! u n t'l7' ,l!
r
.,P1.
Fiesers'
!i ' ;
. - l '
J
Reagentsfor OrganicSynthesis '
'
A
:r-r
,)t fi{.1
i .
-"
'-i
VOLUME TWENTY
Tse-LokHo
PUBLICATION A WILEY-INTERSCIENCE WILEY & SONS,INC. JOHN / TORONTO / SINGAPORE NEWYORK/ CHICI{ESTER / \\iEINHEIM/ BRISBANE
!
PREFACE rffi#FS z'fttIJEl*
For a task perfectlY done First have the tool sharPened
The above is a Chinese saying that emphasizesthe importance of having good tools to the successof various endeavors.In organic synthesis,the improvement or sharpening of the pertinent tools is the development of new reagentsand/or reconditioning of existing ones' The aim of this seriesis to gather the scatteredtools and put them in order. On this occasionof publication of Volume 20 of Fiesers' Reagentsfor Organic Synthesis in the year 2000 (XX/MM), I wish to reflect on the monumental publication launched in "Volume l" did not appear in that title, so that the series 1967. Wasn't it fortunate that 'Volume One"' (these "It is bad luck to title a book survives to this day? As it has been said: words are attributable to the mathematician-philosopherGian-Carlo Rota, if not earlier writers). However, everyone could foresee the longevity of the series from its inception, sinceits value is so apparent. While I count my blessings for the privilege of continuing the work from Volume l8 onward, an overwhelming uneasinessprevails in my mind due to the relentless increaseof synthetic reagentsand methodologies.On examination of this volume the reader will notice particularly the unabatedactivities in organometallic chemistry, and therefore, a great number of entries deal with metallic reagents(palladium' samarlum, indium. titanium. zirconium, etc.). The same can be said about chiral catalysts and auxiliaries. Perhapsthe coverage of all variants on the same theme, for example, the use of metal salts that have different counterions and require additives or ligands for the same transformations, may not serve the best purpose, but finding an alternative solution without prominently deviating from the original format is hard' The practice of many chemists publishing papers that have no significant differences in contents makes the abstraction all the more difficult. More seriously, many purportedly new results have already been reported. That such reports escaped detection and were published is not rare, and I have no qualms at ignoring those, both for the sake of fairness and keeping the size of the volume in line. TsE-Lox Ho
CONTENTS
GeneralAbbreviations ix ReferenceAbbreviations xiii Reagents I Author Index 447 Subjectlndex 511
vll
rF
GENERAL ABBREVIATIONS Ac acac
acetyl acetylacetonate
ADDP
1,1'-(azodicarbonyl)dipiperidine
AIBN
2,2'-azobisisobutyronitrile
aq
aqueous
Ar
aryl
Bn
benzyl
Boc
t-butoxycarbonYl
Bu Bz
n-butyl benzoyl
18-c-6
18-crown-6
c-
cyclo cerium(IV) ammonium nifrate
CAN cat Cp
catalytic
Cy
cyclohexyl
cyclopentadienyl
DABCO 1,4-diazabicyclo[2.2.2]octane (diethylamino)sulfurtrifluoride DAST DBN
1,5-diazabicyclo[4.3.0]non-5-ene
DCC
N,M-dicyclohexylcarbodiimide 2,3-dichloro-5,6-dicyano-1,4-benzoquinone diastereomerexcess
DDQ de DEAD DIAD DIBAH DMAP DMD
diethylazodicarboxYlate diisopropylazodicarboxylate diisobutylaluminum hydride 4-(dimethylamino)pyridine dimethyldioxirane
DME
1,2-dimethoxyethane
DMF
N,N-dimethylformamide
DMPU DMSO
MM-dimethylpropyleneurea dimethyl sulfoxide
dppb
1,4-bis(diphenylphosphino)butane
dppe
1,2-bis(diphenylphosphino)ethane
dppf dppp
1,2-bis(diphenylphosphino)ferrocene 1,2-bis(diphenylphosphino)propane
E
COOMe
ee
enantiomerexcess tx
x
GencralAbbreviations
Et
ethyl
EVE
ethyl vinyl ether hexamethylphosphorictriamide
HMPA hv
light
Hx
n_hexyl
Ipc
isopinocampheyl
i-Pr
isopropyl
kbar
kilobar
L
ligand
LAH LTMP
lithium aluminum hydride lithium diisopropylamide lithium 2,2,6,6-tetramerhylpiperidide
lut
2,6-lutidine
LDA
M
metal (alkali)
MAD
methylaluminumbis(2,6_t_butyl_4_methylphenoxide)
R' {\) SA\tP *ns. TB.{F TBDPS TBS TL\IPO TES THF Thr
nPs T}IEDA Tlts T
MCPBA n-chloroperoxybenzoic acid Me methyl Ms mesyl (methanesulfonyl) MTO
methylrhodiumtrioxide
MVK NBS
methyl vinyl ketone N-bromosuccinimide
NCS
N-chlorosuccinimide
NIS
N-iodosuccinimide
NMO
N-methylmorpholineoxide
NMP
N-methylpyrrolidone
Np
Naphthyl
Ns
p-nitrobenzenesulfonvl
Nu
nucleophile
Oct
octyl
PCC
pyridinium chlorochromate pyridinium dichromate
PDC PEG
polyethylene glycol
Ph
phenyl
Pht
phthaloyl
Piv
pivaloyl
PMB
p-methoxybenzyloxymethyl
Pr
n-propyl
py
pyridine
Q* RAMP
quatemaryonium ion (R)-1-amino-2-merhoxymethylpynolidine
RaNi
Raney nickel
i
l
lh-:r-*L,
j
l
,r
rl
GeneralAbbreviations
Rr (s) SAMP sens. TBAF TBDPS
perfluoroalkyl solid (.9)-l-amino-2-methoxymethylpyrrolidine photosensitizer tetrabutylammoniumfluoride t-butyldiphenylsilyl =TBDMS, r-butyldimethylsilyl
TBS TEMPO 2,2,6,6-tetramethylpiperidinoxy triethylsilyl TES THF
tetrahydrofuran
/-hexyl=1,1,2-trimethylpropyl triisopropylsilyl TMEDA N,N,MM-tetramethylethylenediamine trimethylsilyl TMS tosyl (p-toluenesulfonYl) Ts
Thx TIPS
A ))))
heat microwave
xi
-t
REFERENCEABBREVIATIONS ACIEE ACR ACS AJC AOMC BBB BCSJ BRAS BSCB BSCF CB CC CCCC CEJ CHJC CJC CL CPB CR DC EJIC EJOC G H HC HCA HX IJC(B) IJS(B) JACS
#
t
Angew. Chem. Int. Ed. Engl. Acc. Chem. Res. Acta Chem. Scand. Aust. J. Chem. Appl. Organomet. Chem. Biosc. Biotech.Biochem' Bull. Chem. Soc.JPn. Bull. Russ.Acad. Sci' Bull. Soc. Chim. Belg. Bull. Soc. Chim. Fr' Chem. Ber. Chem.Commun. Collect. Czech. Chem. Commun. Chem. Eur. J. Chin. J. Chem. Can. J. Chem. Chem. Lett. Chem. Pharm.Bull. Carbohydr. Res. Dokl. Chem. (Engl. Trans.) Eur. J. Inorg. Chem. Eur. J. Org. Chem' Gazz.Chim. Ital. HeterocYcles HeteroatomChem. Helv. Chim. Acta Huaxue Xuebao Indian J. Chem.,Sect.B Int. J. Sulfur Chem.,Part B J. Am. Chem. Soc.
J. Carbohydr. Chem. JCCS0) J. Chin. Chem. Soc. (Taipei) JCR(S) J. Chem. Res.(SYnoPsis) JCS(PI) J. Chem. Soc. Perkin Trans. 1 JCC
JHC
J. Fluorine Chem. J. HeterocYcl.Chem.
JMC
J. Med. Chem.
JFC
xlll
rF
ReferenceAbbrtviations
JNP JOC JOCU JOMC LA MC NJC NKK OM OPPI PAC PSS RTC RJGC RJOC S SC SL SOC T
J. Nat. Prod. J. Org. Chem. J. Org. Chem. USSR (Engl. Trans.) J.Organomet.Chem. Liebigs Ann. Chem. Mendeleev Commun. New J. Chem. Nippon Kagaku Kaishi Organometallics Org. Prep. Proc. Int. Pure Appl. Chem. PhosphorusSulfur Silicon Recl. Trav. Chim. pays-Bas Russ.J. Gen. Chem. RussianJ. Org. Chem. Synthesis Synth.Commun. Synletr Synth. Org. Chem. (Jpn.) Tetrahedron
TA
Tetrahedron:Asymmetry
TL
TetrahedronLett. Youii Huaxue
YH
Reage
Acetic anhydride. to a pyrazole on ffraZole from xylose,t The phenylosazoneof o-xylose is converted refluxing with AcrO. Ring contractian on acetylntion.2 3-Acetyl-2,3-dihydrobenzothiazoles are formed efficiently (10 examples, 65-80Vo) from 2,4-diaryl-2,3-dihydro-1,5-benzothiazepines under acetylating conditions. Acetylati.on. Rapid peracetylation of carbohydratescan be effected in the presence of iodine.3 With more iodine and longer reaction times the selective acetolysis of primary benzyl ethers is achieved. Perbenzyl ethers of mono- and disaccharidesundergo group exchange (OBn -+ OAc) at the primary carbon atoms4 on treatment with AcrO-HOAc-ZnClr. gem-Diacetatesare formed from aldehydesat room temperaturein high yields when the or AcrO-MerSiCl-NaL6 ordinary alcohols latter are treated with Acro-HoAc-znclrs undergo acetylation with AcrO-MerSiCl in MeCN or CH2CI2.7 'Di"hl, V., Cuny,E., Lichtenthaler, F. w. Il 48, 1193(1998). 2Toth.G., Levai,A., Balazs,B., Simon,A. I-4995 (1997). 3Kutthu, K. P. R.,Field,R. A. I53, 11753(1997). aYang,G.,Ding,X., Kong,F. rL38,6'725(1997) 5D"ku,N., Kalita,D. J.,Borah,R.,Sarma, l. C. JOC 62,1563(1997). 6D"ka.N., Borah,R., Kalita,D. J.,Sarma, 94 (1998)' J. C. ,ICR(S) TKu.arer*uran,R.,Gupta,A., Vankar,Y.D. SC27'2'17(1997).
Acetylacetonato(dicarbonyl)rhodium. Arylation of aldehydes.\ Aryl group transfer from arylboronic acids to relatively electron-rich aldehydes can be accomplished in aqueous DME by using the (acac)Rh(CO)r-dppf catalyst system. Michaet addition.2 The B-aryl or B-alkenyl group of an organoboronic acid is transferred to enones in the presenceof (acac)Rh(CO), and dppb. Yields usually exceed 8OVo. tsakui,M., Ueda,M., Miyaura,N. ACIEE37,32'19 (1998). :Sukai,M., Hayashi,H., Miyaura,N. oM 16, 4229(1997). 4-Acetylamino-2,2,6,6-tetramethylpiperidine-1-oxoammonium perchlorate' The reagent is an efficient oxidant, particularly in the presence Alcohol oxidation. However, detonation of an 8-g sample while drying (20 96-loo7o).t examples, of silica gel I
Alkenyl aryliodonium tetralluoroborates
at 55o under high vacuum has been reported. The corresponding tetrafluoroborate salt more stable.2 tBobbitt,J.M. Joc 63,9367(1998). 2Bobbitt, J. M. C&ENJuly19,6 (1999).
l{ .rl
1-Acetylimidazole. Acetylation.t Primaryalcoholsand phenolsare selectivelyacetylatedon grinding 48-96Vo). with thereagent(15 examples,
L
r|
lHagiwara, I., Kato,M. SC28'2001(1998)' T.,Ando,M.,Yamamoto, K.,Suzuki, H.,Morohashi,
\t =a
Acylgermanes. Cyclopentanones.t Radical cyclization to generateA-germylalkoxyradicals is followed by rapid fragmentationto afford ketoneproducts.Structuralfeaturesusually thusbicyclizationcanoccur. dictatethefragmentation,
i:-t /'/&::'^, Ph
6_(o",* ^b.
l ^ (+r" L .
l*
39"
rcu.run,D. P..Diederichsen, (199'1). 119,4797 M. "/ACS U.,Palovich,
Lrd
*r
'ft!
N-Acylpyridinium salts. are Acylationof chiral alcohols.t The pyridinium triflates and tetrafluoroborates alcoholssuchascr-hydroxy for deliveryof acyl groupsto chiral secondary usefulreagents carboxylicesters.
rl
twugne., W.,Anders, E. S883(1998). R.,Giinther,
ral
lit
rql
Alane. Cleavageofcarbamates.r 0-Stannyl alcohols protectedas carbamatesundergo the carbamates Sn/Li exchange.After reactionof the lithiatedreagentswith electrophiles canbe cleavedwith AlH, in THF. rchong, (1998). N. IL 39,9617 J.M.,Nielsen, Alkenyl aryliodonium tetrafluoroborates. Alkenylationof 1,3-diketones.t Enolatesof l,3-diketonesundergo alkenylation with thereagents.
\q "i:r
knrr
-
Alkenyldihaloboranesandalkynyldihaloboranes 3
It r:
ro"hiui,
M., Shu, T., Nagaoka, T., Kitagawa, y. JoC 62,2130 (1997).
l - ( 1-Alkenyl)benzotriazoles. a-Ketols.t These enaminesare converted to cx-ketolsvia epoxidation and hydrolysis with perchloric acid in refluxing THF. rKatritzky,A. R., Heck,K. A., Li, J.,Wells,A., Garot'C. SC26'2657(1996). drng
I
Alkenylboronic acids. involves reaction of the f,y-Unsaturated *amino acids. A practical synthesis (11 54-967a\.tAn analogous examples, benzylamine and boronic acidswith glyoxylic acid alcohols'2 to anti-1,2-amino leads reactioninvolving cr-hydroxyaldehydes
rl. ts uelir
Bn'l.,l''
^Ph . 1 v, , 8 ( o H ) z * B n N H M e * o * " Y t u t + p / \ , / V c s H r r EroH 6n 6, 84"/"
ketones.3 Alkenylboronicacidstransferthe organicresidues a,p,y',6'-unsaturated member)in the presenceof cyanuric dienones(at the lesssubstituted to cross-conjugated fluoride. 'Petasis, N. A., Zavialov,I. A. "/ACS119,445(199'l). 2P.tu.ir,N. A., Zavialov,L A. JACS120,11789(1998). rHara,S.,Shudoh, S.,Suzuki,A. BCSJ7l' 2403(1998). H., Ishimura, C\ tre fdr()\\'
Alkenyldihaloboranes and alkynyldihaloboranes. Diels-Alder reactions. The dihaloboranes are available from alkenyl- and by treatmentwith BX3 (X = Cl, Br). In alkynylsilanes,rand the correspondingstannanes2 situ condensationwith dienes furnishes cycloadducts.
lx]crgo amates
Il
l\ iatlon
BBr3
-SiMe3
;;
:nlaerz
NaoH.
)\)
HooH ."\,"
aBBt2
ll
Y
lsingleton, D.A., Leung, S.-W. JOMC 544, 15'l (199'l) 2leung, S.-W., Singleton,D.A. JOC 62,1955 (1997).
\^l-o*
4
Alkylchloroboranes
Alkenyltitanocenes. Carbonyl compounds are converted to allenes on reaction with Allenes.t alkenyltitanocenes( I 6 examples,40-897o).
..USCc
.^ta
gr\ e r\nRrrn!
Meo CHO +
ll_, iCPz
rHF +
//
\__
Meo-\
F1 /f
t-.{lty}l tE>! rmnrdl .rc-rmrcl
f
MeO 887"
hr:ssrn rPetasis, N., Hu, Y.-H.JOC 62,782(199'1).
N-Alkoxycarbonylimidazoles. Mixed estersof carbonic acids,r A one-pot preparation of mixed carbonic estersis achievedby sequentialreactionswith two primary alcohols. 'Bertolini, Pavich,G.,Vergani,B. JOC 63,6031(1998). G., l-r.-xt
chlorides. (N-Alkyl-N-alkoxyammine)dimethylaluminum N-Alkoxyamidine salts.t The Al salts obtained from reaction of Me.Al with N-alkoxyamine hydrochlorides at low temperaturereact with nitrile to give the substituted
rlt r-.{l
amidines.
i\.Glanx
'Singh,S.,Nicholas, K. M. SC27, 4021('1997).
1nt
F
N-Alkylbis(trimethylsilylmethyl)amines. The amines generate 1,3-dipoles under electrochemical conditions. Pyrrolidines.t
r.}rd
The reactive speciesare interceptedby alkenes.
{rta
lTorii,S.,Okumoto,H., Genba,A. SL2l'r (1994).
: rltto l: cr-q
Alkylchloroboranes. fonolidines.t pyrrolidines.
Homoallylic
Ng
, ^,/\,4
n1su7
azides react with
the chloroboranes to
I.r-ifr.
(
r.tht
Thexyl-B(H)Cl ;
NaOH
afford
,tt HrsCz,"'
(
F!€ilt ld
rSulrnon, A., Carboni,B. JOMC 567,31(1998).
\ rn.{|q
'!
urr
l,-
AllYlbarium reagents
\\ Ith
5
Alkyldichloroboranes. Ald'olreactions.'Enolateformationfromketonesandsubsequentaldolreaction give syn-aldolsstereoselectively' lRamachandran, P.V.,Xu,W'-C',Brown'H' C' IL 38'769(199'l)' bromides' 1-Alkyt-1-phenylphosphoranium - '-' .lhe phosphoraniumsaltsarepreparedby alkylationof thephosphine d;-;;;;;;r.l correspondingphosphine oxide. The immediately after its generationfrom the stereoselectivityoftheWittigreactionwithArCHoisverysensitivetothebaseused. is thepreferredbasefor obtaining(E)-styrenes hexamethyldisilazide Potassium
a^)
)'a
il('f' ls
(MesSi)2NK R'CHO
/'R
ll- R '
rla*."n"", N. J.,Beynek'H. SL497(1998)' \l \\ lth |rrlluted
';;;;;.izes. reagents. Allytaluminum '*' r propargylaluminum reagents Reaction of ketimines with allyl- and constitutesaconvenientpathwaytothetertiaryamines(l4examples'46.94Vo)' 'B*bot, F.,Miginiac,L. SC27,2601(199'7)'
ndltl()ns.
Allyl ' azide. iii.inrr,t
of NaN, with allyl bromide Allyl azide is readily preparedby reaction
inwatercontainingBuoNBr.HydrolysisafterreactionwithArLiorArMgBraffordsArNH' ( I 3 examPles,52-837o)' I
.rfford
'Kabalku,c. w., Li, c. TL38,5'7'1'7 (1997)'
Allytbarium reagents. increased in the The cr-regioselectivity of this reaction is Homoallylic alcohols.t presenceof a crown ethet' obtained as the major products' Reaction with epoxides.2 4-Alkenols are lYanagisawa, H' sL 1090(1997)' Y, Yamamoto' A., Yamada, (199'1)' tv^r"J, f., Yanagisawa, A', Yamada'Y'' Yamamoto'H' BCSJ70' 493
6
Allylindiumreagents
Allylboron reagents. In the presenceof a chiral ligand the reaction of triallylborane Homoallylic amines,\ homoallylic amines. in chiral results N-silylimines with reactions of B-allyl borate complex derived from Pd-catalyzed couplings.z suzuki aryl triflates give allylarenes.This technique with B-methoxy-9-borabicyclo[3.3.I]nonane to allow transfer of Me, TMSCH, and alkynyl coupling of the Suzuki scope broadensthe groups which has eluded conventional manipulations. 1,3-Diols.3 Direct methallylation with methallylboronic
acid
has been
demonstrated. rltsuno.S.,Watanabe, A. A., Sarhan'A. A. ACIEE 36,109(1997)' K., Ito, K., El-Shehawy, 2Fii.rtne.,A., Seidel,G. SL 161(1998). 3Brzezinski, L. J.,Leahy,J. W. TL39,2039(1998). I
Allyldicarbonylcyclopentadienyliron. The allyliron complex reacts with Methyltetrahydrofuran-3-carboxylales.t which then undergoescarbonylation system the heterocyclic furnish to compounds carbonyl under CO. methanol in with CAN on treatment
I {
rJiang,S.,Turos,E. TL35,7889(1994).
s I
a
complexes. (r13.Allyt)dicarbonylnitrosyliron y-Aminoqpunsaturatedesters.' The iron complexes react with amines (e.g., BnNHr) to furnishtheesterproducts.
I .l
t
rNakanishi, S., Okamoto,K., Yamaguchi,H., Takata'T. S 1735(1998).
I
Allylindium reagents. from indium powderandallyl I,4-Dicnes.r The allylindiumsRrInrI, aregenerated alkynes(10 examples' functionalized iodideandusedin situ to addto unactivatedand/or
I
a
60-94Vo).
{
a
Ph
r '|
l l * l n' 3c l a
+
rlr
THF 94o/o
Addition to cyclopropenes.2 Addition of allylindiums to the more substituted carbon atom of the double bond is observed.Carboxyl and hydroxymethyl groups have directing effect.
'|
t;l
||]1.
t**t
h.
v Allylsilanes
\\
1 a Y
ro*
I ih)rane
c"Hrc< reJ trom c\ hnique t r . L rn Y l l\
treen
c:. rvith pnr..rtion
7
CoHrg
95% tFuiiwara,N., Yamamoto,Y. JOC 62,2318(199'7). 2Atuki,S.,Nukano,H., Subburaj,K., Hirashita,T., Shibutani,K.' Yamamura, H., Kawai,M., Butsugan, Y. rL39,632't (1998).
Allylsamarium halides. Allylsamarium bromide formed in situ (Sm + allyl bromide) Diallylcarbinamines.t generate the carbinamines (7 examples,66-BIVo). adds to nitriles to 3-Butenamides and 3-butenethioamides." A sfaighdorward synthesis of these amidesis by addition of allylsamarium bromide to isocyanatesand isothiocyanates,respectively. Homoallylic alcohols.3'a Allylsamarium reagents prepaled in tetrahydropyran are quite stable (in THF Wurtz coupling occurs, therefore the Barbier technique must be employed). The sequential procedure made possible by change of solvent gives cleaner products as side reactions such as pinacol formation from ketones and decarbonylation of acid chlorides are avoided. Becauseofthe low basicity allylsamarium reagentscan be used to allylate allyl acetoacetate.
In('. le.g.,
r rnd allyl e\.rrnples,
rYu,M., Zhang,Y., Qian,C. SC27,1495(199'7). tYu, M., Zhang,Y., Qian,C. JCR(S)256(1998). rHamann-Gaudinet, B., Namy,J.-L.,Kagan,H. B. IL 38,6585(1997). aHamann-Gaudinet, B., Namy,J.-L.,Kagan,H.B. JOMC567'39 (1998).
Allylsilanes. Allylchlorosilanes are conveniently obtained by cross-coupling of Preparation.l allyl chloride with polychlorosilanes in dimethylimidazolidinone using zinc as mediator. Catalyzed allylation of a-iodo acetals with leaving group dependence Allylatians. on the Lewis acid has been reported.2Formation of N-tosyl allylamine by reaction of an allylsilane with (N-tosylimino)phenyliodinane is promoted by cu(oTf)r.3 Halide displacementof a polyhalidea occurs in the presenceof CuCl' o-Bis(allyldimethylsilyl)benzene (1)5 is an effective allylating agent for carbonyl compounds in the presenceof BuoNF.
Az"y1 u:.J carbon re Jrrecting
\A,,V (1)
+
PhCHo
Bu4NF + THF oo
OH I /Vrn 1oo%
8
AllYlsilanes
-rf-*!
The conjugate addition
diallylsilane
t:"lli:-":"i::"::Ti"; of a 2-silvlmethvlpent-4-en-1-vt ."*in
PolYfunctional
Jt for the construcuon reagent is very useful
catalYzed bY SnCIo and bulky allylsilanes reaction between aldehydes alkenes to involvesaredox^step'/ ^"'"'d^nnutoao,,.' ., ,-i-.r-:rdna reacrs with electron-deficient *1'.;:::,;:;;Jllactams at low Auyldimethvltrirylsilan: conjugatedllacr the reaction with bicyclic ;;;";"t' afford silylcyclopentanes'
comPounds.o t'' ii-on'rr.uu'
H;;;
,\tr hqgd r
.{| r d ai\1m
ritnn
derivatives' ieaosmaintyto cvclobutane
-'t?O
I
Tict4
//\*O l i l \./
z)''i,n.
cH2cl2
-^-L..-\ | t I )""sicen. \ \,4-r H
L a5%
. l-h tEb
ftHvdroxvethv!*:::':n::1i,1"J$",,u;:ilyLi'l'#:lL'l:JI
e Grienard reagent whlcn the HOCH2CH' moiety' or"i"." contain
Mg/THFA; PhCHO
t
*'?\^
*or'1tn OH OH
65%
Enolate formation'
Trichlorotitanium
and aldehydes are enolates of ketones
The enolateformatron obtainedfromthec,-iooo"*uonylcompounds."".1"...*.withallyltrimethylsilaneand for aldol reactions'r0 useful st;-";;;';; titanium(IV) chloride' protocolisbasedontfttoU'"tutlonthatthereagentcombinationconvertsp-iodoacetates to alkenes.2
lf?!,! ?f;X, l-*::J J,fl "i"ifi,, *:r;I; TE:'ffii .lll*it*:;m*;";W*i ilfti#13:'i,,,, t D Y" chansS'K'' Kim' ''[".]il.'i., anoi'J S"Rhie' ( (ree8). .ilir*i ni.."r:ita,s.BcsJ70.30ssl9e7)'. . -,,^K. rL 39,3177
n tLr I oI
I q rl
Fs {41 C
.}1il#i.t'**?:'*,:,'T'i:r,i'"il'l'l iffi's^lfr .J .l
loMaeda, K'. Shinokubo' H
Allylstannanes 9
u.lng a m.tlonal b1 SnClo Lene: to rn. Jt low
Allylstannanes. A preparative method involves zinc-mediatedcoupling of allyl halides with Bu,SnCl in liquid ammonia.r Atlylations. The reaction of tetraallylstannanewith carbonyl compounds2or acetals3 is mediated by solvents such as MeOH. Acceleration by phenol has been noted.4 In the asymmetric allylation (with a BINOL system), the enantioselectivity is improved by the addition of MeOH.
OMe
SiO2 / MeOH
l4"o'
nJ.' torms r:l:lon the
100%
in acidic aqueousmediasWith During allylationof aldehydeswith tetraallylstannane by CF3CH2OH increased is I the rate dramatically such as 1,8-bis(allylstannyl)naphthalenes chlorides.T with allyl(butyl)tin undergo allylation dueto its Bronstedacidity.6Diketones
f
S nBu2 P h
T",
CH
(1) lehrdes are rl.rlane and le forrnatlon (\Jo aceBtes
The addition ofallylstannanes to glycal cr-oxidesprovides an entry to B-C-glycosides.s The reaction is catalyzed by Bu,SnOTf. In the presence of AIBN in refluxing benzene, conjugate addition of allylstannanes containing electron-deficient substituents to enones (6 examples, 58-697o)e and displacementof cr-haloalkyl sulfones to give homoallylic sulfones (8 examples,7O-907o)t0 may be effected. Fluorous allylstannanes such as (C6F13CH2CH2),SnCHrCH=CH,react with aldehydesthermally,rr the organic and fluorous products can be separatedon a silica gel column which hasbeen treatedwith fluoroalkylsilyl chloride. Using MeCN aseluent the organic products are eluted, while fluorous products and starting material are subsequently removedby hexaneelution. S-Iodomethylisoxazolidines.lz Treatment of the MerSiOTf-promoted cycloadducts of allyltributylstannane and aldonitroneswith NIS completesthe synthesisof the substituted isoxazolines.
Allytzinc bromide .{lrilid
o ffi;"'i ;': 5ru #ffi?ft Li ;Y:!'.I'l;ftd:*n r, ;irXtil;,i"r'; r' ; * t* "FrD;r llj !':,' :1X' :'ni,*'., M' Fujibavashi' (innrt' ) Yasuda' tMukorru,M., Grela,K' SC23'2697(1998)'
Ca rom ra
J . J O C 6 2 , 1 9 6( 1 19 9 7 ) '
i*:if:n:,t,X?ll'R:*;'Jdiii;l ;:;';:;";;'
cr-3JTUIT lc:.vrs I
Baba'A Joc 63'6401(1998) H' s' 1309(1997)' H'' Yamamoto' 5Yanagisawa, A., Morodome' '' Nakashima'
lrIJtI1-(
'i#:;"';;,
K' sL37'trts?81-.N.,i""' Z''Maruoka'
re.r-JOaL
t;;;;,;.:ilvanelro, D ' ragliavini' G' J)MC s40."17^(1ee'7)' 170e(1ee8)." t;;;rb.;" B. irotter, w', Cot"' B'rL3e' 32' 9]L E'rL P epnhol., E. J.,Moran,K. M., whitlev' !1998) 38' leesr.leez)' rL M Petrini' tt;;;;;;,;.' R'' ciovannini, "E"?ir", O t.' nadida'S'' He'M' JOC 62' 6'714(r99'l)' " (1998)' r2cianotti,M., Lombardo'M'' Trombini'C'TL39' 1643
:.(rr!{ro L J:TUII'
Ori ::asrnLi r\ Jn\Il :n*ro !:'-r.n
sulfonesbv a allvl transferfrom allvl entofdithiocarbonates't..The to C-glycosides' radicalprocessopensa route
nu}T;t;:;
,-oAc
AIBN
^^n-1JzO, e ^1;o}*"ps
\:(
heptane
ra:'rf
A
Eto
<-.ai 3=14 lG
rSire.B., Seguin,S , Zard'S'Z'ACIEE37' 2864(1998)'
\rBHr,
5.i r-.4
Allylzinc bromide' fragmentation of , -,^-^+-A l,r, en in ifl situ fragme by an can be reagent The Atlytation. ZnBrJ The 9".":11"d by L\lZnexchange'with t'Suitent with BuLi followed on allyldi-t-butylcu'Umor highly diastereoselectivei 'J"*ti"' with aldehydesis reaction of these lfyf"m"
\rll -ldra Lp:r \cl! lf-:il \ar!
-*r
BuLi; ZnBr2
\..r trf,
c-C6H11CHO
n:r 83% (anti: sYn >98 : 2)
hl
-eq
"ar
\g
lJones, P., Millot, N , Knochel' P ' CC 2405 (1998)' tl"".t. p., Knochel' P CC24O'l (1998)'
t-
lmrffi.rffi*r
I
--
Alumina. Condensations. Alumina promotes the formation of G-hydroxyphosphonateesters from aromatic aldehydes and dialkyl phosphonates, and the adducts are converted to o-aminophosphonateesterson reaction with ammonia.l A solvent-free synthesisof cr'-nitro ketones comprises mixing nitroalkanes, aldehydes,and neutral alumina and oxidizing the adducts with wet, alumina-supported CrO, (15 examples, 68-86Vo).2 The Knoevenagel reaction,3 the Michael addition of nitromethane to gem-diactivated alkenes,a and the with formation of iminothiazolines from thioureas and u-halo ketonessare readily effected alumina under microwave irradiation. Clean products are generally obtained by using alumina-supported Oxidations. of reagents.For the oxidative dimerization of thiols by DMSO6 or NaIOr'7 the conversion the CuSOr,s of hydroquinones to qulnones and 2-naphthols to BINOLs in the presence formation of lactonesefrom Cr,co-diolsunder the influence of NaBrO, and the hydrolytic defluorination of certain perfluoroalkylarenes'r0alumina has unique or positive effects'
l.:1. T..
a . h \ a NHe
Al2o3 HBr - HOAC
\--:fcor'
H2O A
4
(\
.
NHe O
\ /\-4 / \
\--7
csFt
64"k
J2
tIJll,ln
of
LnBr The
An oxidizing agent preparedfrom CrO, in water containing NH4CI at 40' followed by for addition of aluminall (cf. reagenton silica gell2) retains its power when kept in the air with several months. Deoximation under nonaqueous conditions is accomplished Il on alumina' adsorbed chlorochromate dimethylammonium Red.uction. The borohydride reduction ofketones can be carried out in hexaneusing NaBHo/moistalumina (15 examples,>877o)-14 A change of selectivity in the acetylation of a Selectiveacetylation. pair is noted in the presenceof alumina'rs alcohol primary/secondary lsardarian.A.R., Kaboudin,B. ?L 38, 2543(199'7). tBullini. R., Bosica,G., Parrini,M. 7t 39' 7963 (1998). rKwon, P.-S.,Kim, Y.-M., Kang, C.-J.,Kwon, T.-W., Chung,S'-K', Chang'Y'-T 'Michaud, D., Texier-Boullet,F., Hamelin, l. TL38' 7863 (1997). 5Kasmi. Hamelin, J., Benhaoua,H. TL39' 8093 (1998). S.. oHi.uno, M., Yakabe, S., Monobe, H., Morimoto, T. "ICR(S)472 (1998)' Hirano, M., Yakabe,S., Ando, K., Morimoto' T. ,|CR(S)816 (1998). 'sakamoto, T., Yonehara, H., Pac, C. J OC 62, 3194 (1997). uHirano, M., Yakabe, S., Morimoto, T. SC 2E' 123 (1998). 't-ee, H., Czamy, A., Battiste,M' A., Strekowskr,L. JFC 91,221 (1998)' :Zhang, G.-S., Shi, Q.-2., Chen, M.-F., Cai,K. SC 27,953 (1997)' :Zhang, G.-S.,Shi, Q.-2., Chen, M.-F., CaLK. SC 27' 3691 (1997)' 'Zhang, G.-S.,Yang, D.-H., Chen, M.-F. SC 28'3'121(1998)' 'Yukabe, S., Hirano, M., Clark, J. H., Morimoto 'T. JCR(S) 322 (1998)' 'Br"ton. G. W., Ku(2, M. J., Kurtz, S. L. 7I 38' 3825 (1997)'
sc27,4W1(199'7).
12
Aluminum chloride
Aluminum. The reagentis preparedby cross-coupling (chlorodifluoromethyl)trimethykilane.t of Me,sicl and cFrBCl with Al in N-methylpynolidinone. It provides [CF CI]- on reaction with BunNF. Difluorobis(trimethylsilyl)methane is the major product from coelectrolysis of MerSiCFrCl and MerSiCl. Acylations. Some alkenesundergo Friedel-Crafts acylation (e.g., with AcCl)2 on a sacrificial Al anode during electrolysis with Et4NCl as electrolyte in dichloromethane' Reduction.3 Aldehydes and ketones are reduced electrochemically with Al
H.b. -t-.fLrfrn
r:':rarcd
electrodesin refluxing ethanol (NaI as electrolyte). ryudin,A. K.,prakash, M., Bau,R.,Olah,G. A. JACSll9,1572(199'7). G. K. S.,Defieux,D.,Bradley, 2vukicevic,R. D., Joksovic,L., Konstantinovic, S., Markovic,C., Mihailovic,M. L. ECSJ71' 899 (1998). 3Yang,D.-W.,Yang,C., Wu, X.-X. SC 2E,2827(1998)-
Aluminum chloride. Treatment with AlCl. leads to selective cleavageof an isopropyl aryl Deprotection. a coexisting methoxy substituent.l A combination with ethanethiol affecting ether without ofp-methoxybenzyl ethers.2Penicillin esters attached to deprotection is effective for the polymer backbones are dissociated on exposure to AlCl, in CHrClr-MeNO, at 0o.3Note
j-l.lf :.'c--tlcrd
that in the presenceof amines, amides are liberated from polymeric benzyl esters.4 The N-Boc group is rapidly removed on reaction with AlCl. under microwave irradiation.s Both alkylation and acylation of arenescan be performed Friedel-Crafts rcaction* without solvent, by thoroughly grinding the reagentsin an agate mortar and pestle at room temperature.6(This technique is also applicable to Beckmann rearrangementof oximes in nearly quantitativeyields.T) The Friedel-Crafts reaction shows useful regioselectivity using the AlCl,-DMF system' such that certain substitutedbenzophenones8and benzodioxinseare readily prepared. The per(silylethylation) ofbenzenein56Vo yield at room temperatureis both unusual and very useful.lo The regioselectivity of desilylative acylation of alkenylsilanes is changed I when they are gem-alkylthiolated.r
cl _\ cl
,
AS''t c l cll
Atcl3
kqal
f
a:rslf
{
\a*r .!f.1 .\c
i G :, f I t, tlur:. Icr.-,:- lll-c.t l- \'
\.r,ic 250
"'-3-
tr.l. rhn
r
I I
rl L.. tr^cr'
! Aluminumchloride
I b,r ,ro:s-coupling r : ; : . I C F , C I ] -o n
p(
siMee 1o"u'o3 'sut"
I o1-
Alcl3
+
Accr
cH2ct2 o *2f
prl-\sl't"
.,.eiectrolysisof 1.,..:ih ..\cCl)2on a *r.,':,'methane. Gn::,.rilr with Al
13
78y" Halaaromatic compounds.r2 fuyl chlorides are obtained by heating aryl chloroformates with AlCl, at 200o. For the preparation of the fluorides the chloroformates are treated with excessanhydrous HF (liquid-phase fluorination-decarboxylation).
r ( ' 1 1 9 .t 5 7 2 ( 1 9 9 7 ) . \1 r BCSJ71,899
o l-cl o
(->"'
Atct3 20oo
74"/"
(-: .::,r.opropylaryl i1.: .i rth ethanethiol n j-:tir\ attached to
Allylsilanes undergo the cycloaddition [3+2]Cyclaadditions.l3 conjugateddienes to give 3-alkenylcyclopentylsilanes.
with
simple
\ t 3 \ ( ) . a t 0 o . 3N o t e j.tCIS.4
ll/,
n .\ .r\ e irradiation.5 r. , rn b€ performed r triJ flestleat room gc::.lntof oximesin
\-, Y /
Me3Si A,('. -DMF sYstem' 1:.r prepared. G :. ttrth unusualand r..:-.rnesis changed
:
.
1
-Si-n' \ v l
cl
-G
+
AlCl3 - MesSiCl
l
- 100
5
Me3Si
67o/o
'Banwell, M. G.,Flynn,B. L., Stewart, (1998). S.G. JOC63,9139 -Bouzide, A., Sauve.G. Sa 1153(1997). rMata,E. G. TL38,6335(lgg7). 'Barn, D. R.,Morphy,J. R.,Rees,D. C. TL37,3213(1996) 'Bose,D. S.,Lakshminarayana, V. fL39,5631 (1998). nchiaci, M., Asghari,J. SC28, 2213(lgg}). Ghiaci,M., Imanzadeh, c. H. SC28, 22'15i199U. tucar,H., Van derpoorten, K., Poupaert, J.H. H 45,805(1997). 'Mata, E. G., Suarez,A. G. SC27, 1291(1997). 'Cho, E. J.,Lee,J.,Yoo,B. R.,Jung,I. N., Sohn,H., Powell,D. R.,West,R. OM 16,4200(1997). 'Bonini, B. F., Franchini,M. C., Fochi,M., Mazzanti,G., Ricci,A. f 53, 7897(lg9"l). -Lui,N., Marhold,A., Rock,M.H. JOC 63,2493(1998). 'Choi, G. M., Yeon,S. H.,Jin,J.,Yoo,B. R.,Jung,I. N. OM 16,5158(1997).
Aluminum tris(2,6-diphenylphenoxide)
Aluminum isoProPoxide. PinacoI r earrangement' rcduction'l preparationof spirocyclicdiols'
the The reaction sequence is useful for
Rditz
d,
;nJcrgo c_ .'rr gcn ltci
(i-Pro)3Al THF
:lJ rro oc ::r
A
rTu,Y. q., Yang,L. M., Chen'Y.Z' CL285(1998)' Aluminum tris(2,6-diphenylphenoxide)' ATPH Conjugateadditions.Enalsundergoselectiveallylationwithdiallylcerium chlorideinthepresenceofATPH.IRegioselectiveRobinsonannulationscanbe initiatedbytheconlugatedadditionoflithiumenolatestoenones.2'3Remarkably' of aromatic carbonyl compounds in the silyllithium reagents add to the p-position presenceof ATPH.a Alkylations,Thealkylationofunsymmetricalketonesatthemorehinderedsiteis use of ATPH and LDA.5 Ethers such as rendered highly regioselective by the combined when activated by Me'SiOTf'6 THF are suitable alkylating agentsfor ketones can be Unusual regiochemistry of the cycloaddition Diels-Alder reactian;: capsule and complexation reactants by attained as a result of reorganization of the formation.
t
rr T. \|r '\rt: S S irr i SL 'irl: i SL ian: i ho '\rn, S bn rr. I f,,cr \ro.^ S Sl ' ..rr i ll*
:-:-f,C-lt
TC r.u f: \ rri
( OMe 3 0 : 7 0 ATPH
8 6 : 1 4
(Pho)3Al
3 9 :
6 1
with the bulky aluminum reagent Aldol reactions.s complexation of the carbonyl forces an enone to undergo aldol reaction at the 1-position'
.il 2-(2-Aminophenyl)acetaldehyde
ATpH/ phMe, -78o;
/.CHO
u.{ : .ri for the
t
t
oH acHo
-
,n)Jl
LDA/ THF' PhcHo
2'
dimethyl acetal
99"/o Radical cyclizntions.' Radicals generated from haloalkyl propargyl ethers undergo cyclization that is subject to template effect of ATPH (coordination at the oxygen atom). Thus, the cyclized alkenyl radicals are held in a bowl-shaped template that on one side is strongly shielded, and the hydrogen atom can be delivered mainly from the other side.
.:r.rllvlcerium l u . , : : : ( 1 ncsa n b e t
/''\\//'.,,-
/\/'oo
-
?
| 2\?
- Et3B Bu3SnH
/.1
-;;; PhMe - 20"
|
n
"""\o/
f-l
t
'^\d/
o (s7 : 3)
Rc'markablY, ) n ' . r , , u n d si n t h e ,.i
site is rr l-.:ndered \ ' L t h e r ss u c ha s D ]: . rrJ.itltr)n can be t!: :r .tnd caPsule
:
QME
."1 --r.t---
'Ooi, T., Miura,T., Kondo,Y., Maruoka,K. TL38,3947(lgg7). -Saito,S.,Shimada, I., Takamori, Y., Tanaka, M., Maruoka, K., Yamamoto, H. BCSJ70, 161l(1997). rsaito, S.,Shiozawa, M., Takamori, Y., Yamamoto, H. SL35g(lgg7). tsuito, S.,Shimada,L, Yamamoto,H., Martinezde Marigorta,8., Fleming,I. CC l2gg (lgg7). 5saito,S.,Ito,M., Yamamoto, H. ./ACSllg,6ll (lgg7'). nsaito, S.,Ito,M., Maruoka,K., Yamamoto,H.5L357(1997). Ooi,T., Kondo,Y., Maruoka,K. ACIEE37,3039(1998). rsaito,S.,Shiozawa, M., Ito, M., Yamamoto, H. "/ACSf20,813(1998). 'Ooi, T., Hokke,Y., Maruoka,K. ACIEE37,1181(1997).
2-(2-Aminophenyl)acetaldehyde dimethyl acetal. Carboxyl group protection.l Carboxylic acids are derived into the amides using DCC as condensationagent. Such amides are stable under basic conditions, but converted to N-acylindoles readily.
: n OMe
RcOoH DCC, OMAP cH2cl2
v110ue \A""ot"
A^
;;
a].t-\ >o
NaoHp;
\.,r'=N'
, ..-:rtrinumreagent {rai.8., Tokuyama, H., Linsell,M. S.,Fukuyama,T.TL39,71 (1998).
R
H
*
RcooH
16
Antimony(V)chloride
Ammonium acetate. The condensation of malonic acid with aliphatic aldehydes in ftAmino acids.t refluxing ethanol results in the formation of the amino acids.
:rdh
tLazar,L.,Martinek,T., Bernath, Fulop,F. SC28,219(1998). G.,
ifiqF
{rrl
J
Ammonium formate. Amines,r Azobenzenesand oximes undergo reductive cleavageto give aminesin the presenceof Pd/C and HCOONH..
r
rJnaneshwara, G. K., Sudalai, A., Deshpande, V. H. JCR(S)160(1998). Lt-r-r Jq|!]
Ammonium nitrate. Ether cleavage.t
4-Methoxybenzyl ethers are cleaved with clay-supported ammonium nitrate on microwave irradiation (13 examples,70-88%). No solvent is
rr!f a.
used. 3-fir
rYadav, J. S.,Meshram, H. M., Reddy,G. S.,Sumithra, G. TL3g,3M3 (199S).
\ f.!i -5 - {fl
Antimony. Homoallylir alcohols. A Barbier+ype allylation of aldehydes in aqueous DMF is mediated by activated Sb (preparedby reduction of SbCl, with NaBHor or Zn powder2). rRen,P.-D.,Jin, Q.-H.,Yao,Z.-P.SC 27,2761(1997). 'Jin,q.-H.,Ren,P.-D.,Li, Y.-Q,, (1998). Yao,Z.-P. SC2E,4151
Antimony(V) chloride. Multicomponent condensation.t Coupling of silyl enolates,alkenoic thioesters,and imines (or amines and aldehydes)occurs in the presenceof SbCl.-Sn(OTf)r. The products
I Cr{ r rf,$ttrr '*-\!
are D-lactamsand their precursors. La. r.4. Sbcls - Sn(OTf)2
OSiMe3
EtsA
+
/
/\,cosEt v
PhcH=NPh Sc(OTf)3
?
:
NHPh
.,"AAAon "' |
COSET
I f
\4i
!t4't d -rtpr
g,Chloroketones and -amides.' Unhindered c[-bromoketonesare converted to the chloroketonesby refluxing with the SbCl.'SoNocomplex in toluene. The reaction also works for g-bromoalkanamides.
.}*rr bhr
rKobayashi, Akiyama,R., Moriwaki,M. S., ZL 38, 4819(1997). 'Kim, K.-J.,Kim, K. zL 38,4227(t991.).
Lrr' \r.;.
&
I
3-Aryloxaziridines
l\ Jei
1n
17
Arenesulfinylmethylenetriphenylphosphoranes' . obtained bY reaction of sulfoxides't The Wittig reagents' f">*b\"saturated condense with carbonYl methyl arenesulfinates' ..tf,yi"n"i.iptenylphosphorane with Chiralsulfoxidesareaccessible' compounds. PhcHo
* Ph3P=CH2 + Tol-S(=O)OMe
-
Ph3P=CHS(=O)To|
Ph \:. \ O=s-Tol
ine' In the
88% -J ' Penaud-Darcy' A' JOC 63'9116 W'' Omelanczuk' J ' Cristau' H Mikolajczyk' M., Perlikowska' (1998).
.,rf Ported . , . , ; er n t i s
o:. DMF is g..sJel).
^""#;;i;:#Trnnodnrr.'
Reaction or
the organolead reagents with
to followed by saponification leads 1-ethoxycarbonyl-2-phenyl-4'5-dihydrooxazol-5-one oxazolone with 75-987a)'similar treatment of the .V-benzoylcr-arylglycines 18 "*u*pl"'' the cinnamyl glycines' r D- styryllead triacetatesaffords
),-r(to"t. // \\ r(\o^or,
ArPb(oAc)g ' "ri*I-o' cHCt3. H ryridine };",
I
NaOH, HzO, D; H+
Biaryls'Arylleadtriacetatescouplewitharylboronicacidsby(dba),Pd,-CHCl,' aod hr..c.ters, T:.c Products
CuI,andNaoMe'ThecriticalroleofNaoMeisintheformationofArPb(oMe).tofacilitate that (dba)tPd'-CHCI' and thence the coupling' Note oxidative addition with Pd(O)' at room temperature'3 catalyzesthe homocoupling of ArPb(OAc)'t :Koen,M. J.,Morgan,J, Prnhey'J T ' Sherry'C J.'JCS(PI)48'7(199'7)' tf""g' s.-f., nyu' g'-C" Son'H'-J'sL 771(1998)' 27' 1893(1998)' 'Kane, U ' ett"' C ' Choi'S -C ' Kim' J'-S SC S.-K.,Shivkumar,
\HPh
I- - c t r-t "
3-Aryloxaziridines' oxidationofsulfi'des.|Underhighpressure3-aryl-2-t-butyloxaziridinedeliverstts
*ttil,T;:r:;;;t"!*!)ionon: r.i:"l-fled to the c::,,nalsoworks
rransrer or
the tRooc-Nl sroup or
is very to nitrogen' carbon' and sulfur nucleophiles \-alkoxycarbonyl-3-aryloxaziridines and sulfilimines' respectively' facile to give hydrazines,keto amines'
(199'7)' JCS(PI)3491 rShimizu,M.,Shibuya,I',Taguchi'Y''Hamakawa'S''.Suzuki'K''Hayakawa'T' (1997)' J'-C' Aubry'A ' Collet'A' CEJ3'16917 :t'idul,J.,Damestoy, s'' c'v,i'' Hannachi'
o-Bc
s-Bcn ct ru.rr+icr
Baker's yeast. Reducti.ons,
An enantioselective reduction of symmetrical diacetylarenes (e.g., 2,6-diacetylpyridine)l is accomplishedwith baker's yeast.o,-Functionalizedketonessuch as l-methanesulfonyl-2-alkanones2 and p-keto esters3 give chiral alcohols. Significantly' baker's yeastgrown under limited oxygen effects reduction to selectively furnish o-hydroxy esters, whereas on slow addition of the keto esters to ordinary yeast in the presence of gluconolactonethe r--hydroxy estersare produced. with engineered baker's yeast and lcyclodextrin Baeyer-Vitligeroxi.dation,4
Brtcrq
!
2lfg
and 3-substitutedcyclopentanonesafford chiral lactones. tu.hiyu*u, M., Katoh,N., Mimura,R., Yokota'N., Shimogaichi, Y'' Shimazaki'M', Ohta'A' ZA 8' (199'7). 3467 2Maguire,A. R., Lowney,D. G. JCS(Pl) 235(1997)'Dahl,A. C.,Madsen, J. O. TA9, 4395(1998). 4Kuyre.,M. M., Chen,G.,Stewaft, J.D. JOC 63,7103(1998).
fr
rrir srcfF( _r -rd.rj
I
{gti iaranr llo(
Barium hydroxide. Cyclization of ureas containing an ester group occurs on microwave Hydantoins.r inadiation using barium hydroxide as a base. Under solvent-free conditions the microwave CrossCannizztroreactians'2 inadiation of a mixture of aldehydes with formaldehyde and barium hydroxide gives alcohols. rGong,Y.-D.,Sohn,H.-Y.,Kurth,M. J. JOC 63,4854(1998). 2Va..^. R. S..Naicker,K. P.,Liesen,P. J. TL39,8437(1998).
L3rft
\
S. B
ftm.q
Barium perchlorate. Glycosyl phosphites are activated by barium perchlorate under Glycosylation.l (in solvents). organic neutral conditions ts"hene.H., Waldmann,H. EIOC 1227(1998).
Barium permanganate. Activated dicnes.r Allylic alcohols are converted to dienes on oxidation and subsequentcondensationwith stabilized Wittig reagentsin situ' tshuto,S.,Niizuma,S.,Matsuda,A. JoC 63,4489(1998). l8
2-L! ::.fr.-'.rh : " .ir'!tca
!
Benzeneselenenylchloride 19
Stable arenedinzonium sahs.t Diazotization of arylamines in the presence of o-Benzenedisulfonmide provides stable salts which can be obtained in a dry state (20 examples,85-99Vo).
O2 S\ NH
, a na s antl\'. dr()\y lcc of nn l-
. 118
O2 FC5H11ONO +
ArNHr-
HOAC
/"rs, t i l
vr\s/
O2
N
ArNi
O2
85 - 990/.
'Barbero, P. S 1171(1998). M., Crisma,M., Degani,I., Fochi,R.,Perracino,
Benzeneselenenylbromide. 13, 26-27 ; 18, 29 Allylic alcohols undergo a highly stereoselective anti-1,3-Methoxyalkanols.r benzeneselenomethoxylationwhen exposedto PhSeBr in methanol. 2,6-Di-t-butylpyridine is added to scavengeHBr. Azetidines.2 Cyclization of homoallylic amines to form azetidines is initiated by selenylation of the double bond.
NHBn !\\;lve
PhSeX / Na2CO3 MeCN
n\\\ ilve
510/"
(x = cl, B0
: gl\ eS
'Kim, K. S.,Park,H. 8., Kim,J. Y., Ahn,Y. H., Jeong,I.H. TL37,1249(1996). :Berthe,B., Outurquin,F., Paulmier,C. TL38, 1393(1997).
: lnder
Benzeneselenenylchloride. 13, 26-27 ; 14, 27; 16, 19-21 ; 17, 26; 18, 30 Introduction of a carbonyl group to the p-position of 2-Acyltetronic acids.t a-acyl-y-butyrolactones is accomplished by reaction with PhSeCl and oxidation with hydrogen peroxide.
o tl ir'n and
al^rn
PhSeCl/ EtOAc;
bAo
HOOH - THF
o 9 \-Aon ( l toAo
51"/.
IF
-.
20
Benzenethiol
909 (1997)' lMittra, A., Yamashita, M., Kawasaki' I'' Murai' H'' Yoshioka' T'' Ohta' S' SL
Dct t rull-onam
K-CO. rn
trifl ate' Benzeneselenenyl Deselenorunctionaliwtion.|PhSeoTfisusedtoactivateselenidesforattackby MeCN a selenideis convertedto an acetamide' Thus,in aqueous nucleophiles.
.\a1aL \t -\ldrgrer" \ ut-i. P ( -$6urnn-
lTineoli, M., Tiecco' M., Testaferri' L'' Temperini' A CC 1883 (1994)'
anhydride' 15' 18 Benzeneseleninic and 1,2-diarylethanesare oxidized to the 1,2-Dinrylethanediones't Both stilbenes at 120o,often in good Yields' with [PhSe(=o)J'oin chlorobenzene cr-diketones
Bcnri-d M :n-rfiatrg \t-!
Q.
Bcomi
rlo
? (PhSe)eO,
::r.rlrCf I .: THF I
Phcl
1200
,\'-ro -i!a(r(nal
52'/"
lcluyton, M. D.' Marcinow'Z, Rabideau'P' W' fL 39' 9lZ'7(1998)'
D\ISO b rp.\i -r'c{\xJfl
r TO*l r -..trJrtrort
BenzenesulfenYl trifl ate' """ziir"rr^"": by phSorf and rhe process Hindered thioglycosides are activated pennits the direct formation of B-mannopyranosides' tc.i.h, D., Sun,S.JACS120'435(1998)'
\-lc::rlr "l-r:!ri).
.
,\-rc:Ctf\
-
Ut-frrrl
\-,rr 1-Benzenesulfonyl-4-trimethylsityl-2-butene' -*;',;:;;;;;;;rr.' (E)- or (Z)-isomer] Alkylation after lithiationof the butene leither gives ('01-1'3-alkadienes' followed by treatment with TBAF
-13'O181
tr::r
H' JOC 63'4181(1998)' rMeagher, T. P.,Yet,L'' Hsiao,C'-N'' Shechter'
-329; 19, 19 Benzenethiol. 16, 32'7 PhSH and KtCO, of phenols from their alkyl ethersusing c.";;; Deprotection. thiolate'' in NMP obviates preformation of the particularly from benzothiazo-Z-ylsulfonyl sulfonamides,2 Liberation of amines from benzenethiol and a base' with treatment derivatives,3can be achievedby
L n i \
o
E
lll-Benzotriazol-l-ylmesylate
2l
Desulfunylation.a An accessto N-alkyl cx,-aminoesters involves alkylation of the sulfonamides and removal of the sulfonyl group by exposure of the products to PhSH, I!CO, in MeCN at room temperature. f,,: .tttackbY ts
r\:Jr,/adto the ld-
rNayak,M. K., Chakraborti, A. K. Zr 38, 8749(lgg7). 'Maligres,P. 8., See,M. M., Askin,D., Reider,P. J. fZ 38, 5253(1997). 'Wuts,P. M., G. Gu,R. L., Northuis, J. M., Thomas, C.L. TL39,9155(1998). -Bowman, (1997). W. R.,Coghlan, D. R. 753, 1578'7
Benzimidazolium dichromate. Oxidalion.t Alcohols are oxidized in an inert solvent (e.g., CClr) under microwave irradiation for a short period (12 examples,73-98Vo). rMeng, Q.-H.,Feng,J.-C.,Bian,N.-S.,Liu, B., Li, C.-C.SC28, 1097(1998).
Benzotriazole. 1,3-Diarylacetones.r A two-step synthesisof theseketonesfrom arylacetyl chlorides involves formation of the N-acylbenzotriazolesand treatment of the latter with excessNaH in THF at room temperature. N-(wCyanoalkyl)sulfonamides.2 Admixture of an aldehydeand a sulfonamide with benzotriazole at room temperature followed by treatment of the adducts with KCN in DMSO leads to the title compounds in good yields. (p-Nitroaryl)diarylmethanes.t A general method for the preparation of these compounds consists of the reaction of diarylmethanols with benzotriazole in the presence of TsOH in a perfluorocarbon fluid under reflux, and treatmentwith nitroarenesunder basic conditions. a:ri the process
:Katritzky, A. R.,Soleiman, M., Yang,B. HC7,365 (1996) -Katritzky,A. R.,Oniciu,D. C.,Ghiviriga,l.SC27,907(1997). .Katritzky, A. R., Toader,D. JOC 62,4137(1997).
lfil-Benzotriazol- 1-yl mesylate. N-Mesylation.r Selective mesylation with 1 in DMF at room temperaturehas been demonstrated.A primary amino group undergoesmesylation in preferenceto a secondary
r - , , rr z ) - i s o m e r ]
amine. Only N-mesylation of amino alcohols with this reagentis achieved.
N
)rrr
N OMs Pf : ti and I!CO, u".','-l-r'lsulfonyl
+
RNH2
+
RNHMs DMF
(1) (1999) Kim,S.Y.,Sung, N.-D.,Whoi,J.-K.,Kim,S.S.TL40,11'7
6 0- 8 7 /
22
periodate 1'Benzyl-4-aza'1-azoniabicyclo[2'2'2]octane
isocyanide' to TsCHTNC in the Benzotriazol-l-ylmethyl This reagent is comolementary with Imidazolesanil pyrroles't RePlacing aldimines ;;t;t"t' bY condensationwith imidazoles of fo*Jon alkenesgivespyrrotes' electron-deficient
(7rra .t:t.]ft'
.n
\ulr
:a
al
fh:a\t -':ir:i\.r
{
44'6'7(1997)' rKatritzky,A. R', Cheng'D ' Musgrave'R 'P' H
-.ir::rt:f -:ir :rr
{
hexafluorophosphate' into Benzotriazol.l-yloxytris(dimethylamino)phosphonium derivatizes carboxYlic reagent 'acids This Activationo\'o'AoxylXo'id''
Lsll
carboxyphosphoniut*uft'*t'itnut"tu'""''ibletoreductionbyNaBHotogivealcohols (1 1 examPles,80-99Vo)' rMcceary,R. P'TL39'3319(1998)'
Benzotrifluoride. """"ir^rrir"r.t
I I
\.{ ]l|ir
\
-{tli
Ia
f--, nrer
dichloromethane i n.o 66 _?oo\ is ap a ootential substitutefor -29') is phCF3 Op 102",mp
asa solventfor manYreactions' log^*u,A.,Curran' D'P'JoC62'450(1997)'
(}-laryl. L'€
iln
T:lca
f.r!ftf CEI netEr.
borohydride' t9' 22 .rt,i, l-Benzyl-4'aza-l'azoniabicycto[2'2'2loctane p.imino sulfoxidesefficientlyin uo.iya.io" r ,u*.u."* sulfoxu)J! ftAmino manner(10 examples'80-93Vo)' a highly diastereoselective
Nln-an
_
I
d r"Tlr r:rt:fc 9
chloride' N-Benzoyl-4-(dimethylamino)pyridiniumi,otat"d 1n947oyield andusedfor the direct been has o.Benzoates,| d;;;;;;. of alcohols' benzoYlation lwolf". M. S.SCn, 29'l5 (199"1).
HzN I
'l
l-r:-iltr\
MeOH
. N\n
BH+ (1)
b,r (1997)' rHuiipoo., A. R' T53'16883
azocompounds' |.Benzy|.4-aza.1-azoniabicyc|o|2.2.2loctaneperiodate. glu" ttbonyt productsand oxidation.' Alt"h;i;;;'arylamines in MeCN' resPectivelY,
.-
Berylliumchloride
23
I the
Carbonyl compounds are recovered from imines2 and Cleavage ofthe C=N bond. oximes3on reaction with the reagent.Note that the correspondingperoxodisulfate salC has
\\ lth
the same capability. 'Halipour,A. R., Mahboobkhah, N. IJC 37B.,235(1998). 2Huiipou.,A. R., Mahboobkhah, N. SC28, 3143(1998). 'Ha;ipour,A. R., Mahboobkhah, N. JCR(S)122(1998). -Hajipour,A. R., Mohammadpoor-Baltork, I., Kianfar,G. BCSJ71,2655(1998).
lnto (rh()ls
Benzyl N-(benzotriazol- l-ylmethyl)carbamate. Aminomethylntion.l This reagent serves as an electrophile for Evans N-acyloxazolidinones. The Cbz group can withstand conditions for removal ofthe chiral auxiliary (e.g., LiOH, FlOr) but is cleavableby hydrogenolysis. rArvanitis,8., Ernst,H., Ludwig,A. A., Robinson, A. J.,Wyatt,P.B. JCS(Pl)521(1998).
e(h]ne
O -Benzyl S-propargyl dithiocarbonate. BenzSl esters.t The reagent,formed by treatment of benzyl alcohol with NaH, CS, and propargyl bromide in THF at room temperature,esterifiescarboxylic acids in refluxing toluene(9 examples,74-98Vo). I
M., Zard,S. Z. TL 39,7301 ( I 998). Faure-Tromeur,
I Jlrect
Benzyltriethylammonium tetrathiomolybdate. r*Azido carbonyl compounds undergo reductive cyclization (6 Cyclic imines.I examples,67-90%).
cntl\ ln
=?o ('.-(*'
o q "'
gHo
lBnNEt3l2MoSa
rY-JA =}-..)
o
Ph
870/"
Prabhu, K. R.,Sivanand, P.S.,Chandrasekaran, S. SL47(1998).
n[\)unds,
Beryllium chloride. 19,23 Organometallicreactions.t In promotingreactionsof Grignardand organolithium with 2-cyclohexenone, is solventdependent. reagents chemoselectivity
fr $
rll
1,1'-Bi-2,2'-naphthol-gallium-lithium complexes
(/-\t s o \_J
I I BuLi +
BeCl2
Bu-BeCl
Bu
( E o
rnr
-j
7'1"/o
I
/-\
I
w
.-v. : /':-<
\-
l( tso Et2O
.BSo
?:
,/:\rBu
\J*
51%
1.":rT \arnnritl' -.:rT . l.ernrrrr.+.
(199'7)' tKri"f. A., de Vos, M. J., De l'ombart' S ' Bosret' J'' Couty' F' IL 38' 6295
l.l'-tli-?-:'-o.gil
l,l' -Bi-2,2''naPhthol(BINOL )' boricacidand enrichmentof BINOL is by refluxingwith A methodfor theenantiome;ic theprecipitate'l in MeCN,followedby acidhydrolysisof TMEDA """Iioi',r*nor,r., estersreactwith carbonylcompounds BINOL of enolates Lithium of suchBINOL estersis by fashion.one methodfor the preparation in an anti-selective acidchlorides'3 reactionof the dibutyltinBINOLatewith
o o H i l l BuLi;
o'^Y-pn
I ,OH Ph
PhCHO
/{.-iro.bol :r:\
UKHfr -.:cieialcrl cartrot Lbl rrttior i\i\
-r.r
cra-Epxy Lt,i ; - i .c) Jrr.r) rrni
r,- \ i. \A- J I :-:rr I \:-r: T.5 ':rrj:r\ \l \.1 -L s-at \ lt-!. I
g71o(anti: srn 97:3) lJ
-!i5-o9I {Iolrrrtin
been of 3-hydroxydibenzofuran has 4.4'-Bi-3,3'-dibenzofuranol'" This dimer diastereomeric the via of the racemate is obtained in chiral form' Resolution diesters' amidophosPhoric I 24'7| (1996)' Venkatraman, L.' Periasamy,M' TA 7' 2Ahn, M., Tanaka,K., Fuji' K' JCS(Pl) 185 (1998)' C' M'' woodward' S' S M" Green' J" Sinn' E'' Topping' 3Azad, S. M., Bennett,S. M';-;"*n' Jcs(PI) 687(199?). (1997)' oc"lpk", A. E. S., Fraanje'J , Goubitz' K'' Schenk'H'' Hiemstra'H' I53' 5899
mf,-, :'r-!:'{tei a rfir.:l
\!
!
\
S
|,J -}:.JrrgI r: +l li lf fftboc ;.*r'ra\
l,l' -Bi-2,2''naphthol-gallium-lithium complexes' Epoxid'eopening.opticallyactivetrans-|,2-diolmonoethersarereadilyobtained of theBINOL complexes in thepresence by thecatalyzedreactionof ipoxiies with alcohols p-hydroxysulfidesareformed'2 andmolecularsieves4A'r Si-it*ty'
r
hT tlr
(
L-r -l(.\t ll
.u::-Ir: .&.r e
ald',.er .f l-:ne.
-:
I
Sr
c r'.t
I
.:.r _-ll
-
1,1'-Bi-2,2'-naphthol-titanium complexes
Hg'
I B U S H/ P h M e
/ \
"
/--/--\./ t / | \_-../
o. \
e \ / \ ,
s
+
( t l
+
TBSO
s TBSd
90% (91% ee)
tlida, T., Yamamoto, N., Matsunaga, S.,Woo,H.-G.,Shibasaki,M. ACIEE37,2223(1gg8). 'Iida, T., Yamamoto, N., Sasai,H., Shibasaki, M. "rACS119,4783(1997).
n. .1iidand c,'nlp()unds c.:er. is by
I,l' -Bi-2,2' -naphthol-lanthanide complexes. 17, 28-30; 18, 4 1- 42; 19, 24 meso-Epoxides undergo ring opening with anilines in the ftAmino alcohoh,\ presenceof a Yb(OTf), complex of a chiral BINOL. Michael additions.' Chiral sulfides are obtained on reaction of thiols with conjugated carbonyl compounds. Aldol reactions.3 Bimetallic complexes (e.g., La-Li) of BINOL have been used as catalysts. cis-Epoxy ketones. An asymmetric catalyst derived from (r-PrO).Yb and tR)-3-hydroxymethyl-BlNOl promotesepoxidationof cls-enoneswith t-BuOOH. rHou,X.-L.,Wu, J.,Dai,L.-X.,Xia, L.-J.,Tang,M.-H.ZA 9,1747(lgg8). -Emori,E.,Arai,T., Sasai,H., Shibasaki, M. JACS120,4043(1998). jYamada, Y. M. A., Yoshikawa, N., Sasai,H., Shibasaki. M. ACIEE36. 1871(1997). tWatanabe, S.,Arai,T., Sasai,H., Bougauchi, M., Shibasaki, M. JOC 63,8090( 1998).
n :-..1\ been 3. i i.'rC()lTI€flC
l.l' -Bi-2,2' -naphthol monomethyt ether-barium complex. Aldol reactions.t The complex, preparedfrom barium isopropoxide and (R)-BINOL methyl ether in DME at room temperature, promotes asymmetric aldol reactions (7 eramples, 77-99Vo yield,, 50-7 UVoee). Y. M. A., Shibasaki, Yamada, M.TL39,5561(1998).
\\ '.irrard, S
r::.r obtained Cl e,rmPlexes
l.l' -Bi-2,2'-naphthol-titanium t1-44;19,25
complexes. 15, 26-2'l ; 16, 24-25; 17, 28-30; 18,
Alkylations. The effect of subjoined Lewis acid (e.g., trimethyl borate) on the ;atalytic allylation of aldehydeswith allylstannanespromoted by a BINOL-Ti complex has heen examined.t With allenyltributylstannane the products are homopropargyl alcohols. \lly'lation in a Sn(Il)-mediated Barbier reactiorf exhibits much lower ee, although .rllenylation with (terminally substituted) propargyltributylstannanes shows good results.s -l-Trimethylsilylbut-2-ynyl)tributylstannane undergoes destannylative addition to
t,11Bi-2,2'-naphthol-titanium complexes
are readily converted to those containing a aldehydes and the allenyl alcohol products conjugateddiene sYstem.*
,
,n/Vcto
,2/
.:+,t \{.ir \trr
,.i/
(slBlNOL-Ti(lv)
sneu"
\r( -\r
i-PrS-BEt2
t"r ')lf,r
86'/" (94% ee)
R
/
Bu3Sri
-
\
(slBlNOL-Ti(lv)
SnBu3
i-PrS-BEtz RCHO
f-\ Bu3sri
p
,Fo*
.
