonK , . A.,263 S t e v e n s ,C . V . , 3 5 S t e v e n sE , . P.,77 S t e v e n s o n ,P . , 1 0 4 S t e v e n s o nR , . J., 361 still, I. w. J.,4l I stille,J. R., 63 S t i p a ,P . , 2 5 3 Stocking, E. M., 192 S t o l f e ,A . , t 3 2 , 3 9 2 S t o l z ,L . A . , 2 8 6 S t o n e ,G . 8 . , t 2 9 , 3 2 4 , 3 5 8 S t r a m i e l l o ,L . M . S . , I . 5 8 S t r a u s s ,C . R . , 2 9 5 S t r a z z o l i n i ,P . , 3 2 9 S t r e e t ,L . J . , I l 0 S t r e i n z ,L . , 2 0 6 S t r e k o w s k i L, . , 1 6 2 , t 6 3 , l i l Strickland,D. W., 56 S t r o h l ,D . , 2 3 S t r u c h k o v ,Y . T . , 2 2 8 S t r u k u l ,G . , 4 0 S t u d e m a n nT, . , 1 2 9 S t u r g e s sM, . A . , 3 1 5 S t u r i n o ,C . F . , 3 1 6 S t u r m e r ,R . , 3 1 7 Su, D.-8., 238 Su, H., 2, 63, t74,215,253,326,329,34O, 367, 3'il, 408, 4t2 Su,W., 310 S u a r e z ,8 . , 1 9 2 S u a r e z ,S . , 3 4 2 S u b b aR a o , Y . V . , 4 0 6 S u b r a h m a n y a m ,M . , 4 0 6 S u b r a m a n i a nL, . R . , 2 6 1 ; 3 4 6 , 3 4 g , 3 7 g S u c h a n ,S . D . , I 0 9 S u c h e t aK , ., 154 S u d a ,S . , 4 4 S u d a l a i ,A . , 4 0 5 , 4 0 6 S u d h a ,Y . , 1 8 5 S u e h i r o I, . , 8 S u e m u n eH , .,63,215 Suffert, J., 129 S u g a m o t o ,K . , 2 6 9
S u g a w a r a ,M . , 4 5 Sugi, Y., 97, 129, 174,282,317 S u g i h a r aS , .,358 S u g i h a r a ,Y . , 1 7 4 S u g i m o t o ,F . , 1 4 8 S u g i m o t o ,T . , 2 8 , 3 1 0 S u g i m o t o ,Y . , 3 1 7 S u g i m u r a ,H . , 1 7 4 S u g i n o ,A . , 3 1 7 S u g i n o ,T . , 3 4 3 S u g i n o m eH , ., 37t, 408 S u g i n o m e ,M . , 3 8 2 S u g i s a k i ,T . , 3 3 0 S u g i t a ,T . , 7 4 S u g i t a ,Y . , 9 7 S u g i u r a ,M . , 1 2 9 S u g i y a m a ,S . , 2 0 4 S u g i y a m aT , .,96,269 S u k e g a w a ,M . , 3 8 4 S u k h o m l i n o v aL, . 1 . , 2 7 6 S u l i k o w s k i ,c . A . , 3 8 7 S u m i d a ,K . , 4 0 i S u m i d a ,S . , l 8 Sumiya,T., 321 S u m m a ,V . , 3 8 8 S u n ,G . , 1 8 6 S u n ,L . , 2 9 0 S u n ,P . - J . , 2 8 0 S u n a m i ,S . , 9 7 S u n d e r m a n n ,M . J . , 3 6 3 S u n d h o l m ,O . , 2 0 3 S u p e r c h iS , ., ll4 S u r e s h J, . R . , 3 3 4 S u r i a n o ,J . A . , 1 0 3 , t 3 2 , 3 9 4 S u s a k iH , .,412 S u s e e l aY, . , 8 5 Susfalk,R. B., 397 S u s t m a n nR , ., 104 S u t t e r ,J . - P . ,4 5 S u y a ,K . , 3 4 9 S u z u k i ,A . , 6 , 1 2 9 , 1 4 2 , 2 5 0 , 2 6 4 , 3 4 g Suzuki, H., 253, 326, 329, 340, 367 S u z u k i ,K . , 2 5 , 9 5 , 1 2 5 , 3 2 2 , 3 6 3 , 4 t 7 S u z u k i ,N . , 1 7 4 , l 9 l , 4 1 5 S u z u k i ,S . , 3 1 6 S u z u k i ,T . , 4 2 , 9 7 , 1 3 0 S v e n d s e nJ,. 5 . , 7 4 , 2 1 1 Sviridov, S. V., t74 Swafford,A. M., 339 S w a i n ,P . A . , 2 6 1
470 Author Index Sweeney,J. B., 99' 154' l'72 S w e n s e n ,D . C . , 4 0 8 S w e s t o c k ,J . , 2 7 6 S z a b o ,G . T . , l 9 l S z e i m i e s ,G . , 1 9 6 S z n a i d m a n ,M ' L . ' 3 2 1 S z y m o n i a k ,J ' , 2 5 1 T a a p k e n ,T . , 4 l l T a b e r ,D . F . , 1 8 3 T a b u c h i ,H . , 1 3 4 T a c h i b a n a ,H ' , 2 0 3 Tack, R. D., 284 T a d d e i ,M . , 1 6 , 1 0 4 , l ' 7 2 ' 3 6 1 T a e ,J . S . , 3 ' 7 1 , 3 ' 1 2 T a g a h a r a ,K . , 6 3 , 4 0 9 Tagliavini, E', 44 T a g u c h i ,T . , 1 9 2 , 3 7 1 ' 4 1 5 T a g u c h i ,Y . , 3 2 1 Tai, V. W.-F.,310 Taj, S. S., 241 T a j b a k h s h ,M . , 3 1 8 Tajiri, K., 371 T a k a d a ,E . - i . , 6 Takada, T., 380 Takagi, K., 50, 251, 349' 408 Takagi, Y., 203 T a k a h a r a ,J . , 1 2 9 T a k a h a s h i ,E . , l 9 l TakahashiH , .,95' 138 T a k a h a s h i ,K . , 9 7 ' 3 5 7 ' 4 1 4 T a k a h a s h i ,M . , 1 0 9 ' 1 9 3 T a k a h a s h i ,N . , 9 9 T a k a h a s h i ,O . , 1 8 l T a k a h a s h i ,S . , 3 0 6 T a k a h a s h i ,T . , 1 7 4 , l 9 l ' 3 4 5 ' 4 1 5 T a k a h a s h i ,Y . ' 4 l l ' 4 1 2 Takahori, T., 403 Takai, K., 96, l4O'343 T a k a i , T . , 1 0 7 ,3 6 1 T a k a k i , K . , 3 1 7 ,4 0 1 ' 4 0 3 Takano,K.,28, l'll Takano,M., 203 T a k a n o b e ,K . , 2 8 Takaoka, Y., 140 T a k a s e ,K . , 2 8 6 T a k a s h i m a ,M . , 2 ' 7 6 T a k a y a ,H . , 1 4 , 4 0 , 4 1 , 1 9 6 , 2 8 1 , 3 0 8 Takazawa, N., 80, 222 Takeda, A,, 28
Takeda,K., 4, 5 Takeda,M., 42 T a k e d aT, . , 9 , 2 ' l Takeda,Y.,203,291 H., 129 Takehara, Y., 178 Takemasa, Takemoto,I., 400 M., 28 Takemoto, Takemoto,Y., 87 H., 74 Takenaka, M., 28 Takeshita, Taketomi,T., 196 Takeuchi,H., 180 Takeuchi,K, 129,145'246' 282 M., 96 Takeuchi, Takeuchi,R.. 129'307'375 Takeuchi,S., 316 Takeuchi,Y., 14 Takhi,M., 170 Takikawa,Y., 57,318 T a k i m o t oM , .,50 Takizawa,N., 70 Takuma,K., 367 Takuno,Y., 39 T a k u w aA, ' , 6 3 ' 4 l l T a m ,E . K . W ' , 3 1 0 Tam,W., 107,310 Tamada,Y ', 27 Tamai,Y., 95, 237 T a m a m iB , . ,4 1 2 Tamano,K., 23 Tamaru,Y., 45, 280, 283' 348' 349 Tamriz,J., 68 Tamura,K., 387 Tamura,M., 16l Tamura,O., 331 Tamura,Y., 251 Tan,C.-W.,361 Tanabe,K.,23,281 Tanabe,Y.,345,3'71 A., 39 Tanahashi, Tanaka,A., 349' 380 Tanaka,H., 18'225' 392 T a n a k aM , . , 2 5 , 1 2 9 ,l 8 l ' 3 8 0 '3 9 3 Tanaka,S., 45, 280, 283' 348' 382 Tanaka,T', 100'l3l Tanaka,W', 343 Tanaka,Y., 88' 334 Tandel,S. K., 342 Taneja,P., 203
Tanemura. I Tang, K.-H. Tang, P. C.. Tang, X.-Q. Tang, Y.. l! Tangestanin Tani, H.. 67 Tani, K., 8. Tani,S., 16 Taniguchi.I Taniguchi.! Taniguchi.1 Taniguchi.I Tanimori. S T a n i n o ,K . . Tanio, A.. 2 Taniseki.Y. T a n o u c h i .\ T a n o u e ,Y . . T a n o u r y .C . Tanwar,M. T a n y e l i ,C . . Tao, X., 20. Tarasova. O Tarbit, B.. I Tardella, P. Tasdelen. E. Tashiro,M. Tashtoush. I T a t e i w a ,J . . Tatsukawa. T a t s u m i ,T . . T a u , S . - 1 . .l T a u d i e n .S . . Tavani,C-. Tavares, F.. Taylor, M. I Taylor,R. J Taylor, S. K Tbanez,P. I Teesdale-S Tehrani, K. Tejwani, R. Tekawa, M, Tellier, F.. I Temkin, O. Temperini. Templeton. Ten Hoeve. Teng, E., ll
Author Index 471 T a n e m u r a ,K . , 1 3 0 Tang, K.-H., 372 Tang, P. C., 63 T a n g ,X . - Q . , 1 8 ,3 3 1 Tang, Y., 12, 170 T a n g e s t a n i n e j a dS, . , 3 3 9 Tani,H.,67,291,3O1 Tani,K., 8,266,393 Tani, S., 16,316,325 T a n i g u c h i ,H . , 2 9 1 , 3 0 1 Taniguchi, M., 9, 327, 328 Taniguchi,T., 316 T a n i g u c h i , Y . , 3 1 7 ,3 9 2 , 4 0 1 , 4 0 3 Tanimori, S., 16,363 T a n i n o ,K . , 8 T a n i o ,4 . , 2 4 2 Taniseki,Y., 349 T a n o u c h i ,N . , 3 7 5 T a n o u e ,Y . , 2 4 T a n o u r y ,C . 1 . , 2 7 7 T a n w a r ,M . P . , 2 9 1 Tanyeli,C., 354 T a o ,X . , 2 0 , 2 6 8 T a r a s o v a ,O . A . , 3 , 3 0 2 Tarbit, B., 146 T a r d e l l a ,P . A . , 8 8 , 1 5 9 Tasdelen, E. 8., 306 T a s h i r o ,M . , 1 5 7 T a s h t o u s h ,H . 1 . , 1 0 4 T a t e i w a ,J . , 2 4 5 T a t s u k a w a ,A . , 1 7 9 Tatsumi,T., 406 T a u ,S . - 1 . , 2 1 5 T a u d i e n ,S . , 9 6 T a v a n i ,C . , 8 2 , 2 9 6 T a v a r e s ,F . , 6 7 Taylor, M. K., 36 T a y l o r ,R . J . K . , 2 9 0 , 3 0 4 , 3 7 1 , 4 1 3 T a y l o r ,S . K . , 9 Tbanez,P. L., 316 T e e s d a l e - S p i t t l eP, . H . , 1 7 9 T e h r a n i ,K . A . , 3 3 6 Tejwani, R. 8., 384 T e k a w a ,M . , 1 6 4 T e l l i e r , F . , 1 3 5 ,1 3 8 Temkin,O. N.,283 Temperini, A., 30 T e m p l e t o n ,J . L . , l l l Ten Hoeve, W., 63 Teng,E., 129
Teng, M., 3g3 Teodorovic, A,. V., 142 T e r a d a ,M . , 4 3 , 4 4 , 1 6 0 T e r a g u c h i ,M . , 1 7 9 T e r a k a d o ,M . , 3 9 2 T e r a m o t o ,K . , l 1 3 , 1 9 7 T e r a s h i m a ,M . , 8 0 , 2 1 4 T e r r a w u t g u l r a g ,A . , 3 5 3 Terrett,N. K., 153,292 T e s t a f e r r i ,L . , 2 4 , 2 9 , 3 0 , 1 5 2 , 1 5 3 ,2 9 1 T e s t e r ,R . W . , l l 0 Texier-Boullet, F., 245, 298 T h a n g a r a j ,K . , 2 9 8 Thapliyal, P. C., ll4, 126 Theil, F., 203 T h e o d o r a k i s ,E . A . , 3 1 8 Theurig, M., 349 T h i b a u l t - S t a r z y k ,F . , 2 9 8 , 3 4 2 Thiem,J.,371 T h i e s ,O . , 2 0 ThiruvazhiM , ., lll T h o m a s ,A . , 1 5 5 Thomas,E. J., 14,353 Thomas,E. W., 326 T h o m a s - d i t - D u m o n t ,L . , 2 l 4 T h o m a s v ,E . J . , 1 4 , 3 5 3 T h o m e ,M . - A . , l 8 l T h o m p s o n ,A . S . , 9 6 , l 5 l T h o m p s o n ,D . F . , 1 9 7 T h o m s o n ,J . , 1 6 l T i e c c o ,M . , 2 4 , 2 9 , 3 0 , 1 5 2 , 1 5 3 , 2 9 1 T i e t z e ,L . F - , 7 , 2 8 0 Tijani,A., 96 T i m m e r m a n ,H . , 7 6 T i n a n t ,B . , 4 2 T i n g o l i , M . , 2 4 , 2 9 , 3 0 , 1 5 2 , 1 5 3 ,2 9 1 T i u s ,M . A . , 4 0 0 T k a c h e v ,A . V . , 3 2 7 T k a t c h e n k o ,I . , 2 7 3 Toda, F., 148 Toda, S., 252 Toda, T., 88 Todd, L. J., 206 Togni, A., 96 Togo,H., 290 Tohjo, T., 200 Tohma, H., 380 Tohno, I., 363 Tojo, G., 325 ftike, L., l9l
472 AuthorIndex Tsay,S.-C.,57' 63 D. M.' 349 Tschaen, T s e ,C . - L . ,3 1 8 Tse,M. K., 375 Tseng,W.-H.' 371 T s o ,H . - H . ,3 8 4 T', 185 Tsubakino, 28 S', Tsuboi, Tsuboi,Y.' 261 H., 253 Tsubouchi, T.' 316'317'403 Tsuchimoto, T', TsuchiYa, 321 Tsuda,Y., 153 Tsuji,J', 280,281,282' 382 Tsuji,K'' 100,253' 371 Tsuii,R., 246 tsuli, Y., 280'281,282,392 Tsuiiguchi,Y., 280, 281'282 K., 100 Tsujihara, K., 371 Tsujimoto, 10? Tsujimoto'M., 28 Torre,G., 203 F., 216 Tsujimura, T o r u ,T . , 3 4 5 ' 3 9 7 N', 261 Tsukada, Toshima,K., 130 K., 361 Tsukamoto' T o s t eD , .,4ll T s u n oM , . ' 2 8 1 '4 0 1 Toth,G., l9l Tsunoda'M., 281 Totland,K.' 308 T., l16 Tsunoda, Touaux,8., 245 Tsunoi,S., 2O2,3'll' 394 T o u P e tL,. , l 7 l , 3 6 1 Tsutsumi'N., 300 T o w n eT, . 8 . , 2 4 4 ' ) O 3 Tsutsumi'T., 40 8., 375 ToYoda, Tsvetkov,Y. E" 394 Tozer,M. J., 122 Tu, C., 276,280 Tranter,C. J.' 165 T u c c i ,F ' , 1 5 l Trehan,A., 380 T u c k e rC, . E . , 1 2 9 , 1 7 l ' 2 6 3 Trehan,S., 380 T u j i P ,K . J . M ' ' I l 3 T r e i b e rK, . D . , 2 4 4 Tuladhar,S' M'' 291 Trnacek'A. E.' 307 Tundo,P., 144 302 Trofimov,B. A', 3, 204' 283' 293' T u r c o n iM , .' 110 23O Trogolo,C., 8'7,152, Turcotte,N., 140 Troisi,L., 389 Turnbull,K' D'' 321 Trombini'C.' 44 Turner,K. A" 106 i r " r i , s . M . , 4 5 ,9 ? , l l 8 , 2 4 1 '2 ' t 7 ' 2 8 1 ' 3 4 6 ' Turner,S. C' M', 316 386,392'393 Turos,E., l2 Trotter'B' W., 263 Turra,V', 55 TrouPel,M.'225 T Y e ,H . , 2 9 4 Trudell,M.L'319 R' R" 323'325 TYt<winski, Trujillo' G.' 68 TYrrell,8., 63 Trujillo,J. I.' 387 Truscello,A. M'' 125 Uchida,S.,283 Tsai,C.-Y',96 Uchida,Y.' 4l Tsai,Y.-M., 372
T., 70 Tokomatsu, Tokuda,M., 371'408 Y.,2'316 Tokunaga, '73,185'2'16 Tollari,S', Tolman,V., 298 T. P.,2'16 TolstaYa, T o l s t i k o vG, . A ' , 4 1 1 Tonras,M., 327 Tomasini,F.,20 T o m a s i nC i , . ,2 1 6 Tomihiro,T.' 387 Y.' 345 Tominaga, Tomioka,K.' 96, 9'1,178'396 Tomoda,S.' 25 Tomooka'K.' 174 Toneva,R., 222 Tong,L., 331 Tordeux,M., 98 3 '1 0 3 ' 30' T o r i i ,S . , 1 8 ,l 0 l ' 1 2 9 , 2 2 5 ' 2 8 3
fr
Uchimaru. Y.. Uchino, N.. ll Uchiro, H.. 3! Udding, J. H.. Ueda, H., 3{5 U e d a ,I . , 1 3 .t U e d a ,M . , 3 l l Ueda, N., 356 U e d a ,R . . 1 7 l U e d a ,T . , l l l U e j i m a ,M . . I U e m u r a ,M , . U e m u r a ,S . . l 281,365 U e m u r a ,T . . .
U e n g ,C . - H . . U e n i s h i ,J . . l Ueno, S.. 16! Ueno, Y.. l.l: U e y a m a ,E . . Uggeri, F.. I U g r a k ,B . I . . U g u e n ,D . . t Ukaji, Y.. 95 Ulivi, P.. lO
Umani-Ronc U m e d a ,A . . Umemoto. T U m e z a w a .l -
Umstead-De Undheim. K Untiedt, S.. Uoto, K.. {l Uozumi.Y. Urabe,H.. I Urata, Y.. 7
Urbano, A,. Urch,C. J.. U r c h e g u i .R U s u i ,K . . 9 i U t a k a ,M . . Utimoto. K 343. ]l U t s u m i .T . . Uvarov, V. U z a n ,R . , 2
Uzarewicz.