\r
Fo, //l-\
l?f
\--l HCI
R = Ph,88% ee 55% Yield
Ll'-l I :t :t C I Erl
Thecomplexesoftheoctahydro-BlNolalsoserveadequatelyinasymmetricethylation 16obtainedfrom intramolecular of aromaticaldehydeswitn niel.5 A BINOL derivative in the sameeffectiveness couplingforms a titanlumcomplexwhich has approximately complexof the chiralBINOL' ary*-Jt ic allylationasthe corresponding
::!llr H @ Srrr b f t! c.l ^tr
\-
tr L.q \.q
(1) Aldolreactions.Ketenesilylacetalscondensewitha.benzyloxyaldehydes aldol process provides pseudo-C' cntl-selectively.T A tandem, bidirectional asymmetric symmetric Products.8 Diels-Alderreactions.Adductsofhigheeareobtainablefromthecondensationof by Ti-BINOLate'e c[-pyrone derivatives with enol etherscatalyzed
COOMe
o\,,\ l l o,J2
+
"<)-{
Meooc.\
fi.o"tr*o
BINOL-Ti(IV) PhMe -30o
1Yu,C.-M.,Choi,H.-S.'H.Yoon,S'-K'' Jung'w'-H' st 889(1997)' tv", C.-U.,Yoon,S.-K.,Choi,H.-S',Baek,K CC'763(1997)' 'V", C.-fta.,Yoon,S.-K.,Baek,K', I-ee,J'-Y ACIEE37' 2392(1998)
pcH2Np
nt{ .} Lr Ilt fE
r.
(22lBiphenylenedioxy)methylaluninum Dnirlnlng a
y't
oYu, C.-M., Yoon, S.-K., Lee, S.-J.,Lee, J.-Y., Kim, S. S. CC 2749 (1998). schan, A. S. C., Zhang, F.-Z.,Yip,C.-W. "/ACS119,4080 (1997). nlipshutz, B. H., James,B., Vance, S., Carrico, I. Zl, 38, 753 (1997). 'Mikami, K., Matsukawa,S., Sawa,8., Harada,A., Koga, N. 24 38, 1951 (1997). oMikami, K., Matsukawa, S., Nagashima, M., Funabashi,H., Morishima, H. TL3E,579 (1997). 'Posner, G. H., Dai, H., Bull, D. S., Lee, J.-K., Eydoux, F., Ishihara,Y., Welsh, W., Pryor, N., Petr,S. JOC 6r,6'71 (1996).
a
-OH
l,l' -Bi-2r2'-naphthol-zirconiumcomplexes.19,25-26 Allylation. 4-t-Butylcalix[4]arene activates theZr-BINOL complexin theallylation
ofcarbony\ cornpounds vritha\\stannanesl A chual-achual\igand synergy ismanilested. cyclization of ilienes.T Heterocycles are formed by exposure of dienes to Grignard reagentsin the presenceof the chiral complex. Addition to imines. Effective synthesis of s-aminonitriles3 and of p-amino acid
rnr cthylation in:r.rmolecular ilc.:rrenessin
.rldehYdes pseudo-C, iico\)
derivativesafrom imines calls for the use of a Zr complex of 6,6-dibromo-BlNol-. products containing an oxygen functionality at the o-position are similarly accessible, the diastereoselectivity of such a reaction can be controlled by choosing the properu,-alkoxy substituent in the nucleophiles.5The TBSO substituent favors syn products whereas BnO derivatives give anti products selectively. In the presence of a zr complex of (R)-6,6'-dibromo-BlNol, N-(2-hydroxyphenyl)aldimines participate in asymmetric hetero-Diels-Alder reactionsgIt is an improvement to the reactions involving stoichiometric chiral boron reagents. rCasolari, S.,Cozzi,P. G., Orioti, p., Tagliavini,8., Umani-Ronc hi,A. CC 2123figg.D. -Yamaura, Y., Hyakutake, M., Mori,M. JACSllg,7615 (199.7). 'lshitani, H., Komiyama, S.,Kobayashi, S.ACIEE37,3l86(1997). -lshitani, H., Ueno,M., Kobayashi, S.JACSllg,"ll53 (lgg:.). rKobayashi, S.,Ishirani, H., Ueno,M. JACS120,431(i998). ''Kobayashi, S.,Komiyama, S.,Ishitani,H. ACIEE37,979099g).
t 2,2'-Biphenylenedioxy)methylaluminum. of i,'nJensation
3-Aryl'2-alkynols.t In a process mechanisticaly analogous to the \{eerwein-Ponndorf-verley reduction, transfer of arylethynyl group to certain aldehydes r such as chloral and pentafluorobenzaldehyde)can be achieved via the trialkoxyaluminum \pecies derived from 4-aryl-2-methyt-3-butyn-2-ols and the aluminum reagent [or r 2.2'-biphenylenedioxy-(l-butoxy)aluminuml.
C'3rt2ttp
.
ra\
^,47\X 'To R
\-!
Ar--:1
PH R
28
Bis(acetonitrile)dichloropalladium(tr) Bigillf
1ooi.T.. Miura,T., Maruoka'K' JACS120,10?90(1998)' tetrafl uoroborate'
Bis(acetonitrile)(1,5-cyclooctadiene)rhodium(I) Aryltansfer'ThearylgroupofArsnMe,isselectivelyffansferredtoaldehydeslandto thep-positionof"oniogut"ot.eton", -de.te.,,'undertheinfluenceoftheionicRhcomplex. tOi, S.,Mo.o, M.' Inoue,Y. CC 1621(1997)' 2Oi,S.,Moro,M., Ono,S.,Inoue,Y. Cf 83 (1998)'
Bis(acetonitrite)dichloropatladium(Il)' 25-26; t7,30-31 ; 18, 44-45; L9, 26
&rpir-errr pcpodcs r -.rrtonaarccxrala.l .r,jii l.Jdamrn ltcrcrrcl
-29 ; L6' 13' 33' 2l l' 236; 14' 35-36 ; 15' 28
Allylictransposition.Transformationofallylicalcoholsintoderivativesofamines imino ethersr and thionocarbamates2with and thiols is accomplishedby treatment of their (MeCN)rPdClr. of allylic carbonates Vinyl-vinyl coupling3 and SNz' displacement Stille coupling' withvinylstann*,,othelatterinanaqueousmedium,giverisetol,3-andl,4.dienes' respectivelY. reaction consists of A new catalyst system for the Heck Heckreactionefficient for coupling of unreactive (MeCN)rPdCl2, Ph4PCl' NaOAc in NMP' It is highly substratessuch as chlorobenzene' *"';;;;;.t arylfluorosilanes undergo Various arylmetals, arylboronic acids' and estersas oxidants' Pd(II)-catalyzed homo-coupling using 2'3-dibromoalkanoic formed when the dienes are are Cyclopentenes Cycloisomerizatnn of t,O-airnri., in the presenceof 2 However' AgBFo' and exposed to catalytic amounts of (MeCN)rPdCl, the forming a dicationic Pd complex) equiv of the silver salt (presumabiy methylenecyclopentaneisomers are obtained'
Cql -.ughng n al.]x.s i F:r dr -a4Y(EEf
Z^srl F 'Lerrru-| L{a t( ?ri-l-rl '\lcsr.. 'Slr-rlnl
- AsBFr (MecN)zPdclz
!
\::-irrl '\'-=r-r.r
\-,cg s X \-rc{ S.X
lllticL! r"e
Crh FhSO
fraftrir
Meooc{J
rd
.{4rr
r
frleOOCrr{
Meooc/\A
r\ Meooc Ut$
l d . t t tOu".tun, L'E.,zipp,C' G' JOC 62'2288(199'7)' K Tanaka'S'' Tamaru'Y ' BCSJ70' 2Harayama, H', Nuguh*u' f . fo 'on'f ''Ki-u'u' M'' Fugami' ' 44s(1998). 3B"trL, J.-F.,Lallemand, A' S 522(1998)'J.-Y',Pancrazi, of"rg, S. f., Vamaguchi'T', Kim, J'-S'' Choi' S'-C' SC27' 1267(1997)' 481(1998)' ti".,?, ll. r., mf,.e., G.,Schwickardi,R' ACLEEST' (1997)' 6Yamaguchi, 1199 S.,Ohno'S.,Tamao,K' SI tH"u.unn, A., Moukhliss, M' SL 1211(1998)'
:J*IJ r-IJI JI:r: t bFer€ir qq,e: I
2,/-Ris(13,2-benmdioxaborole) 29 Bis(allyl)dichlorodipalladium. Allylic subsfrtuti.ons. Both carbon and nitrogen nucleophiles are suitable for displacementof allylic substrates.Thus, N-allylation of N-protected amino acid estersand peptidesris readily performed at room temperatureunder neutral conditions with allyl ethyl r. rndto onrplex.
carbonate. Regiocontrol of alkylation by addition of LiI is noted.2 Heteroatom-directed regioselectivesubstitutionis observed.l Additions. Amines form 2:l adducts with conjugated enynes to give 1,4-diamino-2-butenes.4 An intramolecular addition to an allene linkage produces2-alkenyl heterocycles.5
: 16. oi rmines ar..r with ]3rbonates l.-l'-Jlenes, Crn.t:tSOf unreactive : Jndergo Jrenesare c.cnce of 2 nf lr'\ ) the
Coupling reactions. Iminophosphine ligands seem to offer certain advantagesin coupling reactionsinvolving organostannaneswhich generatealkynylarenes,6biaryls,7 and enynes.s For the synthesis of biaryls and their hetero analogs using arylfluorosilanes and chloroarene-C(CO), complexes and diaryliodonium salts, BuoNF or KF is also required.e'lo 'Zumpe,F. L., Kazmaier, U. SZ 1199(1998). -Kawatsura, M., Uozumi,Y., Hayashi,T. CC 217(1998). 3Krafft, M. E.,Wilson,A. M., Fu,Z.,Procter,M.J.,Dasse, O. A. JOC 63,1748(1998). tRadhak ishnan, U., Al-Masum,M., Yamamoto, Y. TL39,1037(1998). sM"guro,M., Yamamoto, Y. TL39,5421(lggg). ushi.uku*a,8.,Yoshida,H., Takaya, H. ?L 38, 3759(lgg'1). E., Murota,Y., Nakao,Y., Hiyama,T. Sa 1143(1997). Shirakawa, oshirakawa, E., Yoshida,H., Kurahashi, T., Nakao,Y., Hiyama,T. JACS120,2975(1998). eKang, S.-K.,Kim, W.-Y. SC 28,3743(1998). '"Kang,S.-K.,Yamaguchi, T., Kong,R.-K.,Kim, T.-H.,Pyun,S.-J.753, 3027(1997).
I J-Bis(benzenesulfonyl)allene. Cycloadditions. The reagent is obtained from phenyl propargyl sulfone by reaction sith PhSOTI in the presence of AIBN, and then with triethylamine. It behaves as a Jienophilein the Diels-Alderreaction and as an addendin[2+2] cycloaddition.
rrso2Ph tl
tl '-s02Ph
a
+
61'-lsozen !!\-soren
Bull, J. R., Desmond-Smith,N. S., Heggie, S. J., Hunter,R., Tien, F.-C. SL 900 (1998).
r. \ BCSJ70'
l21Bis( 1,3,2-benzodioxaborole). cis-1,2-Diborylalkanes. The reagentaddsto alkenesunderthecatalysisof(cod)rPt :tr affordthe 1:1adducts(10 examples, process S2-95Vo).t A strictlyanalogous involves :rs(pinacolato)diboron and (dba)rPt.2Interestingly,the regioselective1,2-additionto :onjugateddienesis contraryto thatcatalyzedby (Ph,P).ft, which yields 1,4-adducts.
30
Bis(benzonitrile)dichloropalladium(Il)
I
1/
,.r"'/s -o
(dba)2Pt F
t-L.r M
t ( I v\tr B-o
.u-cif
('Yo'r, \,,\d
$i3"Y.,.i'3lit3il'" lffi:};i ;:#*jI, \J) J-) --' the Heck reactlon for ?r1 benzonitrile)dichloropalladrum(u'' ivst system1l; Bisoenzonitrle)dichroropan*':-11?-1]; "'"' ";;; :: i :? 3-*ii*1l; *::"il-:*"uJ" " tt and pho"pry phosphine cineand tgrv No No
irt
;;;;' reaction.t
T:f ::il-Tffil
",r-i'."nr -*",N-dimethvlglycine
promote! promotes (PhcN)rfdcl,':T:"t^:::""T:il", the when(PhcN)t:::'JJffi;ffit;;' derivative glvcine ,n"^*tr"i"" to-."*"r"s ofbromoarenes NMP at 130"'It is suggest yields of isoxazolidine formation"t t-ur:lT]11, the pd catalystexcellent wirh *l'1,'l'-: [3+2]Cvcloadtlition" *-.-;;t;' chloroform. cl andenolethersin refluxing obtainedfrom nitrones
?.n- Y
bb
sd !
:trr'al
CL Grt
Ph...
//
-N+
'o
(PhcN)2Pdcl2 . F
Lor,
CHCI3
la;rl
t o
A
!-ln.
- 100%
s.'1,2- Additinn to norbomene
transfer
Shnnanes
aryl
or
alkenyl
groups
to
lfr I
';;:,;nfXll, jl'i"1TiJ;::::::1":::1,$,::fi fiJ:':^,:,1,T:"1'":l'd
norbo..n. andbenzonorbtl"dl:":-
^.ri:!?^!r{JJEl.,l*'rt-T]'lJ'iJ;t'^il'etranuoroborate)isreported' cooP/ (PhcN)2Pdcl2 F
R3P - TsOH CO/ i-PrOH
lm:,I;ll?lilT'fl1;l;,iJ,lx''?l;*;;il#'i;'r3e'844e(1ee8)
-!i E
Bis(bromozinciomethyl)zinc-tetrahydrofuran complex' Nysted reagent
31
3Fugami, K., Hagiwara, S., Oda, H., Kosugi, M. SL 47'7 (1998). tZi^,D. de Souza,R. F., Dupont, J., Monteiro, A.L. TL39' 7071 (1998).
1-yl) selenide. Bis(benzotriazolDithioselenides.t The reagent1 transfersSe to the sulfur atom of a thiol (11 75-98%). examples,
N--Nr
zN--N
Go'.6-O (1) H.. |* reactlOn r .i.r cine and (:r r' PIOIilOt€S
Ryan,M. D., Harpp,D. N. Z 38, 8829(1997).
Bis(benzyltriethylammonium) tetrathiomolybdate. Displacement of alkyl halides can be carried out either in watel or Sutfur transfer. rn chloroform.2 The generation of alcohols from propargyl Cleavageofthepropargylgroup.' (9 examples,13-96Va)' quite is efficient MeCN reagent in the with erhers ^CEt
f.)
lroups to
rr.i .rlcoholsin t:jirrrfled'
S. SC27' 4031(1997)P., Prabhu,K. R., Chandrasekaran, ilankumaran, :8h., D., Chandrasekaran, S. r53, 11835(1997). 'Soamy, S. Sf 513(1997). P.,Chandrasekaran, V. M., Ilankumaran, complex, Nysted reagent' Bis(bromozinciomethyl)zinc-tetrahydrofuran Methylenation of carbonyl compounds.t The Nysted reagent(BrZnC\ )rZn(thf.) is .rreful for methylenation of aldehydes in the presence of BF,'OEtr. For effective methylenation of ketones the addition of TiCl is required. Accordingly, chemoselective :eactionof ketoaldehydesis readily achieved.
o
A^
^^rf'
(BrZnCH2)2Zn.thf + BF3.OEt2 Tict2 / THF
\latsubara, M., Utimoto,K. SZ313(1998). S.,Sugihara,
f2
Bislchloro(1"5-cyclooctsitiene)rhodiuml
Bis(bromozincio)[organodimethylsilyl]methanes' areobtainedfrom RMe'SiCHBrtby The reagents RMezSiCHdianion equivalent'r halidesandcanbe reactwith vinylic andallylic They 60.. ut rfir in Znlpb with treatment usedin chainstitchingprocesses'
SiMe2R
,nNt'
aRMe2sicHBr2 +
pnMznsr
-
SiMe2R
\,^^/.^
,NA
+ BUNH2
rKitsos-Rzychon, B.. Eilbrrtr- | lKokubo,K., MatsumasaK-. lil
\akeuchi, R., Kitamura-\. IJ( tfusche,T., Kitsos-RzyctrsrB-
RMe2sicH(ZnBr)2
rnry\A"O ,7171,rznB, -cucN.2Licl :,--
l
Ph'v
,nMe..
I SiMe2R ot\n
RMe2si
Bis(synr-collidine)iodinc( I ) Iodolactonizltion ad I urated acids are PreParedlodi Iodopyridinols.2 reagentis also reported.
1315 (1998)' lMatsubara,S., Otake' Y ' Morikawa' T'' Utimoto' K' SL
"-uJ;y#T:l#'y;;;l::'::'
of the ourinthepresence iscarried Deharogenation
r\*Ao*,
telluride and KF'2HtO' ls"hult",E. K. v.' Harpp'D'N s 1137(1998)
Bis(N-t-butylsalicylaldimato)copper(Il)' derived from allenic Decomposition of diazoacetates Methylenecycloptopane'i''' 3-methylenecyclopropanes' alcohols gives 1,2-disubstituted A' ?L 3E'3833(1997)' ll-autens' M., Meyer,C'' vanOeveren'
""nl:;;::;:;;#",*'ff "^-"ff;::;;:1n",|;;;lti"Tre
2-Amino sugars.t G 2 (trimethylsilyl)ethanes uansformedinto the Prorcr
]:illTllerormedrromr-a'yr-r-cycroarkanorsinthe acrossa triprebond additionor saricyrardehydes
a producesenones' catalystsarePd(O)species' '3 ar+L^rrdhthe v'r most well-known the most Although Atlytic ilisplacement'3 substituted efficacy' More highly and (PhO)tP has the same combination of l(cod)RhCtl, products are favored. 4 rl-^a ,. ,tiffcrcnr types tvDes of iamines, i.e., Three different Alkylation of amines with alkenes'a from R'NH' and an alkene 1""'-x-' are accessible ;;;*it'*t* (RcHr)rN;;' RCH2NHR" of the alkene' with variation on the amount hydroformylatioriconditions, standard the under and whether R"CHO is added'
BnOl
eno-*or BnOr-2
rHomsi.F., Rousseau, G. JOC 2Rou.seuu. G., Robin,S. IL t 3criffrth,D. A., Danishef*1.
-
Bis(sJm-collidine)iodine(I)salts 33
ro:.rR\te.SiCHBr2bY pl:, :.rlidesand can be
+BuNH2. oHcv\
*A
[(cod)Rhcl]2 +
*L'-ll
co-H2
Bu
1350 91o/o
SiMe2R
=_v^\r'\
'^A1^"o RMe2Si
rKitsos-Rzychon, B., Eilbracht,P. T 54, l}72l (lggg). 'Kokubo, K., Matsumasa, K., Miura,M., Nomura,M. JOC 62,4564(1997). 'Takeuchi, R., Kitamura,N. NJC 22,659(1998). -Rische, T., Kitsos-Rzychon, B., Eilbracht,P.T 54,2723(1998).
Bis(sym-collidine)iodine(I) salts. 15, 30; 17, 1551'18,491'19,29 Iodolactonimtion and iodolactamization.t Medium-sized compounds from unsaturated acids are prepared. Iodopyridinols.2
Iodination is efficient, bromination using the conesponding Br(I) reagentis also reported.
r-. r)
he presenceof the
*NArA-N' p F^. . o
t-"1'-t i
l
l
\ruAor
cH2cl2
78o/o
r
:.'nred from allenic 2-Amino sugars.' Glycals undergo addition with the iodonium perchlorate and 2-(trimethylsilyl)ethanesulfonamide to afford 2-iodo-l-sulfonamide adducts which are transformed into the protected aminoglycosides on alcoholysis.
t- I -:r cloalkanols in the a triple bond
BnOl BnOl
eno-TVQ !r.:. erePd(O)sPecies'a . \t,,rc highlY substituted 'Ti'. of amines' i.e.' b,':r R'NH' and an alkene rf.. rnlount of the alkene,
(collidine)2lCl04
,
ano-+\'Q
.................................- BnO-5
BnO-r--rtf
H2NSO2
cH2ct2
'Homsi, F.,Rousseau, G. JOC 63,5255(1998) -Rousseau, G., Robin,S. ZZ 38, 2467(1997'r. criffith, D. A., Danishefsky, S. J. ./ACS118,9526(t9{r6).
I
"11_s
\/SiMe3 780/.
02
eiMe3
34
Bis(1,5-cyclooctadiene)nickel(0)
bromide' takes Bis(n'crotYl)nickel "'-'],i-iirn"r-1 gives l,4-dienes. The reaction coupling with alkenyl iodides tenmnus' placepredominantlyat the unsubstituted
arom alk)'ne rcthers of r :rr e c1'clicProdwt-i
o\,o.. ^;.-
\
p
'
1
(c--i;;*-)
EtO,,,,
'
EtO,,,,
(+)-cerulenin
o
-r*-;
r / N-l./
r
t
\ , a z -N' \
o
\_.'ror
c-\o
L' S' JOC61'6121(1996)' lKedar, T. E.'Miller'M W'' Hegedus' hexafluorophosphate' Bis(1,5'cyclooctadiene)iridium(I) bv cationicIr Doublebondmigrationpromoted ;;;;';'' Isomerizstion"f "W;;;;; ethers(10 examples''71-9'l%o)' .ornJ"*., providessilyl enoi N' CC1337(1998)' Y'' Miyaura' lOhmura, Y', Yamamoto' T.,Shirai,
nis(r's'wcr{"t;i?ffi:10]r"
in rosoftnucleophiles allvldonors rounour."ffective
thancomparable catalystis muchmoreactive of Nit."al, ""0 lppb. ttre nictel thepresence Pd sYstems. Carbonylcompoundalkylations.Allylicalcoholsandhomoallylicsilylethersare anddienes'3respectively' or.p*"i from alkynes'
DienelaUchfi q illF at roomtemperr
zY
gn
X"
x
I .4,rybmincs.t :.aatr\rndonaung gro " \ r, 0 t
Ni(cod)2
3:srr:t- H . CarPcm
t
+
Me2Zn
PhCHO THF
Ni(cod)z-PPhg
f^\],* a\/
6"o"
+
oHC..*rz1
Uo""
/ phMs Er3siH
OMe
5oo
from triorganoindiumt"lgtntt--t^1':onjugated Michaetadtlition' Group transfer derived species6 Nilcool''a o'ganoiinct and aluminum carbonylsystemsit "u'ury-'^tiiy
Bir l-<-
. . . . . - u c r ld l l l a m r ' ,:.-tlane.3n arru! i.r:- 1.-i{rrr:
re
____
Bis(15-cyclooctadiene)rhodiumsalts
: . ' J a t t O n takes
from alkyne tethers of conjugated carbonyl compounds also undergo the same reaction to give cyclic products.
"xof
q
\\ -\,/r\\A
Ni(cod)2
/
/ ')
'X,-'- (^ i \--rores b-\o
.|
xri hi cationicIr
Me3Al
\
\rlAlao*. or_.{-2(*2
+
"oo"-1-F / \
\ \ ' * H o o c " " ( r ' r 2 o\o H (+)-o-allokainicacid
73o/"
Die nelalde hyde cyclizatio n.7 THF at room temperature.
Ene-type reaction is induced by Ni(cod)r-Ph,P in
^SJ.*
o'-(Yo'
a,-Yo
- pph3 Ni(cod)2
rHFsoo
!
X.
!
X ( 3 . 8: 1 )
k
91%
h.
' i,trt^
r-'\f\ t l %oMe
:n:- to conjugated rr, .pecies6derived
Arylamines.s
Displacements
electron-donating
groups, including
a Ni(0)-catalyzed
reaction.
of aryl chlorides containing 3- and 4-chloropyridines,
electron-withdrawing
or
are readily accomplished in
iBricout, H., Carpentier, J.-F., Mortreux, A. CC l3g3 (1997). -Oblinger, E., Montgomery,I. JACS 1f9,9065 (1997). 'Takimoto, M., Hiraga, Y., Sato,Y., Mori, M. TL39,4543 (1998). -Perez, I., Sestelo,J. P., Maestro,M. A., Mourino, A., Sarandeses, L. A. JOC 63,10074 (1998). 'Montgo-"ry, J., Oblinger,E., Savchenko,A. V. JACS llg,4911 (1gg7). "Chevliakov, M. V., Montgomery,J. ACIEE37,3144 (1998). Sato,Y., Takanashi,T., Hoshiba,M., Mori, M. TL39,5579 (1998). 'Wolfe, J. P., Buchwald, S. L. "/ACS 119,6054 (1997\.
Bis(1,5-cyclooctadiene)rhodium salts. Functianalizationof alkynes. hopargylic amine derivatives are convertedto .ilylatedallyl aminesin the Rh-catalyzed reactionwith hydrosilanes.I Whena l-alkyne,a hr drosilane,anamineandthecatalystarebroughttogetherunderCO in toluene,4-silylated I -aza-1,3-dienes areobtained.2
36
Bis(dibenzvlidene)palladium(0)
from a mixture of of Oxidative umination of styrenes'3 Formation B-aminostyrenes a (cod)rRh salt' styrenesand secondaryamines is promoted by Cycloadd'itions.1,2,4-Trienesparticipateincycloaddition,usingtheirconjugated and monoxide to give aromatic productsa diene moieties, with alkynes and carbon The latter process is subject to 2-alkylidene-3-cyclopenten-l-ones,5 respectively' asymmetric induction of chiral phosphine ligands'
-J
(cod)2RhOTf (RO)3P
R
-(
-
KF-
/DME
R=Me 93o/o
//-\-,
J /-\
(cod)2RhPF6 R-sP CO / DME
Aryl etherc." the Ullmann
Biaryls anddiaryn reactions of aryl iodi obtained from iodoph
coupling at 55-60". Arylation of atll I ArBr shows rate enhan 2-Arylarylic estctt
of chiral alcohols such
R
\-/r/",,n ll / o R=Pt
Pd rrr Electron-deficient .{r| Electron-poor phosphtt aryl bromides and sodi
of
I t
87"/"
l
( :
rTakeuchi,R., Ebata'l. OM 16,3'70'7 (1997)' tgurfu"t"., L., Hollmann,C., Eilbracht,P' T 54' 4493(1998)' ts;rl*, Na.,Eichberber, H' ACIEE36'2225(t997)' M.' Trauthwein, aMr.ukumi,M., Ubukata,M., Itami' K'' Ito' Y' ACIEE3T'2248(1998)' 5Murakami,M., Itami,K., Ito, Y JACS119' 2950(199'7)'
Bis(dibenzylidene)palladium(0)' secondary amines in the The displacement of aryl bromides with Arylnmines' ligand is improved when the presenceof the Pd(0) catalyst, t-BuONa, and an arylphosphine or is part of a C(CQ" to complexed phosphine (phosphinoethersbeing superior) is to advantageous generally it is wh.n aryl triflates are used as substrates, f"*"n".yrt"..t the in accelerations rate phenols'3 Large add them slowly to pr"u"nt "l"auuge to generate and 1,1'-bis-(r-butylphosphino)ferrocenea prroiptrines [e.g., presenceofhindered chelating with amines for the arylation of 2-dimethylamino-2'-diphenylphosphino-1'l'-binaphthyl5l ArX (X = Cl, Br, I) are observed'
4)(Yo't \,\2
a) * HNJ
(dba)2Pd'dPPf t-BuONa/ PhMe 10oo
ar^ro \,\Z
* '
Allylic phenylotb presenceof (dba).Pd I observed. CyclofunctioruliT enesin which the 3-su
i ntramolecular/interrrx
Heterocycles.
.
2H-l-benzopyransri a allenesto give azaclc
Bis(dibenzylidene)pattadium(0)
ft: j. ::()m a mixrufe Of
Aryl ethers'6 Pd-mediatedC-o bond formation ameliorates the undesirablefeature the ullmann method employing stoichiometric quantities of copper salts. Electron-deficient ArBr and electron-rich AroNa are suitable reaction parmers. Electron-poor phosphine ligands improve the yields of the displacementreaction between aryl bromides and sodium phenoxides. of
u..:r: :helr conjugated \,:..:::, productsl and t,r:-- l\ subjectto
Biarylsand diarylmethanes. These compounds can be prepared from coupling reactionsof aryl iodides with organozincreagents.T'8Notably biphenylnonaflates
are obtained from iodophenyl nonaflates at room temperatureT and they undergo further coupling at 55-60".
:
Arylation of aryl ketones." Benzyl aryl ketoneformationfrom the arylation with ArBr showsrateenhancement by stericallyhinderedchelatingligands.
-R
l€
2-Arylarylic esters.to The pd-catalyzed carbonylation of arylethynesin the presence ofchiral alcohols such as menthol proceedsquite efficientry (4 examples, 55-g0Ea).
I i',
c
: -
n
I
,\
l
l
\rAoH :
+
rll Ph
CO - PPh3 (dba)2Pd TsOH/ PhMe 10oo
A O
+"\"
--.\
88./" Allylic phenylation.tt Allylic esters are phenylated with Bu,,N[ph.SiFr] in the presenceof (dba)rPd and dppe' Complete inversion of configuration at the reaction site is observed. tr :.J.1r\ amines in the d .. :nproved when the or is part of a
l('()
cyclofunctionalimtion of 3-substituted r,4-cyclohexadienes.t2 | ,4-cyclohexadi_ enesin which the 3-substituentbearsan o-iodoarylor iodoalkenyl group undergosequential intramolecular/intermolecular cross-couplingwith carbonand heteroatomnucleophiles.
Itc:.1..\ ddvantageous to a:j iJielerations in the o.:: I no )felTocene4and F.:i:,rr1 of amines with
(dba)2Pd - Bu4NCl
,..acooEt
K2CO3I CH2(COOEI)2
cooEt 70/.
av I \.7
::r^
Heterocycles. The intramolecular cyclization of o-allylphenols to form 2H-l-benzopyransr3and coupling of iodoalkenylaminesand (o-iodoaryl)alkylamines with allenesto give azacyclicproductslaare useful preparativemethods.
38
Bis[dicarbonylchtororhodiurn(I)]
the amide An aryl from an iodoareneis introduced 'ro,?sto 3,3.Diarylacrylamides.|5 reaction' function of 3-arylpropiolamides in the Pd-catalyzed
oMe
f\ (dba)zPd, ,/\rVV -
Et3N HCooH EtOAc A
CONHMe
ETOOC r
a-\/oMe
ETOOC\
ll
MeHNOC/
Pauson-Kls by [ClRh(Co),].u
80o/'
Alkylidenecycloptopanes't|
The
regioselectivity
ring systems. Elcct showsu acetylene)
for
the
reduction
of
l.alkenylcyclopropyltosylatesisdependentonstericeffectsofthephosphineligands.
'wender, P. A.. REI :Wender, P. A.. Spcn rKoga, Y., Kobayrl
Bis(dicarbonykS Altybnitirrl"l p-anisidineis norr
(dba)zPd- (o-Tol)3P HCOONa 15-crown-5 (81 : 19) 83%
lKamikawa, K., Sugimoto,S , Uemura,M' JOC 63'840f (1998)' .l568( 1997)' 2Mur.ou*, J.-F.,Wagaw, S., Buchwald' S' L' JOC 62' sl-ouie,J., Driver, M. S., Hamann,B' C ' Hartwig' J'F' JOC 62' 1268(1991)' oHu,nonn,B. C., Hartwig, J. F. JACS 120' 7369 (1998)' 5vyrto.it, S., Smrcina,M., Kocovsky, P' TL39' 9289 (1998)' 6Mann,G., Hartwig, J' F. 7L 38, 8005 (1997)' ?Rottlender,M., Knochel, P. JOC 63,203 (1998)' sRottlender,M., Knochel' P. SL 1084(1997)' nHu.unn, B. C., Hartwig, J. F JACS ll9' 12382 (199'7)' tt'Mont"i.o, A. L., Lando, V. R" Gasparini'V ' SC 27' 3605 (1997)' r r B r e s c i aM , . - R . ,D e S h o n g' P ' J O C 6 3 , 3 1 5 6( 1 9 9 8 ) ' r2Han,X., Larock, R. C. SL 748 (1998)' rsl-arock, R. C., Wei, L., Hightower, T R' SL 522 (1998)' r4larock, R. C., Tu, C., Pace,P' JOC 63' 6859 (1998)' (1998)' 'tn"v-,i.e., Koenig, T. M., G1nah,n' o'' copp' J D ' Mitchell' D' JoC 63' 5050 l6Chevtchouk,T., Ollivier, J., Salaun,J' fA 8' 1005 (1997)'
Bis[dicarbonylchlororhodium(I)]' [5+2]Cycloadditions.Bothintermolecularlandintramolecularversionszofthe and an alkyne havebeen developed'The cycloadditioninvolving a vinylcyclopropane Rh-catalyzedreactionisveryvaluabteforrapidassemblyofunsaturatedSeven.membered
Snvastava.R. S.. ![r
l.l-Bb(dincfiyf Cotdenob rrfluomacetaldctl rrres 2-(l-hydror
carefr.zed by ZtrC
d
I,l-Bis(dimethylamino)-2,2"2-trifluoroethane 39
Ij..- -.1 L'rlrl.tto the amide
ring systems.Electron-rich, electron-poor,terminal, internal, and conjugatedalkynes (even acetylene) show sufficient reactivity under mild conditions.
Etooc
/'':..
z----:-
lRh(co)2crl2
Etoocx-^--A
PhMe
A
ETOOC
ErOOC 827o
i'.:
80% r hl
"..'
reduction of 'phine ligands'
>Js\,/'V
Pauson-Khandreaction, The intramolecular reaction of 1,6-enynes3is catalyzed by [ClRh(CO)r1, in dibutyl ether under CO. rwender, P. A., Rieck,H., Fuji, M. "/ACS120,10976(1998). 'Wender, P. A., Sperandio,D.JOC 63,4164(1998). rKoga,Y., Kobayashi, T., Narasaka, K. CL24g (1998).
Bis(dicarbonylcyclopentadienyliron). Allylanilines.t Alkenes react with severalnitroarenesto give allylanilines. However, p-anisidine is not a suitable aminating agent.
CO / [CpFe(CO)2]2 +
PhNO2
+
1 6 0- 1 8 o o
GI \1,,\z
NHPh
64"/"
'Srivastava, R. S., Nicholas,K. M. CC 2705 (1998).
I, l -Bis(dimethylamino)-2,212-trifl uoroethane. Condensation wilh ketones.t The aminals serve as synthetic equivalent of rifluoroacetaldehyde. Thus, its condensation with ketones (catalyzed by aqueous HCI) gives 2-(l-hydroxy-2,2,2-tifluoroethyl) ketones and reaction with silyl enol ethers rcatalyzedby ZnClr) delivers the trifluoroethylidene ketones. r't\-r < ,:()l1998)
+ n. f-..lJr versions2of the h... : neen develoPed.The u..: ..:.rlcdseven-membered
cF3cH(NMej2
znctz Et2O
,
Fsc
cFs
(R)'2,2"8is(diphenytarsino)-1'l'-binaphthvl
40
g-Bicdi?
8cr|dltlr coodcasr
lxo. Y., Dolbier,w. R. 7L 39' 9151(1998)'
1,2-Bis(dimethYlsilYl)benzene' acids via the Cyclization of co-hydroxycarboxylic Mesocyclic lactones'l 8- to to medium-siz"d.tinCt-17-l-::be.ted'.35Vo" O,O'-disilyl intermediates is aiplicable by catalyzed is silyl carboxylate formation step l3_membered, 1g-ggvo). An^initial at O-silylation is tt]"-*^"U by an intramolecular (Ph3P)lRhCl at room Emperature which cyclic the occurs when g0". Elimination or r,r,:;-tetramethylbenzo-2,r,3-oxadisilazore silylether/estersare exposed to MerSi(OTf)t'
Hara:.cT. ! Coppa, Albl4t rcadilr obte
Pntd
I rz
o
Ao* t \o,
R rz
HSi)i\
^t'(v
f*o'''lO \o'.
(Ph3P)3Bhcl
(Ph3P)3Rhcl 250
8oo
rr'(v
a\o't'1fr
{"'i'io I
Eec ta ft ttlarnGd
Mersi(orf),
a<"
(
n
\
Fh,
*
\_-e {Jf,Il bi:ltTrirr -lr**rirtl
rMukaiyama' T., Izumi, J'' Shiina' I' CL 18'7{d.99'7)'
(R)-2,2'-Bis(diphenylarsino)-1'1'-binaphthylll*n The usefulnessof the As analogof
reactions't IntrarnolecularasymmetricHeck has been of iodoalkenylcyclohexadienes cyclization irr" ro, ligand a as BINAP demonstrated. OTBS
f-:g
S Fr S, lcrl
)r ) r
L,*a rf,lo-u r:"4
cJ d
(dba)3Pd2
lrrR
E
(R}BINAS X= I
rKoli.u,
M' TL38'3459 (1997)' A., Boden, C' D' J'' Shibasaki'
90% (82% ee)
H {5{ r lt OTfl 6[r
ff1
22'-Bis(diphenylphosphino)-1'1'-binaphthyl
2,2'-Bis(diphenylphosphino)- 1,1'-binaphthyl. BINAP Moderate asymmetric induction has been observed in Baytis-Hillman reactian.t the condensation. the to 8-157o; t..::J. bY p :- .rtalyzed J.i: / )-\ilylationat j. :j\
via
rHuyur",T., Shibata, T., Soai,K., Wakatsuki, Y. CC l2'71(1998). Copper complexes Aldol-type reactions,
Chiral dioxinone derivativesr and ct-amino 1-keto esters2are
readily obtained.
r\ .i :!'n the cyclic
+
Ph-cHo
:
"
l
Mo",r""
CuF2/ THF
I
OH"X pnl\So 92"k (94'/. eel
t
l
- r - ;c./:Z .
Ene reaction of wimino esters.3'4 Excellent yields of N-tosyl-o-allylglycine esters are obtained with high enantioselectivity in the condensation.
Me23i(ort)2
Ts.
-,s,!75 '
ToFBINAP
\ /
'- - ",'Si-y'\
t
X"
o'')'') ,/\
l PhA
.
N
tl \"oo=,
(F}BINAP + CuPF6/ THF
rr NHTs i l |
pnMcooet 77'/. (93% ee)
ligand is used to promote Azn Diets-Alder reactions.5 The p-tol-BINAP asymmetric condensation between the N-tosyl derivative of ethyl glyoxylate and Danishefsky'sdiene at -78'.
o: :nc As analogof r\rJlcnes has been
'Kriig".,J.,Carreira, E. M. JACS120,837(1998). -Fenaris, D., Young,B., Cox,C.,Drury,W. J.,Dudding,T., kctka, T. JOC 63,6090(1998). 'Drury, W. J.,Fenaris,D., Cox,C.,Young,8., t ectka,T. JACS120,11006(1998). 'Yao, K. A. CC 254'].(1998). S.,Fang,X., Jorgensen, 'Yao, A. ACIEE37,3121(1998). M., Hazell,R. G.,Jorgensen,K. S.,Johannsen, Iridium complexes The chiral BINAP-IrCI dimer induces the enantioselective Hydroaminatian.' rddition of aniline to norbornene(95Voee)at 75o. The reaction is facilitated by fluoride ions , activity increaseby 6.5-fold). Dorta,R.,Egli,P.,Ziircher,F.,Togni,A. JACS119,10857(1998). Palladium complexes Aldol-type reactians. The highest anti selectivity is observedwith BINAP complex ol Pd(OTf), in the aldol reaction of tin enolateof cyclohexanone.I The condensationof silyl snol ethers with imines provides 1-keto cr-amino esters.2
2,21Bis(diphenylphosphino)'1'l"binaphthyl
tFujimura. o. "IACS120.lmll
5"'
+ PhCHo
Ph*Y*
(R}BINAP
;d,orffiF -7go
(92 : 8) 73o/o
Arylethen.3SodiumalkoxidesreactwitharylbromidesinthepresenceofaBINAP groups)' groups are replaced with o-tolyl derivative (in which the p-fhenyl cesium carbonateas a using prepareda N-erylsulioximines have been N-Arylation. a BINAP ligand carrying of anilines in an aqueousmedium'5 base.For conducting arylation is used to advantage' six sulfonic acids (in Na salt form) C.Arylation.Mr-oisuustitutedarylacetamid",u."availablefromthesubstitution (9 examples' ee 61-98vo)'1 proceedsin fair to e*""ll"nt ee reaction.6Arylation of ketones
l l l
\,,^\Z
ZW-coNMe2
(dba)2Pd€INAP
2{\74' l + A c N M e 2
F
(Me3Si)2NK
\-,\2
dioxane looo
Asymmetricprotonation.8Chiralketonesaregeneratedfromsilylenoletherson water' with subsequent AgOTf in DMF containing exposure to a BINAP-PU ""-Ot*' addition of diisoProPYlamine' H' SL958(1998)' Y'' Yamamoto' lYanagisawa, A., Kimura'K'' Nakatsuka' (1ee8)' M' JACS120'247^4 t;;ffi;;", 8., Fujii, A., Sodeoka,
';;T"*,;"
Rhodium comPlexcs Chiral ThYdroxY Letar
isomerization on treatrrnl ether moiety of the Produ.-t pAlkenYland f4rylL alkenyl- and arylboronic rt examples,9l-97Vc er l.
'Hiroyu.K.. Kunhara.Y . qr :Tukuyu.Y., OgasawaraM.. li
Ruthenium comPlcrcs Asymmetric hYdmgct esters:in chiral form are r-n esters,respectivelY.on h1d The hydrogenation of t
vinylphosphonic acids.' he Allylic alcohols from et obtained in high ee'
o
o
/./\
s' L' rACsrre'33es(1ee7)' il"ii., l' i'', Buchwald'
I'P' rL39' s731(1998)' c., Hildebrand' 6;; cc 1509(1998)' 'wiilln".,G.,Jiinsch, n, r-ffi"tg' s "schubert' l:lo-"h"'G' (1998)' 6shaughnessy, r. n., nu.unn'n'c'liutt*ig"t | -'9163'6546S L' JACS120'1918(1998)' ftn'v'' plft"n' M'' Buchwald' ?Ah.un,J.,Wolfe,'' n',"*'i""' r- ActEEs6'2366(ree'l)' {;i;;;, M.,Nakai, -t;:;:i;;:#:";";;
rromkerenesilvl acetals A synthesisorchirarp-s'oxy esters 1' is catalyzedby theBINAP-PI complex andaldehydes
't':
rBlandin,V., CarPentier.J.-F lDoi. T., Kokubo, M., Yanrel rRatovelomanana-Vidal. \' . ( rHenry, J.-C.,Lavergne.D.. I TL39.34'13 (1998). sohkurna. T., Ikehira, H.. Itr 6Douc"t. H., Ohkuma. T.. V Ikariya, T., NoYori, R. AClt ?Fan,q., Yeung, C., Chan. A
Silver comPlexes Allylatinn. The /with al 1,3-pentadiene2 comPle BINAP-AgOTf
0)
43 2,21Bis(diphenylphosphino)-1,1'-binaphthyl
3
(
0
H
H l ^_/-pn
lrr.r:trf a BINAP
rFu.litnu.u, O. "/ACS120,10032(1998). Rhodium complexes Chiral y-hydroxy ketones.t
meso-l ,4-Bis(siloxy)-2-alkenes undergo regioselective isomerization on treatment with a BINAP-Rh complex. On exposure to BuoNF the enol ether moiety of the products is hydrolyzed (a TBS group can be retained). Under the influence of a BINAP-Rh catalyst ftAlkenylandftarylketones.' alkenyl- and arylboronic acids surrenderthe organic residuesto the B-carbonof enones(2 I examples,9l-97Vo ee).
rr. ..rrhonateas a P .::rnd carrying .ubstitution 6l-987a).1
\'^cotttvtee
rHi.oya,K., Kurihara,Y., Ogasawara, K. ACIEE34,2287(1995)' 2Tukuyu, T., Sakai,M., Miyaura'N. JACSf20' 5579(1998)' M., Hayashi, Y., Ogasawara, Ruthenium complexes o-Hydroxy lactonesr and y-acetamino-B-hydroxy Asymmetrichydrogenation esters2in chiral form are createdfrom o,,y-diketoestersand 4-acetamino-3-keto-4-alkenoic esters,respectively, on hydrogenation. The hydrogenation of other prochiral alkenes, such as substituted acrylic acidsl and vinylphosphonicacids,ahas also beenscrutinized' and Cr-symmetricdiols from diketonesTure alsoreadily Allylic alcoholsfrom enones5,6 obtained in hieh ee.
on ). Jl()l ethers '.r : ::. :ubsequent
o
o
,\,\
Et2NH2(BINAP)2RuCl(p'Cl)31 HCI / MeOH 600
OH OH
A
>95'/. (>95.5% ee)
n
lc:rnc silYl acetals
rBtandin, V., Carpentier, J.-F.,Mortreux,A. TA9,2'765(1998\rDoi,T., Kokubo,M., Yamamoto, T. JoC 63,428( 1998). K., Takahashi, rRatovelomanana-Vidal, V., Genet,J.-P.JOMC567,163(1998). rHenry,J.-C.,Lavergne, I P , Dolgina'T' M ' V., Genet,J.-P.,Beletskaya, D., Ratovelomanana-Vidal, (1998). TL39.34'13 sohku-u,T., Ikehira,H., Ikariya,T., Noyori,R. SL467(1997). 6Doucet, E', England,A F ' T., Kozawa'M., Katayama, H., Ohkuma,T., Murata,K., Yokozawa, (1997). 1'703 R. ACIEE 37, T., Noyori, _lkariya, Fan,Q.,Yeung,C.,Chan,A. S. C. 7A 8,4041(1997). Silver complexes The 1-selective reactions of crotylstannanesr and 5-trimethylstannylAllylation, 1.3-pentadiene2 with aldehydes are highly enantioselective when promoted by a BINAP-AgOTf complex.
Bismuth(III) bromide
Agorf / (R)-BINAP
,l*o
* /\/"'/"n'""
Actir a Ethers." with Et,SiH in the p compoundsoccun. Substintion ot gI1
OH I phly\
-2OO
THF
\
and glycosyl bromides bases,respectivelr'.ll
61% (90%ee)
Cyclic carbonout with DMF in the presc
Al'dolreaction.3TinenolatesServeasnucleophilesinthecondensationwith aldehydes. lYanagisawa,A., Ishiba,A, Nakashima'H ' Yamamoto' H' Sf 88 (1997)' H' SI, 933 (1997)' tV^""gi**", A, Nakatsuka,Y, Nakashima'H'' Yamamoto' (1997)' rYanagisawa,A., Matsumoto,Y', Nakashima'H ' Asakawa'K" Yamamoto'H JACSII9'9319
1,2-Bis(diphenylphosphino)ethane' superior is ligand The Mitsunobu and Staudinger reactions't oxide by-product is easily removed' triphenylphosphine becausethe phosphine
to
(1998)' 'o'N"il, I. A., Thompson, S , Murray'C' L'' Kalindjian'S B TL 39' 7787
Bis(fl uorosulfonYl)imide' and benzylic alcohols with Deoxygenative allylation of allylic Allyhtion.' (FSOt)'NH' allyltrimethylsilaneis promotedby
Ph
,nMo"
+
SiMe3
,(< Sulfoxides.6 n catalyst.
lKomatsu, N., Uda.\t . ! lKomatsu, N., IshidaJ . iMontero,J.-L..\,\'rnu
(t99'7). twinurn, J.-Y.,Kamal.I il-e Boisselier, V.. Pcxtc 6Komatsu, N., Uda.\t . !
(FSO2)2NH
c{2cl2
,^^/.^
-7go
rKaur. S fL 38'2521(1997)' M.,Trehan, C.,Kaushik,
Bismuth. with allylic of sulfonylchlorides cross-coupling Thedehalogenative iiii ,rWnrr.' canbe usedinsteadof bismuth' halidesby Bi is a usefulreaction'Cadmium rBaruah,M., Boruah, A., Prajapati,D ' Sandhu'J' S' SL 1083(1998)'
Bismuth(Ill) bromide. Cyanohydrinsandhomoallylicacetals,|ReactionofMe.siCNwithaldehydesand is BiBr, at room temperature'whereasSbCl.t allylsilaneswith acetalsare catalyzedby completelYineffective'
Bismuth(Ill) chlorid Michael reaction in the presenceof I examples,80*90% t. Carbonyl regeaa cleavedin a BiCl.-c: 'l Episulfides.s
ammonium thioclar 96-99Vo). Dicls-AWer req.
furnish dihydropyan Diels-Alder reactions
Allylations. H( compoundswith alllli rZn for keto acids.' r employing Mg-BiCl,
Bismuth(III) chloride
\
Ethers.' Activated carbonyl compounds undergo reductive coupling on treatment with Et,SiH in the presence of BiBr3. With silyl ethers heterocoupling of carbonyl compounds occurs. Substintion at glycosyl site, Glycosyl esters are converted to glycosyl bromidesl and glycosyl bromidesto nucleosidesa by reactionwith Me.SiBr and silylatednucleoside bases,respectively,when promotedby BiBr..
.icnsation with
Cyclic carbonates.s Epoxides are transformed into cyclic carbonatesby reaction with DMF in the presenceof BiBr. and oxygen.
n ./Y
I r e .e 3 l 9( 1 9 9 7 ) phA
n Y ll
. H
BiBr3 / 02 NMe,
11 0 0
o-40 Ph/\-o 567.
Sulfoxides."
The air oxidation of sulfides can use BiBr.,-Bi(NO.)., as a binary
catalyst.
!\
!: -
.rlcohols with
tn
rKomatsu, N., Uda, M., Suzuki,H., Takahashi,T., Domae,T., Wada,M. IL 38, 7215 (lggl). 2Komatsu, N., Ishida,J., Suzuki,H. TL38,72lg (lgg7). rMontero, J . - L . , W i n u m , J . - Y . , L e y d e t , A . , K a m a l , M . , P a v i a ,A . A . , R o q u e ,J . - P . C R 2 g 7 , l ' / 5 ( 1997\. oWinu., J.-Y., Kamal, M., Barragan,V., Leydet, A., Montero, J.-L. SC 28, 603 ( 1998). 5Le Boisselier,V., Postel,M., Dunach,E. CC 95 (l9g':-). 6Komatsu, N., Uda, M., Suzuki, H. CL l22g (lggi).
.\,\ Bismuth(Il! chloride. 15, 37; 18, 52;19,37 Michael reactions.t Reactionof 1,3-dicarbonylcompoundswith Michael acceptors in the presenceof BiCl. by irradiation with microwave proceedswithout solvent (6
':'ideswith allYlic
.. n-
-
.-::,1.
lh aldehYdesand r hereasSbCl, is
examples,80-907o). Carbonyl regeneration. Oximes,2 semicarbazones,3and dimethylhydrazonesaare cleaved in a BiCl,-catalyzed reaction,also undermicrowaveirradiation. Episuljides.s The transformation of epoxides into episulfides by means of
('r
ammonium thiocyanate in refluxing MeCN is promoted by BiCl. examples, 96-99Vo). Diels-Alder reactions. Activated carbonyl compounds condense with dienes to furnish dihydropyrans6at room temperaturewhen catalyzed by BiC\. Conventional Diels-Alder reactions catalyzedby BiCl. or Bi(OTf)., have also been scrutinized.T Allylations. Homoallylic alcohols are formed by the reaction of carbonyl compoundswith allylic bromides when the latter are treatedwith BiCl. and a reducing agent tZn for keto acids,8 and NaBHo for aldehydese).Alternatively, a Barbier-type reaction employingMg-BiCl, is more convenient.r0
46
Bismuth(Ill)nitrate
cooH
/\,"' ## ^X::"78o/"
from generated Enolates Reformatsky-type reactions and reductions. various with condense medium an aqueous in s-bromoketonesby reactionwith BiClr-Al aldehydes to give B-hydroxy ketones.lr A modification of reaction conditions (BiC1.-NaBHo) and in the absence of aldehydes leads to hydrodehalogenation of the haloketones.l2 Nitroarenesare reducedto N-arylhydroxylamineswith BiCl,-KBH.'r3 A bismuth complex derived from BiCl. and diethyl tartrate mediates Cyanohydrins. asymmetricaddition of Me,SiCN to aldehydes(6 examples,20-727a ee)'ta rBaruah,B., Boruah,A., Prajapati, D., Sandhu,J. S. ?I 38' 1449(199'l)' 2Boruah, J. S' fL 38' 4267(199'7)' D., Sandhu, B., Prajapati, A., Baruah, 38aruah, (1998). 28,4157 S. SC J. D., Sandhu, B., Prajapati, aBoruah, J. S. SL 1251(1997)' D., Sandhu, B., Prajapati, A., Baruah, sMohammadpoor-Baltork, 1.,Aliyan,H. SC28,3943(1998) 6laurent-Robert, B., Dubac,J. TL39,l l6l (1998)' H., Garrigues, Tcarrigues, F.,Robert,H.' Dubac,J. JOC 62,4880(1997)' B., Gonzaga, twudu,M., Honna,M., Kuramoto, 2265(1997)' Y., Miyoshi,N. BCS"I70, eRen,P.-D.,Shao,D., Dong,T.-W.,Jin,Q.-H.,Yao,Z.'P' SC27'2569(199'7)' l0wudu,M., Fukuma, T., Miyoshi,N IL 38' 8045(1997)' T., Morioka,M., Takahashi, I rShen,2., Zhang,J.,Zou,H., Yang,M. TL 38' 2'133(1991)' r2Ren, (199'7)' P.-D.,Shao,D., Dong,T.-W.,Jin,Q.-H.,Yao,Z'-P'SC27'25'7'7 I3Ren.P.-D.,Pan,X.-W.,Jin, Q.-H.,Y ao,Z.-P-SC27' 349'7(1991)' raryodu, T., Miyoshi,N', Smith,K' fA 8, 3939(199'7)' T., Domae,T., Fukuma, M., Takahashi,
\l5t
Bir
q r-rdx rllcr
I n?hr
Ft r r 11
l-.Ert
inx :bc . i{lr
Bismuth(Ill) mandelate. Ester hydrolysis.t With 570of the Bi(III) salt in DMSO selectivehydrolysis of esters is is achieved.Thus, p-cresyl acetateis recoveredquantitatively while p-nitrophenyl acetate convertedto the Phenol. Cleavage ofepoxides and s,hydroxy ketones.2 oxidativecleavageof CC bondsby air'
The bismuth salt is a catalyst for
rLeBoisselier, E. TL38'2981(1997). M., Dunach, V., Postel, 2Kullul.K.. Coin,C.,Dunach, 8., Postel,M. NJC 21,495(199'7).
frlr {l &:Er leljc
bp
o, Bismuth(IlD nitrate. on Pyridines.t Hantzsch 1,4-dihydropyridines undergo dehydrogenation (7 examPles, exposure to bismuth nitrate pentahydratein HOAc at room temperature 5O-9OVo).
rthr
E 5f .!t rrrrqlr
47 Bis(pentafluorophenyl)borinicacid ETOOC-.,.z1,,.COOEt
ETOOC-.,r,--..,r,COOEt
,
il tl
r.rn
Bi(No3)3.5H2o, 2oo
HoAc
H
lrom
ll 'A*A
I 75"/"
rMashraqui,S. H., Kamik, M. A. S 713 (1998).
I \ Jnous ! nJ i t i O n s )n ,,t the
Bismuth0ll) triflate. *Hydroxy y-lactones.t Thereagentwhichis stableto watershowsexcellentLewis and acidicproperties,includingthe ability to effectenereactionsbetweenglyoxylic acids alkenes.
n',4(llates
-\
l Y' I
Fr,
+
o
i[ '/\' H' cooH
Bi(orf)3 +
*#"*,.
e{
] *
x-o
R R '
: I rf
to Mukaiyama aldol reactions.2 The catalytic activity of this triflate is superior lanthanidetriflates.It can be recoveredafter reaction' acid Friedel-Crafts acylation.s The triflate has many advantagesover other Lewis
!
catalystsfor acylation(1 1 examples,75-96Vo). rLaurent-Robert, H., Le Roux,C.,Dubac'J' S, 1138(1998)' tL" Rou^,C.,Ciliberti,L., LaurenrRobert, A'' Dubac,J' SL 1249(1998)' H', Laporterie' tD"r.u.r. J. R., Labrouillere, A'' Dubac'J' ZL 38' 8871 H'' Laporterie' M., Le Roux,C, Caspard' ( I 998). . \)l estefs .raetateis
.rialvst for
Bis(p -nitrophenyl) phosphorazidate. Alcohols including sugarsare convertedto azidesdirectly on treatmentwith Azides.t the reagentand DBU. 'Miruno,M., Shioiri,T. CC2165(199'7).
lcn.rti(.)n on | .\amples,
Bis(pentafl uorophenyl)borinic acid. Benzylic and allylic alcohols undergo oxidation to Oppenauer oxidation.t aldehydesby a combination of (cuFr)rBoH and t-BucHo at room temperature. reaction Enones.2 The hydroxy ketones obtained from Mukaiyama aldol by the dehydration catalyzed by bis(3,4,5-trifluorophenyl)borinic acid undergo stronser borinic acid.
i
Il
l|8
Bis(pentamethylcyctopentadienyl)dimethyluranocene
QSiMes PhCHO |. + r"vnv +
pnA
Bis (pentamethylcycloPcot Tcr hAlkyl acetates.' isopropenyl acetate in th
cH2cl2 ' 78o F r
acetate. Primary and sec< acetatewhen sufficient anx
[rt]fro" t ' Y t z
medium.
f
rTashiro.D.. Kawasaki,Y.. Sd
H' JoC a' 5664(199'l)' llrhiharu,K., Kurihara, H.' Yamamoto' H' sL597(199't)' 'iffi;;, r., ro.ittu.u,H'' Yamamoto' Bis(pentafluorophenyl)tindibromide' Atdol-typereactians.IThereactionofketenesilyletherswithcarbonylcompounds prefersketoneto aldehydes' underthe influenceof this tin bromide
. ,,A
Reaction with alhyna. simultaneously inftoducing sulfi des undergo cyclizatio
t-BuMe2SiO (coFs)zSnBrz
osiMe2t-Bu or
Bis(pyridine)iodin(I) tcttt Good 1t Iodinations. parent enaminotE from the peptides2with this reagentr
cHO
cH2cr2-78o
l*-\--l-\-cHo
,//
-Ph Py2l8Fit
l-,-_Z
(1998)' lchen,J.,Sakamoto, K., Orita,A'' Otera'J' JOC 63'9739
l
II Ph,^l
Bis(pentamethylcyclopentadienyl)dimethyluranocene' in refluxing benzene to ih" hydrou*ination of 1-alkynes Imines from I_altqnes.t is contrary to the which (Cp*)'UMe' as catalyst' give aldimines is regioselective using of the thorium presence the in (much lower yields) formation of methyl ketone ketimines analog(Cp*)rThMer.Exceptionarnongthelatter"u'"ti'trimethysilylethynewhichgives N-methyl-2-trimethylsilylacetaldimine'
Cp'2UMe2
R-
FNR'
r
-
CHf
-eop 10
93"k
'Campos, P. J., Arranz, J.. Rod lBarluenga, J., Garcia-Manin rBarluenga, J., Llorente. 1.. .r Garcia-Granda,S. JACS llt. rBarluenga, J., Romanelli.G P S., Garcia-Granda,S. AClff
s0 - 95%
R---
+
*ts'*'
R'NH2
THF
7 -80"h
lHaskel,A., Straub,T., Eisen,M' S' OM 15'37'13(1996)'
3J-Bis(tributylstannyl)p Homoallylic MOM crt carbonunitsis accomplist andBuLi (2 equiv HMPA beforeworkup).Chainelm lf stepwiseadditionof ICI i productsarethe l,3diol m
33-Bis(tributylstannyl)propyl methoxymethyl ether
,.\
/ P h
Bis(pentamethylcyclopentadienyl)samarium. t-Alkyl acetates.l Tertiary alcohols are acetylated under acid-free conditions with isopropenyl acetate in the presence of (Cp*)rSm(thf), and cyclohexanone oxrme acetate. Primary and secondary alcohols undergo acetylation without isopropenyl acetatewhen sufficient amount of cyclohexanoneoxime acetateis addedto the reaction medium. lTashiro,D., Kawasaki, S.,Ishii,Y. JOC 62,8141(1997). Y., Sakaguchi,
l\,n1P()unds
Bis(pyridine)iodine(I) tetrafluoroborate. Good yields of 2-iodoenaminones(7 examples,9l-95vo)t are obtained Iodinatinns. from the parent enaminones.Iodination of aromatic residues (such as that of tyrosine) of peptides2with this reagentis facile. while give dimers Reaction with alkynes. (r-Butyldimethylsilyl)alkynes alkynyl products.r Certain the simultaneously introducing one or two iodine atoms into sulfides undergocyclization.a
-cHo
,i
,,,.2'n ll Ph, F \'nrene to n:r.rr\ tO the i :i'.cthorium '..hrchgives
I
Py2lBFa/ HBFa
$iMe2But / HBF4 PyrlBF4 I
CH2CI2
lll
- goo , -250
Jn
1 0h
*,"b
*
ButMe2Si\.,'.1 ll
tn'"\
-eoo- -goo 20 h
-\Ph
95"k
93"/" I i !
'Campos, P. J., Ananz, J., Rodriguez, M. A. 7L 38, 8397 (1997). lBarluenga, J., Garcia-Martin,M. A., Gonzalez,J. M', Clapes,P', Valencia,G. CC 1505 (1996)' rBarluenga, J., Llorente, I., Alvarez-Garcia, L. J., Gonzalez, J. M., Campos, P' J'' Diaz' M' R'' Garcia-Granda,S. JACS 119,6933 (f99?). rBarluenga, J., Romanelli,G. P., Alvarez-Garcia,L. J., Llorente,I., Gonzalez,J. M., Garcia-Rodriguez, S., Garcia-Granda,S. ACI EE 37, 3 136 (1998).
i
i
11 lll
ll w n
!it { l
iili methoxymethyl ether. 3J-Bis(tributylstannyl)propyl Homoallylic MoM ethers.t chain elongation of aldehydes and ketones by three carbon units is accomplishedby exposureto the lithiated speciesgeneratedfrom the reagent and BuLi (2 equiv HMPA). Reaction with esters affords ketones (which can be alkylated before workup). Chain elongation of alkyl halides by three carbonsis readily accomplished. If stepwiseaddition of ICI and HrO, preceding termination of the reaction is carried out the products are the 1,3-diol monoethers.
ii
,
50
N,N-Bis(trimethylsilyl)benzenesulfenamide
-#h "u..n{Xo"o" i,.,^^"n,""
PhCOOMe
Rx;lcl; I HooH I OH
are susceptibleto a
f _"YA .
| L
o"o"
after proper workul
oli I r,n"t
I
I
tn/tAo"ot
t{o (,
Wo
phs '-
*L*o" llsono.N..Mori.M. JOC63,fi'B (1998). Bis(tributyltin)oxide.13,41-42;15,39; 18' 54;19'40 Aminesfrom azides.t The oxide reagentis convertedin situ into BgSnH by a hydrosilanesuchasPhSiI{3to effectthereduction' rHays, (1998). D. S.,Fu,G.C.JOC63,2796 oxime O-mesylate. 4,4'-Bis(trifluoromethyt)benzophenone Grignard reactionwith the reagentgives Primary amines.t Copper(I)-catalyzed N-substituted imines. Acid hydrolysis releases the primary amines and the bis(trifluoromethyl)benzophenone. rT.utrr.i, H., Hayashi, Y., Narasaka, K. CL 317 (1997).
Bis(triflyl)imide. Michaelreactions.t Transferof an allyl groupfrom allylsilanesto the p-positionof proceedsin thepresence of TfrNH. cycloalkenones rKuhnert, N., Peverley,J., Robertson,I.TL39,3215 (1998).
N,O-Bis(trimethylsilyl)acetamide. Enamination.t Ketone condensationwith secondaryamines using BSA [or is also Iodomethane as dehydratingagentis quite advantageous. bis(trimethylsilyl)ureal present. rYamamoto, Y., Matsui,C.JOC63,377(1998). N,N-Bis(trimethylsilyl)benzenesulfenamide. aldolreactionareconverted Cyclizntion.t Diketonesthatcanundergointramolecular The products and PhSN(SiMer)r. BuoNF by treatmentwith sulfenimines to cycloalkenone
.Barbot, F., Aiderr. V
Bis(trimethylsigl I Baeyer-Villiga rn thepresence of a Gonlich, R., Yanulor
Bis(triphenylphoc ftKeto sulfonet catalyzed by (Ph.Pr rKamigata, N.. Udodr
Bis(triphenylphoed Conjugated e* reaction of carbonr I end (EIO).,P.
Ledford.B. E.. Carrcr
Bis{triphenylstenny
Dehalogenatiot Jehalogenationof r r'complished. Th€ rE :.\ $ aler.
:.hulrz.E. K. \' . Harp
Bis(triphenylstannyl)selenide 5l
tc\,oM
are susceptibleto attack by Grignard reagentsto afford [ -substituted 2-cycloalkenamines. after proper workup.
-vo-?o ""*o"
PhsN(siMe3)2 |
--l-Y*ttn
( r ; B A F ; r F * l V l
/\'/MsBl
l HCI: NaOH
rBarbot, F., Aidene,M., Miginiac, L. SC 28, 32'79(1998).
lu SnH bY a
Bis(trimethylsilyl)peroxide. Baeyer-Viltigeroxidalion.t A newprocedureusesthe silyl peroxideastheoxidant of a Lewisacid(e.g.,SnClo)' in thepresence 'Gottlich. R.. Yamakoshi,K., Sasai,H., Shibasaki,M. SL 971 (1997).
rr.rrent gives r\ and the
dichloride. Bis(triphenylphosphine)ruthenium of silyl enol etherswith a sulfonylchlorideis Sulfonylation ftKeto sulfunes.t ( 50-9 17o). (Ph,P)rRuCl, s, I 8 example catalyzedby rKamigata,N., Udodaira,K., Shimizu,T. JCS(Pl) 783 (1997).
e J-positionof
Bis(triphenylphosphine)trichlorooxorhenium' Conjugated esters.t An alternative to the Emmons-Wadsworth reaction is by reactionof carbonyl compoundswith a diazoaceticesterin the presenceof (Ph.,P)rReOCl., and (EtO).,P. rLedford, E.M. TL 38,8125(1997). B.8., Carreira,
srng BSA [or nerhaneis also
Bis(triphenylstannyl) selenide. In the presence of fluoride ion the effective Dehalogenation of *haloketones.t (PhrSn)rSe in MeCN at room temperature ls by of cr-haloketones dehalogenation significantodor and is not sensitive it has no handle as is easy to reagent The accomplished. lo water.
on .rreconverted r. The Products
E. K. V., Harpp,D. N. S I 137(1998). Schultz,
Borane
52
-Enlcrr.
9-Borabicyclo[3.3.1]nonane . 14' 52-53; 15' 43-44; 17' 49-50 on the other hand, the Reduction of turtiary amides.t Tertiary amines are produced. aldehydes' reduction with dicyclohexylborane or disiamylborane affords Through chelation with 9-BBN the selectivealkylation of 2-aminobenzllnmine.2 group (t-BuoK, RCH2X)' benzyl amine is quantitatively alkylated at the side chain amino LiberationofthealkylatedproductsisbyhydrolyriswithaqueousHClorNaoH. delivers a primary cleavage of 2,2-dimethyl-4-pentenoic esters.3 Hydroboration on treatment with function alcoho'l which undergoes intramolecular attack on the ester of alcohols' protection for NaOH. This procedure enablesthe use of such hindered esters ester' tertiary a group from The development arosefrom failure of removing the pivaloyl
lJrr \a&L
Borr Bo.z enJ ca 3nfraDcl \]ratrt
rgent
nr :ai.r-D(
o
.o \\ /:\
UX
'-(
oH
/\-
)
EtaN/cH2ct2
O''T
Br.ra. tB"-r irdrfil '1^rrd| '\nrr
99%
9 - B B N /T H F ; N a O O H
trla
rcodjoiun,G., Singaram' B. IL 38' 1717(199"7)' 2Bar-Haim, G., Kol, M. rL39,2643 (1998)' 3Crimmins, M. T., Canoll,C. A., Wells,A. J. TL39,7005(1998)'
r3lrE:1
:{r*crrc R6d ;.rcrJ to
Borane. 18, 58; 19, 42-43 Hindered tertiary amines such 2,6-disubstituted Reduction of hindered imides.t imides with borane' arylamines can be preparedby reduction of the corresponding of chiral aminesfrom preparation the enables cleavage of hydrazines.2 This method SAMP and RAMP hydrazonesin two steps' of 1,2-diphenylcyclobutene cis_2,5-Diphenyhorolane.3 An unexpected reaction which on conventional boracycle, ofthe with borane results in the stereoselectiveformation
EAm
Io r6rran
>
rt
oxidation gives the meso-diol.
Ph
-----rPh
lll
BH.'1116
---:* 50"
PN
Ac tiv ation of aziridine s.complexation with borane.
A I B
x
H
OH
,n&'n
0n
Ph
90%
Lithiation of aziridines with s-Buli becomesroutine after
rAkulu,M. R.,Kabalka, c. w. sc 28,2063(1998).
IJ '-"ioa
Borane-dimethylsulfrde
)
'- : ,rtherhand.the
ku .\rrh g-BBN the C
BuOK.RCHrX)' \rOH.
o{:
.:rers a pnmary ,:t treatmentwith
r
) r : i .lron of alcohols. fr :: . .t tertlary ester.
53
2Enderr, D., Lochtrnan, R., Meiers, M., Muller, S., Lazny, R. S/- 1182 (1998). 3lh".-itt", F., Knochel, P. ACIEE 37,2460 (lgg8). aved"3r, E., Kendall,J.T. JACS ff9,6941 (1993).
Borane-amines. 13, 42; 18, 58; 19, 43-44 Borane adducts with N N-dialkylanilines are desirable reagentsbecausethey are liquids and easy to handle.l The N-ethyl-N-isopropylaniline is a superior reagent which shows enhanced reactivity in dioxane but low reactivity in dichloromethane.2 The borane-N-trimethylsilylmorpholine complex is a crystalline and air-stable hydroborating agent.3 Reductions.a anti-1,3-Diols are produced from B-hydroxy ketones when the reduction is carried out in the presenceof LiClOo. iBrown,H. C.,Zaidlewicz,M., Dalvi,P.V. OM 17,4202(1998). rBro*n, H. C.,Kanth,J. V. 8., Zaidlewicz,M.JOC 63,5154(1998). rsoderquisr, R. ZL 39,6119(1998). J. A., Medina,J. R.,Huertas, osalunkhe, A. M., Burkhardt,E. R. Zl38, 1519(1997). sNu.ayana, C., Reddy,M. R., Hair, M., Kabalka,G. W. fZ 38, 7705(1997).
/,-
Borane-dimethyl sulfide. 14, 53; 15, 44; 17, 50-51; 18, 59; 19, 44 Reductions.t Derivatives of amino alcohols are obtained from the corresponding ketones in which the amino group is protected as phosphinamide. Diastereoselectivity is observedwhen the protected amine is situated in close proximity to the carbonyl group.
E\ Dr
1.6-disubstituted :h borane. , hiral aminesfrom ::phenylcYclobutene r.-h on conventional
Reductive amination of ketone* is accomplished in two steps.The borane complex is used to reduce RRGNF{,+C1- which are formed by condensation of the ketones with ammoniain the presenceof TiCl-Ti(OPr")0. A convenient preparation of N-methylanilines is by Methyhtionof anilines.' sequentialreaction with HCHO, borane-dimethyl sulfide, and iodine/aqueousNaOH.
Ph.r,,..:rU- Ph
t- N -
l
BXe BH3'5Y", +
OH
![.: 'teomes routine after
.+
I NaOH, 12 Ph-N-Me l--------*
PhNHMe
THF
I Ph
^Ytn
[Ph-N=QF{2
95"/o
Unsaturated chromium Fischer carbene complexes are converted l,3-Diols.a I,3-diols under standardhydroboration conditions using borane-dimethyl sulfide.
OMe T'"-
BH3.SMe2/ THF;
pnN\4coru ffi
oH I
pnMon*rnMo" 1Q%
54
Borontrichloride
T' C'' Wills',M'.T54' 8827(1998)' rPulme., J' R', Walsgrove' M. J', Studley, ACS51' 351(1997)' T 'lJunrron, A., Lindstedt, Olsson' E'-L', 3Hu,H.-J.,Ahn,Y.-G.sc 27,1543(1997)' F' I ' TL 38' &65 (1997) aBarluenga, F'' vud""u'd' J'' Fananas' "', ^*n;;;'' J.,Granados,
Diisopinocamphcybhb preparationof IpcrBCl in sin 81.7-l00%o yield, 87-99% c Silic onlb oron exc haagt
alkenylsilane is convened rc a oroduct can be used in Suz
19' 45 Boron tribromide.13, 43;14,53-54;18'59; useful and highly reactivedienophilesare These Cycloalkenyldibron,o,boranes'1 with BB5' The Diels-Alder adductsare preparedfrom cycloalkenyltributylstannanes readilyconvertedto angularbicyclic alcohols'
BO
MessirV),:r7t:rsirvre3
"*,
/ / \ :
.***^J"
BB13
HOOH 80%
glycals are formed as major products from 2-Deoxy'a,glycosides'2 The glycosides is used as promoter' by addition of alcohols' BBr, or BCl, ll-ee,Y.-K., Singleton,D' A' JOC 62'2255(199'7)' S' SL 1007(1998)' 4ori,irnu, K., Nagai,H., Ushiki' Y ' Matsumura'
rButler,D. C. D., Alper,H. CC 2lh".mitte, F., Knochel,P. ACt 3crane,S.N., Bumell,D.I. tol azhao,M., King, A. O., Lffs.r. sBubud.i,F., Farinola,G. M.. F
Boron trifl uoride ethenla 6O-63;19,46-48 Oxidative decompositb treatment of nitrite esterssi
59-60;t9'45-46 trichloride. 13' 43;14,54;15' 44; 18' Boron *'";;;;r"""rr;., unit on trearmentwith BcL and Et,N alcohol an lose esters carbamate ..r h^, ^-f, an organtc inrefluxingbenzene. BClt and A sequential reaction of RBt! with Aminesfrom boranes' equation of configuration. The following azide leads to the amine with retention
Acao Glycosylation. It has bccn other alcohols.2 mediated byesterswhich is is the rean Of interest ethersto 3+etrahydropFanl
illustratesastereoselectiveapproachtocycloalkylaminesonthebasisoforganoborane isomerization.2 t
t BnNH
HzB. Ph
(.*rn i l
BH3'THF
"'Ph
5oo
""Ph
B C t g; BnN3
l
cun.,fo/',"o^'
\...Ph
(
l V,",cn 81"/"
An improved method for the synthesis 4,4-Dimethyl'7,3-cyclopentaned'iones'3 with involves a BCI ,.-catalyzedieaction of 3,3-dimethyl-1,2-bistrimethylsiloxycyclobutene ketones.
l
Thc Aldol reactions. r-butylthioetheneas dons c .ilyl group has a crucial cfft :re formed by treatmentof a an acetal side chain.6
Borontrifluorideetherate 55 Diisopinocampheylchloroborane.a A convenient and economical method for the preparationof IpcrBCl in situ (for asymmetric reduction of alkyl aryl ketones, l0 examples, 81.7-I00Vo yield,87-99Vo ee) is by admixture of BCl, with NaBH, and cr-pinenein DME. Siliconlboron exchange.s For the sake of increasing reactivity in coupling an alkenylsilane is converted to a boronate by reaction with BCl, and then with catechol.Such a product can be used in Suzuki coupling. nophilesare dr': .rriductsare
Bcr3 O-" Messi..v)^:..v4sir,,,,r. ao-4.,A6r,"". ffi
Phl- Pd(o) PhVVsiu",
Y-'-I
r
rButler,D. C. D., Alper,H. CC 25'75(1998). 2lh".mine. F., Knochel,P. ACIEE37,2460 ( 1998). 3crane, (199S). S.N.,Bumell,D.J. JOC63,5708 azhao,M.,King,A. O., Larsen,R. D., Verhoeven, T. R., Reider,P. J' TL38,2641(199'7)' 5Bubrd.i,F.,Farinola, L., Naso'F. T54' 1085(1998)' V., Mazzone, G. M., Fiandanese,
UC\ andEt,N
!. l\
.,nJ an organic '.\lng equatlon : \rrganoborane
Boron trifluoride etherate. 13,43-41',14, 54-56; 15'45-47;16,44-4'7;17' 52-53;18' 60-63; 19. 46-48 Oxidative decomposition of nitrile esters.t Aldehydes and ketones are formed on treatment of nitrite esterswith BF3'OEt2(net elimination of HNO)' Glycosylation, Acetoxymethyl glycosides undergo catalyzedalkoxy exchangewith other alcohols.2It has been shown that BF3'OEt2 enhancesthe displacement of glycosyl esterswhich is mediatedby Yb(OTO.,.1 Of interest is the rearrangement of 3-tributylstannylprop-2-ynyl tetrahydropyranyl ethersto 3-tetrahydropyranylpropynols.a
a)
cun,/to)""o\.nrr.
lF
I
BF3'oEt2
".k?,
-
cur,fo/"'\on 66% (>95o/. de)
the sYnthesis r elobutenewith
The Mukaiyama aldol reaction employing 1-triisopropoxy-lAld.olreactions. r-butylthioetheneas donor displays exceptional Cram-type selectivity, thus the bulk of the silyl group has a crucial effect on the level of 1,2-asymmetricinduction.s Bicyclic lactones areformed by treatmentof a hydroxyalkylalkyne substitutedwith tungstenand also carrying an acetal side chain.6
56
Boron trifluoriile
etherate
Ho--r. )
cP
(ocbw--
ertoe"
-6*
\
*Pp (oc)dwYo)
Y')
air/ Hzo
BF+-u
C'AcYbb pres€nceof is cs Ho@t
U
CH2Cl2
(Meo)zHcJ
81o/o
77"/"
y'"..rs
to 'rmatic aldehydesfragmentin situ arc and derivedfrom ketones Conventionalaldols affordstYrenes'7
PhtcHo
+
eslcl.
catbafiBre
ryY.^ o
BF3'OEt2
,^n/ P r
i
-'
'\1
HO..AA
Fcrez C . Fac ttkttl.L lL I
o
hexane A
urans'8'.'"1?1llSi]"ltl"n#i'll'uJlj:T:t"fr: s-Metattateit2'3'dihvdrof aldehyc on reaction with
dihydrofuran derivatives converted to PYridines'
I
BF3€E.2: Itoclswto' -;il + MecHo t =rt)
(oc)gw--1
I
SuUotu \ICPBA in dr
i'P'''r ' ueonozHzo
\arnarPr-T-l ft f iunet 'Drrrs.A P-| \jrng. K''$ I XrbdfrG 'L. $'-T.l-r "Dcr. E. Lt? 'f.rrx. E FSugerur V :S4r.n ll S-{e{V '\ crofrr 'Frutrrr
OH
S S
ormations'?"":::"ff:1:::tJ*$lTl}::rt:trT: Functionatgroup,ansf
frrr-t o,*"".."*',',,;':ilr::1,il.,ff:q;["]i]]i#l#,:;_*n"n"n",,.ar I-f6ti is *""';-;;;;, carbamates derived CYcloProPanation' derivatrves' cycloProPane
acetals"andcar
Tr-\rSatBr
\.rs. R - O H'/\ BF3€Et2
OBn
BnO
CH2Cl2
+ BnO""<:1 ''1 A
l.*-l
fnt a
Drttr
(65 : 35)
,noA.n'u.*
b(sru!
t
740/o
S.fit'
trr.rrtCd r BF30Et2
OCOOMe
/-\ / ""o-\_/arnru.
/Ph
+ ll
PhMe
MeO sbF
'23o
\r 94"/"
H. , T
Bromine
S7
In the reaction between ketene silyl acetals and aroyl chlorides, the C-Acylatian. presenceof is essentialwhen the latter contain a strongly electron withdrawing group.13 Homoallylic amines,ta A three-componentcondensation involving an aldehyde, a carbamateester,and an allylsilane is accomplishedin the presenceof BFr'OEtr.
817"
y'^\./siMres
sltu to Bment in
pnAcHo
*"Yo.'zP^ o
Pn"te BF3€Er2 cH2cl2
I
"*\
/o"n tl
*o? are oxidized to sulfoxides with sulfuxides.ts 2,5-Bis(trialkylsilyl)thiophenes whenBF,'OEI, is omitted. are obtained of BF,.OEtr.Sulfones MCPBA in thepresence
give further
^-'.,..*\..-or I i \.,ry
l
/
58%
dlir lhl drazonesto 1r. rrouPfromthe f. rikenes to afford
'r\
rPerez, F. O. SC28' 3011(1998)' M. A., Perez,R' M., Guadarrama, C., Perez,S.,Zavala, 2Mereyala, H. B., Gurrala,S. R. C4 863(1993). 3Yamanoi. T., Iwai,Y., lnazu,T. JCC 11,819(1998). 4Buffet,M. F., Dixon,D. J.,Ley,S.V., Tate,E. W. SL 1091(1998). 5Davis,A. P.,Plunkett,S.J., Muir, LE. CC 179'l(1998)' 6liang, K.-W., Chandrasekharan, M., Li, C.-L.,Liu, R.-S.JOC 63,7289(1998). tKubulku,G. W., Tejedor,D., Li, N.-S.,Malladi,R. R.,Trotman'S. ?54, 15525(1998). 8Li,w.-T., Lai, F.-C.,Lee,G.-H.,Peng,s.-M.,Liu, R.-S.JACS120,4520(1998). eDiez,8., t opez,A. M., Pareja, l.M. TL39' 7955(1998)' R.,Lassaletta, C.,Martin,E.,Fernandez, roEuuns, G.,Taylor,R. J. K. SC27, 1819(1997). E. F., Lewis,N. J.,Kapfer,I., MacDonald, "Sug"raru,M., Yoshida, J. Sa 1057(199S). ''sugawara, (1997)' I. JACS119,11986 M., Yoshida, ''stefaniak.M. H., Tinardon,F., Wallis,J. SL67'7(199'7). raVeenstra, S.J.,Schmid,P. TL38,997(1997). r5Furukawa, N., Zhang,S.,Sato,S.,Higaki,M. H 44,61(1997).
Bromamine-T. Alkenes are converted to N-tosylaziridines on reaction with N-Tosylaziridines.t as a catalyst. TsN(Na)Br with CuCl rVyas, A.V. TL39,4715(1998). B. M., Bedekar, R.,Chanda,
H
r"o "\/ A
Bromine. 13, 47 ; 14, 56-57; 15, 47 ; 18, 64; 19, 48 A procedure for bromination in water is reported. Free radical bromination.t N,N-Diacylhydrazines are converted to azodicarbonyl products Dehydrogenation. by bromine2 or NBS3 (pyridine is also added to the reaction medium). Sulfufides.a The oxidation of sulfides is conveniently performed with bromine absorbedin hydrated silica gel. :Shaw,H., Perlmutter, H. D., Gu,C.,Arco,S.D., Quibuyen 'T. O' JOC 62'236(199'7). :Starr,J. T., Rai,G. S.,Dang,H., McNelis,B. J. SC27,3197(1997).
N-Bromosuccinimide
58
-P'' Ma' D'-l'' Wang'H' 3Wane, Y.-L.,wang,X'-Y'' Li' J -il. il. ".. Bohnen' G' J S 1238( 1998)'
SCn ' [73'7(199'l)'
bromoform as of ethvlene acetals using esters't The cleavage of AIBN and benzene'also in the presence in refluxing by brominesourceis achieved
Bromoetheiftcaiot" acetalizationwith a 5-nortr and MeOH in the first r*o reductive elimination. whr anotherequivalent of thc ;
u"\ojl#;"rthvl
TsOH.
,1.99'7)' N -J'sc 27' 303 'Lin,H.-x.,Xu,L'-H''Huang' 19' 50-5I 15' 50-5I I 16' 49;t8' 65-67; 49;.14'57-58; 13' after N-Bromosuccinimide' from thesubstrates TheN-benzyl"o* t""t*ed amide's"t of Debenzylntian andtreatmentwith water' catalyst)in chlorobenzene into methylcarbamates heatingwith NBS (AIBN Primaryamidesaretransformed Hofmann,,ooon,"*f,"nii
bvNBStoundergo areactivated oximes
t
Y,i#y,'i::#:;;:::::!o'o,-,"n'"nrt in ArBr 'oarrord .-i*#**:*:" "1illffii.::ffiillffi1ffi:1ho' MecN acids U"nffiinstead anipso-substitution'
t'"#l':::i":il::ffiH"
of NBs gin"' ;
ioaiOes'Estersof thebromic
'n MecN dependentr or phenols.y'*,*:tis sorvent becomethe malor
O-ot"'""ni"""f' predominantly
ut" fott"O but in CS' o-bromophenols
rromthe
o'ooi',tj.n,n carboxvtic acids'o t':"i'lY^ with
llil'^,Ti'r"3t;'ff' j::::l"Jff:ji paren,acids-,".ry:::";'#:,:"?':;TJil***:'*:,:T;:l enoic acids undergo the
NBS'LiOAc
,nAA"oon
il;;-
-
'\
'Br
'nA/v 600/o
(97 : 3)
on reaction with are converted' into 1'2'3-indanetriones are l-lndanones Oxidation' or 3-(1-hydroxyalkyl)-2,3-dihydrobenzofurans , -j"r."' DMSO,8 in NBs directly' t unrto*"0 into the acylbenzofuranse
cHO
NBS. AIBN t
K2CO3 / PhH A
lBaker, S. R., Parsons..{ F :Huang, X., Seid,M.. Kerll tKitaga*a, o., Fujita M'. ( 'Thieber, C., Prakash.C. K icu.r"no, N. C., Ruano- J I "Zhang,L. H., Duan. J.. Xu Chowdhury, S., RoY. S. ,l( 'Tatsugi, J., Izawa, Y. SC l eSuzuki, Tsutsui' H.. K H., t65't (199't). "Fu.lioka, H., Nagatomi. Y,
Bromotrichlorometbrr Dehydrogenation with BrC( aromatization Cyclizatian.2 A reatmentof 6-en-I -Yn-
Bromotrichloromethane
ra
I-
bromoform as .r of AIBN and
A desymmetrization method fot meso-1,2-diols involves Bromoetherification.ro acetalizationwith a 5-norbomene-endo-2-carbaldehydeand treatment with NBS-collidine and MeOH in the first two steps.One hydroxyl group of such an adduct is then releasedby reductive elimination, which can be protected.Reaction of the mixed acetalat this stagewith another equivalent of the meso-diol completes a cycle.
r9.50-51 after :hesubstrates \\ iltef.
:ilcthyl carbamates Zn - MgBr2;
\BS to undergo
'1.'(\ to afford ArBr in -.:. . ,,i thebromic acids
\
oBn HO
.:rrrntlent:5 ln MeCN r: .. hecomethe major
NaH , BnBr
@\
)4 \-,
r^foH
\'^o*
,""q"
'1) 90o/o(er = 99 :
'htained from the ( )n the other hand, .i. beendeveloPedT
\
!/
with e'-:' :rc\ on reacdon r Jrobenzofurans are
I
):
--cHo
rBaker, A. F.,Wilson,M. TL39,331(1998), S.R.,Parsons, rHuang,X., Seid,M., Keillor,J. W. JOC 62,'7495 (1997). rKitugu*u,O.,Fujita,M., Okada,M., Taguchi, T. CPB45,32(1997). *Thi"b"r,C.,Prakash, N. A., Olah,G. A. SL l4l (1998). G. K. S.,Petasis, 5cu.reno, N. C.,Ruano,J. L. G.,Sanz,G.,Toledo,M. A., Urbano,N. SI l24l (1997)' 6zhang,L.H., Duan,J.,Xu, Y., Dolbier,W. R. ?L 39,9621(1998). Tchowdhury, S.,Roy,S. JOC62, 199(1997). nTatsugi, J.,lzawa,Y. SC28,859(1998). eSuzuki, K., Iibuchi,N., Ogawa,M' H 45' H., Tsutsui,H., Kano,A., Katoh,S.,Morita,T., Matsuda, (1997). t657 "'Fujioku,H., Nagatomi,Y., Kitagawa,H., Kita, Y. JACSll9, 12016(199'7).
Bromotrichloromethane. Certain dihydro derivatives of aromatic heterocycles undergo Dehydrogenation,t aromatizationwith BrCC1,-DBU. Cyclization.2 A preparation of 2-bromoalkylidene cyclopentanones involves reatment of 6-en-l-yn-3-oneswith BrCCl. in the presenceof AIBN.
60
r-Butyl(drcyanobenzylidene)aminocarbonate lAriza,
X., Urpi, F., Viladomat, C.. \riLtti
Ph..
-+ _
\ '\.:zo
BrCCl3 AIBN
r-Butyldimethylsilyl chloride. Dehyd.ration of aldoxhnes.' TBS-CI and imidazole in DMF.
Cl3C
I
91"/.
I
to.tiz-M*"ial"t, M., Pinero,L., Ufrct L
cleavageemploysBrccL-di-t-butyl Cleavageof aLIYIglYcosides'3 The oxidative peroxide. 331(1997)' lwillinmr, D. R., Lowder'P' D., Gu,Y'-G'' Brooks'D l:L38' (1997)' 2919 'C"^*^ff, N. J.,Linehan,S', Weavers'R' T' IL 38' (1998)' 3Kruh-e., R.' Hennig,L', Findeisen'M ' Miiller' D'' Welzel'P' f 54' 10753
converted to sulfoxides.3
' ";--o*"*".i "N-t-Butoxycarbonyloxaziridines' into N-Boc hydrazines At low temperaruresamines are transformed byN-(t-butoxycarbonyl)-3-trichloromethyloxaziridine.Thisreagentissuperiortothe3-aryl analogsbecauseby-productfromthereactionischloralwhichiswatersolubleandmuch more readilY removed'
ct3ccHo Ph3P=N-Boc
,1
/-Butyl hydroperoxide. Oxidations. Withmicro*ale alcohols give epoxides.t 1,4-Dihrv&
r) oxone ,Boc ^. l{Ia'o" NHNHZ
,
| \Acoo"" t l
lPalombi,L., Bonadies,F., Scettri.A. f 5 :Chuuun,S. P.,Dantale,S. W., Kalkorc.t lBonadies,F., De Angeles,F., L,ocati.L.
seltr /-Butyl hydroperoxide-metal Oxidatian of activated alcoh& alcohols are oxidized to the correspr modified by introducinga zeolitej u catalystinsupercriticalcarbondioxi of allylic alcohols with t-BuOOH-
dependsonthechir alpolymer.5 An N,My'/'-trimethyl-1,4.7-tru acetatecan alsobeemployedascatrl
llHNHBoc
,oH
i.oo""
A
+ t-&r
56% C-Amination'2
to Ketone enolates are aminated
provide
cr-(N-Boc)amino
derivatives,e.g.,withN-(t-butoxycarbonyl)-3-(p-cyanophenyl)oxaziridine'albeitinlow yields. A' TL39' 8845(1998)' rvidal,J.,Hannachi, J'-C',Hourdin'G'' Mulatier'J'-C''Collet' (1998)' 3709 ' gna..t, o., poiesz,C.' Joseph, 9' R' ?A
a-Hydroxylation of Phydmrl t dihydroxyketones.
o o H i l l
.Y carbonate' t-Butyl (c.cyanobenzylidene)amino N.Bocamines..Iminophosphoranesderivedfromalkylazidesareconvertedtothe protected amines by I-BuOCOO-N=C(Ph)CN'
\-,
+ t-BuOO|
,-Butylhydroperoxide-metalsalts
tAriza,
6l
X., Urpi, F., Viladomat, C., Vilarrasa,J. 74 39,9101 (1998).
l-Butyldimethylsilyl chloride. Dehydration of aldoximes.t TBS-CI and imidazole in DMF.
Nitriles are obtained when aldoximes are treated with
rOrtiz-Marciales, M., Pinero,L., Ufret, L., Algarin,W., Morales,J' SC28,2807(1998).
-Jr-r-butYl /-Butyl hydroperoxide. Oxidati.ons. With microwave irradiation alcohols are oxidized by t-BuOOH, allylic alcohols give epoxides.r l,4-Dihydropyridines undergo aromatization,2and sulfides are converted to sulfoxides.3
c hr draztnes r:,, the3-arYl rlc .rnd much
AaooM"
rPalombi,L., Bonadies,F., scettri,A. 753, 15867(199'l). 2chuuun,S. P.,Dantale,S. W., Kalkote,U. R., Jyothirmai,V. S.,Kharul,R. K. SC28' 2789(1998)' 3Bonadies, F.,Locati,L., Scettri,A.TL37,7129 (1996). F.,De Angeles,
/-Butyl hydroperoxide-metal salts. In the presence of cucl, benzylic and allylic oxidation of activated alcohols. alcohols are oxidized to the corresponding ketones.rThe Volacac)r epoxidation has been modified by introducing a zeolite? and by using a vanadyl salencomplex3or VQOPTi)ra as catalystinsupercriticalcarbondioxide.Poly(tartrateesters)areusefulfortheepoxidation but the degree of asymmetric induction of allylic alcohols with t-BuooH-(-ProlTi, dependsonthechiralpolymer.5 An N,M,M,-trimethyl-1,4,7-triazacyclononanecomplexofruthenium(III)trifluoroacetatecan alsobeemployedascatalystfor alcoholoxidation.6
'lBoc )OMe
+ t-BuOOH
tgIgc99cl9*
{
z-lr -\--*''\ -Boc)amino ribeit in low
*Hydroxylation of fthydroxy ketones'1 dihvdroxvketones.
o
L) (, c.'nr ertedto the
Asymmetric
o (i-Pro)4Ti
+
t-BuOOH
(+)-diethyltartrate
version provides o,P-
o o H i l l
/v I
l'"oH
58% (86%ee)
62
ButYllithium
oxidationofalkenes.l.Alkenesareconvertedtomethylketonesusingafluorous times. with a Mn(II) system allylic biphasic ,yr,"-.t The catalyst can be reused several oxidatione is observed. primary aliphatic and alicyclic amines are oxidized by t-BuOOH in Nit oott onrr.to in dichloromethane' the presenceof (/-BuO)4Zr and 3A molecular sieves (199'7)' lRothenberg, G., Feldberg,L.' Wiener'H', Sasson'Y' JCS(Pl)2429 2Palombi, L., Bonadies,F., Scettri,A' f 53, 11369(199'l)' 3Haas,G. R., Kolis,J. W . TL39,5923(t998)' (1998)' aPesiri, D. R.,Morita,D. K., Glaze'W , Tumas'W' CC 1015 tt"""fi, L., Karjalainen'J. K., Sherrington, D' C'' Hormot'O' CC 123(1998)' 6Fung, W.-H.,Yu, W.-Y.,Che,C'-M' JOC 63'2873(1998t' tf.opi, fnl.,Paju,A.' Kanger,T., Pehk,T' ZL 38' 5051(1997)' 8Betzemeier, F', Knochel,P' TL39' 6667(1998)' B., Lhermitte, 'Vincent,J.-M.,Rabion,A.' Yachandra, V K'' Fish'R' H' ACIEE 36' 2346(1997)' t0Krohn,K., Kiipke,J. EJOC6'79(1998)'
Ph3sivlsiPh3
Ph. ,Ph
M"rsi-si-o \,{
Allyl, p-anisylmethyl, and es! on exposureto BuLi.6 On the othc under such conditions.
hYPofluorite. t-Butyl '"-i-i"i"rr*r".,
accomplished in Electrophilic r-butoxyfluorination of alkenes is in G-t-butoxy ketones' CHClj. The reaction with enol derivatives results
BnoA''
'', .'/Wlo
rBen-David,1.,Mishani'E., Rozen'S JOC 63' 4632(1998)'
isocyanate-f'butyl isocyanide' Butyl 'Nirriles.l primary nitroalkanes are converted to nitriles with
this reagent
A synthesisof alkynesfrom I l-lithiomethylbenzotriazole. foll ylmethyl ketonetosylhydrazora
combinationinthepresenceoftriethylamine.Conjugatednitrilesareformedmorerapidly from allylic nitroalkenes.
BUNCO- BUNC
'n\-*3"*
N -N
c5HllcooEr
N
J
BuLi :
Et3N / PhMe 8oo
7
74"k
rEl Kai.. L., Gacon,A. ?L 38,3391(1997)'
-61 ; 17' 59-60; 18''74-'17; 19' 54-59 Butyllithium. 13, 56; 14,63-68; 15, 59 be reported' Its Various uses of BuLi as a base continue to Deprotonation transfer agent'I group acts as a propargyl deprotonation of allene gives a species which DehydrofluorinationbyBuLiisasteptowardformationofusefulcompoundssuchas CF;c1lt1p,"rr2andCFr=QllSnMer)'3Theformersubstanceshowsbothnucleophilicand electrophilic activities. 1'1-anions'a The sila-Wittig 1,3-Disilylpropenes behave as 3-silyl-2-propene allylsilanes'5 reiuransementtransforms allylic alcohols to transposed
Acyl anion equivalenS. I consecutive C-alkylations.t Thc methanolto give ketones.A re|l by treatment with a Grignard req ketenedithioacetals.e
G)
Lspn
BuLi/ Czllrs(
BUU/ Ptr.s.S
Butyllithium
63
OH
.:n! a fluorous .\.tem allylic
Phtsi\AAo^ ...............................................* t " ' \-.,/'osiPh3 )o rHF; BuLi ;
Ph3siVvsiPh3
PhCHO/ HMPA
5Oo/"
Ph, ,Ph
M"rsi-si'o
p6-^.P-SiMe3 +
BuLi/ THF -78o - 25o;
Ph'J' I
Me3SiCl
\
\,{
.
68'/"
Allyl, p-anisylmethyl, and especially, benzyl ethersundergo elimination to give alkenes on exposureto BuLi.6 On the other hand, ethersof the THP, MOM, and trityl types are stable under such conditions.
.1;.omplishedin
wlorBS
THF - hexane 797o
A synthesis of alkynes from esters via a one-carbon homologation is by reaction with l-lithiomethylbenzotriazole, followed by elimination of the derived benzotriazol-l'.\r:h this reagent f,.rlcd more raPidlY
yl methyl ketonetosylhydrazones.T
N 'N
-")'*
Z\.-\ i l i \.'^-N'
.
N
BuLi;
N
c5HllcooEt
14"
.:
n
\\ \
BuLi/ Et2O
a
,NNHTS
CsHtr
csHrr
csHl
730/"
te :-l-59 B : he rePorted. Its ::,.rp transferagent'l rl .'nrpounds such as h,:h nucleoPhilicand The sila-Wintg
Acyl anion equivalents. Benzotriazol-I -ylmethyl methyl sulfide can undergo consecutive C-alkylations.s The products are readily hydrolyzed with acidic aqueous methanolto give ketones.A related processinvolving alkylation and sulfenylation followed by treatment with a Grignard reagentto eliminate benzotriazole completes the synthesisof ketenedithioacetals.e
f)-\* \.'/--(
'Z'r\
MeMgBr
BuLi / czHrscHzBr; \A1uI BuLi/ PhS-SPh
PhMe A
,\sen
SPh I CzHrs
J
SPh
CzHts SPh 887"
64
ButYllithium conjugated acyl anion equivalents' Allylic 3-(benzotriazol-1-y1)-3-ethoxyalkenes-are
Thus,deprotonationwithBuLiandreactionwithalkylhalidesorestersfurnishenonesl0and 1-(Benzotriazol-1-y1)-3-(diphenylphosphoryl)-1unsaturated cr-diketones,rr respectively' ester B'B diTi::.::tivalent' ethoxy-l-propene ls a propanoic at C-3' and dihydro ly'-dithirn can be deprotonated 2-p-Anisylmetht^yttt't'rt-!'e products 3-alkylated the of 3-anion.r2 Desulfurization accordingly, it is an ullyr"ui"oior furnishes allYlic alcohols'
"Y f-l
(i-Pro)4Ti OBn
MPMO,,-
Halogen'lithium
S q H
BuLi/ THF;
exchanges'
OBn
MPMO
Debromination of
2'6-dibromo-4-methoxyanlllne
withBuLienablestheaccessofthemonobromoderivative'l3Thebromineatomof l-chalcogeno.l-bromoalkenesisconvertedtolithiumwithretentionofconfiguration;the electrophiles'ra resulting speciesare reactlve toward Tin-lithiumexchanges'Amethodforthepreparationofcr-hydroxyboronicesters g-stannylalkyl MOM ethers' subsequent Sn/Li exchange of takes advantageof the facile of the alkoxy groups of with boronic estersdisplacesone reaction of the lithioalkyl ethers N-rributylstannylmethyl-2-methoxymethylpynolidine the latter.rs The reaction of chiral alcohols'r6 diastereomericmixtures of B-amino gives ao"r,yi", then and with BuLi (but not aldehydes sulfones and rrr" "onoJnr*ion step involving olefination. ketones)isfavoredbyDME.|?Asulfoxideu".,ioninvolveseliminationofp-sulfinyl mesylateswith BuLi'r8 Aninterestingsynthesisofl-pentafluorophenylallenes(alsol-chlorotetrafluorophenyl le analogs)has been rePorted
* Ph3P-CH3
BuLi;CoFo
Ph3P=CH2C6Ft
TKatitzky, A. R., Wang, J., Katod oKatritzky, A. R., Oniciu, D. C.. G 'Katritzky, A. R., Wang, J. H,a. : loKut itrky, A. R., Fang, D.. t:ng. ''Katritzky, A. R., Wang, 2.,Lang''Caputo, R., Guaragna,A.. Pdutl "Cossy, J., Poitevin, C., Pardo. D 'oB.ugu, A.L.,7eni, G., de Andrd ''Carmes, L., Carreaux, F., Carbco tocoldhurn,I., Holman, S., Lang-A 'tHu.t. D. J., wu. W.-L. rL 37. 5I l8Satoh. T.. Yamada,N., Asano. T reshen, Y., Zhang,Z. JCR(S/ 601 r
C5H11COC|
c6FV{w
t,.*-*
F -
rCub"rur,J. A., Alvarez,L 'X TL39' 3935(1998)'
';;,t., Dolbier' x'x Joc62'1:!1.q::l) w. R.,Rong, Gupta'A' cc 139(1997)^. K', A. " K., Brisdon, {;;, K' rL3e'2s7s(1ee8)' H',oshima' ilinotuuo, 4;il,r., (1Y)'--
tru*u"tri, A., Doi, N., Tamao,K' JACSll9'233 M' cL 1039(1996)' 6Marsushira, " :';t":;,;.,nrk"vama, Y', Kodama' M., Nagaoka,
2did Butyllithium-lithium 6-Uthiation of 2 -m ethoxyi bipyridylt is by reaction of Gr from 2-methoxypyridine.r \l-h ethoxide the lithiation occurs t
rGros.P..Fort,Y. ,/CSfPl/ 35I 5 ' I lGros,P.,Fort,Y., Caubere.P. ./(l
Butyllithium-lf/Vn'nf ;Y-P
Thesystcm Lithiation.t claimed to be superior to BuLi' claim tenuous.
'Thu-er, A., Faigl,F., Agai.B,. T
Butyllithium-potassium t-br Exposu Deprotonation .\ gives (Z)-2-alkenylsilanes.
acids.2 The preparation of a rsopropenylether at low temPr Aliphatic sulfidescan be d .ulfides are readily obtained cr Co nj ugate e limination' .ilkadien-I -ols by treatmenl of
Butyllithium-potassiumt-butoxide
Dr.,r:cquivalents. nr-: r'nonesloand rr.:r,,.phoryl)-lru:.] .rt C-3, and lL'. .rled Products
65
lKutjjt ky,A. R., Wang, J., Karodia, N.Li,J. JOC 62,4142 (1997). 8Katritzky, A. R., oniciu, D. C., Ghiviriga, I., Soti, F. JOC 63,2110 (1998). eKatritzky, A. R., wang, I. H 48,295 (1998). r0Kutritrky, A. R., Fang, D., Lang, H. JOC 62,706 (199'7). rrKut itrky, A. R., wang, Z'Lang, H., Feng,D. JoC 62,4125 (1997). r2cuputo, R., Guaragna,A., Palumbo, G., Pedatella,S. JOC 62,9369 (199'1). "Cossy, J., Poitevin,C., Pardo,D. G., Peglion,J.L. SC 27,3525 (1997). toB.ugu, A.L'Zeni,G., de Andrade,L. H., Silveira,C. C. SL 595 (199'7). ''Carmes, L., Carreaux,F., Carboni,B., Mortier, J.TL39,555 (1998). r6coldham, I., Holman, S., Lang-Anderson, M. M. S. JCS(Pl) 1481 (1997). r?Ha.t, D. J., Wu, W.-L. TL37,5283 (1996). r8satoh, T., Yamada,N., Asano,T. TL39,6935 (1998). leshen, Y., Zhang, Z. J CR(S) 602 (1998).
I
\.,-oBn
ts-'.r'thoxYaniline ^: 'riline atom of ' , 'i: rluration; the
2-dimethylaminoethoxide. Butyllithium-lithium A convenient synthesis of 6-methoxy-2,26-Lithintion of 2-methoxypyridine. bipyridyl' is by reaction of 6-methoxypyrid-2-yllithium with pyridine which is obtained from 2-methoxypyridine.2 when TMEDA is used instead of lithium 2-dimethylaminoethoxidethe lithiation occursat C-3. rGros.P..Fort,Y. /CS(Pi 3515(1998). ) 2Gros. P.JCS(PI)307t (199't). P..Fort,Y., Caubere,
n '. h()ronlcesters
c::.r.. subsequent F .r
'\ir\\'
gTOUPS Of
\:r'r:h\ lPyrrolidine r -: "rhtlls.l6
a.,::r'.rdes (but not rJ:: :r ()f P-sulfinYl
Butyllithium- N N N' N' N" -pentamethyldipropylenetriamine. The system for o-lithiation of anisole and cr-lithiation of pyrroles was Lithiation.l claimed to be superior to BuLi-TMEDA. However, different ratios of the ligands make the claim tenuous. 'Thu-"., A., Faigl,F., Agai,B., Toke,L. SC28,443(1998).
r :r':r.rtluoroPhenYl
E=
JNV 93%
Butyllithium-potassium /-butoxide. Exposure of l-alkenes to the strong base and then a chlorosilane Deprotonation gives (Q-2-alkenylsilanes.r Alkenoic acids are similarly converted to 4-silyl-2-alkenoic acids.2 The preparation of an acetone enolate equivalent is by lithiation of methyl isopropenylether at low temperature.l Aliphatic sulfides can be deprotonateddirectly with this base. Triorganostannylmethyl sulfides are readily obtained on subsequentreaction with \SnCt'a 2-Alkenyltetrahydrofurans are converted to conjugate Conjugate elimination.s alkadien-l-ols by treatment of the strong base. BuLi- I-BUOK
......................*
HovlNNR
THF R = Me
7O"/"
R = Et
75"/"
66
Butyllithium-N,N,N',N'-tetranethylethylenediamine
Unsaturated acetals undergo elimination and 1-Iithio-I-atkoxy-7,3-dienes.6 deprotonation. Alkylation of the resulting speciesfollowed by hydrolysis with dilute acid leads to 0,,p-unsaturatedketones.
Cleavage of iotlomerty byd These speciesmay be funcrrc convertedto organozincreagen
OH
oEt
L. I
H', MeOH, H20
BuLi - I-BUOK
Mo., 580/"
65%
lDesponds, Franzini,L., Schlosser,M. S 150 (1997). O., 'Moret. E., Franzini, L., Schlosser,M. CB 130, 335 (1997). 3Taherirastgar,F., Brandsma, L. CB In,45 (199'].). al-ui. Y., Glass,R. S. 7I38, 8615 (1997). sCominetti, F., Deagostino,A., Prandi,C., Venturello,P. T54, 14603(1998). oDeagostino, A., Prandi, C., Venturello, P. T 52, 1433 (1996).
s-Butyllithium.14,69;16,56: ll Lithiation of aromatb co4 initiatedby o-formylationof ba ethersaredeprotonatedat the bca
Butyllithium-sparteine. Chiral carboxylic acids. Carboxylation of organolithiums derived from addition of Buli-sparteine to styrenesl or deprotonation of N-Boc-N-arylbenzylamines2 affords the acids. [2,3]Sigmatropic rearrangementof cr-propargyloxyacetic acids provides an accessto allenic a-hydroxy acids.3 rw"i, X., Taylor,R. J.K. TA 8, 665(1997). 'Park,Y. S.,Beak,P. JOC 62, 15'74(199'7). 3Manabe. S. CPB 46.335(1998).
(TMEDA) Butyllithium-Nn,lV',lV'-tetramethylethylenediamine. The dianion is generatedin high yield. Tribenzylidenemethane dianion.t After conversion of glycols to 2-sila-1,3-dioxanes (e.g., with 2-Siloryalkanols.2 di-r-butylchlorosilane) further ffeatment with BuLi-TMEDA gives mainly the primary
\/, .\z\,Aro"
lUbedu, J. I., Villacampa, M., Aveod 'Azzena, U., Pilo, L., Sechi, A. f Sa.
s.Butyllithium-spaileine. Lithiatio n of carbanutc s. reagentsr in THF usingthesolubl reactions. 5-Alkenylcarbamatcs ir substituents may be lithiatedar d derivatives.2
O *") Ph-/ril-
'Dieter, R. K., Velu,S.E. JOC 62.3n -Woltering, M. J.,Frdhlich,R., Hoppc
alcohols.
9H
'witt, O., Mauser, H., Friedel. T.. \ll 'Tanino, K., Shimizu, T., Kuwahan 'Charette, A. B., Naud, J. TLg.'l2g
B u L I / T H Fo o ;
FB",s;;
?-tK
\ n o
s-Butyllithium-Nnn',1/-teArr
BuLi/ TMEDA - 7Bo
84'/.
(isomerratio 94 : 6)
o-Nilration.r Thesequenc introduce a nitro group to the o-po
s-Butyllithium-N,N,N',1V'-tetramethylethylenediamine
) .. rmination and i. . \\ ith dilute acid
Primary homoallyllithiums are generated. cleavage of iodomethylcyclopropanes.3 These species may be functionalized (e.g., conversion to the primary alcohols) and converted to organozinc reagentsfor further processing.
BuLi/ TMEDA; + 02 '70o
OH
-$o
tl
L. I
47o/" twitt, O., Mauser,H., Friedel,T., Wilhelm, D., Clark, T. JOC 63,959 (1998)' 2Tanino, K., Shimizu, T., Kuwahara, M., Kuwajima, l. JOC 63,2422(1998). scharett", A. B., Naud, I. TL39,'7259 (1998).
s-Butyllithium . 14, 69 ; 16, 56; lE, 77-7 9 : 19, 60-61 Lithiation of aromatic cornpounds. The Friedliinder synthesisof quinolines can be initiated by o-formylation of benzamides via the lithio derivatives.l Arylmethyl methyl ethers are deprotonatedat the benzylic position, enabling functionalization at that site.2 rUbeda,J. I., Villacampa,M., Avendano,C. 5L285(199'1). 2Arr"nu,U.,Pilo,L., Sechi,A. T 54,12389(1998). r.: lrom addition of r\- ::rlflcSl affords the ni
p: '. rJes an accessto
s-Butyllithium-sparteine. Lithiation of carbamates. The lithio derivatives zue transformed into cuprate reagentsrin THF using the soluble salt CuCN.2LiCl. Such reagentscan be used in Michael reactions.5-Alkenyl carbamatesin which the nitrogen atom is attachedto quaternarycarbon substituentsmay be lithiated at the ethereal carbon atom, and cyclized to cyclopentanol derivatives.2
,,,^\ -\r,o\ \ / \ /
)
i l
r r . : : g hl i e l d ' . l - J r , ' r a n e s( e . g . ,w i t h
(
Ph--/ b<
N--r
\
o
s-Buli - (-)-sparteine ; -78o
HzO
.>+")
,^-."-"i1307o
6. ::',.rtnlYthe PrimarY rDieter.R. K.. Velu,S.E. JOC 62,3'798 (199'7). rwoltering,M. J.,Friihlich,R., Hoppe,D. ACIEE 36, 1764(1997). _,),.
I
^ \^-k'
H^..' ' \ , u n :I
(maior)
(isomerratio 94 : 6)
18, 7 8-7 9 s-Butyllithium-N,N/V'/V'-tetramethylethylenediamine. The sequenceof lithiation and reaction with nitromethane serves to o-Nitratian.t introduce a nitro group to the o-position of MN-disubstituted benzamides.
68
l-Butyllithium r€
Benzglic substitution.2 Secondary amides of arylpropionic acids are subject asymmetric induction by a chiral substituenton the nitrogen atom upon lithiation.
U"rU I
l- 7;8 "l *2z L
ffl
/TMEDA-Et2O s-BuLi
H
MeX -78o
pr,MuApn
: 9 1 = ll I pnMruApn H 50% (dr91
rstagliano, W., Malinakova,H. C., Takayama,A. SC27'24137 (1997). K. 2eippel, D. J., Curtis,M. D., Du, H., Beak, P. JOC 63,2 (1998)'
Lithiations. Lithiarion but the productre:uranges ro intercepted with carbonylcom
r-Butyllithium. 18,7 Cr,Cr-Dibromalkanoicesters lose two bromine atoms and the Ynolateformation.t ynolateson treatmentwith t-Bul-i. Substitutedacrylic acids are give lithium alkoxy group to is added.From aldehydes,the major products (>99: I ) compound produced when a carbonyl (E)-configuration. have an
B(
-\
t-BuLi/ THF
/)
-78o -oo
Br
I oLi
l------_
Treatment of bis(bromoalkenes) with r-Buli D ebrominativ e cy clization.' which disilyl compoundsmay be derived. from TMEDA gives cyclic species
-Br
BnN/ \---
\
t-Buli / Et2O +
Me3SiCl
\ ^" \
f
1,,A,
L"
encno 73"/"(E:Z >99:t1
J
osiMe2But t.BuLi I -
and
Propargylic carbonates ar I -alkynylsilanols undergo dilir with electrophiles at the propc be used in the preparationof S
N1 \ N-
,^-.'-SlVes B n N'{SiMe3 ll
-
t
TMEDA 82"/o
Halogen-lithiurn exchanges. An improved procedure for the preparation of O,2-dianion of allyl alcohol3consistsof consecutivetreatment of 2-bromo-2-propenol with a Grignard reagentand t-Bul-i. Benzyne-tetheredalkyllithiums are readily generated;those bearing three methylene units undergo cyclization to indans.a Generation of an extremely strained polycyclic compound by fragmentationshas been demonstratedby in situ trapping.
deiodinative
'Shindo, M., Saro,Y., Shishido.K. -Barluenga, J., Sanz, R., Granador 'Hegde, S. G., Myles, D. C. SC Z|. -Bailey, W. F., Longstaff, S. C. .ra Tsuji, T., Okuyama, M., Ohkira V 'Iius, M. A., Hu, H. TL 39, 593i r I Ishikura,M., Matsuzaki,y., Agah 'Uehira, S., Takaku, K., Shinokubo. 'Karsch, H. H., Schreiber, K.. Herk
/-Butyllithium
69
!r, .r.tds are subject ! -:.'n lithiation.
lr
I c c N
N P H
i
h
\ /-\
-\
t
1/-T
o
lr91:9)
Lithi.ations. Lithiation of 1-t-butyldimethylsiloxyallene with r-Buli occurs at C-1, but the product rearrangesto give lithium l-r-butyldimethylsilylallenoxide which can be interceptedwith carbonyl compounds to afford g-substituted propenoylsilanes.6
nr ':,'lnlne atoms and the iu: -:.:utedacrylic acidsare r r ::',r1orProducts(>99:l )
OSiMe2Bur
OSiMe2But
t-BuLi
OLi
.*
\^ t\
LiAc\
eutue2si^co
oHo
PhcHo I -
lr.'Sive2aut
Pti )f tl
72"/"
.--
coon
,,1^t
hopargylic Ph"'
73"k(E: Z >99:1)
carbonates are converted to substituted allenyllithium species,T but
l-alkynylsilanols undergodilithiation (with t-BuLi-HMPA) and the subsequentreaction with electrophiles at the propargylic position.8 The doubly lithiated N-methyl aminals can be used in the preparation of Si-N- and P-N-containing heterocycles.e
Ir -'..., uith t-Bul-i and B : --' .lenved.
( . . --SiMe3
N-
t-BuLi
-78o
.N-
sict4
Me,N1 ,/-Nlvle
"5r-/'\-J""
^-.-giysa
t r a : ,r the PreParation of
rr()mo-2-propenolwith S i:l
:r.rdily generated;those
o:'.:'. '.rnd by
deiodinative
'Shindo, M., Sato,Y., Shishido,K. TL39,4857 (1998). lBarluenga, J., Sanz,R., Granados,A., Fananas,F. J. ,IACS120,4865 (1998). 'Hegde, S. G., Myles, D. C. SC 27,2111 (1997). 'Bailey, W. F., Longstaff, S. C. "/OC 63, 432 (1998). Tsuji, T., Okuyama,M., Ohkita, M., Imai, T., Suzuki,T. CC 2151 (1997). "Tius, M. A., Hu, H. TL39,593'1 (1998). Ishikura, M., Matsuzaki, Y., Agata, I., Katagiri, N. 254, 13929 (1998). 'Uehira, S., Takaku,K., Shinokubo,H., Oshima,K. SL 1096 (1993). 'Karsch, H. H., Schreiber, K., Herker, M. CB 130, 17"17(1997).
l -(/-Butylperoxy)-1,2-benziodoxol'3(1H)-one
t-Butyl methanesulfonyloxycarbamate' for degradation A modified version of the rearrangement Inssen reafiangernenl ofcarboxylicacidsisviareactionofthecorrespondingacidchlorideRCoClwith triflate, 2'6-di-r-butylpyridine' and sob*"qu"nt treatment with zinc FBuocoNHOMs, RNHCOOBn are obtained' benzyl alcohol in MeCN. Benzyl carbamates P'L' JOC 63' 10040(1998)' rStafford, S' S',Barrett'D' G'' Suh'E' M'' Feldman' J. A.' Gonzales'
-G. Imines.2
1-Butyt-3-methylimidazolium salts' As Asymmetric hydrogenatian'r
ionic
liquids
at
room
temperature
the
imidazoliumsaltsarearecyclablealternativetodipolaraproticsolvents.The tetrafluoroboratesaltServesasamediumintheasymmetrichydro genationof as effectively as the conventional 2-arylacrylic acids (Ru-BINAP catalysts) homogeneoushydrogenationconditions' ""^^';;rr*"-i (at c- 1) in [bmim][PFo] ihe atkytation of indole (at N) and 2-naphthol at room temperatureis highly efficient' of arenes in Aluminum chloride-mediarcd acetylation Friedel_crafts oryiaon.t theanalogousionicliquidl-methyl-3-ethylimidazoliumchlorideoccursatroom temPerature' ?A 8' 1'77(1997)' rMonteiro, A.L.,Zinn'F' K , De Souza'R F ' Dupont',J' teJ",vr. 1.,McCormac, K' R' CC 2245-(1998)' P' B', Seddon' K' R CC2297(1998)' teJurnr,C. J.,Earle,M J', Roberts' G'' Seddon'
/-ButYl nitrite. Benzamides.|t.BuoNoisusefulforthegenerationofbenzynefromanthranilic acid.Abenzamideistbrmedondiazotization(andsubsequentdecomposition)inthe presenceof an alkyl or aryl isocyanide'
f-\-*" \--/
anthraniricacid> $ruHcoen \-J tBuoNo
(1998)' rRigby, s. Joc 63,6"142 J.H.,Laurent, 19' 63 l-(l-Butylperoxy)'1,2-benziodoxol-3(lH)-one' phenolsareconverted p-Substituted 4\hButylperoxy>Z,s-'y-'ion'*adien- 7'ones'| l' and to thedienoneswith a combinationof t-BuOOH
S
reaction with l. substituentto a r-l 'ochiai, M., Natu to.triui, trt.. K.;ltt
Butylstannonic r Transesterifi
secondary alcolm toluene). Functicr
commonly emplo :Furlan,R. L. E.. Y
r-Butylsutfinyl d Aminc pta
r-butylsulfonamrd
These derivativcs they are cleaved I
:Sun. Weinreb! P.,
t-Butylsulfrnyl chloride
-fI
b: Jcgradation I RCOCI with -b,;:r ipYridine,
-Go'.
o-o t-BuOOH
r/Vlr i l t \/--(
b
rt-:,r,1998).
\
/:\
./\
o
(1)
t-BuOO \:,/
/--
Secondaryamines such as 3,4-dihydroisoquinoline are dehydrogenatedon reaction with 1. A similar reaction on N-alkyl-N-methylanilines converts the methyl substituentto a r-butylperoxymethyl group. Imines.z
nncrilture the .."\.-nts' The 1r,,g.'nationof i j,\nventiOnal
'Ochiai,M., Nakanishi,A., Yamada,A. TL 38, 392'l(1997). to"hiui, M., Kajishima, T. H 46,'71(lgg'1). D., Sueda,
t:: hrnimllPFo]
Butylstannonic acid.
i(': ()f arenesln N-,rr\ at room
The transesterificationof carboxylic esters with primary and Transesterification,r secondary alcohols is readily achieved with BuSn(=O)OH as catalyst (e.g., in refluxing toluene). Functional groups such as acetals,double and triple bonds, N-protecting groups commonly employed in peptide synthesis,and B-lactam ring are not affected. rFurlan, A. TL39,2257(1998). R. L. E.,Mata,E. G.,Mascaretti,O.
| ::,'ln anthranilic ns,'ttion) in the
r-Butylsulfi nyl chloride. Amine protection.l Primary and secondary amines are protected as t-butylsulfonamides by reaction with t-BuS(=O)Cl followed by oxidation with MCPBA. These derivatives are stable to strong basesincluding those used for metallation. However, they are cleaved by acid. rSun,P.,Weinreb,S.M. JOC 62,8604(1997).
)P-
Cj'.,'.' iile Convefted
lLee, A . S . - Y . ,y e h , H . - C . ,S h i e ,J . - J .T L t . 'Lee, A. S.-Y., Cheng,C.-L. I53. l.tas5 r t9 -Abele, E., Rubina, K., Abele, R., Gaukhnu
Calcium hypochlorite. 18, 84 Chlorinationof benZami.des.t With large substituents on the nitrogen atom of N,N-dialkylbenzamides the chlorination in aqueous HOAc takes place preferentially at o-lp-positions. Suffoxides.z
A convenient oxidation of sulfides employs Ca(OCl)r-moist alumina in dichloromethane at room temperature(32 examples,60-95Va)' lDong,C.-2.,Julia,M., Tang,L EJOC1689(1998). 2Hiruno, M., Yakabe,S.,Itoh,S.,Clark'J. H., Morimoto,T. s I l6l (1997)'
9
Y
- 7go
i o
l
t
v
A. R., pleynet,D. p. M.. yang. g
1,1'-Carbonyldiimidazole. 13, 66: 16 6 (Jreas.t A mixed urea is formed r
730/"
ftEnamino esters.2 Tertiary imrn ImrCO to give N-(B-aminoacryloyl )imrd Thio estersare obtained when thiols arc i
rBatey, R. A., Santhakumar, V., yoshina-lsh -Fustero, S.,de la Torre,M. G.,Jofre.V.. Car 63,88250998).
l
I -1.-
-\'T-g,
o
Meo.',r.,v\ LDA/ THF
rKatritzky,
then with MeI and another amine. A bar last stage.
3-Carbomethoxypropionylcyanide. y,e-Diketoesterc.t This reagenteffects C-acylationof ketones. It is suitable for of 1,3-cyclohexanedione. C-acylation
a\ t l
Carbonylbis(1,1'-benzotriazole ). (Jreas.r A mixed ureais fornrcd at roomtemperature, thenwith a secon
\
Q.,Sen,S.E. rL39,2249(1998)-
o-Carborane.
Carbonyl protection.t o-Carboran carbinols which are very stableto aqueou carbonyl compounds is effected on trEl temperature.
'Nakamura, H., Aoyagi,K., yamamoto.\.../O Carbon monoxide. Esters. Radical carboxylation without a catalyst is achieved by irradiation of a hexane solution of a secondaryalkyl iodide, an alcohol, and a base under CO (>20 atm).r Primary chlorides and phenylthio groups are not affected. rNagahara, K., Ryu,I., Komatsu,M., Sonoda,N JACSll9' 5465(1997)'
3-Carboxypyridinium
chlorochrometa Oxidation of ethers.l Trimethl.lsrl, converted to carbonyl compounds b1 thrs
: Mohammadpoor-Baltork, I., pouranshinanr. S
Carbon tetrabromide. Silyl ethers are cleaved by heating with CBro in methanol,r whereas Deprotection. deacetalizationis similarly performed (in refluxing MeCN/H'O), sometimesassistedwith
Cerium(IV) ammonium nitrate. 13. 67_ 85-87;19,67-69
ultrasound.2 I-Bromoallcynes.3 Bromination of l-alkynes is achievedon reactionwith CBrr-KOH in the presenceof l8-crown-6 in benzeneat room temperature'
Functionalization of alkenes. Sqr using the combination of NII.SCN and alkenes with I,-CAN in aqueous MeCli
72
Cerium0V)ammoniumnitrate
73
rl-ee,A. S.-Y.,Yeh,H.-C.,Shie,l.-J. TL39,5249(1998). 2lee,A. S.-Y.,Cheng,C.-L.Z 53, 14255(lgg7). tAbele,8.,Rubina,K., Abele,R.,Gaukhman, A., Lukevics, E. JCR(S)618(1998).
"t:r(lgen atom of ri-,-- freferentiallY at l'.:
(-
Carbonylbis( 1,1'-benzotriazole). (Jreas.t A mixed urea is formed when the reagent is reacted with an amine in THF at room temperature,then with a secondamine in the presenceof NaH under reflux. lKatritzky,A. R.,Pleynet, D. P. M., Yang,B. JOC62, 4155(1997).
rnoistaluminain 1,1'-Carbonyldiimidazole. 13, 66; 16, 64; L8, 85 (Jreas.t A mixed urea is formed when the reagent is heated with an amine in THF, then with MeI and anotheramine.A base(e.g.,Et N) used to scavengeHI is addedin the last stage.
r::,
It is suitablefor
C \/\
rBatey,R. A., Santhakumar, V., Yoshina-Ishii, C.,Taylor,S.D. 7t 39, 626'7(1998). rFustero, dela Tone,M. G.,Jofre,V., Carlon,R. P.,Navarro,A., Fuentes, A. S..Canio,J. S. JOC S., 63,8825(r998).
a
t
-Y 1-
ftEnamino esters.2 Tertiary imines derived from ketones undergo C-acylation with which on alcoholysisgeneratesthe esters. ImrCO to give N-(B-aminoacryloyl)imidazoles Thio estersare obtained when thiols are involved in the last step.
l o-Carborane. Carbonyl protection.l
o-Carboranyllithium reacts with carbonyl compoundsto give
carbinols which are very stableto aqueousprotic acids and Lewis acids. Regenerationofthe carbonyl compounds is effected on treatment with KOH in THF-IIO (100:l) at room temperature. 'Nakamura, Y. JOC62,7809(1997). H., Aoyagi,K., Yamamoto,
3'
rr irradiation of a rJer CO (>20 atm)'r
3-Carboxypyridinium chlorochromate. Oxi.dation of ethers.t Trimethylsilyl and tetrahydropyranyl ethers are directly converted to carbonyl compounds by this reagent. rMohammadpoor-Baltork, I., Pouranshirvani, S. S 756(199?).
rncthanol,rwhereas :lrrres assistedwith t:
:,,nrvith CBr,-KOH
Cerium(IY) ammonium nitrate. 13,67-68; 14,'74-'15',15'70-72; 16' 66; 17,68; 18, 85-87: 19.6?-69 Functionalizationof alkenes. Styrenes are converted to vic-bisthioisocyanates using the combination of NHTSCN and CAN.' Iodohydrins are formed by reaction of alkenes with I-CAN in aqueous MeCN.2 Note that halohydrins are also obtained by
74
Ceriurn0V)ammoniumnitrate
exposing epoxides to CAN and a quatemary arnmonium halide.3 The addition of malonic estersto C-2 of glycals is promotedby CAN.a Ofidation of malanic acid derivatives. Hydroxylation of malonic esters5 and intramolecular cyclization of the N-alkenyl monoamides to furnish B-lactams6have been
oD'Annibale. A.. pesce,A.. Resr 'Kim. H. J., yoon. U. C.. Jung.1. . 'Takemoto, y.. yamagaa S.. Fu 'Linker, T., Sommermann,T.. Gl
reported. Cerium(Ilf
chloride heptt Hydrolysis, Alcohols r dioxolanes,2respectively. on t
Ph\_.Ph
o ll
oh ^ANr cAN veooc.rA..4 zPh + rytY MeoH An J
'11
MeOOC,,,___-/:6y"
Michael reactions. Th acceptors is promoted by CcC without solvent.l A preparauo from organocerium deri vati r.e
/-*t/\ 49"k
derivatives result Pictet-Spenglercyclization.l 1,2.3.4-Tetrahydro-B-carboline of N-trimethylsilylmethyltryptamine. from CAN oxidationof carbamates oxidative opening of [3+2]Cyctoaddition.s Species derived from derivativesby CAN can be interceptedby a remotedoublebond, aminocyclopropane The following exampleshowsN-debenzylationduring the leading to cyclopentanes. process.
\
f4cooet - C q H "r r r{X7
cAN-NaHCo3
+
MeoH-rHF
N-Bn
/---z-..-cooEt
\4:'
l*
-cooEt /flzcsHrr \ t n \..-'^---J
^ Yil=o
PhCHO +
r""
NHMe
777o
l',2'-Didehydro-2ldeoxynucleosides are converted to a Ferrier rearrangernenl' butenolide and its orthoesteron treatment with CAN in MeOH.
rBso1")rNJ
LilCe exchange.a lThe san o,a-difl uoro-B-ketophosphon N itrile aldo I re ac tions. CeClr.7HrO.6Addition of a ctl
cAN/MeoH>,rro{fl"""
'Bartoli, G., Bosco,M., Marcanrm -Marcanroni, 8., Nobili, F., Banoh. -Boruah, A., Baruah,M.. prajapan. -Blades. K.. Percy,J. M. fZ 39.gfi 'Blades, K., Lequeux,T. p., perc1.. "Xiao,Z., Timberlake, J. W. f 54. {
Cerium(IV) oxide-rutheniuul Oxidation of aldehydes.t
TBSOi' 76"/0
tNui.,v., Nair,L. G. zr 39,4585(1998). 'Horiuchi,C. A., Ikeda,A., Kanamori,M., Hosokawa, H., Sugiyama,T., Takahashi, T. T. JCR(S.) 60 (1996). 3l.-poo., N., Kazemi,F., Salehi,P. SC 27,1247(1gg'..). -Linker,T., T., Kahlenberg, F. ,/ACS119,937'7(1997). Sommermann, 5Nuir,V., Nair,L. G.,Marhew,J. TL3g,280l (1998).
'Vocanson, F., Guo, y. p., Namr. J
Cerium(IV) triflate. Op ening of three-membcta epoxides.Thus, styreneoxide n absence of nucleophiles episulfi llrunpoo.,
N., Shekarriz, M., Shirinr.
Cerium(IV) triflate
X.n \)i malonic c ..ters5 and rn',.' have been
75
6D'Annibale, A., Pesce,A., Resta, S., Trogolo, C. TL38, l82g (lgg7). 7Ki-, H. J., Yoon, U. C., Jung, Y.-S., Park, N. S., Cederstrom,E. M., Mariano, P. S. JOC 63,860 (1998). oTakemoto, Y., Yamagata,S., Furuse,S., Hayase,H., Echigo, T., Iwata, C. CC 651 (1998). 'Linker, T., Sommermann,T., Gimisis, T., Chatgilialoglu,C. TL 39,9637 (1998).
Cerium(Il! chloride heptahydrate. 14,'l 5-'17 ; 15,'72-i 3', 16, 67-68; 18, 87 Hydrolysis. Alcohols and carbonyl compounds are recovered from silyl etherd and dioxolanes,2respectively, on treatment of the latter with the Ce(III) salt and NaI in MeCN. Michael rcactions. The conjugate addition of 1,3-dicarbonyl compoundsto Michael acceptorsis promoted by CeC\.7HrO. The mixture is subjected to microwave irradiation without solvent.3A preparation method for allylic difluorophosphonatesemploys adducts from organocerium derivatives and phenyl vinyl sulfoxide, the former being obtained by n\ r!lveS
fesUlt
,'nening of x. Joublebond, rrr,,nduring the
LilCe
exchange.a lThe same organocerium reagents can be acylated to afford a,a-difl uoro-B-ketophosphonates).5 Nitrile aWol reactions. B-Hydroxy nitriles are formed in the presence of CeCl,.7HrO.6Addition of a chiral ligand (BINOL) increasesthe diastereoselectivity.
OH
OH
-cooEt /.-----1r/Usn11 \-N
+
at*
Ph
:
..........................._Ph"\,'CN t B-(+)-BINOL
CMe '-oMe
:
l
+
P6'1
-CN l
Ph
Ph
THF .78O
NHMe
rE J()nvertedto a
.
PhCHO
BuLi- CeCl3
(85 : 15) 88o/o
rBartoli, G., Bosco,M., Marcantoni,E., Sambri,L., Torregiani,E. SL 209 (1998). 2Marcantoni,8., Nobili, F., Bartoli, G., Bosco,M., Sambri,L. JOC 62,4183 (1997). 3Boruah, A., Baruah,M., Prajapati,D., Sandhu,J. S. SC 28, 653 (1998). *Blud.r, K . , P e r c y ,J . M . T L 3 g , 9 0 S 5 ( 1 9 9 8 ) . sBlades, K., Lequeux,T. P., Percy,J. M. Z 53, 10623(lgg':.). 6xiao,Z.,Timberlake. J. W. I54, 42ll (lggil.
Cerium(IV) oxide-ruthenium(Il! chloride. Oxid.ationof aldehydes.t Theoxidizingsystemconverts to carboxylicacids. aldehydes 'Vo"unron, (1998). F.,Guo,Y. P.,Namy,J.L.,Kagan, H.B. SC28,25'17
r.': T T. JCR(S)@
Cerium0V) triflate. Opening of three-membered heterocycles,t Ce(OTf). is a catalyst for alcoholysis of epoxides. Thus, styrene oxide reacts with ethanol to give cr-ethoxyphenylethanol.In the absenceofnucleophilesepisulfidesare convertedto 1,4-dithianes. ilrunpoo., N., Shekarriz, M., Shiriny,F. SC28,347(199S).
76
Cesiumcarbonate
Cesium acetate' 19r 70 Displacement of triflates'
r L-- ,*^,*anr of ^f alkTl allrvl trr triflates with Acetates are obtained by treatrnent
Mannose of l8-crown-6is advantageous' ?t-lllllf^-*ing CsOAc.Thepresence
other
hydroxygroupsprotectedundergoesstepwisedisplacements,accordingtoreactionconditions.l pivol Aco-1\zot -6gn ' pivof--\-\'/"-' 18-crown-6 OTI
T19 azoPiv L \ -n PivoS::U,oBn bft
PivO-r OAc
aco-1-Lfo. -orn
csoAc PhMe
18-crown-6
PivO-r-/v
))))
84o/"
o, [rzlr'otls
70'885(1997)' 1Suto, A',Takai'Y BCSJ K.,Yoshimoto' Cesiumcarbonate'13,10;!4''l'7-'78;15'73-75.;.18'87-88;19'70 with TsONHCOOET enonesis achievedby reaction Aziridines. a''i'iOlnution of availableby reactionof a l"t"'yf-2-alkynylaziridines are usingCsrCO,as base'rCt'itJ from the parentsalt RCft=Nts'2 The ylide is generated propargylsulfoniumytiOewifr with Cs.CO.. '
oH
a Aryl(diphenyl)silanes th€nu usingCsFto generate
.Z
cs:cog
Br
PhcH=NTs cH2cl2
Pn\J'
,
N
Ts 85%
Arybmines'3
+ l
,SiMe3
-SiMe3
|.
Cesium fluoride. 13,68; l,l A direct trant Ethers. reaction with alkyl halides il as methyl glycerate via dibtl As base. Both sulfidc CsF as a base. A route to c malonic ester and glYcidYl n
A Pd(0)-catalyzed displacement
uses of aryl halides with RNHt
"'"kilrl]'i;o,oxva,,nes.o A':'*I"b]:
iT:::T",':: ",,o;n.4-substituted The products are NMP in the air' tt"u-ting with Cs'COt in 2-methylphenols occurs * derivatives' I .2-lmethylenedioxy)benzene
F
HO
air / NMP 1 1 0- 1 2 o o
SiMe3 &fJ
.-or
CS2CO3
Eliminatian reactiots to CsFin DMF.- lt exposure with 2-trirne condensation step.
b{1-1,*'n-
tt'N'ttt cFur
i't=N
)" SOYo
54' 14105(1998)' lFioravanti,S.,Pellacani,L', Tabanella'S'' Tardella'P' t I ACIEE36'2(tee'])' r-in'L' -i, x'11-1, 2Li,A.-H.,Zhou,y.-G.,Dai,;.;;;;:i (ree't) ?L38'635e
R'A' I' P''singer' 3worr", t. "iii*""l.:;;qli' J.p.,Buchwald, (199'7)' tr*,
3343 c.-n., nitsenstat,M' A It 38'
PhCHO Mel
Cesiumfluoride
: elkYl triflates with rri ^ L:, :.tnt'late having other b: : rc'acdonconditions'r
PrvO--1OAc
^o-+fQ r.