Vaid, R. K. Vaisserma
Author Index 473
Uchimaru,Y., 393 Uchino,N., 251 Uchiro,H., 358 Udding,J. H., ll3, 124 Ueda,H., 345 U e d aI,. , 1 3 , 8 8 Ueda,M., 321 Ueda,N., 356 U e d aR , . ,3 7 1 Ueda,T., I14 U e j i m aM , .,371 Uemura,M., 97 Uemura,5., 25,i4, 96, l0t, 185,245,276, 281,365 Uemura,T., 40 U e n gC , . - H . ,2 6 3 U e n i s h Ji ,. , 2 4 2 , 3 i 2 Ueno,S., 269 Ueno,Y., 345,397 U e y a m aE, . , 3 7 2 U g g e r iF, . , 2 3 3 Ugrak,B. I., 228 U g u e nD , . , 8 2 ,2 3 1 Ukaji, Y., 95, t40, 283,3,6l U I i v i ,P . , 1 0 4 Umani-Ronchi, A., 44, 256 Umeda,A., 339 Umemoto, T., 378 Umezawa, 1.,203 Umstead-Daggett, J., 377 Undheim,K., 88,349,371 Untiedt,S., 349 U o t o ,K . , 4 1 2 Uozumi,Y., 39,96 Urabe,H., 114,365,392 Uraaa,Y., 74 U r b a n oA, . , 3 2 4 U r c h ,C . J . , 2 2 2 Urchegui, R., 38 U s u i ,K . , 9 7 U t a k aM , ., 28 Utimoto,K., 9, 69, 76, 81, 140,327,329, 343,345,385,402,403 Utsumi,T., 228 Uvarov,V. L., 400 U z a n ,R . , 2 Uzarewicz, l. G.,20 V a i d ,R . K . , 2 9 1 Vaissermann, J., 129
ValdesC , ., 4ll V a l e n c i a ,C . , 3 1 9 V a l e r i o ,R . M . , 2 3 V a l l g a r d a ,J . , l 2 t Valli, V. L. K., 309 V a l l i n ,I . M . , 2 6 3 V a l v a n o ,N . L . , 2 2 8 V a l v e r d e ,S . , 1 2 5 Van Bekkum,H., 201 V a n B e n t h e m ,R . A . T . M . , 2 7 7 Van Boom,J. H.,36,49, 170 V a n d e W e g h e ,P . , 3 1 6 Van Delft, F. L., 170 Van den Berg, K. J., 345 Van der Baan,J., I I Van der Baan,J. L., 349 Van der Donk, A., 85 Van der Gen, A., 96, ZOi,387 V a n d e r H e i d e ,T . A . L , l l , 3 4 9 Van der Klein, P. A. M., 49 Van der Made, R. H., 284 V a n d e r M a r e l ,G . A . , 3 6 , 4 9 , l 7 O Van der Meer, P. H., 49 V a n d e r S c h a a f ,P . A . , 4 . 5 V a n d e r S c h o o t ,M . , 3 0 7 V a n D o o r n ,J . A . , 2 0 4 V a n H e e r d e n ,F . R . , 1 2 0 Van Koten, G., 45 V a n L e e u w e n ,M . , 1 9 9 V a n L e e u w e n ,P . W . N . M . , 4 5 V a n L e u s e n ,A . M . , 3 4 5 Van Mier, G. P. M., 45 V a n M i e u w e n hz e , M . 5 . , 2 6 7 V a n N i e u w e n h z e ,N . S . , 9 7 V a n Z a n d e n ,M . N . A . , l l 3 V a n d e nE y n d e , J . - J . ,3 0 1 V a n h e s s c h eK , . P. M., 266 V a n h o m m e r i g ,S . A . , 2 8 5 V a n k a r ,P . S . , 6 3 Vankar, Y. D., 63 VanttinenE , .,203 V a q u e r o ,J . J . , 2 3 8 V a r g a s ,J . R . , 2 8 6 V a r g a s ,R . M . , 2 9 7 Vargas-Berenguel, A., 323 V a r g h e s e J, . P . , 3 8 4 V a r m a ,M . , l 7 Varma, R. D., 267 V a r m a ,R . S . , l 7 Y a r m a ,U . , 2 4 5
474 Author Index Vas,D. M., 276 V a s a p o l l o ,G . , 2 7 3 V a s i l ' e v ,A . A . , 1 0 5 V a s i l e v s k i ,D . A . , 1 7 4 V a s i l e v s k y ,S . F . , 2 8 3 V a s i l j e v a ,L . L . , I I 5 V a t e l e ,J . - M . , 4 5 , 7 6 V a u g h a n ,J . C . , 3 0 7 V a u g h a n - W i l l i a m s ,G . F . ' 1 4 3 V a u l t i e r ,M . , 6 0 , 1 7 5 ,3 4 9
il
;
V a u p e l ,A . , 2 4 8 '77, 292, 3O2, 316 Vedejs, 8., V e g a - P e r e zJ, . M . , 1 2 3 V e k e m a n s ,J . A . , 2 8 5 V e n e n z i ,L . M . , 2 6 3 V e n e z i a ,R . , 2 1 6 V e n k a t r a m a n ,S . , 3 1 6 Venton,D. L., 76 V e n t u r a ,M . P . , 3 5 0 V e n t u r e l l o ,P . , 7 8 V e n u g o p a l ,M . , 2 9 3 V e r a r d o ,G . , 3 2 9 V e r b r u g g e n ,C . , 1 7 8 V e r g a n i ,D . , 7 3 Verhoeven, T. R., 349 V e r k r u i j s s e ,H . D . , 2 0 4 V e r l h a c ,J . - B . , 2 3 9 , 3 6 8 Verma, R. D., 380 V e r n h e t ,C . , 2 6 1 V e r p e a u x ,J . N . , 1 9 6 V e r p e a u x ,J . - N . , 7 3 , 2 1 4 ' 2 8 2 Versleijen, J. P., 285 V e t e l i n o ,M . G . , 3 3 9 Vettel,S., 97 Vicker, N., 338 V i e h e ,H . G . , 2 9 3 , 3 ' 7 ' l V i g n a u x ,P . , 5 2 vij, A.,380 Vijn, R. J.,2 Vilchez, D. M., 378 Villa, L., 40 Villalgordo, J. M., l5l Villemin, D., 197,245' 298' 342 Villiger, A., 273 V i l l u e n d a s I, . , 8 0 V i s w a j a n a n i ,R . , 3 3 1 Yiteva,L.2.,363 Vob, K.-U., 143,264 voight, K., 280 Vollinga, R. C., 76
Volter,W., 349 Von Matt, P.,46 VorbriiggenH., 102,367 Vostrowsky,O., 230 V o t t e r oP, . I . A . , 3 2 2 Vuiglio,L., 395 Vyas,K. A., 288 Waas,J., 120 N., 80 Wachter-Jurcsak, Wada,8., 95,412 Wada,M., 185 Waegell,8., 277 W a g m a nA, . S . , 1 7 l Waid,P. P., 349 S., 242 Wakabayashi, Wakimura,K.-i., 371 C., 98 Wakselman, R., 377 Walavalkar, S., 96 Walbaum, W a l d m a nT, . 8 . , 2 9 3 W a l i ,A . , 3 0 1 WaliaM , .,380 W a l i n s k yS, . W . , 4 l l Walker,A. J., 356 Walker,C., 225 W a l k u pR , . D.,283 W a l l ,L . K . , 3 2 4 Wallace,E. M., 371 Wallbaum,S., 97, l17 W a l l o wT, . 1 . , 2 7 6 Walls,F., 321 Wally,H., 97 Walsh,P. J., 267 Walter,D. S., 384 Walter,J. M., I Walters,T. R., 37 Wang,C.-H.,318 Wang,D., 74, 183 Wang,G., 18 Wang,G.-2.,231 Wang,J., l16, 261'400 Wang,J. X., 318 Wang,J.-S.,263 Wang,J.-X., l2'7,289 W a n gK , . K.,59 'V'lang, L.,24 Wang,Q., 20, 182,194,295,300'376 Wang,Q.-2.,249 Wang,R.-T.,l14
W a n g ,T . W a n g ,\ 1 . W a n g ,X . . Wang,X.Wang,Y.. Wang,Y.Wang,2.. Wang,Z.Ward, E. I Ward, \tr'. Warita. !' Warkentr Warmerd: W a r n e r .B Warren.L Warren.R Warren.S Warriner. Wasserm Watanabc Watanabc Watanabc Watanabc Watanabc Watanabc Watanabc Watanukc Watase. S Waters. R Watrelor. W a t s o n .P Watson. \l Watt, D. ! Weaver.i Weavers. Webb,K. Weber, B. Weber. \'. Weber, lA' Wee,A. (
Weeber.f Wegner. ( Wehmele Wehner. J Wei, D.. ! Wei, J.. ll W e i ,J . - D Wei, Z.-Y Weickhan Weinhous
Author Index Wang,T.-L., 285 Wang,W.-B., 357 W a n g ,X . , 4 0 , 6 3 , 3 l l W a n g ,X . - H . , 1 8 0 Wang,Y., l'll,392 Wang, Y.-P.,46 Wang, 2., 8, 59, 96, 235, 3Ol W a n g ,Z . - M . , 74 , 2 6 6 , 2 6 7 W a r d ,E . L . M . , 7 ' 7 W a r d ,W . E . , 8 8 Warita, Y., 233 W a r k e n t i n ,J . , 2 0 2 W a r m e r d a m ,E . C . J . C . , 3 8 7 W a r n e r ,B . P . , 5 4 Warren,L., 143 W a r r e n ,R . R . , 8 0 Warren,S., 45, 99, 157,249,384 Warriner,S. L., 84 W a s s e r m a n ,H . H . , 8 2 , 2 7 2 W a t a n a b e ,C . , 2 6 1 W a t a n a b e ,D . , 3 0 7 W a t a n a b e ,H . , - 5 7 ,3 8 7 W a t a n a b e ,M . , 9 6 , 9 7 , 1 2 9 ,2 t O , 2 1 6 W a t a n a b e ,5 . , 1 7l , 2 9 2 , 3 5 9 W a t a n a b e ,T . , 1 4 9 , l ' 7 4 , 1 9 3 , 3 4 9 W a t a n a b e ,Y . , 3 8 , 1 2 9 ,3 0 9 , 3 1 0 ,4 l I W a t a n u k e ,S . , 1 0 5 W a t a s e ,S . , 1 8 5 W a t e r s ,R . M . , 8 9 W a t r e l o t ,S . , 2 6 1 W a t s o n ,P . S . , 2 6 3 W a t s o n ,W . H . , 3 3 7 W a t t ,D . S . , 4 1 2 W e a v e r J, . D . , 2 2 W e a v e r s ,R . T . , 1 2 2 Webb,K. S., 300 W e b e r ,8 . , 9 7 Weber, V., 307 Weber, W., 380 W e e ,A . G . , 2 4 6 Weeber, T., 393 W e g n e r ,G . , 3 9 7 W e h m e y e r ,R . M . , 3 3 2 W e h n e r ,J . M . , 3 8 7 Wei,D.,269 Wei, J., 261, 330, 348 W e i ,J . - D . , 3 l l W e i ,Z . - Y . , 2 2 5 , 2 2 7 W e i c k h a r d tK , .,95,269 W e i n h o u s e ,M . I . , 3 0
W e i n r e b ,S . M . , l l 3 , t 3 t , 2 6 7 , 2 8 0 , 3 6 5 W e i n t r a u b ,H . J . R . , 2 9 5 W e i s s ,T . J . , 8 4 W e i s s e n s t e i n e rW , , 97 W e i s s m a n ,S . A . , 6 7 W e l c h ,W M . , 2 4 8 Welchv, J. T., 384 WelkerM , .8.,250 Weller,H. N., 375 W e l l s ,A . , 5 5 W e l l s ,A . S . , 1 8 7 Wells,C., 105 W e l l s ,K . M . , 3 3 1 Welzel,P., 283 W e m p l e ,J . , 2 2 7 Weng,W.-W.,65 W e n k e r t , E . , 1 4 7 ,1 7 3 W e n s c h u h ,E . , 2 3 8 Wermuth, C.-G., 172 W e r n e r ,H . , 1 9 6 W e s t ,F . G . , 1 0 9 ,l l 0 , 1 2 l W e s t e r m a n n ,1 . , 1 74 , 3 6 7 Westermeyer,T., 272 W e s t e r m e y e rT , . A.,235 W e s t w o o d ,D . , I 7 0 Whang,H. S.,372 Whelan, J., 365 WhelessK , ., 221 White, J. D., 54 W h i t e s e l l ,J . K . , 1 2 0 W h i t f i e l d ,D . M . , 3 2 3 W h i t h a m ,G . H . , 3 2 5 Whitlock,c. A., I l0 W h i t t a k e rM , . R.,9 Wicha, J., 379 W i c k h a m ,B . O . S . , 3 2 9 W i d h a l m ,M . , 9 7 W i e m e r , D . F . , 1 5 7 ,3 8 3 W i e r s c h k e ,S . W . , 3 5 4 Wijaya, N., 7l W i j k m a n s ,J . C . H . M . , 3 6 WijsmanG , .W.,297 Wilde,A.,299 wilk, B. K.,2,215 W i l l i a m s ,A . C . , 4 5 Williams,D. J., 122 Williams,D. R.,350 W i l l i a m s , J . M . J . , 4 5 ,4 6 , 9 7 , 2 9 ' 7 W i l l i a m s ,L . , 3 7 1 Williams,R. V., 32
476 Authorlndex W i l l i a m s o nB, . L . , 3 2 5 W i l l i a m s o nS, . M . , 3 2 9 Wills, M., l'70,294 Wilson,B. D., 129 W i l s o n J, . G . , 2 6 1 Wilson,J. W., 143 W i l s o nS , .L . , 1 4 5 W i n k ,D . J . ,3 0 8 Winkler,T., 361 W i n t e rS , .B . D . , 2 6 1 Winterfeldt,E., 241 Wipf, P., 104,263, 291,316,367,4l'7 Wise,L. D., 375 W i s h a r tM , .,261 Wishart,N., 265 Wistrand,L.-G., 261 Wittenberger, S. J., 380 W l o s t o w s kM i,.,2 Wnuk,R.J.,178 Wnuk,S. F., 135 Wo, S., I 17 Wong,C.-H.,47,267,384 Wong,F. F., 76 Wong,H. N. C., 60, 129,192 Wong,K.-T.,173 Wong,M.-S., 120 Wong,T., I 13 W o o ,S . H . , 2 2 7 Wood,A., 375 W o o d ,M . R . , 4 1 7 W o o dW , .W.,4ll Woodall,T. M., 96 P. D., 361 Woodgate, W o o d sM , .,84 R. B., 367 Woodward, W o s ,J . A . , 1 3 6 3 , 61 W o z n i a kM , .,236 R.. 233,356 Wrigglesworth, w r i g h r ,M . 8 . , 3 0 7 Wright,S. W., 186,214,349 Wu, F.-H.,332 Wu, J., 25, 34 Wu, J.-P.,238 W u ,L . I . , 2 4 5 W u ,M . - C . , 3 8 0 Wu, S.,79 Wu, S.-H.,203,31t,312,352 W u ,T . - C . ,2 6 1 W u ,W . - L . , 2 8 6 Wu, X., 205
Wu, Y., 193 Wu, Y.-J.,56 W u ,Y . - L . , 2 8 6 Wulff, W. D., 104 Wustrow,D. J., 375 Wyatt,P. B., 362 Wynberg,H., 63 T. K., 153 Wyrzkiewicz, Wythes,M. J., 261,265,3'75 Xavier,L., 393 Xhou,H.-Y.,249 xi,2., 4t5 Xia, J., 280 X i a ,W . , l 2 Xiang,Y., l0 X i a n g ,Y . 8 . , 9 6 , 2 2 2 Xiao, Y.-P.,225 X i e ,L . , 3 4 X i e ,R . D . , 3 2 7 X i e , R . - G . ,l l 1 , 2 3 l Xiong,H., 225 X u ,C . , l 2 X u ,C . - D . ,l 2 Xu, D., 103,267 X u ,J . ,1 9 5 X u ,L . H . , 1 2 9 X u , L . - H . ,2 6 3 Xu, W., 263,39'7,417 X u , W . - X . ,1 2 9 Xu, Y., l7l, 28O,282 Xu, Y.-C.,l3O,225 Yadav,J. S., 170 Yadav,V. K., 73 L. M., 55 Yagupolskii, Y. L., 177 Yagupolskii, Y a j i m aT, . , 4 3 , 3 4 9 Yamada,H., 96, 105,356,375,410 Yamada, J., 281 Yamada,K., 336 Yamada,M., 44, 189,343 Yamada,N., 382 T., 95, 107,230,361 Yamada, T., 97 Yamagishi, Yamago,S., 388 J., 27 Yamaguchi, K., 4 Yamaguchi, M., 318,356,357 Yamaguchi, R., 14 Yamaguchi,
Yamag Yamag Yamak Yamak
33
Yaman Yaman ll:
3t
Yamam Yaman Yaman Yaman 39 Yaman Yaman Yaman Yamasr Yamas: Yamasl Yamas Yamas Yamasl Yamarx Yamau Yamau Yamazr Yamau Yamaz Y a n ,J . Yan, T. Yanad: Yanade Yanagr Yanagr Yanagr Yanagr Yanagr Yang. 8 Y a n g .C Yang.I Yang.H Yang.J Yang. X Yang.R Yang.f Yang.X Yang.I Yang.I Y a n g .Z
AuthorIndex Yamaguchi, S., 96 Yamaguchi,T., 129,lj6 Yamakai,T., 58 Yamakawa, K., 76,81, 132,t70, 171,292, 336,361 Yamamoto, A., 46, 164,2i6 Y a m a m o r oH,. , 2 , 2 1 , 4 1 ,4 3 , 9 5 , 9 7 ,l l 4 , 135,t7 t, 208, 221,237,238,255,344, 356,361,371,394 Yamamoto, K., 392 Y a m a m o t oM, . , 2 1 6 , 3 i 6 Yamamoto, T., l9l Yamamoro, Y., 147,215,26l, 263,361,375, 393,403,4tl Yamamura, K., 82 Yamanaka, H., 16,80, 280,293,349,409 Yamanaka, T., 367 Yamasaki, H., 239 Yamasaki,K., 400 Yamashita, H., 129 Yamashita, M.,214, 281,297,316,334 Yamashita, T., 23 Yamashita, Y., 95, 346 Yamauchi, M., 149,187 Yamauchi, T., 245 Yamaura, Y.,372 Yamazaki,C.,222 Yamazaki,F., 184 Y a m a z a kH i , . , 1 4 ,1 6 ,6 3 Y a n ,J . - M . ,2 3 1 Y a n ,T . - H . ,3 6 1 Yanada, K., 316 Yanada, R., 164,316 Yanagi,K., 39,96 Yanagi,T., 382 Yanaginuma, E., 372 Yanagisawa, A., ll4, 17l, 221,255,344 Yanagiya, N., 198 Yang,B. V, 99 Yang,C.-C.,280 Yang,D. T. C., 184 Yang,H., 20,2'76,280 Yang,J. C., 288 Yang,K.,249 Yang,R.-Y.,194,385 Yang,T.-K., 170 Yang,W., 206,321 Yang,Y., 129,349 Yang,Y.-T.,272 Y a n g , 2 . , 3 4 , 3 5t,7 O
Yannakopoulou, K., 34 Yano,Y., 195 Yao,G., 34 Yao,Q., 371 Y a r b e r r yD, . J . , 3 1 5 Yasuda, K., 396 Y a s u d aM, . , 2 3 , 5 4 , 3 5 0 3, 6 8 Yasuda, N., 393 Yasue,H., 307 Yasue,K., 221,2'55 Yasui,K., 349 Yasuoka, H., 95 Y a t a b eJ,. , 3 3 0 Yatabe,K., 70 Yavari,1.,64 Y e ,L , 1 2 9 , 2 6 1 , 3 i 3 Ye,T., 146 Y e h ,M . - C .P . , 2 1 5 , 2 6 3 Y e h ,S . - M . ,l 7 l Yelamaggad, C. V., 331 Yep,G. L., 57 Yet,L., 183 Yeung,B. W. A., 173 Yeung,K.-S.,29 Yeung,L.-L., 380 Y e z e g u e l i aCn.,, 2 7 6 Yip, Y. C., 145 Yokohoma, K., 261 Yokomatsu, T.,9i, 415 Y o k o oT, . , 7 6 , 8 1 , 4 O 2 Yokota,K., 321 Yokota,S., 148 Y o k o y a m aM, . , 2 9 O Yokoyama, Y., t30, 276,403 Yoneda, F., 164 Y o n e d aN, . , t 8 l , 4 l l , 4 1 2 Yonemitsu, O., 372 Yonemochi, S., 270 Yonezawa, S., 253 Yonezawa, Y., 134 Y o o ,W . - J . , 3 1 6 Y o o n ,N . M . , 2 4 9 , 3 4 0 Yoon,Y. J., 195 York,C., 182 York,D. C., 103 Yorozu,K., 107 Yoshida, A., l0l Yoshida, J.,269,382 Yoshida, M., 88,309 Yoshida, N., 384,412
47E AuthorIndex Yoshida,S., 28 Yoshida,Y., 70, 345'393 T., 14l Yoshiga, Y o s h i iE , . ,4 , 3 5 4 '4 1 3 A., 371 Yoshikawa, K., 96 Yoshikawa, M, , 3 2 9 Yoshikawa M', 63, 339'382 Yoshimatsu, Yoshino,K.,249 K., 408 Yoshioka, M., 138'403 Yoshioka, T., 382 Yoshiuchi, H., 95 Yoshiwara, Y o s h i z a w Ja.,, 3 1 6 T., 316 Yoshizawa, Yoshizumi,T., 196 M. S', 282 Yosubov, H., 412 Yosuoka, Y o u ,Q . - D . ,2 4 9 Young,D. J., 165 Yousfi,M., 247 A., 60 Youssofi, Y u ,C . - C . ,1 7 3 Y u ,J . , 1 7 7 , 3 1 6 Y u , K . - L . ,2 7 6 Y u ,L . , 2 3 5 Y u ,S . , l l , 3 6 4 Yu, S. F., 63 3 '5 4 Y u ,Y . , 2 0 13, 1 5 , 3 1 7 YuanC , ., l8 Y u a n ,D . - Q . ,l l 7 ' 2 3 1 Y u a n ,K . , 1 7 3 Yuan,S., 364 YuanT , . - M . ,1 7 3 Yuan,Y., 201 Y u a s aM , ., ll3 YudinA , . K., 379 Y u k i ,T . , 4 1 8 Y u m ,E . K . , 7 9 ,2 8 0 Yumoto,M., 4l I Y u n ,M . , 3 7 1 Y u s ,M . , 1 8 3 ,1 9 l ,2 1 1 , 2 1 8 , 3 3 30 7' 1 Y u s t eF, . , 3 2 1 M. S., 64 Yusubov, C',245 Yvanaeff, Zablocka,M., 417 Zagarian,D.,280 T., 214 Zahneisen, Zahra,I.-P.,2'77
Z a i d i ,S . ,3 6 1 M., 20 Zaidlewicz, Zajac,N.,376 Z a j a cW , W,37 Z a l t s g e n d l eI .r,,2 1 9 Zamojski,A., l7l Zampot\,2.,22 Zanardi,G., 130 Zannetti,M. T.' l4l A.' 329 Zanotti-Gerosa, Zapata,A. J., 368 Zard S. 2., 103,24'l' 3'lI Zarini,F.,4O9 Zawadzki,S., 138 Zefirov,N. S., 29, l'74' 194' 400 Z e n g ,H . , 2 9 1 Z e n g ,l . , 3 l l Z e n n e rG , .,403 Zepeda,G., 68 Zepp,C. M., 49' 96 ZevacoT., 53 Zhang,C. H., 308 Zhang,F., 356 Zhang,F. J., l9l Z h a n gG , . ,2 5 , 1 3 8 Zhang,H.-C.,276 Zhang,J., 14 Zhang,L.-J.,255 Zhang,P.,79 Zhang,5., 129 Zhang,'W',372 Zhang,X.,40' 196 ' 40' Z h a n gY , . , 2 2 t , 2 8 2 , 2 8 93, 1 5 '3 1 6 '3 1 7 3 354 Z h a n gY , . - M . ,3 1 5 ,3 8 9 Zhang,Z.,146'30'l Zhang,Z'-d., 106 Zhang,Z.-J.,231 Zhangv,X.-P.' 175 Zhao,D., 301 Zhao,G.,402 Zhao,K.,29O Z h a o ,X . , 3 4 Z h a o ,X . - R . ,3 3 3 Zhao,Y .,'l'l, 3'15 Zhdankin,V. V" 2'7,188,194,216'261 Zheng,1.,83 Zheng,Q., 349 Z h o n gH , . M.' 134 Zhong,Z.,96
Z h o u ,C . - H Z h o u ,H . - B Z h o u ,J . - Q Zhou,J.-Y. Z h o u ,M . . l , Zhou,P.. 16 Z h o u ,Q . - F Z h o u ,Q . - L Zhou,T.. l{ Zhou,W.. I Zhou,W.-S Z h o u ,X . . l Z h o u ,X . - J Zhou,Z. \' Zhou,Z.-L Z h u ,D . , 4 O Zhu, D.-t*. Z h u ,G . . 1 7 Zhu,J., 3{9 Z h u ,l . - L . . Z h u .L . . l O
Author Index 479
Z h o uC , . - H . ,l l 7 Zhou,H.-8.,32'7 Zhou,J.-Q.,308 Zhou,J.-Y.,3ll,352 Zhou,M., 148,l7l Zhou,P., 162,214 Z h o u ,Q . - F . , 3 2 7 Z h o u ,Q . - L . ,9 7 Z h o u , 7 . ,1 4 0 Zhou,W., ll Zhou,W.-S.,74 Z h o u ,X . , 3 1 5 3 , 1 6 ,3 1 8 Z h o u ,X . - J . ,3 3 3 Zhou,Z. Y., 60 Zhou,Z.-L., 12, l5l Z h u ,D . , 4 0 4 Z h u ,D . - W . , 2 8 8 Z h u ,G . , 2 7 ' l Z h u ,1 . , 3 4 9 Z h u ,J . - L . , 3 6 4 Z h u ,L . . 2 O 5 . 2 6 3
t:-
Zieger,H. E., ll7 Ziegler,T. R.,98 Zilberstein, A., 176 Zimmer,J., 147 Zimmer,R., 207,331 Zimmerman,R. L.,203 Ziolkowska, W., 289 Zipp,G. G., 171 ZippiE , .M,,217 Zlatoidsky,P.,222 Zolnai, L., 132 Z o p e , UR . .,235,337 Z o r a ,M . , 3 8 6 Zorn,M.,309,384 Zung,T.7.,283 Z u p a nM , ., 64,400 Zuurmond,H. M., 49 Zwierzak,A., 138,330 Zwikker,J. W., 394 Zylber,J.,408 Zylber,N., 408
B-Alkox;. l-Alkoxl' 3-Alkox-r 3-Alkoxv a-Alkoxl penl
SUBJECTINDEX AcetaldehYde,6, 33' 142 405 A c e t a l i z a t i o n ,8 4 , 1 5 7 ' 107 ketones' 0-Acetamido 4-Acetamido-2,2,6'6I tetramethylPiPeridinYl' 4-Acetamido-TEMPO' I Acetic anhYdride, I Acetone cYanohYdrin' 2 Acetonide hYdrolYsis'285 120 0-Acetoxy nitroalkanes' 3 1 4 s u l f o n e s ' B-Acetoxy 44 4-AcetoxY-2-alkenonitriles' acid' 170 i-o".,"^t-t-tethylenealkanoic luoromethyll- e.",o*yutnino-2+rif q u i n a z o l i n - 4 ( 3 H ) - o n e '1 7 9 409 0-AcetoxY-9-lactams' 280 iir-4-A".io*y"yclohex-2-enol' 2 a - A c e t o x Y i s o b u t Y r Ycl h l o r i d e ' a- AcetoxYketones,28 4 AcetoxYlactoni zation' 2 2 chloride, AcetYl AcetYl hYPobromite' 3 'i-
3 n iivt'z-nitrophenvl)ethanol'
{l
il
Acetylation, 1,200 N - A c e t Y l c Y s t e i n el'5 l A c e t Y l e n e ,2 , 4 ' 3 2 " 1 4 Acid chlorides, 267 A c v l a z i d e s .1 3 4 ' 3 2 6 ' 4 0 9 410 2 - A c Y l -I , 3 - d i t h i s n g 5 ' 4l 5 N-AcYl-2-oxazolidinones' 36 U-ecYl-5-Phenyltetrazole' AcYlacetaldehYdes'156 4l 3 N - i c Y l a c e t Y l g l Y c i n ee s t e r s ' l6 N-AcYl-a-methoxYlamines' o - A c Y l a n i l i d e s ,3 5 8 N - A c Y l a n i l i n e s ,2 9 4 r r a n s - N - A c Y l a t i o n '4 0 5 C-AcYlation, lf4' 3'16 N - A c Y l a z i r i d i n e s '3 128 o-AcYlbenzYlboronates' I 28 3-AcYlcYclobutenones' l5 o-AcYliminium ions' 359 N-AcYliminium ions' 15' 5 8 N-AcYlisatins' 4 ,{J *"tt yttn"triphenylphosphoranes' 1 2 3 N-icYloxazolidines' o-AcYloxYtoluenes' 326 4t0
m - A c v l P h e n o l s .2 0 6 s a l t s '2 6 2 N-AcYlPYridinium 1 4 8 '4 1 6 4 ' Acvlsilanes. Acvltelluranes, 4 4l 3 3 - A c Y l t e t r a m i ca c i d s ' 5 I -AdamantYl f luoroformate' i-( t-no...n,yl)-4-cyanopyridine' Alcohol benzYlation' 38 Alcohol oxidation, 286 143 Alcohol Protection, 38' AlcoholYsis, 132, l9'7' 363
N-(a-AlL a-(Alkor Alkox-vto a-Alkor 289
AldehYde, 46' 83 AldehYde enamine' 83 46 A l d e h Y d es Y n t h e s i s '
102'133' oii"i'.""a""tttion' l7' 43'52' 154,159,31'1,361'393 409' 413 A l d o l - t Y P er e a c t i o n ' 2 1 8 ' 5 5 Aldoximes' 105 2,4-Alkadienoic esters' 3 8 5 2,4-Alkadienones' Alkane oxidation' 29 5 l-lttun".uttonylbenzothiazole' 385 e s t e r s ' 2,4,6-Alkatrienoic l-Alken-6-ones, l4 142 anti-l-Alkene-3,4-diols'
314' lsi-nrr."*., 86't2't'tgt' 2o4'265' 388 365. 3'14,3'15' (Z)-Alkenes'175 172 t'l--itf"noyto*uzolidin-2-ones' I l3 r,r-AlkenYidichloroacetates' salts'289 nttenytlptrenyt)iodonium 274 4-(tr-AlkenYl)-B-lactams' 78' 363 2-iltenYt-t,f-Oioxanes' ylides' 2-nlrenyl-2-methoxycyclopropyl '76 6 AlkenYlboranes' 142 l-AlkenYlboronates' 391 2-AlkenYl-carbaPenems' I 50 (Z)-AlkenYlcuPrates' 50 2-AlkenYlcYcloalkanols' 286 i- ltt.nyt.y"topropylmethanol' 7 ether' cYclic i-lettenYtmett'Yl) 309 AtkenYlsilanes' AlkenYltriPhenYlPhosPhontum 6 tetrafluoroborate' 416 reagents' AlkenYlzinc oxides'99 "-,q,ffo*V allylphosphine
B-Alkor p-Alk-vl Alkyl o' o-Alk1l AlkYl Pf Alkyl p AlkYl r-
O-Alk1" 4-Alk.v 2-Alk1 2-AlkY 21 cls, clJ'
trr 2-Alk. Alkyh N-Alk Alkyla Alkyle t0 2t
.r
N.AII, Alkytt 2-AIL N-AII N.AII
f-(Zt' Alkll N-AII 4-alk Alk;-l p-All
N.(A r-All S-AI AlkY AlkY l-At
SubiectIndex 4El B - A l k o x y c a r b o x y l i c a c i d s ,2 0 1 I - A l k o x y - 1 , 3 - d i e n e s7, 8
Dl(
t :
-.!
3 - A l k o x y - 2 - b r o m o p r o p i o n a t ee s t e r s ,2 3 3 3 - A l k o x y a c r y l o y l c h l o r i d e s ,6 o-A lkoxyalkylidene-molybdenum p e n t a c a r b o n y l s2, 4 2 N-(a-Alkoxyalkyl) amines,33 o - ( A l k o x y c a r b o n y l ) t h i o a l d e h y d e s3, 4 5 Alkoxyiodination, l9l o - A l k o x y s t a n n a n e s ,2 7 1 p - A l k o x y s t y r e n e s ,2 7 4 p - A l k y l a n i s o l e s ,3 8 0 A f k y l a - p h e n y l t h i o c r o t o n a t e s9, o - A l k y l N ' - ( l - b u t y l t h i o ) a z o a r e n e s2, 9 6 A l k y l p h e n y l s e l e n i d e s9, A l k y l p - m e t h o x y b e n z y le t h e r s ,7 0 Alkyl t-butyl iminodicarbonates9 , O - A l k y l t h i o c a r b o x y l a t e s ,1 8 6 4 - A l k y l - 2 - c y c l o h e x e n o n e s ,1 9 7 2-Alkyl-2-cyclohexenones1 , 43 2 - A l k y l - 2 - e t h o x y c a r b o n y l c y c l oIak a n o n e s ,
2to
t-!
!
c i . s ,c i s - 2 - A l k y l - 3 - h y d r o x y - 5 t r i m e t h y l s i l y l m e t h y l p y r r o l i d i n e sI, 5 2 - A l k y l - 4 - o x o p e n t a n a l s ,5 4 A l k y l a l u m i n u m c h l o r i d e s ,7 N - A l k y l a m i d e s ,l 8 A l k y l a t i n g a g e n t s ,9 A l k y l a t i o n , 8 , 1 0 , 1 6 ,2 2 , 4 2 , 4 6 , 5 0 , 7 7 , 8 0 , 1 0 3 , l 1 4 , 1 3 4 , 1 5 5 ,2 3 4 , 2 4 5 , 2 6 2 , 2 8 6 , 2 8 1 , 2 9 9 , 3 0 1 , 3 l l , 3 1 8 ,3 5 t , 3 6 6 , 3 9 5 , 406 N-Alkylation, 34, 48, 148,28'l A l k y l a t i v e d e o x y g e n a t i o n 7, 8 2 - A l k y l c y c l o a l k a n o n e s ,2 1 0 N-Alkylhydroxamic acids,122 N-Alkylhydroxylamines,48 7 - ( Z ) - a l k y l i d e n e b u t e n o l i d e s ,1 2 7 A l k y l i d e n e m a l o h a t ee s t e r s ,2 5 5 N-Alkylindoles, 58 4-alkylphenols,182 Alkylphosphonate esters, I 38 p-Alkylstyrenes, l l9 N-(Alkylthio)imines, 167 I - A l k y l t h i o - 1 , 3 - b u t a d i e n e s ,1 2 9 S - A l k y l t h i o c a r b a m a t e s ,3 1 8 A l k y l t r i p h e n y l a r s o n i u ms a l t s , l 0 A l k y l z i r c o n o c e n e s ,2 6 3 l-Alkynes,6,29, ll2, I14, I18, 142,2'79, 290. 356,366, 374,416
A l k y n y l p h e n y l s e l e n i d e s2, 9 Alkynyl sulfoxides,32 l-Alkynyl-4-ols,l0 exo,exo-5-Alky nyl-6-arylnorbornenes, I 27 I - A l k y n y l c y c l o p e n t a n o l s ,l 9 l l - A l k y n y l c y c l o p r o p a n o l s ,I 3 2 A l k y n y l p h o s p h o n a t e s ,1 7 2 Allenes, 16l, 264, 333, 349 A l l e n i c a l c o h o l s ,2 5 5 A l l e n y l ( t r i p h e n y l ) l e a d ,l 0 a-Allyl amino acids,l5 A l l y l c a r b a m a t e s ,l 1 9 Allyl chloroformate, I I O - A l l y l h y d r o x y l a m i n e s ,1 5 2 O-Allyl oximes, 152 A l l y l r e p l a c e m e n t ,l 3 A l l y l t o s y l a - m i d e s3, 6 5 2- Allyl - 1,2-oxaborolane, l0 A l l y l a l u m i n a n e s l,8 Allylamines, 6, 414 Allylation, 10, l I, 12, 13, 14, 16, 43, 46, 52, 6 1 , 1 0 7 ,1 0 9 ,1 6 6 ,2 5 5 ,2 6 3 , 3 l l , 3 1 7 , 347,352,353,364, 403 A l l y l a t i o n o f a l d e h y d e s ,1 2 , 1 4 , 4 6 , 3 5 3 , 403 A l l y l a t i o n o f B - o x y - a - i o d o a n i l i d e s ,l 3 A l l y l a t i o n o f c a r b o n y l c o m p o u n d s ,1 3 , 1 6 , 166,347 A l l y l a t i o n o f h e t e r o c y c l e s ,l 3 o-Allylation, l 14 o - A l l y l b e n z y l a m i n e s ,4 4 B - A l l y l b i s ( i s o c a r a n y l ) b o r a n e sI ,I Allylboranes, l0 A l l y l d i c a r b o n y l ( c y c l o p e n t a d i e n y l ) i r o nl 2 , A l l y l d i i s o b u t y l t e l l u r o n i u mb r o m i d e , I I Allyldimethylsilyl trif Iate, l2 A l l y l g a l l i u m r e a g e n t s ,1 6 5 a-Allylglycine, l6 A l l y l i c a c e t a l s ,9 9 A l l y l i c a l c o h o l s ,4 6 , 5 1 , 5 7 , 5 8 , 6 3 , 6 5 , 7 0 , 73,86, 88, l18, r35, 139,149,165,168, t90, 207, 208, 209, 2t5, 219, 233, 235, 244, 265, 266, 2'70,275, 294, 302, 30'7, 309, 3l l, 319, 329, 331, 344, 363, 3'l4, 385, 397, 406, 408, 416 A l l y l i c a m i n a t i o n , 1 9 7 ,1 9 8 A l l y l i c c a r b a m a t e s ,1 5 9 A l l y l i c d i p h e n y l p h o s p h i n a t e sl ,5 4 A l l y l i c d i s p l a c e m e n t s2, 5 8 Allylic phosphates, 170
4E2 SubjectIndex 2-(A minocarbonyl)cycloalkano nes, 2O2 I - A m i n o c y c l o p r o p a n e c a r b o x y l i ca c i d s ' vic-AminohYdroxYlation, 74 3-Aminolithium, 2l I
Allylic PhosPhonates,296 A l l y l i c r e a r r a n g e m e n t4, 4 , 1 6 2 Allylic substitution' 45, 219, 34'l' 389 A l l y l i c t h i o c Y a n a t e s I' I I A llylidene(triphenyl)phosphoranes' 12 A l l y l m e r c u r Y i o d i d e s ,2 3 2 z r - A l l y l n i c k e l n u c l e o P h i l e s5, 0 2 - A l l y l o x y - 1 , 2 - o x a b o r o l a n el,0 ( A l l y l o x y c a r b o n y l a m i n o ) m e t h a n o lI, 3
Aminolysis, 119,415 3 - A m i n o m e t h y l c y c l o a l k a n o n e s2,5 8 N-Aminonitrene' 179 a-Aminonitrile, 382 a - A m i n o P h o s P h i n i ca c i d s , 1 7 8 2 - A m i n o P Y r i d i n e s ,1 8
l t ' - A l l y l p a l l a d i u m c h l o r i d e ,9 4 z-AllylPalladium ions, 279 A l l y l s i l a n e s , 1 5 9 ,3 3 2 ' 3 8 9 A l l y l s t a n n a n e s '2 7 0 A l l y l t r i b u t Y l s t a n n a n e s 'I 3 A l l y l t r i c h l o r o s i l a n e s ,l 4 A l l y l t r i e t h Y l g e r m a n e s2, 7 A l l y l t r i m e t h Y l s i l a n e ,l 5 A l l y l z i n c r e a g e n t s ,1 6 , 3 4 7 ' 3 6 5 A l l y l z i r c o n o c e n ec h l o r i d e s ,4 1 7
A m i n o s i l a n e s ,2 3 r a - A m i n o s t Y r e n e s3, 3 8 Ammonia,23 Ammonium formate, 23 A m m o n i u m h Y P o P h o s P h i t e2,4 A m m o n i u m P e r b o r a t er e s i n , 1 9 5 A m m o n i u m P e r s u l f a t e ,2 4 Ammonium vanadate,24 N - A n i l i n o i n d o l e s ,2 9 Anthrones,326 AntimonY(lll) chloride,25
Alumina, 16 Aluminum, l7' 18,20' 2l Aluminum chloride' 18'20 A l u m i n u m c h l o r i d e - c a r b o nd i s u l f i d e o n resin' 20 A l u m i n u m h Y d r i d e '2 0 ,0 Aluminum hydride-triethylamine2
* *ii
A n t i m o n Y ( V) c h l o r i d e - s i l v e r ,5 h e x a fl u o r o a n t i m o n a t e 2 Antimony(V) f luoride,25 Appel's salt, 130 A r - C y c l o h e x Y l a t i o n ,1 3 4 o - A r e n e d i a m i n e s ,1 2 8 A r e n e d i a z o n i u ms a l t s , 2 5
I A l u m i n u m t r i s ( 2 , 6 - d i p h e n y l p h e n o x i d e2) ' I 2 l u o r o p h e n o x i d e ) ' Aluminum tris(pentaf Amberlite IR-120' 195 AmberlYst 15, 194' 284 Amberlyst A2l' 195 A m i n a l e x c h a n g e ,3 2 Amination, 58, 340' 409 1 , 2 - A m i n o a l c o h o l s ,1 2 3 , 1 5 4 ,2 1 8 ' 2 5 ' 7 a - A m i n o B - h Y d r o x Ye s t e r s ,l l 9 Amino diol, 92 F - A m i n o k e t o n e ,3 3 a - A m i n o n i t r i l e s ,l l 7 a - A m i n o P h o s P h o n i ce s t e r s ,1 3 7 4nli-3-Amino-l-alken-4-ols, 142 4 - A m i n o - l - a z a d i e n es y n t h e s i s ,4 l I N-Amino-2-( I -ethYl-lmethoxY)PropYlPYrrolidine,22 N- A mi no-2- (methoxymethyl)pyrrolidi ne' cis-l-Amino-2-indanol, 9l a-A mino-a,r,r-dicarboxYlates,40 2-Aminoazirenes' l5l N-Aminoaziridines, 179 o - A m i n o b e n z a m i d e s ,I l 2 l - A m i n o b e n z o t r i a z o l e ,1 9 3
AreneselenenYlbromides, 25 A r e n e s e l e n e n Yt rl i f l a t e s ,3 2 3 e r o - 3 - A r e n e s u l f o n a m i d o i s o b o r n e o l9s 2' 2 - A r e n e s u l f o n Y lb e n z a m i d e s ,2 1 3 A r e n e s u l f o n Y li s o c Y a n a t e s4, 7 ( A r e n e s u l f o n yilm i n o i o d o ) b e n z e n e s2' 9 1 Aromatic chlorination,55 A r o m a t i z a t i o n , 1 8 9 '3 0 1 A r y l I , l - d i m e t h y l p r o p a r g y le t h e r s ' A r y l i s o c Y a n a t e s8, 8 A r y l p h o s P h o n a t e s1, 3 7 A r y l s u l f i d e s ,2 5 S - A r y l t h i o s u l f o n a t e s '1 8 7 A r y l ( c y a n o ) i o d o n i u mt r i f l a t e s ,2 6 2 - A r y l - 1 , 3 - d i t h i o l a n e - S - o x i d e1s6,9
22
30'7 I - Aryl-2-(trimethylsilyl)ethynes' urans,363 2-A ryl-2,3-dihYdrobenzof 120 l-Aryl-2-bromoalkYnes, 2- A ryl- 3- methyl -4-acylpyrrolesv' t57 ' 5 - A r y l - 4 . 5 - d i h y d r o1- . 3 - d i o x e p i n s324 290 2-Aryl-4-quinolones, 354 l]hept-2-enes' 6-Rryl-5-nitrobicyclo[2.2.
o-Ar.vlr a-Arylu B-Aryle Arylatto 2-Arylb 3-Arylb 2-Aryld Aryllcrd Arylme 2-(Aryl O-Aryl trans-2 N-Arylp 3-ArylP 2-Arylg 2-Arylt Aryltrir Asymm Asymm I,5-As 1,7-As Asymn Aymnr l-Azepn 'l-Aza'
7-Azeb Aza-C l-Azrd 2-ALd Azcpia Azctid B-Azt a-Azii Azido Azido Azircl Azind Azird Azirid Azirid lll€
SO' t
Azom
Bacyc Bart* 3 Bariu Bariu Bayli
SubjectIndex 483
:.
6 t!
i.
d-Arylacrylic esters,348 Beckmann fragmentation, 326, 366 a-Arylation,25 B e n z a n n u l a t i o n ,3 4 104 B-Arylation, B e n z e n e d i a z o n i u mc h l o r i d e . 2 9 Arylation of activatedketones,27 Benzeneselenenylbromide, 29 2-Arylbenzimidazoles, I 28 Benzeneselenenylchloride, 30 3-Arylbutyraldehydes, 324 N - B e n z e n e s e l e n e n y l p h t h a l i m i d3e0, 2-Arylidenecycloalkanones, 207 B e n z e n e s e l e n i n i ac n h y d r i d e - t r i fl u o r o a c e t i c Aryllead triacetates, 27 a n h y d r i d e ,2 9 Arylmaleicacids,166 2 B e nzenesulfeny1 l -, 3 - d i e n e s2, 7 5 2-(Arylmethoxy)-methyl-2-oxazolines, 213 B e n z e n e s u l f o n s e l e n yc lh l o r i d e , 3 l O-Arylmethylcarbamates, 79 2 - ( B e n z e n e s u l f o n y l )1 , 3 - d i e n e s 1 , 26, 183 t rans-2-Ar ylmethyl-cycloalkanols, 207 I - B e n z e n e s u l f o n y l - 2 - t rmi e t h y l s i l y l a c e t y l e n e , N-Arylpiperidines. I l0 32 3-Arylpyridines, 354 2- Benzenesulfonyl -3-phenyloxazir idine, 32 2-Arylpyrroles, 36 B e n z e n e s u l f o n y l m e t h ypl- t o l y l s u l f o x i d e ,3 l 2-Arylthiazolidines, 374 B e n z o d i h y d r o p yr a n s , 2 77 A ryltrimethyltins, 175 B e n z o f u r a n s ,1 4 5 Asymmetricalkenylation,39 Benzoins,358 Asymmetricepoxidation, 194 Benzoisothiazoles,205 1,s-Asymmetric induction,8 N-(a-[Benzotriazol-l-yl) ]alkylamines, 32 1,7-Asymmetric induction,92 B e n z o t r i a z o l -l - y l m e t h a n o l ,3 4 Asymmetricmethoxyselenenylation, 25 B e n z o t r i a z o l - l - y l m e t h y lm e t h y l e r h e r ,3 5 Aymmetrichydrogenation, 40 B e n z o t r i a z o l - l - y l m e t h y lp h e n y l s u l f i d e , 3 5 I - A za-1,3-bis(triphenylphosphoranylidene)N - ( B e n z o t r i a z o l -I - y l m e t h y l ) c a r b a m a t e s3, 4 propane,2T B e n z o t r i a z o l -I - y l m e t h y l im i n o ( t r i p h e n y l ) 7- Azabenzotriazole.35 phosphorane,34 7- Azabicyclo[2.2. l]heptane,320 B e n z o t r i a z o l -I - y l o x y t r i s ( d i m e t h y l a m i n o ) Aza-Claisenrearrangement, 4l I phosphonium hexafluorophosphate, 35 l-Azadienes,395 B e n z o t r i a z o l e . 3 4 .3 5 2-Azadienes,138 N- Benzoyl-(4S)-r-butyl-2-oxazolidinon3 e6 , Azepine,159 B e n z o y l a t i o n , 3 6 , 4 0 5 Azetidines. 334 O - B e n z o y l h y d r o x y l a m i n e s I, 2 2 B-Azidoalcohols,380 4-Benzoyloxy-2,2,6,6-tetramethylpiperidino-Azidoamides,325 l-oxyl,330 Azidonation.380 N-Benzoyltetra zole, 36 Azido-selenenylation, 153 B e n z y l c y a n i d e s ,l l 7 Azirenes,l5l Benzyl trichloroacetimidate, 38 Aziridination,159 N - B e nz y l - 2 , 5 - b is t r i m e t h y l s il y l p y r r o li d i n e , Aziridine, 99,.106 320 Aziridine cleavage,106 l - B e n z y l - 3 - p y r r o l i n e ,4 l 7 Aziridines,47, 172,365.403 8-Benzylaminoindolizidine3 , 55 meso-Aziridines, 106 I - B e n z y l a m i n o - q u i n o l i z i d i n e ,3 5 5 Azomethine ylides,320 Baeyer-Villger oxidation,310,313 Barbier-typereactions,210,2ll, 217,312, 3s3,372,406 Bariumhydroxide,23. Bariumruthenate,29 Baylis-Hillmanreaction,120,170
4,6 -O-Benzylidene glycopyranosides, 203 l -( Ben zylideneami no)cyclopropanecarboxylicesters, 336 N - B e n z y l i d e n e b e n z e n e s u l f o n a m i d3e7, O-Benzyloxime, I l3 a-Benzyloxyaldehydes, 70 o-(2-Benzyloxyethyl)benzoic acid, 38 Benzyloxyketene, 37
484 SubjectIndex S -B e n z y l t h i o e s t e r s ,3 7 4 B e nz y l t r i e t h y l a mm o nl u m tetrathiomolYbdate' 39
1 , 2 - B i s ( s i l o x Y ) e t h e n e Is2, 7 B i s ( s y m - c o l l i d i n e ) i o d i n e ( Ip ) e r c h l o r a t e ,4 9 Bis(t-butoxYcarbonYl)oxide, 48
B e n z y l t r im e t h y l a m m o n i u md i c h l o r o i o d a t e ' 39 B e n z y n e g e n e r a t i o n ,1 9 3 l , l ' - B i - 2 , 2 ' - n a p h t h o l( B I N O L ) b o r o n a t e s ,4 l l , l ' - B i - 2 , 2 ' - n a p h t h o l / t i t a n i u mc o m p l e x e s ,
N,O-Bis(r-butoxycarbonyl)hydroxylamine, 48 ) Bis(tetrabutylammonium)cerium(lV nitrate, 53 Bis(tributylstannyl)acetylene, 53
43
Bis(tributyltin) oxide, 54
complexes, Bis(trichloromethyl) carbonate, 55 -Bi-2,2'-naphthol-lanthanide N,N-Bis(trif luoromethanesulfonyl)benzene4l sulfonodiimidoYl chloride, 55 - B i - 2 . 2 ' - n a p h t h o l - l i t hai ul umm i n u m h y d r i d e ,4 2 l , l ' - B i - 2 , 2 '- n a p h t h o l - t i n ( l v ) c h l o r i d e , 4 2 s 'l B i c y c l i c 1 , 3 , 2 - o x a z a b o r o l i d i n e9 B i c y c l i c l a c t o n e s ,8 6 B i c y c l o [ 3 . 3 . 0 ] o c t e n o n e s3,0 5 l , l ' - B i n a p h t h a l e n e - 2 , 2 ' - d i t h i o l '3 9 2 , 2 ' - B i n a p h t h o l s ,1 9 7 'I , l B i n a p h t h Y'l2 , 2 ' - d i a m i n e , 3 9 B I N O L - l a n t h a n u m ,4 l BINOL-ytterbium,42 l , l ' - B i p h e n y l - 2 - c a r b o x y l a t ee s t e r s ,1 6 8 2 , 2 ' - B i p y r i d i n e 8, 9 , 4 l I B i s ( 1 , 5 - c y c l o o c t a d i e n e ) n i c k e l ( 04)9' B i s ( 2 , 2 , 2 - t r i c h l o r o e t h y la) z o d i c a r b o x y l a t e , 55 2 . 4 -B i s ( 4 -m e t h o x y p h e n y l )I-, 3 , 2 , 4 d i t h i a d i p h o s p h e t a n2 e , 4 - d i s u l f i d e ,5 I B i s ( a c e t o n i t r i l e ) c h l o r o n i t r o p a l l a d i u m ( l l4 ) '5 B i s ( a l l y l ) d i - l n - c h l o r o d i p a l l a d i u m4' 5 B i s ( a r e n e s u l f o n Y l ) m e t h a n e4s6, B i s ( b e n z y l o x y ) d i e t h y l a m i n o p h o s p h i n4e7, t
*
B i s ( b r o m o m a g n e s i u ms) u l f i d e , 4 7 B i s ( c h l o r o d i b u t Y l tni ) o x i d e . 4 9 Bis(cyclopentadienYl)iron hexaf luoroPhosphate'50 B i s ( c y c l o p r o P Y l ) t i t a n o c e n5eI, B i s ( d i b e n z y l i d e n e a c e t o n e ) p a l l a d i u5mI ' 1 , 8 - B i s ( dm i e t h y l a m i n o ) - n a p h t h a l e n eI ,5 4 IBis(diphenylphosphino)alkane]bis(2m e t h a l l y l ) r u t h e n i u mc o m p l e x e s '5 I 1 , 4 - b i s ( d i p h e n y l p h o s p h i n o ) b u t a n2e7,3 l , l - B i s ( h e t e r o a r Y l ) a l k a n e s3,4 2 , 6 -B i s ( h y d r o x y m e t h y l ) p h e n o l s2,3 0 , B i s ( im i n o P h o s P h o r a n e s4) 8 3 , 3 ' - B i s ( o - h y d r o x y p h e n y lB ) -I N O L ' 4 l 1 , 4 -B i s ( p e r fl u o r o a l k y l ) -l ' 2 ' 3 - b u t a t r i e n e s , 406 B i s ( p y r i d i n e ) i o d i n e ( l )t e t r a fl u o r o b o r a t e tetrafluoroboric acid, 53
B i s ( t r i f l u o r o m e t h y l )t e l l u r i d e , 5 5 1 ,l - B i s ( t r i f l Y l o x Y ) a l k a n e s2, 5 7 1 , 2 - B i s ( t r i m e t h y l s i l o x y ) c y c l o b u t e n5e5, N , N - B i s ( t r i m e t h y l s i l y l )a m i n e s ' 2 1 6 B i s ( t r i m e t h y l s i l y l ) p h o s p h o n i t e ,1 7 8 B i s ( t r i m e t h y l s i l Y l )s e l e n i d e ,5 7 B i s ( t r i m e t h y l s i l y l ) s u l f a t e - s i l i c a '5 7
B i s ( t r i m e t h Y l s i l Y l )s u l f i d e ' 5 7 1 , 8 -B i s ( t r i m e t h y l s i t y l ) - 2 , 6 - o c t a d i e n e3,5 9 B i s ( t r i m e t h y l s i l y l ) a c e t a m i d e5' 7 7-bis(trimethylsilyl)amino-a-alkynoic e s t e r s ,2 5 9 N , O - B i s ( t r i m e t h y l s i l y l ) h y d r o x y l a m i n e5,6 1 , 2 - B i s ( t r im e t h y l s t a n n y l ) a l k e n e s1, 7 9 B i s ( t r i p h e n y l p h o s p h o n i o ) o x i dbei s t r i f l a t e , 5 8 B i s ( t r i p h e n y l s t a n n y l c) h a l c o g e n i d e s5, 8 c h l o r i d e ,4 0 4 Biscyclopentadienylyttrium 3 , 3 -B i s m e t h y l t h i o c y c l o p e n t a n o2l ,0 9 Bismuth. 52 Bismuth(IlI) chloride,52 B i s m u t h ( l I I ) c h l o r i d e - m e t a li o d i d e ' 5 2 B i s m u t h ( l l l ) m a n d e l a t e - d i m e t h ysl u l f o x i d e ' 52 B i s m u t h i n e s ,3 6 7 1 , 2 - B i s s u l f o n a m i d e s8, 9 t ran s -1,2-Bistri f la midocyclohexane, 93 a,B-Bistrif luoroacetoxy sulfides, 376 ' 20 o . a ' - B i s t r i m e t h y l s i l y la z a c y c l e s 3 v l c - B i s t r i m e t h y l s t a n n y l a t i o n1, 7 6 B i s - u r e t h a n e s8, 8 B l a i s e r e a c t i o n s ,4 0 7 N - B o c a m i n o a l d e h Y d e s l' 5 N - B o c - 2 - m e t h y l t e t r a h y d r ol -' 3 - o x a z i n e , 7 8 B - ( N - B o c - a z i r i d i n - 2 - yt la . p - u n s a t u r a t e d esters, 45 N - B o c - b e n z y l c h l o r o a l k y l a m i n e s7, 9 9 - B o r a b i c Y c l o [ 3 . 3l ].n o n a n e , 5 8 Borane, 58 B o r a n e - a m i n e s ,5 8
Borane-d Borodest Boron trl Boron trt endo-Bn Bridgehc Bromine Brominc Bromirc Brominc I - Bromo 2-Bromc Bromoat ar-Bronr
2-(B-B
347
B-(l-Bn a-(o-Bn 4-Bronr Bromoct a-Brom Bromof Bromofi 2-(Bron 2-Brom ar-Bron 4-Brom N-Broa N-Bron lelr N-Bron N-Bron N-Bron l,l-Bu 2,3-Bu 1,2.3Buteno 3-Butc N-(l-B 69 N-(r-B cn l-Buty t-Buty (d
t-Buty r-Buty lll
t-But t-Bul! t-But
SubjectIndex 485 :ltc. {9
ir.:. tr
|f, r. rmlne. !r- i\
rc n zen<
B o r a n e - d i m e t h y ls u l f i d e , 5 9 Borodesilylation,59 Boron trichloride,59 B o r o n t r i f l u o r i d e e t h e r a t e ,6 0 , 6 1 , 6 3 e n d o - B r e v i c o m i n . ,3 6 6 B r i d g e h e a df u n c t i o n a l i z a t i o n ,2 9 0 Bromination.3. 65. 184 Bromine, 64, 122, 178,186 Bromine trifluoride, 64 B r o m i n e - z i n c e x c h a n g e ,2 3 0 l -Bromo- I -ch lorocyclopropanes,296 2-Bromo-2-alkenoates1 , 37 B r o m o a c e t y l e n e s6, 7 r , r - B r o m o a l k e n e s1. 0 2 . l 7 l 2 - ( B - B r o m o al k e n y l ) -1, 3 , 2 - d i o x a b o r i n a n e s , 347 B - ( I - B r o m o a l k y l ) - B - l a c t o n e s3, 2 0 a-(o- Bromoani I i no)aI kenenitr iles, 277 4-Bromobutene,4l5 B r o m o e t h e r i f i c a t i o n ,6 6 a - B r o m o e t h e r s ,3 2 7 B r o m o fI u o r i n a t i o n , 1 8 2 Bromoform, 64 2 - ( B r o m o m e t h y l ) a z i r i d i n e s4, 0 8 2 - B r o m o m e t h y l -1 , 4 - d i b r o m o - 2 - b u t e n e4,0 7 a r - B r o m o n i t r i l e s ,1 6 7 4- Bromo- N-tos ylindole, 274 N - B r o m o s u c c i n i m i d e .6 5 . 6 7 N - B r o m o s u c cni i m i d e- 2 , 2 , 6 , 6-
rl::c ]l br .: I ltrr rdc
l\i:J. j.