Plvo--\sry
77
Cesium fluoride. 13, 68; 14, 79 ; 15, 75-7 6; 16r 69-7 0; 17, 6g; lg, gg_g9 19, 70_7 2 ; Ethers' A direct transformation of aryl silyl ethers to aryl alkyl ethersl is by their reaction with alkyl halides in the presenceof CsF-DMF. Monobenzylation of glycols such as methyl glycerate via dibutylstannylene acetals.2 As base. Both sulfides3and aryl ethersaare readily prepared from sulfonatesusing CsF as a base. A route to cyclopropanolactone involves the CsF-mediated reaction of a malonic ester and glycidyl nosylate.5
-oen
94"/"
MeOOC ,9 vr).
-H o
CsF/ MeCN
+ CH2(COOMe)2
f\rorus
v H
9,-) y' " sith TsONHCOOET r: .,::.rhlebY reactionof a ri:..i lrom the Parentsalt
63% Aryl(diphenyl)silanes are prepared from aryl bromides and s)m-tetraphenyldisilane, using CsF to generatethe nucleophile.6
SiMe3
,
CsF/ HMPA
///
t
PhuSiHSiHPhe 10oo
Y-/'
10*"
[f.,rrrrn, 82o/.
I ta: n
rJe: with RNHr uses of
4-substituted
Elimination reactions. l-Trimethylsilylethylbenzotriazoles deliver alkenes on exposureto CsF in DMF.7 In an oxidative homologation of aldehydessCsF effects the aldol condensation with 2-trimethylsilylketene O,O-bistrimethylsilylacetal and the elimination step.
.rir. The Products are SiMe3 BUL|/ THF ;
.^4.-
CsF
tt'N"f.,t cyclohsxsnone - 7Bo
F
DMF 1000
/'2
50"/"
30'. tf: I
. 1 6 .: ( 1 9 9 7 ) . . r s 6 3 5 9( 1 9 9 7 ) .
PhCHO
*
,OSiMes Me3Si
osiMe3
CsF/ THF;
-
HzO
PnAzcoott
Vo
78
Chiral auxiliaries and catalysts
lOriyama, T., Noda' K., Yatabe' K' SL 701 (1997)' 2A*k*e, l. ACS 52,819 (1998)' (1997)' toi".", 1.,Nakazawa,K., Sekoguchi,K', orita, A 111'-13633 nKituo.i, K., Furukawa,Y., Yoshimoto,H ' Otera' J'TL39' 3173 (1998)' 5Kitaori, K., Mikami, M., Furukawa, Y ' Yoshimoto' H'' Otera' J SL 499 (1998)' 6lachance,N., Gallant,M.'TL39,171 (1998)'
'i^iiui,A.
D' Joc 63'9987(1998)' M V', Toader' R.,Voronkov'
63' 8785 (1998)' EBellassoued, M., Lensen,N , Bakasse'M'' Mouelhi' S' JOC
( 1 a ) R = M e ,R ' = P h (1b) R2N= pynolidinyl. R
Cesiumtrifl uoroacetate' Displacementoftriflates,|ThiscesiumsaltisbetterthanCF.CooNaandCsoAc for inversionof alcohols' Fleet' G W' J' SL tB"1l, A. A., Pickering,L', Finn, M'' de la Fuente'C'' Krulle' T' M'' Davis' B G'' 10'7'7(199'7).
Cetyltrimethylammonium - 'iiiyaroilation.t
perman ganate' Th;
cis-dihydroxylation
of
cycloalkenylsilanes with
this
inexpensivereagentinaqueous'.BuoHordichloromethaneatroomtemperatureiS the toxic osmium tetroxide' obviously more advantageousthan using tMullyu,M N., Nagendrappa, G s 37 (1999)'
19''12-93 Chiral auxiliaries and catalysts' 18, 89-97; Recoveryofauxiliaries.Thebornanesultammoietyisefficientlycleavedfromlts acylderivativesbyhydrolysiswithatetrabutylammoniumhydroperoxide-hydrogen p".o^io"combinationlbelow0".SAMP-hydrazonesofketonesarereadilycleavedwithout racemizationwith oxalic acid'2 K i n e t i c r c s o l u t i o n s . A c h i r a l a l c o h o l i s o b t a i n e d o n s e l e c t i v e r e m o v a l o f on one based analog I of DMAP'3 or by oxidation enantiomer by acetylation using a chiral hydrogentransfertoacetonemediatedbyaRucomplex2.aBenzylicsecondaryalcoholsare resolvedbyselectiveplvaloylationwithopticallyactiveN-pivaloyl-4-t-butylthiazo]lidine-2thione'5Akineticresolutionofsulfoxidesisbasedonasymmetricoxidationwith (i-Pro)oTi-cumylhydroperoxideinthepresenceofatartrateester.6Kineticresolutionof I,3-diarylallenesisrealizedbyselectiveoxidationwithNaClocatalyzedbyachiral (salen)manganese(Ill).ompl"^]whereasasymmetrichydrolysisofterminalepoxideswith theaidofachiral(salen)cobalt0l)catalysfsolvestheproblemoftheiraccessibility. Enolizationandprotonation.4.Substitutedcyclohexanonesundergoenolsilylation 5r2 of a urea' amides 3,e 4,r0'rr and the dilithio derivative on treatmenr *ith .hir;i;;i;m and (-)-Ipc'BCl of combination a with Enantioselective enolborination is accomplished sparteine.l3
N-Phenyl-2,3-merh;-lc is formed with the chiral then be alkylated using [J
The imide 6 is an exce in ether. The ee value is al
besteffect.l5Deracemiza of a chiral l-aryl-1.2.3. potassium enolates (
remarkableefficiencies.
Ph
F
Alkylations. a-All Jiacetone o-glucoselt er n,lacetic acid derivatir ie r 1.5-dihydroimidazoles.
lhe methylation of d,-teue :hemical yields but acccp
:sters include the emplo.n ohosphine ligand E,:r ar ellyltributylstannane via I r\\'mmetric induction I rrssulfonamide11.2aFa r ill.v"lsilanethe chiral ligan
Chiral auxiliariesand catalvsts
79
RzN
ap
Ph
A /
*-.,-i?*
Meo
-9"
Li'N1 (21
R'
zN.
A
Ph N--r
/ ) r-i' \_/
'cr.
(4)
(3)
( 1 a ) R = M e ,R ' = P h (1b) R2N= pyrrolidinyl, R'= Me r .rnJCsOAc
t : t l W . J .S L
this ic::,lcratureis t.
sith
N-Phenyl-2,3-methylenesuccinimideis enantioselectivelysilylated via its enolate which is formed with the chiral lithium bis(s-phenethyl)amide.raThe other angular position can then be alkylated using LDA as base. The imide 6 is an excellent proton sourcefor returning lithium enolatesto chiral ketones in ether. The ee value is also greatly influenced by an additive, and LiBr appearsto have the besteffect.15Deracemizationof amides by protonation of their enolatesin the presence (catalytic amount) and that of the of a chiral 1-aryl-L,2,3,4-tetrahydroisoquinoliner6 potassium enolates of N-(2-hydroxypinan-3-ylidene)-cr-amino estersrT have remarkable efficiencies.
Ph
Ph.
I
!-A,-a lc.rrcd fiom its n: Jc-hYdrogen q 1.1rcd without t::lir\ ill Of One
J-::r,,nbasedon Lr-r .rictlholsare ,.:rr:rutllidine-2.,rrJation with t:, rerolutionof ,/e.r bY a chiral rr. :Poxideswith tc -.ihilitY. ::, rnolsilYlation Ir: 5l: of a urea' 'lPcBCl and
{rnt'
t'rn)""'
H
Ph \.-.,.'Ph t l
N..o
\vr N
?J\
(5)
(6)
Alkyhtions. cr-Alkylation of the esters derived from cr,B-unsaturatedacids and diacetone n-glucoser8 exhibits moderate enantioselectivities. Chiral o,o-disubstituted arylacetic acid derivatives are obtained via the trans-4,5-diphenyl-2-(1-arylalkyl)4,5-dihydroimidazoles,le the alkylation of which is highly diastereoselective. Mediation of the methylation of c-tetralone by the Cr-symmetric imidazolidinone 7 results in moderate chemical yields but acceptableee (92Vo).20Strategiesfor asymmetric allylation of B-keto estersinclude the employment of 2,3-alkadienoic esters as alkylating agent and a bridged phosphine ligand 8,2r and of a Pd catalyst in the presence of 9.22 Allylation with allyltributylstannane via free radicals derived from racemic o-iodolactones is subject to asymmetric induction by Lewis acid bound to ligand 1023 of the BINOL type or bissulfonamide 11.24For a sirnilar reaction on N-(cr-bromoacyl)oxazolidin-2-oneswith an allylsilane the chiral ligand 12 is adequate.25
E0
Chiral auxiliaries and catalysts
tn-r..
PBn ^ BnQ
Ph<
ii
--A/
),,"pn
)_.'"
(8)
(7)
"\Ya-\
(
PPhz f^y*t
V,,,,f,
OH
i,n,
OZ-T|\/
00)
(s)
.A
Ph
CoFs\ H
anri-1,3-Diolscan bc alkylationof its SAMP or R removedby a reductionpmc Chiral cyanohydrinsof I with 18 andalkylationof drc A multipurposetemplar skeleton.Proper N-acyl & addition.andDiels-Alder rc
SiPh3
Ph
,NCoFs H
r?f"> Y* *1 Ph
Ph
(12)
( 11 )
from the chiral pyrrolidinone 13 Amides bearing chirality at the cr-position are available Pseudoephedrinehas been developed through N-acylation, alkylation, anJ aminolysis.26 carboxylic acids (and other of o-branched into a practical chiral auxiliary for the synthesis functional molecules by standardtransformations)''' glycine involves alkylation of 14,28of Enantioselectiveintroduction of a side chain to phase transfer catalysis solid-liquid 15,2e and a bornanesultam derivative under glycine estersinclude N-protected of conditions.3oChiral catalystsserving in the alkylation of 17 (both alkylation involves method the quatemized cinchona alkaloid 16.31Another enantiomersare available).32
. t l
X;'(13)
MeS.-",.SMe
A
O
(.,\zN---cooMe :
--1.-
Ph
(14)
z
i l l
N
-\)Ao
s-"-'Ph (15)
Cl.. ,,O o--PaN
(l
*Heterofunctionalizd can be performed by reactio presence of a (salenlm
c-tosylaminoketones,OsO.< presence of a chiral ligand magnesium complexes wit
.V-acyloxazolidinonesusing I Interception of lithium r provides chiral c,-fluoro I
enantioselective sulfenylatic
Chiral auxiliaries and cattlysb
81
-'{\
>:
(17)
(16)
anti-1,3-Diols can be created from 2,2-dimethyl-1,3-dioxan-5-one via stepwise alkylation of its SAMP or RAMP hydrazone.33The ketone regeneratedfrom ozonolysis is removed by a reduction process.
F.
Chiral cyanohydrins of ketones are prepared from aldehyde cyanohydrins by reaction with 18 and alkylation of the phosphorylderivatives.3a A multipurpose template is the oxazolidinone 19 which is en^do-fusedto a norbornane skeleton. koper N-acyl derivatives are useful for asymmetric alkylation, conjugate addition, and Diels-Alder reactions.35
ch:r.rlpYrrolidinone13 re h.r. been develoPed nrr lic acids(and other
Cl. ,O-.t:Ph --Fi I O' 'N."',',,, / / (18)
: r.Lr lation of 14,28of ar transfer catalysis d g.rcine estersinclude r.f.riation of 17 (both
f,leS\"/,SMe tl 3 - N I
/'rAo
ph
(1s)
p nJ "1,
,,OTBDPS
N H
(1e)
*Heterofunctionalizptions. o-Hydroxylation of ketones via the silyl enol ethers can be performed by reaction with a dioxirane derived from fructose,36or NaOCI in the presence of a (salen)manganese (IID complex.3T For the preparation of o-tosylaminoketones,OsOr-catalyzedreaction of silyl enol etherswith chloramine-T in the can be emp\oyedls Chira\ presence of a chira\ \igand denved from d\dtoqurnidine magnesium complexes with the bis(sulfonamide) 20 are useful for amination of N-acyloxazolidinones using a diazodicarboxylateester as electrophile.3e Interception of lithium enolates with N-fluoro-3,3-dichloro-2,10-bornanesuharn 2l provides chiral c-fluoro ketones.{ SAMP/RAMP hydrazones of ketones undergo enantioselectivesulfenylational and phosphanylation.a2
82
Chiral auxiliaries and catalysts
Y\
cl
-!"re
rlk9' I | 1""'
o2s--^\"\
Ph,,,.rNH
LN-F -s
enl-vr
ors\iy
enre
\
V2
(271
(21)
)=" (20)
Displacementsinvolvingallylicsysten.s.Allyliccarbonatesreactwithphenolsa3 Allylic sulfones andchiralligandssuchas9' with tr," *i"ipato) species andthiophenolaa kinetic-resolution'as for *mg.ZZ.u.lffiligand compounds areformedin thereaction;;j";" z;d alylation oi t'3-dl"aruonyl atary *i t"tol-'. Excellentee accompanler' when23isadded.a6preferentialreactionofoneoftwoequilibratingdiastereomeric complexesis indicated'
A useful conctP( I basedon diene-tncr group at the othcr
cyanohydrin PhocPh cycle. Opening of cP' enantioselective oPt derived from (t-BuO
the formation of l2 derived from 32$ m
rlo
pnt'-Nphr/-
*j
(221 (23)
{\
acid and NovelligandsforPd-catalyzedenantioselectivesubstitutionsofallylicestersare24'a7 ptodo"tt from Meldrum's uno',n'" The reaction 28,5t to 27,so 26,4s converted 25,48 further (or the dicarbonates) can be cis-1,4-bisbenzoyfo*y-z-"yJtolitenes S*2'reaction'53 in the second-sogt iinournor"cular) ;i;;;"""' cyclopropane derivadves
_\}
\
\
iP/""'
A /
,/o)""' to{
1-/"\
OH
(30)
Addition a C, VerSiCN to aldch obtained in the fa chiral lanthanidc e Ligand evalua aldehydes, includ imine 36 from l-i ent-38.65
Q4l
(2s)
(26)
Chiral auxiliaries and catalysts
,zO.
,/'\
\ /XC+Mn(co)3
r \.-N PhrP \ \
Ph
t'rr:rng diastereomeric
N
\-J
(27)
:iJ.t with Phenolsa3 h r- 9 Allylic sulfones [t,r krneticresolution.4s h.arhonyl comPounds
Ph
= A Ph<-|r
-
E3
l
1i>""Pn
(2e)
(28)
A useful concept of iterative generationof contiguous stereocentersin a carbon chain is basedon diene-tricarbonyliron complexes.54Once the first center is establishedand a cyano group at the other end of the diene system is converted to an aldehyde and then a cyanohydrin phosphate, I,5-substitution with good stereocontol completes one reaction cycle. Opening of epoxides. Not too many chiral catalysts are available for highly enantioselective opening of meso-epoxides.However, mention should be made of one derivedfrom (r-BuO)oZrand the ligand30,55and a (salen)Cocomplex.56 The lattercatalyzes the formation of 1,2-diol monoesters.The dithio derivative of 3157and the lithium amide derived from 3258mediate opening of epoxides to give allylic alcohols.
'"j { ri ,..rlrc estersare 24,47 r \lr'ldrum's acid and t'c ::rrther converted to
OH
x
(30)
H Nr_,OMe
OH
N H
(31)
oMe
0vo (32)
et .r..,rr S,u2'reaction.53 Addition to C=O. Consistently good enantioselectivity in the catalyzed addition of MerSiCN to aldehydesis observed with 33 as chiral ligand,sewhile fluctuating results are obtained in the formation of cr-hydroxyphosphonateestersby an analogous addition using chiral lanthanide alkoxides.m Ligand evaluation continuesfor enantioselectiveaddition of organozincreagentsto aldehydes, including the substituted BINOL 34,6r the ferrocene derivative 35,62 an imine 36 from 2-amino-1,2,2-triphenylethanol,63 as well as the Cr-symmetric 3764and
(26)
ent38.65
34
Chiral auxiliaries and catalysts
lmil Addition to C=N. one atom away from the nit Examplesinclude p-toluencsr enolates with imines in thc p-lactams in good ee,7tand a RLi to imines.Te
HN HO
-.oH (35)
(33)
.r-.."'\*-N;zh
(421
hydroclaru Thecatalyzed
Y*Ph
a stable (salen)aluminum c Bu,SnCN.8l It is importanto An asymmetric syntlrcs N-(benzyloxyiminoacetyI )-h
oH
(37) X = CH enr-(38) X = N
(36)
Mo(CO;o and LiOH sequen Additian of allylmctab t directly attached to tlt€
and the use of mixed Cyclopropylcarbinols are prepared from dicyclopropylzinc'66 explored'67Chiral been addition has also diorganozincs such as Vfe,SlifqZnpt for the the presence of in addition to ketones tertiary alcohols are obtaiied from o.ganorinc (lS,2R)-2-(N-piperidinyl)-1-phenylpropane-l-thiol acetate funcrionalized isoborneols.6s,6e and it catalyzes asymmetric addition of is a ligand prepared trom (+)-norephedrinei0 diethylzinc to aldehydesvery effectively' Anaccesstochiralallylicalcoholsstartsfromhydrozirconationofl-alkyneswhichis addition to aldehydesin the presenceof 39'71 followed by transmetallationwith MerZn and withNiCl2-Ccl2tomediatethereactionofalkenylhalidestoketones,enantioselectivity is induced bY 40.72
syn-chlorohydrins83and aarivia two oxygen atoms and th useful for the synthesis of < en-4-ols,respectively.( - )-.S
A chiral reagentderived f tartrate reacts with aromarx alcohols sometimes in exccl been conducted in the prescr
Allvlsilanes modified bv a te
Thedifluorotitaniumbisalkoxide4lassiststhemethyltransferfromMe.Alto aldehydes.T3
F
Ph
a't-2(o.. | | \./"'2
NMe2 SH
(3e)
PH
(40)
ah -u;ril
Ph
JiFz
Ph
(41)
1-"\
'b
(4s
- Chiralauxiliariesandcatalysts Es
cHo I H
,A*\.. -NMe2 r\:-;I
Imine derivatives which contain a chiraliry center adjacentto, or Addition to C=N. one atom away from the nitrogen atom are attacked by nucleophiles enantioselectively. Examples includep-toluenesulfiniminesT4and42,1s43,76and44.17Reaction of lithium ester enolates with imines in the presence of the Cr-symmetric dimethoxybibenzyl leads to p-lactams in good ee,78and a bis(aziridine) ligand is useful for enantioselectiveaddition of RLi to imines.Te
OMe
(o'
(35)
\r-J-,
\.,r'\*zN1,,Ph
I
Ph
(43)
(421
I
(44)
The catalyzedhydrocyanation of imines (Streckerreaction) has the option ofemploying a stable (salen)aluminum chlorideSo or a Zr complex of 6,6'-dibromo-BINOL' with BurSnCN.8l It is importantto derive the imines from o-aminophenolfor the presentpurpose. An asymmetric synthesis of s-amino acids starts from free radical addition to N-(benzyloxyiminoacetyl)-bornane-10,2-sultam.82The adducts are then treated with
uc/""Pi1 | - a a ( = N
r:..: lhe use of mixed r..:: !'\plored.67chiral ll<. rrl the presenceof ip: r.rne- I -thiol acetate r.1:::nretric addition of n ,: i-alkynes which is i ::r :he presenceof 39.71 krnr'.. enantioselectivity
Mo(CO)u and LiOH sequentially. Allylic boron reagentsin which the boron atom is Addition of atlylmetals to C=X. directly attached to the pinane nucleus have been used in the synthesis of syn-chlorohydrinss3and anti-1,2-amino alcohols.8aThose connectedto a bornaneskeleton8s via two oxygen atoms and the 1,3,2-dioxaborolanesderived from diisopropyl tartrate86are useful for the synthesisof chiral a-(2-hydroxyalkyl)acrylic estersand anrl-3-silylalk-len-4-ols, respectively. (-)-Swainsonine is available from a route basedon the latter method. A chiral reagentderived from tin(II) catecholate,DBU, allyl bromide, and (+)-di-t-butyl tartrate reacts with aromatic aldehydes in a Cul-catalyzed reaction, giving homoallylic alcohols sometimes in excellent optical purities.8TAllylation with allyltrichlorosilane has been conducted in the presenceof 4588and 468e1cf. allenylation of aliphatic aldehydess). Allylsilanes modified by a tartrateester show a range ofeffectiveness in chirality transfer.er
a.-:('r tiom Me,Al to
Ph
--l".
Ph
|
'riFz
v",,i
Ph
(41)
$€ (45)
'cat\r> \/
cHo vl
(46)
86
and catalysts
Chiral auxiliaries
A||y|zincg2andal|ylchromiumreagentsg3coordinatedbychiralligandshavevariable active homoallylic alcohols' d"gre". of successin the preparation ofoptically is promoted by a bis-n-allylpalladium allylstannane an by chiral allylation of imines triallylborane to supply the allyl group using while complex basedon the prnaneskeleton,ea can provide a proper environment' The a polymer-supported arenesulfonaminoisoborneoles
Very effrcient asYmnruic heterocycloalkenesrois achievedri The diphosphines 53 and 54 halc
allylic alcohols and 3-substirurcd respectively, and in chiral forrns.
chiralityofalkenylsultbxidesimposestheapproachofmethyllithioacetate'andtherefore acids'e6 it enablesthe generationofoptically active B-amino AdditillntoC-_C.ChiralboranesobtainedfromRh.complex-cata|yzed into amineseTwith retention of hydroboration with catecholborane are transformed MeMgCl and H,NOSO.H' configuration on sequentialtreatment with tetrafluoroborate rs a Iodolactonization with bis(dihydroquinidine)iodine(I) of a malonateesteralso furnishes a reagent-controlledreaction.esThe iodocarbocyclization The process is initiated by iodine lactoneeeby a subsequentintramolecular displacement.
@::n'.-fo^ .,5/Afo-p(oh/ \riv "do
and titanium bisTADDOLate' Manychiraldiselenideshavebeendesignedforthepurposeofalkenefunctionalization. Thesereagents(e.g.,47,,.n48'10149102)areusuallyactivatedwithbromineandthereaction alkenylarenesare cyclized by using the carried out by adding AgoTf. Properly constituted lastreagent.CamphorsubstitutedwithseleniumatC-3(endo)formsanotherclassofsuch reagents.l03'l04
I
Ph,,,,_-N.
I lfi-""o*
H,,.1) r\'--tl,
'
a
oMe
(4e)
(48)
(471
Michael reactions. I '2-As1 I -I with (.9)-ethylp-(2,2-dimethylStereoconfiolby a more rcmolc s aryllithiums to 55,113and that o I la phenyloxazolidin-2-one.
By derivatizingancr,ftunsanrrr the reaction with lithium dialk)'b Q centersat the p-carbonatoms-rr5 result.The alkyl ransfer to enorn to chiralmodification,e.g.,bYtr t
i l | \ \=JZ -SeJ--
Y*."-t:
(52)
vic-Ditosylatesareformedfromalkenesonreactionwiththehypervalentiodinereagent Enantioselectivityis moderate' 50.105 TheBaylis_Hillmanreactionisrenderedenantioselectiveinthepresenceofachiral rr)6 ovrrolizidinebase51.
-JxJ -t-trs,-!*1" i l t
Yr
\ { / -
(5s)
Unsaturated acetals undergo a t added.rls The reaction of enonq coordinatedto 59.lre Rubidium prr involving nitroalkanes,l2oand an i
(s0)
(51)
Chiralauxiliariesandcatalysts 87
rl -.rnJ: have variable c.:.,'htrls. r ..':.-;r-allYlPalladium h, -..:'fi\ the allYlgrouP r :tr:.nvironment.The
Very efficient asyrnmetric hydroformylation of alkenes,1o7 dienes,ro8 and is achievedwith a complex formed by mixing Rh(acac)(CO), and 52. heterocycloalkenesloe The diphosphines 53 and 54 have found utility in the preparation of 1-lactonesilo from allylic alcohols and 3-substituted cyclopentanonesrlr from 4-substituted 4-pentenals, respectively, and in chiral forms.
[ .:-,:.rtc.and thefefore R . .,rnlplex-catalYzed riith retention of
E. ) l{
:l:.r:..rr)roborateis a L::i J.lcr alsofurnishesa
@,,n, t. Ar^ro-R-olb vv "do
r-- - rnitiatedbY iodine ! ... :r!' iunctionalization. b: ':rrneand the reactlon a:'. -. ilized bY usingthe f.::- .:n()therclassof such
(s2)
tn")-PPhe (N^/
n (\('r'.., \z\r-,(,
"4"\
..,.,(/
(53)
(s4)
1,2-Asymmetric induction is observedin the reaction of amines Michael reactions. with (^f)-ethyl p-(2,2-dimethyl-1,3-dioxolan-4-yl)acrylater12under microwave conditions. Stereoconfol by a more remote substituent is evident during the conjugate addition of aryllithiums to 55,113and that of vinylmagnesium bromide to (R)-N-(2-alkenoyl)-4phenyloxazolidin-2-one.I ra l,l'-bi-8,81naphthol Byderivatizingancr,p-unsaturatedacidintothemonoesterofchiral containing chirality ketones saturated leads to dialkylcuprates with lithium reaction the I 15Consecutive 1,4-additionand I ,2-addition account for this atoms. at the centers B-carbon result. The alkyl nansfer to enonesfrom Grignard reagentsunder copper catalysisis subject to chiral modification, e.g., by the infioduction of 56r16or 57.rr7
''t)' (4e)
. p$J,-''
1r;..-':r.rlentiodine reagent
X";;!,?r"'"' v
of a chiral n :. nrL'sence
(56)
{':;' I N--{
b (57)
(55) H
-\-\ .-NJ T
(51)
Unsaturatedacetalsundergo a similar processwhen NiCl, and a chiral phosphine 58 are added.r18The reaction of enones with diethylzinc is catalyzed by cu(oT0, which is coordinatedto 59.1reRubidium prolinate actsboth as a baseand chirality elicitor in reactions involving nitroalkanes,l2oand an azacrown ether constructedout of sugar also induces the
8E
Chiralauxiliariesandcatalysts
Michael reaction.l2r An aluminate formed by treatment of LiAlHo with the amino diol 60 promotes enantioselectiveaddition of malonate estersto enones'l22
configuration. The moiety is an exo derivatives.l2&
tn)^n"'tn
"""(PPh2
OH
/-penz
OH
Bn
(
(60)
(s8)
Cycloadditim the ready availatil N-acetic acid derir formation with i
F
(se)
o
Cyclopentannulation of cycloalkenones initiated by conjugate addition with an O,-sulfonylanion subject to 1,4-asymmetricinduction is remarkably effective.l23
o
Nitrone cycle 9Me o
oEt
/"1)( t t )
1^\-oet ,r-N,SO2 ( l
oEt
\-Y
\.2",,< /
H 48%ovorall
OMe
improved by using enantioselectivefq
the [3+2]cycloaddi A useful obscr
catalyzedby an alu presenceof an aldr
bisoxazoline ligarr
For enantioselectiveconjugate additions involving heteroatomnucleophiles, 6land62 have been identified as mediators for the synthesis of p-(benzyloxyamino) amidesl2aand p-(arenethio) esters,r25respectively. Free radical conjugate addition directed by a bisoxazoline ligand has been
2-phenylthioacrylx ( lS,4.l)-norbornerx An interesting
EtAlCl2 and liga reactions in TH species?).I 32"
demonstrated.l26
O
tnTo bPh'"')N\
(61)
(62)
( (
Chiralauxiliariesandcatalysts 89
l. .::h rhe amino diol 60
The scope of the Evans asymmetric aziridination is broadened by Cyclaadditions. the ready availability of nitrene precursor 4-O2NC6H4SO'N=IPh.r27The oxazolidinonep-lactam N-acetic acid derived from (+)-cis-2-amino-1,2-diphenylethanol palticipates in (3R,4S)(>99:1) the have formation with imines.l28 The predominant products configuration. The intramolecular [2+2]photocycloaddition involving a chiral allenylsilane moiety is an excellent method for accessing optically active methylenecyclobutane derivatives.l28u
Bn
CH
OH
ll
(60)
>
d'. i-o, !r - :.,:c addition with I' r!^ ritective'123
QMe o : I tt
I
E.
afl.
--:*
\.V H
48%overall
l\,:r ::J.leophiles,6land 62 r\ '.r.imino) amidesl2aand )\tri':rne ligand has been
o
<
h
+v
/
\-^i'""'
SiMe3
_v_,
H
90o/o (>99o/. ee)
Nitrone cycloaddition reactions promoted by dichlorotitanium TADDOLate can be improved by using N-(2-alkenyl)succinimides as the dipolarophiles.r2eRegioselectiveand enantioselectiveformation of cyclopentenecarboxylicestersis observedusing 8 to catalyze the [3+2]cycloaddition of2,3-butadienoates with electron-deficient alkenes.rso A useful observation on the cycloaddition of cyclopentadiene and methyl acrylate catalyzedby an aluminum complex of VAPOL 63 is the autoinduction of asymmetry in the presenceof an aldehyde or ester (including malonates).r31With a complex derived from a bisoxazoline ligand and CuBrr-AgSbFu the cycloaddition between cyclopentadiene and 2-phenylthioacrylic esters is highly stereoselective,r32providing chiral precursors of ( I S,4.9;-norbornenonein good yields. An interesting observation is that the freshly prepared chiral catalyst derived from EtAlCl2 and ligand 64 shows opposite enantioface selectivities for Diels-Alder reactions in THF (monomeric species?) and in dichloromethane (oligomeric species?).132u
/^ \/v
^Y
O-
(62)
(64)
90
Chiralauxiliariesandcatalysts
feaction is from chiral A more readily available Fe-complex for asymmetricDiels-Alder hydrobenzoin.l33Dienophiles derived from (1R,6R)-1-pivaloyloxyspiro[4.4]nonan-6-0ll34 chiral dienophiles is give chiral adductson reaction with dienes.A representativeof axially An access i5135which gives Diels-Alder reactionswith highendo- and diastereoselectivity' Cu(II) C,-symmetric reaction, to dihydropyranyl ethers by the hetero-Diels-Alder are ano ytt ioln tri[(R)-1,l'-binaphth-Z,2'-diyl]phosphonatel3s .o.t u, 66136,137 .o.pl"*..
Two interesting ligr hydrogenation of simple I
extremely valuable.
p-><.-o. 9ll-a,-'lJ ^ro' 'or,
y',
\
|
Tfo
rfo
N
(66)
(65)
Asymmetrichydrogenation.Thestereoselectivityinasymmetrichydrogenationof is significantly enhanced by 2-substituted 2-propen-1-ols using a Ru-BINAP catalyst
Ketone reductbn by alkali hydroxide or alkor the reduction system. Th following: 7A,tso7l,tst 7a the ketones are treated ' base).154
temporaryu.ylution.t'nARh-DuPHOS(54)systemisoptimalforhydrogenationof whereasuseful ligands for the cr-u.yto^yu".ylatesr{ and Stobbe condensationproducts,ral are67,1a268,1a369,raaand Rh-catalyzed hydrogenation of dehydroamino acid derivatives foranaccesstosyn-2,3-diaminoesters,T0.la5tridium-phosphanodihydrooxazole hydrogenation of alkenesla6and complexes 71 are excellent catalysts for asymmetric imines.laT
PPhr
Cf*^Y? Ph
pn
(74)
Ph,,,,ad ,n.*f-rrnt (6s)
(68)
(67)
NHCOOBn
I
.cooMe
R = FPr,t-Bu
I
An interesting amin
NHAc
enantioselectivity for 1,4-dihydropyridiner$a
(70)
Mg(ClOr)2 has been obn
(71)
Chiral auxiliaries and catalysts
ld*: ::.rction is from chiral xr .: rro[-1.4]nonan-6-ol13a nr. , -hiral dienoPhilesis rr:. ,.ciectivitY.An access )r. c --r;-mmetric Cu(II) are 3 -::r -lphosPhonatel38
9l
Two interesting ligands, 72, 73, are effective in mediating enantioselective hydrogenation of simple ketonesl48and B-keto esters,r4erespectively'
o
,Ar^ | t<34>
-
l: '
.l'
lll' -:
r:nc hYdrogenationof ::rcantlY enhancedbY :,\r hydrogenationof
E : : . ,. useful ligands for the 69,14and I : : - 67.rr: 6g,r+3 - , .phanodihYdrooxazole t:,rtt of alkenesla6and Ej"..
(73)
(721
Tto
A combination of isopropanol and an Ketonereductionbyhydrogentransfer. Ir catalyst and a chiral ligand constitutes Ru or with together alkali hydroxide or alkoxide proline, chiral cis-1-amino-2-indanols' and the include the reduction system. The ligands (>977oee)areproducedwhen (S)-Propargylicalcohols 76,ts277.ts3 following: 74,t5o75,1s1 in isopropanol (without added 2 the ketones are treated with the ruthenium complex base).154
Cf*^Y?
/T) I N H
OMe
\r.\.-oH
Ph
Prr
HzN
(75)
(74) PPhr
(76)
-*-PPh2
Ph'.
I (6s)
NHz
S.
,Ph
,S
)-( ,-<
PhHN
Me Me
NHPh
(77) = = r-Pr,t-Bu An interesting amine oxide (78) finds utility in the ketone synthesis.r5s Good enantioselectivity for reduction of ketones by N-benzyl-3-p-toluenesulfinyl1,4-dihydropyridiners6and a 2,5-pyridinophane 79,ts1NADH models, in the presenceof Mg(ClO)2 has been observed.
Chiral auxiliariesand catalysts
HO_.,
o
Ph
'n*ol
^,4A#(,a
*Nf
(
|1-f .v ,_\-/ ,N1
H
il lll
Catechol compleress
l
I
(7e)
(78)
promotes (salen)Co complex A Red.uctionusing complex metal hydrides' N-diphenylphosphinyl Similarly, asymmetric reduction of conjugated carboxamides.tss 'imines are converted to the substitutedaminesl5ein chiral forms' A practical modification of the oxazaborolidine-catalyzed Reduction using boranes. to replace the rialkylborane component with trimethyl is borane with reduction of ketones the useof 80 is advocated'161 borate.ril For the reductionof B-silyl and B-stannylenones and 1-siloxy-2-alkanones,l63 neso-imidesl62 of cyclic reduction For the enantioselective oxazaborolidineis adequate' bicyclic chiral prototypal the I,2-reductionof other enones,r&
Rcdacti and a hldro complered t
although8lhasbeenusedtoreducea-phenylthio.p-phenylketonestoobtainprecursorsof g1 mediates reduction of enediones to the o_nroio^, thioesters.r6sThe enantiomer of I66 correspondingchiral diols.
"'H* ph
\-sin,t".
Ph
HN.B'o Me
Ori.b Sharplesss
(81)
(80)
Adisulfide-linkedbis(aminoethanol)82preparetlfromr-.cystinealsocatalyzesthe 83'168 Other oxazaborolidinederivativesare obtainedfrom boranereductionof ketones.t6T 84,169and85,17()andpolymer-boundspecies.lTlThosederivedfromtheephedrabasesfind While a bicyclic oxazaborolidinegenerated usein the asymmetricreductionof imines.l?2'l?3 acidity and high efficiency, the in situ using trimethyl boraterTahas enhancedLewis effective ofCorey-Bakshi-Shibata catalystis stableandalso analogrTs oxazaphospholidine for asymmetric reduction of ketones'
'[it...,]ail "*':-fr ok d--,4,^ (82)
(83)
(84)
(8s)
tartrale estd The ar ar br ranadll
rult-rnimrrn
l.-ldithrarr hgand fa d
Chiral auxiliariesand catalysts
Catecholborane reduces ketones enantioselectively complexessuchas 86.176
)-o'''o-1\
/
promorcs . :)f lex .\ .::phenYlPhosPhinYl
0 . .'Jrtrcated'l6l .'r -1-alkanones,l63
in the presence of the titanium
O--./O
MeO
atdYzed a,,.,\,rtrlidine-c r.:-,n.nt with trimethYl
93
(86) fluoride Reductionusinghydrosilanes. The combinationof N-benzylquinidinium Rh and a hydrosilanereducesprochiralketonesin good ee.l77For betterresults species maybe usedascatalyst. complexedto chiralligandssuchas87178
rb. : 'lrdineis adequate' i ,hritinprecursorsof !r : L'nedionesto the
Ph2f N#-/ (87)
.J .rlso catalyzesthe ,,htrinedfrom 83,168 '': cphedrabasesfind .,^,'rolidinegenerated irrrh efficiencY, the
Sulfides including B-keto sulfides give optically active sulfoxides by the Oxidations. Alternatively, the Sharplesssystem with modification in using furylhydroperoxides.r?e I ,2-diol.r80 tartrateestermay be replacedby (R,R)- or (S,S)-diphenylethaneThe availabilityof(R)-di-r-butyl disulfide monoxidefrom selectiveoxidation catalyzed by vanadyl-88 enables the preparation of chiral r-butyl sulfinamides, sulfoxides, and sulfinimines.r8rVery similar reactionconditionsbring about the transformationof various is a chiral (R,R)-2,2,5,5-Tetramethyl-3,4-hexanediol 1,3-dithianesto chiral monoxides.r82 ligand for the Ti(IV)-catalyzedoxidation of sulfideswith cumenehydroperoxide.r83
,.,c rnd alsoeffective
\
:.""';fr (85)
_fN
X-F"" -k (88)
o
94
Chiralauxiliariesandcatalysts
many systemshave been Asymmetric allylic oxidation is not yet perfected' Although greatly' An example improved be to yields need scrutinized, both chemical and optical benzoate using a 2-cyclopenten-1-yl worth mentioning is the delivery of ee'tu and937o yield Cu(Il)-tris(oxazoline) complex as catalyst in 307o the regioFurther utilities for the dioxirane derived from fructose is Epoxidations, Continuing enynes.l86 and dieneslss and enantioselectrve epoxidation of conjugated uncovered the catalyzed explorations of the lsalen)manganese(Ill) systems have and the advantageof sites,187 epoxidation of 2-sulfonyl-I,3-dienes at the nondeactivated added carboxylate salt as cocatalyst.l88 chiral hydroperoxides'l8e A variation of the Sharplessasymmetric epoxidation is to employ cinchona The chiral iminium salt Eghasmoderateenantiocontrol forepoxidation.l{ Quatemized with enones of in epoxidation alkaloids can serve as chiral catalyst and phase-fansfer agents and diethylzinc of presence NaOCl.rer Enones are also epoxidized by oxygen in the epoxidation to enantioselective N-methylpseudoephedrine,re2whereas(Z)-enonesare submitted 90're3 BINOL the and by r-BuOOH-(l-PrO),Yb
Cyclopropanab
vinyl ketone providc
Generation of thc ;-l dichlorometharrc can proceedsby a conjugl For cyclopmparu
Cu-bis(oxazoline)cr 97 are highly selerti'
synthesisof sirenin.r from changing cataly
(e0)
(8e)
Recently,theuseofpolymer-supportedchiralligandsandpoly(aminoacids)as popular. Thus, poly(tartrate ester) enantioselectiveelicitors during epoxidation has become epoxidation'lea poly-l-leucine for epoxidation of is for the Sharpless uryrnr*,,it enones.l95-197 Condensationwithcarbonylcompounds.Formationofepoxidesfromaldehydes induction. The latter specieshave by reaction with sulfonium ylides is subjectto asymmetric derived from monoterpenes'e'9" been generatedfrom 91,re892,te and93,2mand also those situ by deprotonation of sulfonium 94zorun4 95.202Of course the ylides can be obtained in saltsorcopper-catalyzeddecompositionofdiazoalkanes(withthecarbenoidstrappedbythe sulfides).
\
+f-(
(e7) F
-i""J-9 ,"yr??r
t_1-
Br
(e1)
(e2)
(e3)
The chiral versic ligands for the at cyclopropanationofr >99Vo\ via acetalssi
Chiral auxiliaries and catalysts
tt
l.l.'m\ havebeen a:.\ .\n exarnple n/(\ile
Uslng
l*
A
ri,'.c' is the regio" Continuing Er,: :h!' catalyzed I :hc rdvantageof l^.rJroperoxides.l89 r|.lir'mizedcinchona D,'n of enoneswith o: JrethYlzinc and clla tr\ e ePoxidation
coNMe2
95
4\
ff1..'H -v'-o
(.A
q""
(e5)
(e4)
The reaction of sulfonium ylides 96 with acrylic estersor methyl Cyclopropanation. vinyl ketone provides trans-2-arylcyclopropanecarboxylicesters and methyl ketones.203 Generation of the ylides with EtNP(NMe)'-N=P(NMe), as base is convenient because dichloromethane can be used as solvent. Another synthesis of cyclopropanecarboxylates proceedsby a conjugate addition and l,3-elimination sequence.2u For cyclopropanation of silyl enol ethers with diazo compounds the use of Cu-bis(oxazoline) catalysts is preferable2os(intramolecular reactions involving the ligand 97 are highly selective2ffi).Note the complex 98 was employed in a key step during a synthesisof sirenin.20?Also interesting is the observation that divergent ring systemsarise from changing catalysts.2os
{\ .rnrino acids) as i. s'l) t tartrateester) i,,: cpoxidation of dc. frtrm aldehYdes have hr' r.rltcrsPecies e.g.' I nt,'noterpenes' or.r:l()nof sulfonium cr.,,rJ. trapPedbY the
(e6)
-1*
r-rxri-f
{"
(97) R=Me,SiMeg
,.*G* V''-1J-t1 ^B? (e8)
(s3)
The chiral version of the Simmons-Smith reaction requires the presence of proper ligands for the organozinc reagent. Representatives are 99,2@ 100,210 101211 for (de cyclopropanationofallylic alcohols.Enals undergo diastereoselectivecyclopropanation >99Vo)viaacetalswith(+)-phenylexo,exo-2,3-dlhydroxybornane-10-sulfonate'2r2
96
Chiral auxiliaries and catalysts
Noe NHMs
,O fCONMe2 Bn-B. I b-',,,coNMe,
,,,NHMS
(ee)
(100)
)
c
(101)
AAolreactions. The enantioselectivity in condensationsinvolving silyl enol ethers and silyl ketene acetals (also thioacetals) has been actively pursued. Valuable catalysts include 102,213 103.2t4 Subsequent to the development of Cr-symmetric bis(oxazoline)-Cu(Il) complexes is the Sn(II) complex 104,215 which promotes anti-selectivealdol additions of silyl enol ethers to glyoxylate and pyruvate esters.
The N-sulfonyloxazabaoli ring opening condensationof r
I
-\F \rTp :
-\ (102)
N-BH
i.
003)
(104)
Reanangements. Bl q rearrangement,a chiral sidc c Highly enantioselective rc methoxybinaphthyl substinrn
Boron enolates generatedfrom ct-heterosubstitutedthioacetatesby treatment with 105 undergo highly enantioselectiveand diastereoselectivecondensations.2r6 On the other hand, chiral esters106217and 107,218and amides 10821ebehavedifferently. N-Acyl derivatives of the bicyclic isoxazolidine 109220readily undergo syn-selective aldol reactions via enol borates.
| ),,,,a \>'\-B-", : (105)
P h o
\l"V
'"-|;q{O(106)
1,3-Rearrangementwith ch fl uoroalkylamines.225O-Acylal of lb, thereby establishing a , c-amino esters from chromium CO insertion, alcoholysis, and r
ChiralauxiliariesandcatalYsts
n
o /CoNMe2 b-""cot"tM", (10e)
(108) (101)
s1r.,.rrng silYlenol ethers ur.rrJ Valuable catalysts n<'n: of Cr-sYmmetric ' which Promotes l0{.N. i\:-uvate estefs.
The N-sulfonyloxazaborolidinones 110 serve as trwis acid and stereoconfioller ring opening condensationof cyclic acetalswith enolsilanes'221'222
for the
os-o. Ph-/-N
I
F-Pn
ri's7bo'
)--2
(110)
(104)
Rearrangements. By applying Corey's diazaborolidine catalyst to aromatic Claisen rearrangement,a chiral side chain is introduced into the ortho position of catechols'223 a Highly enantioselective rearrangement of O-allylimidates 111 containing witnessed.22a has been substituent methoxybinaphthyl
!tr:.- n\ lreatmentwith 105 : : 6O n t h eo t h e r h a n d , Ll::'r. 6:.:.i \-AcYl derivativesof rr c ,,lJtll reactionsvia enol
OMe
(111) 1,3-Rearrangementwith chirality transfer is the basis for an asymmetric synthesis of presence fluoroalkylamines.22sO-Acylated azlactonesundergo acyl group migration in the of synthesis photochemical A quaternary stereocenter.226 a of lb, thereby establishing involves auxiliary chiral a containing complexes Ct-aminoestersfrom chromium-carbene CO insertion, alcoholysis, and reanangement.22T
9E
Chiralauxiliariesandcatalysts
provide chiral Other enantioselectivereactions. meso-1,2-Diols are benzoylated to is rendered monobenzolates in the presence of 112:28 Alcoholysis of meso-anhydides can be 113 enantioselective by Ti-TADDOLates.22e An oxobenzodithiepin ES'-dioxide chiral lithium 2-aminoalkoxides used for desymmetrizing meso-diolsvia the acetals.23o but the optical yields are ketones23l prochiral of reaction Emmons-Wadsworth the mediate not satisfactory.
qMe
.4-"zo\
l- ll {*"n [ ,t't-lt't"
(112)
\r
^--l
Fo
J. l r
o(113)
ene reaction of Cr-symmetric bis(oxazoline)-Cu(Il) complexes are good catalysts for decomposing by glyoxylatest32and the intermolecular asymmetric C-H insertion occurs diazo compounds with Rh0t (s)-N-(p-dodecylphenyl)sulfonylproli nate.233 group to N-(p-toluenesulfinyl)bornane-Io,2-sultam in the (R,)-formdelivers the sulfinyl are readily various nucleophiles. Thus, chiral vinyl sulfoxide and p-toluenesulfinimines via Enantiopureketonescan be obtained from 1,2-bis(benzenesulfonyl)alkenes prepared.23a acetal formation with chiral diols such as (+)-1,2-diphenylethane-1,2-diol.23s tHasegawa, H. SL 882(1998)' T., Yamamoto, 2End"rs.D., Hundertmark, T., Lazny,R. SI 721 ( 1998)' 3Rubl",J. C.,Tweddell,J.,Fu,G. C. JOC 63,2794(1998)nHu.ttigu"fti,S.,Fujii, A., Haack,K'-J', Matsumura, K', Ikariya'T', Noyori'R' ACIEE36'288(1997)' sYamada. (1996). S..Ohe,T. TL 37, 6'17'7 6l,attanzi,A., Bonadies,F., Senatore' A', Soriente,A', Scettri,A' 7A E' 2473(199'l)' TNoguchi, Y., Takiyama,H', Katsuki,T. Sf 543 (1998)' 8Tofun^aga, E' N' Science277'936 (1997)' M., Larrow,J. F., Kakiuchi,F., Jacobsen, eStirai,i.., Sato,D., Aoki, K., Tanaka,M., Kawasaki,H', Koga,K' I53' 5963(1997)' 10To.iyutu,M., Sugasawa, K., Shindo,M', Tokutake,N', Koga,K' 7'L38' 56'f (1997)' 't Aoki,K., Tomioka,K., Noguchi,H', Koga,K. T 53' 13641(1997)' 'tctof. C.-D..Malan,C., Knochel,P. ACIEE37,3014(1998)' r3w*d, D. E.,Lu, w.-L. JACS120,10s8(1998)' toAdo*.,D. J.,Simpkins, N' S.,Smith,T. J. N. CC 1605(1998)' A'' tsy*ugi.u*u, A., tiitu.tri, T., Kuribayashi, T., Yamamoto,H. T 54, 10253(1998);Yanagisawa' Kikuchi.T.. Yamamoto,H. Sf 174(1998). t6v"d"ir, E., Kruger,A. w. IOC 63,2792(1998). t?r*"il.tt. M., duibourdenche, L'' Roumestant'M'-L'' Viallefont' P' 7A 9' 1493 C., Pappalardo, (1998). l8Faure. S..Piva,O. SL 1414(1998).
leDalko,p. I.. Lars -"lshii, K., Aoki. S rrChen,2.. Zhu.G. ::Trost, B. M.. R.d :rMurakata. M.. Jcr laMurakata. M.. Jcr :sPort"r. N. A.. ll'u :6Davies. S. G.. Dtr :'My"rr, A. G.. \'r ( 1 9 9 7 ) :M v e n . A , :'M.y"r. L.. Poincr :'Guill"nu. G.. \ap 'L.p.r. A.. Plerrr "Co..y, E. J.. Xu- t r:Seebach. D.. Hoff rlEnd"rr, D.. Hund lKirsten. C. N.. 1{. t5Nakamura. T.. Hr toAdurn, W.. Fell. R '-Adurn. W.. Fell. F 'EPhukan. P.. Sud* teEuans. D. A.. \-ct ')Davis, F. A.. aq B.-C., Canoll. P l ''End.rs. D.. Schaf tlEnde.r, D.. Bcrg.' ''Trost. B. M.. Tosr tFrank. M.. Ga.rs.l '5Guir, H.-J..Eichc trost. B. M.. H-l '-Erunr, P. A.. Bra "\larinetti. A.. lku t'Constantieux. T .I u'Kudir, S.. Helnrh ''Tunn.r, D.. JotEfi ':Koning. B.. Ilectr "Trost. B. M.. Taar 'takemoto. Y.. Bd "\ug"nt. w. A..r.rt *Jacobsen. E. \.. K '-Ti.-.y. J. P.. AJc "scvdergren, M. t.. , 5eH*ung, C.-D.. Hr mYokomatsu. T.. Y' "'Huang, W . - S . .H u n:Fukuzawa, S.. Kt ^rFleischer. R.. Bra -Andres, J. M.. Vr "5williams. D. R..F *Shibata. T.. Tahn
Chiral auxiliaries and catalysts
I Pro\ ide chiral le. ri rendered de 113 can be mrnoalkoxides ptrcalyields are
r enereacdonof t'r decomposing .ultinYlgrouPto nrnc\ are readily via iionrI)alkenes l.:i<
(1997). :tL.t,36,288 fJ-
9q-, qlI
).
lw-,
la\,. Yanagisawa,A.'
rr,'nt. P. TA 9, 1493
99
reDulko,P. I., Langlois,Y. CC 331 (1998). 20lrhii, K., Aoki, s., Koga, K. rL38,563 (199'7). 2tchen,Z.,Zhu,G.,Jiang, (1998)' Q., Xiao, D., Cao, P., Zhang, X- JOC 63,5631 22Trost. B. M., Radinov, R., Grenzer, E. M. "/ACS ll9,'78'79 (199'7). 23Murakata,M., Jono, T., Mizuno, Y Hoshino, O. JACS ll9' 11113 (1997)' , 24Mu.akata,M., Jono, T., Mizuno, Y., Hoshino, O. TA 9,-2087 (1998\. 25Po.t"r,N. A., Wu, J. H., Zhang, G., Reed,A.D' JoC 62,6'702(1997)26Dauies. G., Dixon, D. J. SL 963 (1998). S. 27My".r, A. G., Yang, B. H., Chen, H.' McKinstry, L., Kopecky, D' J , Gleason,J'L' JACS ll9'6496 (1997); Myers, A. G., Gleason,J. L.' Yoon, T., Kung' D W' JACS ll9'656 (1997)' 28M"y"., L., Poirier,J.-M., Duhamel, P., Duhamel,L. JOC 63,8094 (1998)' 2 e c u i l l " n u , N a j e r a ,C . T A 9 , 1 1 2 5 ( 1 9 9 8 ) ' G., tol,op"r, A., Pleixats,R. ZA 9, 1967 (1998). 3'Coi.y, E. J., Xu, F., Noe, M. C. "/ACs llg, 12414(199'l). 32Seebach. Hoffmann, M. EJOC 1337 (1998). D.. 33End"rr, D., Hundertmark,T., Lampe, C.' Jegelka,U., Scharfbillig,l' EJoC 2839 (1998)' 34Kirsten, N., Herm, M., Schrader,T.H. JOC 62,6882 (199'7). C. 35Nukurnu.u, T., Hashimoto,N., Ishizuka,T., Kunieda,T . TL 38' 559 ( 1997). 36Adur, W . , F e l l , R . T . , S a h a - M o l l e rC, . R . , Z h a o , C . G - T A 9 ' 3 9 7 ( 1 9 9 8 ) ' 3tAdurn,W., Fell, R. T., Stegmann,V. R., Saha-Moller,C. R. JACS 120' 708 (1998)' 3sPhukan, P . , S u d a l a iA , .TA9,1001 (1998). 3eEuunr. A., Nelson, S. G. JACS 119,6452 (1997). D. 4oDauis, G, Qi'H', Han,W, Przeslawski'R M 'Chen' F. A., Zhou, P., Murphy, C. K., Sundarababu, B.-C., Canoll, P. J. JOC 63,2273 (1998). o'End"rr. D.. Schafer,T., Mies, W. 754, 10239(1998). 42Enderr, D., Berg, T., Raabe,G., Runsink, J' 1"4 345 (1997). asTrost. M., Toste,F. D. JACS 120, 815 (1998). B. aFrank. M.. Gais. H.-J. fA 9, 3353 (1998). oscuir, (1998) H.-J.,Eichelmann,H., Spalthoff,N., Gerhards,F., Frank, M'' Raabe,G'TA9' 235 abTrost,B. M., Hachiya,I. JACS 120, I 104 (1998). 4?Euunr, P . A . , B r a n d t ,T . A . T L 3 7 , 9 1 4 3 ( 1 9 9 6 ) . asMarinetti, Kruger, V., Ricard, L. JOMC 529,465 (199'7). A., 4eConstantieux, T., Brunel, J.-M., Labande,A., Buono, G. SL 491 (1998). s0Kudit. S.. Helmchen.G. ACI EE 37' 3047 ( I 998). 5'Tunn"r. D., Johansson,F., Harden,A., Andersson,P. G. ?54, 15731(1998)' 52Koning,8.M , e e t s m aA , . , K e l l o g g ,R . M " / O C 6 3 , 5 5 3 3( 1 9 9 8 ) ' s3Trost. B. M., Tanimori, S., Dunn, P. T. JACS ll9'2735 (199'7). s4Tuk".oto. Y.. Baba. Y., Yoshikawa,N., Iwata, C., Tanaka,T', Ibuka, T' CC l9l1 (1998)' 55NugenW t . . A . J A C Sf 2 0 , 7 1 3 9 ( 1 9 9 8 ) . 'oJu.-obr"n.E. N.. Kakiuchi, F., Konsler,R. G., Larrow, J. F., Tokunaga,M fL 38,'773 (1997)' 57Tie-"y, P., Alexakis, A., Mangeney,P ZA 8' 1019 (1997). J. stsiid"rg."n, M. J., Andersson,P. G. /ACS 120' t0760 (1998). seHrrung, C.-D., Hwang, D.-R., Uang, B.-J. JOC 63,6'762(1998)' 60Yokomatsu,T., Yamagishi, T., Shibuya, S. JCS(PI ) 152'7(1997)' o'Hu-g, W.-S., Hu, Q.-S.,Pu, L. JOC 63, t 364 ( 1998). o'Fukuzawa, Kato, H. SL'72'7(1998). S., 6sFleischer, R., Braun, M. SL I441 (1998). ilAndr"r, j'53, 378'7(1991)' J. M., Martin, Y., Pedrosa,R., Perez-Encabo,A. 65wiiliams, R., Fromhold,M. G. sL 523 (1997). D. 66shibutu.T.. Tabira, H., Soai,K. JCS(P1) 177 (1998).
100
Chiralauxiliariesandcatalysts
61L,ttz,C.,Knochel' P. JOC 62,7895(199'7)' u8Ru-on, D. J.,Yus,M.TL39,1239(1998)' 6eDosa, P. L, Fu, G. C. JACS120,445(1998)' (1996)' 70Jin. M.-J.,Ahn,S.-J',Lee,K.-S.TL37,8767 itwipf, p.,Ribe,s. Joc 63' 6454(1998)' ?2chen, C. sL 1311(1998). ?3Pagenkopf, E"M' TL39' 9593(1998)' B. L., Carreira, t'Ju"uir, F. A., Po.tonou'P' S'' Reddy,R' E'' Chiu' Y '-,H'JoC 6l' 440(1996)' T5Batailie, M., Brown,E' fA 9' 2181(1998)' P.,Pateme, 76Moody, J. C. J.' Hunt' C A' SL 733(1998)' tts.ltt, A.B.,Yager,K. M.' Taylor,C' M' '/ACs117'10879(1995)' ttr":i"i", H., ru,r-ui'tnl.,rutu-q i'' Iida' A'' Tomioka'K' JACSrr9' 2060(1997)' tnAid"rrron,P. G.,Johansson, F , Tanner'D' T 54' 11549(1998)' t0sig.nun, N' E M S.,Jacobsen' "IACS120'5315(1998)' ttiJitunl, H., Komiyama'S'' Kobayashi'S' ACIEE37' 3186(1998)' 82Miyabe, H., Ushiro'C., Naito,T' CC 1789(1997)' (1998)' snu, S.,Jayaraman, ' A'C' JOC 63',8843 S', Oehlschlager (1996)' D. J. JoC 61,267"1 Williams, P., EaBarretr, A. J. write, n] A. c. M., Seefeld,M. (199'7)' 3719 TL 38' "Ciu,uign"., I., Lebreton,J'' Zammattio'F ' Villieras'J' SoHunt, i. A., Roush,w. R. JoC 62' 1112(199'7)' 8iYu.udu,K., Tozawa'T., Nishida,M'' Mukaiyama 'T' BCSJ70'2301(199'7)' Y' I53' 3513(1997)' Kobayashi' S'' sElseki, Kishimoto' M', K., Kuroki,Y.' Takahashi, (1998)' Eeiren.f ., Mizuno,S., Kuroki,Y', Kobayashi'Y ' TL 39' 2767 e0lseki, Y 'TA9' 2889(1998)' K., Kuroki,Y., Kobayashi' erzhung,L.C., Sakurai,H', Kira, M' CL 129(1997)' n'Nutu"turu,M., Hirai,A., Sogi,M'' Nakamura' E' JACS120'5846(1998)' ntiugitoto, f.' Aoyagi,S'' Kibayashi' C' JOC62'2322(199'7)' (1998)' n'Nukurnuru, H.' Nakamura,K'' Yamamoto'Y "/ACS120'4242 S' ?A 8' 1731(1997)' Itsuno' K'' Ito' K'' e5El-Shehu*y, Watanabe' Y M' ' A. A., Abdeiaal, (1998)' e6Adamczyk, M., Reddy,R' E' IA 9, 3919 ntf"rrrunO"r' g., Hooper'M' W', Knight'F' I'' Brown'J' M' CC 1'73(199'l)' etcrorrrnun,R. B.' Trupp,R' J' CJC76' 1233(1998)' "I*u", T., Kitagawa,O', Sulto'A', Taguchi'T' JOC 62"1384(1997)' tmFrugul", M , Wirth,T' CC 1867(1998)' G.,Neuberger, 'ntSunti,C.,Fragale' G.,Wirth,T'TA9' 3625(1998)' '02D"ri"1,R.,M-alenfant, E', Thibault'C'TL39' 5493(1998)' ro3Back, 3123(1998)' T. G.,Nan,S.JCS(P1) A" TL39' 2809(1998)' tt*Ti"".o, M., Testaferri, f-'-Sunti,C', Marini'F'' Bagnoli'L'' Temperini' (1998)' 'ntHi.t,U. H., Spingler, 63'76'14 ' JOC B., wirth, T tous;.r",t, e. C. Irl- Cook,A. S., Kamimura,A. CC 2533(1998)' 119' T'' Mano'S'' Horiuchi'T'' Takaya'H' JACS t0?Nozaki, K., Sakai,N', Nunt'o'T', Higashijima' M13 (199'7). l0tHo.iu.hi, T.' Ohta,T., Shirakawa, E'' Nozaki'K'' Takaya'H T 53' 7795(ryT)'^-' p'' Nozati' K'' Takaya'H' JoC 62' 4285(1997)' r0eHoriuchi, r., Siituttu*u' T., Ohta, rroYu,w.-Y., Bensimon, C', Alper,H' CEJ41'l (1997)' 1tlBu.nhurt, D A" Bosnich'B' CC 589(1997)' McMorran, R. W., rrz*"t"i."^, N. N., Gravis,A' G', Leshcheva' I' F ' Bundel"y ' G' MC l4'7(1998)' E' J' J" Reider' D. M., Dolling,U'-H'' Grabowski' rr3Frey, Tschaen, A.-S., o.'ca[", L. F.,Tillyer,n. P.J.JOC 63,3120(1998). Ir4Han,Y., Hrubv,V. J TL38,'731'l(199'7)'
r15Fo1i, K., Yang, X.. Ta I l6seebach.D.. Jaeschkc t lTNukugu*u, Y., Kattai. ll8comez-Bengoa, E.. ll
(1998). tt9d" v.i"r, A. H. M.. Il l2oYamaguchi,M., Igra t'tBuko, P., szollosl'. A,. t22M-i"ku.. G., sundr l23Huu.t. C.. Ghosez. L I l2osibi,M. P., shay. J. J, t25Ni.hi.*u, K., om. ! '26sibi, M. P., Ji,l. Joc t t27siid".gr"n, M. J.. Ald l28Mat.ui. S.. Hashinrao l28ushep*d, M. s., czrt l2eJ"ns"n. B., Goth.lf K. t3ozhr. G., chen,2.. Jir l3lH.ll"r, D. P., Gole.rr l32Aggarwal, V. K.. turd t32uNaruku. Hori. K. G.. 1338-in, M. E., Kiindig l3aNieman,J. A., Kea;-. I l35Kitagu*a, o., Iza*r- I l36Euan., A., olharr D. I 3TThorhauge, Joham J., l38Hanamoto.T., Funu 13eshi-i"u. H., shimd laoBurk, M. J., Kalberg. 14lBurk.M. J.. Bienerrl ' o'zhu, G.,cao, P., Jieq to3ch-, A. S. c., Hu. ll
JACS ll9,9570 ( 199 '*Mi, A., Lou, R.. Jianl totKu*-o. R., okudl ! l6l-ightfoot, A., Schnil laTschnider.P.. Koch c rasJiang, Q., Jiang.Y.. l tt'Py", P.J., Rosen.K,. 15oJi*g, Y., Jiang, Q.. Z t5tAlon.o, D. A., Guip l52lnoue. S.. Nomura- K I s3Touchard.F., Fachc. l54Matsu.uta, K.. Hzsl t55o'N"il. L A., Tuns. t56obiku, s., Nishiyam lsTKanomata,N., Natr ls8Yamada.T.. ohrutr l5esugi, K. D., Nagare. l6oMarui. M.. Shioin. T
Chiral auxiliaries and catalysts l r5Fu;i, K., Yang, X., Tanaka, K., Asakawa, N. rZ 37, 73'13 (1996). lr6Seebach, D., Jaeschke,G., Pichota, A', Audergon, L. HCA80,2515 (1997)' ll7Nukugu*u, Y., Kanai, M., Nagaoka,Y', Tomioka, K. T 54,10295 (1998)' rl8comez-Bengoa, E., Heron, N. M., Didiuk, M. T., Luchaco, C. A., Hoveyda, A' H' '/ACS 120"7649
: r9 9 7 ) .
)e lrt)9 (1998).
f,r.r. H. JACSll9' I q!-
9\ r . r : . E . J . J . ,R e i d e r '
(1998). tted" V.i"r, A. H. M., Meetsma,A., Feringa,B.L. ACIEE35,2374 (1996)' l2oYamaguchi, M., Igarashi, Y., Reddy, R. S-, Shiraishi, T., Hirdma, M' I53' 11223 (199'7)' r2rBuko, P., Szollosy,A., Bombicz, P., Toke, L. SL29l (199'1). t22M*i"ku., G., Sundararajan, G. IJC 36, 516 (1997). t23Huo.t. C.. Ghosez. L. ACIEE 36,634 (199'l). 12asibi, P., M. Shay,J. J., Liu, M., Jasperse'C. P. 'IACS 120' 6615 (1998)' t25Nirhirnuru, K., Ono, M., Nagaoka, Y., Tomioka, K. JACS ll9' 129'74(1997)' r26sibi, p.,Ji,t. Joc 62, 3800 (1997). M. t"S,id"rg."n, M. J., Alonso, D. A., Andersson'P. G. 7X 8' 3563 (1997)' r28Matsui, S., Hashimoto,Y., Saigo,K. S 1161 (1998). r28ushepa.d,M. S., Carreira, E. M. JACS 119,259'7 (1997). l2eJ"nr"n, K. B., Gothelf, K. V., Hazell' R. G.' Jorgensen,K.A. JOC 62'2471 (1997)' '30zhu, G., Chen,Z.,Jiang,Q., Xiao, D', Cao, P., Zhang,x' JACS 1f9, 3836 (1997)' t31H"11"., D. P., Goldberg,D. R., Wulff, w. D. .IACS119' 10551(1998)' l32Agg-*al, V. K., Anderson,E. S., Jones'D. E.' Obierey,K. B'' Giles, R' CC 1985(1998)' r32uNoraku,G., Hori, K., Ito, Y. N., Katsuki, T. 7r 3E' 8231 (1997). t33B-in, M. 8., Kiindig, E.P. cc 2635 (1998). t'oNi"rnun, A., Keay, B. A. ZA 7,3521 (1996;)J. r3sKitugu*u, O., Izawa, H., Sato, K., Dobashi, A.' Taguchi, T. JOC 63,2634 (1998)' t36Euunr,D. A., Olhava,E. J., Johnson,J. S., Janey,I-M. ACIEE 37,3372 (1998)' r3TThorhauge,J., Johannsen,M., Jorgensen,K. A' ACIEE 37 ,2404 (1998)' l38Hunu.oto, T., Furuno, H., Sugimoto' Y., Inanaga,J. SL79 (1997)' t3eshirirr. H.. Shimada, Y., Tomita, A., Mitsunobu, O. If 38, 849 (1997). ra0Bu.k, M. J., Kalberg, C. S., Pizzano, A .IACS 120,4345 (1998)' rarBurk. M. J., Bienewald,F., Harris, M., Zanotti-Gerosa,A. ACIEE3T' l93l (1998)' ta2zhu,G., Cao, P., Jiang, Q., Zhang, x. JACS ll9' 1799 (199"1)' ro3chun, S. C., Hu, W., Pai, C.-C., Lau, C.-P', Jiang' Y., Mi, A', Yan, M', Sun, J', Lou' R'' Deng' J' A. J ACS rr9. 95't 0 (r99't ). (1998)' r*Mi, A., Lou, R., Jiang,Y., Deng, J., Qin' Y., Fu, F.,Li,Z.,Hu, W', Chan, A' S' C' S 847 t4sKu*-o, R., Okuda, S., Ito, Y. TA9,2773 (1998). ra6lightfoot, A., Schnider, P., Pfaltz, A. ACIEE 37' 2897 (1998). raTsc-hnider, p., Koch, G., Pretot, R., Wang, G., Bohnen, F. M., Kriiger, C., Pfaltz, A. CEJ 887 (199'7). t'8Ji-g, (1998)' Q., Jiang,Y., Xiao, D', Cao' P',Zhang,X. ACIEE 37,1100 toePy., (1998)' P. J., Rosen, K., Reamer, R. A., Volante, R. P', Reider, P' I ' TL 39, M41 'toJiung, Y., Jiang,Q.,Zhang,X. JACS 120, 3817 (1998). tttAlonro, (1998)' D. A., Guijano, D., Pinho, P., Temme' O., Andersson,P'G'JOC 63'2'749 tt2lnor", S., Nomura, K., Hashiguchi,S.' Noyori, R.' Izawa, Y ' CL957 (1997)' r53Touchard, Fache, F., Lemaire, M. 7A 8, 3319 (199'7). F., ls4Matrumu.a,K., Hashiguchi,S., Ikariya, T., Noyori' R. "/ACS119' 8738 (1997)' 'tso'N"il, L A., Turner, C. D., Kalindjian,S.B. SL'7'1'7(199"1). (1997)' ttuobiku, S., Nishiyama,T., Tatematsu,S., Miyashita,K., Iwata, C', Imanishi' T Z53' 593 r5TKanomata.N., Nakata, T. ACIEE 36, 1201 (1997). r5sYamada.T., Ohtsuka, Y., Ikeno, T. CL 1129 (1998). r5eSugi, D., Nagata, T., Yamada, T., Mukaiyama' T. CL 493 (1997)' K. r60Masui.M.. Shioiri. T. SL2'13 (1997).
lO2
catalysts Chiral auxiliaries and
w N' J' speckamp' lflcorev' e; ' cu:llT:-":i: 3 '?#""i'J''ffiil:,;li; i,'iJ.1lil:lll t62ostendorf, M., Romagnou '1.99'l)' Hi"rntou' H' TA 8' 17'13
'*'r$# (,ee8, 4e47 I tl,'*j'.',,,,0, ;;;"trffi:j:, i:l'ffiIIffi
,"il:;.;.,;iun.y. S.Joc63,s280(lee8)',, (ree7). - - r rA8,6?3 l66Bach'J., Berenguer'R" u
tottt,-*.'Xie, R rAr'"r".Y.2;^ng,y.-w.rAB.zzs'. (1ss'7). r68shen, Ll,, 'tl^'^t#;rilF. Z.-x., (lees). i.,sc,78e7 t6epinho,p., Guijano,D., Ar T H-46''189( 197)' 170Hashimoto, N'' fsnizuta'i'' iunieda'
c 111'tnlt t]'11,1.rucker. oss'l\' "'il#:il:.;in"ls, G..wandrev. L.rAB.4sT t 't'I. L., J" Lantos' J.R.,Haves' 'tr;;;;;. J.r., Ftisak. Ufret'wt i., il;r;". '";;-il;;;ies. M ' rirado'L' M" Colon't" (1998)' *t"tave'r' 'SC28'4067 ii*'".i'' tt*f'f"|,*i fr,f.,Shioiri,T. SLn3 (j'997)'
M" R..trbron.M" DeJesus'
rmTokunoh. R.. Tomiler loTcunt,T. G.. Noe. M- CtotDoyl", M. P.. Pecrsm' t 26Denmark. S. E.. O'Cc :r\mai, N., Sakamoto' K ' ll lCharette,A. B.. t-cnn1. "tKuy", P. T.. Molema I 2r3chen,c.-T.. Chao.S -D
Ialseki. K., Kuroki. Y ' K ll5Euunr' D. A.. MrMtllt ll6cennari, C., vulpcto. J tttAbiko, A.' Liu. J.-F. v :t8soito, S., Haunaka L 2tgTuku"t, J. M.' Jab€r' v 2toAbiko,A., Liu. J.-F .l t2tKinugutu, M.' Har&' l22Kinuga.u, M'. Haredl ?23lto,H., sato, A.. Tatu 224M"t ,P.' Hungethoff' 22ssoloshonok,v' A" ot l26Rubl., J. c., Fu. G C' )" zhu, J., Deur' C.. Flcl l2soriyomu, T.' Imai' L l?eJaeschke,G.' Secboc lroMaezaki, N., SaLetE lllKumamoto, T'. Koil ll2Euunt, D. A., Bu4r1 l33Daui"s'H. M' L" Hl llaoppolzer, w" FrGril ll5cottu, S., De Lrcch
l;XmX;:yl:1,,,,,',"1.3":i:1'"'#3ill:":11:""'',if f,,i#,;i,f,[i,'' * ,'.YilT'I;illili. t r7?D,"*. M.D..Lawrence, '78sudo, (rsss) A.,yoshida,rlT|llil#i.;..tt,i,-^ ie s,zors
ue,?1:1,'lni')o., i",'"i.'i,o' (,ee8, llh::n:l 80,, llllifi;l;L 120, fr Enman r'' B' Backes' K" 't'A;;;:;;" c ' nim' t-iu' (1998)'' ^-' ttt.i.'C'ut"newald'F' SL132'7 (1991)' 62'8-56'0 T' JOC ls3Yamanoi, Y'' Imamoto'
(Iee8) roc63'2e48 x'ii'#:;T^llt'v(1ee8)' Hffi# ;;nffigllii: 186cao, w-r, r.-ii-i" " 'tn:,"--1ll;442s G.-A.,
5 ( l9e / )' '"i."",.t""n' M i' Fu"ht' P' L IL 38' 561 (1998)' 4319 rmt*inuin"n, P' T 54'
'*ou^l'w']'r*t'*
(tss8)' M'B'roc63'2'7't4 i Jif ' ltt'i'iJ'llil];"t.ring' (.1998)'
t{pase, P. C. B., Rassiar
'''tr?., u..**wright, P' c'TL39'1599 L' L4 l l01ttn"' 'riiri..J'o.. inu,J.lKramp..