qi
i -fr
9 . : : '
'( \i1lne.78 tr.rlurated 1..
-9
t e t r a m e t h y l p i p e r i d i n e6, 7 N-Bromosuccin i mide-iodosylbenzene, 67 N - B r o m o s u c c i n i m i d e - sl vi e r n i t r a t e , 6 7 N - B r o m o s u c c i ni m i d e - w a t e r ,6 7 l , I - B u t a n e d i a c y l a t i o n 5, 5 2,3-Butanedione,68 1 , 2 , 3 - B u t a t r i e n e s v3,4 4 B u t e n o l i d e s .3 2 0 3-Butenylketoximes,152 N - ( r B u t o l y c a r b o n y l )m e t h a n e s Iuf o n a m i d e , 69 N - ( t -B u t o x y c a r b o n y l o x y ) - 5 - n o r b o r n e n e en do-2,3-dicarboximide, 68 t - B u t y l 2 , 3 - d i o x o - 4 - p e n t y n o a t e8, 2 t-Butyl 3-(ethoxycarbonyl)-3(diethylphosphono)propionate,7 I r - B u t y l h y d r o p e r o x i d e ,7 1 , 7 3 / - B u t y l h y d r o p e r o x i d e - d i a l k y lr a r t r a t e t i t a n i u m ( l V ) i s o p r o p o x i d e ,7 3 "74 /-Butyl hypochlorite, t - B u t y l N - t o s y l o x y c a r b a m a t e2, 5 8 t-Butyl oxazaborolidine9 ,2
r - B u t y l t r i m e t h y l s i l y l p e r o x i d er - B u t y l t r i m e t h y l s i l y l p e r o x i d e ,8 2 N-(r-Butyl) bis(trimethylsilyl)acetaldimine, 409 2 - r - B u t y l -I - m e t h o x y m e t h y l - 3 - m e t h y l 1 , 2 , 3 , 4 - t e t r a h y d r o p y r i m i d i n - 4 - o n e7,9 N - B u t y l a n i l i n o m a n g a n e s ec h l o r i d e , 6 9 r-Butylchloroformate, 69 t - B u t y l d i m e t h y l s li y l c h l o r i d e , 2 2 0 t - B u t y l d i m e t h y l s i l y l d i m e t h y l p h o s p hi r e , 7 0 t - B u t y l d i m e t h y l s li y l t r i f l a t e , 7 0 ( r -B u t y l d i m e t h y l s il y l ) d i h a l o m e t h y Il i t h i u m , 69 ( r - B u t y l d im e t h y l s i l y l ) t r i m e t h y l s t a n n a n7, 0 a - ( r - B u t y l d i m e t h y l s i l y l ) v i n y lp h e n y l s u l f o x i d e ,T l t - B u t y l d i p h e n y l s i l y lc h l o r i d e , 7 I t - B u t y l d i p h e n y l s i l y lc y a n i d e , 4 1 2 /-Butyliminoosmium trioxide, 74 Butyllithium, 74 S-Butyllithium, 77, 78 t-Butyllithium, 79, 80, 8l t - B u t y l I i t h i u m - h e x am e t h y l p h o s p h o r i c triamide, 80 / - B u t y l l i t h i u m - N , N ,N i N ' t e t r a m e t h y l e t h y l e n e d i a m i n e8,I s-Butyllithium-N,N,NiNl t e t r a m e t h y l c r h y l e n e d i a m i n e7,8 t - B u t y l l i t h i u m - p o t a s s i u mh y d r i d e , 8 l S - B u t y l l i t h i u m - p o t a s s i u m/ - b u t o x i d e ,7 8 r-Butyllithium-TMEDA, 27 4 - t - B u t y l p e r o x y - 2 - a l k e n o n e s7, 3 2 , 6 - D i - t - b u t y l p y r i d i n e ,3 2 3 2-t-Butylthio- I -azo-(4'-methylbenzene),82 n-Butyltin trichloride, 82 Cadmium,83 Cadmium iodide, 83 C a l c i u m b o r o h y d r i d e ,8 3 Calcium hydride, 83 C a l c i u m h y p o c h l o r i t e ,8 4 Calcium nitrate, 84 C a m p h o r s u l f o n i ca c i d , 8 4 , 2 1 9 Candida antarctica lipase, 182 Carbenoid,ll0 C a r b o a l u m i n a t i o n ,3 6 6 Carbocyclization, 264 C a r b o d i i m i d e s ,4 8 C a r b o m e t h o x y l a t i o n ,1 4 4 Carbon disulfide, 85 C a r b o n y l r e d u c t i o n ,2 8 , 5 8 , l l 6 , 3 2 3
4t6
SubJectIndex
Carbonylation, 6, 127, 128, 155,249, 3O7, 309 C a r b o n y l d i i m i d a z o l e ,8 5 N-Carboxy-a-dehydroamino acid anhydrides,133 Carboxyl group protection, 3 C a r b o x y l a t i o n ,2 5 0 Carbozincation,24T Cascadereaction, 209 Catalyzed hydroborations, 85 Catecholborane, 85 C a t e c h o l b o r y l a l k e n e s8, 5 C a t i o n i c a z a - C o p er e a r r a n g e m e n t3, 3 2 Ce(lV) oxidation, 12,24, 86 Cerium(lll) chloride,87 C e r i u m ( l l l ) e n o l a t e s ,8 7 Cerium(lV) ammonium nitrate,85 C e s i u m c a r b o n a t e ,8 7 C e s i u mf l u o r i d e , 8 8 C h a i n e x t e n s i o n ,2 5 7 , 3 6 8 C h e m o s e l e c t i v er e a c t i o n s ,I l 9 C h l o r i n a t i o n .2 . 5 2 , 5 5 a - C h l o r o e n o n e s ,l 0 l , 3 6 2 a - C h l o r o e t h e r s ,2 3 C h l o r o ( p y r i d i n e ) c o b a l o xm i e(lll ), l0l l - C h l o r o -I - a l k y l s i l a c y c l o b u t a n e s9, 8 2-Chloro-2,3-dihydro1 - ,3,4,2oxadiazaphosphole,99 5-Chloro-3-furaldehydes, 293 3 - C h l o r o - 4 - i o d o p y r i d i n e ,2 l 3 a - C h l o r o - c - a r e n e s u l f i n y l c a r b o x y l i ca c i d , t6'l Ch loroacetoxybicyclo[4.1.0]heptane, 202 2-(Chloroacetoxymethyl)benzoyl chloride, 98 B - C h l o r o a l k y l e s t e r s ,1 7 7 N - ( F - C h l o r o a l k y l ) a m i d e s ,2 l 7 a-Chloroallylzinc, l6 a - C h l o r o - a - p h e n y l s u l f i n y lk e t o n e s ,8 l a-Chloro-a-sulfonyl ketones, 335 a-Chloro-a-tolylsulfinylalkanoic esters, 169 9-Ch loro-9-(chlorodi f luoromethyl)vinyl ketones, 406 Chloroborane, 98 4 - C h l o r o c y c l o h e x a - 2 , 5 - d i e n o n e2s5, Chlorodehydrogenation, l0l Chlorodiphenylphosphine, 99 P-Chloroethers, 314 a-Chloroethyl chloroformate, 53, 99 O-(a-Chloroethyl)carbamates, 99 Chlorohvdrins. 16
Chloroiodomethane, 99 Chloromethyl chlorosulfate, 100 Chloromethyl ketones, 269 Chloromethyl methyl ether, 100 Chloromethyl methyl sulfide, 18 2-Ch loromethyl-3- methyl- 2-butenoic ester,
262 I -Ch loromethyl-4- f luoro- 1,4-diazabicyclo[2.2.2]octanebis(tetrafluoroborate), 100 Chloromethylation, 284 a-Ch loromethylenetriphenylphosphoranes, 84 N - C h l o r o m e t h y l p h t h a l i m i d e ,1 0 0 o-Chlorooximes, l8 m-Chloroperoxybenzoic acid, l0l N - ( a - c h l o r o p r o p a n o y l ) - a n i l i n e s4,0 5 3-Chloropropyltrichlorosilane, 98 N - C h l o r o s u c c i nm i ide, l0l Chlorosulfonyl isocyanate, 102 (Chlorovinyl)phosphonate, I 38 l -chlorovinyl sulfoxides, 74 ar-Chloro-o-sulfonylalkanoates, 335 Chromium hexacarbonyl, 105 Chromium(ll) acet^te, 102 Chromium(ll) chloride, 104, 105 C h r o m i u m ( l l ) c h l o r i d e - n i c k e l ( l l )c h l o r i d e ,
Coppert I Coppert I Coppert J Coppert 1 Coppert Coppert Coppert Coppert Coppert ltl Coppert Coppert Coppert Couplin 196 Cr-amrn Cross-a Cross-c N-Croto l5-Cror l8-Cror c-Cumy Cyanatx Cyanoh
B-Cyant Cyanoh
105 C h r o m i u m (V I ) o x i d e - 3 , 5 - d i m e t h y l p y r a z o l e , 105 C h r o m i u m - c a r b e n ec o m p l e x e s ,1 0 3 C h r o m o n e s .1 2 8 , l 9 l Chromyl chloride, 106 Chromyl diacetate, 106 ( 2 2 ) - C i n n a m a n i l i d e s ,3 3 4 C i n n a m i c e s t e r s ,8 3 C l a i s e n r e a r r a n g e m e n t ,1 9 , 1 3 6 , 1 7 8 , 245, 259, 286, 338, 34'7 1 , 3 - C l a i s e nr e a r r a n g e m e n t s2, l 8 C l e m m e n s e nr e d u c t i o n s ,3 3 1 Cobaloxime, l0l Cobalt(II) acetylacetonate,107 C o b a l t ( I I ) b r o m i d e - s i l i c a ,1 0 7 C o b a l t ( l l ) c h l o r i d e , 1 0 7 ,1 0 8 C o b a l t ( l I ) c h l o r i d e - o x y g e n ,1 0 8
B-Cyan a-Cyan o-Cyan a-Cyar Cyanoh
addition,8,2l,ll2, 168,l'72,173, Conjugate t74, 222, 258,262, 263,383,402, 407 C o p p e r , 1 0l9l 0, , l l l , l 1 2 ,l 1 3 ,l 1 4 ,l 1 5 , lt6,25'7 Copper(I)bora(trisdimethylpyrazole) comolex.I l0
12+zl
B-Cyan N-Cyan Cyanon Cyanon Cyanos Cyanort Cyanotr ll? endo-Ir Cycload 89. 2f\ 40:
[3+2|C 14+zlc l4r+2t Cycloa Cyclob
SubjectIndex 4E7
Drr:,
a
n:l
i'
ai
r l
Copper(I) bromide, lll Copper(l) chloride, ll2, ll3 C o p p e r ( I ) c h l o r i d e - b i p y r i d i n e ,I l 3 Copper(l) cyanide, l14 Copper(l) iodide, ll4 C o p p e r ( l I ) a c e t a t e ,1 0 9 C o p p e r ( l l ) a c e t y l a c e t o n a t eI, l 0 Copper(lI) bromide, I I I Copper( I I ) carbonate-copper(II) hydroxide,
n2 ta
:J:'lc
''c ! .: . ::1,
D:
Copper(ll) chloride, I l3 Copper(ll) nitrate, I l5 Copper(ll) tetraf luoroborate, I 16 C o u p l i n g ,l l 5 , 1 2 8 , l 3 l , 1 4 7 , 1 5 2 , 1 7 l , 1 1 3 , t96. 347, 348, 349, 396, 39' 7,414 C r - a m i n o c a r b e n ec o m p l e x e s ,3 2 9 C r o s s - a l d o lr e a c t i o n s ,4 0 3 C r o s s - c o u p l i n g ,4 4 , l 3 l , 2 4 7 , 2 6 2 N - C r o t o n y l - 4 - b e n z y l o x a z o l i d i n - 2 - o n e8, I 5-Crown-5, 325, 332 l8-Crown-6, 297 a - C u m y l p o t a s s o i u m ,I l 6 C y a n a t i o n ,l 1 4 , 1 3 3 C y a n o b o r a n e - a m i n e ,I l 6 B - C y a n o c i n n a m i ca c i d s , 1 6 6 Cyanohydrinformation,402 B - C y a n o h y d r i n s i l y l e t h e r s ,2 9 7 a-Cyanohydrin triethylsilyl ethers,I l7 o - C y a n o h y d r i n a t i o n ,9 2 a - C y a n o h y d r i n s ,9 2 , 1 3 5 Cyanohydrins,38l p - C y a n o h y d r i n s ,2 0 1 N-Cyanoisoureas,366 C y a n o m e t h y lf o r m a t e , l l 6 C y a n o m e t h y l e n e t r i b u t y l p h o s p h o r a nIel 6 , C y a n o s i l y l a t i o n ,2 4 5 C y a n o t r i e t h y l s i l a n e ,I l 7 Cyanotrimethylsilane-titanium(IV ) chloride,
n'7
s .:il
l.r ic.a
endo - t r ig cy clizatign, 44 7, 8, 15,21,3'7,41,62,84, Cycloadditions, 89. 102,103,l18, 160,180,181,226, 229,237,326,348,355,360,363,381, 403,412 89, 236 [2+ 2]Cycloadditions, 360 [3+2]Cycloadditions, I l8 [4+2]Cycloadditions, 107 [4r + 2n + 2nlCycloadditions, 147 Cycloalkenones, l3l Cvclobutenones.
C y c l o d e h y d r a t i o n ,1 4 6 B - C y c l o d e x t r i n , 1 1 7 ,2 3 2 B-Cyclodextrin-benzyltriethylammonium chloride, ll7 2,4-Cycloheptadienones,386 l r a n s - C y c l o h e x - 4 - e n e1- , 2 - d i o l s ,1 2 6 2,4-Cyclohexadien-l-ylacetic acid, 280 2,5-Cyclohexa-dienones,289 t ran s- 1,2- cy clohexanedisulfonamides,89 C y c l o h e x a n o n e - 2 - c a r b o x y l iec s t e r s ,1 5 5 3 - C y c l o h e x e n e1- , 2 - d i o n e s4, 1 0 2 - C y c l o h e x e n o n el,l 7 Cycloisomerization, I 25, 243, 276, 3'13 1,5-Cyclooctadiene(cyclopentadienyl)ruthenium(I) chloride, I 18 Cyclopentadienes, l2 Cyclopentadienylbis(triphenylphosphine)ruthenium(l) chloride, I 18 Cyclopentenones, 196, 244, 325, 417 2-Cyclopentenones, 132 Cyclophosphazenicpolypodands, 286 C y c l o p r o p a n a t i o n4, , l l , l l 5 , l 2 l , 1 2 6 , 1 4 8 , r 5 7 , 1 5 8 ,2 t 3 , 2 8 7 ,3 1 1 ,3 4 8 Cyclopropane fission, 315 1 , 2 - C y c l o p r o p a n e - d i o 4l , Cyclopropanols, 104, 174 Cyclopropyl ketones, 30, 105 Cyclopropyl sulfides,cleavage,86 C y s t e i n ep r o t e c t i o n , l 3 D e a c e t a l i z a t i o n ,1 3 0 , 1 9 5 ,3 1 2 D e a l l y l a t i o n ( s ) ,2 7 9 , 3 9 O ,4 15 Debromination , 240, 32'l Decarba I koxylation, 227 D e c a r b o x y l a t i o n ,l l 7 D e c o n j u g a t i o n ,3 8 1 D e e s t e r i f i c a t i o n ,1 9 0 Degradative chlorination, l0l Dehalogenation, 180, 368 D e h y d r o c h l o r i n a t i v et r i m e r i z a t i o n , l 9 Dehydrogenation of 2-oxazolines, 65 D e - N - b e n z y l a t i o n ,9 9 Denitroacetoxylation, 102 D e - O - b e n z y l a t i o n ,1 4 5 De-O-tritylation,375 D e p r o t e c t i o n ,5 , 1 3 , 8 3 , 1 6 3 ,2 5 2 O-Deprotection, 65 D e - S - b e n z y l a t i o n ,2 0 6 D e s i l y l a t i o n s ,8 8 D e s u l f o n y l a t i o n ,2 2 5 , 3 3 4
4E8
Subject Index
D e s u l f u r i z a t i o n, 5 8 ' 2 3 2 , 2 4 8 , 3 ' 7 2 , 3 7 5 ' 3 8 9 D e t h i o a c e t a l i z a t i o n3, 1 8 ,3 2 1 1 , 4 - D i a c e t o x Y - 2 - b u t e n e3,9 N , N - D i a c e t y l - 2 , 4 , 6 - t r i c h l o r o a n i l i n e3' 3 2 1,2-DiacYlbenzene2 s ,9 0 DiacylcycloProPanes,239 N , N ' - D i a c Y l d i a m i n e s '2 0 3 1,4-DialkoxY1 - , 3 - d i e n e s2' 4 2 (Dialkoxyboryl)methyl zinc reagents' 347 2 , 2 - D i a l k o x y c y c l o p r o p a n ee s t e r s '4 l 2 2,2-Dialkoxycyclopropanecarboxylic esters' 360 D i a l k y l l - a m i n o a l k y l p h o s p h o n a t e s3' 4 0 D i a l k y l a z o d i c a r b o x Y l a t e sI,l 9 Dialkyl chlorophosphates,343 , 18 D i a l k y l d i s e l e n i d e s3 N , N - D i a l k Y l e n a m i n e s ,3 5 7 O , O ' - D i a l k y l p h o s p h o r o d i t h i o l a t e s2' 8 7 s ,3 D i a l k y l t h i o P h o s P h o r a m i d a t e9 N , N - D i a l k y l ( d i m e t h y l s u l f u r a n yild en e ) a c e t a m i d e ,I l 9 -43 , 5 -D i a l k y l - 6 - al k y l m e t h y l h y d r o x y - 2 1 9 pyrones, N-t l -(N',N'-Dialkylamino)alkenyllbenzotriazoles,3l3 I -(Dialkylaminomethyl)vinylphosphonates' 135 N , N - D i a l k Y l h Y d r o x Y l a m i n e s3, 5I 1 , 2 - D i a l k y l i d e n e c y c l o a l k a n e sI ,l 2 D i a l k y l t i n d i c a r b o x Y l a t e s I, l 9 D i a l k y l z i n c s ,l l 9 D i a l l y l s u l f i d e s ,5 7 D i a l l y l a t i o n , 2 ' 1 9 ,3 l I N , N - D i a l l Y l n o r e P h e d r i n e9, 3 vic-Diamine,22 3 , 4 - D i a r o Y l P Y r r o l i d i n e sI'5 7 D i a r y l d i s e l e n i d e s 2, 4 1 , 3 - D i a r Y l a l l e n e s3, 6 2 Diarylamines,375 2,2-Diarylcyclopropyl phenyl sulfides' 35 l, I -DiarYlethene;,35 Diaryliodonium salts, 194 Diaryliodonium trif lates'290 , 91 D i a r y l t e l l u r o n i u m d i a c e t a t e s2 1 , 2 - D i a r y l t e t r a lf u o r o e t h a n e s ,1 8 2 1,4-Diazabicyclol2.2.27octane, l2O' 34O 1 , 8 - D i a z a b i c y c l o [ 5 . 4 . 0 ] u n d e c - 7 - e nI 2 e0 ' vic-Diazides, 380 D i a z o m e t h a n e ,l 2 l DibenzoYl Peroxide, 122
.*ftllil&r
'nrlt'r
!
1 , 6 - D i b e n z o y l o x y - 2 , 4 - a l k a d i e n e3s2, 4 1 , 6 - D i b e n z o Y l o x Y - 2 , 4 - d i e n e3s5, 8 1 , 4 - D i b e n z o Y l o x Y - 2 - a l k e n e3s2, 4 Di-Boc guanidines'123 D i - B o c - a l l Y l a m i n e s ,4 5 vic-Dibromides, 380 1 . 3 - D i b r o m o I- - t r i m e t h y l s i l y l p r o p e n e1' 6 9 2 , 3 - D i b r o m o a c r Y l i ce s t e r s ,3 4 7 a , a r - D i b r o m o a l k a n e sl,7 I DibromocYcloPropanation,64 gem-dibromocyclopropanes'265' 396 D i b r o m o d i f l u o r o m e t h a n e ,I 2 2 2 , 2 - D i b r o m o s t Y r e n e s1, 2 0 Dibutyltin bistriflate, 124 Dibutyltin dialkoxides,124 D i b u t y l t i n d i c h l o r i d e - s li v e r p e r c h l o r a t e ,t25 Dibutyltin oxide' 125 1 , 3 - D i c a r b o n y lc o m p o u n d s ' 1 0 7 , 1 3 3 ' 1 3 4 ' 1 5 9 ,l 6 l 1 , 4 - D i c a r b o n Ycl o m P o u n d s ,1 0 3 Dicarbonyl(cyclopentadienyl)-(tetrahydrofuran)iron tetraf luoroborate, I 26 DicarbonYl(cYcloPentadienYl)[ ( d im e t h y l s u l f o n i u m ) m e t h y l l i r o n t e t r a fl u o r o b o r a t e ' 1 2 6 D i c a r b o n y l ( c y c l o p e n t a d i e n y l ) c o b a Il t2' 5 g e m - D i c h l o r i d e s ,1 9 7 Dichlorine oxide' 126 D i c h l o r o ( e t h o x y ) o x o v a n a d i u m ( V )I' 3 l 4 , 5 - D i c h l o r o -1 , 2 , 3 - d i t h i a z o l i u mc h l o r i d e (Appel's salt), 130 1 , 4 - D i c h l o r o - 2 - b u t Y n e2, l 0 2 , 3 -D i c h l o r o -5 , 6 - d i c y a n o -I , 4 - b e nz o q u ln o n e' 130 g e m - D i c h l o r o a l k a n e s9, 7 27 b i c h l o r o b i s ( t r i p h e n y l p h o s p h i n e ) c o b a ltt ' m ladiu ' ne)pal Dich lorobis(triphenylphosphi t2'7 a , c - D i c h l o r o c Y c l o b u t a n o n e3, 7 0 2 ,8 7 rem-DichlorocYcloProPane a , a - D i c h l o r o e s t e r s ,3 4 5 Dich lorohydridobis(tri isopropylphosphine)iridium' 196 Dichloromethyl chloroformate, 132 Dichloromethyl phenyl sulfoxide, 132 2 , 3 - D i c h l o r o P r o P e n e2' l 0 ' 3 0 2 Dicobalt octacarbonYl, 132 2 , 6 - D i c y a n a t o - 9l'0 - a n t h r a q u i n o n e 'I 3 3 Dicyanoketene acetals, I 33 DicyclohexYlboron halides, I 33
N,N'-Dicyclohcr; o,B-Didehydrorr Dieckmann cYclt Diels-Alder addu Diels-Alder rcrti 1 2 6 , 1 3 5 .l f i 2 ' 1 3 , 2 8 4 .t t : 364, 386. lq Diene formatioo.
1,3-Dienes.6.7 1 , 4 - D i e n e s 4, 4 . 2 1 , 6 - D i e n e s1 , 59 Diethyl (trichlom
Diethyl [(triph.q aminolPhoq Diethyl allylphot Diethyl carborYt Diethyl chloropb Diethyl diiodot li
136 Diethyl methylP Diethyl methYls 137 Diethyl phospho D i e t h y l (I , 3 - b u t r
N-Diethylalumt tetramclhyl Diethylaluminut Diethylaluminu Diethylaluminu Diethylaminosrl Diethylcarbann 2-Diethylphogl gerz-Dif luori& 2,2-Dif luoro cr I,l-Dif luom-l2,2-Difluorocr 2,2-Difluorocrl diisopropy' Difluoroiodotu Dif luoromcthy' o,a-Dif luoroot 2 , 2 - D i f l u o r o rt t
1,2-Difunctioo l,l-Dihalo-2-rt 2 , 3 - D i h y d r o -l . -oxathiilE
Dihydro- I,4-di 2,3-Dihydro-1 2,3-Dihydro-2
SubjectIndex 4E9 i l r s - .- . : l ' l h :' \ l-:
r
lfi9
!.:::ff.'. ,i:
(.: ,.
-^i
ig6
!:-
I ';:'.:1,'rrte. ll! -;il.
.
l-1{.
',lrrh\dro-
|
tr '-,t: I16 ! |k""1
t
lr()n
- ^rlt. l15
\,.
ru:
l,ll
o. -^:;hloride j | : ^.n/oquinonc
rl
-r i,'halt. ll7 -r nrlladium.
a
i - ,
*
r
:
n:':
.thr)\Phlnel,l]
f, r:.:c. lJ2
: l-
:,nr-. I-l-1
I 33 N,N'-Dicyclohexylcarbodiimide, acid, I 2l a,p-Didehydroamino cyclization,l2l, 155 Dieckmann Diels-Alderadducts,31,82 7,32,42,66, 84, 90' reaction, Diels-Alder , t9,236,23'7,241, , 6 02 , 182 t26, 1351 2't3.284,315,318,319,355,360,363, 364.386.395 Dieneformation,6 6, 73 1,3-Dienes, 44, 2'16,2'l'l 1,4-Dienes, 369 1,6-Dienes, 138 Diethyl (trichloromethyl)phosphonate, Diethyl [(triphenylphosphoranylidene)138 aminolphosphonate, 134 Diethyl allylphosphonate, 135 Diethylcarboxymethylphosphite, 136 Diethylchlorophosphate, Diethyldi iodo(lithio)methylphosphonate' 136 136 Diethyl methylphosphonate, fonylmethylphosphonate' Diethyl methylsul l3"l 138 Diethylphosphoramidate, phosphate, 135 Diethyl(1,3-butadien-2-yl) lumi no-2,2,6,6' N-Diethyla 134 tetramethylPiPeridine, Diethylaluminumazide,134 chloride,7 Diethylaluminum cyanide,134 Diethylaluminum trifluoride(DAST)' 135 Diethylaminosulfur 212 Diethylcarbamoyllithium, I 34 1,3-dienes, 2-Diethylphosphonyl122 gen-Difluorides, 2,2-Difluoroenolsilylethers,168 138 l, I -Dif luoro-2-iodoalkanes, 378 2,2-Difluoroenoxysilanes, N,N2,2-Difluoroethyl 8l diisopropylcarbamate, 138 Dif luoroiodomethane, Di f Iuoromethylen^tion, 122 I 35 a,a-Difluoronitriles, 138 2,2-Difluorovinyllithium, 224 1,2-Dif unctionalization, 287 l, l -Dihalo-2-aryltellurocyclopropanes' and 2,3-Dihydro-1,4-benzodithiines -oxathiines,66 75 Dihydro-1,4-dithiins, 66 1,4-benzooxathiines, 2,3-Dihydrol9 2,3-Dihydro-2,2-dimethylbenzofurans,
, 84 5,6-Dihydro-4H-1,3-oxazines2 2 , 3 - D i h y d r o - 4 H - p y r a n - 4 - o n e s3, 6 1 1 , 5 - D i h y d r o - 5 - d e a z al a f vins, 163 2,5-Dihydrofurans, 38 DihydropyranaldehYdes,381 5 , 6 - D i h y d r o p y r a n s ,3 8 3 2 , 3 - D i h y d r o p y r i m i d i n e s ,3 2 6 a,p-Dihydroxy ketones, 85 D i h y d r o x y l a t i o n ,9 1 , 3 1 0 l,l-Diiodoalkenes, 136 l,l-Diiodoenynes,53 D i i r o n n o n a c a r b o n y l ,1 4 0 Diisobutyl telluride, I I D i i s o b u t y l a l u m i n u mh y d r i d e , 1 4 0 ' 1 4 l D i i s o b u t y l a l u m i n u mh y d r i d e - z i n cc h l o r i d e ' t4l D i i s o p i n o c a m p h e y l b o r a n (el p c ) 2 B H ' l 4 l Diisopropenyl oxalate, 142 D i i s o p r o p o x y t i t a n i u m ,1 4 2 D i k e t e n e ,5 4 I , 5 - D i k e t o n e s ,5 4 a - D i k e t o n e s ,8 5 , 1 2 7 , 1 4 6 ,1 4 8 ,1 5 5 C , O - D i l i t h i a t e d d i a r y l m e t h a n o l s ,2 1 7 D i l i t h i u m t e t r a c h l o r o c u p r a t el'7 l D i l i t h i u m t e t r a m e t h y l c o b a l t a t e1, 4 3 D i m e s i t y l ( a l k y l ) b o r a n e s ,1 4 3 2 , 2 - D i m e t h o x y p r o P a n e I, 3 0 Dimethyl acetals, 35, 130 Di methyl methylphosphon^te, l4'7 , 49 Dimethyl sulfide-N-chlorosuccinimide1 Dimethyl sulfoxide, 149,150 D i m e t h y l s u l f o x i d e - t r i m e t h y l sl iy l c h l o r i d e , 150 D i m e t h y l ( m e t h y l t h i o ) s u l f o n i u ms a l t s ' 1 4 7 3 , 3 - D i m e t h y l -1 , 2 , 5 - t h i a d i a z o l i d i n e l,l-dioxide,150 ( 4 R , 6 R ) - 4 , 6 - D i m e t h y l -1 , 3 - d i o x a n e s2, I 2 , 2 - D i m e t h y l -1 , 3 - d i o x o l a n e s3, 5 9 2 , 2 - D i m e t h y l -1 , 3 - d i o x o l a n e s1' 6 9 3,3-Dimetbyl-ltrimethylsilylmethylcyclohexene, 4l 2 2 , 3 - D i m e t h y l - 2 - b u t e n e2, 3 4 1 , 3 - D i m e t h y l - 2 - i m i d a z o l i d i n o n e3' 4 I Dimethylaluminyl phenyl sulfide, 143 Di methylami no(di methylXo- hydroxy-( E)styryllsilane, 143 o - D i m e t h y l a m i n o m e t h y l - s u c c i n a t e s2,l 4 4 - D i m e t h y l a m i n o P y r i d i n e ,I 3 4 N,N-Dimethyla niline, ll2' 344 N,N-Dimethylanilines,I l2
490 SubjectIndex g e m - D i m e t h y l a t i o n ,3 6 5 Di methyldioxirane, | 44 2 , 3 - D i m e t h y l e n e - 2 , 3 - d i h y d r o t h i o p h e n3e4, 4 4 , 5 - D i m e t h y l e n e - 2 - o x a z o l i d i n o n e6 s ,8 N, N- Di methyl formamide-phosphoryl chloride. 146 N , N - D i m e t h y l f o r m a m i d e - t h i o n y lc h l o r i d e , 146 N,N- Di methylhydrazine, 146 2 , 2 -D i m e t h y l h y d r a z i n o ( d i m e t h y l ) a l u mniu m , t46 N , N - D i m e t h y l h y d r a z o n e s7, 8 , 3 4 5 1 , 3 - D i m e t h y l i m i d a z o l i u mi o d i d e , 1 4 6 D i m e t h y l o x o s u l f o n i u mm e t h y l i d e , 1 4 8 2 , 5 - D i m e t h y l p e n t a n e - 2 , 5 - d i o l1, 0 6 1 , 4 - D i m e t h y l p i p e r i d i n e - 2 , 3 - d i o n e1,4 8 (DMPU), 148 N,N'-Dimethylpropyleneurea Dimethylsilyl bistrif late, 148 Dimethylsilyl dichloride, 148 D i m e t h y l s u l f o n i u mm e t h y l i d e , 1 4 9 p e z r - D i n i t r o a l k a n e s3 , 37 Dinitrogenpentoxide,150 2 , 4 - D i n i t r o p h e n y l - h y d r a z o n e s2,9 8 Diol monoesters,49 l.o-Diols. 195 s . y n1 - , 3 - d i o l s ,9 4 Diorganolead diacetates, 27 D i o r g a n y lt e l l u r i d e s ,1 5 0 1 , 3 - D i o x a n e s 5, 9 , 2 9 6 , 3 6 6 1 . 3 - D i o x o l a n e s5. 9 . 1 0 8 D i p e p t i d e s y n t h e s i s ,3 5 D i p h e n y l a z i d o p h o s p h o n a t el,5 I D i p h e n y l B - o x o a l k y l p h o s p h a t e s ,1 8 6 D i p h e n y l c h l o r o p h o s p h o n a t el,5 I D i p h e n y l d i s e l e n i d e ,l 5 l , 1 5 2 D i p h e n y l d i s e l e n i d e - a m m o n i u mp e r s u l f a t e , t52 D i p h e n y l d i s e l e n i d e - p h e n y l i o d i n e ( l)l l d i c a r b o x y l a t e ,1 5 2 Diphenyldistilfide, 153 D i p h e n y l p h o s p h o r a z i d a t el,5 l D i p h e n y l p h o s p h o r o c h l o r i d a t el,5 l c i s -1 , 2 - D i p h e n y l - 2 - a m i n o e t h a n o9l ,l 4 , 5 -D i p h e n y l -3 - s t yr y l o x a z o li n - 2 - o n e s ,2 74 2 - D i p h e n y l m e t h y l s i l y l e t h a n o l1, 5 3 c i s - 4 , 5 - D i p h e n y l o x a z o l i d i n - 2 - o n e9,5 a , a r -D i p h e n y l p e r fl u o r o a l k a n e s ,4 0 0 D i p h e n y l p h o s p h i n e I, 5 3 D i p h e n y l p h o s p h i n i ca z i d e , 1 5 4 D i p h e n y l p h o s p h i n i cc h l o r i d e , I 5 4
N - D i p h e n y l p h o s p h i n o y l a z i r i d i n e s1,5 4 N - C i p h e n y l p h o s p h i n yal z i r i d i n e s ,9 9 D i p h e n y l s i l a n e ,1 5 4 Diphenyltin sulfide-silver perchlorate, 154 Diphosgene, 154 1 , 3 - D i p o l a rc y c l o a d d i t i o n s ,8 9 , 2 3 8 , 3 6 5 Dipotassium tetracarbonylferrate, 154 D i r e c t e d l i t h i a t i o n , 8 1 , l l 4 , 2 1 3 ,2 2 0 Directed lithiation. 81, 213, 220 C-Disaccharides,3l3 Disilylalkyllithiums, 80 1 , 4 - D i s i l y l a t i o n ,3 9 5 Disodium tetracarbonylcobaltate, 155 Disodium tetracarbonylferrate, I 55 Disodium tetrachloropalladate, I 55 a-Disulfones,25l N , N ' - D i s u l f o n y l h y d r a z i n e s ,2 5 I l -(N,N'- Di-t-butoxycarbonylformamidinyl)pyrazole,123 N,N'-Di-t-butoxycarbonylthiourea, 123 Di-r-butyl peroxide,124 3 , 5 - D i - r - b u t y l - 1 , 2 - b e n z o q u i n o n e1,2 3 4,4'-Di-t-Butylbiphenyl3 , 95 2 , 6 - D i - t - b u t y l p h e n o x i d e s2, 8 2 2 , 6 - D i - r - b u t y l - p - q u i n o l s ,3 2 7 D i t e l l u r i d e s ,3 2 7 1 , 3 - D i t h i a n - 2 - y l l i t h i u m ,3 0 2 t r a n s - 1 , 3 - D i t h i a n e1 , 3 - d i o x i d e ,1 5 5 1,3-Dithianes,124 Dithioacetalization, 107, 198, 218, 227 1 , 3 - D i t h i o l a n e1 , 1 , 3 , 3 - t e t r o x i d e s1,5 5 3 H - 1 , 2 - D i t h i o l e - 3 - t h i o n e s1, 8 6 uic-Ditosylates, 406 1 . 2 - D i x a n t h a t e s3 . 74 1 , 3 - D i y n e s ,1 7 4 l , l l - D o d e c a d i e n e l, l 8 Duff reaction, 48 1 . 3 - E l i m i n a t i o nT. 4 p-Elimination, 85, 333, 360 E l i m i n a t i o n , 1 2 0 , 1 3 5 ,2 1 6 , 2 8 2 , 3 0 3 , 3 2 3 , 334, 406,408 1 . 4 - E l i m i n a t i o n3. 7 2 Emmons-Wadsworth reaction, 7 1, 141, 2l'1, 298 Enamines,43,260 B-Enamino ketones, 22O, 229, 295, 323 B- Enami no lactones, 247 E n a m i n o n e s ,3 3 Enantioselectiveepoxidation, 48, 73
Enantioselect Enantioselect ' Ene reaction. 412 (Z)-Enol este Enol silyl ethc Enol silyl ethc Enolboration. E n o l i z a t i o n .6 Enolsilylatron Enoxysilacl. c E n y n e s ,6 E p i s u l f i d e s .1 E p o x i d a t i o n .i
1 8 5 .2 1 5 . Epoxide opcor E p o x i d e s .7 - 1 B;y-Epoxyab a,B-Epoxl al a,B-Epox1 hy Epoxy ketomr a,p-Epoxl le B7-Epoxy nrt I,2-Epoxy--1 E r y t h r o -1 . 1 - d Ester cleavag Esterenolate Ester homoca Ester hydroly Esterificatioo Ether clearag Etherificatro! c - E t h o x y a lL c Ethoxycarboo Ethoxycarbor a-Ethoxyliny a - E t h o x y v rn 1 Ethyl diazorr Ethyl isoclao Ethyl N-(4-n carbame Ethyl N-tos1l Ethyl trirnctb N-Ethyl-2-az tetrafluo Ethylene glyc Ethylene ord Ethylene sulfi 5-Ethylthiofu I -Ethynyl elh
SubjectIndex 491
- -
I
.:J
b-:':
:a<
l,:\
!.