Bou9auchlY rqiwaranabe. S..Arai.T'. sasai'H'
'j
1e98)' -n,our*,M.Joc63.8090^( ( a. TA 9. 1563.3895 Ievu).
Mp, BE,rackson, xS*;f;:r'*!"T;lii:l:;3;lllil"8l"##iin. oo*".**, *. S" cap Bergeron' V. J. 't."o6r.r.'t. Barkt"u
M.. r*l:rf 'J:t$llt"?l]' N.M.,wu,L.E. rcs(pt)32s"1 R.,*"r""i. ;., ti":t;! Mccague, s' w.,Kary'P'D''Roberts'
,t;ti;J
M. v..cappi.
(1ee8)' P rcs(Pt)203? M' P: r:baurti L'' coogan' '"t331];", u. K.,Berl, (1ee8)' u-^o';111A' loc 63'4532 reeJuli"nn", *., *o^"l, ri.li"'o*, (lt',0';""e.
33-?? p. (lgggl 2mBaird, c. p..Taylor. 6. '1f$(P1) JCS(pt)'71 r': ' lil'ts'M.-H. R.JACS120' 20'Zhou, y.-G.,HouJ.-L..Dai,L'-X',Xia'L'-J H.,Fi"ldr,ou.e, v. ;;;;i. AdaI s'' Fonquema' G" 'tiffitr' v K" Ford'J' 8328(19e8)' T' AclEESl' 1639(1998)' 2o3solludie-Cuuallo, A., Diep-Voh*l":-A:,t.*T? 449(1991)' '.sL 2mroru,T.,Nak".*"]i, i"o"*oto' H- Ueno'^Y 10469 (1998)' 54' A"r tz' t"t b'' 2.sEbing"., o., r"*Jrl, u"''oJ"ii'
Chloramine-T.
Aziridines. O PhNMe,Brbrominc
tAndo. T', Kano. D'. I rJeong,J. U.' Tao. B" I
Chlorine. 17' l9tAlkYlarencstl reactwith alcohols N-Chloronba nicotinamidewith < but not in chlorofq tHu.ting, S' R., Urrn rVivekanandan. K-' !
I I
:1^-ckamP,W' N''
(1998). sr 1e.r7
t :"- r 1997). M" Lc^:,'r.M.' DeJesus,
b .r'r t qr-
0:
f:
.998)
.,eS L
I ., q) i 1998). :
Chloramine-T. chloramine-T serves as a nitrogen donor to alkenes.r By adding Aziridines. PhNMerBr bromine is generatedto catalyzethe reactionJ
../9S L
!.
il 8.. Jackson,M' P''
Il
\\ u.L.E-JCS(PI)329'7
F. F :-
2ffiTokunoh, M' TL 37'2M9 (1996)' M.' Shibasaki, R., Tomiyama,H., Sodeoka, 2o7cant, T. G.,Noe,M. C.,Corey,E.J.TL36' 8745(1995)' 208Doy1", C. S', Parker,Jr.,D. L. ACIEE 35' 1334(1996)' M. P.,Peterson, 20eDenmark, S.8., O'Connor,S.P.JOC 62'584(1997)' 2rolmai.N., Sakamoto, K., Maeda,M., Kouge,K.' Yoshizane,K', Nokami'J' TL38' 1423(1997)' 2ttchu..tt",A. B., kmay, J ACIEE36,l090(1997). 2t2Kuye,P.T., Molema,W.E. CC 24'79(1998). "'Ch"n. C.-f., Chao,S.-D.,Yen,K.-C',Chen,C.-H.,Chou,I'-C',Hon,S'-W''/ACS119'11341(1997)' 2ralseki, Y. Sr 437(1998)' K., Kuroki,Y., Kobayashi' 2rsEuanr, K. R' "/ACS119'10859(1997)' D. A., MacMillan,D. W. C.,Campos, 2l6cennari, (1997)' ?53,5909 C.,Vulpetti,A., Pain,G. 2l7Abiko.A., Liu, J.-F.,Masamune, S.JACS119,2586(1997). 2t8suito. H. ACIEE37,3378(1998)' K., Kano,T., Yamamoto, S.,Hatanaka, 2leTuku"s, S' J' IA 9' 4313(1998)' B. J.,Mehrman, J. M., Jaber,M. R.,Swanson, 22oAbiko, (1997)' 3261 zL 3E, S. A., Liu, J.-F.,wang, G., Masamune, 22tKinuguru, M., Harada,T., Egusa,T., Fujita,K., Oku,A BCS"I69,3639(1996)' 22tKinuguru, M., Harada,T', oku, A. JACSlLg'9067 (199'l)' 223lto,H., Sato,A., Taguchi,T. TL38, 4815(199'1). 224M"tt,P., Hungerhoff,B. JOC 62,4442(1997). 225soloshonok, V. A., Ono,T. JOC62,3030(1997). 226Ruble. J. c.. Fu.c. c. "IACs120,11532(1998). 227zhu, (199'l)' L. S.JOC 62,'1'104 J.,Deur,C.,Hegedus, 228o.iyu.u,T., Imai,K., Sano,T.' Hosoya, T. TL39' 3529(1998)' 22eJaeschke. D. JOC 63,I 190(1998). G., Seebach, 23oMaezaki. A., Tanaka,T., Iwata,C. TA9' 179(1998)' N., Sakamoto, 23rKumamoto, T., Koga,K. CPB 45,'153(1997) 232Euunr, N. A., Vojkovsky,T" Tregay'S' W' JACS120'5824( 1998)' D. A., Burgey,C. S.,Paras, 233Davies, T. JACSll9'9fi5 (1997)' H. M. L., Hansen, 23aoppolre., W., Froehlich,O., Wiaux-Zamar,C'' Bemardinelli'G' IL 38' 2825(199'7)' '35co.ru,S.,De Lucchi,O.,Passetto, P.ACIEE36,1504(1997)'
J99).
H i :.'l,lhouse,R' JACS 120'
lAndo,T., Kano,D., Minakata'S.,Ryu,I., Komatsu, M' ?54, 13485(1998)' 2Jeong, K' B"/ACS 120'6844(1998)' Sharpless, H', Henniges, I., J. U., Tao,8., Sagasser'
Chlorine. 17, 198-199; 18' 97-98 Arenethiols undergo s-chlorination. The products readily Alkylarenesulfenales.l react with alcohols. This stable and mild oxidant is formed by treating N-Chloronicotinamide.2 and dioxane, nicotinamide with chlorine in 3N HCl. The reagent is soluble in tlO, HOAc' but not in chloroform and carbon tetrachloride. tHar.ing,S.R.,Livinghouse, T. SC2E,893(1998). 2Vivekanandan, K., Nambi,K. /JC 358, 111?(1996).
1M
Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium(I)
1,3-Ilieaet:
Chloroaluminum borohYdride' Reiluctivecleavageofepoxides,|Aregiosglectivereductiongivesthelesssubstipoly(4-vinylpyridine)' reagentwhich is supportedon tutedalcoholsis achievedby the
o
preferentially-.
Ph---
il
@lcq
f"^+
err
\AoAAo* il
EtOH
98%
'xrng.S.-K-'KrrnI :Ilurakani.M-.L-h
330(1997)' H' JCR(S) rTamami, M' M'' Yeganeh' B.,Lakouraj' 2-Chloro-N'Nd BcnztntilbChloro(l,5'cyclooctadiene)cyclopentadienylruthenium(I)' l.5.Diketones.LCouplingofanenonewithanalkynefurnishesl,5-diketonewhich with CpRu(COD)ClandIn(OTf)t' effected is
qA.^"*
2-ChlorolJd 2,3'Pcdit .ah in the Presco
CpRu(cod)Cl J
In(OTt)3,NH4PF6 DMF- H2o 1ooo
c
^rcocJ
[2+2+2]Cycloaddition'2Lineartricyclicadductsareformedwhenl'6-heptadiynes at 40o' with cpRu(coD)cl in 1,2-dichloroethane and 2,5_dihydroturanare warmed
o
fi-^p
Kondo.K..Munb
Cp'Ru(cod)Cl clcH2cH2Cl
ceo 741"
H' '/ACS119'836(1997)' lTrost,B. M.' Portnoy, M'' Kurihara' (1998)' 'Yurnurnoto, n'' Og"*t' R'' Itoh'K' JOC63'9610 Y', Kitahara'
Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium(I)' with retention carbonatesundergoring opening Allylicsubstitution" Allylic cyclic of configurationby nucleophiles'
I
Pcpilc sl:
\odc. M.. Fultu t.rt"ii. K., K,rtyr
Chloroiodc Epoxidct-l
Srmmons-Sm :onverted to cP g'Chloto r \etones. Thc c
Aggarwal.V. l( :ct n.P..c}eq R. P. rt 3t.31
Chloroiodomethane 105
c lers substirl ndine).
Unactivated alkenesand alkynes are coupled. Linear dienesare formed
I,3-Dienes.2 preferentially.
CpRu(PPh3)2Cl
p /-\ h
= \--l
NaPF6
OH
* Pril = \
\-ss
OH
pyridine 100o
IKang,S.-K.,Kim,D.-Y.,Hong,R.-K.,Ho,P.-S.SC27,3225(199'l). 2Murakami, (1998). M.,Ito,Y. TL39,'7361 M.,Ubukata,
fiketone which
\rM"*
2-Chloro-N,N-dibenzoYlaniline. by this reagentat roomtemperature. Benzamides.t Aminesarebenzoylated rKondo. (1998). Y. CPB46,121'7 K..Murakami, chloride. 2-Chloro-1,3-dimethylimidazolinium estersare dehydratedwith this esters.t Acetonedicarboxylic 2.3-Pentadianedioic of EtrN. saltin thepresence
o \J
"
J_:
MeoOC. A
l.h-hePtadiynes nc .rt tlOo.
o
v
,CoOMe
+
C,r""
MeN={
Cl
Er2N -
MeOOC \_^_ _--\
CH1CI2
COOMe
cl 9O"/o
Peptide synthesis.2 The imidazolium salt is an effrcient coupling agent' rNode,M., Fujiwara, S.,Nishide,K. TL39,6331(1998)' T., Ichihashi, 2Aka.1i, y. TL35,3315(1994). N., Kiso, K., Kuriyama,
Chloroiodomethane. 18, 99- 100 Epoxides,t This compound can be used instead of diiodomethane in the Simmons-Smith reaction. In the presence of a dialkyl sulfide and Et Zn aldehydes are converted to epoxides. u,Chloro ketones.2 The deprotonated species reacts with esters to give ct-chloro ketones.The method is applicable to protected amino esters.
ing $ith retentlon
rAggarwal,V. K., Ali, A., Coogan,M.P. JOC 62,8628(199'7). 2Chen,e., Ctreng,P.T. W., Spergel,S.H', Zahler,R.,Wang'X., Thottathil'J', Banish,J' C', Polniaszek' R. P. 7r 38, 3175(1997).
106
m-Chloroperoxyb€nzoicacid
Ror,'\
Chloromethyl(dimethyl)sulfonium trifl ate. Acetals,t A one-steppreparation of acetalsby homologation of ketonesunder basic
t t l
ROL/
conditions is rePorted. tKaczmarczyk,G., Jonczyk,A. SL92l (1997).
R=T
bis(tetrafluoroborate). 18'
1-Chloromethyl-4-fluoro-1,4-diazabicyclo[2.2.2loctane 100 Aromatic iodination with Ir is catalyzedby this salt' Iodoarenes.t
F{r
}OMe
\___/
+
lz
* /---\ * Pl F-N3NJ 2 (BF4)
Pyrrolecarboxylic Fluoropyrroles.2 exposureto this reagent.
acids undergo
R=1
Oxidation of sulfw t t-butylsulfinamides to sul the sulfonamides are clc thiophenes are treated sil
F-1t //-oue -1 I
Baeyer-Villiger oxi regioselectively. With & 5-hexenoic acids are obtr
87/o
It
fluorodecarboxylation on
rZupan,M., Iskra,J.,Stauber, S. 11-38,6305(1997). 2wang,J., Scott,A. I. CC 2399(1995).
Chloromethyl phenYl sulfoxide. The lithio derivative from this sulfoxide (LDA) reacts Lactone ring expansion.t are with lactones to form adducts which on further treatment with KH and then t-Bul-i reaction This larger. size of one lactones regenerates transformed into ketenes.Acidification of sequenceworks well for expansion of 5- and 6-membered lactones. For the synthesis the use and pyridine-2-thiol macrolides, it is necessary to quench the ketene with
SnMe3
Esters from rcebk. treatmentwith trimethl'l c acetals initially formed : hydroxy estersewith MCI Meisenheimer reqa temperatures.on warmin by Zn-HOAc.ro
Corey-Nicolaou method to effect reclosure of the lactone ring' R
,z\.,a. V
N
F
lsatoh,T., Kurihara, T. TL39,9215(1998).
m-Chloroperoxybenzoicacid. 13' 16-79;14,84-87; 15,86; 16,80-83; 17,76;18' l0l: 19.94-95 Epoxidation.
The stereoselectivity for epoxidation of cis-dihydroxycyclohexene of derivatives shows protecting group and solvent dependence.r The conversion by neopentylideneimines of cr-amino esters to the oxaziridines (with MCPBA) followed treatment with ammonium iron(II) sulfate hexahydrateaccomplishesN-formylation'2
Halogenationof ah MeCN is capableof hak in 47' chlorocyclohexane 'de
Sousa,S. E., Kee, A.. O' 387(1999). :Gi*d, T., Benard, D.. Ptaq
m-Chloroperoxybenzoicacid
"or,.) lc:,'nes underbasic
*D"
Ro/\,," MCPBA- NaHCO3/CH2CI2 56 | 44 -' R =TBS
nnrborate). 18,
98:- 2
oxone-trifluoroacetone
R=TBDPS
M C P B A - N a H C O 3T/H F
98: 2
t-:
Oxidation of sulfur compounds. Xanthates are converted to sulfines,l and t-butylsulfinamides to sulfonamides.4Thus, amines can be protected via sulfinylation, and the sulfonamides are cleaved by TFA or TfOH. Thiophene oxides are obtained when
- :!o""
thiophenesare treatedwith MCPBA-BFr'OEq.s'6 oxidized Baeyer-Villiger oxidation. B-Trimethylstannylcyclohexanones are and decomposed are products lactone regioselectively. with the added NaHCO, the
1
5-hexenoicacidsare obtained.T
57'o
o tl
o rur..rrboxYlation on
.,\ t
MCPBA- NaHCO3
l
cq2ct2 SnMe3
r-: ,rrJe (LDA) reacts { :nJ then r-Buli are ,. ..rrger.This reaction : F,,r the synthesisof
tl
aAon
/'",
Y
I SnMe3
Aldehydes are converted to methyl esters by sequential Estersfromacetah, MCPBA-BF3'OEt, and DBU.8 In this sequencethe orthoformate, treatmentwith trimethyl Benzylidene derivatives of sugars are oxidized to oxidized. are acetals initially formed -bipyridinium chlorochromate' 2,2' and MCPBA hydroxy estersewith are oxidized to give N-oxides at low amines Allylic Meisenheimer reafTangemenL are generated,which can be cleaved up O-allylhydroxylamines temperatures.On warming by Zn-HOAc.ro
c-l-rhiol and use the MCPBA / CHzClz - 40o ;
AAnnz
Et2O -8o; Znl HOAc
OH I
{'v 40 - 65%
i r ' - . l : 1 7 ,7 6 ; 1 8 , -i: l\ JroxYcyclohexene fhe conversion of
.
| \!('PBA) followed bY 3. \ formylation.2
The combination of MCPBA and EtoNX (X=Cl' Br) in Halogenation of alkanes.tt gives MeCN is capable of halogenating alkanes at room temperature.Thus, cyclohexane favorable' less chlorocyclohexanein 47 Voyield. Other casesare 'd" Souru,S.E., Kee,A., O'Brien,P.,Watson,S.T., Pilgrim,C' D'' Roder,D', Towers'T' D' TL 40' 38'7(1999). tciard,T., Benard, J.-C'S 297(1998). D., Plaquevent,
Chlorotris(triphenylphosphine)rhodium(I)
108
Tb Hydroacylation.z in by Wilkinson's catalYst d Sr Hydrosilylations. hydrosilanesare available. ,l
3Marriere.8., Chewie'D.' Metzner,P'ICS(PI)2019(1997)' aSun,P.,Weinreb,S.M', Shang,M' JOC 62' 8604(1997)i 5Furukawa, N., Zhang,S.,Sato'S', Higaki' M' H 44'61 (199"1)' un v.. fh[t"-n, T], Sawada'T., uaiat
to afford homoallYlic silane
(P
E
2-ChloroPYridine. --inof6Urrr.t
2-chloropyridine is As a base for enoltriflation of quinolones
adequate.Itisadesirablesubstitutefor2'6-di+-butylpyridinebecausethecostisdecreased by 100-fold. (1997)' rMyers,A. G.' Thom,N' J', Fraley'M' E'' Cohen'S' B'' Madar'D J' JACS119' 60'12 95-96 13,79-80; 15, 86-88; 18' 101-102: 19' "N-Chlorosuccinimide. "'i'-"iiir"i*arr., Dehydrochlorination of c-3. at l_pyrrolines are dichlorinated
Cyclaalkenes. [5+2 and AgOTf t (Ph3P)3RhCl vinylcycloproPane-tryck areobtained cyclopentenes
the products delivers 3-chloropynoles'
uleoocur-/ cl
NCS / CCl4
\
a/-Ph
N
4",
NaOMe/ MeOH
-Jcl (*\,n
\*z/-en
^
rrleoOc\--\]
H 95"h
wchlorocarborylic
acids.2
Immediately following
the conjugate addition of
dialkylaluminumchloridetoN-alkenoyloxazolidin-2-ones,theadditionofNCSconverts the enolatesto the c-chloro derivatives' tD" Kimp",N.' Tehrani,K' A', Stevens' C'' De Cooman'P' ?'53'3693(1997)' 2ru"t-Siaun, K., Stamm,A', Engel'S'' Kunz'H' JOC 62'961 (1997)'
lEvans,P. A., Nelson,J. D. I :Jun, C.-H., ke, H., Hong. I rMo.i, A., Tukahisa, A.' Kri aBessmertnykh,A. G.' Btir
19' 96-98 ^"irr,,, Chlorotris(triphenytphosphine)rhodium(I)' "*";;;;';;;;;;;-i occurs regioselective alkylation of soft nucleophiles (MeO\P' wlth the Rh catalyst modified by the added
M., BeletskaYa,l.P' JOC e 5wender, P. A., Husfeld" C, I 6Hayashi,M., Ohmasu. T-. !
|
Vo"oo""
.
'cooMe
(Ph3P)3Rhcl
loorur"
(MeO)3P THF
COOMe
\*o'" (99 : 1) 91"/o
COOMe
Chromium(Il) acetata l Epoxides.t RedrP Cr(OAc),is highlYefficx DMF medium.
Chrornium0l) acetate
The formation of ketones from aldehydes and alkenes is catalyzed Hydroacylation.2 by wilkinson's catalyst in the presenceof a chelating ligand (e.g., 2-amino-3-picoline)' Hydrosilylations, Stereodivergent routes to alkenylsilanes3 from alkynes and hydrosilanesare available. Alkylidenecyclopropanes undergo ring-opening hydrosilylation
q97)
to afford homoallylic silanes.a
Ph (Ph3P)3RhCt
l.ii\119.6072(1997)' ,lc. ,: 96 t t : I)ehydrochlorination of
*
pd
siEt3
1r,r,.
;;; 2-chloropyridine is 11'1.'.,'ncs cost is decreased the ru\e I h..
\_ -\
Et3SiH
(3 : 1)
95% Cycloakenes. [5+2]Cycloadditionof vinylcyclopropaneswith alkenes using Allenylcyclopropanesare subject to (P\P)3RhCl and AgOTf results in cycloheptenes.5 accordingly, 3-alkylidene-lrearrangement; vinylcyclopropane-to-cyclopentene areobtained.6 cyclopentenes H - AgOTf (Ph3P)3RhCl
MeOOC.r-/ $r
Jcl (*\,n
I'eoH
_+
phMe 110o
ueooc\-\A
rvreooc.rr--fl rr,reoocA-f:r/ H 930k
H 95"/"
) '' t
X
;onjugate addition of .'Jdition of NCS converts
COOBn
(Ph3P)3RhCl + 8oo PhH
COOBn
v\a I 881"
.e97). F
r(,- ,': \oft nucleophilesoccurs
rc:ue + )Cr't. '99 : 1)
9't"k
rEvans, P. A., Nelson,I.D. TL39,1'125(1998);JACS120'5581(1998)' :Jun,C.-H.,Lee,H., Hong,J.-F .JOC 62,12C0(1997). rMo.i, A., Takahisa,A., Kajiro,H., Hirabayashi, K., Nishihara,Y', Hiyama'T CL 443(1998)' lBessmertnykh, A. G., Blinov,K. A., Grishin,Y. K., Donskaya,N. A., Tveritinova,E. V., Yur'eva.N. l.P. JOC 62,6069(199'7). M., Beletskaya, 5Wender, E.,l-ove,J. A. JACSf20' 1940(1998)' P. A., Husfeld,C. O.,Langkopf, 6Hayashi, T., Meng,Y.-P.,Saigo,K. ACIEE37,837(1998)' M., Ohmatsu,
Chromium(Il) acetate. 18, 102-103 Reductive formation of epoxides from l,2-dicarbonyl compounds with Epoxides.t Cr(OAc), is highly efficient. Thus, benzil is convertedto trans-slilbeneoxide in an aqueous DMF medium.
110
Chromium-carbenecomPlexes
TAIkorYaIIYb Mo-carbenecoof process.The nrrell The final Prodwts
tKouu"r,G.,Micskei'K' ?L 38' 9055(1997)'
Chromium-carbene
t4'91-93;L5'93-g5''16' complexes' 13' 82-83;
t
t^,\;)ff;tT)lirr;r*.
88-92; 17' 80-
and react with l-azadienesl carbenecomplexes
*e
donating ;tyf *oi"ti"' enyne-aldehydeszby
to form substitutedheterocycles'
or]h ,a\,
Ph Ph
PhV\r'NR
,nry*" l+
PhMe
,!(co)s
//\\ Ph4n/
Coniugad
R
with the net rcsu!
50- 60%
Ph40Et
into complexesare transformed photolysisthe.Cr-carbene On Cyclobutanones'3 alkenes' which canbe trappedwith dk";;;;;;";'
hv/ co'
ph:-_\
enoloEt
*
er(co)s
,,i<" ll
b
carbazole DMF- cH2cl2
tn)1o Bno--\ Eto""kN\ d
v
F 7go1o 1>97ok de\
pentacarbonylsare formed 'to acyloxyalkylidenechromium The This (E)'Enolesters' uffotO (Z)-enol esters'a decomposition tf'#l undergo They pyridine' readily. additionof I equivof is furthert"t'""*O Ot th" gglt=CHC[Cr(CO)']OMe stereoselectivity For the n'"n*u""t'of "by* with Alkenylcarben"o*p1""'' lithiated carbenecomplexes utaot-*nO"n'ution''t't with dehvdrated from MeC[Cr(co)r]Ofvre ^tntit productsare t'd:'il;;;'l*.ooot"o enolizablealdehvdes'
*rCi-u,,*. o"*itll1*'
T;ff:[."lar
Bromo;ed withdibromosr areconvertcdr otherhand.thc
acylationis.inducedbv Frieder-crafts
from the o-benzvr Isochroman'4-'""' --t^1t':::;:J:;;; are generatecphotolytically intermediates ketene zrcil-*iil" comPlexes.
.5 ll -l Meo2--7-J"
=-7c(co)s A
hv/ co , znct2tc42ct2
Chromiun0 1 9 ,l 0 l Rcfort ercellentscb morebulkY h
Chromium(ID chloride
8r-91:17,80-rzldienesr
Fischer carbene complexes (also the y-Alkoryallylstannanesandgermanes.T Mo-carbene complexes) react with vinylstannanesand germanesviaal2+2lcycloaddition process.The metallocyclobutaneintermediatesundergo ring opening and transmetallation. The final products are useful for allylation of aldehydes.
and
C.c.
*
?""
D\.,1
,Arcolu
PhMe
r- tsne"
;*
MeQ D. D
\,/
|
,nA
rnru.
Ph 620/"
/ \ \
r"4N/
R
Conjugaled bicnes.o Alkenylcarbene complexes react with propargylic silanes with the net result of allylidenation.
50 - 60%
::.rn.formed lnto
OMe OMe
\
l
L-lt{ t l
P
\-/
Me3si
+
(> 97% de)
n).- are formed r., csters.a This nc Ht'Cr{CO)'lOMe r .,rmplexeswith rc Jchl'dratedwith ,n r. induced by \'rr the O-benzYl
3
CgHz
caHT 79"/"
n v
) -3'"
lll
1oy{"<"o,u
Ph\-\
Bromomethyl ketones and ftketoesters.e Reaction of Fischer carbene complexes with dibromomethyllithium (from CHrBr, + LDA) affords l-bromo-2-alkoxyalkenes which are converted to bromomethyl ketones on acid hydrolysis (10 examples, 1l-947o). Onthe other hand, the reaction with ester enolatesdelivers p-ketoesters.(17 examples, 73-95Vo). rDanks, T. N., Velo-Rego, D. TL3S,9443(tgg4). 'Herndon,J. W., Wang,H. JOC 63,4564(1998). rReed,A. D., Hegedua, L. S. OM 16,2313(lgg7). "Sdderberg, B. C., Liu, J.,Ball, T. W., Turbeville,M. J. JOC 62,5945(1997). sWang,H., Hsung,R. P.,Wulff,W. D. ZL 39, 1849(1998). bBueno, S. JOC 63,1462(1998). A. B., Moser,W. H., Hegedus,L. tB*lu"ngu,I.,Gonzalez,R., F.J. OM 16,4525(1997). Fananas, uHerndon, J. W., Zhu,Y. TL39,7443(1998). eConcellon, J. M., Bernad,P.L. TL39,':.96'7(lgg8).
84-85; 18, 104;
*^Y
Chromium(Il) chloride. 13,84;14,94-97;15,95-96;16,93-94;17'
'a-,-_,.o
As activating agent for d-bromo esters CrCl2-LiI shows excellent selectivity for aldehydesover ketones (>50:1 vs. methyl ketones and >200: I for more bulky ketones). anti-Aldol products can be obtained.
1 9 ,l 0 l Refonnatsky reactians.'
Chromium(Il) chloride
,L*\'' o .l l
CrCl2- Lil +
t'\-
|-PTCHO -..tnf
^a v^ o
"bts'.ry
Chain extcnsi dehalogenation*rd sulfone. The prodr
11o/"
ASo/"
o.B.o
(> 96% de)
Alcoholsynthesis'Allylchromiumreagentsaregeneratedfromconjugateddienes with DMF.2Reactionof suchreagents of uitu-in B,, in aqueous andcrcl, in thepresence carbonylcompoundsresultsinhomoauylicalcohols'Three-componentcouplingreactions with CCl, arealso realized'3 involvingRI, dienes,andcarbonylsubstrates
tn.A""o
CrCl2 - vitamin 812
+
^uw
DMF - H2O 90%
AreagentcomposedofCrCl,Mn,Me',siClinTHFisusefulforcouplingallylic (Actually' of cr-methylene-1-lactones'a bromides with aldehydes,enabling the preparation arylandalkynyliodides'andtriflatesarealsoreactive,buttheabovehalidestendtoundergo
\,
^"
lWessjohann. L.. s rTakoi, K., Torarr.. rTakui,K., Martuh *Fu..tn"t,A.. Shi.: sBo"ckrn-, R. K-. oGrigg,R., Pumilo TKuroboshi, M.. Tr sHodgson, D. M.. ( 'Hodgson,D. M-. I rhakai, K., Shinom
wurtz-typecouplingifanickelsaltispresent,evenintraceamounts.)Homoallylicalcohols bearinganalkoxygroupattheallylicpositionareobtainedbythelandan/i-selective the same reagentsystem's condensationof acroletn acetalsand aldehydesusing
t"oJA Ph-cHo
+
9"
COl2'Mn/THF r
Me3SiCl- Nal ;
OMe
|
|
|
Chromium(Il) d t02 Tertiary alco condensation rer
beneficial addiov reproducibilityol
OMe
lNHCI
8 8 %( a n t i ; s y 1n 0 9 : 1 ) CrClr-Pd(OAc)' ca-nbe driven The coupling of halides with aldehydes catalyzed by CrCl, in the presenceof nickel bromide electrochemicaliy.6Electrochemically regenerated of carbonyl compounds'7 instead of pd(oAc), is capable of effecting alkenylation of aldehydes to Brrc(SiMe.)t I,\-Disitylatkenes and alkenylstannanes. Exposure andCrCl'bringsaboutthebis(silyl)methylenation'Theproductscanbeconvertedto instead of the disilylmethylene acylsilanes.8 An analogous reaction using BurSnCHI, bromide leadsto alkenylstannanes'q Bt,, V
tt-
-siM".
4,"".
c,cr2/ DMF 25o
(^t'ysiue' \./
siMe3
Diarylmcda
Accordingly, ret Macrocyclk with an aldehydl 10Vo ranse).
' C h e n , C . slL3 l l :Sta.or, D. P..Sh
Chromium0l) chloride-nickel(Il) chloride
i,-,\&
o-Boryl radicals generated from Chainextensionofelectron-deficientalkenes.to acrylonitrile, and vinyl phenyl esters, to acrylic for addition useful dehalogenationwith CrCl, are (e.g., functionalization). by deboronative further sulfone. The products can be elaborated
11"/"
o-o.o i,,ntugateddienes :u.h reagentswith
113
V$"'
T
'
A.nuJ
J
crcl2 - Lil
-\_// \
O.^rO b
DMF 25O TMEDA
\,V'
coH
/
92"k
c,,rplingreactions !
,a JH
ior ;ouPling allYlic (Actually, a\ :, \nes.'1 ij:- r.'ndto undergo onr,'.rllylicalcohols F inJ rirtti-selective ')'lcln'5
i* \ \
t '
rWessjohann, L. TL38'4387(199"1)' L., Wild,H. SL731(1997);Gabriel,T., Wessjohann, 'Takai. K.. Toratsu,C. JOC 63,e50 (1998). 3Tukai,K., Matsukawa, A., Fujii,T. ACIEE37,152(1998). N., Takahashi, oFii.rtn"..A.. Shi,N. ,IACS118, 12349(1996). 5Boeckman. R. K.. Hudack,R. A. .rOC63, 3524(1998). 6crigg,R., Putnikovic,8., Urch,C. J. fL 38, 630'7(199'l). TKuroboshi. H., Torii,S. SL69 (1999)' S.,Tanaka, M., Kishimoto, M.. Tanaka, sHodgron, D. M., Comina,P.J.,Drew,M. G. B. JCS(PI)2279(1997). 'Hodgson, D. M., Foley,A. M., Lovell,P,l. TL39,6419(1998). lolakai,K., Shinomiya, N., Ohta,M. sL 253(1998). Chromium(Il) chloride-nickel(Il) chlorid e. 14, 97 -98; 15, 96-97 ; 17, 86; 18' I 05; 19' 102 Addition of the bipyridine ligand I is crucial for the successful Tertiary alcohols. condensation reaction involving ketones.l For the condensation with aldehydes a beneficial additive is 4-r-butylpyridine which inhibits homocoupling and contributes to the reproducibility of the reaction.2
l a - : s y n1 0 . 9 1: ) O -\. r. can be driven xc ,'f nickel bromide :\-nlnt)unds.7 ,.1c.to BrrC(SiMer)t crn be converted to tr'.: JisilYlmethYlene
,.1-.SiMe3 SiMe3
(1) Diaryliodonium salts can be used to react with aldehydes. Diarylmethanols.3 Accordingly, reactivity umpolung is manifested. Macrocyclic propargylic alcohols.o't Intramolecular reaction of an iodoalkyne with an aldehyde to form an alcohol is demonstrated, although in moderate yield (in the 4OVatange). rchen.C. SL 1311(1998). rstamor,D. P.,Sheng,X. C.,Chen,S. S.,Kishi,Y. TL38,6355(1997).
tt4
Chromium(Vl) oxide-silica gel 'Bendalc.
3Chen,D.-W.,Takai,K., Ochiai,M. TL38'8211 (1997)' aluker, T., whitby, R. L TL 37,7661(1996)' sHar*ig, C. W., Py, S.,Fallis'A G. JOC 62"1902(199'7)' Chromium(Ill) nitrate-dinitrogen tetroxide' is efficient and Nitrophenols.l Nitration of phenols in acetoneat room temperature EtoAc) refluxing in reagent (2 the of selective. By adjusting the reaction conditions equiv dinitration is achieved.
P I
Chromocrr AILtrdi rcrtion of .ccondan \ozaki-Hiy reduction of
rl.unpoo.,N., Firouzabadi'H', Zolfigol,M' A' SC28' 2'173(1998)'
Furstrrr. .{.
Chromium(IV) oxide. Chromium dioxide is a mild oxidant for various alcohols' It Oxidation of abohols.t In most casesit is superior to is magnetically retrievable and regeneratedby heating in air. activated manganesedioxide.
Cobdt([tr Alrrcq.
b1 Co(OAcl Eloxia \ -substitun
rlee. R. A.. Donald,D. S' ?L 3E'3857(1997)'
g
o
-^D
Cro3- 3,5-dimethylpyrazole cH2cl2
-^$ 9
o
Hfroa
nrlr t.\-r'iny quanutaorcl
Ycvihrm.\':nt.BC.t l:. H.. Lra.
Cotdullt rBlay,G., Cardona,L., Garcia,B', Garcia'C' L'' Pedro,J R' IL 38' 8257(1997)'
Chromium(Vl) oxide-periodic acid. (secondary alcohols to Carboxylic acids.t Primary alcohols are oxidized to acids wet MeCN' By this procedure ketones) using catalytic amount of CrO, and excessHrIOu in center adjacent to the there is very little racemization of the products bearing a chirality
r
AIL.:rl rrthCca
('Jrrz. G. J '\rcdrsgea" I
Cotdtrtrl r
rrlr5
emergingcarbonylgroup.Thereforethismethodisusefulforthepreparationofchiral cr-amino acids.
:rrtron! I ccr
E' J' J'' Reider'P' J' TL39'5323 rzhao,M., Li, J.,Song,Z.' Desmond, D' M'' Grabowski' R', Tschaen, (1998).
rEsatlct
Chromium(Vl) oxide-silica gel. 19' 102 with the Regeneration of carbonyl compounds by oxidation Deoximation,t irradiation' supportedreagentis aided by microwave
.rbtfi of
CLaq rc RSSR tl ,.4ca / r \asr. :rn.fcrrn-
Cobalt[D chloride
t15
lBendale, M., Khadilkar, B. M. ?4 39, 5867 (1998). P.
[u:r' i\ efficient and ru::r-t.luxingEtOAc)
Chromocene. Using CprCr as catalyst together with Mn and MerSiCl to induce the Alkylntions.t reaction of iodoarenes, iodoalkynes, allyl brornides, and enol triflates to aldehydes, secondary alcohols are formed. This process is a catalytic version of the Nozaki-Hiyama-Kishi reaction. Active Cr(II) catalyst can also be generated by Mn reduction of CpCCl, or CrCl,. 'Fii.rtn"r, A., Shi,N. JACS11E,12349(1996).
r \ rrlous alcohols.It t.i.e' it is superiorto
x.nr temperature(10
Cobalt([) acetate. Side chain oxidation occurs with oxygen when catalyzed Arenecarboxylic acids.t by Co(OAc), and N-hydroxyphthalimide. The cooxidation of alkenes (including l-tridecene, stilbene, and an Epofidation.2 N-substituted cinnamide) with isopropanol by oxygen at room temperatureis mediated by polyaniline-supported Co(OAc)r. The catalyst is readily recovered by filtration. on supported Co(OAc)r-PdCl, binary With Hydrodechlorination.3 proceeds poly(N-vinyl-2-pynolidinone) as catalyst, hydrogenolysis of organic halides quantitatively.
' o -n/.
-J
rYoshino, S.,Ishii,Y, JOC 62,6810(1997). T., Sakaguchi, Y., Iwahama, Y., Hayashi, 'Das,B. C.,Iqbal,J.TL38,1235(1997). 3Li.H.. Liuo,S.,Xu, Y., Yu,D. sC27,829(1997).
Cobalt([) acetylacetonate. Grignard reagentslor organozinc halides2couple with alkenyl halides Alkenylation. with Co(acac), as catalyst. The configuration of the double bond is retained. rcuhier,G.. Avedissian, H. TL39,6159(1998). 2Avedissian, H., Berillon,L., Cahiez,G.,Knochel,P. TL39,6163(1998).
r.,'ndary alcohols to C\ 81'this Procedure centcr adjacentto the nr.paration of chiral
R:: -ltr.P.J. TL 39' 5323
,'ridation with the
Cobalt([) chloride. Homoallylic alcohols are formed by reaction of allylic halides and Allytation.t carbonyl compounds with Al-CoCl. cr-Halo ketones condense with carbonyl compounds in the Aldolformation.2 presenceof Mg, CoCl, and MerP. Cleavage disulfides.3 The combination of Zn and CoC! effects reductive cleavage of RSSR. With an added alkytating agent (e.g., MeL BnBr) mixed sulfies are obtained. mixture of ftAcetamido ketones.a In the presenceof a catalytic amount of CoC! the a ketone, AcCl, and acetonitrile is transformed into the functionalized ketone. This transformation is related to the Mannich reaction.
116
CoPPer
reaction with 2-Silyl-1'3-dioxanes undergo CoCl'-catalyzed Thiofonnylsilanes.s trapped as be can but which is unstable hexamethyldisilathiane to give HC(=S)SiMe3 Diels-Alder adducts. tKh*, R. H., Rao'T. S' R. P. "/cR(s)202(1998)' 2otrini,F. JOC 62,1159(1997)' 3Chowdhury, S', Roy,S. TL38,2149(1997)' oMil;"#v"v, rra.,ehatia,B', Iqbal'J'TL38' 1083(1997)' C'' Ruzziconi'R' SL 361 sDegl'Innocenti, A'' Bartoletti'L" Sp€zzacatena' A., Scafato,t','tl'"**t' (1e97).
cobalt([) porphyrin' The oxygen-Et,SiH Oxidation.
of system ts used for hydroperoxygenation
conjugateddieneslundertr'"inRu"n."ofaCo(II)porphyrincomplex.Epoxidationisalso reportedfor simPleralkenes'2 oximes.3Alkenesareconvertedtoketoximesbyamixtureof'-BuoNo,EgSiH'and aCo(II)porphyrincomplexinisopropanoVdichloromethane.Theoveralltransformation consistsof reduction and nitrosation'
o
.) ^,-/ o
\A
(tpp)co"- t-BuoNo t Et3siH |-POH - cH2cl2
a) t
Mired
co
cathode rerrs
reaction u'ith b
:tronel. E.. Prrl -\tathivet. T.. V 'Jackson. R- F I 'lnesi. A.. Rosr,
Coppe(II) r Arybiu phenols'ard r .\nthesisof r elthoughsonr
l
o S4'/"
rSugumoto, Y', Matsui'T' JCS(P1)3989(1998)' K., Matsushita, T 53"1@1099'7)' 'Mundal,A. K., Iqbal'J.' Punmyamurthy' T ' Bhatia'B'' Reddy'M' M'' Maikap'G'C (1998)' 1270 sL T' y Matsui' 'i*"rn"., Y'' , tr'tuttuiitu' r., go.u,una
Collidinium triflate. in from alcohols undergo thermal decomposition Alkenes,t propargyl xanthatesderived riflate in refluxing toluene' the presenceof catalytic amounts of collidinium IFaure-Tromeur' M., Zard,S' Z' TL N' 1305(1999)'
aY
F , r a n sD. . A . l tcltr,. D. \l T. C ' u r r J 1D. . J . . F 1-m.P.\'S.( -\rll rl99Er
Coppcrtlll r o.-Acyb
Copper. 15,99; 16,95; 18, 109; 19, 105-106 Cu' Fe' CuBt' and CXo @lso Alcohols are converted to halides by Halides.I l,lO-phenanthroline) in DIVIF at 0''
rclorEs rs b!
Perfluoroalkylation..Aromaticcompoundssuchasphenolsundergosubstitution promoter of the reaction' witn nj in hot DMSO. Copper is the Acvlation.'Functionalizedalkyliodidescouplewithacidchloridesaftertreatment with Rieke copper.
rhcn) liodonit
;arboxl lic rr Oxcole*
\:::r,.ala-T . K
Copper(Il) acetylacetonate
r-i t 'Cl.-catalyzed reaction with i. .:r.t;rblebut can be traPPedas
lt7
o Cu- / THF - 78o ;
larlcooBn :
Phcocl
tl
,n\nlcooBn :
t,tttBoc
NHBoc 46%
) - r lr- . :-rt€Il&. C., Ruzziconi, R. SL 361
of L'.. :,\r hydroPeroxYgenation ': is also .(rmplex.Epoxidation rF' F : '- \tUreof r-BuONO,ELSiH,and fr<'- :-. The overalltransformation
o i l \.,/\^/V l l "
l
Mixed carbonates." Carbon dioxide activated electrochemically on a copper cathode reacts with an alcohol ROH and an alkyl halide R'X to afford ROCOOR'. The reaction with bromohydrins leads to cyclic carbonates. rleonel,8., Paugam, J. P.,Nedelec, J.Y. JOC62,7061(1gg7). 'Mathivet, T., Monflier,E., Castanet, Y., Mortreux,A., Couturier, l.-L. TL39,941l (l99Et. 3Jackson, R. F. W., Fraser, J. L., Wishart,N., Porter,B., Wythes,M. J. 254, 1903(1998). -Inesi,A., Rossi,L., Casadei, M. A. 7L 38,3565(1997).
Copper(Il)acetate.18, 109-110;19, 106 Arylations. Copper(Il) acetatecatalyzesthe reactionof arylboronicacids with phenolsrandamines(includingimidazoleandamides)2rto providediaryl ethers(e.g.,for synthesisof thyroxine) and arylamines,respectively.The reactionsare quite erratic, althoughsomepreparativelyusefulcaseshavebeenfound.
l
NOH
H NHe
(HO)2B
Cu(OAc)2 pyridine
94"k
cH2c12
r'--l*:r\ t t i \-,/
' . ' ' . 1 \ l a i k a p . G . C . T 5 3 , 7 6 4 1( 1 9 9 7 ) ' .$)S). __
. ..rJc'r!o thermal decomposition in ' : ' .. r t t n g t o l u e n e . r
oh
s -
('u. Fe. CuBr, and CX4 (also
| \,-:
s !\e(\aNs \I\detgo substtuton
t:'i
l
63%
9\. | I
l
\Z\
-:-:''-lrrfl
crl : rrlh acid chlorides after treatment
rEvans, D. A., Katz,J. L., West,T. R. IL 39, 2937(1gg8). 2chan, D. M. T., Monaco,K. L., Wang.R.-P..Winters.M. P. 24 39, 2933(lgg8). rCundy,D. J.,Forsyth, S.A. 7L 39, 7979(1998). olam, P.Y. S.,Clark,C. G.,Saubern, S.,Adams,J.,Winters,M. P.,Chan,D. M. T., Combs,A. TI39, 2941/L99$.
Copper(Il) acetylacetonate. 18, I I 0 a'Acyloxy ketones.l A convenient method for the preparation of these substituted ketones is by a Cu(acac)r-catalyzed,decomposition of c,-diazoketonesin the presenceof carboxylic acids. Orazoksl Copper carbenoids obtained\n sttutromreaction p\en1\\odonrum l\rdes are trappedbl mtn\es.
of \J-droxoa\kan-2-1\
'Shinada, T., Kawakami, T., Sakai,H., Takada, L, Ohfune,Y. TL39,3757(1998).
I
I
118
Copper(I)chloride Hydrogenation-' catalyst made up of (triphenylphosphine)cq
2Asouti,A., Hadjiarapoglou, L' P. TL39'90'13(1998)' 19' 106- 107 Copper(I) -Glycolbromide-lithium t'butoxide. and 1,6-diketones are obtained from cyclic 1,5Unsymmetrical cleavage.' diols (3 examples,85-90Vo).
o CuBr- t-BuOLi
"rr'oA
I-BUOH- THF
cBHl?A/\af
X-v, I (
Cleavageof zinot andalkynesrareactwidr I presence of CuCltlrc(ZZt implicationsin thecyclo
lFuji**u, T., Tsuruta,Y., Arizono'K., Takeda,T' 5L962 (1997)'
chloride. 1,3,85;15, 101; lE, 112-113;19' 107-108 Copper(I) ' the Alcohols are oxidized to aldehydes or ketones anaerobically using Oxidation.r azodicarboxylate di-r-butyl of equiv I and 1, I 0-phenanthrolinecomplex of CuCl as catalyst ( I 0 examples,79-93Vo). Silyl enol ethers and l-silylalkynes are converted to enol carboxylates2 Acylatians. and alkynyl ketones,3respectively, on reaction with RCOCI' alkenylsilanes'a alkenylstannaness of Coupling reactions. Homocoupling with (intramolecularly to give cyclobutane derivativef), and coupling of alkynylsilanes Note that l-chloroalkynesT are efficiently achieved by CuCl, usually at room temperature. on treatment with 2,3-bis(trimethylstannyl)-2-alkenoic esterslose an organotin substituent CuCl in aqueousDMF.8
Ph \J Cp2Zf | _
Radiaal additionsintramolecular addition ligandsare I and 2.r5
COOMe
COOMe CuCl/ DMF I
oo
-? t l
I
_}
N
COOMe
MeOOC
95v" r C u C l/ D M F
COOET
\:/ M%Sri
r \-/ Messri
COOET
91"/o
SnMe3
\_ /-\
M%Sri
COOET
80%
'Marko, I.8.. Tsukazaki. V 2lto, H., Ishizuka, T., Tar,ar 3lto, H., Arimoto, K., Scnso -Ikegashira, K., Nishihan- ! 'Piers, 8., Gladstone, P. L, 6Piers, E., Boehringer, E. V 'Nishihara, Y., Ikegashira-|
Copperfl) chloride
lt9
Hydrogenation.' For selectivehydrogenationof electron-deficientdouble bonds the catalyst made up of CuCl, PhrP, and t-BuONa, which generates hexamer of (triphenylphosphine)copper(I)hydride in situ, is effective. E. ,ir. obtained from cYclic H2 CuCl- t-BuONa
a
,'.'..'...........''.''.,...,*
a
,/tt
,/\,/
Ph3P
t{ ll
o 10".
Cleavage of zirconacycles. Allyl halides,roaryl iodides(alkynyl iodides),rr'r2iodine,l3 and alkynesra react with zirconacycles by replacing the C-Zr bond(s) stereoselectively.In the presenceof CuClthe (ZZ)-1,4-drcupriobutadienes may be the intermediates.The last processhas implications in the cyclorimerization of alkynes by CprZClr. lf'' lo:.r. .rnaerobicallyusing the o: .::-:' hutyl azodicarboxylate
Ph
Ph
)--'s
or r::r'J to enol carboxylate* alkenylstannaness r.:: ir-.r with of alkYnYlsilanes ::: T | : . :: temperature.Note that r--.rrru€nton treatmentwith
cp2zt'
_
|
c, +L
+
0
o
aAs )
64o/"
Radical additions. Complexes of CuCl mediate both intermolecular and intramolecular addition of polvchlorocarbon radicals to alkene linkases. Two excellent ligands are I and 2.ts
3OOMe
t
l
zN...A*AzN.. COOMe
I
(1)
cooEt
J fr>
9'1
qo
ooEt
le.S^ 80%
(2) 'Marko, I. 8., Tsukazaki,M., Giles,P. R., Brown,S. M., Urch,C. J. ACIEE 36,2208(1997). 'lto, H., Ishizuka, T., Tateiwa, J.,Hosomi,A. TL39,6295(1998). 'Ito, H., Arimoto, K., Sensui,H., Hosomi,A. TL38,3977(1997). *Ikegashira, K., Nishihara,Y., Hirabayashi, K., Mori, A., Hiyama,T. CC 1039(1997). ''Piers,E., Gladstone, P. L., Yee,J. G. K., McEachern, E. J. T 54,10609(1998). oPiers,8., Boehringer, E. M., Yee,J.G.K. JOC63,8642(1998). 'Nishihara, Y., Ikegashira, K., Mori,A., Hiyama,T. TL39,4075(1998).
l2O
CopPer(I)iodide
8Piers,8., McEachern, E' J., Romero, M' A' JOC 62'6034 (199'7)' (199'l)' elakomy, L, Sarbach,D', Trabach, B', Arm' C'' Zuber' D'' Pfander' H" Noack' K' IICA N'4'72 tofutut ^tn, f., Nishihara, Y., Hara, R', Huo, S'' Kotora' M' CC 1599 (1997)' 53"115 (199'l)' rrTakahashi,T., Sun, W.-H.' Xi' C', Ubayama,H,Xi'Z'T r2Kotora, M., xi, C', Takahashi, T' ?L 39, 4321 (1998)' t'ii T' zr 3-8' 4099 (199'7)' C.,H"o, S., Afifi' T' H', Hara, R', Takahashi' y'' K ' Kotora' M' JACS 120' 1612 (1998)' taTakahashi,T., Xi' C., V*u"uti, Nakajima' 'A'',Liu' t5d" 211'l (1998')' Cu.po, F., Lastecoueres,D', Verlhac' J'-B' CC
An accessto aryl-subsuu aryl halides by CuFrOCu sh Alkynes. 1,4-Dyrsl To synthesizeenynes(17 el treated with another alkyrr
organostannanesis also catal3 1,2- Bis(trifluoro mahyl
followed by reaction of thc c CuI, leads to the fluorinatcd
108 Copper(Il) chloride. 14, 100; 18, 113-l14;19' and N'N-dimethylhydrazones2are Acetalsl compounds' carbonyl of Regeneration with CuCl in aqueousmedia' hydrolyzed at room temperatureon treatment promoted by Cu-CuCl and assistedby Alkytation of naphthols.3 The alkylation is microwave. ""-'iri^-i,*4orides.a
hydrazones of A mixrure of CuC! and t-BuoLi converts bromide copper(Il) Using room temperature. aldehydes and ketones to gez-dichlorides at insteadofthechlorideleadstothecorrespondinggez-dibromides' are prepared from allylic acetates by 7,4-Diacetoxy-2'alkenes'5 The compounds Note that alkenesgivevlc-dichlorides reaction with cuc! in the presenceof Licl in HOAc. under the same conditions. ( tS*uuunun, M', Anand,R' V'' Singh'V ' K' TL39' 3091 1998)' P.,Chandrasekhar' (199'l)' 2Mino,T., Fukui,S.,Yamashita' M. JoC A,734 'iA^ur"A,R., Aghapoor, M'' Saidi'M' R' SC28' 4495(1998)' K', Bolourtchian' oirk"du, f., Sasati,R., Yamauchi, S , Fujiwara'T' 753' 557(1997)' 5Macsari, (1998)' 6345 39' K. J. TL I., Szabo,
Copper(I) cyanide. 18, I 14; 19' 108-109 A highly regioselective hydrocyanation of 1-alkynes 2-substitutealacrylonitrilesi.t isaccomplishedintwosteps:firstbyreactionwithMgsiCl'NaIinaqueousMeCN'and then "*'^ heating with CuCN in NMP' ethers to the A regioselective rearrangement of 2-alkenyl aryl ., )liiriOnr""t t-Bu1-i) by with derivative (via reaction brominated o-position is reaiized via the lithio treatment of the latter specieswith CuCN-LiBr' rLuo.F.-T.,Ko, S.-L.,Chao,D.-Y' ?L 38' 8061(1997)' 2Burlu"ngu, F J' ZL 38' 6103(1997)' J.,Sanz,R', Fananas,
10 Copper(I) iodide. 16, 98; 18, 1 14-1 15119' 109-1 are N-arylated using CuI' 6COt' a-pyridone by typified Heterocycles Arytations. inrefluxingDMF'Ia-Aminoacidsaresimilarlyderived;'r-coordinationofthe the substitution? copper-amino acid complexes is thought to facilitate
rSugahara, M., Ukita,T. CPBI 'Ma. D..Zhang,Y.. Yao. \*'r J.. rlto, H., Sensui,H., Arimoto.K -Durand, Panain, S., J.-L..Sar 5Masuda, Y., Murata,M., Saro oKang, S.-K.,Kim, W.-Y..Jia. 7Kang, S.-K.,Kim, J.-S..Chor. oDuan,J., Dolbier,w. R., CtE:r
Copper(Il) nitrate. Acyhtions.t Prinu4 HCOOET in the preserrceol achievedin EtOAc.
Oxidation of sulfur ca dimerizes thiols to afford dil
'lranpoor, N., Firouzabadi, H..i :l,unpoo..N., Firouzabadi. H.. I
Copper(Il) pivalate. 19, I I Arylation of antincs.: is catalyzedby coppe( II t p
lAmauld,T., Barton,D. H. R..I
Copper(Il) sulfide. Coupling of a,sunnyl r destannylativefu nctionaliza
o IoMeo,,,,9snBr"
Copper(Il) sullide
,\ |
.-.. K HCA80,4'72(1997). !..
FF' \i
! ( . 5 1 2 0 .1 6 ' 7 2 ( 1 9 9 8 ) '
t2l
An accessto aryl-substitutedheterocyclesis via coupling between heteroarylsilanesand aryl halides by CuFrOCu which is preparedin situ from CuFrONa and CuI.r 1,4-Diynes areobtained from coupling of proparylic chlorides with I -alkynes.a Alkynes. To synthesizeenynes(17 examples,7V87Vo) one of the l-alkynes is hydroboratedand then treated with another alkyne and CuI and plT idine.s The reaction of iodoalkynes with organosannanesis also catalyzedby CuI, i.e., no Pd catalystis necessary.6'7 Copper(I) iodide-catalyzed iodination of alkynes 1,2-Bis(triJluorome@)alkenes.6 followed by reaction of the diiodoalkenes with FSOCFCOOMe, which is also catalyzedby CuI, leads to the fluorinated alkenes.
are i \'.trntethYlhYdrazones2 media. q-: .r. l,r t .. CuC!andassistedbY )1.. -,,n\erts hYdrazonesof 'rng coPPer(II)bromide tr.
rsugahara, M., Ukita,T. CPB 45,719(1997). 'Ma, D., Zhang,Y.,Yao,J.,Wu, S.,Tao,F. JACS120,12459 (1998). 3lto,H., Sensui,H., Arimoto,K., Miura, K., Hosomi,A. CC 639(199'].). "Durand, Panain,J.-L.,Santelli, M. S l0l5 (1998). S., sMasuda, S. CC 807(1998). Y., Murata,M., Sato,K., Watanabe, 6Kang, S.-K.,Kim, W.-Y.,Jiao,X. S 1252(1998). 7Kang,S.-K.,Kim, J.-S.,Choi,S.-C.JOC62,4208(1997). oDuan, J.,Dolbier,W. R.,Chen,Q.-Y.JOC 63,9486(1998).
nl-lr'
tr:.] ::(rm allYlic acetatesbY lr .: . rllcs givevic-dichlorides
Copper(Il) nitrate. Primary and secondary alcohols are formylated when refluxed in Acylations.' HCOOET in the presenceof Cu(NO.,)r'3HrO. Selective acetylation of primary alcohols is
..:1998)
achievedin EtOAc.
< 1998).
Oxi.dation of sulfur compounds.2 The copper(Il) nitrate complexed with NrOo dimerizes thiols to afford disulfides and oxidizes sulfides to sulfoxides. rlranpoor,N., Firouzabadi, H., Zolfigol,M. A. SC28, 1923(1998). 'Iranpoor,N., Firouzabadi, H., Zolfigol,M. A. SC28,367,377(1998).
, .i:,,,:r'anationof I -alkYnes \.rl rn aqueousMeCN, and
Copper(Il) pivalate. 19,.1I I Rapid transfer of an aryl group from Ar,Bi(OAc)r to amines Arylation of amines.' (9 examples,45-lOOVo). pivalate by copper(Il) is catalyzed
.,ikenvl aryl ethers to the :.: rL'actionwith t-Bul-i) bY
rAmauld.T., Barton,D. H. R., Doris,E. T 53,413'7(199'1).
Copper(II) sulfide. Coupling of a-stannyl epoxides.t Some unusual types of moleculesare available by destannylativefunctionalization of tin-substituted epoxides catalyzed by CurS.
o t \ ..,r latedusingCuI, &CO' ar: . Ji. t!-coordinationof the [;.:::.)tlon:
Meo'Jl$snBu3
crvoPh tl e
o Cu2S THF A
ilo-
^,^^.\1,>\,.oPh rvrEv ll
J
122
Copper(Il)triflate
rFur"k,J. R.,Bhatt,R. K., Reddy,K. M., Ye,J. sr 481(1997).
Copper(I) 2-thienylcarboxylate. 19, ll2 Coupling of aryl, heteroaryl, and alkenyl halides is Ullmann coupling.t by this copper salt in NMP' temperature accomplished at ambient formed by this reaction in remarkably good yields. are stille coupling.2 Macrolides
phen Diaryl ethers.' under the influence of CutC (19 examples,76-93%). Ct I -naphthoic acid extends 0r
Glycosylation.o Gl1.c Cu(OTfl, is taken as catall.s Allylation and aldol ra carbonyl compounds to furn A mixture of HrO, EIOH. a in water.
SnMe3
Conjugate additions. disilanes in the presencc < acceleratedby catalytic anro
l-\ \s,/-coocu NMP
Selenoetherificaiont Cu(OTf), in toluene (6 exan Cleavage of cycloalLct subjecting I -substituted c1.c presenceof pyridine under o
200
rZhang,S., Zhang,D.,Liebeskind,L. S. JOC 62,2312(199'7)' 'Paterson. I.. Man.J. TL38,695(199'7).
'nJ-
Copper(Il) tosylate. *Tosyloxylation of ketones.t Copper(Il) tosylate is obtained by treatment of CuO with 2 equiv of TsOH [using other sulfonic acids leadsto various copper(Il) sulfonates].The reagent readily transfers a TsO group to alkyl ketones at the more highly substituted enolizablepositions. rlee, J. C.,Choi,Y. TL39,31'71(1998).
Copper(Il) triflate. 19, 1 12 Copper(Il) triflate is a good catalyst for amination of alkenes (using Amination. (using chloramine-T to give aziridines)r and at benzylic and allylic positions t-BuOOCONHTs).2
Cu(OTf)2 t-BuOOC(=O)NHTs
an s,A-/
cHzcl2 56Vo
NHT I
Aldol reactions.to Th syn-selectivewhen catalyzcd
IAlbone, D. P.,Aujla,P. S..Trr 'Kohmura, Y., Kawasaki.K.. K 3Mur"ou*, J.-F.,Doye,S.. Blrt -Furukawa, H., Koide,K.. Tatr -Kobayashi, S.,NagayamaS..I "Ito, H., Ishizuka, T., Tatei$a., TAlexakis, A., Vastra,J.,Maryr olnoue, H., Murata,S. Ii 45. &l' I.. Fujita.M., Naka; ,nshirniru, "'Kobayashi, S..Nagayama" S..I
1-Cyanobenzotriazole.
C-Cyanation.t The rr N-chlorination with 57o NaO( phenylmalononitrile after lirh
lHughes, T. V., Hammond, S.D.
1-Cyanobenzotriazole
rlienrl
halides is
rrl.rhll' good Yields'
123
Diaryl ethers.3 Phenolsand activated or unactivated aryl bromides and iodides react under the influence of cu(orflr-benzene complex to give the ethers in refluxing toluene (19 examples, 76-93Vo). Cesium carbonateis used as base. When present as an additive, l-naphthoic acid extendsthe generality ofthe method to less soluble phenoxides. Glycosylation.a Glycosyl picolinates serve as effective glycosyl donors when Cu(OTfl, is taken as catalyst in their reaction with alcohols (sugars). Allylation and aldol reaction.s Diallylstannane and silyl enol ethers condensewith carbonyl compounds to furnish homoallylic alcohols and B-hydroxy ketones, respectively. A mixture of HrO, EIOH, and toluene is a suitable reaction medium as Cu(OTf), is stable in water. Coniugate additions. B-Silyl ketones are formed from enonesby their reaction with disilanes in the presence of Cu(OTf), and BurP.6 The ethyl transfer from EtrZn is acceleratedby catalytic amounts of Cu(OTf), and/or triethyl phosphite.T Selenoetherification.' Cyclization of o-alkenols by PhSeCN is initiated by Cu(OTf), in toluene(6 examples,73-95Vo). Cleavage of cycloalkenes.e Generation of keto nitriles is accomplished by subjecting l-substituted cycloalkenes to a Cu(OTl.1r-catalyzedreaction with NaN., in the presenceof pyridine under oxygen and uv irradiation.
'nJ\.,/ t'r :reatmentof CuO er II r sulfonatesl.The rc hrghly substituted
x':r ,'t alkenes(using h. positions (using
NHTs
j--.)
Cu(OTf)2- NaN3
PhYlvcN tl o
..,'.'..........................* pyridine- MeOH hv
02
89o/.
Aldol reactions.lo The aldol reaction between (Z)-silylenol ethers and aldehydesis syn-selectivewhen catalyzedby Cu(OTf), 'Albone, D. P.,Aujla,P. S.,Taylor,P. C.,Challenger, S.,Derrick,A.M. JOC 65,9569(1998). "Kohmura, Y., Kawasaki, K., Katsuki,T. SL 1465(1997). tMarcoux, J.-F.,Doye,S.,Buchwald, S.L. ./ACS119,10539(1997). -Furukawa, H., Koide,K., Takao,K., Kobayashi, S. CPB 46, 1244(1998). 5Kobayashi, S.,Nagayama, S.,Busujima, T. CLg5g(lgg'l). nlto, H., Ishizuka, T., Tateiwa, J.,Sonoda, M., Hosomi,A. JACS120,I I196(1998). TAlexakis, A., Vastra,J.,Mangeney, (lgg7). P. 21,38,7'145 nlnoue, H., Murata,S. H 45,847(1997). 'Shimizu, I., Fujita,M., Nakajima, T., Sato,T. SZ887(1997). r0Kobayashi, S.,Nagayama, S.,Busujimi,T. CLg5g(lggi).
1- Cyanobenzotriazole. C-Cyanation.t The reagent is obtained (10Vo) in two steps from benzotriazole: N-chlorination with 5VaNaOCI and reaction with NaCN in MeCN. Phenylacetonitrilegives phenylmalononitrile after lithiation and exposureto I -cyanobenzotiazole. rHughes, T. V., Hammond, S.D., Cava,M.P. JOC63,401(1998).
124
(1,5-Cyclooctadiene)(q6'naphthalene)ruthenium(0)
Cyanuric chloride. A p."pa.ution of N-protected chiral c-aminonitriles from the Dehydrationt chloride at room correspondingg-amino acid amidesinvolves brief treatmentwith cyanuric temperature. lMu"tr, P.,Rodriguez, M.TL38,4221(1997).
lPertici,
P., Malaq
Cyclopropylptr Heterocycb blocks.
Cyanuric fluoride. Reduction of carboxylic acid via acid fluorides is readily RCOOH -+ RCHzOH.\ of the acids with accomplished with NaBHo. The intermediates ale obtained by reaction cyanuric fluoride. cross-conjugated dienones accept the alkenyl group from an Michaelreactions.z group transfer is alkenylboronic acid regioselectively, leading to cr,p;y',6'-dienones.The catalyznd by cYanuric fluoride. rZhang, R.-Y.,Zu
F
Br
".Nt(o")'
I ruAr.t
i l l FAN-AF
+
---;;*
'Kokotos.G.. Noula,C. JOC 61,6994(1996). 2Hara,S., Shudoh,H., Ishimura,S., Suzuki,A. BCSJ671'240.30998)'
Cyclohexyl chloroformate. protectinnof tryptophan.'
The indolic nitrogen atom protected by this reagent is basedon the Boc strategy.In terms of stability and synthesis peptide most suitable fbr use ln group seemsbest' protecting this removal by HF without thiol rNishiuchi,Y.. Nishio,H., Inui, T., Kimura,T., Sakakibara, S' TL37"1529(1996)'
(1,5-Cyclooctadiene)(16-naphthalene)ruthenium(0)' t Allyl ethers and allyl acetals are converted to the enol isomers by Isomerizttion (cod)Ru(Np) in the presenceof MeCN.
./-o,
ll
\-ct
Fn
(Np)Ru(cod) + THF - MeCN 650
z-o, |
\-ci
)-R
Cyclopropylphosphineoxides rP".ti"i,
m::\rnltriles from the rar.-:nc chloride at room
P., Malanga, C., Giuntoli, A., Vitulti, G., Martra, G. G l26Jg7 (1996).
Cyclopropylphosphineoxides. Heterocycles.r Five-membered heterocycles are readily madefrom thesebuilding blocks.
rrJ :luorides is readily N::,,n 0f the acidswith a.kcnvl group from an i The eroup transfer is
F.-,,CN t "'\ PPhe i
o
l
-
o
,A*""r*.,.,
rZhang, R.-Y.,Zhao,C.-G.CC 5l I (1996).
B
r
O
r
B..v\,A 93'/"
rr:rJ hY this reagentis . I r. :cnns of stability and
I
'^J6 |
:he enol isomersby
-R
c NaH/ xylene 1650
/ \ \ \*/ I
csHr
ff"
N,1V-Diacetyl-2-trifl uoromethylaniline. Selectiveacetylation.t Primaryaminesareacetylatedin the presenceof secondary 70-99Vo).Ethanolcanbe usedassolvent. amineswith this reagentat 0' (11 examples,
CFo
H
EIOH
,4/N\
NHz
(
1lNAc2 \____/
;-
Ar*.A*ro" 93"/"
rMurakami,
Y., Kondo, K., Akiyama, Y., Watanabe,T., Yokoyama,Y. TL38,3751 (199'7).
N-Methory-N-malq N-methoxy-N-methyl arn
lBenedetti, F., Berti, F., .\qi 'Hatakeyama, S., Matsumd( 'Hojo, M., Murakam.i,C.. r.. -Alcaide,8., Salgado,N. R_ -Shimizu, T., Osako, K.. Nel
I -(Dialkylaminomerhfl) Reactionwith indoh nitrogenatom.Minor anr rlove,
Dialkyl 2-alkenylphosphonates. Conjugate basesof these reagentscondensewith Emmons-Wa.dsworth reactiont (E)-selectivity. give good Diphenyl phosphonatesare not suitable aldehydesto dienes with becauseof low yields of their reactions. 'Liu. R..Schlosser. M. SL I l9? (1996).
Dialkylaluminum chloride. Reactian of epoxides. The opening of 2,3-epoxy alcohols is catalyzed by EtrAlCl. With added NaN, 3-azido-1,2-diols are obtained.r Oxazolines are formed from of suchepoxy alcohols.2 trichloroacetimidates Allenylmethylsilanes undergo catalyzed cycloCycloadditionandfragmentation. addition to give methylenecyclobutane derivatives.r Fragmentation of azetidines with elimination of imines proceedswith retention of configuration.a
""o14sr". 11
Me3Si
* ,coove ,"oo"2'
COOMe Et2AlCl ,,,COOME cHzct2 - 2oo
B. E., Nguyen, B. T. 1
Dialkylseleniumdihalirl Alkyl chlorides.t T conversionof alcoholsto r Cyclic ether opening to reactionwith RrSeBr_r
t
o
rDrabowicz, J., Luczak, J.. Mi 'Takanohashi, Y., Funakoshr.
Dialkyltin dichtorides Reductionof imiacs. whichsaturates imineswhc from thecorresponding imi is alsoachieved (ll exam
Dialkyltin dichlorides
Trotn
Et2Atcl
BnNli\
9o""
cHzct2 2oo
127
{1'otn
h
%oMe 57%
lcr'.,: of secondary ux'i .t: solvent.
F
t
1 NHAc
) 3 ',
t-<
N-Methoxy-N-methyl amides.t Ert"r. and lactones are converted to N-methoxy-N-methyl amides by the MerAlCl-MeONHMe.HCl couple. rBenedetti, F.,Berti,F., Norbedo, S. TL39,7gj1 (1ggg). "Hatakeyama, S.,Matsumoto,H., Fukuyama, H., Mukigi, y., Irie, H. JOC 62,22:l5(lgg:-). -Hojo, M., Murakami,C.,Nakamura, S.,Hosomi,A. CZ 331(199g). -Alcaide, 8., Salgado, N. R., Siena,M. A. TL 39,467(199b1. -Shimizu, T., Osako,K., Nakata, T. TL3g,26g5(199?).
the
I -(Dialkylaminomethyl)benzotriazoles.
I9 9 7 )
Reaction with indoles.t Indoles accepr rhe dialkylaminomethyl group at the nitrogen atom. Minor amounts of the products contain the substituentat c-3. rl-ove, B. E., Nguyen,B. T. SL t l23 (1998).
with Ir:::. eondense a:.. .rrenot suitable
Dialkylseleniumdihalides. Atkyl chlorides.t The Merseclr-ph.p combination is useful for selective conversionof alcoholsto chlorides. cyclic etheropening.z cyclic ethersgive <+organoselenoalkanols when sublected to reactionwith RrSeBr,andsodiumborohydride.
NaBHa
rr: r zcd by EtrAlCl. ":.
O
+ Et2SeBr2
(^on \-,seEt
tbrmed from
r, ..rtalyzedcYclo' .rzetidineswith
,3OOMe IOOMe
'Drabowicz, J.,Luczak,J.,Mikolajczyk,M. JOC 63,9565(1998). 2Takanohashi, Y., Funakoshi, H., Akabori,S. SC24, 2733(tgg4). Dialkyltin dichlorides. Reductian of imines, A mixture of BurSnCl, and BurSnH, generatesBurSn(Cl)H which saturatesimines when complexed with HMpA.r Thus, cr-amino ketonesare obtained from the correspondingimino ketones. Direct reductive amination of carbonyl compounds is also achieved(l l examples,T0-99Vo).2
1,4-Diazabicyclo[2.2.2]octane
tl "nY^rn
Homolytie ata ganomercurialsis g
NHPh I
NPh
Bu2SnCl2
tn\Ao^ "' il
K2CO3/ THF
730/"
of diols is by MonobenZoylation,3 A new protocol for selective monobenzoylation reacting them with PhCOCl, MerSnCl, and K2CO3in THF'
1Ruf"l, S.,kaby. J. n 2Brzezinski, L. J..R..f 3Fu-ilioni, B.. Ke1 O. aKami-u.a, A., Glrii 5Hurnng, J.,Hiinig. S 6Russell, G. A., CtEro
1,8-DiazabicycldS BzCl pn.
Ph..A^-
Me2SnCl2 .4.
Y OH
oH
Y
>
O
tn\Ao" B
z
dn
K2co3/rHF
99-100; lE, 120-1 Deprotonobt (in the trichloroct
+
l
oBz
The regeneratir
dioxolanes requires Thus, the mild cond A route to (E,Et
5"/"
90%
tShibutu,L, Moriuchi-Kawakami, T., Tanizawa'D'' Suwa,T ' Sugiyama'E'' Matsuda'H" Baba'A' JOC 63.4 0998). 2shibutu, 8., Baba,A' SL 1081(1998)' I., Suwa,T., Sugiyama, y. TL39,5601(1998)' 3Muki,T., Iwasaki,F.,Matsumura, - | l'l I,4-Diazabicy clo[2.2.2loctane. 13, 92; 15, I 09 ; 18, 120; 19, | | 6 as catalyst the (or tributylphosphine) DABCO With Baylis-Hillman reaction. version uses asymmetric An temperature'l room at reaction proceedsfaster at 0o than of tulipalin-B,2 synthesis the enables method the and (2R)-N-acryloylbornane-10,2-sultam reaction with and a new route to quinoline derivatives3 is based on the Baylis-Hillman o-nitrobenzaldehYde.
o tl
o
")-<
v]-o\-
98% (>99o/o ee)
CSA
y-hydroxy-cr,$uns
Stereoselectiverr disubstituted alker DBU.5
Ot{ I
ensolA
Cyclizntionconvenientlyperfo furan/tetrahydropl cyclization,T andth
Meo/Y HN 8SYo
(vo
,Z-OBn\ PhSOz OA
are readily By employing azodicarboxylic estersas acceptorscr-hydrazino-cr'p-enones prepared.a Deprotonatian.Sulfenylationandtosylationofalcoholsareconvenientlymediated by DABCO.5
Rearrangc*t derivativeswhich ir
1,E-Diazabicyclo[5.4.0]undec-7-ene
Homolytic aromatic subsfitutions.o ganomercurialsis promoted by DABCO.
ph
\-
( > n I _ j t ,
x-,:.'nzol lation of diols is bY
Ph.
.rl.
(in the trichloroacetimidate formation step) is advantageous. The regeneration of carbonyl compounds from 4-benzenesulfonyl-methyl- 1'3dioxolanes requires treatment with DBU in dichloromethane at room temperature only.3 Thus, the mild conditions are favorable to the use of such protecting device. A route to (E,E)-2,4-alkadienoic estersinvolves the Johnson-claisen rearrangementof
OBz 57"
rir'r.
tRufel,S.,Leahy,J. w. JOC 62,1521(1997). 2Brzezinski, L. J.,Rafel,S.,Leahy,J. W. "/ACSll9,43l'7 (1997)' 3Familioni, O. 8., Kaye,P. T., Klaas,P. J. CC 2563(1998). 4Ka-i-u.u, A., Gunjigake,Y., Mitsudera,H., Yokoyama,S. TL39'7323 (1998)' sHu.tung,J., Hiinig,S.,Kneuer,R., Scharz,M., Wenner,H. S 1433(1997). R. "/ACSll9'8795 (1997). h.ussell,G. A., Chen,P., Kim, B. H., Rajaratnam, 11,92;14,109; 15, 109-1 10; 16' 105-106; 17' 1,8-Diazabicyclo[5.4.0]undec-7-ene. 99- 100; 18, 120-l2l ; 19, I l'7 The use of DBU in Wittig reactionr and overman realrangement2 Deprotonation
Yl O H
-
Photochemical aromatic substitution with or-
E.. Matsuda,H', Baba' A'
y-hydroxy-o,B-unsaturated sulfones and subsequentelimination of PhSOTH with DBU.a Stereoselectiveaccess to trisubstituted enol ethers initiated by iodoalkoxylation of disubstituted alkenes (with PyrIBF4,2HBF4, ROH) is concluded by treatment with DBU.5
. l i A - ll 7 1:i:,,'phine) as catalYstthe \:- .i.\'mmetric version uses F :: i .\ nthesisof tulipalin-B'2 8.,. :.-Hillman reaction with
o
OH
,n.oP\
+
PhSO21 I I D
Etoocvw\
B
U
EtoocV)\y'\
;*
CycliZation. Generation of oxonium ions and their intramolecular trapping are conveniently performed in the presence of DBU in the context of a tetrahydrofuran/tetrahydropyran synthesis.6O-Mesyloximes possessingan active methine undergo cyclization,? and this reaction leads to dihydropynoles and tetrahydropyridines.
tl
r.r*:-
:::
ueo/Y I
HF 857"
aje readily 2,jr.,;rno-o,p-enones oi^.,- .rreconveniently mediated
Yo)
Me2(MeS)SBF4 oBut cH2ctz
V,,,"oorr, ----6rn 51%
*
Y") \YACOOBuI 6An 16"/o
Rearrangements. c-Allylation of glycine is readily achieved via the N-allyl derivatives which involves quatemization and base-inducedrearrangement'8
130
Dibenzoylpemxide
Bn
MeNBn
Mel / K2CO3;
y'VcooMe
VxuNUcooMe
rWang, Q. X., King, J., phans 'Clark, A. J., Rooke, S.. Span
51%
1,3-Dibromo-5,5-dimettl Nitriles.e Aldoximes are dehydrated with DBU under brief inadiation with microwave (9 examples,62-92Eo). Reaction with chlorophosphates.to The nucleophilicity of DBU may dominate in such reactions. Instead of acting as a base DBU can participate directly, e.g., in forming I with diphenyl chlorophosphate.
Bromination.t Eloc readily with the dibronrott (e.g., o-anisaldehyde)the e
are the different reacdq 2-bromomethyldihydrobcn
(1) 'Seneci, P., Leger, L, Soucher,M., Nadler, G. 253, 17}gl. (199.7). 'Nishikawa, T., Asai, M., Ohyabu,N., Isobe,M. JOC 6g,1g8 (199g). -Chandrasekhar, S., Sarkar,S. ZZ 39,2401 (1998). -Giovannini, R., Marcantoni,E., Petrini,M. TL39,5927 (199g). sBarluenga, J., Alvarez-Garcia, L. J., Romanelli, G. p., Gonzalez,I . M. TL lg, 6763(lgg:,). oCraig, D., King, N. P., Shaw, A. N. ZL 38, g59g(1997\i. 'Uchiyama, K., Yoshida, M., Hayashi, y., Narasaka,K. CL 607 (lggg\. ocoldham. I.. Middleton, M. L., Taylor, p.L. JCS(?t)2951 (tg9:.);2817 (1998). C., Syamala,M. SC 28, 45i7 (lgglt. .'Sabitha, '"Kers. A., Kers, I., Bollmark, M., Stawinski, J. ACS 52,1405 fi99g).
Dibenzoylperoxide.18, l2Z o-Benzoylhydroxamates.t primary amines are convertedto RN(oBz)coR by reactionwith BzooBz in dichloromethane at pH 10.5(buffer)andfurtherN-acylation. a'-sryrylationof oxacycles,2 Tetrahydrofurans and tetrahydropyrans give styryl dervativesin a BzooBz-mediatedfreeradicalreactionwith phcH=cHS(p-Tol)NTs.
Ph l
l
NTs l
Va-.o,
NTs pnNS'rot
a a
lchassaing,
C., Haudrechy. r{..
4,4-Dibromo-3-methylpp Bromination.t ptrer in goodyields. Sulfuxides.t Oxidau NaOAc. rMashraqui,
S. H., Muda.lior. C,
BzO-OBz THF A
1,2-Dibromotetrafl uoroctl Grignard reagen&.l for reaction with substratesc
BzO-OBz THF
A
pnMo2 450k
rChau, P.,Czuba,I. R., Rizzn (1e96).
1,2-Dibromotetrafluoroethane
O. JOC62,8104(1997). Q. X., King,J.,Phanstiel, ]W-g, 'Clark,A. J.,Rooke,S.,Sparey, T. J.,Taylor,P. C. TL37,909(1996). OUe
:r:.rdiation with mar dominatein e g . in forming I
1,3-Dibromo-5,5-dimethylhydantoin. Electron-rich aromatic compounds undergo nuclear bromination Bromination.t readily with the dibromohydantoin. To improve its reactivity toward less reactive arenes (e.g., o-anisaldehyde)the addition of trimethylsilyl triflate has positive effects. Noteworthy are the different reaction profiles of 2-allylphenol in the presence of MerSiOTf; 2-bromomethyldihydrobenzofuran is the product in the presenceof MgSiOTf.
o OH
BT-NAN-Br
w Y
(1x)-S"
Br
THF
85V"
Br
l
I
o
tl
"t-r^^-r,
_K l(o.sx) t -
I 997).
ol
.
MessiOTf
f-8,
.,(2 i l l \/
5oo/"
rChassaing, A., Langlois,Y. IL 38, 4415(1997) C.,Haudrechy,
R\'OBz)COR by hc: \'-acYlation. f \ rrns give styryl lS:'-Tol)NTs.
4,4-Dibromo-3-methylpyrazol-S-one. Phenolsand anilines undergo monobromination at room temperature Bromination.t in good yields. Sulfuxides.t Oxidation of sulfides is carried out in HOAc in the presence of NaOAc. rMashraqui, H. TL38,4865(1997). S. H., Mudalior,C. D., Hariharasubrahmanian,
1.2-Dibromotetrafl uoroethane. Grignard. reagents.t This compound is useful as an entrainer to activate magnesium reaction with substratescontaining amine functionality. for
1:'
rChau,P., Czuba,I. R., Rizzacasa, M. A., Bringmann,G., Gulden,K.-P.,Schliffer,M. JOC 61,7101 ( 1996).
Di-t.butvl disulfrde
Dibutylboron triflate. Aldolreaction t l,s-Asymmetricinduction from a B-oxyfunctionalityof methyl ketonesin thealdolreactionensues. Productswith an anti confrguration prodominate.
lElothmani,
D., Do. (
Dibutylphosphin PMBO O
\
/\
ottaArn
PMBO O
Bu2BOTf- i-Pr2NEt Et2o
I
-7ao
Alcohol dcorl
OH
t
" 89"/o (anti : syn 95 | 5)
'Evans, D. A., Coleman, P. J.,Cote,B. JOC 62,788(1997).
deoxygenation of toxicity problem ol
does not require a I 1Jang, D. O.,Cho.D
Di-t-butyl pyrocrt Protected oni organic azides*'itl
t rans -l,l-Di- t -butyl-2,3-dimethylsilirane. anti-3-Methyl-syn-2,4-alkanediols,t
The silacyclopropane inserts diastereoselectively into the carbonyl group of formamides. Reaction of the 5-amino-2silatetrahydrofuranderivatives with nucleophiles(e.g., silyl enol ethers)servesto extendthe carbon chain, whereupon oxidative desilylation delivers the diols.
Boc derivatives.: Hindered plrrr while deprotectiur reflux.3
Cyclocarbotyi 2-amino alcoholsr
/.,!.
2"..
oHc-
t-Bu2Si-O
o
**
Aloec : : SnC14| Phc(osiMe3)=cH2 I
t-Bu2Si-O
OHOHO
YA,,'
o ll
A,Y'Ph : 79"k (dt 92 :8\
'Shaw, (1997). J.T.,Woerpel, K. A. I53, 16597 Di-t-butyl disulfide. N-t-Butylamides,t Electrochemicallygenerated/-butyl cation is interceptedby nitrilesto give the amides.
t ^
- /l
7\t.rot
€ r O ................................._ ^^^ MoCN
Pt elsctrods
H
Lict04
937.
lAfonro, C. A. M. s( :Rajeswaran, W. G,., 'Hansen, M. M.. Rrg tKndlker, H.-J.. Bnr
Dibutyltin oxida Benrylationdibutylstannyleri benzylationstepet
Hov\
Dibutyltin oxide
IElothmani, Cr:r.:tr Of methyl
133
D., Do, Q. T., Simonet, J., Le Guillanton , G. CC 715 Ogg3).
F:, rlrmlnate.
?* /
v
P
h
Dibutylphosphine oxide. Ahoholdeoxygenation.t A preparatively usefur hydrogen donor for radical deoxygenation of alcohols via their s-methyl dithiocarbonates is BurpoH because the toxicity problem ofBu,SnH is avoided. The reaction can be startedby various initiators and does not require a large excessof the reagent.
L-:
syn95:5)
rJang, D. O.,Cho,D. H., Barton,D. H. R. SZ39 099g). Di-t-butyl pyrocarbonate.
rx'i. diastereo' ::l -5-amino-2e., j. r0 extendthe
Protectedaminesandphenols, Iminophosphoranes obtained from reaction of organic azideswith BurP are converted to the Boc-protected amines.l Oxindoles also form Boc derivatives.2 Hindered phenols including 2,6-di-r-butylphenol are protected using Bocro-DMAp, while deprotection is accomplished with TFA at room temperaturein 3 M HCUdioxane at reflux.3 Cyclocarbonylation.a Oxazolidin-2-ones and imidazolidin-2-ones are formed from 2-amino alcoholsand 1,2-diaminesin the DMAp-catalyzed reactionwith (Boclo.
: - I OSiMer)=CHe -
t
Y*
NHe
-
: : t',
(Boc)2o-DMAP
"""^
,.r-
/"")o
t*\
tl il
^-Apn :' g2 : 8)
Lr :nterceptedby
85Yo
rAfonso, C. A. M. SC 28,261(tgg7). 'Rajeswaran, W. G.,Cohen,L. A. T 54,l1375(199g). tHansen, M. M., Riggs,J. R. ZL 39, 2:,O5(1gg8). -Kncilker, H.-J.,Braxmeier,T. TL 39, 9407( | 998\. Dibutyltin oxide. 13, 95-96; 15, 116- 1lj ; 16, I 12: lg, 125 Benzylation.I n-Diols (n = 2-10) undergomonobenzylationin reasonableyields via dibutylstannylene intermediateswhich are formed in refluxing toluene (with Bu,Sno). The benzylation step employs BnBr and Bu,NBr.
to.AAAo"
B u 2 S n O /P h M e A ; BnBr - BuaNBr
"o./\AArn
Dicarbonylrhodium
acetylacetonale
selective acylation.2 Acylation of primary alcohols (e.g., with various vinyl esters) while leaving secondaryalcohols and phenols untouched can be accomplishedby catalysis with BurSnO and BurSnCl, which form a bis(chlorodibutyl)tin oxide dimer.
Other interesting resuls penail glycosides,2 homoallylicesters.!I participationof an internalhydrcr
lMash, E. A., Kantor,L. T. A., Waller,S. C. SC27, 507(lgg:-). 2o.itu,A., Mitsutome,A., Otera,I. JOC 63,2420OggU. Dicarbonylcyclopentadienylferrate
salts. a,p(Jnsaturated ylactams.t Enals which co ntaina(Z)-leaving group at the position are liable to attack by M[cpFe(co)r]. The reaction products undergo co insertion, aminolysis,and reductivecyclization.
4
M
\J\,.
*
o"''5o
,
R t-V"' .
-*
Cno
*'sg*
"V ^
Tict4- Er3N R"NH2
rY-ppn,
4",
Rh(ace)(@l
(PhohP co-t-t2/P?
i
B
n"il.-,Fn
cHo
Ph'
,Ph
o'si-H ,\
' Riick-Braun, K. ACI EE 36, 509( lggj ).
Dicarbonyl(cyclopentadienyl)(tetrahydrofuran)iron
tetrafl uoroborate. Three-memberedheterocycles. Decomposition of diazo compounds by the iron complex in the presence of imines leads to aziridines.l An analogous reaction of diazoalkaneswith aldehydesgives someepoxidesand the rearrangement products(ketones) owing to the Lewis acidic nature of the catalyst.2Ethyl diazoacetatebehavesdifferently, as 1,2-Nyl shift occursduring the reaction.3
ph/ct{o
,
./)\
Ni cooEt
IcpFe(co)2(thf)lBF4 i"o cH2ct2 0o
pn\ooet 70/0
n
Aryl transfer. Arylboronrc and aldehydesTwhen instigated by converted to RCHPhr.
rBreit,B. CC 207| (1996\. hat*astri, T., Ebata,S.,YamadaH3Breit,B. EJoc tt23 (tggg). -Leighton, J. L., O'Neil,D. N. JACSI skighton, L., J. Chapman, E. JACSII osakai, Hayashi, M., H., Miyaura-N. ( 'sakai, M., ueda,M., Miyaura.N. .4C
,nA/"oo=' 19%
rMayer, M. F.,Hossain, (1998). M.M. JOC 63,6839 'Mahmood, S.J.,Saha,A. K., Hossain, M. M. I54, 349(1998). 3Mahmood, S.J.,Hossain, M. M. JOC63,3333(1998).
Dicarbonylrhodium acetylacetonate. 19, I 19-l2O Hydroformylation. Phosphabenzenederivatives are excellent ligands for high conversion of styreneto the homologated aldehydes,and the branched aldehydeis favored.I
Dichloroacetyl chloride. N - Acylation of oxindo hs.l plished with the acid chloridc in n by EtrN at ambient temperarurc. lRa.leswaran, W. G.,Cohen,L. A. fL:
Di-p-chlorobis( l,5.cyclooctedict Allylicdisplacement.t Subr of the allylic systems.
Di-p-chlorobis(1,5-cyclooctadiene)diiridiun(I)
., ::h \ ariousvinyl esters) tr<. .,- ,,)mplishedby catalysis tf \.. :.icdimer.
F . a
nr sroup at the position .rndergoCO insertion,
::3N
")<' R"NJ)-R
Other interesting results pertain to 1,2- and l,3-asymmetric inductions of C-allyl glycosides,2homoallylic esters,3and 4-methylene-1,3-dioxanes.aThe homologation with participation of an internal hydrosilane leads to cyclic siloxane derivatives.5
rr> V\PPh, 4",
Rh(acacxCO)2
................'......* (Pho)3P
i
CO-H2/PhMe
r-
rFppn, A":
i^,
f\een,
f'o cHo (90 : 10)
r
if"*
93"/"
Phr ,Ph o'Si'H
Ph Rh(acac)(CO)2 + co / PhH
^
o-bi'Ph
,Jrrr,\.r.to 670/"
lulroborate. 'rrpounds by the iron u ! .:nalogousreaction of 'er - r "rco[ products(ketones) r: ..': hchavesdifferently, as
o )c=.
Aryl transfer. Arylboronic acids are aryl group donors to enones(at the B-position)6 and aldehydesTwhen instigated by the Rh complex. With this catalyst many aldehydesare converted to RCHPhr. lBreir, B. cc2o7l (tgg6). 2Takahashi, T., Ebata,S.,Yamada,H. SZ381(1998). sBreit,B. EJOC 1123(lgg8). -Leighton, (1997). J. L., O'Neil,D. N. "/ACS119,11118 sl"ighton, (lggi). J. L., Chapman, E. JACS119,12416 osakai,M., Hayashi,H., Miyaura, N. OM 16,4229(1997). 'Sakai, M., Ueda,M., Miyaura,N. ACIEE37,3279(1998).
,nAr"oot' Dichloroacetyl chloride. N-Acytationof oxindoles.) N-Protection by the CITCHC(=O) group is accomplished with the acid chloride in refluxing 1,2-dichloroethane.The acyl group is removed by Et,N at ambient temperature. 'Ra.leswaran, W. G.,Cohen,L. A. TL38,7813(lgg7).
c\.-r..r'nt Iigands for high -u:- -:J aldehydeis favored.l
Di-p-chlorobis( 1,5-cyclooctadiene)diiridium(I). Allylic displacement.t Substitution takesplace at the more highly substitutedcarbon of the allylic systems.
136
Dichlorobis(triphenylphosphine)ruthenium(If)
[(cod)Cl]2 - (PhO)3P
?H(cooEr)2
AAAoo.
/\/\/ 89o/o
rTakeuchi, (1998). R.,Kashio, M. ACIEE36,263(199'7); JACS120,8647 Dichlorobis(triphenylphosphine)ruthenium(Il). 19, 123- 125 Alkeneisomerizntion. Homoallylicalcoholsareconvertedto allylic alcohols,rand in thepresence ofethanediol,monoethers areobtained.2
OH
ph,A,1
*
HO-
^o)
(ph3p)3Ruct2
;'*-
?1
,nAA
2wang, D., Li, C.-J. SC 2t. 5o7 'Fulimura, O., Honma, T. TL I -Kondo, T., Kodoi, K., Nishinl 5 5 8 7( l 9 9 8 ) . sKondo, 'l T., Kotachi, S., Tsuji. oKamigata, N., Udodaira, K.. Y( 'Hanyu, A., Takezawa, E.. Safr
2,3-Dichloro-5r6-dicyano I 16,120:;18,130;19, l2l-li Tritylation.t Triryl g by DDQ. Molecularsieves( Benzylic oxidation I bisisopropylethersarecontr
o* OMe
65v"
o o
o,ftUnsaturated esters.3 The Ru(II) catalyst promotes the condensation of aldehydes and ethyl diazoacetate, and produced mainly conjugated esters with (E)-configuration. Deallylation.a Tertiary homoallylic alcohols lose the allyl group on heating with (PhrP)rRuCl,under CO. Cleavageof cyclic alcoholsis shown below.
'"a1""\
(Ph3P)3RuCl2
9
t
o
l
gTBS :
eno^& l
4 / - ^ , 4 .
)r.)
)'.-)
04 : 26\ 76 IJreas.s The oxidative union of amines and formamides is accomplished by (PhrP)rRuCl, in mesitylene under reflux. P,pDichloro enones.o The dichloromethylenation of silyl enol ethers requires the Ru catalyst and carbon tetrachloride is an excellent source of CCl. Oxidation of primary alcohols.T Selective aerobic oxidation of RCFIOH to aldehydes(8 examplesincluding allylic alcohols,l2-lW%) is achievedin the presenceof (PhrP).RuClr-hydroquinone at 50-60'. This method can be used for selective oxidation in the presenceof secondaryalcohols. rwang,D., Chen,D., Haberman, J. X., Li, C.-L T 54,5129(1998).
=
Cleavageof N-(p
(a r\ \-\ .v
-o
l
f{ \/
N
-
2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
]y""'
137
"Wang,D., Li, C.-J.SC28, 507(1998). O.,Honma,T.TL39,625 (1998). lfu3imura, -Kondo,T., Kodoi, K., Nishinaga,E., Okada,T., Morisaki,Y., Watanabe, Y., Mitsudo,T JACS120, 5587(1998). 5Kondo,T., Kotachi, S.,Tsuji,Y., Watanabe, Y., Mitsudo,T. OM 16,2562(1gg7). oKamigata, N., Udodaira,K., Yoshikawa,M., Shimizu,T. JOMC 552,39(1998). 'Hanyu,A., Takezawa, E.,Sakaguchi, S.,Ishii,y. TL39,5557(1998).
a.r.
I
nrt:ed to allylic alcohols,Iand
2,3-Dichloro-5,6-dicyano.1,4-benzoquinone. 13,104-105;14,126-127;15,125-1261' 16, 120; 18, 130; 19, 121-122 Tritylation.t Trityl group transfer from P\C-OBn to alcohols (lo > 2') is catalyzed by DDQ. Molecular sieves(4A type) are also added to the reaction system. Benzylic oxidation.
The oxidation with DDQ is highly selective. Thus, xylyl bisisopropyl ethers are converted to the monoaldehydes.2Silyl ethers are also oxidized.3 n"\ Y l
"^,^,
) l
. oH
OMe
65% o:' :.' D:,
the condensation of ionjugated esters with
.,,\-.cHo
l r - l
DDQ
OPr' OPri
H2O- cH2cl2
\z\'oPl OMe
9Oo/"
lr.' ., r l group on heating with
9TBS
cHo
enol&sier. l
-:
26)
=
Cleavage of N-(p-anisylmethyl)amines. The 4-MeOCoHrCH, substituent on heterocycles such as carbazole and indole is detached by DDQ (with water present)j N-Anisvlmethvlisoxazolidines are converted to the isoxazolines.5
rr'..:;:.lJe\ is accomplished by o: .:.r I enol ethersrequiresthe o: ('(-1. ',:Jetion of RCFIOH to [ :. ,;hieved in the presenceof oxidationin r -.:J ti'r selective
rr} (-(
,oMe
)fl^_,,}=/ A' Y)
DDo [o-pffi" 8oo
A A*" \/
/{"" oHc\/ 48%
79Yo
138
4,s-Dichlorophthalic anhydride
toikurvu, M., Yoshizaki,H., Kusumoto,S. SZ757(199g). 'Wang. W.. Li. T.. Attardo.C. JOC 62.6598fl997). 'Paterson, I., Cowden,C. J.,Rahn,V. S.,Woodrow,M. D. SL 915(1999). -Miki, Y., Hachiken, H., Kashima, Y., Sugimura, W., yanase,N. 11,tE,1 (199g). -Li, P.,ci, H.-J.,Sun,L.,Zhao,K.JOC 63,366(1998).
glycosylation. The pru deprotection (with erhl I lLergenmuller, M., ho. \'..
4,5-Dichloro- 1,2.3-dithiazole. Aryl isothiocyanates.l The reaction of arylamines with the reagent affords 5-(N-arylimino)-4-chloro-1,2,3-dithiazoles which are decomposedto give ArN=c=S by a
Dichlor o(2,2,2-trifl uon Oridative cyclizttb electron acceptor. Inten cyclized product. Unsyr
Grignard reagent. tB"rron, T., Guillard,J.,Rees,C. W., Thiery,V. JCS(\l) g89(1998).
Me3SiO
Dichloroindium hydride. Reduction.t The hydride is prepared from reaction between Inc\ and BurSnH at -78". It is stabilized by coordination with THF so that reduction of carbonyl compounds and halides can be achieved at ambient temperature. iRyter,
rMiyai, T., Inoue,K., Yasuda, M., Shibata, I., Baba,A.TL39,l929 (1998). Dichloroketene. t9, 123 a'a-Dichloro-T lactones.t
Epoxides such as styrene oxide undergo C-o insertion with dichloroketene generatedin situ. 'Traun"., D., Porth,S.,Opatz,T., Bats,J. W., Giester, G.,Mulzer.J. S 653fi99g).
bond
2,2-Dichloro-5-(2-phenylethyl)-4-trimethylsilyl-3-furanone. Amide synthesis.t The reagent I is a dehydrating agent compatible with water. It mediatesthe formation of amides from carboxylic acids and amines.
;'i*"{-.,,.
K., Livinghouse . T
Dicobalt octacarbooyt 1 0 2 - 1 0 5 : 1 81. 3 2 : 1 9 .l l Hydrosilylation.l
MerSi(H)Cl furnishesa alcohol in the presercc <
site. The detachmentof t Reaction of cyclopa give 2-cyclopentenonc hydroquinones,3therefq E and K.
*{
(1) rMurakami, y., Ito,y. TL37,7S4l(1996). M.,Hayashi, M.,Tamura, N.,Hoshino,
Ph
Ho\ra^ 4,S-Dichlorophthalic anhydride. Primary amine protectian.t Imides of rhe type derived from this anhydride are stable to conventional conditions for deacetylation, benzylation, benzylidenation, and
l\
Dicobalt octacsrbonyl
139
glycosylation. The protecting is superior to the unsubstituted phthaloyl in the milder deprotection (with ethylenediaminein ethanol). rlrrgenmuller,M., Ito,Y., Ogawa,T. f 54' 1381(1998).
lnj.. \\ith the reagent affords r, i:rr\)\ed to give ArN=C=S bY a
Dichloro(2,2,2-trifl uoroethoxy)oxovanadium(V). The one-electron oxidant converts a silyl enol ether into Oxi.dativecyclimtion,l to electron acceptor. Interaction with a nucleophilic moiety in the same molecule leads realized. is also ethers enol of silyl coupling cyclized product. Unsymmetrical
Me3SiO l*..
A
\\
SiMe3
(cF3cH2o)vocr2 +
cH2ct2 -7Bo
\)"",//o: ^"::\\eenInC\ and BurSnH at !^ : :-.tri carbonyl compoundsand
rRyter,K., Livinghouse, T. "/ACS120,2658(1998). l-- -
r e 8) .
,rrde undergo C-O bond
lr:':
r-
'r5-rr1998).
I||)ne. It I i- j:'.1comPatiblewith water. gi - .r:lllO€S.
Dicobalt octacarbonyl.13, 99-l0l; 14,ll1-ll9;15, I 17-l l8; 16' I l3-ll5:17, 102-105: 18, 132; 19, 125-126 The cobalt-catalyzed hydrosilylation of (vinyl)polystyrene with Hydrosilylation.I primary MerSi(H)Cl furnishes a supported chlorosilane which can be used to silylate a alcohol in the presenceof secondaryhydroxy group, permitting manipulation at the latter site. The detachmentof the modified product is accomplishedby HF' Reactionofcyclopropanols.l-Alkynylcyclopropanolsundergoisomenzationto give 2-cyclopentenones.2On the other hand, l-allenylcyclopropanols afford substituted hydroquinones,3therefore the reaction is applicable to the synthesisof analogsof vitamins E and K.
,o ;/"u^'"
**y*:,
o*qr,, 71"/"
r- -r-
-511 {1996).
Ho\r\^
A " \ ir::.cJ from this anhydride are t r-.'r ..rtion. benzylidenation,and
OAc I
Ph co2(co)8/ THF; Ac2O- Et3N
,\r-Ph
i l l
V\I
OAc 53/
140
Dicobaltoctacarbonyl
aff t i
w
o tl Co2(CO)s / i-PrOH ;
l
l
.rx
Hydroformylatio* Co2(CO)8 / i-PrOH ;
v\_
A
Cor(CO)3. There is a rer
DABCO
two metal species. TunE
600
tl CHR R = Ph, Hx, c-Hx
32 - 49%
45 - 720/.
Pauson-Khand reaction. The intermolecular Pauson-Khand reaction of N-(2is totally stereoselective.4 The catalyticP-K reactionis alkenoyl)bornane-10.2-sultams promoted by small quantitiesof DME (or other hard basesincluding water).sReactions carried out in supercritical carbon dioxide are very efficient regardlessof the substitution pattern of the alkyne unit.6 Note that tetracobaltdodecacarbonylis a catalystprecursorfor reactionat 150'and 10 atm CO.7 Only 0.01 equiv of the cobalt cluster is required.Actually catalytic amount of Cor(CO), of high purity is sufficientto completethe intramolecularP-K reaction,8also the hexacarbonyldicobaltcomplex of 2-methyl-3-butyn-2-ol can be decomposed with triethylsilane to generatean active cobalt carbonyl catalyst.v 1,6-Enynes undergo a variant of the Pauson-Khand reaction, leading to l-acylcyclopentenes.r0l-12-Alkynylphenyl)-l-cyclopropanolsbehavedifferently accordingto the presence or absenceof DABCO.TI
TBSO
p-Dicyanoarene. Ketones.t I -Su openingto give ketorr'
Co2(CO)8/ PhMe
TBSO
+
-\
900 67%
Exocyclic dienes.''
rStranix, B. R., Liu. H. Q 2lwasawa, N., Matsuo. T 3903 (1998). 3Owada, Y., Matsuo.T .l 4Fonqu"-u, S., Moyarn, sSugihara, T., Yamagrrh 6Jeong, N., Hwang. S. H 7Ki., J. w., chung. \' x oBelanger, D. B.. O'\trh nB.lung.., D. B.. Lirrngi loKtufft, M. E., Wilson- . Mollman, M. K. J..ICSI "l*uru*u, N., Masuo. T l2Krufft, M. E., wilson. A I . L . T L 3 9 , 5 9 1 It l 9 9 t r 'lB.rg", J., Claridge.S.. \ 'ol.hii, Y., Miyashira.K .
EtzN' V ?-."\os,p,
Hexacarbonyldicobaltcomplexes of 1,6- and l,7-enynes are
readily formed. In refluxing toluenethesecomplexesreleasedienes.
siMe3
,SiMe3
co2(co)s/ PhMe A
Alkoxymethylatiot Me, Bn, TBS, is b1 fl addition of such rad demonstrated. The phc andbiphenyl(10 mol q
't*.. J.,U, J. S..BlacLrr -Gutenberger, C., Stec\hr 69%
Nicholas reaction, benzopyransystem.l3
The intramolecular version has been applied to the synthesis of
Dicyclohexylboranc. Hydroboration-
elkl'ne linkagesin thc I
Dicyclohexylborane
Hydroformylation.ra tntemal alkynes undergo hydroformylation with (cyrp)rpdclrCor(CO\. There is a remarkable synergistic effect (increasein conversion and yields) with the two metal species.Tungstenhexacarbonylcan be usedinsteadof Cor(CO)r.
:,f,H p-
45 _ 720/o
r\ Khand reaction of N-(2| . . -aralvtic P-K reactionis -.uding water).sReactions r. f : -..:.rrdlessof the substitution
|r. \r reactionat 150'and l0 u : . ,.rellv catalytic amount of D
, ,
o
h" h -'.
.rr P-K reaction,8also the be decomposed with reaction, leading to , c diff'erentlyaccordingto
IStranix. B. R..Liu. H. Q..Darling,G.D. JOC 62,6183(lgg:'). 'Iwasawa. N., Matsuo,T. cL34r (r997);rwasawa, N., Matsuo,T., Iwamoto, M., Ikeno,T. JACSrz0, 3903(1998). 3owada, Y., Matsuo,T., Iwasawa, N. f 53, 11069(lgg:'), -Fonquerna, S.,Moyano,A., Pericas,M. A., Riera,A. JACSllg, 10225(lgg.7). 'Sugihara, T., Yamaguchi, M. Sa 1384(1998). oJeong, N., Hwang,S. H., l.ee,y. W., Lim, J. S. ,/ACSllg, 10549(1gg.7). 'Kim, J. W., Chung,Y. K. S 142(1998). oBelanger, D. B., O'Mahony,D. J. R.,Livinghouse, T. TL39,763:(1ggg). D. B.. Livinghouse. T. TL 39.7641( l99g). ,'Belanger. '"Krafft, M.8., Wilson,A. M., Dasse, y. y., Fu,Z.,Bonaga, O. A., Shao,8.,Cheung, L. V. R., M. K. "/ACS118,6080(1996). ..Mollman, ' 'Iwasawa, N., Matsuo,T. CL 341(lggj). ''Krafft, M. E.,Wilson,A. M., Dasse, y. y., Fu,2.,Shao,B., Scott, O. A., Bonaga, L. V. R.,Cheung, r. L. TL 39,591I (1998). .''Berge. J..Claridge. S.,Mann,A., Muller,C.,Tyrell,E. TL38,6g5(1997). '-Ishii, Y.. Miyashita, K., Kamira,K., Hidai,M. JACSllg,644g ,irggT. p-Dicyanoarene. Ketones,t l-Substituted l-dialkylaminocyclopropanes undergo oxidative ring openingto give ketonesin a photosensitizedreaction( l ,4-dicyanobenzene as sensitizer).
hv rlc-$o.r 67"k
\. Er2N'v rAosiPr'.
K2CO1/MeOH-MeCN ( 1: 1 0 )
und |,7-enynes are
c\ r
..0
t / /
ry - o H 49."
ts{" ::.nlredto the synthesisof
Alkoxymethylation.2 A method for the generation of RocH, radicals, where R = Me, Bn, TBS, is by photoinducedcleavageof alkyl trimethylsilylmethyl ethers.In situ addition of such radicals to activated double bonds in moderate yields has been demonstrated.The photosensitizertypically consistsof 9, I 0-dicyanoanthracene (4 mol Va) and biphenyl (10 mol Vo). rLee, J.,U, J. S.,Blackstock, S.C., Cha,J. K. ,/ACSttg, 10241(1gg: ). -Gutenberger, G.,Steckhan, E.,Blechert, S.ACIEE37,660(1999).
Dicyclohexylborane. Hydroboration The organoborane effects selective hydroboration of alkene and alkyne linkages in the presenceof carbonyl group.r
Diethyl chlorophosphite
Catalytic effect.' The hydroboration of 1-halo-l-alkynes with 9-BBN is catalyzed by dicyclohexylborane.
A
\J
a-
(c-Hx)zBH (i!- \
+ cr:Bu
iry
crz:\s,
THF
cl'
'eu
B., Sh.ib.
Diethyl phcpbo a-Hydmry a P(=O)CNgivesI to furnishRCH((
98%
tKabalku, G. w., yu, s., Li, N.-s. TL38,5455,i6}t (lgg7). 'Hoshi, M., Arase,A. SC27,567(199'7).
R-COOH
(Diethoxymethyl)diphenylphosphine oxide. Ketene acetals.r Homologation with protection of aldehydes is accomplished by a base-promoted condensation with (EIO)'CHP(O)Ph2 and elimination of Ph'P(O)OH. If asymmetric dihydroxylation is then applied to c-hydroxyalkanoates are obtained.
rFischer,
the enol ethers, chiral
ethyl
rKirschning, A., Driiger,G.,Jung,A. ACIEE36,253(lgg'7).
'Mizuno,
M.. Shro
Diethyl trichloro 1,1-Dbhlua is moreconvenic
Diethylaminosulfurtrifluoride. 13, ll0-112;,16,128-129;lE,135;19,126-127 Activation of alcohols. Using DAST, a hydroxy group is activated toward substitution, even by (intramolecular) participation of a benzyl group.r This method representsan altemative to the two-step processinvolving reaction with MsCl and LiOH. Beckmannfragmentation.z An oxime that is prone to undergo Beckmann fragmentation does so with incorporation of a fluorine atom at the other severedcarbon atom.
NOH
\altamura- T.. \lr
Et2NSF3 CH2C\2 -78o
CN 77Yo
rMonthiller,
S., Heck, M.-P., Mioskowski, C., Lafargue,P., Lellouche,J.-P.,Masella,M. ESCf'134, 145 (1997\. 2Ki.ihu.u, M., Niimi, K., Momose, T. CC 5gg(1gg7').
Diethyl chlorophosphite. Arylamines.t Thesecompoundsare obtainedfrom nitroarenesby reductionwith (EtO)2PClin thepresence of N,N-diisopropylethylamine.
\.\'-Dilluorotft Fluorinln .n fluorinatinge . .-idicarbonlI co '. :rrnroto.
T. \eg
Dftdooetbtr. Cycbptry '--,cSrmmons-S
Diiodomethane
i. eatalyzed
C
B
u
'Fischer, L. JOC63,393(1998). B.,Sheihet, Diethyl phosphorocyanidate. a-Hydroxycarborylicacids.t A carboxylicacid RCOOH on reactionwith (EtO), P(=O)CNgivesRC(CN)roP1=9;198r;r.Thelatterspeciesarehydrolyzedwith proticacid to furnishRCH(ODCOOH.
(EtO)2P(=O)CN R-COOH
CN I
R-r-oPo(oED2
Et3N / THF
'Mizuno.
by a p.r'hed .P,OtOH.If :hrrul ethyl
HgO* +
CN
RVCOOH l OH
M . , S h i o i r i ,T . T L 3 9 , 9 2 0 9 ( 1 9 9 8 )
Diethyl trichloromethylphosphonate. by reactionwith CI,CPO(OEI), 1,1-Dichloroalkenes.' Homologationof aldehydes is moreconvenientthantheWittig reaction.
r llT rreJ toward fhr. method .rndLiOH. , Beckmann Lrt\)n atom.
cr3cPo(oE02 ...................................* OMe
OMe 95"/o
rNuku.u.u, T., Matsui,T., Tanino,K., Kuwajima,l. JOC 62,3032(199't).
Ny'/-Difl uorobipyridinium salts. These reagentsare easy to handle and they readily find applications Fluorination.t in fluorinating a great variety of compounds including phenols, silyl enol ethers, and \1 B.SCF134,
I .3-dicarbonylcompounds. rUmemoto, G. JOC 63,3379(1998). M., Adachi,K., Tomizawa, T., Nagayoshi,
ductionwith
Diiodomethane.13, l l0-l 15:'275-276;16,184-185; 17, 155:'18,139-140;19, 128 l-Alkenylsilanols are transformed into cyclopropylsilanols by Cychpropanation. the Simmons-Smith reaction.l A Grignard reagent may replace the zinc or diethylzinc
lU
Diisobutylaluminumhydride
which are used in the conventional cyclopropanation of allylic alcohols.2Cyclopropylzinc reagentsare prepared from alkenylzinc compounds.s
^4n
*t$rn*
*o^o,
,
Eliminatian," 1,4-Diencsr by way of allylation,reductiono DIBALH-MgBr,. The ne*ll t (Z)-confrguration.
X = i-Pr,I 1,3-Diketones.* The Simmons-Smith reagentis capableof converting acyl cyanides RCOCN to RCOCHTCOR. Acid chlorides produce diketones satisfactorily only in the presenceof a palladiumcatalyst[e.g.,(dba),Pd2-CHCl3].
p
Ph<
rHirabayashi, Takahisa,E., Nishihara,Y., Mori, A., Hiyama,T. BCSJ71,2409(1993). K., 'Bolm, C., Pupowicz,D. ZL 38, 7349(1997). jYachi, K., Shinokubo, H., Oshima,K. ACIEE37,2515(1993). 'Matsubara, Kawamoto,K., Utimoto,K.5L267 (1998). S., Diiron nonacarbonyl. 13, 320-321; 15, 334; 16, 35 1-353 ; lE, 140; f 9, 128 Oxyallyl ions obtained by debromination of cr,ordibromo [6+3]Cycloaddition.t ketones with Fe, (CO) n are found to react with fulvenes in furnishing indan derivatives.
z\ "17\-.,o> | ,--1
\./
b,
Fe2(CO)e |
PhH
v\e -x'
N 5
)---1
> d \
Consr Carbonylreduction. by DIBALH reduction of the &ri N-Boc pyrrolidinones is reduccd camphorsulfonatedelivers the err
MesSiCl
pnAcooH
Et3N / THF
r i ) 86"/"
The selectivereduction ofa co camptothecin.T
'Hong,B.-C., Sun,S.,Tsai,Y. JOC 62,7717(199'7).
Diisobutylaluminum hydride. 13, I l5-1 l6; 15, 137-138; 16, 134-135;17,123-125; 18, 140-l4l; 19, 128-129 Removalof bornane-10,2-sullamauxiliary.'
Due to the popularity of this chiral
coo€
coo€l
auxiliary in synthesisthe desire to recover it is high. Using DIBALH on the acyl derivatives leads to cleavageinto aldehydesand the tricyclic sultam. Deallylation. The nickel-catalyzedreaction is applicable to a wide range of amines, 5-membered N-heteroaromatic compounds, amides, and sulfonamides.2 Allyl ether cleavageis also facile and selective(with TBS, Bn, MOM, THP, Ac, Bz, Piv, An, and prenyl derivativesof alcoholsintact).3
Modificd Baylis- Hilbun ta HMPA andquenchingthe rertrc estersir cr-alkylidene-B-hydroxy from thoseobtainedfrom the nqn
Diisobutylaluminum hYdride
g1.;';. i CycloProPYlzinc
\
7nX
,no_ruo,
,
BnOJ
(dppp)NiCl2
n
\-OH
7 1"/"
Et2O
l,4-Dienes are prepared from G-(benzothiazol-2-yl)methyl ketones Elimination,a with by way of allylation, reduction of the carbonyl group with NaBHo, and reatment DIBALH-MgBr,.Thenewlyformeddoublebondofthemajorproducthasa (Z)-confrguration.
-9'
f..16r efling acyl cyanides lir.iactorily only in the
/
i-Bu2AlH
145
o
Ph
Ph< N
-l ll{D (1998).
)---\
>-s
NaBHa; -
s
| -lrr 19. 12t n::.rlt()n of c,cr'-dibromo sh:::r indanderivatives'
\_ \:
i-Bu2AtH-MgBr2
8370
conversion of carboxylic acids to aldehydescan be achieved carbonylreduction, carbonyl group of by DIBALH reduction of the derived trimethylsilyl esters.sThe cyclic with quinolinium products the of treatment further and N-Boc pynolidinones is reduced enecarbamates'6 deliversthe camphorsulfonate
I
pnAcooH *
Messicl
, il'.
i
r
l
rn^"oosiM% I #* I
pnAcno 82"k
in a synthesisof The selectivereduction of a conjugated ester is an important operation camptothecin.T
r:j
1 . 3 51; 7 , 1 2 3 - 1 2 5 ;
cooEt
cHo
i-Bu2AlH - 600
cooEt
cooEt t lpularity of this chira{1.}l ,'n the acyl derivatives c : .: \\ lde rangeof amines, u.: :r.rmides.2AIIYI ether , -\- ilz. Piv, An, and PrenYl
81%
DIBALTV Modified Baytis-Hillmnn feaction.s By reducing alkynoic esters with of ButBOTf, HMPA and quenching the reaction mixtures with aldehydesin the presence distinct stereochemically are adducts The produced. are esters o-alkylidene-B-hydroxy reaction' Baylis-Hillman normal the from from those obtained
Diisopropoxyaluminum trifl uoroacetat€
cooEt I
ilr I
OpPenauer oi
OH / HMPA'THF; |-BU,AIH
PhCHO/ Bu2BOTf
Ph
.^rl...,,,"oo=t r " l l
\rn
AI(OCOCF.) oridi conditions (room tc
rAkamanchi,K.G 2Akamanchi,K.C
61"/"
Activationofchabogens.gAmide,areconvertedtoseleno-andtellufioamides and DIBALIVTe' respectively by a combination of DIBALIVSe Esters or lactones apparently Reductive cttloroattytoion and thioallylation.to undergoinsitureductionwithDIBALHandtheresultingaldehydesreactwith functionalizedallylictitaniumandboronreagentstoprovidethecouplingproducts.Such products are useful for the synthesisof vinyloxiranes' HCA 80' 1319(1997)' rOppolzer, P" Rosset'S'' De Brabander'J' W., Darcel,C', Rochet, 2funigu"hi,f., Ogasawara' K' TL39' 4679(1998)' 3Taniluchi, K' ACLEE3T'1136(1998)' T., Olasawara, acalo,V., Nacci, A..TL39,3825(1998)' tiiunarur"nt*, S.' Kumar,M' S',Muralidhar,B'TL39'909(1998)' 6cossy,J.,Cases, M., Pardo,D'G' SC27'2'169(199'l)-' Tchuuun,S. P., Venkatraman, M S TL 39' 6745 (1998)' 8Li,c., w"i, H.-X.,willis, s. rL 39' 4607(1998)' eLi, G. M., Zingaro,R.A. .ICS(P/)641(1998)' loHertweck,C., Boland'W. EJOC2143(1998)'
DiisoproPYl Pbocl Protection ol t which is formed in lBrands,K. M. J . \\'
DiisoproPYl sulllt Cyclic sulfla yield. It reacts u.id
rKing,S. A., PiPr\-|
DilauroYl Perori Hydrodesulfi of xanthatesin rel
4-Subst'tua tion on treatmct
tetrahYdroisoqut Diisobutylaluminum isopropoxide' to glve quantitative This reagent effects reduction of cyclic ketones Rediction.t yields of the more stable alcohols' 'Chu,J. S.,Kwon,o. JOC 62,3019(1997)' 8rt
Diisobutylaluminum phenylselenide' "*";,;-;;h.t S"qu"ntiul reactions of
aldehydes with
amines and ethyl
chloroformatedeliverunsaturatedcarbamateswhichcanpickoffthePhSegroupfrom precursorsfor radical reactions' i-BurAl-SePh. The MSe-acetalsare useful lstojanovic, P. TL37,9199(199'l)' A., Renaud,
'Liard, A.. quicla rLi.d, A.. qrri.h icholleton. \.. z:
Diisopropoxyaluminum trifl uoroacetate' Reductions.|Preparedbyreacting(,-Pro)3Alindichloromethane.withtrifluoroa materials, the aluminum salt behaves as acetic acid followed uj removal of volatile
Dilithium 2Jr Diek-AId. conjugatedcart
reducingagentforaldehydesandketones.Whileexcellentyieldsofalcoholsareobtained
l\ practicall\ ln
frommostcarbonyl.ompound,,theonlyexceptionissalicylaldehyde(33Vo).
Dilithiurn 2,2'-methylenebis(4,6-di-t-butylphenoxide)
;ooEt
In combination with p-nitrobenzaldehyde, (i-PrO)t Oppenaueroxi.dation.2 AI(OCOCF3) oxidizes secondary alcohols but not primary alcohols under the defined conditions (room temperature). lAkamanchi, B. A. St 3'71(1991)' N. R.,Chaudhari, K. G.,Varalakshmy, 2Akamanchi. B. A. ZL 38, 6925(1997) K. G., Chaudhari,
!"
- JnJ tellurioamides lr-:()nes apparently ldchrdes react with rplrnr products.Such
:::.r 1997).
Diisopropyl phosphite. Protectionof amino acids.l N-Phosphorylation is performed with (l-PrO)rP(O)Cl which is formed in situ from (r-PrO)2POH and NaOCl. rBrands, K., Williams,J. M., Dolling,U -H', Reider,P' I' TL39' 9583(1998)' K. M. J.,Wiedbrauk,
Diisopropyl sulfite. Cyclic sulfites.' The reagentis availablefrom isopropanol,thionyl chloride in95Vo yield. It reactswith diols in a transesterificationprocessunder the catalysis of MsOH. lKing,S. A., Pipik,P.,Conlon,D. A., Bhupathy,M.SC27'701 (199'7)'
Dilauroyl peroxide. By adding dilauroyl peroxide in small portions to solutions Hydrodesulfurization.t ofxanthatesin refluxing isopropanolthe sulfur-containingfunctional group is removed. 4-Substituted a-tetralones. 3-Aroylpropyl xanthatesundergo desulfurative cyclizaSimilarly, 1,2,3,4tion on treatment with dilauroyl peroxide in 1,2-dichloroethane.2 -ones are prepared.l I tetrahydroisoquinolinx 1,, 9l\'€ quantltatlve
o
o
aY^\ ,rN,.l
dilauroylperoxide
Nc b< s
Jnlnes and ethYl ihc PhSe group from |;:]' tn\
F:hrne with trifluoroDunr \alt behavesas a rf r.-rrhols are obtained ,rjc
1-lgr).
ctcH2cH2cl
4Y> l l t arl^W
I-cN
A
oEr
l
5O-/o
' Li*d, A., Quiclet-Sire,8., Zard, S. Z. TL 37' 58'7'7(1996). Zliard, A., Quicletsire, B.,Zard,S.Z. TL38, 1759('1991). 3cholleton,N., Zard, S.Z. TL39,'7295 (1998).
Dilithium 2,2'-methylenebis(4,6-di-l-butylphenoxide). This salt acts as a bidentate Lewis acid to activate Dinls-Alder reactions.t conjugated carbonyl compounds toward dienes. Note that lithium 4,6-di-l-butylphenoxide is practically ineffective under the same conditions.
148
(3-Dimethylarninopropyl)dimethylgallium
o
ll r
tl
4\aY
\rV
tl
o
0,o PhMe
* \=' L
(1)
i ,
L O
i b \
>\r,Ar>,\X
v v
-\t
54"/"
l
a\
(1)
f* \il_ I
lBlum,J.,Gelnu M., Heymer.B
4-Dimethylu Triflaoru Friedel-Crafis lSimchen. G..!
rooi,T.,Saito, K.TL39'3745(1998)' A.,Maruoka, -irlr*-r;;r., 2,2-DimethoxYPropane. ''(or MerSicl) Togetherwith MeOH and trace amounrof HCI temperature' nonaromaticacidsareconvertedto methylestersat room rRodriguer, M.,Spur,B' W',Godfroid'J'JTL39'8563(1998)' A.,Nomen, Dimethylaluminumchloride. -amidesfrom estersand irin rt amides.t The preparationof N-methoxy-N-methyl lactonesisefficientlyaccomplishedbytreatmentwithMe,AlClandMeoNHMe.HCl. thereactionis lower chloridebecause is inferiorto dimethylaluminum Trimethylaluminum yieldingandit requireslongertime'
l3-Dim€fhyl Estcts-t DBU, and
benzimidazoli
Ph-cl{
rMiyashita..,{.
2.7-Dim€tbyl Alktldi.
(199'7\' rShirniru, T'TL38,2685 K.' Nakata, T.,Osako,
I makes it ea trf an alkl l 1 , dialkylalum
Dimethylamine. ---is The 4-formyl groupof p-lactamscontaininga cis-3-substituent iiil^rr*non., epimerizedby aqueousdimethylamine'
rhe laner scc *hich prom
rAlcaide,B., Aty, M. F., Rodriguez-Vicente,A' 7L 39' 5865 (1998)'
rr'etals.:
(3-Dimethylaminopropyt)dimethylgallium' and iodine atoms afe selectively Methytntion of halaarenes.t Aromatic bromine reagent in the presenceof (Ph.P)tPdclt' replaced by a methyl substituent using this Manyfunctionalgroupsthatdonotwithstandcommonorganometallicreagents survive.
preferentiall
2,7-Dimethyl-1,&biphenylenedioxybis(dialkylaluminum)149
s
''$"'
(Ph3P)2Pdcl2
-G"*
PhH A
B. C', Frick' J., Gelma, D., Baidossi, W., Shakh, E., Rosenfeld, A., Aizenshtat,2., Wassermann, (1997)' M., Heymer,B., Schutte,S., Wemik' S., Schumann,H' JOC 62,8681
lBlum,
4-Dimethylamino- l-trifl uoroacetylpyridinium trifluoroacetate' Trifluoroacetylation.l Aryl trifluoromethyl ketones are obtained from the of aluminumchloride' Friedel-Craftsacylationwith this stablereagentin the presence rSimchen. A. S 1093(1996). G..Schmidt, l,3-Dimethylbenzimidazolium iodide. p-nitroaniline' Esters.t Aromatic aldehydes undergo oxidation on reaction with the Apparently DBU, and 1,3-dimethylbenzimidazolium iodide in an alcohol' benzimidazolium ylide is involved. Ht I ror MerSiCl) NHr
I
t -
N
Ph-cHo
rdc. lrom estersand d \tcONHMe'HCl. ti:l reactionis lower
is r, i'--l-substituent
rMiyashita,
) t N *
+
v
I Noz
DBU
740k
1254(1997)' A., Suzuki, Y., Nagasaki, I.' Ishiguro, C., Iwamoto, K', Higashino' T' CPB 45'
2,7-Dimethyl- 1,8-biphenylenedioxybis(dialkylaluminum)' Alkylation of carbonyl compounds. The presenceof two metallic centersln reagent transfer I makes it easy to attain a six-center transition state;therefore, much more efficient of an alkyl group to aldehydes is noted. In comparison with the 2,6-dimethylphenoxy jvo, 52vovs 10vo, (dialkylaluminum) reagentsthe improvement is remarkable (e.g., 84Vovs to TiCl, the latter seems to be the best case for the mononuclear phenoxide).I Contrary group a carbonyl I activates unit, dimethylacetal of ionization which promotes ketene silyl and allyltributylstannane as such preferentially toward nucleophiles acetals.2 O.Al(OPr')z
t(rnr\areselectivelY sr ,,i (Ph.P)rPdClr. n,'nr!'tallicreagents
Ph-COOMe
MeOH
150
Dimethyldioxirane
Oppenauer oxidation. The bidentate aluminum species and pivalaldehyde constitute an oxidizing system for secondary alcohols.3 The bis(diisopropoxyaluminum) analog is a highly efficient catalyst for the Meerwein-Ponndorf-verley reduction.
Oxidative clear-q However, the succes
tooi, T., Takahashi, M., Maruoka, K. ACIEE37,835 (1998). 'Ooi, T., Tayama,E., Takahashi, (l,gg'l). M., Maruoka,K. Zt 38, '1,403 'Ooi, T., Miura,T., Maruoka,K. ACIEE37,2347(lgg8).
(o)"^
fY> iJ
N,lV.Dimethyl- I -bromo-2-methyl- 1-propenylamine. Alkyl bromides.t The reagentconverts alcohols to bromides.
'oA'?
lBendall, J. G.,Payne,A. N., Screen, T. E. O.,Holmes,A. B. CC 106l(tggi\.
Dimethyl carbonate. 18, 144 Methylations. Phenolsare convertedto their methyl ethersron reaction with CsrCO, and CO(OMe)r. At a relatively high temperature (180") alkyl aryl sulfones undergo mono-C-methylation.2 P.i-ary arylamines also give monomethyl derivatives when a zeolite catalyst is present.3
Epoxidations. glucopyranosyl dcrir. from epoxidationof (10.5-11.5 i s)a d r a n Theepoxidationd (Z)-4- oxo-2- alkenoar y-hydroxybutenotid
-OCOOMe (MeO)2CO Cs2CO3 120o
ll\
\o'l-orlPs
tLee, Y., Shimizu. I. SL 1063 (1998). 2Bomben, A., Selva, M., Tundo, P. JCR(S) 448 (1gg7). 'Selva, M., Bomben,A., Tundo, P. JCS(Pj) 1041 (1997).
Functional grct4 isothiocyanatesto isc oxidative cleavage of oxidation of diols and
Dimethyldioxirane. 12,413;13, 120;14,I 48; 15, 143-144;16,142-144;18,144-146: 19,135-136 A new method of generationinvolves reaction of arenesulfonylimidazoles with hydrogenperoxidein thepresence of acetone.r Oxyfunctionalizations. N-Oxides,2sulfoximines(from sulfimides),3 isocoumarins (from isochromans),4 (from flavanes)s 2-hydroxyflavanes arereadilyprepared.
H
(Yo\,,,,n \-\-/
\.' o-o
OH
2'\/o-'1,,. | il t" \-\-' 630/"
'Schulz, M., Liebsctr"S.. I -Ferrer, M., Sanchez-B'Gaggero, N., D'Accolo l -Bovicelli, P., Sanem.A.. 'Bernini, R., Mincioru. E.
Dimethvldioxirane
t -:..ire\ and PivalaldehYde n-. ;1.rdiisopropoxyaluminum) nJ : -\'erley reduction.
Oxidative cleavage of the furo-furan unit of lignans delivers hydroxy ketones.o However, the successfultransformation must be carried out at -20' and under high dilution.
4-\-o,,
ls.-
dI+/
Y o-o
\.'
o.o}}o,
Ac2O - py
fl-""'(o2 'o&
n"o--t
o}A'
H nr-{o
nr,"\o/
tv:::t,les. :
l5l
Lou
66'/.
. - :997). Epoxidations.
'i j:: rr. on reactionwith CsrCO, D ., r.rl aryl sulfones undergo D.. :rcthvl derivatives when a
Formation ofchiral epoxidesfrom enol ethersderived fromprotected
glucopyranosyl derivatives has been reported.T1,2-Epoxyalkylphosphonatesare obtained from epoxidation of vinylphosphonates.s Generation of dimethyldioxirane at high pH ( I0.5- I I .5) is advantageous.o The epoxidation of 2-trialkylsiloxyfurans leads to ring opening, resulting in trialkylsilyl (Z)-4-oxo-2-alkenoates. On acid treatment the latter compounds are transformed into y-hydroxybutenolides.lo
OCOOMe
>a o-o
Me2CO
n3u
\ro ol-
OTtpS
E
+
/
\
Ho--\^/Ao U
100%
Dimethyldioxirane effects conversion of Functionalgrouptransformatians. of aldehydesto nitriles,l2and the to isocyanates,rlMN-dimethylhydrazones isothiocyanates relative ease. Regioselective (Nef with reaction)r3 oxidative cleavage of nitronate ions oxidation of diols and triols is also achieved.ra 1:-: 16. 112-144;18, 144-146; OH D: .r:ine\ulfonYlimidazoleswith r:: ::. .ulfimides.l.lisocoumarins r' i:r' :r'.idily prepared.
OH .a)l z1'. /"-i,,,,o"
\
\-,/ 43."
t "
o-o OH
Me2CO
OH OO-/o
rschulz,M., Liebsch,S.,Kluge,R. JOC 62,188(1997). 2Ferrer,M., Sanchez-Baeza, A. 253, 15877(1997). F., Messeguer, 3cugg".o,N., D'Accolti,L., Colonna, S.,Curci,R. 24 38,5559(1997). aBovicelli,P., Sanetti,A., Bernini,R., Lupattelli,P. f $'9755 (1997). sBernini.R., Mincioni,E., Sanetti,A., Bovicelli,P., Lupattelli'P. TL 38, 4651(1997)'
152
NJV-Dimethylformarnide-oxalylchloride
6Mincione.8., Sanetti,A., Bernini, R., Felici, M.TL39' 8699 (1998)' TBhatia, S., Lowe, R. F., Pritchard,R. G., Stoodley,R. J. CC 1981 (1997)' G. scrirtuu, H.-J., Mbianda,X.Y.,Geze, A., Beziat,Y., Gasc,M.-B' JOMC 571' 189 (1998)' eFrohn, M., Wang,Z.-X., Shi, Y. JOC 63, e25 0998). l0Boukouvalas. J., Lachance, N. SL 31 (1998). rrDavidson, N. 8., Botting, N. P. .ICR(S) 410 (199'7). t2Altu-u.u, A., D'Accolti, L., Detomaso, A., Dinoi, A., Fiorentino, M', Fusco, C'' Curci' R' ft 39' 2009 (1998). t3Adurn,W., Makosza,M., Saha-Mijller,C. R., Zhao, C.-G' SL 1335 (1998)' raBovicelli,P., Truppa,D., Sanetti,A., Bermini, R., Lupattelli, P' 754' 14301(1998)'
N"lV-Dimethylformamide-phosPhot hactical n Alkenyl chlorides. p-chloro-p-methyltluo enaminesl and withDMF-POCIr. Vilsmeier reactian.'
BuS
Dithiora
_.SBu
z :a\
Po
(-\, Dimethyl 1,3-dithian-2-ylphosphonate. t One-carbonhomologation Thit reagent is useful for the transformationof l'3-dithianes' enolizableketonesto 2-alkylidenetMink,
D., Deslongchamps,G. Sf 875 (1996).
Oxazoles." Some cr-azido carb with the Vilsmeier reagent.On heauq
S,S-Dimethyl dithiocarbonate. 19' I 36 A ketone synthesisis based on the copper(I)-catalyzedGrignard reaction Ketones.l CO(SMe)r. with rChen,C.-D.,Huang,J.-W.,Leung'M.-K.,L|H.T 54'9067(1998)'
19, | 3'l
N{-Dimethylformamide. (5 These compounds are obtained by reacting lithioalkynes with DMF 2-Alkynals.l examples,>94Vo). Activated aromatic halides undergo nucleophilic N,N-Dimethylarylamines.2 substitution with DMF (in the presenceof ethanolamines)' rJournet.M.. Cai,D., DiMichele,L. M., Larsen,R. D. IL 39, 6427(1998)' 'Cho.Y. H.. Park,J. C. rL38, 8331(1997).