::
:i
nra:iJln\lr
. . : i
Jr
::
f
i:.i
Enantioselective protonation, 42, 199 Enantioselectivereductions, 42 Ene reaction, 7, 43, 219, 269, 293, 355, 402, 412 (Z\-Enol esters, 5l E n o l s i l y l e t h e r s ,4 , 1 6 2 , 3 5 0 E n o l s i l y l e t h e r so f a c y l s i l a n e s 4 , Enolboration, 58 Enolization,69 Enolsilylation,148 Enoxysilacyclobutanes,98 E n y n e s ,6 E p i s u l f i d e s ,3 7 2 E p o x i d a t i o n7, 1 , l O 7 , 1 0 8 ,1 4 4 , 1 8 2 , 1 8 3 , t8s, 245, 268, 285, 300, 330, 334, 339 E p o x i d e o p e n i n g , 1 4 , 5 2 , 1 8 1 ,2 4 4 , 2 5 7 , 3 8 0 E p o x i d e s ,7 3 , 1 4 3 , 1 5 0 , 2 8 0 B:y-Epoxy alcohols, 363 a , B - E p o x y a l d e h y d e s ,1 4 a , B - E p o x y h y d r a z o n e s ,1 6 8 Epoxy ketones, 327 a , B - E p o x y k e t o n e s ,2 8 , 3 1 9 B :y-Epoxy nitroalkanes, 319 1 , 2 - E p o x y - 3 , 3 , 3 - t r ilfu o r o p r o p a n e ,2 5 I E r y t h r o - 1 , 2 - d i o l s ,5 9 Ester cleavage, l9 E s t e r e n o l a t e s ,2 1 2 Ester homoenolate,233 E s t e r h y d r o l y s i s ,l 7 E s t e r i f i c a t i o n ,2 0 , 3 0 , 3 8 , 1 1 6 , 1 7 7 , 3 6 ' 7 Ether cleavage, 16, 70 Etherification, 244, 286, 321, 323, 405 a-Ethoxyalkenyllithium, 156 E t h o x y c a r b o n y l h y d r a z i n e l, 5 6 E t h o x y c a r b o n y l n i t r e n e ,1 5 9 a - E t h o x y v i n y l a c e t a t e ,1 5 6 a - E t h o x y v i n y l k e t o n e s ,1 5 6 E t h y l d i a z o a c e t a t e ,1 5 7 E t h y l i s o c y a n o a c e t a t e1, 5 8 Ethyl N-(4-nitrophenylsulfonyloxy)carbamate,159 E t h y l N - t o s y l c a r b a m a t e8, 8 Ethyl trimethylsilylacetate1 , 59 N-Ethyl-2-azidopyridinium tetraf luoroborate, 156 E t h y l e n eg l y c o l , 1 5 7 Ethylene oxide, 157 E t h y l e n es u l f a t e , 1 5 8 5 - E t h y l t h i o f u r a n - 2 ( 5 H ) - o n e s ,l 0 l l-Ethynyl ethers,80
E t h y n y l a t i o no f a z a a r o m a t i c s 5 ,3 N - E t h y n y l d i p h e n y l a m i n e2 , 60 a - E t h y n y l - o - a c e t a m i d o b e n z yal l c o h o l s ,3 I E u r o p i u m t r i s [ d i ( p e r fl u o r o - 2 propoxypropionyl)l methanate, 159 Europium tris- [trif luoromethyl(hydroxymethylene)-d-camphorate, 160 Europium(llI) chloride, 159 Favorskii rearrangement, 335 F e - m o n t m o r i l l o n i t e ,2 4 5 F i n k e l s t e i nd i s p l a c e m e n t 2 , 09 Fischer carbene complexes, 99, 374 F i s c h e ri n d o l e s y n t h e s i s ,1 3 4 Fluorination,64, 100, 16l, 162,400 a-Fluorination, 135,18l Fluorine, 16l N - F l u o r o - 2 ,l 0 - ( 3 , 3 - d i c h l o r o c a m p h o r s u l t a m ) , 162 N - F l u o r o - 2 , 4 , 6 - t r im e t h y l p y r i d i n i u m triflate, 162 2 - F l u o r o - 3 - h y d r o x y a l k a n o i ce s t e r s ,4 0 7 ( 2 - F l u o r o - 4 ' - c a r b o x y ) t r i p h e n yml e t h y l bromide, 16l c - F l u o r o a l k a n o i c a c i d s ,8 8 F l u o r o a l k y l a m i n e s ,3 7 N - F l u o r o b i s ( b e n z e n e s u l f o n ym l ) ii d e , l 6 I F l u o r o b o r i ca c i d , 1 6 2 4 - F l u o r o c y c l o h e x a d i e n o n e s1,8 2 F l u o r o d e m e t a l a t i o n4, 0 0 F l u o r o d e s u l f u r i z a t i o n ,1 8 2 g e m - f l u o r o h a l o a l k a n e s3, 4 6 p-Fluoronitrobenzene, 287 N-Fluoropyridinium salts, 162 Fluoroselenylation, 400 Fluorosilicic acid, 163 a - F l u o r o s t y r e n e s ,3 4 8 2 - F o r m y l - 1 , 3 - o x a z o l i d i n e s1, 6 9 Formylation, ll6, 180 Fragmentation of tosylhydrazones, 67 Free radicalcyclization, l0l, 122,153, 369 Friedel-Crafts acylation, 19, l'15, 294, 318,
322.403 F r i e d e l - C r a f t sa l k y l a t i o n , 3 4 , 1 6 5 ,2 4 4 F r i e d e l - C r a f t sb e n z y l a t i o n , I 1 3 , 4 1 0 Friedel-Crafts reactions, 18 a - F u r f u r y l a m i d e s ,7 3 G a b r i e l s y n t h e s i s ,9 , 1 7 9 G a d o l i n i u m ( l l l ) i s o p r o p o x i d e ,I 6 5
492 SubjectIndex Gallane, 165 Gallium, 165 Gallium(Il) chloride, 165 Germanium(ll) iodide' 166 G i f o x i d a t i o n ,7 2 P-L-glucoPYranosides, I 39 G l y c i n e a n i o n e q u i v a l e n t ,6 8 Glycol oxidation' I S-Glycosides, 322 G l y c o s y l a z i d e s ,3 5 0 P - G l y c o s Y la z i d e s ,3 7 9 Glycosyl fluorides, 18l, 4l I a - G l y c o s Y l a t i o n ,3 1 7 Glycosylation, 30, 49, l4'1, 317, 322' 356' 3 5 7 .3 8 9 . 3 9 4 , 4 0 3 , 4 1 0 ' 4 1 2 O-GlycosYlation, 30' 289 Glyoxal, 166 Glyoxylic acid, 166 G r i g n a r d r e a c t i o n s ,9 4 , 1 6 ' 1 , 1 6 9 'l 7 l ' 3 8 4 G r i ! n a r d r e a g e n t s , 9 3 ,l l 4 , 1 6 7 , 1 6 8 ' 1 6 9 ' 170, l7l, l'12, l'r.3, l'14' 196' 250 l7l G r i g n a r d r e a g e n t s / c e r i u m ( l l l )c h l o r i d e ' Grignard reagents/coppersalts, l7l Gri!nard reagents/nickelcomplexes, 173 Grignard reagents/palladiumchloride c o m P l e x e s ,1 7 3 G r i g n a r d r e a g e n t s / t i t a n i u m ( l V )c o m p o u n d s ' l^14 Grignard reagents/zincchloride, 174 Gri!nard reagents/zirconocenedichloride' 174 Hafnium(lV) triflate' 175 a-Halo boronic acids, 85 l - H a l o - l - f l u o r o a l k a n e s ,3 4 6 I - H a l o a l k e n e s ,8 5 Haloboranes, 175 I -HalocYcloProPYlzincates,265 H a l o g e ne x c h a n g e ,1 8 0 '4 l l Halogen rePlacement,25 H a l o g e n - l i t h i u m e x c h a n g e ,8 0 Halogen -zinc exchange, 222 o-Haloiodobenzenes, 109 a-Haloketones, 12, 180' 3l'1,323 N-HalomethYl carboxamides, 284 a-HaloPhenYlcoPPer'109 3 - H a l o P Y r i d i n e s2, 1 3 H a n t z s c h 1 , 4 - d i h y d r o p y r i d i n e s3, 0 1 H a n t z s c he s t e r s '2 5 1 H e c k r e a c t i o n ' 1 2 " 1 , 2 ' 1 3 , 2 7 4 , 2 7 '21''1 8 '2 8 2
Henry reaction, 195, 2-HetarYlPYrroles,36 3-Hetero allYlboranes, 142 4ll' H e t e r o D i e l s - A l d e r r e a c t i o n s ,1 8 ' 4 0 9 ' 412 Heteroarylmethyl p-tolyl sulfones, 324 HeterocYcleN-oxides, 185 Heterocyclization, 29, I 13, 152' 282' 306 Hetero-Diels-Alder reactions, 4l' 355 Heteromethyl tris(o- methoxymethoxyphenYl)PhosPhoniumsalts, 175 a-Heterosubstituted alkenyllithiums' 75 HexaalkYlditin,175 H e x a a l k y l g u a n i d i n i u mc h l o r i d e s , 1 7 7 2,4-Hexadiene-1,6-diols' 389 I , I , 1 , 3 , 3 , 3 - H e x al fu o r o - 2 - p h e n y l i s o p r o p y l alcohol, 177 Hexaf luorodimethyl disulfide, 177 f oro-isopropylphosphite' l . l . 1 , 3 , 3 , 3 - h e x al u 162 HexamethYldisilazane, l7'l HexamethYlenetetramine,178 Hexamethylphosphoric triamide' 178 Hofmann rearrangement' 288' 290 HomoallYl alcohols, 344 N-HomoallYlamides, 15, 16 H o m o a l l Y l s e l e n i d e s ,l 5 Homoallylic alcohol, 16' 104, 258'352'3'13 ( Z ) - H o m o a l l y l i c a l c o h o l s ,1 6 , 1 0 4 ' 2 5 8 ' 3 5 2 ' J /J
HomogeneoushYdrogenation,9l 305' H o m o i o g a t i o nr e a c t i o n s ,2 1 , 8 1 , 9 9 ' l l 7 ' 353 Homologation-condensation,4 I 3 Homolytic additions, 124 Horner olefination'216 Horner reactions, 138 28 Horner-Emmons-Wadsworth reaction' H Y z e o l i t e ,4 0 5 Hydrazine hYdrate, 179 Hydrazoic acid, 180 Hydrazones' 22' 146 Hydriodic acid, 180 HydroarYlation, 279 H y d r o b o r a t i o n ' 8 5 , 9 8 , 1 7 5 '2 5 0 180 Hydrobromic acid/hydrogen bromide' Hydrocarbon oxidation, 72 HydrocarboxYl ation, 273, 2'18 Hydrodehalogenation, 282, 368 HydroformYlation, 305' 308
,
r*ilr|fl
[|
trililurd'#r!*r{*rfrffi
Hydrogen f Hydrogen f Hydrogen I
bronrc
Hydrogen t tetraf I Hydrogen
Phenr l8l
Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen 1,4-HYd Hydrogen 5-HYdrop HydroPtx Hydroqut HYdrostl' Hydroste a-HYdro c-HYdro
7-HYdro B-HYdro B-HYdro 7-HYdro B-HYdn Hydrorl iod Hydrol HYdrol 4-Hydn 2-HYdn 4-HYdn cis-3'H I -H.vd
o-HYd 4-H1d a-H;d 2 - (l - H 5-(o-H c-H;-d
P-H)d 2-H.rd 4-H1d 4-H1d 4-H1d 2-H1 N-(l-
SubjectIndex 493
I t : t ' t 9 .. 1 1 1 , lcr. il-1 l.:\:. -106 3r t55 a!hrl\\-
. :-5 irun..75 ci. I
-'
y 11r . r p r o p y l l-I l D 5 , ri p h l t e .
?. :-\
15. :51.37-1 l[r-l : 5 8 . 3 5 2 . rl , ou il7. 305. t1
xrr..n.28
) r m r d e .1 8 0
H y d r o g e nf l u o r i d e , 1 8 0 , l 8 l , 1 8 2 H y d r o g e nf l u o r i d e - a m i n e ,l 8 l H y d r o g e nf l u o r i d e - p y r i d i n e - N b r o m o s u c c i n i m i d e ,1 8 2 H y d r o g e nf l u o r i d e - p y r i d i n e - n i t r o s o n i u m tetraf luoroborate, 182 H y d r o g e nf l u o r i d e - p y r i d i n e phenyliodine(lll) bis(trifluoroacetate)' 182 H y d r o g e n p e r o x i d e ,a c i d i c , 1 8 2 Hydrogen peroxide, basic, 183 H y d r o g e n p e r o x i d e - m e t a lc a t a l y s t s ,1 8 4 H y d r o g e n p e r o x i d e - u r e a ,1 8 5 H y d r o g e ns u l f i d e , 1 8 6 1 , 4 - H y d r o g e n a t i o n 1, 0 5 Hydrogenation, 28, 40, 2Ol, 305' 307 5 - H y d r o p e r o x y 1 , 3 - d i e n e s2, 7 1 Hydrophenylation of enones, 25 H y d r o q u i n o n e s ,2 5 2 H y d r o s i l y l a t i o n , 1 4 , 4 0 , 3 O 7 ,3 ' 7 4 Hydrostannylation3 . 88.395 c-Hydroxy acids,ll7, 163 a - H y d r o x y a l d e h y d e s ,3 7 6 7 - H y d r o x y e s t e r s ,8 B - H y d r o x y k e t o n e s ,l 5 l p - H y d r o x y n i t r o a l k a n e s ,4 l 7 - H y d r o x y n i t r o a l k e n e s ,3 1 9 B - H y d r o x y t e r t i a r y a m i n e s ,9 3 Hydroxy(diphenylphosphoryloxy)i o d o b e n z e n e ,1 8 6 H y d r o x y ( t o s y l o x y ) i o d o b e n z e n e1,8 7 H y d r o x y ( t o s y l o x y ) i o d o p e rlfu o r o a l k a n e s ,1 8 7 4 - H y d r o x y - 2 - c y c l o p e n t e n o n e sI ,2 I 2 - H y d r o x y - 3 - b u t e n y l a m i n e4, 4 4 - H y d r o x y - 3 - p h e n y l c o u m a r i n s3, 5 8 c i s - 3 - H y d r o x y - 4 - v i n y l p y r r o l i d i n e s4' 1 4 l - H y d r o x y - 7 - a z a b e n z o t r i a z o l e3,5 rl-HydroxyacetoPhenones,142 4 - H y d r o x y a l k a n o n i t r i l e s ,1 5 8 a - H y d r o x y a l k y l v i n Y l s i l a n e s ,3 3 3 2 - ( l - H y d r o x y - a l k y l ) a c r y l i c e s t e r s ,3 8 7 5 - ( a - H y d r o x y a l k y l ) o x a z o l i d i n - 2 - o n e8, 7 a - H y d r o x y - B - a m i n o e s t e r s ,4 I p - H y d r o x y b e n z o n i t r i l e s ,3 8 1 2-Hydroxybiphenyls2 ,7 4-Hydroxy-butanone2 , 45 4 - H y d r o x y c y c l o h e a n o n e s2,0 8 4 - H y d r o x y c y c l o h e x e n o n e s3,2 7 2 - H y d r o x y e t h y l s e l e n i d e ,1 7 9 N - ( 2 - H y d r o x y e t h y l ) - N - b e n z y l a m i n e s2,9 5
2 - H y d r o x y e t h y l s e l e n yhl a l i d e s , 1 7 9 3 - H y d r o x y f l a v o n e s ,2 9 0 N - H y d r o x y l a c t a m s ,1 5 2 Hydroxylamine, 186 B - H y d r o x y l a m i n o e s t e r s ,5 6 H y d r o x y l a t i o n s ,1 4 5 Hydroxy mercuration, 232 I - H y d r o x y m e t h y l -I H - i n d a z o l e , 1 8 9 2 - H y d r o x y n a p h t h o q u i n o n e s2, 6 7 7 - H y d r o x y n o r b o r n e n e s3, 6 4 4 - ( 4 - H y d r o x y p h e n y l ) - 2 - b u t a n o n e2,4 5 a-Hydroxyphosphonates, 70 3-Hydroxypropyl ethers, 59 l-Hydroxypyridine-2-(lH)-thione, 187 a-Hydroxystan nanes, 174, 372 N - H y d r o x y s u c c i nmi i d e , 3 4 1 B - H y d r o x y s u l f o x - im i n e s , 9 l H y d r o z i r c o n a t io n , 4 1 6 ,4 l ' l H y p o f l u o r o u s a c i d - a c e t o n i t r i l e ,1 8 8 H Z S M - S z e o l i t e ,4 0 5 ,7 I m i d a z o l i d i n - 2 - t h i o n e s4 I m i n e s , 3 7 , 5 6 , 1 6 7 , 2 0 ' 7 ,4 1 6 I m i n i u m s a l t s ,2 3 , 3 8 1 a - i m i n o e s t e r s .2 8 5 2-lminooxetanes,180 2-lminopyrrolidines, 102 I H-lndazole(s), 189, 296 Indium, 189 Indole,29,7l I n d o l e s y n t h e s i s ,2 9 , 7 | 3 - l n d o l y l s u l f i d e s ,3 7 5 Iodination,39, 53, l9l, 192, 193' 332' 383 I o d i n e . 1 8 9 .1 9 3 Iodine bromide, 193 Iodine chloride, 193 Iodine-cerium(lV) ammonium nitrate, l9l l 9, l Iodine-hydroxy(tosyloxy)iodobenzene I o d i n e - l e a d ( l l) a c e t a t e ,l 9 l I o d i n e - s i l v e ro x i d e , 1 9 2 I o d i n e - s i l v e rt r i f l u o r o a c e t a t e ,1 9 2 I o d i n e - t i t a n i u m t e t r a - t - b u t o x i d e '1 9 2 Iodine-triphenylbismuth dibromide, 192 f odine-triphenylphosphine-i midazole, 192 3 - l o d o - 4 - t r im e t h y l s i l y l - f u r a n , 1 9 2 vic-lodoacctates, l9l t r d n s - l o d o a c e t o x Y l a t i o nl ,9 l o - l o d o a l k y l a c r y l a t e s ,3 3 1 N-(r,r-lodoalkyl)PYrroles, 185 o - I o d o a r y l a l k y n e s ,1 0 5
494 SubjectIndex 3 - l o d o c a r b o x a m i d e s ,1 8 0 I o d o d e s i l y l a t i o n ,1 9 2 , 1 9 3 a - l o d o e n o n e s ,1 8 9 B-Iodoethyl esters, 314 Iodohydrins, 192, 286 Iodolactonization, 49, 339 2 - ( l o d o m e t h y l e n e ) - c y c l o h e x a n o n el s9 ,l 2-Iodomethyltetrahydrofuran, 49 2 - l o d o s i l a c y c l o p e n t a n e s1,3 9 N - l o d o s u c c i n i m i d e ,1 9 3 Iodosylfluorosulfate, 194 I o d o s y l b e n z e n e1, 9 4 a - I o d o v i n y l e p o x i d e s ,3 3 2 I o n e x c h a n g er e s i n s , 1 9 4 , 1 9 5 I p s o a n i o n ,2 2 3 I r e l a n d - C l a i s e nr e a r r a n g e m e n t 3 , 67,384 I r i d i u m c o m p l e x e s ,1 9 6 Iron montmorillonite, 198 I r o n p e n t a c a r b o n y l ,1 9 6 Iron(ll) sulfate, 198 I r o n ( l l I ) a c e t y l a c e t o n a t eI,9 6 Iron(llI) chloride, l9'7,198 I r o n ( l l l ) c h l o r i d e , c l a y - s u p p o r t e d ,1 9 8 I r o n ( l l l ) p e r c h l o r a t e ,1 9 8 I r o n ( l l l ) p h t h a l o c y a n i n e1, 9 8 I s a t i n s ,1 3 7 ,1 7 9 I s o c y a n a t es y n t h e s i s ,2 4 0 - I s o c y a n o a c e t a m i d e9,4 l s o c y a n u r i cc h l o r i d e , 1 9 9 l s o f l a v o n e s ,2 7 9 I s o m e r i z a t i o n ,1 8 ,6 0 , 1 3 2 , 1 5 3 ,2 2 O ,2 3 1 , 309,319,403 ( E ) - t o ( Z ) - i s o m e r i z a t i o n ,1 8 ( Z ) - t o ( E ) - i s o m e r i z a t i o n ,1 5 3 I s o m e r i z a t i o n - i o dni a t i o n , 1 9 4 lsonitriles,368,382 2 - l s o p r o p y l a p o i s o p i n o c a m p h e y l b o r a nIe9,9 N - I s o p r o p y l e p h e d r i n e1, 9 9 I s o s e l e n o c y a n a t e s3 ,1 8 lsoxazoles, 76 Isoxazolidines,152 2 - I s o x a z o l i n e s ,8 9 Jones reagent, 267 J u l i a c o n d e n s a t i o n2 , 16 K e t e n e ,1 5 1 , 2 O 0 , 2 2 O K e t e n ea c e t a l s , 2 0 0 k e t e n eb i s ( t r i a l k y l s i l y l ) a c e t a l s ,4 2 K e t e n e b i s ( t r i m e t h y l s i l y l ) a c e t a l s4,0 9
Lithiur Lithiur ch Lithiur c)Lithiur Lithiur Lithiur tri Lithiu
Ketene silyl acetals, 220 K e t e n e t - b u t y l d i m e t h y l sliy l m e t h y l a c e t a l , 200 B - K e t o e s t e r s ,1 7 , 2 2 ' 7 , 2 5 1 , 3 2 8 ,3 5 3 , 4 1 0 B-Keto phosphonates,137 1 , 4 - K e t o a l d e h y d e s3,8 4 p-ketoethynyl(phenyl)iodonium s a l t s ,3 2 5 K e t o n e e n o l a t e s ,4 , 6 9 , 8 2 , 2 9 4 , 3 3 3 Ketone/esterexchange, 144 p - k e t o p h o s p h o n a t e s t e r s ,1 5 7 3 - K e t o p y r r o l i d i n e s ,3 0 6 Ketoximes. 145.182 Ketyl radicals,314 K i n e t i c r e s o l u t i o n .2 8 , 4 0 , 7 3 Knoevenagel reaction, 37, 83
lc
Lithiu Lithiul Lithiur Lithiur Lithiur Lithiur Lithiur tx Lithiu
Lactams,24"1 L a c t i m b e n z y l e t h e r s ,3 8 Lactols,357 7 - L a c t o n e s ,1 0 7 Lanthanum(III) bromide,201 Lanthanum(lll) chloride,201 L a n t h a n u m ( l l l ) i s o p r o p o x i d e ,2 0 1 L a n t h a n u m ( l l l ) t r i s - b - d i k e t o n a t e s2, 0 1 Lead(lV) acetate, 2Ol, 202 L e a d ( l V ) a c e t a t e - c o p p e(rl l ) a c e t a t e ,2 0 2 L e w i s a c i d , 1 2 , 1 5 , 2 1 , 2 9 , 3 4 , 6 1 ,6 2 , 6 3 , 6 8 , 7 0 , 8 9 , 9 0 , 9 3 , 9 4 , 1 2 6 ,l 3 l , 1 3 5 , t54, t57, 165,r80, 194, t97,206,219, 2 3 2 , 2 3 7 , 3 t 7 , 3 5 4 , 3 5 5 ,3 6 3 , 3 7 2 , 3 " t 3 , 314 L i p a s e s ,2 0 2 Lithiation. 76.'19. 134 2 - L i t h i o - 1 . 3 - d i t h i a n e3.7 4 3 - L i t h i o - 2 H - l - b e n z o p y r a n s ,7 5 a - L i t h i o a l k y l d i m e s i t y l b o r a n e ,2 0 4 o-Lithioimines, 368 5 - L i t h i o m e t h y l - 3 - m e t h y l i s o x a z o l e2,0 5 L i t h i o p h o s p h i n e ,2 0 4 2 - L i t h i o t h i a z o l e ,2 0 5 3-Lithiothiophene, 205 Lithium, 27, 2O5, 206, 207, 208, 2O9, 210, 2 n , 2 t 2 , 2 t 4 , 2 1 5 , 2 1 6 , 2 t 7 , 2 1 8 ,2 t 9 ,
,.
Lithiu ll Lithiu Lithiu l Lithiu Lithiu Lithiu Lithiu Lithiu Lithiu Lithiu Lithiu Lithiu Lithru Lithiu Lithiu Lithu Lithir Lithir
l-irhr Lithrr Lithil 2,6-L
220,221,222,223,299,4t0 L i t h i u m - 1 , 3 - d i a m i n o p r o p a n e2, 0 6 Lithium 2-(pyrrolidin-| -ylmethyl)pyrrolidine,2l9 Lithium 2,2,6,6-tetramethylpiperidide, 220 L i t h i u m 4 , 4 ' - d i - r - b u t y l b i p h e n y l i d e2, l 0 L i t h i u m a l u m i n u m a m i d e s ,2 0 7
,,{irr*1:4{,ddnft*n*',
t.,,
Macn Macn Magr
I
Subiect Ind€x
l.
r.a:ll
:irr
l.:
a
Lithium aluminum hydride, 207, 208 Lithium aluminum hydride-aluminum chloride,207 Lithium aluminum hydride-copper(l) c y a n i d e ,2 0 8 L i t h i u m a m i d e s ,2 0 8 Lithium aminoborohydrides, 208 Lithium bis(methylthio)t r i m e t h y l s i l y lm e t h i d e ,2 0 9 L i t h i u m b o r o h y d r i d e - t r i m e t h y l s i l y cl h l o r i d e , 209 Lithium bromide,209 Lithium chloride,2l I L i t h i u m c o b a l t i b i s c a r b o l l i d e2, 0 6 Lithium cyanide,2l2 L i t h i u m d i e t h y l a m i d e ,2 1 2 L i t h i u m d i i s o p r o p y l a m id e , 2 1 2 , 2 1 4 , 2 1 5 Lithium diisopropylamideh e x a m e t h y l p h o s p h o r itcr i a m i d e , 2 l 4 Lithium diisopropylamide-potassium t-butoxide,2l5 L i t h i u m d i i s o p r o p y l a m i d e - s i l v ecr y a n i d e ,
f E ll.
Itr
. :
: ' , q
:
ll
495
M a g n e s i u m - c a d m i u mc h l o r i d e - w a t e r '2 2 5 M a g n e s i u m - m e r c u r y ( l l )c h l o r i d e , 2 2 5 M a g n e s i u mb r o m i d e , l 4 l , 2 2 6 Magnesium chlor ide, 227 M a g n e s i u mc h l o r o c h r o m a t e ,2 2 7 Magnesium iodide-diethyl ether, 227 M a g n e s i u mm e t h o x i d e ,2 2 7 Magnesium monoperoxyphthalate' 228 M a g n e s i u mo x i d e , 2 2 8 M a g n e s i u mp e r c h l o r a t e ,2 2 8 M a l o n i c e s t e r s ,1 9 0 , 2 0 3 Malononitrile, 228 M a n g a n e s e ( l l )b r o m i d e , 2 3 0 M a n g a n e s e ( l l l ) a c e t a t e ,2 0 1 , 2 2 9 M a n g a n e s e ( I I I )t r i s ( 2 - p y r i d i n e c a r b o x y l a t e ) , 231 Mannich adduct,l3l M a n n i c h r e a c t i o n ,6 , 1 3 5 M e e r w e i n - P o n n d o r f - V e r l e rye d u c t i o n ' 3 7 o - M e r c a p t o a n i l i n e s ,1 2 8 o - M e r c a p t o b e nz o i c a c i d , 3 7 5 2-Mercaptoethanol6 , 6, 252
2t5 Lithium hexamethyldisilazide, 215, 216 L i t h i u m h e x a m e t h y l d i s i l a z i d e - s i l v ei or d i d e ' 2t6 Lithium hydride, 217 L i t h i u m h y d r o x i d e ,2 1 7 , l7 L i t h i u m n a p h t h a l e n i d e2 L i t h i u m p e r c h l o r a t e ,2 1 8 L i t h i u m p e r c h l o r a t e - d i e t h yel t h e r , 2 1 8 L i t h i u m t - b u t o x i d e ,2 1 0 Lithium tetraf luoroborate, 220 Lithium tetramethylthallate, 221 L i t h i u m t r i a l k y l s t a n n a t e ,2 2 1 L i t h i u m t r i e t h y l g e r m a n a t e2, 7 L i t h i u m t r i m e t h y l s i l y l d i a z o m e t h a n e2,2 1 Lith iu m tr ior ganozincates, 222 Lithium tris(methylthio)methide, 222 L i t h i u m t r i s ( p h e n y l t h i o ) m e t h i d e2, 2 3 L i t h i u m t r i s ( t - a l k o x y ) a l u m i n u mh y d r i d e '
Mercury, 232,233 Mercury(ll ) acetate,232 Mercury(II) chloride,232 Mercury(ll) iodide,232 Mercury(ll) oxide-sulfuric acid' 233 M e r c u r y ( l l ) t r i f l u o r o a c e t a t e2, 3 3 o - M e s y l o x y s t a n n a n e s2, 5 7 M e t h a n e s u l f o n y lc h l o r i d e , 2 3 3 4 - M e t h o x y -2 - r - b u t y l - 2 , 5 - d hi y d r o im i d a z o l e I - c a r b o x y l i c e s t e r s ,2 3 4 I - M e t h o x y - 3 - t r im e t h y l s i l o x y -l ' 3 - b u t a d i e n e ,
222 Lithium tri-s-butylborohy dride, 221 L i t h i u m - h a l o g e n e x c h a n g e , '5l , 2 1 0 , 2 1 7 L i t h i u m - t i n e x c h a n g e ,7 5 2 , 6 - L u t i d i n e , 13 0
2 - ( 2 -M e t h o x y e t h o x y ) P r o P - 2 - Y l hydroperoxide, 234
Macrolactone, 331 Macrolactonization, 54 Magnesium, l4l, 224, 225, 226, 227, 228
236 2 - M e t h o x y - 4 - h a l o q u i n o l i n e s3, 3 6 o-MethoxyacetoPhenones,142 ,6 B - B e t h o x y a l k y l p h e n y l s e l e n i d e s8 c - M e t h o x y a l e n y l t i t a n i u mt r i i s o p r o p o x i d e ,
233 M e t h o x y b e n z a l d e h y d e s8,5 3- endo-( p-Methoxybenzyl)-isoborneol, 323
S-Methoxyl benzenesulfenylpyrrolidine tetraphenylborate,234 c-Methoxylation, 156 Methoxymethylenetriphenylphosphorane, 235 p-(2-Methoxymethylpyrrolidinyl)n i t r o e t h e n e ,2 3 5
496 SubjectIndex 2 - ( 4 - M e t h o x y P h e n Y l ) e t h a n o2l ,3 6 4-p-Methoxy-phenyl- 1,3-dioxolanes,I 30 Methyl 2,3-ePoxYProPanoate,240 M e t h y l 2 - p y r i d i n e s u l f i n a t e '2 4 1 Methyl a-(r-but Yl)acr Ylate, 262 Methyl a-isocyanatoacrYlate, 239 O-Methyl benzenesulfenate,238 Methyl chlorodif luoroacetate,238 O-Methyl hydroxamates, 358 Methyl N-ethyl-N-tributylstannylcarbamate'
239 Methyl(tributylstannyl)magnesium, 242 Methyl(tri f luoromethyl)dioxirane, 242 6 - M e t h y l -l , I - d i m e t h y l t e t r a l i n , 1 8 9 5 - M e t h y l -1 , 5 - t e t r a m e t h Y l e n e - 4 phenylcycloPentadiene,24 I 3 - M e t h y l - 2 - b u t e n Yel s t e r s ,I 9 0 3 - M e t h y l - 3 - n i t r a t o m e t h y l o x e t a n e2 '8 7 3-Methyl-4-oxazolin-2-ones1 , 44 Methylaluminum l, l'-bi(2,2'-naphthoxide)'
236 Methylaluminum b i s ( 2 , 6 - d i P h e n Y l P h e n o x i d e2)3, 8 Methylaluminumbis(2,6-di-t-butyl-4-Xp h e n o x i d e ,2 3 7 Methylaluminumdichloride'7 , 36 M e t h y l a m i n e - p o t a s s i u mp e r m a n g a n a t e 2 2 - ( N - M e t h y l a ni l i n o ) -2 b e n z e n e s u l f e n y l - a c e t o n i t r i l e2 ,9 6 4 - M e t h y l c o u m a r i n ,3 9 1 I - M e t h y l c y c l o b u t a n o l 2, 0 1 4 - M e t h y l c y c l o h e x a n o n e2, I Methylenation, 122, 139' 148 2-Methylene-cycloalkaneaceticesters, 372 MethylenecycloPropane,123' 238 3 - M e t h y t e n e P Y r r o l i d i n e s2'7 9 Methylenetriphenylphosphorane'239 N-Methylformanilides,I l2 l - H e t h y l i m i d a z o l e ,4 0 6 M e t h y t i m i n e s ,3 6 3 N-Methylindole, 79 S-Methylisothiocarbonohydrazide salts, 240 Methyllithium, 240 4 r M e t h y l P Y r i d i n e ,3 3 4 N - M e t h y l p y r r o l i d i n o n e ,3 4 1 S-Methyl-S-neomenthYl-N{osYl sulfoximine, 240 4- Methylthiobe nzaldehYde, 72 MethylthiomethYlation, 149 Methyltrioxorhenium(VII)' 184
Meyer-Schusterrearrangement, 24 M i c h a e l a c c e p t o r ,1 4 , 7 1 ' 1 0 3 ' 1 5 9 ' 2 3 5 ' 4 l O Michael donor, 54, 76, 95, 138,212' 239' 312 Michael-Julia condensation, 2 I 3 Michael reaction, 9' 42, 43, 95' l0"l' l2l' 148, 235, 239, 293, 297' 311' 393 M i t s u n o b u r e a c t i o n ,9 , 6 9 , 8 2 , l 5 l ' 3 6 8 ' 3 8 7 Mitsunobu reagent, l16' 387 Molybdenum carbene complexes' 242 Molybdenum hexacarbonYl,243 Molybdenyl acetYlacetonate,244 Monosilyl acetals, 140 Monothioacetalization, I 33 Monotritylationof symmetrical l,n-diols' 74 M o n t m o r i l l o n i te , 2 4 4 , 2 4 5 Montmorillonit e claYs,244, 245 M o n t m o r i l l o n i t e c l a y s , m e t a l i o n - d o p e d ,2 4 5 'l' 293' 380' 382, Mukaiyama aldolization,
p-Nitrobel 6-Nitrobct N-(2-Nitn l-Nitroc;r Nitrogen t Nitroke tcl
Nitronrun p-Nitroph 4-Nitropt 3- Nitrog'
Nitrosatr N-Nitros< Nitrosont (E)-F-ntt Nitrosyl I Nitrosy-lI
l-(N-Mct iodx
Non-phc
383 Nafion-H, 246 zo B- NaphthalenesulfonYloxY, Nazarov cyclization, 4 l7 N e f r e a c t i o n , 4 1 , l O 3 ' 2 4 6 ' 326,414 Nickel. 246, 247, 248, 249' 250 Nickel-aluminum,248 Nickel boride, 248 Nickel carbonYl, 249 Nickel chloride, 249, 250 Nickel chloride-PhosPhinec o m p l e x e s ,2 5 0 Nickel cyanide, 250 Nickel halide bis(triphenylphosphine), 250 Nickel(lI) acetYlacetonate,247 Nickel, RaneY,246 Nickel -acetic acid, 24'7 Niobium(lll) chloride,25I Nitration. 86, 150, 251, 253' 336' 33"1'376' 381 Nitrene formation' 66, 88 Nitrile oxide formation' 74 N i t r i l e s y n t h e s i s ,2 N i t r i l e s , 1 0 2 , 1 8 7 ,3 4 3 ' 3 8 1 g e m - n i t r o a l k Y lf l u o r i d e s , I 3 p- Nitrobenzald ehYde, 252, 383 Nitrobenzaldehyde, polymer supported, 252 2-(4-Nitrobenzene)sulfonylethyl chloroformate' 252 4 - N i t r o b e n z e n e s u l f e n a n i l i d e2,5 2 a-(4-Nitrobenzenesulfonyloxy) ketones, 325 a-(p-Nitrobenzenesulfonyloxy) ketones, 4 l0
O-)C sr Olefin m O l e fi n a t Organoe Organot Organoc Organoc Organo< Organo< Organq Organo Organci Organcr 9-Orgat l6 Organo Organo Osmtut Osmiut Osmiu Oxabr Oxabrs fh Oxal;OxasPt 2-Oxa I,3,21,2-O 1,3'O Oxazo
SubjectIndex 497 p- Nitrobenzenesulfonyloxylation, 4 l0 6- Nitroben zotriazole, 26 N-(2-Nitrobenzoyl)amides, 308 I -Nitrocycloalkenes, 384 N i t r o g e nd i o x i d e , 2 5 2 Nitroketene S.N-acetals. 405 Nitronium triflate, 253 p- Nitrophenyla zoles, 287 4 - N i t r o p h t h a l i c a n h y d r i d e ,2 5 3 3- Nitropyridine, 150 Nitrosation,253 N - N i t r o s o d i p h e n y l a m i n e2, 5 3 Nitrosonium tetraf luoroborate, 253 ( E ) - B - n i t r o s t y r e n e s ,l l 9 , 1 7 l N i t r o s y l b e n z e n e s u l f o n a t e2, 5 4 Nitrosyl chloride, 254 I -(N-Methylamido)-3-methylimidazolium i o d i d e s ,2 3 8 N o n - p h e n o l i cc o u p l i n g , 3 1 0
IJ l{,
O->C silyl migration,4 O l e f i n m e t a t h e s i s2 , 43 O l e f i n a t i o n , 5 , 2 8 ,1 5 0 Organoantimony reagents,255 Organobarium reagents,255 O r g a n o c e r i u mr e a g e n t s 2 , 56 Organocopper reagents,257 Organocopper/zinc reagents,262 Organocopper/zirconium reagents,263 O r g a n o g e r m a n i u mr e a g e n t s ,2 6 3 Organoindium reagents,263 Organoi ron reagents, 264 O r g a n o t e l l u r i d ea n i o n s , 3 2 7 9 - O r g a n o t h i o - 9 - b o r a b i c y c l o [ 3 .I3] n. o n a n e , 264 Organozinc reagents,264, 406, 408 O r g a n o z i n c - a r y li o d i d e c o u p l i n g , 1 2 8 Osmium tetroxide. 265. 267 Osmium tetroxide-Jones rcagenq 267 Osmium trichloride,265 Oxabicycloalkenone tosylhydrazones, 67 Oxabis(triphenylphosphonium) fluorosulfate, 267 Oxalylation, 142 Oxaspirolactones,229 2 - O x a t h i a n y l k e t o n e s ,2 5 9 1,3,2-Oxazaborolidines, 9l 1 . 2 - O x a z i n e s .1 5 2 1 . 3 - O x a z i n e s2. 9 8 Oxazoles,22
2 - (Oxazolidin -2-on-3-yl)acrylates, l7 2 Oxazolidin-5-ones3 , 74 O x a z o l i d i n o n e ,4 0 3 1,3-Oxazolines,298 Oxidation of organochalcogenides,l0l O x i d a t i o n o f s u l f u r - c o n t a i n i n gc o m p o u n d s ,
^t2
Oxidative bromination of uracils, 64 Oxidative condensation, 108 Oxidative cross-coupling, 53 Oxidative cyclization, 45, 229, 3O3 Oxidative desilylation, 183 Oxidative destannylation, 50 O x i d a t i v e d i s p l a c e m e n ot f i o d o a l k a n e s ,9 7 O x i d a t i v e r i n g e x p a n s i o no f f u r a n s , 7 2 O x i d a t i v e s u l f e n y l a t i o n ,1 5 3 l - O x i d o a l k y l i d e n e c h r o m i u m ( 0 ) ,1 0 3 ,2 3 1 l - O x i d o a l k y l i d e n e c h r o m i u m ( 0 c) o m p l e x e s ,
to3,231 a - O x i m i n o p h o s p h o n a t ee s t e r s ,3 4 0 O x i m o y l c h l o r i d e s ,3 6 0 2 - O x i r a n y l e t h y lt o s y l a t e ,2 0 9 B - O x o a m i d e s ,8 7 - O x o - 2 - a l k e n o a t e s2, 2 4 t r a n s - 2 - ( 2 ' - O x o akl y l ) c y c l o a lk a n e - c a r b o x y l i c esters,212 B - O x o a l k y l c o p p e r s ,I l 6 2 - O x o c y c l o a l k a n e c a r b o x y l ie c s t e r s ,2 l I B-Bxodithioic acids,186 Oxone, 300 4 - O x o p e n t y l a t i o n ,2 0 1 7 - O x y a , B - u n s a t u r a t e de s t e r s ,1 5 2 a - O x y o - q u i n o d i m e t h a n e s2, 2 6 Oxyfunctionali zation, 242, 285 Oxygen, 107, 242, 268, 269 Oxygen, singlet, 269 O x y g e n a t i o no f c a r b a n i o n s ,7 l Ozone,270 P a l l a d i u mI c a r b o n . 2 7 3 P a l l a d i u m ( l l ) a c e t a t e ,2 ' 74 , 2 7 7 , 2 8 1 P a l l a d i u m ( l I ) a c e t a t e - t e r t i a r yp h o s p h i n e , 2'77 P a l l a d i u m ( l l ) a c e t a t e - t i n ( l l ) a c e t a t e ,2 8 1 P a l l a d i u m ( l I ) a c e t a t e - t i n ( l l )c h l o r i d e , 2 8 1 Pafladium(II) chloride, 282, 283 P a l l a d i u m ( l l ) c h l o r i d e - c o p p e r ( l / l l) chloride-oxygen, 283 P a l l a d i u m ( l l ) c h l o r i d e - c o p p e r ( l l )c h l o r i d e carbon monoxide, 282
49t
Subject Index
Palladium(II) iodide, 283 Palladium, colloidal, 273 ParaformaldehYde,284
synthesis'
Pauson-Khand cYclopentenone 392
reaction,t07' 132' 196.244, Pauson-Khand 394
291 P h e n v l i o d i n eI(l l ) d i m e t h o x i d e ' 298 3-PhenYlisoxazol-5-one' 291 Pn*yt*ungun"se N-methylanilide' 359 8-PhenYlmenthYlPYruvate' 4 l7 i -pt "nytpnotptta-3-cyclopentene' q - P i " " y r p h " ; h a b i c y c l o l 4 2 ' I I n o n a n e '2 9 1 4-PhenYlPYridineoxide' 90
128 2,4-PentadienYlacetates, 284 ientafluorobenzeneseleninic acid' I ' 4 N.N,I,2,4-PentamethyldihYdronicotinamide' 285 2 1,2,2,6,6-Pentamethylpiperidine' l - P e n t e n - 4 - Y n - 3 ' o l ,1 2 7 4-Pentenenitriles, 386 4-PentenYlmalonic esters' 192 esters'I 25 o - ( 4 - P e n t yn y l ) a c e t o a c e t i c l6l P e p t i d es Y n t h e s i s2' 6 , 1 5 2 ' 1 9 9 a - P e r c h l o r oe s t e r s . Perfluorination,182 N-p"rifuotouftanedicarboxylic P e r fl u o r o a l k Y l a m i n e s ' 5 I
acid' 400
286 i -p"rrluorouiryl-2-f luoroethanols' Perf luoroalkYlation, 309 p.riiuotourtvnylphosphonate esters' 377 Perf luorocarbon f luids' 286 285 P e r fl u o r o d i a l k y l o x a z i r i d i n e s ' Periodicacid,285 286 Periodinane of Dess and Martin' Petersonreaction, ?8, 159' 375 Phase-transfercatalYsts' 286 397 9, l0-Phenanthrenequinones' 1 6 7 l, l0-Phenanthroline, Phenol Protection, 5 Phenols, 184, 188' 400 PhenYl 'tit""ri alkYnYl selenides'290
sulfone'292 o-rir"l'"esulfinylmethyl
49 PhenYlselenoglYcosides' 292 selenide' PhenYltosYl Phenvlvinyl sulfoxide'293 ium Ynenytt2,2'2-trif luoroethyl)iodon lliflate,292 ) tosylate'289 Phenvl(cvano)iodine(lll acids'109 N-PhenYianthranilic 406 o-PhenYlenedizinc(II)' 194 t-fn"nyt"ttynyl-cyclopentanols' 289 134' PhenYlhYdrazones, chlorides'146 H-fnenYtimiOoYl 289 ptt""vii"al*triI) bis(trifluoroacetate)' 290 diacetate' PhenYliodine(III) ptrenytioOine(tf I) dichloride-lead(II) 291 thiocYanate,
213 i-pi""trt"rr""yl- 1,3-cyclohexadiene' 182 ketones' g-ptt"nit,tio c,p-unsaturated amides'l0l c-PhenYlthio ketones'153 r-Phenytthio 410 a-PhenYlthioalkYlation' 203 Z-ltrenylthiocycloalkanols' pf,"nvtitiometttylisocyanide'292 302 PhenylthiomethYllithium' imide' 292 N-pi'"nyf,tif f"o'omethanesulfon 293 PhosPhine, ?9 PhosPhonamidates, methylperfluoroalkylketones' Phosphonyl 5t I
293 PhosPhorusoxYchloride' 291 eiorpftotuttV i oxide-acetonitrlle' l l l Photoaddition' 23 Photoinduced amination' 1 8 7 2-Picolines, Pinacol formation, 251 Pinacol silYl ethers, 297 o-Pinene,281 355 2-PiPeridinecarbaldehYde' 4-PiPeridones, 238, 4ll PivaloYl chloride, 294 Polonovski reaction, 376 poly(hydrogen Poly(4-vinylpyridinium) fluoride), 295 18 PolYf luoroatkYl aldehYdes' PolYketides'3 24 PolYmethoxYnaPhthalenes' 294 PolvmethYlhYdrosiloxane' 295 PolYPhosPhoricacid' 294' 295 p"iiprt"tptt"trc acid trimethylsilyl ester' 299' 300' 298' 2g'l' 296' 2g5, ".i'.r.i"t,
301.302 9-(O-[1,2-isopropylidenePotassium D-xYlofuranosYll)-95-deoxYllnonane'300 boratabicYclo[3'3' Potassium dicarbonYl)ferrate' 297 (cYclopentadienYl
29'l
Potassium diPhenYlPhosPhide' Potassium f luoride, 29'l' 298 lazide' 298 Potassium hexamethyldisi 299 hYdride, Potassium
Potass Potass Potass Potas Potas l
Potas l
Potas Pota Potat ProP ProP ProP ProP Prop P rot Prol Pun 2H4-P
Plr Plt P) P! 7-l 3Py 4-
P P l P I I
Subjectloder
300 Potassium monoperoxysulfate' P o t a s s i u mn i t r a t e , 3 0 0 301 Potassium Permanganate' p o i u t t i " r n p e r m a n g a n a t e - a l u m i n a3' 0 1 sulfate' Potassium p",rnungunut"-copper(Il)
p ic -". t . .
>na:c. l9l I ll
llc:c
dor:c.. l8l
9: l9l
l:rr:e.
i\:
rr
reiLrnC!.