NJV-Dimethylformamide dimethyl acetal. Good yields of esters are obtained by reacting amides with Estersfrom amides.t (MeO)rCHNMer in methanol at room temperature(7 examples, 92-l0OVo)' rAnelli,P. L., Brocchetta, M., Palano,D., Visigalli,M. IL 38' 236'7(199'l)'
chloride - 19' 137 N,N-Dimethylformamide-oxalyl toward displacement Alcohols are activated by (MqN=cHCl)*cr Phthalimides.t from secondary amines of chiral with potassium phthalimide. By this method the synthesis alcohols (inversion of configuration) is accessible. rBarrett, P. A.JOC 63,6273(1998)' R. A., Koike,N., Procopiou, D. C.,James, A. G. M., Braddock,
tGhosez, I., Patinl.L.. I L., George-Koch, 9207(199$. 2Suma.S.,Asokan,C. V. sC 26, 84?( 199 sAsokan.C. V.. Mathews,O. aa 35. as85 tMulo,v. J.,Perumal, P.T. ,IoC 63.715
c N,N-Dimethylformamide-thionYl Aldehydes.t Reduction of cat CISOTCH=NMe2-EqN, and treaura rKhan.R. H., Rao,T. S. R. P. JCR|S,40:
.V,N-Dimethylhydrazine. Facile reduction of Amines,t catalytic ferric chloride. :Kamal,A., Reddy,B. S.N. CL 593r l9l
.V*rV-Dimethyliminium salts. Electro+ Aminoalkylalians.t (odr aldehydes with rn situ reactions
N,N-Dinethyliminium salts It * l+)8). J,L i9El(1997). c \'. tt JO.VC 571, 189 (1998).
N/V-Dimethylformamide-phosphoryl chloride. 18, 146 Alkenylchlarides. Practical methods for synthesis of 2-substituted l-chloroenaminesl and B-chloro-p-methylthio enones2involve reaction of amides and dithioesters withDMF-POCI,. Vilsmeicr reactian.3 Dithioacetals give p-alkylthio enals.
. . . F u s c o ,C . , C u r c i , R . T L 3 9 , F - : - r : : ' r , rM ..
j E
:15 r1998). , / 5 . 1 .1 4 3 0 1( 1 9 9 8 ) .
ff"
SBu POC|3- DMF
fficHo \.'\-'l
\.-\-,/
65v"
r. ...-':ul for the transformation of
Oxazoles.a Some o-azido carbonyl compounds undergo O,C-bis(formimidination) with the Vilsmeier reagent.On heating the products give 4-formyloxazoles.
o-
,.:\
POC|3- DMF
i , :-:'-'r-I r-catalyzedGrignard reaction
oo -> goo
1r
, / \ / \ \
/-\'N
I cHo
36'/"
f-
lchor"r,
br -:.:.lrDglithioalkyneswith DMF (5 :.alides undergo nucleophilic
fr'-
P., Phan,T. T 54, L., George-Koch, I., Patiny,L., Houtekie,M., Bovy, P., Nshimyumukiza, 920'7(1998),. 2Suma, Asokan, V. S., C. sC 26, S4'1(1996). 3Asokan, C. V., Mathews, A. TL35,2585(1994). aMuio,V. J.,Perumal, P.T. JoC 63,7136(1998).
D--1.
t-r:-
1998).
N,1V-Dimethylformamide-thionyl
chloride. Reduction of carboxylic acids is achieved in two steps:activation with CISOTCH=NMe'-Et.N, and treatment with LiBEtrH and LiI. Aldehydes.\
rKhan,R. H., Rao,T. R. P. S. JCR(S)402(lg9S). e:'j ^:.rined by reacting amides with [- :. -,:rples,92-lOOVo). , -ll( -:^- r 1997).
NIV-Dimethylhydrazine. Amines,t Facile reduction of organic azides occurs with dimethylhydrazine and catalytic ferric chloride. rKamal,A., Reddy,B. N. CL593(1998). S.
{e- \ d'HCl)*Cl- toward displacement n}:.: . ,'i chiral aminesfrom secondary
\
:- r.,piou.P.A.JOC63,6273(1998).
N"lV-Dimethyliminium salts. Aminoalkylations.t Electron-rich aromatic compounds react with these salts while in situ reactions with aldehydes(other than formaldehyde) and amines fail.
154
Dimethyl sulfoxide
converted to l,3-dioxanes and l. hvdrolvzed with 2 N HCI in c
rGrumbach,H.-J., Arend, M', Risch, N. S 883 (1996)'
N,N-Dimethylphosgeniminium chloride. The dehydration of N,M-dialkylureas with [clc=NMer]Cl carbodiimides.l is easily removed by proceeds at 0o. The N,N-dimethylcarbamoyl chloride by-product vacuum evaPoration. ts.hlurn",T., Gouverneur, V., Mioskowski,C.TL37,'1047(1996)'
HO_\-o HOI
Y..,
HO
N"lV-Dimethylsulfamic acid. moderate The aldimines RCH=NSOzNMe, are readily prepared in Aldilnines.t toluene. refluxing in acid yields from aldehydesand the dimethylsulfamic rHuirrnun,M., tenHave,R., vanlrusen, A'M' SC27'945 (199'7)'
),,,,Onr"DMsoP OH
P auson - Khand re actioa-'
form 3-thiabicyclo[3,3,0]oct-5
Dimethylsulfonium methylide. 18' 149 The ylide provides CH, to form [4il]Cycloaddition.t in (trialkylsilyl)alkenylketenes a new route to 2-cyclopentenones'
cycloadducts with
)v* \s/
FPr3Si rergi,-vd.o -(
+
oo Me2S=cH2 il.ffi-
I
method by avoiding Epoxides.2 The modification of the previously established only heating a ketone with solvent is obviously advantageous.The new procedure requires MerSI and l-BuOK at 60'followed by vacuum distillation' rl-oebach, R' L "/ACS120'9690(1998)' D. M., Danheiser, J. L., Bennett, zfoau,f ., Kanemoto, K. H 6,185 (1997).
rRagoussis, v. .rcgi N., Ragoussis, 'Maiti, G.,Roy,S.C. 7I.38.495( I 3cuiso.M.. Procaccio, C., Fizzam. astumpf,A., Jeong,N., Sunghec. H
Dimethylsulfoxonium leth$ Th Polyhomologation.' oxid triorganoboranes.Besides boron atom by a hydroxylatod I compounds with trident carbm
Dimethyl sulfoxide. 13, 124; 16, 149; 18' 149 The condensationof malonic acid with aldehydesin DMSO (E)-3-Atkenoic acids.t usingpiperidiniumacetateascatalystfurnishesmostlytheunconjugatedacids. r-Butyldimethylsilyl ethers of primary allylic homoallylic' benzylic 6ri6torion.' '79-8'lvo); those at 90' (10 examples, alcohols and phenols are cleaved by DMSO-rlo other primary and secondaryalcohols remain unaffected' by l,3-Diols are protected as l,3-dioxanes which are formed l,s_oioranrs,t are systems 1,3-diol and reaction with DMSO and POC! or SOCI? sugars containingl,2-
Et3B+ M"rf,-cH, o
Dimethylsulfoxoniummethylide 155 converted to l'3-dioxanes and 1,3,5-trioxepanes,respectively. The latter can be selectively hydrolyzed with 2 N HCI in acetone.
!:. .i rth [Cl,C=NMerJCl d--: ;. easily removedby
"o-\
/o-\
FO HO<
)",'Orlt,r" DMSo-Pocl3
\
Y-..OH HO
01
O---r
/-q XH
/""oMe
q
Hao*
(ol F", ),"'oMe
?
Y'.OH
HO
\o/
98o/o
d r . prepared in moderate Ii :,.Uc'ne.
92%
Pauson-Khand reaction.a DMSo-MerS promotes intramolecular p-K reaction to form 3-thiabicyclo[3,3,0]oct-5-en-7_ones.
r
cvcloadducts with
o
II
\ ) \s/
",.{
11i-co2(co)6 '\
_Me2S Me2SO phH 600
a> H (.)
65Yo
750/"
rhc.i nrethod by avoiding or. . hcatinga ketonewith
rRagoussis, N., Ragoussis, V. JCS(\l)3529(1ggg). 'Mairi, G.,Roy,S.C. TL3g,4g5(1997). Guiso.V.,Procaccio, C..Fjzzano, M. R.,piccioni,F. TL3g,42gl(lgg7). stumpt,A.. Jeong,N.. Sunghee, H. SL2O5(lgg7t. Dimethylsulfoxonium methylide. 14, 152; lS, 147 16, I 46; 17, 126_127;lg, I 48; 19, I 39 ; Polyhomologation.t The ylide provides the methylene unit in chain extension of triorganoboranes.Besides oxidative workup to generate alkanols, the replacement of the boron atom by a hydroxylated carbon on reaction with dichloromettryt mettryt ether gives compounds with trident carbon chains.
I .rr:n rldehydesin DMSO nr--rrtedacids. r.:. homoallylic,benzylic rtri:rple\. 79 -87 Vo);those
Et3B + Mezfl-cxz- + .r hich are formed by l- .r..1 I.l-diol systems,ue 5
ll
o
[R(cH2)n]38 :::""t, ct3v'Oli
;
NaoH,HooH
156
Diorganocadrniums
lshea.K. J..Busch, B. B.,Paz,M.M.ACIEE37'1391(1998).
o*o
2,4-Dinitrobenzenesulfonamide. Acid chlorides are converted to nitriles by heating with the arenesulNitriles.t fonamide and EqN in THF.
rAponick,
A., McKinley, J. D., Rabcr.
rHuber.V. J..Bartsch, R. A. f 54,9281(1998).
2,4-Dinitrobenzenesulfonyl chloride. Secondary arnines.t Primary amines form sulfonamides which can be alkylated in the conventional manner or using Mitsunobu reaction. The sulfonyl group is removed by treatment with mercaptoaceticacid and EtrN.
ai
oJ ftsozcl or",,.g*o,
RNH2
,i'\rt-nHn
o,"'\rL*o,
1,L-Dioxobenzo[D]thiophene'] Amineprotection.t Carb., protectionis accomplished b1'rcz
B'x -*
,r*l'*i"
o,*-\Aruo,R
\.,.^-d r
BuLi: HCHO RCO3H
RR'NH
rCarpino,
The sulfonamides undergo functional group exchange on hydroxamic acids' and RzNC(=S)SH' in the presence of acid' reaction with thiolacetic the sulfonamides with dithioacids affords thioamides. of cesium carbonate.Reaction Amides and ureas.2
rFukuyurnu, M., Jow,C.-K.,Hidai,Y., Kan,T' TL3E' 5831(1997)' T., Cheung, 2Messeri, N. C. O. TL39' 1669'1673(1998)' D. D., Tomkinson, T., Stembach,
N,N'-Dinitroethylenediamine. The silylation of propargyl alcohols with hexamethyldisilazide is silylation.t
L. A., Philbin, M., Isrnarl. El-Faham, A., Riemer, C., WarrrsL I
Diphenylacetyl chloride. Thc Hydroxylprotection.t (pyridine,-10'). Recoveryofthc achieved by free radical brominat rSantoyo-Gonzalez, F., Garcia-Calr A. S 97 (1994).
calalyzedby the nitramine. rMedvedeva. L. P.' Memina,M M' RJOC34' 127(1998)' A. S.,Yazovtsev,I' A., Safronova,
Diphenyl diselenide.13, 125: lt, Ox azoline s and oxazo lin -2-o addition of RCN to alkenesin thc 1
Dinitrogen pentoxide. 18, 150 Silyl ethers and silylamines are converted to nitrate esters and Nitrodesilylation.t nitramines, respectively, at about 0".
by PhSeSePh.
rMilla..R. W.. Philbin,S. P. r53, 43'll (1997)'
Diorganocadmiums. Addition of RrCd to p-benzoquinonesis a general reaction' p-Quinols.t
Ph
\:
0
Diphenyl diselenide
o{tso
o#*
Me2Cd THF
71"k r\ heating with the arenesullAponick, A., McKinley,J. D., Raber,J. C.,Wigal,C.T. JOC 63,2676(1gg8).
o.i'r :Jes which can be alkYlatedin r. , :..: .ulfonyl group is removedbY
o.. ao ^ .'yt-*.--*
1,1-DioxobenzofD]thiophene-2-methoxycarbonyl chloride. Arnine protection.t Carbamate formation from amines and the reagent 1 is facile, protection is accomplishedby treatment with piperidine.
@
BuLi; HCHO;
rzY\ *,{
RR,NH
(1)
_ .. a4*or"' g '..rctional grouP exchange on g ft \Cr=S)SH, in the presenceof d::.-. ,e tds affords thioamides. Ii -t{ r.ll (1997). lM. "-l t1998).
0.. - rr ith hexamethyldisilazide is
n:= \1 \1. RJOC34,l2'l(1998).
/ococl ^;'
RCO3H
'Carpino,L. A., Philbin,M., Ismail,M., Truran,G. A., Mansour,E. M. E., Iguchi,S., Ionescu, D., El-Faham,A., Riemer,C., Warrass,R., Weiss,M. S.JACS119,9915(199'l).
Diphenylacetyl chloride. Hydroxylprotection.t The primary hydroxyl group ofsugars is selectively acylated (pyridine, - I 0o). Recovery of the alcohol without affecting other groups such as acetoxy is achievedby free radical bromination (NBS, hv) and treatment with thiourea. rSantoyo-Gonzalez, R., Vargas-Berenguel, J., Robles-Diaz, F., Garcia-Calvo-Flores, F., Isac-Garcia, A. S 97 (1994).
Diphenyl diselenide. 13, 125; 18, 15 1- 152; 19, 140-l 4l Oxazolines and oxazolin-2-ones.t These heterocyclesare obtained in the oxidative addition of RCN to alkenesin the presenceof (NH)2S2O8and CFTSO,H,which is catalyzed by PhSeSePh.
l. ::. -()n!erted to nitrate esters and Ph Ph
PhS€-SePh - CF3SO3H (NH4)2S2O8 aq. MeCN
F:-..- :. J generalreaction.
600
158
Diphenylphosphorazidate
1,4-SultenyI-2-alkenes.2 Conjugated dienes are dithiolated with the assistanceof PhSeSePh andlieht.
+
PhS-SPh PhSe-SePh
,nr^.,A,rrn. r^#t' 90%
'Tiecco, M., Testaferri, L., Marini, F., Temperini, A., Bagnoli, L., Santi, C. 'Ogawa, A., Obayashi,R., Sonoda,N., Hirao, T. TL3g,1577 (1998).
Diphenyl sulfoxide-triltl Glycosides. Actir. significant becausethe res with O-, .l-, N-, and C-nu (89Va) and oligosacclu 2,4,6 -frmethylphen y l atioo
glycosylation with gl1.c ( 1,2-anhydropyranosidesI I
activation and brief trearm completes the glycosylario
sc 27,4r3r(1997).
aoBn
Diphenyliodoniumtrifl ate. a-Phenyhtiont Addition of PhrIOTf ro copper enolatesof ketones serves to introducea phenylgroupto theu-position.
o tl .) \-,
o
LDA/ THF ;
..'..".................* CuCN;
tl /-"'/Ph
t
l
\./
Ph2toTf 50o/o
'Ryan, J. H., Stang,P.J. fL 38,5061(1997).
Diphenylphosphine oxide. Deoxygenation.l Alcohols are convertedto xanthatesand then exposedto PI5P(O)H (with di-l-butyl peroxide also present)in refluxing dioxane to complete deoxygenation.The phosphorusreagentoffers an alternative to the organotin hydrides. rJang,D. O.,Cho,D. H., Kim, J. SC2E,3559(1993).
Diphenyl phosphorazidate. a-Amination.' Carboxylic acid derivatives are converted to the o-amino acids by treatment of the lithium enolateswith (PhO)rPON,. rvillalgordo, M., Linden,A., Heimgartner,H. HCA79,2l3 (1996). J.
Bno-N-Q BnOl-4
lGarcia, B. A., Poole,J. L.. G,r 'Di Bussolo, V., Kim. y.-J..Gn
O,O' -Di(2 -py ridyl) rhiocer Esterifuatian.' Thc hinderedalcohols(includin
'suitoh, K., Shiina,I., Mukailr
NrV.Disuccinimidyl carbc Preparation.t The N-hydroxysuccinimide *.irh
Mixed carbonales.2 , provides reagentfor N-^lkot
lPereira, D., Hai, T. T., Nelso. 'Kundu, B., Shukla.M.. Shutl
lV,t-DisuccinimidylcarbonatelS9 rE -:::hrolatedwith the assistanceof
\
'- /,SPh -
I
lsPh
,nr^Yz\ I
90%
Diphenyl sulfoxide-trifl uoromethanesulfonic anhydride. Glycosides. Activation of anomeric hydroxyl groups with phrSO_TfrO is significant becausethe resultant speciesreact, often stereoselectively and in- good yields, with o-, s-' N-, and c-nucleophiles including the hindered N-(trimethylsilyl)pivalamide (89vo) and oligosaccharides. Elaboration of c-glycosides is illustrated by 2,4'6-timethylphenylation (81%o).rThe reagent combination is also useful for etfecting glycosylation with glycal donors2 in which the formation of grycal epoxides (l'2-anhydropyranosides) by oxygen transfer from dipenyl sulfoxide is implicated. After activation and brief treatment with MeoH, a ZnClr-promot-edreaction with nucleophiles completes the glycosylation.
r:rtr. C. SC27,4131(1997).
l: .
aoBn
eno-$-Q pgt': :n,rlates of ketones seryes to
BnO-r...-=r
Ph2s=o - Tf2o 2,6-di-t-butylpyridine ; MeOH, Et3N; 1,3,s-trimethoxybenzene
OMe
BnO BnO
ZnCl2 810/"
a
:r'^ 50or
O::r. ,rndthenexposedto PtrrP(O)H ri:.r :,r completedeoxygenation.The D: :.; Jndes.
:ned to the u,-amino acids by
! . *
'Ga."ia, B. A., Poole,J. L., Gin, D. y. JACSrtg,7s97(199't). 'Di Bussolo,V., Kim, y.-J., Gin, D. y JACS120,13515 (1998)
O,O' -Di(Z -py ndyl) thiocarbonate. Esterification.' The reagent is an excellent mediator for esterification of acids with hindered alcohols (including I -adamantanoland isoborneol) in the presence of DMAp. 'Suitoh, K., Shiina,I., Mukaiyama, T. CL6jg (lgg8\. NyV-Disuccinimidyl carbonate. Preparation.t The reagent is obtained in large scale by reaction of N-hydroxysuccinimide with triphosgenein THF at 0. (using Bu.N to remove HCr). Mixed carbonates-2 Dispracement of one succinimidoxy group with an alcohol provides reagentfor N-alkoxycarbonylation of amino acids. rPereira, D., Hai,T. T., Nelson,D. SC2g,4109(199g). 'Kundu, B.. Shukla.M.. Shukta.S. JCR(S)427irgg4t.
lGong,
Y. D., Tanaka, H., Iwasawa- \.
Ethyl (diarylphosphono)acetet Emmons-Wadsworth reactb (Z)-selective manner(8 examples Ethoxyamine. is throughMichaeladditionfollowed from nitroalkenes 1,2-Diamines,t A synthesis by catalytichydrogenation
M"?o",
rrY':-\
NHz
r,Y/
E1ONH,. HCt - NaHCO3/THF;
H2, Pd/C
i
ErOH
\/
l
t - NHz
Vr"oU
l
88%
tI-ugu*u,
cooEr
K., Hata,8., Yamada,T., Mukaiyama,T. CL291 (1996).
cr-Ethoxyvinyllithium-HMPA. Deprotonation' This reagentbehavesdiffferentlyfrom manyotherlithiumbasesin at allylic andbenzylicsites. deprotonation
tAndo,K. Joc 62,tg34(tggl). Ethylenesulfate.15, 105-107:l& Alkoxyethanols.t Alkylaoc intermediates.
NaH/DMF:
..Ph
P-a
;.,,{--.*,)',,,..oMe
s-BuLi- HMPA; Mel / THF - z8o
P-l
EtO I
.Ph
?",
1.,A:r2'",,..oMe
HMPA:
Mel / THF - 78o
vn OH y--rPh
[]uo'
;aA:r22",'oMe 81v.
'wei,H., Schlosser, M. CEJ4,173g( l9
Ethyl 1-hydroxy-lH -t,2$-fiiaz* Couplingof aminoacids.t T
rShirnuno, A. I. ?I 38,5415(lgg'7). M.,Meyers, Ethylaluminum dichloride. 19, 143 Disproportionationofa,arylalkenylethers.' The intramolecularversion of this (5- and6-membered). reactionis suitablefor the synthesisof l-arylcycloalkenes
o
J
EtAtCt2 cH2ct2
qo lJiang,
L., Davison, A., Tennant, G.. Rra
-
Ethyl l -hydroxy_| H -1,2 J-triazole-4_carboxytate rGong,
Y. D., Tanaka,H., Iwasawa, N.,
Narasaka,K. BCSJ7l,2lgl
099g).
Ethyl (diarytphosphono)acetate. Emmons-Wadsworthreactions.t These est(trs react with aldehydes (Z)-selectivemanner .*u-pr"s, in 1a Z:E > 93:7).
cooEt M e O n l "s^/
I
t
rY')^
f",NHz
--
-
|
v
\-Pn 100%(Z :F= 96 : 4)
88%
lr.:
SOOEI
PhcHo/THF
Vrr"o&
,Aa\, i l l
Triton-B
::()m many other lithium basesin
rAndo, K. Joc 62, tg34(tgg.l). Ethylene sulfate. 15, 1 0 5 - 1 0 7 ; 1 8 , 158 Alkoxyethanols.l Alkylation offunctionalizedalcohols canleadto usefursynthetic lntermediates.
NaH/DMF;
t
:\ rJi
OH
P-$'n THF :8"
-
t
o.
-
o*o"
dsot
{'2'",.-ottte
t-BuOK
'5,\ 6.=-;o
'Wei, H.,Schlosser, M. CEJ4,1738(199g). Ethyf l -hydroxy- | H _1,2,3_triazole_4_carboxylate. Couplingof aminoacids.t fn" ,"ug"nt f l, a nrgfrtyefficientcoupling agent. Jt. rnrramolecularversion of this irls- i- and 6-membered).
N--f N.2
,cooEt
N' I
,.nD
OH (1) rJiang,
L., Davison, A., Tennant, G., Ramage,R. T 54,14233 Qggg\.
l-Ethylpiperidinium hypophosphite-2,2'-azobis(isobutyronitrile)
Ethyl mandelate. Phenylketones.l In employingethyl mandelateas a benzoylanionequivalentthe two reactionstepsneedingimplementationare alkylation(LDA, RBr, or RI) and flash vacuumpyrolysisat 650'.
\ "6J^'B' v OMe
tAitk"n.R.A.,Thomas, A. w. sL 293(1997). Ethyl methylthioacetate. Homologationof alkenes.t Under photochemicalconditionsthe radical addition carboxylicesters.Many functionalgroupsaretolerated' giveshomologated
v
.'
+
p.Ethylthiopropionyl tetnnr Arylvinylkennes.t Eb substitutionwith EISCH.CH. trifluoride) at low temperarr followedby treatmentwith a n
nu
""a1ott 5
tM"Cagu", R.,Pritchard, R.G..Sr
' MecN
tl-"b"d"u, rDeng,
M. V., Nenajdenko. \' (
L. X., Kutateladze,A. G. ZL 38, 7829 (199"1).
Ethyl p-nitrobenzenesulfonyloxycarbamate. AZiridines. Aziidine-Z-carboxylicesters are formed at room temperatureby in the presenceof CaO.r Similarly' reactionof conjugatedesterswith NsONHCOOET way.2 reactin thesame nitroalkenes amination.3 y-Silyl a,p-unsaturatedesters are aminated at the Desilylative by rnigrationof thedoublebond. cr-positionaccompanied
Ethynyltributylstannane. Diels-AIde r reactio ns.: bearingan alkenylstannane tr equivalentfor acetyleneandsu lSauer,
J., Heldmann, D. K. fL t.
Europium tris[di(perfl uora 2 wid Epoxide opening.t
i}-"oors *(-.,"",
cao + NsoNHCooEt ;[d
COOMe NHCOOET
on reaction with acid chlori&s Michael reaction.2 Thc of the Eu complex proceeds dr
660/.
lcarducci, M., Fioravanti,S., Loreto, M. A., Pellacani,L., Tardella,P. A. TL37'3777 (1996)' 2Fioravanti, S., Pellacani, L., Stabile, S., Tardella, P. A.' Ballini, R' 7L 38' 3309 (1997)' 3loreto, M. A., Pompei,F., Tardella,P. A., Tofani, D. f 53, 15853(1997).
1-Ethylpiperidinium hypophosphite-2,2'' azobis(isobutyronitrile). radicalcyclizationof Radicalcyclization.t The bestresult for the stereoselective andAIBN hypophosphite with the p-propargyloxy-cr-bromoketones is obtainedby heating in toluene.
o. \\ \ ) +
o )
'Taniguchi, Y., Tanaka, S., Kitaml -Hanyuda, K., Hirai, K., Nakai. T. .
/rmtnle
Europium tris[di(perfl uoro-2-propoxypropionyl)lmethanate
I
la:: -r. a benzoyl anion equivalent the r\.r::,,n rLDA, RBr, or RI) and flash
AIBN
trr
\
' N ( \_J'U
o
HcPOt
phMe^
.4 ,P oY{\ OMe 74Yo
n'.:.i. ;onditions the radical addition Ll. ::.'Jps are tolerated.
'McCague,
p-Ethylthiopropionyltetrafluoroborate. Aryl vinyl ketones.t Elechon-rich aromatic compounds undergo electrophilic (formed in situ from the acid fluoride and boron substitutionwith EISCFICH2COBF4 trifluoride) at low temperature.The productsfurnish ATCOCH=CB after methylation followedby treatmentwith a mild base.
!
c.'
tl-eb"d"u,
l: t
rred at room temPerature bY - ::c presenceof CaO.r SimilarlY,
tr:'- i
R., Pritchard,R. G., Stoodley,R. J., Williamson, D. S. CC 2691 (1998).
!'slers are aminated at the
M. V., Nenajdenko,V. G., Balenkova,E. S. S 89 (1998).
Ethynyltributylstannane. Diels-Alder reactions.t Thereagentundergoes to giveadducts [4+2]cycloadditions bearingan alkenylstannane moiety. Accordingly, it can be consideredas a synthetic equivalentfor acetyleneandsubstituted alkynes(aryI,acyl,andhaloalkynes). rSauer, J., Heldmann,D.K.TL39,2549
(1gg8\.
Europium tris[di(perfluoro-2-propoxypropionyl)]methanate. 18, I 59- I 60 Epoxide opening.l With Eu(dpm)3 as catalyst; epoxides give B-chlorohydrin esters COOMe NHCOOET
on reaction with acid chlorides. Michael reaction,2 The reaction of ketene silyl acetalswith enones in the presence of the Eu complex proceedsalmost exclusively by the conjugate fashion.
bO'/o
(1996). .l::i: lr. P.A. TL37,3'7'l'7 R rL 38.3309(1997). L !-r '.<.r ( 1997).
*
OSiMe3
)'o.,
Eu(fod)3
l[d
\
\'-\..-,'cooEt 63"/"
I Lvlbun ronitrile). . .:.r!'(r\elective radical cyclization of t:: : : .r rth the hypophosphiteand AIBN
rTaniguchi,Y., Tanaka,S.,Kitamura,T., Fujiwara,Y . TL3g,4559(lgg8). 'Hanyuda, K., Hirai,K., Nakai,T. SL 31 (1997).
164
Europium tris(6.6.7,7,8,8,8-heptafluoro-2,?.dlmethyloctane-35-dionate)
Eu(fod)s Europium tris(6,6,7,7,8,8,8-heptafluoro-2r2-dimethyloctane-3,5-dionate). AromaticClaisenrearrangement,t Excellent chirality transfer accompaniesthe reilrangementof allyl aryl ethers. lTrost, F.D.,IACS 120,815(1998). B. M.,Toste,
F l u o r i n e .1 3 , 1 3 5 ; 1 4 , 1 6 7 ; 1 5 .t ( AromaticJluorinationt instead of addition.
Tl
a-Fluoroketones.z
R@ctit Fluoromalonicesten, Drn without any additive an d,-hydror
'C*, P. L., Stuart,A. M., Moody.D . zChambers, R. D., Hutchinson,l.JFC 3chambers, R. D., Hutchinson,I.JFC 'Kamaya, H., Sato,M., Kaneko.C_Il
Fluoroalkyltin reagents. Stillecoupting.l Arylsranr fluoroalkyl (e.g.,C.F,TCH'CH:) h
Hydrodebromination." Th reactions such as replacement of Cyclization of 1-bromo-6,6-diph observed.
Hydrorymethylation.3 OrS presenceof NaBHTCN the formll
l(
|
co
LY-a, 'Currun, D. P., Hoshino, M. JOC 61.6 'Hadida, S., Super, M. S., Beckman E ''Ryu, L, Niguma, T., Minakata, S.. Ko
N-Fluorobenzenesulfonimide. Fluorinations. Electrophilx is facile.r'2Benzylic G,c,-difluao prepared. Monofluorinationof ben
L(dmtt'
rta n€-35-dionate). Eu(fod)3 ir",.:. 6il15;sr accompaniesthe
Fluorine.13,135;14,167;15,160; lg, l6t; lg.146 Aromaticfluorination.r The additionof triflic acidto cF3cl favorsthesubstitution insteadof addition. a'Fluoroketones-2 Reactionoffluorine with enolacetates givesthehighestyierds. Fluoromalonicesterc. Direct fluorination is catalyzedUy CuNOiSHzO,, but withoutanyadditivean o-hydroxymethylene groupservesasactivator.a L, j:::,1 M..Moody,D. r. lcs(p I ) 1so72 (rss}). -Lhambers.:,|l:rt.,l R. D., Hutchinson.J. "/FC g9. 22g (lggg). -Chambers. R. D.. Hutchinson.I. JFC 92,45 .lgg}. Kamaya,H.. Sato.M.. Kaneko.C. ZL 3g. Sg7(lgg7t.
Fluoroalkyltin reagents. stille coupling.r Arylstannanesin which the three other substituents on sn are fluoroalkyl(e€., cuFrrcHurcHl,travemany attractivefeaturesfor thecouplingwith harides. Hydrodebromination'2 Thetin hydride(cuF,rcHrcHr)rSnH particip"ates in radical reactionssuchas replacementof bromine uy hjaiogen in supercriticalcarbondioxide. cyclizationof r-bromo-6,6-diphenyl-5-h.*.n.'to give diphenylmethylcyclopentane is observed. Hydroxymethylation.3 organic halides undergoradicarcarbonylationand in the presence of NaBHTCNtheformyl groupis reducedin srtu.
.t) tU-a,
CO / (C6F13CH2CH2)3SnH AIBN - NaBH3CN PhCF3/ fBuOH 9oo
81%
D. P..Hoshino. M. JOC 61.6480( 1996). ,9"T".". Super.M. S..Beckman, E. J.,Curran,D. p. "/ACSttg,7406(tggl). ,l"O'1",1, 'Ryu, I., Niguma,T., Minakata,S.,Komatsu, U., HuOia",-i.,Curran,D. p. fL 3g, 78g3(1997). N-Fluorobenzenesulfonimide. Fluorinations. Electrophilic fluorination of alkali metal enolateswith (phsor) rNF is facile'r'2 Benzylic s,a-difluoronitriles, sulfonates,3 and ptorptonut.r; a." ,imilarry prepared' Monofluorination of benzylphosphonates is achieved by prior silylation.s
166
trluorous ligands
Ph. ,PO(OE$2 v
(Me3Si)2NLi ; Me3sicl
PhVPO(OE02
(Phso2)2NF; PhVPO(OE02 ' l
uinsiMe3
F
LiOH
FormaldehYde. HydrorymethYlatio* bY re I,4-naphthoquinones t microwaveirradiation.2{ BaYlis a DMAP-catalYzed
rEnd"rs,D., Potthoff'M., Raabe'G', Runsink'J' ACIEE 36' 2362(199'7)' 'D""it, F. A., Kasu,P. V. N', Sundarababu' G'' Qi' H' JOC 62'7546(1997)' 'f"tti., C. C', Chen,M.-J.'Taylor,S D' JOC63' 8052(1998)' ti-"yl"t,i. o., rotoris,C' C, Dinaut'A' N'' Chen'M'-J' I54' 1691(1998)' storga,B., Eymery'F', Savignac, P'TL39' 3693(1998)'
Fluoroform. Trilluoromethylcarbinols.t deprotonation with MeSOC}IK'
P h 'cHo .
o tl l l
after Fluoroform donates the cF, group to aldehydes
MeSOCH2K
Ph
cHFs
P
.a.CFa
I
OH
DMF
L-/-*q
60%
L' S' 7t 39'29'13(1998)' lFoll"ur,B., Marek,I., Normant'J' F, Jalmes'
2-Fluoro-N-mesYlaniline. "-i_iry,unn".t latter derivatrves are The mesylaniline is.acylated readily. These other amlnes' capable of transferring the acyl group to rKondo,K., Sekimoto,8., Miki' K'' Murakami'Y ' JCS(PI ) 29'13(1998)'
Fluorous ligands. organometallic reactions.
l,3-Diols.' The nit a-nitrocYcloalkanones.
phosphine ligands with
fluoroalkyl
groups either
directlyattachedtothephosphorusatomortoP-arylsubstituentscanhaveprofoundeffects onthereactionsinvolvtngphosphine-coordinatedmetalcenters.Thus,theRh-mediated in catalyst,r hydroformylation of alkenes hydroboration with the iroOin"O Wilkinson supercriticalcarbondioxid&havederivedadvantagesfromthechanges.Ananalogof is to be examined for oxidative addition Vaska's catalyst, [(C6Fr3CH2CH,)J,Ir(CO)CI'
lBansal,V., Sharma,J.' Khr 2Rezgui,F., El Gaied.M. MtBallini, R., Barboni, L.' Pirr
FormaldehYde dimetbYl }^KetoaldehYdes at conjugate addition to ct
ketoaldehyde monohYdn treatment leads to lkerot
H
NNMq H
reactions.3 (1997)' tJuli"tt",J. J. J.,Horvath,I' T., Gladysz, J' A'ACIEE36'-1610 ''fi"itr, S.,Koch' D., Baumann,W', Leitner'W' ACIEE36' 1628(199'l)' 3cuillevic,M.-A.,Arif' n. U'' go*att', I' T'' Gladysz'J' A' ACIEE36'1612(199'l)'
rDiez.8.. Fernandez,R.. Cc 62.5144 (1997).
Formaldehydedimethylhydrazone
tnYPO(OEt)z
r- SC, r2NFi F
F
- f H
ta ,.
Formaldehyde. of C-2 A CH2OH group is introduced into Hydroxymethylation. 1,4-naphthoquinonesby reaction with formaldehyde in the presenceof I!CO, and under microwave irradiation.r 2-Cyclohexenonesare also hydroxymethylated at the o-position in a DMAP-catalyzed Baylis-Hillman reaction.2
q97 ).
o tl
a)
q98 ).
o tl
ao. HCHO- DMAP
r'fo* t r l
\-)
82'/" tc r F grouP to aldehYdesafter
The nitroaldol reaction is followed by ring cleavage in the cases of
1,3-Diols,3
cr-nitrocycloalkanones. Ph
r
o
v.cF3
I
A
OH
L2-*o'
60%
\::
.fhese
O2N 7-OH HOOC-r K \-oH \-/
aq. HCHO K2C03
'Bansal, V., Sharma,J., Khanna, R. N. "/CR(S)720 (1998). 2Rezgui, F., El Gaied,M. M. Zt 39, 5965 (1998). 'Ballini, R., Barboni,L., Pintucci,L. sL 1389(1997).
latter derivatives are
'* :rr
tluoroalkYl grouPs either tn:::..r'ntscan haveprofound effects ti .i'nlers. Thus, the Rh-mediated . : . JroformYlation of alkenes in s :: ::r rhe changes.An analog of for oxidative addition E ::r..rrttrfled
0 ^.6l'w-t. t( .: -16.t6t2(1997).
Formaldehyde dimethylhydrazone. 19, 148 y-Ketoaldehydesandy-ketonitriles.t The hydrazone is a Michael donor for conjugate addition to enones catalyzed by a trialkylsilyl triflate. The products are the ketoaldehyde monohydrazones. Ozonolysis delivers the ketoaldehydes,whereas peracid treatment leads to y-ketonitriles.
o H FNNMe2 H
+
-1 l/
R3SiOTf;
A l )
-\-r*"", BU4NF
r D i e z , E . , F e m a n d e z , R . , G a s c h , C . , L a s s a l e t t a , J . M . , L l e r a , J . M . , M a r t i n - Z a m o r a , E . , V a z qJuOeC z,l. 62, s144 (199'7).
Formic acid
Formic acid. 13' 137; 18, 163:.19, 148-149 HCOOH-NH4OH under Aldehydes.t Acid chlorides are reduced to aldehydeswith nitrogen. Regenerationofketones inrefluxing aqueous(or KetoneslromphenylhyilraZones.2 ethanolic) formic acid is a convenient method' rShamsuddin, K. M., Zobairi,M. O.' Musharraf,M A' IL 39' 8153(1998)' 2chukubu.ty,M., Khasnobis, S. sC 28' 1361(1998)'
Gadolinium(Ill)
chlorklc. Aldol reactiont Cor catalyzed by GdCl,.
/Y o
rHong,
B.-C., Chin, S.-F. SC li
Gallium(IlD halides.
ftsitylstyrenes.' Inu -Cr GaCl,-catalyzed Friedel gallium(Ill) chlorideis rcpL
fi'\ l
/'\?\
l l
+
\
\
'st
Aldols and ftaminotea aldehydes andiminesat roc Allylatian of alhyncs. catalyzed by GaClr.Allylgd
Me3Si\ \
a\
CsHrr
Yamaguchi,M., Kido, Y.. Harr
il;::r
Jes *ith HCOOH-NH,OH under
ra:: :. ,'i ketonesin refluxing aqueous(or f ; - r e ' . 5 _ 1( 1 9 9 8 ) .
Gadolinium(Ill)
chloride. Aldol reaction l Condensation of enones at the c,'-position with aldehydes is catalyzedby GdClr.
/Y
LDA/THF;
+
PhCHO
o
Gdct3
/\/\/'n
i l l o o H 68%
rHong, B.-C.,Chin,S.-F.SC27,ttgl (19g'D. Gallium(Ilf halides. ftsilylstyrenes.r Introductionof a MersicH=cH group to arenesstarts with GaClr-catalyzed Friedel-Craftsreactionwith trimethylsilytethyne. Thereactionfails when gallium(Ill) chlorideis replacedby otherLewis acidsor proticacids.
-,0-*\,,,".
GaCl3/methylcyclohexane; MeLi
-78o
(f\zsituee ./'-.../Z/.Z'\ 760/o
Al.dols and ftaminoketones,' GdI, mediates reactions of ct-bromoketones with aldehydesand imines at room temperature. Allylationof allcynes.3 Allylsilanes react with alkynes to give 1,4-dieneswhen cata\yzEdby GaClr. Allylgallium intermediatesare implicared.
"".4'\
SiMe3
CsHrr
GaCl3;
lsHrr Messia{r1
MeMgBr; H2O
rYamaguchi, M., Kido,Y., Hayashi, A., Hirama,M. ACIEE 36,1313(1997).
81"/"
Grignard reagents
'Han,Y., Ht:cang,Y.-2. TL39,7751(1998). 'Yamaguchi,M., Sotokawa,T., Hirama,M. CC 743(1997).
Germanium. Aldol reactions.t Enolates are formed from ct-bromo carbonyl compounds on reaction with germanium (prepared in situ from Gel and K). The aldol reaction is
N-Imidazolium-N-meth;-| r to give keto esters.3 The r I -alkoxyoxalylpyrazoles u reaction. Cyclnbutanols.6 Cr cyclobutanones whichrer
syn-selective. rKagoshima, H., Hashimoto, Y., Oguro,D., Saigo,K. JOC 63,691(1998).
"
Germanium chloride. Cyclic orthoesters.t Alkoxy exchange catalyzed by GeClo/SiO, enables the protection of diols using orthoesterssuch as MeC(OMe),. Hydrodebromination.2 cx-Brominated carboxylic acid derivatives undergo debromination by a combination of GeCf and Ph3P in aqueous THF. cr,cr-Dibromo-0-lactamscan be converted to the monobromo derivatives. rBiun.o,A., Romagnoli, (1998). P.SC28,3179 'Kagoshima, H., Hashimoto, Y., Oguro,D., Kutsuna, T., Saigo,K.TL39,1203(1993).
Graphite. Deprotections.
Expansive graphite serves as a catalyst for removal of tetrahydropyranyl group in methanol from such ethers.r l,l-Diacetates are converted to carbonyl compoundsand AcrO.2
Deoxygenation. 1.4 freshly preparedGrignard r Reaction with orgatot perfluoroalkanedithiocarbo sulfur atom,8 whereas lhalides.e
Methoxymethyl ethers.! Etherification of alcohols is readily achieved by refluxing them with graphite in methylal. Acylations. Catalyzed by graphite the Friedel-Crafts acylationa as well as the
Ph\-Jcl Eilgo
e/-)so
transformation of ethers to esterssby acyl halides in refluxing l,2-dichloroethane are reahzed. Although aliphatic chlorides are inferior to aromatic halides this method is quite general as shown by the synthesisofbenzoates (e.g., allyl benzoatefrom allyl benzyl ether and methyl benzoatesfrom methyl t-butyl ether). tZhang,Z.-H., Li, T.-S.,Jin,T.-S.,Wang,J.-X.JCR(S)152(1998). 'Jin,T.-S.,Ma, Y.-R.,Zhang,Z.-H,Li, T.-S. 5C27,3379(1997). 'Jin,T.-S.,Li, T.-S.,Gao,Y.-T.SC28,837(1998). -Kodomari,M., Suzuki,Y., Yoshida,K. CC 1567(1997). 5suzuki,Y., Matsushima, M., Kodomari, M. CL 319(1998).
Grignard reagents.13, I38- 140;14, l7|-172;16, 172-173;17,14l-|42;18, 1 6 7 - 1 7 1 ; 1 9 ,1 5 1 * 1 5 4 Ketone syntheses.
Reactivity discrimination between thiol estersand ordinary esters is the basis of an approach to chiral y-alkylated butyrolactones from tartaric acid.r Morpholine amides are simple substrates for Grignard reaction to provide ketones.2
Tol
THF
.7
Addition to C=N. Cll l-butanesulfinamdes.lo An a to 2H - azirene-2-carboxylic aldehydes(thence the amim respectively.
o Ys'l\.,/ I
t{or
Er2O
Grignard reagents
N-Imidazolium-N-methyl arnidesthat bear an ester group undergo chemoselectivereaction to give keto esters.3The nucleofugacity of azoles makes l-alkoxycarbonylpyrazoles and l-alkoxyoxalylpyrazoles useful for synthesis of esters4and cr-ketoesterssby the Grignard reaction. ) -.r:l.\)nyl comPounds on ir The aldol reaction is
Cyclnbutanols,6 Grignard reagents induce rearrangement of oxaspiropentanesto cyclobutanoneswhich react further. Benzylic reagentsprovide some cyclopropanols.
F' OAr
PhMgBr
, { i:Clr/SiO, enables the derivatives undergo r.:P' P rn aqueous THF' dc:r" ltives. L -re :to3 ( 1998).
-,ri.rlrst for removal of tO L-i):.t;etateSare COnVefted rc..:: r uchievedbY refluxing
-oo' J
[
Ph
JI L"'ot
-
a . -oAr
Ar = An
gOY"
Deoxygenation. 1,4-Epoxy-1,4-dihydronaphthalenesarearomatizedby an excessof freshly prepared Grignard reagents(e.g., l-PrMgBr, PhMgBr) in hot THF.? Reaction wilh organosulfur compounds. Perfluoroketene dithioacetals arise from perfluoroalkanedithiocarboxylic estersby attack ofGrignard reagentson the doubly bonded sulfur atom,8 whereas l-haloalkenyl aryl sulfoxides form a-haloalkenylmagnesium halides.e
Ph
cl
\---,/
h. .r;rlationa as well as the are ur:::i 1.2-dichloroethane quite is method this :.,lr,ies L
ll .+( " Il
,/-\
Ph
,so Tol
Ph
cl
PhcHo
EtMocl
rHF -7Bo
+
Ph
Ph \-J
cl
,/-\
Ph
MgCl
Ph
roH
597.
n/, .rtc from allYl benzYl ether Addition to C=N. Chiral amines are synthesized by Grignard reaction of /-butanesulfinamdes.r0An accessto p-branched o,-amino acids involves addition of RMgX to 2H-azirene-2-carboxylic esters.rr Nitrones derived from serine and chiral c-amino aldehydes(thence the amino acids) are sourcesof a,p-diamino acidsl2 and 1,2-diamines,13 respectively.
.'.........'......_
o -\/s'*
Et2O- CH2C|2
l
i r 1 7 .l ' t l - 1 4 2 ; 1 8 ' MeMgBr
| ::.: r e:ters and ordinary esters o..:,:,\nes from tartaric acid't r..:-:r()n to provide ketones3
""* ,"iL
H 96%
MeOH
Cl
172
Grignardreagents
b-;-en tl Y H
HO-^,-Bn
HO-.,-Bn
t_r
t\
PhMgBr
\,4. THF -4OO
l
Y
+
P
h
NHBoc
NHBoc
\/.\
I
=
P
h
NHBoc
(>95 : 5) 89V"
Displacementreactions. The alkylativec-o bond scissioninducedby Grignard is subjectto asymmetricinductionby a substituentat C-4.t4 reagentson 1,3-oxazolidines a to The methodis applicable synthesisof (-)-dihydropinidine.
?n
Ph
-Ph
rn^T1
PhMgBl
,nA*!ot
THF 2oo
./-ci
Ph
Ph t
PnA*! .ix
r
Ar^
Ph : OH
Ph
H
lFernandez, A.-M., Plaqu 'Romea, R. M., Tey. C.. t 'De Las Heras, M. A.. \'r 'Kashima, C., Tsuruoka S sKashima, C., Shirahaa t 6Bemard, A. M., Floris. C. TBlank, D. H., Gribble. G. oPortella, C.. ShermoloUrc eSatoh, T., Takano, K.. Or rol-iu, G., Cognan,D. A.. E "Davis, F. A., Liang, C.-H '-Merino, P., Lanaspa. A-. ! ''Merino. P., Lanaspa.A-. ! '-Yamauchi, T.. Takahafi. ''Katritzky, A. R., Zhang. i 'oKatritzky, A. R., Belyato "Sydnes, L. K.. Sandbcrg'oSingh. S.. Nicholas,K. V 19c.ourr", B., Xu, L.-H.. B 2oBoymond, L., Rottlen&r.
(89 : 11) 82"/.
The heteroatom groups of I -aminoalkylbenzotriazolesrs
and I -alkoxyalkyl
analogsl6 are
readily replaced with carbon residuesusing RMgX as reagents.One of the ester groups of l,l-alkanedicarboxylates may be replaced on Grignard reaction.lT A preparation of unsymmetrical tertiary phosphines RP(R')R" consists of sequential treatment of RP(Cl)N(Me)Ph with R'MgX [to afford RP(R')N(Me)Ph] and R"I-i.r8 Temperature effects.te The stereoselectivityof Grignard reactions is influenced by conformational mobility of substrates.Thus, at low temperaturesthe maintenanceof one conformation favors the formation of one product.
Grignard reagentVcrl 2-Substitutedcyct'r deoxygenation by Et"Sil
\d/
!
qa-Disubstituudc, andorganocerium reaga s,cx'-disubstituted a-amir
o
d-.a\"
Vnse,
(oc)3cr,,,,'i!il\cl
+
\zo-l-tt /\6,,,'!,osn - 7go
82"/" 790/"
>97
<3
40
60
Direct formation of ArMgI containing ester,amide, nitrile Generation of ArMgI.2o practical alternative is by exchange process (with i-PrMgBr or A groups is impractical. -40'). -25" to l-PrrMg in THF at
:
(1)
'Yoda, H., Mizutani,M.. Te 'Charette. A. B.. Mellon.C.
Grignardreagentdceriurn(Ill)chloride
!C-N-Bn
r P n
\HBoc
r:Juced by Grignard a .!h\tituent at C-4.r4
cF h
Ph
i n s --^\ ,'\ ,/"' ' -
N
I - : pFl
n
:o,,r.rlkyl analogsl6are r ,'r rhe estergroupsof
rFernandez, A.-M., Plaquevent,J.-C.,Duhamel,L. JOC 62,4007 (lgg7). 'Romea, R. M., Tey, C., Urpi, D., Vilarrasa, J. SL l4l4 (lgg7). He1as,M A., Vaquero, J. J., Garcia-Navio, J. L., Alvarez_Builla, J. TL 3g, l8l7 (1gg7). "3. Pr -Kashima, C., Tsuruoka, S., Mizuhara, S. T 54, 14679 (lggg). 'Kashima. C., Shirahata,Y., Tsukamoro,y. H 49,459 (199g). "Bernard. A. M.. Floris. C., Frongia,A., piras, p. p. SZ 66g (199g). 'Blank, D. H.. Gribble. c. W. fL JB, 4i6t (tgg7). oPortella, C., Shermolovich, y. TL 38, 4063 (gg7 \. t, Takano.K., Ota. H.. Someya.H.. Matsuda.K.. Koyama. M. f 54. 5557 ( 1998). ,ls1,ot '"Liu. G., Cognan,D. A.. Etlman, J. A. JACS ll9,gg13 (tgg:.). ' 'Davis. F. A.. Liang. C.-H.. Liu. H. JOC 62.3: 96 (tgg.t). ''Merino. P., Lanaspa,A.. Merchan, F. L., Tejero, T . TA g, 629 (1ggg). ''Merino. P., Lanaspa, A., Merchan, F. L., Tejero, T. TA g, Z3g1 (lgg7). '-Yamauchi, T.. Takahashi.H., Higashiyama,K. CpB 46,384 (199g). ''Katritzky. A . R . . Z h a n g , 2 . .e i , M . r L 3 8 . 7 0 1 5( 1 9 9 7 ) . 'oKatritzky, A. R., Belyakov, S. A., Rachwal.B., Moutou, J.-L. JOC 62,70O(1ggT. "Sydnes, L. K., Sandberg,M. f53, 12679\1997). 'oSingh, S . . N i c h o l a s .K . M . C C 1 4 9( 1 9 9 8 ) . ''Crousse. B.. Xu, L.-H., Bemardinelli,G., Kiindig, E. p. St 65g (199g). '"Boymond, L.. Rorrlander,M., Cahiez,G., Knochel, p. ACIEE 37,1701 (199g).
Grignard reagentsi/cerium(Ill) chloride. 18, I7I; lg, 154 2-substituted cyclic ethers,t Lactones give tertiary lactols which are subiect to deoxygenationby Et SiH-BF..
preparation of Jucntral treatment of |
\
g'1,,11. is influencedby te :nrintenanceof one
r\
(o/-
^
- CsCt3 PhMgBr THF
_ 4so
r-\-pn
|-O ./\
OH
Et3SiH
q/-
BF3€EI2
500/"
qa-Disubstituted a-amino acids.z The sequentialnucleophilic addition of Grignard and organocerium reagentsto nitrile I is highly diastereoselective,providing precursors of cr,s-disubstituted s-amino acids.
\ ro\-cN
2!,,,,Uo'"
PhMgBr- MeCoCt2
,._
PhMe
(1)
Ph OBn (>40 : 1) 897"
l n : r'.ter. amide, nitrile 8..
rsith l-PrMgBr or
173
tYodu, H., Mizutani, M., Takabe, K. 114g, 679 (lggg). "Chareue, A. B., Mellon, C. ?54, 10525(1998).
174
Grignard reagentdcoppersalts
salts.L8, 11l-173; 19, 154-156 Grignard reagentsy'copper with Allylic disptacements. Ring openingof perhydro-N-tosyl-2-allyl-l,3-oxazines double of the dependence Temperature derivatives. enamine leads to Grignardreagents (Z)-alkenes.2 furnishpredominantly bondconfigurationis remarkable.lAllylic carbamates
TS
TS
auesna72l-il.t l oJ
BuCu(CN)MgCl
BF3€Et2; Hzo
euasnaa\NvA,roH I Bu - looo - 50
50"k
(Z:E 90 : 10)
70%
(Z:E 10 : 90)
Cross-couplings. The conditions for coupling of 1,3-butadien-2-ylmagnesium chloride with o-bromoalkanonitriles have been optimized.3 A new soluble copper catalyst for coupling reactionsis CuBr-PhSLi-LiBr-THF.a
CuBr/THF
o\"n1'
e,rycN
o-2oo
T", 980/"
The diastereoselectivityof the copper(I)-catalyzed Grignard Conjugate additions. reaction on N-alkenoyloxazolidin-2-ones varies with the nature of the 4-substituent.5 The addition of RMgX to alkenyltriphenylphosphonium bromide in the presenceof
lSuzenet, F., Blart, E.. D6 'Smitrovich, J. H., Woerpr rFlemming, F. F., Jiang. T -Burns, D. H., Miller, J. D swilliamr, D. R.. Kissel. t oShen, Y., Yao,J. JOC 61 TStun"tty, P., Kremslehrrr
Grignard reagenMru Alkyhtions. Tttc are replacedwith the o complexsuchasFe(rca
rn1
Radical generatios five-membered ring.3
Ketones. The fol N-acylbornane-I 0,2-sul Fe(acac)r.a
CuBr-HrO (or CuBr-AgrCOr) generatesWittig reagentswhich can be used to react with aldehydes.o
BnMgBr*
y''irn"
Bi
-Aszcog tn^o)Orr"" cuBr ' 4-Me2NC6HaCHO
60o/o Interestingly, the sulfur substituent of a B-benzenethionitroalkene is replaced by the organocopperspecies,but reaction with organolithiums gives addition products.T
Noz
tl Phs/
PhCu(CN)MgBr
YNot tl Ph/ 79%
'Cahiez, G.,Avedissian. H. 2Nishii, Y., wakasugi.K.. 1 'Hayashi, Y., Shinokubo.H -Oppolzer, W., Darcel.C.. I
Grignard reagentslmrr Trisubstituted alLet MnClr.l-3 When MnCL propargyl ethers to give
Grignard reagents/manganese(Il)chloride
with -r.. ; .- 1.3-oxazines prrJence of the double !. r' rnantlY (Z) -alkenes.'
-.: ,r' . voH 10) 90)
rsuzenet, F., Blart, 8., Destouches,M., Quintard,J.-P.JOMC 567,21 (1998). 2s-it ouich, J. H., Woerpel, K. A. "/ACS 120,l2gg8 (lggg). 'Flemming, F. F., Jiang, T. JOC 62,7590 (1997). *Burns, D. H., Miller, J. D., Chan, H.-K., Delaney, M. O. "/ACS 119,2125 (1997). 5williu-r, D. R., Kissel, w. S., Li, J. J. TL39,8593 (1998). oShen, Y., Yao,J. JOC 61,8659 (1996). Tstanetty, P., Kremslehner, M. SC 28, 24gl (1998).
Grignard reagentyiron complexes. Alkylations. The halogenatomsof alkenyl halidesrand | . I -dichlorocyclopropanes2 are replaced with the organic group from a Grignard reagent in the presenceof an iron complex such as Fe(acac), and tris(dibenzoylmethido)iron(III).
t ur.rJien-2-Ylmagnesium r .,,luble coPpercatalyst
MeMgBr
Ph-\zCl l'-
\^, vr
rn-><
-
Fe(dbm)3
7O"/" ^\..CN
-.-
Radical generation. five-membered ring.3
:a'
pc: I ,-catalYzedGrignard rf ::t J-substituent.5 onriJc in the Presenceof | *i:t he usedto reactwith
Smooth cyclization of haloalkenes occurs to produce a
Ketones, The follow-up steps for asymmetric synthesis of chiral ketones from N-acylbornane-10,2-sultams consist of thiolysis and Grignard reaction catalyzed with Fe(acac)r.a
o
o
trt* .,H tl
--_Z-YA
SOe R'
il
(BnsArMe3)Li ,"r\*
jIq* R'
Fe(acac)3
R' "v" I R'
\z\NMez 60% oi.irnc is rePlacedbY the ful:i,,nproducts.T
.'rOr I
-::
tCahier, G., Avedissian,H. S 1199 (1998). 2Nirhii, Y., Wakasugi,K., Tanabe,Y. SL 67 (1998). 3Hayashi, Y., Shinokubo,H., Oshima,K. TL 39,63 (1993). "Oppolzer, W., Darcel,C., Rochet,P., Rosset,S., De Brabander,J.HCA 80, 1319 (199?).
Grignard reagents/manganese(Il) chloride. Trisubstilutedalkenes. Grignard reagentsadd to alkynes in the presenceof MnClr.r-3WhenMnCl is usedin catalyticamountsallylmagnesium bromidereactswith propargylethersto give l,l-disubstituted allenes.l
176
GrigrardreagentJnickelcomplexes
CcHra
. MnMoCl
f:coHrs HO
\/Y"
t'''
H0,,,\q
;A.TH;*
9oo/o
Hso*
Coupling reactions, Conjugated dienes and enynes are obtained from coupling reactions involving RMgCVMnCIT'2LiCI with l-chlorodienes and l-chloroenynes.a With l, I -dibromomethylsilanes the products are(E) - alkenylsilanes.5
i-PrssirBr Br
Ph
\:(/
SePh
_
a
Sn E U 3
2-Trimethylsilylng from 2-chloro-2-propeao (dppp)NiCl, andac€ryla
EtMgBr - MnOl2
i-Pr3SiV\ .,'..."..''......'''"........'.'............* THF
crJ(-o*'
OO
887"
A homogeneouscatalyst is the diamino organomanganesecomplex 1.6Its combination with CuCl is used in coupling reactions.
NMe2 Mn-cl 'cl
'Huang, X., Ma, Y. S 4l? ( l9 'Organ, M. G., Murray,A. P.
Grignard reagentsffted Reductive gem4fud methyl substituentsby Mc
NMe2
o tl
(1)
Ph. A v
\ rTang, J., Okada,K., Shinokubo,H., Oshima,K. T53,5061 (1997). 'Yorimitsu, H., Tang, J., Okada,K., Shinokubo,H., Oshima,K. CL I I (1998). 3Nirhi-u", S., Inoue,R., Shinokubo,H., Oshima,K. CL 785 (1998). aAlami, M., Ramiandrasoa, P., Cahiez,G. SL 325 (1998). sKukiyu, H., Inoue, R., Shinokubo,H., Oshima,K. TL98,3275 (1997). "Donkervoort, J. G., Vicario, J. L., Jastrzebski,J. T. B. H., Gossage,R. A., Cahiez, G., van Koten, G. JOMC ss8,6l (1998).
Grignard reagents/nickelcomplexes.18, 773; 19, 156- I 57 displacements of thetwo Trisubstitutedalkenes.t The stepwiseandchemoselective heterosubstituents of l-stannyl-l-selenoalkenes by Stille couplingand then Ni-catalyzed Grignardreactionensuretheconfigurationof theresultingalkene.
Allyhitanium reagclA reaction with i-PrMgX-( r-l bond to the original pc substituent.
/\1ceHt ocooEt
GrignardreagentVtitanium(IV)compounds
lj|
C"---
^ .- \ \
Ph
-{
SePh
SnBu3
F,
Phr-
Phl
......._
\_/
(Ph3P)4pd- Cul
MeMgl
,sePh 'pf,
tnt,-rt"
-...............(ph3p)2NiOt2
Ph
DMF 65o/o
tsi :i-()m coupling tl,,:,'cnrnes.aWith
2'Trimethyrs,yhnethyh2-propen-1-yr acetare.2 This importantreagentis available from 2-chloro-2-propenol by reactionof the lithiutm alkoxide with Me.SiCHrMgcl(dppp)Nicl, andacetylationof theproduct.
BuLi;
",J-'.-o"
...''.......'......'..."........'......._ M"rsi
_[J _oA"
Me3SiCH2MgCl (dppp)NiCt2;
'Ir.
AcCt/py
eombination
X., Ma,y. S 41.7 (tgg7). ,Huang, 'Organ, M. G.,Murray,A. p. JOC62,1523 (1gg7\. Grignard reagentytitant:Tw) compounds. 14,12l _ 122;lE, t74;19, I 58_I 6 I Reductivegem'dimethylatinn ' An amide carbonyl group is transformedinto two methylsubstituents by MeMgBr_TiCl, (Z;rClocanbeused also).
,,r/(O
"'xD
MeMgBr- TiCt4
......_
Et2o
Allyltiranium reagents.2 Allylic carbonates form organotitanium derivatives on reaction with i-PrMgX-(j-pro)nTi. Electrophilic quench (e.g., with NCS) rerurnsthe double (i
. r n K o t e n ,G .
D!.nt\ ()f the two en \i-catalyzed
:"Tr1*:"""1"
originalpositionwhile rejacing'ir,; uko"y.arboxygroupwith a new
/\1caHt ocooEt
(i-PO)aTi;
i-PrMgX.......-........".............'...._ /\caHn NCS
l cl
+
C
(9s : 5) 77V"
f
,z\.,caHrz v
ifl
Grignard reagents/titanium(IV) compounds
o,ftUnsaturated 1^lactams.3 An alkyne, an imine, and carbon dioxide react via an organotitanium intermediate to give an unsaturatedlactam. Reduction of imines.a With CprTiCl2 as catalyst to effect hydromagnesiation of imines by Grignard reagents,a net reduction to amines results on hydrolysis. Alkylation and silylation of akenes. Sryrenesare alkylated by two alkyl halides,5 while 1,4-disilyl-2-alkenes are generated from conjugated dienes and silyl chlorides by mediationof BuMgCl and CprTiClr.6 Introduction of a bromoalkyl group (derived from an alkene and bromine) to the aromatic ring via titanium intermediate sets the stage for elaboration of an indole nucleus.T
pnlr.r^
Another typc r a remote alkync r
/\/oT|PS
A )^e,
Mg; cp2Ticl2;
<#"
MeMgBr, CHz=CHCH2CH2CH2OTIPS; Brz
+
Yr.. l
l
lr-n-fAorres \A^'
B
n
Cyclopropane derivatives. The intramolecular Kulinkovich reaction of 2-substituted 5-hexenoyl bornanesultamsis a useful method for the synthesis of chiral
R= 1,4-Dilulott (l-PrO)oTiform r bromine.
endo-2-substituted bicyclo[3.1.O]hexan-l-ols.8 Extensionofthe reaction scopeto amides results in the formation of cyclopropylaminese'loand cyclopropylstannanes.l1
HO
(i-Pro)zTi(CHz=CHMe)
Bn\-t-Z |
/""H
86"k
O-"ooMe
Asneu" $"n"'-t'*t),''"' TBSOT| - pylCH2Cl,
Q-",#1",,. S1o/"
Reductive cyclizations. Substitutedpynolidines and piperidines are obtained by the Ti(Il)-mediated cyclization of enyne carbonates.12D-Ketoestersand ketonitriles undergo radical cyclizationr3 with CprTiPh which is obtained as a dark green solution by sequential treatment of CprTiCl, with i-PrMgCl and PhMgBr.
'Denton, S. M.. \l'c 2Mutrudu, s., An" t rcao, Y., Shirai. V oAmin, s. R.. cros 5Terao, J.. Sairo.K 6lerao, J., Kambc. I Aoki, K., Peat..'{ , oMizojiri, R., Ur& 'Chaplinski. V.. $i loLee, J . , C h a ,J . K - . IILee, J . ,K i m . S . - l . rhakayama, Y.. Otr
Grignard reagentVtitanium(IV) cornpounds
dr,'rrdereactvia an dr,'magnesiationof )r) '1:
I
i-PrMgCl- (i-Pro)+Ti;
ph,,,\1t.^-_\_siMe3
NaF/H2O
/\.,\.,,\OCOoEt
,nl*'Vt'""'
$
:\\,r alkyl halides,5 d .:.rl chloridesby !J f'romine) to the ar:,rn of an indole
179
75%
Another type of reductive cyclization is the conversion of allenyl derivatives containing a remote alkyne unit, leading to cyclic cross-conjugatedtrienes.ra
fsHrr i-PrMgCl- (i-Pro)4Ti
^\/\oTIPS
x 7'-
(-(" :)
/
N Bn
R = Bn, TBS, Ac, COOET
reaction of ch .\ nthesisof chiral
47 - 570/"
1,4-Dihalobutadienes.t5 Alkynes and the complex derived from r-PrMgCl and (l-PrO)oTi form titanacyclopentadieneswhich undergo demetalloiodination with iodine or bromine.
to amides I.:'*t
i-PrMgCl- (i-PrO)4Ti
Et2O - 5oo
OTBS r i - ,.,,1 FSnBu3 4".
i are obtained by the le:,,nitrilesundergo rl:r::onby sequential
rDenton, S. M., Wood, A. SL 55 (1999). 2Matsuda, S., An, D. K., Okamoto,S., Sato,F. TL39,7513 (1998). 3cao, Y., Shirai, M., Sato, F. II 38, 6849 (1997). -Amin, '7487(1997). S. R., Crowe, W. E. ZL 38, 5Terao, J., Saito, K., Nii, S., Kambe, N., Sonoda,N. JACS 120, 11822(lgg8) oTerao, J., Kambe, N., Sonoda, N. Z:L39,9697 (1998]). 7Aoki, K., Peat,A. J., Buchwald, S. L. "/ACSf20, 3068 (1998). "Mizojiri, R., Urabe,H., Sato,F. ACIEE37,2666 (1998). eChaplinski, V., Winsel, H., Kordes,M., de Meijere, A. SL 111 (199?). '"Lee, J., Cha, J. K. JOC 62. 1584( 1997). "Lee, J., Kim, S.1., Cha, J. K. JOC 63,9135 (1998). '-Takayama, Y., Okamoto,S., Sato,F. TL38,8351 (1997).
1E0
Grignardreagentdzirconiumcomplexes
l3Yamamoto, Y., Matsumi, D., Itoh, K. CC 875 (1998). raYamazaki, T., Urabe, H., Sato, F. TL39,':.333 (1gg8). rsYamaguchi, S., Jin, R.-2., Tamao, K., Sato,F. "/OC 63, 10060(1998).
rHara, R., Sun, W.-H., Nishihara- \' 'Terao,I.,Torii, K., Saito,N.. Kant 3Terao, J., Watanabe, T., Saito. \ . I -Kasai, K., Liu, Y., Hara, R.. Tafrh
Grignard reag€ntsi/yanadium complexes gem-Dialkylatian o.fketones. In the presenceof (tmeda)rVCl, the Grignard reaction products of ketones undergo competing deoxygenative dimerization and alkylation (with allyl, propargyl, and benzyl halides).I Without alkylating agents only the dimers are obtained.2
tnY^ O
+ +
MeMgBr
Guanidine-guanidiniumnibr De-O-acetylatian.t This, leaving 2,2,2-trichloroethyl cart
aoAc
Ai!iY$-se,
(tmeda)2VCl2
o<
t\.ar 5O7"
'Ellervik,
Grignard reagents/zirconiumcomplexes.18, 174;19, 161 Hydrodehalogenation.t Aryl halides are reducedby l-PrMgBr-CprZr{1, (12 examples, 72-98%). Alkylation and silylation. Styrenesundergo these reactions,but with different results.p-Silylstyrenes2 and2-phenylalkanes3 aretheproducts.
tn..A
BuMgCl - Cp2ZtCl2
Pha4SiMes ....................................'.* Me3SiCl 82Yo
Cyclobutenes.a l-Alkylcyclobutenes are derived from l-haloalkynes on reaction with EtMgBr and a catalytic amount of CgZr{lr. Two carbon units are incorporated into the products.
EtMgCl- Cp2ZrCl2 C|.......:C5H13
+
/ t-l
THF
5OO
b4ccr.
467o
rKataoka,Y., Makihira,I., Akiyama,H., Tani,K. Z 53, 9525(1gg7). 2Kataoka, Y., Akiyama,H., Makihira,I.,Tani,K.JOC 62,8l}g (lgg7).
l
C -n H r' e -
l 80o/o
NH
U., Magnusson, G. fL 3t.
Guanidine-guanidinium nitrate
l-
,^
lHara, R., Sun, W.-H., Nishihara, Y., Takahashi, T. CL l25l (1991). 2Terao, J., Torii, K., Saito,N., Kambe, N., Baba, A., Sonoda,N. ACIEE 37,2653 (1998)' 3Terao, Watanabe,T., Saito,N., Kambe, N., Baba, A., Sonoda,N. fZ 39, 9201 (1998). J., aKasai, K., Liu, Y., Hara, R., Takahashi,T. CC 1989 (1998).
1998).
xc : tmeda)rVCl,theGrignardreaction nj: r i Jimerization and alkylation (with ".1.;..rting agents only the dimers are
Guanidine-guanidiniumnitrate. De-O-acetylatian.t This combinationcatalyzesthe removalof acetylgroupswhile intact. carbamates leaving2,2,2-trichloroethyl
aoAc
Ph
Af;.$$.set \./
\
o<
\,/\
NH
bAcct,
H2N. ,NH2
H2N.rNH2
Il
]f
NH
NH MeOH
lU-o
w. -.