lq.r
301 Potassium permanganate-montmorillonlte' 301 301 Potassium phenyltrifluoroborate' Potassium t-butoxide' 296 302 tetracarbonvlhvdridoferrate' ;;;i;; P r o P a r g Y ta l c o h o l s ' 3 3 4 P r o P a r g Y lc h l o r i d e ' 3 0 2 P r o P a r g Y l a m i n e sl,l 2 P r o P a r g Y l a t i o n l.0 . 77 P r o P a r g Y l i ca l c o h o l s '7 4 ' 9 8 a l c o h o l s ' o f Protection P r o t o n a t i o n ,3 l 3 376 Pummerer reaction, 156' salt' 304 iH-pvtun-z-t"thylphosphonium 2 9 5 4-PYranones, Pyrazole,287 Pvrazolines.184 P v r i d i n e . 6 2 9' 9 ' 1 8 6 '3 1 2 Pvridine formation' 186 2 - P Y r i d i n e a l d e h Y d el '8 260 3-PvridinecarbaldehYde' P y r i d i n i u m t o s Y l a t e '3 0 3 4 - P Y r i d o n e s '2 9 5
carbanion' 345 12-pyridyl)thiomethyl 3,4-PYridYne,2l3 i e t h y l s u l f o n i u mc h l o r i d e s ' i p V . . o f Z - V U Am
h\ j:,..ren
1
150 I 58 Pvrrole-2-carboxYlates' 109 P v r r o l e s .2 ' l 5 ' l ' 2 3 1 ' 3 0 2 ' 355 2lPyrrolidinecarbaldehYde' l 5 PYrrolidines, 3 - P Y r r o l i n e s ,4 4 304 f y r Y t i u m t e t r a fl u o r o b o r a t e '
t
l s : r . e . t e r .1 9 ! t.:"" lcto. { xlc::
-
il -*' ts
rjc
Ic-)
308 4(3H)-Quinazolinones' 128'312 a - Q u i n o d i m e t h a n e s3 ' l' 321 m e t h i d e s ' P-Quinone Q u i n o n e s '3 3 9 3 2I P-Quinones' 122 R a m b e r g - B r P k l u n dr e a c t i o n ' I Rearrangement-CYclization' Redox Processes'282 Reduction carbonYl grouPs' 40
{99
esters, 83, 294' 395 n i t r o c o m p o u n d s ,1 7 ' 3 5 7 n i t r o a r e n e s ,5 2 oxime ethers' 20 Reductive cleavage'45
il;;;ot,.aition' 3r7,353'407
8?'e3't't6'l8e'313'
Rhenium(VII) oxide, 305 R h o d i u m c a r b e n o i d s '3 0 6 305 Rt oOiurn carbonYl clusters' 306 Rhodium carboxYlates' 307 ni"ai"rn PhosPhinecomPlexes'
307 coD-complexed' iii-'"ilr".'tii"nloride' Ribofuranosides, 354 a-Ribofuranosides3 ' 17 52 B-D-Ribofuranosides' Rieke zinc, 406
366'39'l nin, .i"uuug"'155'168'268' l9l 139' 60' Rin! exPansion, R i t t e r r e a c t i o n '2 ' 1 9 7 I R o b i n s o na n n u l a t i o n '2 l c o m P l e x e s3 ' 08 c a r b e n e nuit"niurn 3 0 8 c l u s t e r s ' R u t h e n i u mc a r b o n Y l tris(triphosphine) c h l o r i d e ' n",n""i"rnt,U comPlex' 309 ac-id'310 nu,t.n'i-urr(f if I chloride-peracetic p e f f f chloride-sodium riodate' *",i."l"t"if
310 310 R u t h e n i u m ( l V) o x i d e ' ( S a l e n ) M nc o m P l e x e s9' 0 ' 1 8 5 S a l i c v l a l d o x i m e s 'l 8 S a m a r i u m . 3 l l '3 1 2 '3 1 7 3l I Samarium(ll) bromide' Samarium(ll) iodide' 312 317 Samarium(ll) menthoxide' S a m a r i u m ( I I )t r i f l a t e ' 3 1 7 312 Samarium(lII) shl6lids' Samarium(III) iodide' 317 2l'l S a P o n i f i c a t i o n ,8 8 ' l l ' 7 ' 317 Scandium(lll) Perchlorate' 317 l a t e ' t r i f Scandium(III) S c h m i d t r e a c t i o n s '3 7 7 102 ie-1B-oxoatXyt) selenoesters' 102 Se-arsanYlselenoesters' S e l e n e n Y l a t i o n3,l a-SelenenYlation' 30 S e l e n i u md i o x i d e ' 3 1 8 c-seleno ketones' 31 S e l e n o a m i d e s3, 1 8 SelenoPhenes,338
500 SubjectIndex S e l e n o s u l f o n a t e s2,4 , 1 5 2 Selenoxo esters, 57 Semihydrogenation, 24, 163, 373 S e - s u l f o n a t e ,1 5 2 S h a r p l e s se p o x i d a t i o n ,7 0 , 2 3 5 [ 2 , 3 ] S i g m a t r o p i cr e a r r a n g e m e n t3, 1 , 1 5 7 '
2r3,338 S i l a s t a n n y l a t i o n7, 0 Silica gel, 319 (o-siloxyalkyl)-dichloromethyllithium6 ' 9 S i l v e r b r o m a t e ,3 1 9 S i l v e r c a r b o n a t e ,3 2 0 Silver fluoride, 320 Silver nitrate,24,320 Silver nitrite-iodine, 321 S i l v e r p e r c h l o r a t e ,3 2 1 Silver tetraf luoroborate, 322 S i l v e rt r i f l a t e , 3 2 2 Si lver tri f luoro ^cetate, 323 Silver(I) oxide, 321 Silver(ll) oxide, 321 S i l y l k e t e n ea c e t a l s ,1 0 7 S i l y l n i t r o n a t e s ,3 8 1 a - S i l y l a l d e h y d e s8 ,0 N-Silylamine, 218 S i l y l a t i o n , 1 7 , 4 9 , 7 l , 1 2 7 ,3 7 4 S i l y l c u p r a t i o n ,2 6 0 Silylformylation, 30'7,3'l4 S i m m o n s - S m i t h r e a c t i o n s ,8 9 , 9 9 , 1 3 9 ' 1 9 7 ' 3ll S i - t e t h e r e dg l y c o s y l s u l f o n e ' - ) l J , S k e l e t a lr e a r r a n g e m e n t 8 S m a l l r i n g s y n t h e s i s ,8 9 S o d i u m , 1 5 7 , 1 8 3 ,3 2 3 , 3 2 4 , 325,326,327, 3 2 8 . 1 2 9 . 3 3 0 , 3 3 1 , 3 3 2 , 333,334,335, 3 3 6 . 1 3 7 .3 3 8 , 3 3 9 ,3 4 0 341 S o d i u m - a m m o n i a ,3 2 4 Sodium amalgam,324 S o d i u m a r e n e s u l f i n a t e s3, 2 4 Sodium azide,325 Sodium borohydride, 326, 327, 328' 329, 330 Sodium borohydride-aqueousbase, 327 S o d i u m b o r o h y d r i d e - b i s m u t h ( l l I )c h l o r i d e ' 52 t
S o d i u m b o r o h y d r i d e - c a l c i u mc h l o r i d e , 3 2 7 S o d i u m b o r o h y d r i d e - c e r i u m ( l l l )c h l o r i d e , 328 S o d i u m b o r o h y d r i d e - c o p p e r ( l l )s a l t s , 3 2 8 Sodium borohydride-manganese(ll) chloride,328
Sodium borohydride-pentafluorophenol, 329 Sodium borohydride-propanedithiolt r i e t h y l a m i n e ,3 2 9 Sodium borohydride-sulfuric acid, 329 S o d i u m b o r o h y d r i d e - t e l l u r i u m ,3 2 9 S o d i u m b o r o h y d r i d e - t r i m e t h y l s i l ycl h l o r i d e ,
Stilbenc l Stilbencs Stitle.6l Stille cot Stobbe c< Strecker '
330 Sodium bromate, 330 Sodium bromite, 330 Sodium cyanoborohYdride,331 Sodium dithionite, 331
4 - S t yr y l S u c c in t m N-Sulfes 2-Sulfen Sulfen;.' N-Sulftn Sulfinatt 2-Sulfin S u l f o nt u a-Sulfoo SulfonlI SulfonlI
S o d i u me t h o x i d e , 3 3 2 Sodium formate, 332 Sodium hexamethYldisilazide, 332 Sodium hydride, 333 Sodium hydrogen selenide' 333 S o d i u m h y d r o g e nt e l l u r i d e , 3 3 3 S o d i u m h y d r o x i d e ,3 3 4 S o d i u m h y p o c h l o r i t e ,3 3 4 ' 3 3 5 Sodium hypochlorite-2,2,6,6tetramethylpiperidin- I -oxyl, 335 yickel, 335 S o d i u m h y p o p h o s p h i t e - R a n en S o d i u m m e t h o x i d e ,3 3 5 Sodium N-(r-butoxYcarbonYl)-NdiethylphosPhoramide,330 Sodium nitrate-trimethYlsilYl c h l o r i d e - a l u m i n u mc h l o r i d e , 3 3 6 S o d i u m n i t r i t e - p o t a s s i u mf e r r i c y a n i d e ' 3 3 6 Sodium nitrosoferricYanide' 337 Sodium perborate, 337 S o d i u m p e r i o d a t e ,3 3 8 , 3 3 9 Sodium periodate-tetraphenylporphyrinMnCl, 339 Sodium piperidino(diethyl)aluminum hydride, 339 S o d i u m t - b u t y l t h i o l a t e ,3 3 0 Sodium telluride,340 Sodium triacetoxyborohydride' 340 , 40 S o d i u m t r i a l k y l b o r o h Y d r i d e s3 S o d i u m t r i m e t h y l s i l a n e t h i o l a t e3, 4 I S o d i u m t r i - t - b u t o x y a l u m i n u mh y d r i d e ' 341 Spirocyclization, 305 o - S t a n n y l a l k a n o i ce s t e r s ,5 3 N - ( o - s t a n n y l a l k Y l ) a m i d e s ,5 0 S t a n n y l a t i o n ,2 2 5 o - S t a n n y l m e t h Y l s t Y r e n e3sl, P-Stannyloxybutenoic acid, 54 Staudinger reaction, 386 Stevens rearrangement, 109
Sulfoxtd Sulfurtr Sulfurtt
Sulfurrc S u z u k rr
Tellurid Tellurru Tellurtu Tert ia 11 T e r t i ar 1 Tetraal Tetrabu Tetrabu Tetrabu Tetrabo pcl
Tetrach Tetracy Tetractl TetrahTetrahl Tetrahl 1,2.-1 TetraL pc
Tetrak -1 Tetral, c( 5,10.l Tetran
SubjectIndex 501 .-
al
t-
- ::
ca
J i ii
I
6 i i^
da
tf
I
'
S t i l b e n e i s o m e r i z a t i o n ,1 5 3 S t i l b e n e s ,6 7 S t i l l e , 6 3 , 1 2 7 ,2 7 4 , 2 7 8 , 3 9 0 , 3 9 1 Stille coupling, l2'1, 278, 390, 391 ,l S t o b b ec o n d e n s a t i o n 7 S t r e c k e rs y n t h e s i s ,1 3 4 4 -Sty ryl -2 - azetidinones, 274 S u c c i n i m i d y l d i a z o a c e t a t e3, 4 1 N - S u l f e n y l a m i n e ,3 7 0 2 - S u l f e n y l a t e da l d e h y d e s 2 ,2 Sulfenylation,24l N - S u l f i m i n e s ,1 3 4 S u l f i n a t e e s t e r s ,l l 9 2 - S u lf i n y l - 1 . 3 - b u t a d i e n6e5. Sulfonium ylides, 157 a - S u l f o n y l c a r b a n i o n s ,7 6 , 1 9 6 S u l f o n y l r a d i c a l s ,2 3 1 Sulfonylation,25,339 S u l f o x i d e s , 1 8 3 ,2 0 0 , 3 3 5 , 3 5 0 , 4 0 5 Sulfur tetraf luoride, 342 S u l f u r t r a n s f e r ,3 9 Sulfuric acid,342 S u z u k i c o u p l i n g , 5 9 , 1 2 8 , 1 2 9 ,2 7 3 , 3 9 1 T e l l u r i d e s ,l 0 l Tellurium(IV) chloride.343 T e l l u r i u m ( l V ) e t h o x i d e .3 4 3 Tertiary amines,270 T e r t i a r y b e n z y l a m i n e s ,9 9 Tetraallyltin,344 T e t r a b u t y l a m m o n i u mb o r o h y d r i d e ,3 4 4 T e t r a b u t y l a m m o n i u mf l u o r i d e ( T B A F ) , 3 4 4 T e t r a b u t y l a m m o n i u mp e r o x y d i s u l f a t e ,3 4 5 Tetrabutylam mon iu m p e r r h e n a t e ( V I l ) - t r i fl i c a c i d , 3 4 6 Tetrachlorosilane, 346 Tetracyanoethylene,38I T e t r a e t h y l a m m o n i u mc y a n o b o r o h y d r i d e 3, 4 6 Tetrahydrofuranyl ethers, 345 T e t r a h y dr o p y r a n y l e t h e r s .8 5 Tetrahydropyranylation, 4 l0 1,2,3,4-Tetrahydroquinolines, 33 Tetrakis(alkoxycarbonyl)palladacyclop e n t a d i e n e ,3 4 6 T e t r a k i s ( t r i p h e n y l p h o s p h i n e ) pl a ld i u m ( 0 ) , 347.349 0)T e t r a k i s ( t r i p h e n y l p h o s p h i n e ) p a l l a d i u(m copper(I) iodide,349 5 , 1 0 ,1 5 , 2 0 - T e t r a k i s a r y l - p o r p h y r i n s3,3 4 Tetramethylammon ium f luoride,350
Tetramethylam mon iu m triacetoxyborohydride, 350 T e t r a m e t h y l g u a n i d i n i u ma z i d e , 3 5 0 Tetranitromethane, 350 Tetraphenylantimony bromide, 350 Tetraphenylstibonium m e t h o x i d e ,3 5I Tetrapropylammonium perruthenateN - m e t h y l m o r p h o l i n eN - o x i d e , 3 5I sym-Tetrazines, 240 Tetrazoles3 , 26,379 T h a l l i u m ( l l l ) n i t r a t e ,3 5| T h a l l i u m ( l l l ) t o s y l a t e ,3 5| T h i a n t h r e n i u m t e t r a f l u o r o b o r a t e .3 5 1 I - ( 2 - t h i a z o l y l ) e t h a n o l 2, 8 T h i o a c e t a l i z a t i o n ,5 7 3 - T h i o a l k y l - 2 - c y c l o a l k e n o n e s3, 0 2 Thioamides, 57, 145,173,343 p - T h i o c y a n a t i o no f p h e n o l s ,2 9 1 T h i o e s t e r s ,2 5 9 , 3 7 2 Thiol protection,100 Thionyl chloride,352 T i n , 3 5 2 , 3 5 3 , 3 5 4 , 3 5 6 , 3 5 7 ,3 6 8 T i n ( l l ) b r o m i d e ,3 5 2 T i n ( l l ) c h l o r i d e ,3 5 3 T i n ( l l ) h e x a m e t h y l d i s i l a z i d e3, 5 7 Tin(ll) iodide.357 Tin(ll) triflate.357 T i n ( l V ) b r o m i d e ,3 5 2 Tin(lV) chloride, 354, 356 T i n ( l V ) c h l o r i d e - t r i b u t y l a m i n e ,3 5 6 T i n ( I V ) o x i d e - i s o p r o p a n o l3, 5 7 T i s h c h e n k or e a c t i o n ,2 9 7 , 4 1 5 T i t a n i u m t e t r a i s o p r o p o x i d e3, 6 3 Titanium(lll) chloride,358 T i t a n i u m ( fV ) , 9 2 , 3 5 9 , 3 6 1 , 3 6 2 , 3 6 4 T i t a n i u m ( l V ) c h l o r i d e ,3 5 9 ,3 6 1 ,3 6 2 , 3 6 4 Titanium(lV) c h l o r i d e - d i i s o p r o p y l e t h y l a m i n e3,6 I T i t a n i u m ( I V ) c h l o r i d e - l i t h i u ma l u m i n u m hydride,362 T i t a n i u m ( l V ) c h l o r i d e - p - t r if l u o r o m e t h y l b e n z o i c a n h y d r i d e - s i l v e r ( l )t r i f l a t e , 3 6 2 T i t a n i u m tl V t c h l o r i d e - t i r a n i u m tetraisopropoxide, 362 T i t a n i u m , l o w - v a l e n t ,3 5 8 Titanocene.364 T i t a n o c e n ed e r i v a t i v e s ,3 6 4 T i t a n o c e n ed i c h l o r i d e , 3 6 4 T M S O T f g e n e r a t i o n ,5 7 l - ( p - T o l u e n e s u l f i n y l ) p r o p y n e3,6 5
502 SubjectIndex 4-Toluenesulfinyl-5-methylisoxazolines, 365 p-Toluenesulfonic acid, 194 2-(p-Toluenesulfonyl)ethylamine, 365 a-p-Tolylhydrazonation, 82 N - T o s y l a m i d e s ,t 9 N-Tosylamines3 , 84 4 - T o s y l a m i n o - b u t a n o y l a t i o nl ,9 N - T o s y l a z i r i d i n e ,7 6 p-Tosylhydrazonoaceticacid, 341 N - T o s y l i m i n e s ,3 6 N - T o s y l - N - a l k y l h y d r a z i n e s l, 0 l l-Tosyloxy-l-vinylcyclopropane, 389 l - T o s y l o x y - 2 - a l k a n o l s1, 4 0 C - T o s y l o x y l a t i o n ,1 8 7 N-Tosylpyrrolidine, l2 N-Tosylpyrrolidone, l9 T r a n s a c y l a t i o n ,1 9 , 3 6 2 T r a n s d i a z o t i z a t i o n ,I 5 6 T r a n s e s t e r i f i c a t i o n ,1 9 8 ,3 3 4 Transfer hydrogenation, 23, 24 Transmetalation5 . 4, l14 1 , 3 - T r a n s p o s eadl l y l ( b u t y l ) t i n d i c h l o r i d e , 8 2 Trialkylaluminums, 365 T r i a l k y l p h o s p h i n e - t r i a l k y l sliy l c h l o r i d e , 3 6 7 a - T r i a l k y l s i l o x y a l d e h y d e s ,1 4 0 T r i a l k y l s i l o x y c y c l o p r o p a n e sI, l 6 t r i a l k y l s i l y l a l l y l e s t e r s ,3 3 2 Trialkylsilyldiazomethane3 , 67 p - T r i a l k y l s t a n n y l c y c l o h e x a n o n e s2,2 I T r i a l k y l s t a n n y lm e t h y l a m i n e s ,3 3 T r i a r y l b i s m u t h i n e s ,3 6 7 1,2,3-Triazine, 4O9 | ,2,4-Triazole, 47, 219 T r i b r o m o m e t h y l ( t r i m e t h y l ) s i l a n e3, 6 8 T r i b u t y l ( t r i m e t h y l s i l y l ) s t a n n a n e3, 7 2 3 - ( T r i b u t y l s t a n n y l ) p r o p e n ypl y r a n s , 4 1 0 2 - T r i b u t y l s t a n n y l -1 , 3 - d i o x a n e s 1, 7 4 2 - T r i b u t y l s t a n n y l -1 , 3 - d i t h i a n e ,8 6 N - ( a - T r i b u t y l s t a n n y l a l k y l ) i m i n e s 7, 5 2 - T r i b u t y l s t a n n y l - N - t r i t y l - a z i r i d i n e s7, 5 Tributylstannyloxyalkenes, 368 T r i b u t y l t i n h a l i d e s ,3 6 8 Tributyltin hydride, 368, 372 Tributyltin hydride-tetrakis( t r i p h e n y l p h o s p h i n e ) p a l l a d i u m3,7 2 Tricarbonylruthenium(ll)chloride, 373 2,2,2-Trichloroethoxycarbonyl, 83 1,2,3-Trichloropropane,302 Trichlorosilane, 373 a.a.a-Trichlorotoluene, 405
3,4,5-Trichlorotropone, 236 Trichlorotropones, 236 Triethylsilyl iodide, 375 N-(Triethylsilylethylidene) t-butylamine, 375 Trifluoroaceticacid, 53, 375 Trif luoroacetic anhydride, 376 Trifluorocetates, 375 2.2.2 -Trif luoroethanesulfonates,345 2,2,2-Trif luoroethyl propionate, 203 2,2,2 -T rif luoroethyl
383
N-Tr Trin B-t1 l-(T
B-(
2-t1 5-Tt 5-Tr 5-Tr 2-Tr a-T
B-
N-( 2-1 4-( Trir
a-1
l-T Trr Tri Tri
Trr
Tri l -(
Tri Tri Tri Tr Trr
Tr Tr Tr Tr Tr Tr Tl Tr T! Tr
SubjectIndex 503 N-Trimethylsilyl(bisf luorosulfon)imide, 380 T r i m e t h y l s i l y l ( d i e t h y l ) a m i n e3 , 82 B - ( T r i m e t h y l s i l y l ) a l k y l p h e n y l s u l f o n e s ,3 7 9 l - ( T r i m e t h y l s i l y l ) b e n z o t r i a z o l e 1, 6 7 B - ( T r i m e t h y l s i l y l ) e t h o x y m e t h yel s t e r s ,l 9 2-(Tri methylsilyl)ethyl sulfoxides, 344 5-Tri methyl si lyl-2,3-dihydrofu rans' 221 5 - T r i m e t h y l s li y l - 2 , 3 - d i h y d r o i s o x a z o l e s3,4 4 5-Trimethylsilyl-3-cyclohexenone' 206
i
C i.
2-Trimethylsilylacrolein, 284 a - T r i m e t h y l s i l y l a t i o n ,3 7 7 p-Trimethylsilylethyl sulfides, 322 N - ( T r i m e t h y l s i l y l m e t h y l )f o r m a m i d i n e ' 7 8 2 - ( T r i m e t h y l s i l y l m e t h y l ) a l l y le s t e r s ,2 7 9 4 - ( T r i m e t h y l s i l y l m e t h y l ) e t h y l e n e a c e t a l2s2' 0 T r i m e t h y l s i l y lm e t h y lm a g n e s i u mc h l o r i d e , 384 a r - T r i m e t h y l sliy l p r o p ar g y l an t i m o n y
It:
b r o m i d e s ,2 5 5 e ,l 0 l - T r i m e t h y l s t a n n y l - 2 , 4 - p e n t a d i e n4 Triphenylphosphine, 385 T r i p h e n y l p h o s p h i n e - c a r b otne t r a h a l i d e s ,3 8 6
!-
i r
i
Triphenylphosphine-diethYl a z o d i c a r b o x y l a t e3 , 87 Triphenylphosphine-di isopropyl a z o d i c a r b o x y l a t e3 , 87 T r i p h e n y l p h o s p h i n e - d i p y r i d ydl i s u l f i d e , 3 8 8 l -(Triphenylphosphoranylidene)aminomethylbenzotriazole, I 38 Triphosgene, 55, 388 T r i p y l b o r a n e ,3 7 9 T r i s ( 4 - b r o m o p h e n y l ) a m i n i u ms a l t s , 3 8 9 3 8, 9 Tris(dibenzylideneacetone)dipalladium T r i s ( d im e t h y l a m i n o ) s u l f u r t r i m e t h y l s i l y l d i fl u o r i d e ( T A S - F ) , 3 9 3 l , l , l - t r i s ( m e t h y l t h i o ) a l k a n e s ,2 2 3 T r i s ( p e n t a fl u o r o p h e n y l ) b o r a n e3, 9 3 l , 1 , 3 - T r i s ( t rm i e t h y l s i l o x y ) -1 , 3 - b u t a d i e n e ' 384 T r i s ( t r i m e t h y l s i l Y l ) s i l a n e3, 9 4 Trisadamantylidene[3]radialene,246
1:
li'l
Trisopropylsilyldiazomethane, 367 Trityl chloride,394 Trityl ether,375 Trityl perchlorate, 394 Trdger's bases, 178 Tropone hydrazone, 146 TS-l zeolite,405 Tungsten pentacarbonYl,394
Ullmann coupling, lO9, 129 Ultrasound, 17, 230, 395 y,6-Unsaturated acids, l3 a,B-Unsaturated aldehydes, 24' 104, 338' 383 U n s a t u r a t e de s t e r s ,l 0 B ; y - U n s a t u r a t e dh y d r o x a m i c a c i d s ' 1 5 2 p,7-Unsaturated ketones, I 18 7,6-Unsaturatedketones, 6, 189 U n s y m m e t r i c a ls u l f i d e s , 1 0 7 U r a c i l s ,6 4 Urethanes, 387 Valine, 396 V a l i n e t - b u t y l e s t e r ,3 9 6 Vanadium(V)oxide, 396 Vanadyl 3-butylacetylacetonate,396 Vanadyl fluoride, 397 V i e h e s a l t s ,2 3 V i n y l b r o m i d e s ,6 7 V i n y l e s t e r s ,3 0 , 2 1 3 V i n y l s u l f o n e s ,1 3 7 ,1 5 5 Vinyl triflates, 37? 4 - V i n y l - 2 - a c e t o x y - 2 - c y c l o b u t e n o n e2s5, 8 2 - V i n y l - 3 - a l k e n o l s ,1 0 5 N-Vinylation, 2 Vinylation, 2, 149 a-Vinyl-p-hydroxyphosphonates' I 34 V i n y l i c c h l o r i d e s ,2 1 0 V i n y l s a m a r i u m3 , 13 V i n y l s e l e n o n i u ms a l t s , 3 9 7 V i n y l z i n c r e a g e n t s ,3 9 7 Vitamin Bn-zinc,39'l Wacker oxidation, 283 Wacker-type oxidation, 185 Water, 286, 399 W i t t i g r e a c t i o n s ,1 5 3 , 1 7 5 ,2 3 9 , 2 9 1 ' 3 9 5 Wittig reagents,4, 145, 163' 169' 271 [2,3]Wittig rearrangement, 22 W u r t z c o u p l i n g ,9 8 , 3 4 3 , 3 9 5 Xanthates,124 X e n o n ( l l ) f l u o r i d e ,4 0 0 Ytterbium, 90, 3l l, 4Ol, 402' 403 Y t t e r b i u m ( l I I ) c h l o r i d e ,4 0 2 Ytterbium(llI) isoProPoxide,402 Y t t e r b i u m ( ll l ) n i t r a t e , 4 0 2
504 SubjectIndex Ytterbium(III) trif late' 402 Y t t r i u m ( l I I ) c h l o r i d e ,4 0 3 Yttrium(llI) triflate, 404 Zeolite, 405 2inc,406,409' 410' 4ll' 412 Zinc bismuthate' 409 Zinc borohYdride,409 Z i n c b r o m i d e ,4 0 9 Z i n c c h l o r i d e ,4 1 0 ' 4 l I Zinc fluoride,4ll Zinc iodide,4l2 Z i n c p - ( r - b u t Y l ) b e n z o a t e4' 1 0 Zinc triflate,4l2 Z i n c - c o P P e rc o u P l e ,4 0 8 Z i r c o n a c Y c l o P e n t e n e s1'8 9 Zirconium bromide' 412
h'
Zirconium ditrif late, tetramethyl( d i b e n z o ) t e t r a a z a a n n u l e n4eI' 3 Zirconium PhosPhate,414 Zirconium(II) borohydride, polymers u P P o r t e d4, 1 2 Z i r c o n i u m ( I V ) b r o m i d e ,4 1 2 Z i r c o n i u m ( l V ) c h l o r i d e ,4 l 3 Z i r c o n i u m ( I V ) i s o P r o P o x i d e4' 1 4 chloride' Zirconium(lV) oxide-trimethylsilyl 414 Z i r c o n o c e n ed i c h l o r i d e ,4 l 5 Z i r c o n o c e n eh Y d r i d e '4 l 5 , 16 Z i r c o n o c e n eh Y d r o c h l o r i d e 4 Zirconocene zr-comPlexes,4l 5 Z i r c o n o c e n e ,Z r - a l k Y l a t e d ,4 1 4 ZirconYl chloride,417 Zr( IV )-montmorillonite' 245