.+)l t.
'Etlervik,U., Magnusson, G. TL38,1627(1997).
e, 1997).
a:
-..
1 9 .l 6 l I ::.:::.;;edby i-PrMgBr-CPrZrCl, (12 E
::!'\e reactions, but with different
i :: r ::\dUCtS
PhV\/SiMe3 82"/" trom l-haloalkynes on reaction &:.:J ..,' units are incorporated into carbon I T
C.:l{
2
/c6Hts
tr
8Q7o
HNo3
ao" Hfl[\Y$-ser o<
NH
b4ccr.
Oximes.s Halides are convcn (BurSn)r. In this reaction the nitroso
a halide. heviously, the more undcsr
q
oNo Hafnium(IV) chloride. Silylallylationof alkynes. Hafnium(IV) chloride is a suitable Lewis catalyst to promote the union of an alkyne and an allylsilane to form a l-silyl-1,4-diene.lAn intramolecularversiongives vinylcyclohexenederivatives.2
Hfct4_ Me3sict
/:ph \
M E"A S |
.
\,,.\,\^ -
>< 1
-SiMeo
CHzCt2
Oo
Ph L
\__/
\ 61"k
lYoshikawa,8., Gevorgyan,V., Asao, N., Yamamoto,Y. JACS 1f9,6781 (1997). 'Imamura, K., Yoshikawa,E., Gevorgyan,V., Yamamoto,Y . JACS f 20, 5339 ( 1998).
Hafniumfl V) triflate-triflic acid. Friedel-Craftsacllation.t This newcatalystsystemis effectivefor theacylationof benzene, chlorobenzene, andfluorobenzene.
Hexaalkylditin.13, 1421' 14, 173-l'74;16, 1741' L7, 143-144;18,175-176;19,162-163 Preparation.t A convenient method involves reduction of (R.,Sn)rO with Mg-BrCH,CH,Br in refluxing THF. Cross-couplings. Compounds are obtained with various functional groups using (R.,Sn)r-catalyzed cross-couplingreactions.From alkyl iodides,the reactionwith S-phenyl chlorothioformategeneratesthioesters2i with triisopropylsilylalkynyltriflone, homologated triisopropylsilylalkynes3; with methyl oxalyl chloride, methyl esters.4Decarbonylationof oxalyl radical apparently proceedsprior to the coupling in the last reaction.
o "'\// \, -
l hH; h v ( B u 3 s n )P
tl
|
Cl'
COOMe
hv (Bu3Sn)2,€
*-OBn
lvt"o2sAso2t,t"
&Thialation of alcohols.E Pb in thepresence of (BurSn), effecrsm a new methodfor functionalizatim o PhS\
o
'Kobayashi, S . , I w a m o t o ,S . ? " L 3 9 , 4 6 9 7( 1 9 9 8 ) .
ph
Ketonesand a-ketoesten. Rt groupsof O-benzyl(bismetharrsuU hydrolysisof the resultingketorirE oxime derivative of benzenesulf 0-ketoesters.T
EtsN /
tnaAaoor"
NileOH 8Oo/.
Ehminations. Speciallydcsig a remote radical.e The alkyl moicr-v synthaseinhibitor CP-225917 has bc of an allylic phenylthio group.r0Ttr
Hexaalkylditin
Oximes.s Halides are converted to oximes when heated with an alkyl nitrite and (BurSn)r. In this reaction the nitroso group is transferredto the carbon radical derived from a halide. Previously, the more undesirabletributylstannyl nitrite was used as No donor.
oNo
(Bu3Sn)2/PhH
Ol
..rr.ible Lewis catalyst to r l-silyl-1,4-diene.rAn
84/" Ketones and a-ketoesters, Radical acylation by replacement of the two sulfonyl groups of o-benzyl (bismethanesulfonyl)formaldoximein a two-stageprocessfollowed by hydrolysis of the resulting ketoxime ethers gives ketones in good yields.6 The use of the
lrt: , S
oxime derivative of benzenesulfonylglyoxylate in the acylation gives precursors of ct-ketoesters.T
61%
hv (Bu3Sn)2 / ErOH
*-OBn il
t --; l:il
r997).
MeO2S
*.OBn
-
SO2Me
hv (Bu3Sn)2 / EIOH -
1r
Rl
R
R'l
SO2Me
,U.OBn tl
RAR'
'ri9(1998).
tThiolatian of alcohols.s Photochemical decomposition of benzenesulfenate esters in thepresence of (BurSn), effectstransferof thesulfursubstituent to the&position.Thus, a new methodfor functionalization of an unactivated carbonsiteis developed. r. -''J,ri\ e forthe acylationof
tntto hv
sPh
(BusSn)2
/\,/\/o' 807.
'r I t. I '5- I 76; 19, 162-163 l{.. r,\n of (R.,Sn)rO with r: .. :rnctional groups using L'. ':.r reactionwith S-phenyl
Eliminations. Specially designedsulfonesundergo elimination which is initiated by a remote radical.e The alkyl moiety is converted to an alkene. The core of the squalene synthaseinhibitor CP-225917 has been synthesizedvia a radical cyclization with ejection of an allylic phenylthio group.r0The radical precursor is an o-bromoacetic ester.
l; ,. . :r\ I triflone,homologated of ) r.'ir\.j Decarbonylation r ,.':aJction.
:-
hv
\'/ tcooM"
(Me3Sn)2
\
'o 887.
Hexamethyldisilazane
Hexamethylenebfrr
o \
'') o4o)
a7-\ $-\r,n
w
Duff reactionl phenols. Regeneraion of( for regeneration of cai
ll-indoy, L. F., Meeharu( 'Bandgar, B. P.,Admar
(Z)-pTrinethylsnnnyl qpunsaturated carbonyl compounds.tt The synthesis of thesesynthetic intermediatesis by a Pd(0)-catalyzedreaction of (MerSn), with alkynals and alkynones. 'L"", A. S.-Y.,Zheng,S.-L.,Pan,O.-G.JCCS44,625(lgg7). 'Kim, S.,Jon,S.Y. CC 815(1998). 3xiang,J.,Fuchs,P. L. TL39,8597(1998). -Kim, (1998). S.,Jon,S.Y. TL39,'131'1 sKirif. M., Murphy,J. A. r5J. 16847ilgglt. oKim, S.,Yoon,J.-Y.JACS119,5982(1997). 7Kir, S.,Yoon,J.-Y.,Lee,L Y. SL 4'75(lgg7). 8Petrovic, G.,Saicic,R. N., Cekovic,Z. TL38,7107(1gg7). evanDort,P. C.,Fuchs,P.L. (1gg'7). JOC 62,'1142 r\icolaou, K. C.,Postema, M. H. D., Miller,N. D., Yang,G. ACIEE36,282l(l9g'1.). rrPiers,8., (1996). Tillyer,R. D. CJC74,2048
High-pressure rcecdr Condensations. Baylis-Hillman reeri reaction of ROCH(C isocyanatesand enol o
tshimiru, T., Kobayash 'Marko, I. E., Giles.P. R3Bellassoued, M., Rebqrl - Nemoto, H., Kubota !t'. 5Taguchi, Y., Tsuchiya"T
Hydrazine hydrate. l. o-Nitrobenzenent Hexabutylguanidinium
chloride.
Alkyl chlorides.l
Derivatization of alcoholsto chloroformatesfollowed by treatment with catalytic amounts of the guanidinium chloride results in the formation of alkyl chlorides. The catalyzed decomposition of the chloroformates of chiral alcohols should not be conducted in polar solvents in order to avoid racemization.
sulfonyl chloride to 1 unhindered alcohols. n from propargylic alcoh
rMyers, A. G.,Zheng.8,
lFoulon,F., Fixari,B., Picq, D., Le Perchec,P. IL 38, 338'1(lgg'1). Hydrido(triphenylpbr Michael-aUol ta Hexachlorodisilane. Trimerization of alkynes.r Heating alkynes with SirClu at 170-180' promotes the formation of substitutedbenzenes. rYang, Verkade, J., J. c. "/ACS120,6834(1998).
Hexamethyldisilazane. 13, l 4 l ; 18, 177- 178 ; 19, 163- 164 Silylation. HMDS surrenderssilyl group to alcohols in the presenceof catalystssuch as Envirocat FPZG.| A universal method for trimethylsilylation of acetylenic alcohols and glycols in DMSO with saccharinas catalystis claimed.2 rBandgar, B. P.,Wadgaonkar,P.P. 5C27,2069(1gg'7). 'Demina,M., Velikanov, A., Medvedeva, A., Larina,L., Voronkov,M. JOMC 553,129(1998).
ofan enone,but an inre carbonyl acceptor. Acnl which the base-cara troublesome.
Hydrido(triphenylphosphine)copper hexamer
Hexamethylenetetramine. 18, 178; 19, 164 A new application is the mono- and diformylation of 4-substituted Duff reaction,t phenols. The bromine complex of hexamethylenetetramineis useful Regeneration of C=O," for regenerationof carbonyl compounds from oximes and tosylhydrazones. tl-indoy,L. F., Meehan, N. S 1029(1998). G. V., Svenstrup, 'Bandgar,B. P.,Admane,S. B., Jare,S. S. .ICR(S)154(1998).
The synthesisof dr. rtc Snt. with alkynalsand
High-pressure reactions. 18, 179 Condensations. Reaction of tertiary alcohols with cyclic anhydrides,r Baylis-Hillman reaction,2 aldol reaction involving bis(trimethylsilyl) ketene acetals,3 reaction of ROCH(CN), with activated imines,a and the [2+2]cycloaddition between isocyanatesand enol etherssare assistedby high pressure. tshi-i"u, T., Kobayashi,R., Ohmori,H., Nakata,T. Sf 650(1998). 'Marko,I. E.,Giles,P. R.,Hindley,N. J. 253, 1015(1997). 3Bellassoued, M., Reboul,E., Dumas,F. TL38,5631(1997). 4 Nemoto,H., Kubota,Y., Sasaki,N., Yamamoto,Y. SL 465(1993). 5Taguchi, T., Oishi,A., Shibuya, I. BCSJ69,1667(1996). Y., Tsuchiya,
, .1 . 1 . r 1 9 9 7 ) .
Hydrazine hydrate. 13, 144; 18, 179
ar.. :\)llowedby treatment n :he tbrmation of alkYl cir:.rl alcoholsshouldnot
r:
-{
r- l80o promotesthe
o-Nitrobenzenesulfunhydrazide. Hydrazine hydrate reacts with o-nitrobenzenesulfonyl chloride to give the valuable reagent which is useful for deoxygenation of unhindered alcohols, reductive transposition ofallylic alcohols, and the synthesisof allenes from propargylic alcohols. 'Myers,A. (1997). M. JOC 62,'750'l G.,Zheng,B.,Movassaghi,
Hydrido(triphenylphosphine)copper hexamer. The copper hydride reagentreducesthe double bond Michael-aldol reaction tandem. reaction can occur in the presenceof a properly situated but an intamolecular aldol of an enone, pertains to a synthesis of pseudolaric acid-A in Actually, one application carbonyl acceptor. of the corresponding dihydro-1,6-dione is base-catalyzed condensation which the troublesome.
: c:c\c'nceofcatalystssuch c: rielvlenic alcoholsand
J / , r ! ( 5 5 3 ,1 2 9 ( 1 9 9 8 ) .
(Ph3PCuH)6 PhMe -23o
Hydrogen pemxide
'Chiu,
3Kluge, R., Hocke. H. aBack, T. G., MinLsa
P., Chen, B., Cheng,K. F. TL39,g22g (lgg8).
Hydrogen fluoride-amine. 16,286-287; lE, l8l ; 19, lU-165 Reactionwithxanthates.t Th. nature of the products varies according to the concentration of HF in the HF-pyridine mixture. Thus, with 70VoHF the products are RF, blt 507o HF gives ROCF3 (R secondary). *Fluoroalkyl sulfides. Introduction of a fluorine atom in the adjacent carbon of divalent sulfur is achieved by reaction with HF-amine reagents.2cr-Chloroalkyl sulfides undergohalogenexchange.s rK-i", K., Tanaka,Y., Shimizu,M., Kuroboshi,M., Hiyama,T. CC 3W (lgg7). 'Furuta, S.,Kuroboshi,M., Hiyama,T. BCSJ7l,2687 (1998). 3Jouen, C., Pommelet,J. C. 253, 12565(lgg:).
Hydrogen peroxil 19,166 Oxidation otat areoxidizedin an a 3-Hydropero4 corresponding3-hr hydroperoxides are be usedin epoxidrr
X
Hydrogen peroxide.
G
Activation.
Hexafluoro-2-propanol,l trifluoroacetone,2 and chiral arenesulfonimidoylimidazoles3representedby I are useful activators of $O, for oxidation of sulfides, epoxidation of allylic alcohols, and some other reactions.
",s-r, fttvAo.. (1)
Alkenoic acids."
In the third step of a procedure for the carboxylation of alkenesthe
allylic selenides are treated with tlO, dechlorination.
tnt&",
c
l
Hydrogen peroxil
Isothiocyanata good yields (4 exan Epoxidation alkenes in the prcr
mediated by terrah.x (Z)-Allyl alcoht basic HrO, leads ro r
to initiate a [2,3]sigmatropic rearrangement and
-.-4 l
tTuk"du, T., waunah 2Baumstark, A., Chcn
HO-OH - 3oo
--t\n
coOH
44"/" 'Ravikumar, K. S.,Begue,J.-P.,Bonnet-Delpon, D. Il 39,3141(1998). 'Lupattelli,P.,Ruzziconi, R.,Scafato, P.,Degl'Innocenti, A., Paolobelli, A.B. SC27,441(1997).
60o/o
Saponiftcatio* base-stableamides u Regenerationis via t and treatment of thc
Hydrogen peroxide, basic
3Kluge,R.,Hocke,H., Schulz,M. fA 8,2513(1997). aBack,T. G., Minksztym,K. CC l'159(199'7). Hydrogen peroxide, acidic. 14, 176;15,167-168;16,177-178l,17'145;18' 182-183;
Ir"a fi.
rrn€S according to the HF the Products are RF'
on' :n the adjacent carbon of : ren:. G-ChloroalkYl sulfides -:. - 1997).
19.166 Oxidation of aldehydes and acetals.t Esters are formed when aldehydes or acetals are oxidized in an alcoholic solvent with F!O, and aqueousHCl. These compounds are synthesized from the 3-Hydroperoxy-l,2-dioxolanes,2 corresponding 3-hydroxy derivatives using FtO, with catalytic amount of TsOH. The hydroperoxides are effective oxygen-transferreagentsto amines and sulfides. They can also be used in epoxidation.
\,,A,,,oH /\ '/ \ b-d Ph
Ho-oH,rsoH
;)(ooo" ' / b- d' Ph
MecN
r.- .rnd chiral arenesulfo'g r t. rirroxidationof sulfides,
s37" tTuk"du. T.. Watanabe, H., Kitahara, T. SL ll49 (199'7). 2Baumstark,A., Chen, Y.-X., Rodriguez,A. JHC 33,1399 (1996).
Hydrogen peroxide,basic.13, 145;14,156;15, 167;tE,183-184 Isothiocyanates.t Amines react with alkaline Flo, and cs2 to deliver RN=c=S in good yields (4 examples,84-95Va). 307o Hydrogen peroxide proves effective in epoxidizing unactivated Epoxidation. presence of N,M-dicyclohexylcarbodiimide.2Epoxidation of enones is alkenes in the mediatedby tetrabutylammoniumperoxydisulfate.l (Z)-Allyl alcohols.a In the demetallation of diene-Fe(CO), complexes using the fi<' ,.rrhoxylation of alkenesthe and iri::tJlropic rearTangement
basic H,O, leads to net hydration.
CAN MeOH - 20o
?',
cooH il"c
lq.'
kc<' : \ B.5C27,441(199'7)'
607o s In the context ofcarboxyl group protection, the derivatization into Saponiftcation dimethyl acetalcan be considered' 2-(2-aminophenyl)acetaldehyde base-stableamides with by a PPTS-catalyzedcyclization) (which formed are Regenerationis via the N-acylindoles in aqueousTHF' LiOH-FIO, with and treatment of the latter compounds
188
Hydrosilanes
^Li, C., Tajima, H., Ohtani,T. JOC 62, 4539 (1997). "Majetich, G., Hicks, R., Sun, G., McGill, P. JOC 63,2564 (1998). 'Kim, Y. H., Hwang, J. P., Yang, S. c. fL 38, 3009 (1997) -Bohmer, J., Fo(sch, W., Schobert,R. SL 1073 (1997). 5Arai,8., TokuyamaH , . , L i n s e l l ,M . S . , F u k u y a m a , T . T L 3 9 , 7 1 ( 1 9 9 8 ) .
o ll -.*A.t
\ r " .rNftr \
Hydrogen peroxide-metal catalysts. 13, | 45; 14, 177: 15, 2941'17, 146-148; 18, I 84- I 85; 19, 166-167 Oxidations. Aromatic aldehydesare obtained by oxidation catalyzed with a Mn(IV) complex.rA procedurefor oxidation ofalcohols which is organic solvent free and halide free employs 3OVo F!Or, NarWOo dihydrate, and a quaternary ammonium hydrogensulfate.2 Under such conditionssecondaryalcoholsare oxidized 4-5 times faster than primary alcohols.In toluenethe conversionofbenzylic alcoholsto aldehydesor acids (dependingon quantitiesof F!Or) is accomplished.3 A similar systemis also effectivefor epoxidationof alkenes.aTerminal epoxidesare obtainedin reactionsmediatedby a Mn(II) complexsor Mg-Al-O+-Bu hydrotalcite.6The last catalystis capableof inducing epoxide formation from other alkenesand enones. Glycals are converted to 2,3-dehydroglycosylhydroperoxides by MoQ-catalyzed oxidation.T rZondervan, C.,Hage,R., Feringa, B.L. CC 4lg (lgg7). "Sato, K., Aoki, M., Takagi,J.,Noyori,R. JACSll9,12386 (1997\. -Sato, K.,Takagi, J.,Aoki,M., Noyori,R. TL39,7549(1998). -Sato, K., Aoki, M., Ogawa,M., Hashimoto, T., Panyella, D., Noyori,R. BCSJ70,905( 1997). -deVos, D. 8., Sels,B. F.,Reynaers, M., SubbaRao,Y. V.,Jacobs, P.A.TL39,32Zl(1998). 6choudary, B. M., Kantam,M. L., Bharathi, B., Retldy,C. V. SL 1203(1998). 'Mostowicz, D.,Jurczak, M., Hamann, H.-J.,Hoft,8., Chmielewski ,M. EJOC2617(lgg8).
5-Hydroperoxycarbonylphthalimide. Epoxidation.t With this peracidalkenesareepoxidizedin dichloromethane,often in quantitativeyield. The carboxylic acid by-productis very insolublein the reactionmedium and easily removed. fJames, A. P.,Johnstone, R. A. W., McCarron, M., Sankey, J. P.,Trenbirth, B. CC 42g(lgg8).
cl
CFT
Severalhydrosilanesh 3.o
R. ,R
fY'')\.Asi'\Z / ' H
(1)
Deoxygenation. Al (by adding an alkyl hali& Secondary allylic alcotr EtlSiH-LiClOo.8 The fa
TiClo-mediated reaction r carbon chains of differcnr CHIRAPHOS via the phor The PhrSiHr-(ph.pr,R tertiaryamidesto amines: (e.g.,epoxides).
Reductive cyclizttioa are susceptibleto reductto interfere with the cyclu 1,7-enynesl3 is obsen.edl
l, l 0-phenanthroline-Pdr II Hydrosilanes. 19, 167-169 Hydrodehalogenation, Phenylsilane is a convenient reagent for radical dehalogenation(e.g.,removal of bridgeheadhalogenatoms),rwhereasthe combinationof Me.,SiHand LiAlHo is useful for the conversionof 2-apoisopinocampheyldihaloboranes to the monohalo derivatives.r For N-methylation of amino acids via 2,2-bis(trifluoromethyl)oxazolidin-5-ones,the treatment with formaldehyde-thionyl chloride leads to the N-chloromethyl derivatives which undergo dechlorination by CFTCOOH-EtjSiH.3
Hydrosilanes
t
il
--
-
o tl
tl
'
\ r " /N-1-cF3
a9s).
\
cl
Er3SiH - CF3COOH
\ r " /N-1-cF3 cFe
CFq
67y.
1 5 .l 9 - l : 1 7 ,1 4 6 - 1 4 8 ; 1 8 ' Theseare l,a 2,5 and Severalhydrosilaneshavebeenemployedin hydrodehalogenation.
, :Jationcatalyzedwith a Mn(IV) I' h:- ' - ',r,ganicsolvent free and halide . .j ir quaternary ammonium t - ere oxidized 4-5 times faster : h". t: . *. I
V F. I | -. r
T. i
r
I
r)
, .rlcoholsto aldehydesor acids :r.rctionsmediatedbY a Mn(II) . r. capableof inducing epoxide rcrorides by MoQ-catalYzed
3.6
G;b
Meo
o
,r:\ I
o-\_y'TSiH2
Ph. ,Ph H-lSi-Si-H Ph
Ph
/ ' H
(1)
(21
(3)
Deoxygenation. Alkanes are obtained from alcohols by reaction with PdCl2-EqSiH (by adding an alkyl halide such as Mel to the reactionmedium the halidesare produced.l.7 Secondary allylic alcohols and acetates are reduced to the hydrocarbons with ::. R. BCSJ70,905(1997). . P.{ rL39,1221(1998). : rir1998). .. \t EJOC26tl(1998).
. ;cJ in dichloromethane,often in 'r.trlublein the reactionmedium
i:r'nbinh.B. CC 429(1998)'
'.'.lnient reagent for radical ''r. r.i rr hereasthe combinationof -,,pinocampheyldihaloboranes to via acids amino :. trt -:r: s ith formaldehyde-thionyl :,h undergo dechlorination bY
Et3SiH-LiClOo.E The facile removal of the oxygen atom from aryl ketones by TiCl.-mediatedreactionwith Et.,SiHmakesthe synthesisof cr-aminoacidsqcontaining carbon chains of different length and a terminal aryl group much easier. A synthesis of CHIRAPHOS via the phosphineoxides calls for deoxygenationwith HSiCl.,-Et.,N.r0 The PhrSiHr-(Ph,P).RuH(CO) is a valuablereagentcombinationfbr the reductionof tertiary amidesto aminesrrbecauseit doesnot affect many hydride-sensitivefunctionalities (e.g.,epoxides). Reductive clclizations, The cyclization products fiom a BF.,OEIr-catalyzedreaction are susceptibleto reductionin situ by E|,SiH which is added.rrThe hydrosilanedoes not interfere with the cyclization itself. Sequential cyclization-silylation of 1,6- and 1,7-enynesr3 is observedin the presenceof Cpj YMe'THF, and for 1,6-dienes,also with 1,I O-phenanthroline-Pd(I) complex.Ia
u,-'),.'),,,, /
Cp.2YMe - PhSiH3 cyclohexane
Lsinren
Hydrosilanes
o
U
\r'\.'-
il
Ph/
tl
Et3SiH/ CH2C|2
tl -Ph
PI\gH
,),-
-78o
pf?en
BF3.OEI2;HCI aq.
88"/"
Carbonyl compounds are converted to ethers by a reagent derived from Ethers. (Me1Si)rNH, and Ir.15Alternatively, as shown in the preparation of cyclic ethers Et3SiH, protocol calls for titanocene-catalyzed reduction with a two-step from lactones, by treatment with EtrSiH in the presence of an ion followed polymethylhydrosiloxane
6\Tcooet
t\_,
exchangeresin.l6 The reagent generatedfrom PhMerSiH, CuCl has practical Conjugate reduction. application in the reduction of enonesand enoic esters.l7Triphenylphosphine-coordinated cuFl8 and t(Ph.P)cuFille can be used insteadof cucl. A more complex reducing system is made up of PhSiH., Li, NiI2, and Ph,P, and the reduction is assistedby ultrasound.2O Reductive aldol reaction of acrylic acid derivatives with arylaldehydesoccurs when they
chiral amine products and thcrd
are treated with (Ph.P)oPd,and HSiCl.,, and aldehydes.2r
susceptibleto reaction with the h1
Asymmetric hydrosilylation ol is improved by a nucleophilic r
Alcoholsynthesis.2e
Hldn
C6F5SiH3)is accomplished with oxidized to alcohols with KF-H.( 6 1 . g ; 1 -1 ( p h 3 p ) a p d :
A"o* + PhcHo ftf
|
^^
,n&tot
+
X = NMez 87%
(70 : 30)
X = OBut
(30 : 70)
97"/"
Homopropargyl and allenyl ahohols.22 Chiral silanesare formed from propargylic mesylates. Subsequent reaction with aldehydes proceeds in a manner depending on the substituent on the sp-carbon of the mesylates. Starting from nonracemic mesylates the products are obtained with excellent ee. Reaction with nitrogen compounds. Organic azides are reduced to give amines which can be derived into Boc derivatives in situ.23On treatment with HSiCl,-Et.N carbamatesundergo elimination of an alcohol, resulting in the generation of isocyanates.2a Organotin hydrides are generatedfrom the colresponding amides (e.g., BurSnNMer)25bY treatment with PhSiHr. Free radical reduction of nitroalkanes26can be effected with a system catalytic in Bu,SnH only, using PhSiH3 as the hydrogen source. The titanocenederivative CprTiMe, catalyzesthe reduction and N-silylation of pyridine rings with 2 equiv of PhMeSiH, effectively to turnish mainly the l'2,3,4-te1fahydro derivatives(6 examples,70-100Va).21
D. O. SCn, 1023(1997r. ^rJang, 'Dhokte,U. P.,Brown,H.C. OM 17 3Spengler, J.,Burger,K. S 67 ( l9q) 'Oba,M., Nishiyama, K. CC 1703rl sYamazaki, O., Togo,H., Nogami.C oYamazaki, O., Togo,H., Matsubey /Ferreri,C., Costantino, C., Charplr 8Wustrow,D. J.,Smith,W. J..r*'rsc eYato,M., Homma,K., Ishida A. lf loMatteoli,U., Beghetto,v., Schiaru "Kuwano, R., Takahashi, M., lto. Y r2Giese, s., West,F. G. IL 39, E393t llMolander,G. A., Retsch,w. H. .rA ralMiedenhoefer, R. A., DeCarli.M. A r5Ah"-, C.,Darcy,R. SC2t, 971r l9 t6Hanr"n,M. C., Verdaguer, X.. Buc "Ito, H., Ishizuka,T., Arimoto.K.. V l8Mo.i,A., Fujita,A., Nishihara-\'.. I relipshutz, B. H., Keith,J.,PapaP.' 2oBoudjouk, P.,Choi,S.-B.,Harrk- B ''Kiyooka,S.,Shimizu,A., Torii.S ; "Marshall, J. A., Adams,N. D. JOCr 2sKotsuki, H., Ohishi,T., Araki,T. n
Hydrosilanes
o PhSiH2Me- Cp2TiMe2
,/t/
80o
,l-"'"n
)-- - N -
H-ii-Ph
88/"
70/"
c::r:. h\ a reagentderived from r:. ::rj preparationof cyclic ethers D"\::..-Latalyzed reduction with L.: r ll in the presenceof an ion rc t'-.\te.SiH, CuCl has practical r- i : :henr lphosphine-coordinated \ :: -.: iomplex reducingsystemis n - .,..1\tedby ultrasound.20 r:: .::. ..rldehydes occurswhen they
r.r
cooEr
PhsiH2Me- Cp2TiMe2
\tuz
g00
vl,cooEl
t\ N - t l
H-ti-en 1000k
Asymmetric hydrosilylation of ketimines in the presenceof a chiral titanocenedifluoride is improved by a nucleophilic additive (e.g., isobutylamine) which serves to release the chiral amine products and thereby generatesless hindered amido complexes which are susceptibleto reaction with the hydrosilane.28 Alcohol synthesis.ze Hydrosilylation of alkenes with (fluoroaryl)silanes (e.g., C6F5SiH3)is accomplished with Cp2YMe at room temperature The products are readily oxidized to alcohols with KF-HrOr.
cox
(70 : 30) (30 : 70)
il:.... are formed from propargylic d. :. .r manner dependingon the F :: ,rn nonracemicmesylatesthe rd.. rre reduced to give amines ( r- :rcarmentwith HSiCl,-Et,N l:. :h!' senerationof isocyanates.za oi .:nrdes (e.g,,Bu,SnNMer)2sbV tr.r.rnc:16 can be effected with a tr.i: ::n source. |r.:: ,n and N-silylationof pyridine ir: :r.ilnly lhe 1,2,3,4-tetrahydro
rJang, D. O. SC 27, lO23(lggi). 'Dhokte, U. P.,Brown,H.C. OM 17,2891(1998). 3spengler, J.,Burger,K. S 67 (1998). -Oba, M., Nishiyama,K. CC 1703(1994). 'Yamazaki, O., Togo,H., Nogami,G., Yokoyama,M. BCSJ70,2519(1997). oYamazaki, O., Togo,H., Matsubayashi, S., Yokoyama,M. TL39, lg21 (1998). 'Ferreri, C., Costantino, C., Chatgilialoglu, C., Boukherroub, R., Manuel,G. JOMC SS4,l35(199g) 8Wustrow, D. J.,Smith,W. J.,Wise,L.D. TL35,6l (1gg4). 'Yato, M., Homma,K., Ishida,A. H 49,233(lgg$. roMatteoli, U., Beghetto,V., Schiavon,C., Scrivanti,A., Menchi,G. IA E, l4O3(lgg:). ''Kuwano, R., Takahashi, M., Ito, y. fL 39, l0l7 (1998). '"Giese, S.,West,F. G. TL39,8393(1998). ''Mol-d"r. G. A.. Rersch, (1997). w. H. JACS119,8817 raWiedenhoefer, R. A., DeCarli,M. A. JACS120,3805(1998). r5Ah"-, C.,Darcy,R. SC28,971(1998). 'oHansen, M. C.,Verdaguer, X., Buchwald, S.L. JOC 63,2360(1998). "Ito, H., Ishizuka, T., Arimoto,K., Miura,K., Hosomi,A. IZ 38,8887(1997). r8Mo.i.A., Fujita.A.. Nishihara, Y., Hiyama,T. CC 2l5g (lgg:'). ''Lipshutz, B. H., Keith,J.,Papa,P.,Vivian,R. TL39,4627(lgg8). 2oBoudlouk, P.,Choi,S.-B.,Hauck,B. J.,Rajkumar, A.B. TL39,3591(1998). ''Kiyooka, S., Shimizu,A., Torii, S. 7L 39, 5237(1998). --Marshall, J. A., Adams,N. D. ./OC62, 89'76(1997). "Kotsuki, H., Ohishi,T., Araki,T. TLlg,2t29 (1997\.
3-Hydroxy-4-methylthiazole-2.thione
2achong, P. Y., Janicki,S.2., Petillo,P. A. JOC 63,8515(1998). '-Hays, D. S.,Fu,G. C. IOC 62,7070(1997). J., Hays,D. S.,Fu, G. C. JoC 63,5296(1gg8). ]to.-o, "'Hao, L., Hanod,J. F., Lebuis,A.-M., Mu, Y., Shu,R., Samuel,E., Woo, H.-G.ACIEE 37,3126 (1998). 2sverdaguer. X.. Lange,U. E. W., Buchwald, S.L.ACIEE37,1103(1998). "Mof ander.G. A.. Corrette, C.P. OM 22,5504(1998). l -Hydroxy- 1,2-benziodoxo-3(11/)-one l-oxide. Regenerationof C=O.r Oximes and tosylhydrazones are rapidly cleaved by the hypervalent iodine compound I at room temperature.Many functional groups are tolerated durine the oxidation.
i l o \,-Y t
o
rBose, D. S., Srinivas,P. SLg77 (lgg8).
o-Hydroxycinnamic acid. Protection of amines.t The amides derived from this acid are cleaved photochemically in quantitative yield. The( E)-to-(Z) isomerization induces expulsion of the amine on formation of coumarin.
3-Hydroxy-4-methylthiazole-2-thione. Decarborylative hydroxylation of acids.t After derivatization of carboxylic acids into esters ofthe heterocycle, photolysis in the presence ofl-dodecanethiol followed by treatment with triphenylphosphine accomplishesthe transformation (7 examples,57-84Vo).
a\
fsHrs --.|-t" / PhMe;
Hool
Ph O2
Polymeric O-bcnq with a polymeric benz5 gives material suitablc
cleavable by TFA. Alkynyl keuncs.: alkynes in MeCN ar m corresponding proparg)
of an M(acac)r, where I the reaction.
txia, M., Chen,Z.-C.SCI 2vu..a, R. S.,Kumar.D. 1
Hypofluorous acid-u 2-Hydroxyinfunot
IDayan, S.,Almog,J.,Kho
rwang, B., Zheng,A. CPB 45,715(l9g"l).
hv
N-Hydroxyphthalimid
Hydroxy(tosyloxy )iodr Sulfuxides.t Oil sulfinates in methanol. 4-Alkoxy-2-aryQd hydrogenation and O-rn
(1)
H /,, I N-O
D. H. R., Gero. S
rRichter, L. S.,Desai.M, ( zSakaguchi, S.,Takasc.T..
,,2;)r-ou
./ q,
'Barton,
,Ph
Ph
PhoP ----=
Ph HO-{ Ph
S 67%
Hypofluorous acid-acetonitrile
tBu.ton,
: i\ .,. H.-G.ACIEE37,3126
D. H. R., Gero, S. D., Holliday, P., Quiclet-Sire,B.,Zard,S.Z'T54,6751
(1998).
l*.
N-Hydroxyphthalimide. 19, | 69 polymeric O-ben4ylhydroxylamines.t O-Alkylation of the hydroxyphthalimide with a polymeric benzyl mesylate using CqCO, as base, with subsequenthydrazinolysis gives material suitable for solid-phase synthesis of hydroxamic acids. The linkage is
,:'r ritpidly cleaved bY the rn, : r,'nal groupsare tolerated
cleavable by TFA. Alkynyl ketones.2 N-Hydroxyphthalimide catalyzes the aerobic oxidization of alkynes in MeCN at room temperature to mainly conjugated alkynones together with the conesponding propargylic alcohols. Conversion and selectivity are higher in the presence of an M(acac)2, where M=Cu, Co, Mn. Raising the reaction temperatureto 50' facilitates the reaction. tRi"hte.,L. S.,Desai,M. C. rl.38, 321(199'7). 2sakaguchi, S.,Takase,T., Iwahama,T., Ishii, y. CC 203'l(1998). Hydroxy(tosyloxy)iodobenzene.t4, 179-180;16, 179;17' 150; 18' 187; 19' 170 Oxidation of sulfides provides sulfoxides while disulfides give methyl Sulfuxides.t sulfinates in methanol. 2- Aryl-l ,2,3,4-tetrahydro-4-quinolones undergo de4-Alkoxy-2-arylquinolines.2 hydrogenation and O-methylation when treatedwith PhI(OTs)OH, HCIQ, and HC(OMe),. txiu. M., Chen,Z.-C.SC27, 1315,1321(1997). 2varma, R. S.,Kumar,D.TL39,9l13(1998).
D ::.1. acid are cleaved a:: r rnducesexPulsionofthe
Hypofluorous acid-acetonitrile. 18' 188; 19' 170 1-Trimethylsiloxyindene is converted to the ketol. 2-Hydroxyindanone,t rDayan,S.,Almog,J., Khodzhaev, O., Rozen'S. JOC 63' 2'752(1998)'
r3::1Jir()nof carboxYlic acids f :'.r,rjecanethiolfollowed bY 51-847o). tr.r::,,n(7 examPles,
-
ph^p 4
Ph
Hol Ph 67%
Allyl transfer to alkynes atd 1,4-dienesfrom l-alkynes and alllin THF at room temperature. .{l similar reaction(water is presentt
r .|.
Imidazole. Fragmentntion.t Moleculescontaininga TfO-C-C-C-Siunit areproneto fragment by this method on exposureto imidazolein hot DMF. Synthesisof mesocycliccompounds hasbeendemonstrated.
(>--\
-SiMe3 imidazole/ DMF
--:^c=J
15oo
Allylation of carbonYl comPo and tin in promoting allYlation of scope of the indium-promoted all' of both reacting componens. ( intermediates. Allylation of unP
selection to furnish sYn-I.2-amr witnessed.lo
NHz
grN
A"ro
TIPSO 82"/o
ISugai,
M., Tanino, K., Kuwajima, l. SL 461 (1997).
Indium. 14,8 I ; 16, I 8 I - I 82; 18, I 89; 19, l7 | -173 Reductions. Nitroarenesare reduced by indium powder in aqueousethanol containingNH4Cl.l Benzofusedheterocyclessuch as quinolineand quinoxalinesuffer reductionat theheterocyclicmoietyon prolongedheating.2
In- Hd
Br
PhCHO
NHr
In - NHaCI aq. EIOH
t -
an
While y-selectivityis usualll 4-chloro-2-butenylbenzyl ether the derived allylindium reagenla An intramolecular reaction dr
Nsr\Z
99o/o
In the presenceof indium, Wurtz coupling of halides3and pinacol Coupling reactinns. coupling of aromatic aldehydes,athe latter with assistanceofultrasound, have been reported. Aryl-substituted vic-dibromides (both meso ^nd d/ isomers) Debromination.5 undergo debromination with indium in refluxing methanol to afford (E)-alkenes.
o.,
B\Xhd /-'. Pri
Br
B,\
Br
ts-.te r
o
ln / MeOH
-X-/d P{-
,-\
sr
Allyl ketones. Reactton o bromide in water is a convente
195
Allyl transfer to alkynes and activated.alkenes. The synthesis of 2-substituted 1,4-dienesfrom l-alkynes and allylbromide (12 examples,75-90Vo)6ismediated by indium in THF at room temperature. Alkylidenemalononitriles also accept an allyl group in a similar reaction (water is presentin the reaction medium in thesecases.;.? Generally, indium is more effective than zinc Altylationof carbonylcompounds. The and tin in promoting allylation of carbonyl compounds in the solvent-free condition'd scope of the indium-promoted allylation has been probed widely by varying the structures Sr unit are prone to fragment l . 1. compoundsbY this method
of both reacting components, thereby also making available many useful synthetic intermediates. Allylation of unprotected o-aminoaldehydes is subjected to diastereoselection to furnish syn-I,2-aminoalcohols.e1,4-Asymmetric induction has also been witnessed.lo
N Hz =
A"*o
+
/ ;\ / / ./z Br' \/
In - NHaCI
!,H,
/':/W 6H 55"/"(syn: antl = 99 : 1)
In- H2O
-"JG;,.Y +
m lr,rrder in aqueous ethanol qu:n,'iine and quinoxaline suffer E .
h\_
39% r'-,, -rruptingof halides3and pinacol f, u.r,rround, have been rePorted. foth meso and d/ isomers) r n. :,' afford (E)-alkenes.
tt)--a.
--
,:..
ta-/-o
R=H
797"
( ' 1 3: 8 7 )
R=TBS
83%
(76 : 24]-
(e'g., While lselectivity is usually observedin reaction with substitutedallyl halides -propene behavesdifferently as 4-chloro-2-butenylbenzyl etherrr),3-bromo-3,3-difluoro-I r2 the derivedallylindium reagentaddsto aldehydeslike s,cr-difluoroallylcarbanion An intramolecularreactionthat resultsin ring expansionis also valuable.rl
zt'
o,
Rov\/VPh li l l o I H
o ^{ -cooet L_ I
o Br
I n / a q . H C l ,T H F ;
a\€\
/ \ \,___r,/.-cooEt 541"
Br
with allylindium Allylketones. Reaction of acid chlorideslaor 1-acylpyrazolesrs The divergent ketones. allyl of for synthesis method is a convenient bromide in water
behavior of acylpyrazoles and acylimidazoles can be aftributed to the stabilization of the tetrahedralalkoxyindium speciesfrom the former compoundsby chelation with the second nitrogen atom. Decomposition of the correspondingproducts from the acylimidazoles gives ketones which are susceptibleto further reaction.
!')
I n/ H z O ,
'o..,r"?
V,,
tsch-, T.-H.,Lu, w. rz 39,86o5( l99t r leFuji*".u, N., Yamamoto,Y. TL 39.4719r 2oZhan,z.,Zhang,Y. sC 28,493(1998). "W-g, L.,Zhang,Y.,/CR(S)588(l99Er' 22Hoppe, G. C., Murn1. H. A., Lloyd-Jones,
>80%
O.\
,N-\
/^--*u, t
V,,'
l
o.
In/ H2O
.^)=^ (, >95%
Al$lation of imines and nitriles.
(S)-Homoallylic aminesare accessibleby addition
of allylindium reagentsto imines derived from valine methyl ester.r6Enaminesalso undergo allylation in the presenceof acid (HOAc) with which iminium speciesareformed in situ'r7 I8 Sulfoniminesreactsimilarly. Reaction of nitriles containing an electron-withdrawing group at the cr-position leads to enaminesle Auyt sutftdes and sulfones. Displacement of bisulfite anion from RSSOrNa20and chloride ion from RSO2Cl2rusing allylindium reagentsin water has synthetic value. 3-Butenylcyclopropanes,22 The indium-promoted reaction of enones with allyl bromide gives cyclopropane derivatives in which two C,H, units are unified to effect reductive gem-dialkylation of the carbonyl group of the enones,when the initial adductsare treated with LiBr before workup. Otherwise the normal allylation products prevail.
o pn*pn
Brt \V
Indium(IID chloride. 19, 173-l'1 4 Isomeizption of ePoxides-t Ttr conversion of epoxides to carbonyl cu Reductive Fricdel'Crafrs alk lttu
InClr-catalyzed alkylation with aldcttl chlorodimethylsilane). The laner prat Aldol reactions. The Mukail-an in water.a'5
ftAmino ketones and esten-o T (or silyl ketene acetal) with formaldcttl
OSiMe3 I +
PhcHo
"n\
Formadq Conjugate additions. prrt addition Michael by the pounds8 -Alder -' tio ns reac Diels Imino derivatives. phenanthridinone
ln / THF; LiBr
,
8Yi. x.-H., Haberman,J. x., Li, C.-J.5c 2| ePnqu"tt", L. A., Mitzel, T. M., Isaac. M- B. loPuqu"tt", L. A., Bennett, G. D., Chhatnrdl ItMoriku*a. T., Narasaka,T., Sakuma C - 1 l2Ki.iha.u. M.. Takuwa, T., Takizawa- S . \l 13Hube.tnan,J. X., Li, C.-J. It 3t' 4735 I l9r 'oYaduu, S., Srinivas,D., Reddy,G. S.. Br J. tsBryun, V. J., Chan, T.-H. ?L 3E,6493 t 199 l6loh, T.-p., Ho, D. s.-c., Xu, K.-c.. Sinr. I rTTussa. L.. Lebreton, C., Mosset, P. CA lO
Et2o; H2o 83%
rMoody,C. J.,Pius,M. R. sL 1028(1998). 'Moody, C. J.,Pius,M. R. Sr lo29 (1998). 3Ranu. A. TL39,9557(1993). B. C.,Dutta,P.,Sarkar, al-itn,H. J.,Keum,G., Kang,S.8., Chung,B. Y., Kim, Y. TL39' 436'7(1998). sRanu,B. C.,Guchhait, A. CC2113(1998). S. K., Sarkar, oRanu,B. C., Majee,A. CC 1225(199'7). ?Wang,L., Sun,X., Zhang,Y. SC28, 3263(1998).
Ph
* ? *I I Ph
Indiumfitr) chloride
bu:r.l to the stabilization of the x. ^r chelation with the second f . i'"flr the acylimidazolesgives
.C
/^,,r'2 \.\ r 8 0o/o
tYi. X.-H.. Haberman, J. X., Li, C.-J.SC28, 2999(1998). epaquette, L. A., Mitzel,T. M., Isaac,M. B., Crasto,c. F., Schomer,w .w. Joc 62,4293(1997). (1998)' r0paquetre, A., Isaac,M. B. JOC 62,3370(1997),63,1836 G. D.,Chhatriwalla, L. A., Benneu, rlMoriku*u, T., Narasaka, T., Sakuma,C., Taguchi,T. CPB 45' 1877(1997)' t'Ki.ih*u. M.. Takuwa,T., Takizawa,S.,Momose,T. TL38'2853 (1997). r3Hub".m-,J. X., Li, C.-J.TL38,4"135 (1997). laYudau,J. S.,Srinivas,D., Reddy,G. S.,Bindu' K. H. fL 38' 8745(1997)' r5Bryan,V. J.,Chan,T.-H. rt 38, 6493(199'1). t6ltoh.T.-p.,Ho, D. S.-c.,Xu, K.-c., Sim,K.-Y.,Li, x'-R. TL38'865(1997)' ltTurru, L., Lebreton,C., Mosset,P. CEJ l0@ (199'l). lschan,T.-H.,Lu, W. ?L 39,3605(1998). 1eFu.litn*u,N., Yamamoto,Y . TL 39,4729 (1998). 2ozhan,Z.,Zhang,Y. sC 2E,493(1998). ttwung, L.,Zhang,y.JCR(S)588(1998)' 22uopf",H. e.,lioyd-Jones, T' M', Walsh'K'E'ACIEE37' 1545(1998)' C. C.,Munay,M., Peakman,
chloride. 19, 173-17 4 Isomerizption of epoxides.l The Lewis acidity of InCl is exploited for the conversion of epoxides to carbonyl compounds. Benzylic alcohols obtained from the Reductive Friedel-crafts alkylation.z be reduced in situ by a hydrosilane (e'g'' can with aldehydes InClr-catalyzed alkylation catalyzed by Lewis acid. process is also chlorodimethylsilane). The latter is performed either solvent fred or reaction aldol Al.dol reactions. The Mukaiyama
Indium0lD >95o/"
a::.:nL'\iue accessiblebY addition r . :.:e r. 16Enaminesalsoundergo n -"r .peciesareformed in situ.lT tc ::,,up at the cx-positionleadsto rl:::r .rnionfrom RSSOrNa2oand 1 .. .,:crhas sYntheticvalue' I ::.r.ritrn of enones with allYl ( ll. units are unified to effect n ":.c.. g hen the initial adductsare [.r ..rti0nproductsPrevail.
in water.a'5 condensationof a silyl enol ether ftAmino ketones and esters.6 The Mannich-type is catalyzed by Inc\ in water. amine (or silyl ketene acetal) with formaldehyde and an
InCl3/
pSiMe3 " A + P h C H o + P h N H 2
H2O
O
NHPh
i l l Ph
Ph/\ 75"k
Formation of B-aminonitrilesT and l,5-dicarbonyl comconjugateadditions. pounds8by the Michael addition processesare mediated by InCl' Imino Diels-Alder reactions.e The catalyzedreaction servesto form quinoline and phenanthridinonederivatives. 83%
Ph
* ? *I !9 r:rrl ( 1998)
I Ph
lnOl3/ MeCN
198
Indium(III)iodide
2,4-pentadienyltributylstannane with Pentadienylation.to The reaction of a-alkoxyaldehydes is 1-selective and syn-selectivewhen promoted by InClr. Other regioand diastereomersare formed using other catalytic systems.
oR'
l
R
CHO
+
V"Vz'usnBus
lnO[ / MeCN + R
OH R ' =B n
76/0
R'=TBS
78ok
Dichloroindium hydride is formed when InCl, is reduced with BurSnH. The reagentcan be used to reduce aldehydes,ketones, and alkyl halides. Reductians.tt
lRanu,B. C., Jana,U. JOC 63,5212(1995). 2Miyai,T., Onishi,Y., Baba,A. TL39,6291(1998). 'Kobayashi, S. fZ 39, 1579(1998). T., Nagayama, S.,Busujima, ol-oh.T.-P.,Pei,J.,Koh, S.-V.,Cao,G.-Q.,Li, X.-R. ?4 38, 3465(1997)sl-oh,T.-P.,Chua,G.-L.,vittal, J. J.,Wong,M.-w. CC861(1998). "Loh,T.-p.,wei, L.-L. rL39,323 (1998). tl-oh,T.-p.,wei, L.-L. sL 975(1998). 8I-oh,T.-p.,wei, L.-L. r54,7615 (1998). eBubu,G., Perumal,P. T. ?L 38, 5025(1997). roNishigaichi, Y., Hanano,Y., Takuwa,A. CL 33 (1998). rrMiyai,T., Inoue,K., Yasuda, I., Baba,A' TL39, 1929(1998)M., Shibata,
Indium(III) fluoride. Chemoselectiveformation of cyanohydrins from aldehydesin Cyanohydrtnafion.t the presenceof ketones is achieved in water using MerSiCN as donor and 30 mol% of InF,
Iodine. IodohYdrins a Iodohydrins. Cu(OAc), in dioxane.l Iodohl'drn opening of epoxides with iodine t provides iodohydrins.2 (Note iodu opposite direction.3) Protection and deProtcctbn ol O-acetylation of alcoholsaand ra: Trityl ethers are cleaved bY IJ}
not affected.6Discrimination of arl l (alkyl TBS ethers are selectivell. h1 such amides by brief treatment *id
Thioacetals are converted to cat In the PreParm Iodinatinns.
added.lo Iodination of aromatic | ll 1-(tosyloxy)-1,2-benziodoxol-3( iodination of 3,4-bis(trimethylsill I I
a combination of iodine and srlr unsymmetrical 3,4-diarylthiophcrrc a-Methoxy - o,ft unsaturatcd a ( I -methoxyalkylidene)+ungstent0 t the unsaturatedesters.When iodrr low.
W(CO)R ' ll \ V ,a\ V ,/\ OMe
LDA THF
as catalyst. rl-oh.T.-p.,Xu, K.-c., Ho, D. S.-c.,Sim,K.-Y. sL 369(1998).
Indium(IID iodide. Indium(Ilf iodide is preparedin situ from indium metal slices Transesterificatian.t and iodine in dry isopropanol at ambient temperaturefor 0.5 h. Methyl estersare converted to isopropyl estersby the solution. iodide catalyzes allylation of carbonyl Indium(Il! Homoallyl abohols.z compounds by allylstannanes. rRanu,B. C., Dutta,P., Sarkar,A. JOC 63,6027(1998). 2Miyai,T., Inoue,K., Yasuda,M., Baba,A. 5L 699(199'7)
Fornuti Heterocyclization' allylaminer6requires iodine and Nr N-acylcarbamates.lTA route to {-
of homopropargylic sulfonamidcs
lsanseverino, A. M., deManos.M. C 2Sharghi, H., Massah,A. R., Eshgh,.H 'Iranpoor,N., Tamami,8., Niknam-K aBorah.R., Deka,N., Sarma.J. C. ./CX sKulitu.D. J.,Borah,R., Sarma.J. C i
\iluhlrtro*. J. L., Ronald,R. C../OCr Tlipshutz,B. H., Keith,L TL39.2193 oMadsen, R.. Roberts,C., Fraser-Rcd
pcn:rdienyltributylstannane with n rr,,motedby InClr. Otherregio-
Iodine. Iodohydrins arc formed in a reaction of alkenes with iodine and Iodohydrins. Cu(OAc), in dioxane.l Iodohydrins are useful precursors of epoxides. Alternatively, opening of epoxides with iodine in dichloromethane in the presence of a crown ether provides iodohydrins.2 (Note iodine catalyzes opening of epoxides by alcohols in the opposite direction.3) Iodine has catalytic activities in Protection and ileprotection offunctional groups. O-acetylation of alcoholsaand acetalizationof carbonyl compounds.5 Trityl ethers are cleaved by IrlIvIeOH when other protecting groups (e.g., acetates)are not affected.6Discrimination of aryl and alkyl silyl ethersTis possibleby the sametreatment (alkyl TBS ethersare selectively hydrolyzed). The N-(4-pentenoyl) group is removed from
- = Bn
76"k
a = TBS
78"/o
6';
'.r hen InCl,
\::
rr.'.. and alkyl halides.
is reduced
with
such amides by brief treatment with iodine in aqueousTHF'8 Thioacetals are converted to carbonyl compounds by the lr-AgNO, couple.e In the preparation of o-iodoenones a catalytic amount of an amine is Iodinations. of aromatic rings with iodine activation by nitrogen dioxide,rl Iodination added.lo or mercury(I) oxidel3is effective.Desilylative 1-(tosyloxy)-1,2-benziodoxol-3(ll{;-one,r2 iodination of 3,4-bis(trimethylsilyl)thiophene can be carried out in a stepwisemanner using a combination of iodine and silver trifluoroacetate, thus permitting the synthesis of unsymmetrical 3,4-diarylthiophenesby coupling methods (e.g., Suzuki coupling).la a-Methoxy-a,ftunsaturated esters.tt Consecutive treatment of pentacarbonyl (1-methoxyalkylidene)-tungsten(0)with LDA, methanol, and iodine-triethylamine leads to the unsaturatedesters.When iodine is addedbefore MeOH the yields of the estersare very
9. 9^< 1997) L.*'
low. t
.:, 1998)
w(co)s
\ ,v^ . A v. .: - \.rnohydrinsfrom aldehYdesin Sr( \ .rr donor and 30 mo17oof InF,
*i
Liw(co)s MeoH;
|
W\oMs
+
12- Et3N
\ vn
tootvte v
-
bue
7O"/" Heterocyclization. Formation of N-tosyl-2-iodomethylaziridine from N-tosylallylaminer6requiresiodine and NaH, whereasIr-LiAl(OBut)o mediatescyclization of allyl N-acylcarbamates.lTA route to 4-iodo-2,3-dihydropynoles by iodine-induced cyclization r8 of homopropargylic sulfonamides involves a 5-endo-dig cyclization.
I
u:.: rn .itu from indium metal slices cr ' : h. Methyl estersare converted tlf,.!1!'\
oMe
LDA
allylation
of
carbonyl
rSanseverino, A. M., deMattos,M. C. S. sC 28,559(1998). 2sharghi, A. R.,Eshghi,H., Niknam,K. JOC 63,1455(1998). H., Massah, 'Iranpoor,N., Tamami,B., Niknam,K. CJC75, l9l3 (1997). "Borah,R.,Deka,N., Sarma, J. C. JCR(S)110(1997). 5Kulitu,D. J.,Borah,R.,Sarma, J. C. TL39,4573(1998). owahlstrom, J. L., Ronald,R. C. JOC 63,6021(1998). Tlipshutz,B. H., Keith,J. TL39,2495(1998). oMadsen, B. JOC 60,'1920(1995). R., Roberts,C., Fraser-Reid,
20O lodine0)ciloride eNi.hid",K., Nakamura,D., Yokota,K., Sumiya,T., Node,M., Ueda,M., Fuji, K. H,|4, 393(1997). P.,McNelis,E.5C27,Z;97(1997). E.,Bovonsombat, lfOiuarOi, "Noda, Y., Kashima,M. fl, 3E,6225(199'7). r2Muraki,T., Togo,H., Yokoyama,M. SZ286(1998). l3O.ito,K., Hatakeyama, T., Takeo,M., Suginome,H., Tokuda,M. s 23 (1997). toYe,x.-S., Wong,H. N. C. JoC 62,l94O(199'7). "Iwasawa,N., Fuchibe,K. CL 1149(1998). tuKitugu*u,O., Suzuki,T., Taguchi,T. JOC 63, 4842(1998). "Fujita, M., Kitagawa,O., Suzuki,T., Taguchi,T. JOC 62,7330(1997). ttK-r,ight,D. W., Redfem,A. L., Gilmore,J. CC 2207(1997).
Iodosylbenzene.13, 151; 16' 186; lE' lll: actrl ketene Silyl Oxidatians. on treatrrnl esters G-methoxycarboxylic obtained from the corresponding hydro (salen)Mn(Ilf complex, using PhI=O as ou hocedural variations of the oxidation of
containing a quatemary ammonium salt.i : former reaction gives sulfoxides, the laner c
RT
Iodine(I) bromide. Glycosyl bromides.r Glycosyl sulfides are converted to the bromides by IBr. When DABCO and MeOH are also added, methyl glycosides are obtained. 2,3-Alkadienoic estersare induced by IBr to give the lactones. ftIodobutenolides.t
RSBN
PT MesPh
rKartha,K. P. R.,Field,R. A.TL3E,8233(199'7). 2Marshall, J. A., Wolf, M. A., Wallace,E.M. JOC62,367(1997).
1,2-Diiodoalkenes.t Formation of either (E)- or (Z)-diiodoalkenes is possible using iodine chloride as source of iodine.
tct - Et4Nl
lOl - Nal
_ P h
cHzcl2 -7go
Ph
Ho.
a-Allylation.s Silyl enol ethersrer (PhI=O,Me,SiOTf).Thus,monoallylation
Iodine(I) chloride.
'\-/'
fto .
A
cH2ct2 o-250
|
I Ph
86"/"
tMoriu.ty,R. M., Rani,N., Condeiu,C', Dur-a. 2lee,N. H., Lee,C.-S.,Jung,D.-S.?t 39. l-1ES ' 3Tohrnu. H.. Kita-l H.. Takizawa,S.,Watanabe, asoh-iyu, H., Kimura,T., Fujita,M., Ando.T I 5Moriu.ty,R. M., Epa,W. R., Prakash, O. -rCRl
Iodosylbenzene-trimethylsilyl azide. 19. N,N-Dimethylarylamtt Azidonation. N-methyl derivativesl. When a Grignard n the amines results.2
undergo cyclization to (1H)-2-Benzothiopyrans,' 1,2-Bis(benzylthio)acetylenes give thenovelthiacycliccompounds.
MeO
Bn-S\
lCl / MeOH
'S-Bn
CHCI3 -7Oo
86o/"
rHenaff,N., Stewart, S. K., Whiting,A.TL38,4525(199'7). tKl.in, T. R., Bergemann, JOC 63,4626(1995). M., Yehia,N. A. M., Fanghanel,E.
Enones.2 Regioselective conversk accomplishedwith this reagentcombinatio
Iodosylbenzene-trimethylsilyl azide
r- \l . Fuji,K. H 4,393 (199'l).
':r 1997).
Iodosylbenzene.13, 15I ; 16, I 86; 18' 194; 19, 178 give to methoxylation acetals undergo ketene silyl ofidations. are ketones Aryl methanol'r in with PhI=O 0-methoxycarboxylic esters on treatrnent a by catalyzed oxidation an in obtained from the corresponding hydrocarbons (salen)Mn(Ilt) complex.using PhI=O as oxidant.2 procedural variations of the oxidation of sulfides with PhI=O include micellar medium containing a quaternary ammonium salt,3 and dispersion on a solid support.4While the former reaction gives sulfoxides, the latter can lead to c-S bond cleavage.
RSO2CI
RSBn
o rhe bromides by IBr. When llned. d f,r IBr to give the lactones.
HCt, sio2 Phl=O
MeSPh
MeSO2Ph HCI, sio2
Silyl enol ethers react with allylsilanes under oxidizing conditions a-Allylation.s (PhI=O, Me,SiOTf). Thus, monoallylation of ketones is achieved' i.rj,.alkenesis possibleusing
I
Nal
>H2ct2 ,-2sr
|
Ph 86"/"
rMoria.ty,R. M., Rani,N., Condeiu,C., Duncan,M. P.' Prakash,O' SC27' 32'13(199'7)' 2L"", N. H., Ire, C.-S.,Jung,D.-S.?L 39' 1385(1998). 3Tohrnu. H., Kita, Y. TL39'4547 (1998)' H., Takizawa,S.,Watanabe, asohlniya,H., Kimura,T., Fujita,M., Ando,T. T 54' 13'73'7 (1998). 5Mo.iu.ty,R. M., Epa,W. R., hakash,O' JCR(S)262(1991)' Iodosylbenzene-trimethylsilyl azide. 19' I 78 N,N-Dimethylarylamines are converted to the N-azidomethylAzidonation. N-methyl derivativesr. When a Grignard reagent is also present o-alkylation(arylation) of the amines results.2
n<'. undergo cyclization to
SBn
Phl=O - Me3SiN3
""oH (-r[r'rr"r"t
--] I
Phr=o - Me3SiN3_ PhMgBr
Enones.2 alr :hl6 ( 1998)
(-)-*1 \___/
Meot/-\
>e*o/o LN.
/
75o/"
\-/-t-rn
Regioselective conversion of silyl enol ethers to enones is readilY
accomplishedwith this reagentcombination'
Iodotris(triphenylphosphine)rhodium(I)
o tl
OTIPS
2-('rn
Phl=O - Me3SiN3
ri^)
#
(,
CH2Clz
Ph
H-SiR3
\-,
50
73"/" (Ph3P)3RhCl tMagnm, P., Lacour, J., Weber, W. S 547 (1998). 2Mugnu., P., Lacour, J., Evans, P. A., Rigollier, P., Tobler, H. JACS 120,12486 (1998).
rMori,
(Z)-4-lodo-l-(tributylstannyl)but-l-ene. The reagent BurSnCH=CHCH'CH2I acts as electrophile to 2'Cyclohexenols.t attach a four-carbon unit to a ketone. Subsequently undergoing Sn/Li exchange and intramolecular attack on the ketone results in a cyclohexenol which can be oxidized to
A., Takahisa, 8., Kajiro, H.' Hiraberr
Iridium. Reduction.t Aromaticnitro groq catalyst.Nitrateestersareretained.
furnish a (transposed)cyclohexenone.
Bu35n._ NNMe2 |
+
.Y | \2"
|
-=
o/\o t l
X
-"# 2\
x" !
92"/"
rPiers,8., Boulet,S.L. SI 516(1998).
Iodotrifluoromethane. a-Iodoketones.r Iodotrifluoromethane is a useful iodine donor to react with enolates.
'Fedorov.
B. S.. Dorokhov, V. G., Arakctpr
Iron.19. 179-180 Carbon radi Radicalgeneration' heated with iron.r-3 These radicals can and l.l 1,1-difluoro-1,3-diiodoalkanes
difluorodiiodomethane with electron-r under such conditions.3 Note that zirrc
electron-rich alkenes. Intramolecular cyclization of \-e derivativesais promoted with Fe-Fdl. r
tEnde.r,D., Klein,D., Raabe, G.,Runsink,L SL l27l (1997).
Bn I
Iodotris(triphenylphosphine)rhodium(I). This catalyst or (P\P),RhCl-NaI Alkenylsilanes.t
catalyzes the hydrosilylation of 1-alkynes. When the catalyst is premixed with the hydrosiloxane reagentsthe products are predominantly (Z). On the other hand, on successive addition of the alkynes and the hydrosiloxanes to the catalyst, only (E)-alkenylsiloxanes are obtained.
Z\r*)=o / -1-c' cl
Fe.j
Orf
Iron
203
- Nal (Ph3P)3RhCl
o -'fpn I
R3Si
P
(premixing with Rh catalyst)
H-SiR3 RaSi
73o/o
\
(Ph3P)3Rhcl
rMo.i,A.,Takahisa, Y', Hiyama'T' CL443(1998)' K'' Nishihara, E.,Kajiro,H.,Hirabayashi'
(1998). Lr, . 120.12486
lll ( t{.1 acts as electroPhile to u:.iir'rgoing Sn/Li exchange and F\.n()l which can be oxidized to
Iridium. usingIrlC as Reduction.r Aromaticnitro groupsarereducedduringhydrogenation catalyst.Nitrateestersareretained.
9
":S^ \ e.- r l l
Ph
"# z\
X !
c:.- rodine donor to react with
Hz ' trtc,
ozru{ /Y, HN--\
tr*\_/]*__^
HoAc
\_OruOz
LONO2
rF"dorou, MC 173(1997)' V. G., Arakcheeva,Y.Y. B. S.,Dorokhov,
Iron.19, 179-180 carbon radicals are formed when polyhalogen compounds are Radicalgeneration. a route to heated with iron.r-3 These radicals can be intercepted by alkenes, for example, of reaction 1,l-difluoro-I,3-diiodoalkanes and 1,1-difluoro-l-iodoalkanesinvolves the respectively, difluorodiiodomethane with electron-rich and electron-deficient alkenes, reaction of under such conditions.3 Note that zinc can replace iron powder only in the electron-rich alkenes. Intramolecular cyclization of N-allyl-2,2-dihaloamides to afford 2-pyrrolidinone derivativesais promoted with Fe-FeCl, in DMF.
Bn
Bn
I
I
'A"'N;6 i:l ..rtalyzesthe hydrosilylationof r\.:., \rne reagentsthe Productsare e :iJrtion of the alkYnes and the :s ::. r)btained.
F
Fe - FeCl3
/ -1-.'
DMF
8OO
1*)=o \
/
o-,u,rlct
cl 95o/o (trans: ctis 20 :80)
Iron(III) chloride
tForti, L., Ghelfi, F., Libertini, E., Pagnoni, U. M., Soragni, E. T 53, 17761 (1997). 2Bellesia, F., Forti, L., Ghelfi, F., Pagnoni, U. M. SC 27, 96l (lgg7). 3Li, A.-R., Chen, Q.-Y. JFC 8l,ggl (1997). "Benedetti, M., Forti, L., Ghelfi, F., Pagnoni, U. M., Ronzoni, R. T 53, 14031 (199'7).
Aminesfrom azides.s Reduction requiresFeCl.asc N,N-dimethylhydrazine
Ho\Z-v l
Iron(II) chloride. Reactianofisoxazoles.t Iron(II) chlorideis capableof isomerizingisoxazolesto estersor effectingring cleavageto enaminoketones. azirenecarboxylic
OMe
I A\ I phrl--N'
FeCl2 O
*cozMe
+ MecN
t qxo l
l
\
""or'*-*fl \'/ I
l
a
,
1,3-Dicarbonll Michael reactions. form with catalysis of iron(IID chlori& h 46-1007a).6 An intramolecular version r 7-membered ring.?
Ph/:N >V5-/o
Ph
Ph
/" t o PhA-N'
MeCN
R
Ao ll
FeCl2 Ph
o
NH2
E = COOMe 58%
Nitrene transfer.2 t-Butoxycarbonyl azide loses dinitrogen and delivers the N-Boc residue to sulfur compounds (sulfides, sulfoxides) and ketene acetals. lAuricchio,S.,Bini, A., Pastormerlo,8., A. M. f 53, 10911(1997). Truscello, 2Bach, T., Korber,C. fL 39,5015(1998). Iron(IID chloride. 13, 133-134;14,164-165;15, 158-159; 16,167 -169, 190-19l; 17, 1 3 8 - 1 3 9 ;1 8 , 1 9 7 ;1 9 , I 8 0 - 1 8 1 t Diazo compounds are formed. Dehydrogenation of carbazides.
rwang,Y., Shi,L., Jia,X. SC28, 2281(l99El 'Sen,S.E.,Roach,S.L., Bogg,J. K., E*'ing.G 3sul"hi,P.,Iranpoor,N., Behbahani, F. K. f 5{ "Yang,H., Li, B. C. Y. SC28,1233(1998). sKamal,A., Reddy,B. S. N. CZ 593(1998). 6Christoffers, J. JCS(Pl) 3141(lgg7). Tchristoffers, J. z 39, 7083(198).
Iron(IID 2-ethylhexanoate. Hetero Diels-Alder reactions.t'Ilr catalyst. Thus, cis-2,4-disubstituteddihl'd
H H P h . , N N 'N' P h N V i l H H
FeCl3 2N H2SO4
tn'ni'*
N.. ,Ph N
Y o
81'/" Protection and deprotection offunctional groups. Deacetylation2as well as allylic ether formation3 are readily performed with iron(Il! chloride as catalyst. Acetylation and esterificationcan utilize a catalyst which is supportedon a salicylic acid resini
tco.-un. D. B., Tomlinson, I. A. CC 25 rl99-r
Iron(IID nitrate. Oxidatians,
Sulfides iue conven
combination of iron(IID nitrate and silE effects oxidation of benzylic alcohols to d l-Tn Bitycla[3.3.0]octan-3-ones,o verted to the bicyclo[3.3.0]octanone b1
--61 (1997).
Ll a
t s-r .t031 (1997).
Iron(Itr) nitrate
ns
amines to azides various of Amines from azides.s Reduction N,N-dimethylhydrazine requires FeCl, as catalyst. Nitro groups are not reduced'
by
*o:Zy*. I
t-
lc ,,t isomerizing lsoxazoles to
-COeMe h
ll
Me2NNH2
\
tl
Meo"\"">-(
I
un,' ketones.
*fi(*-lA
qno
-; -\
M"o.\}NJ
1,3-Dicarbonyl compoundsreact with Michael acceptorsin neat Michael reactions. form with catalysis of iron(III) chloride hexahydrate at room temperature (19 examples' 46-lOO7o).6An intramolecular version is also quite rewarding for the formation of a 7-membered ring.7
/-N ,35.o Ph
'\^
-
FeCl3 U
CH2Cl2
A"t, E = COOMe : 3'"
nr::,'!en and delivers theN-Boc cl'.araetals. t-* . . 1997).
rWang,Y., Shi,L., Jia,X. SC2E,2287(1998). 2Sen,S. E., Roach,S. L., Bogg,J. K., Ewing,G. J.,Magrath'J. JOC 62' 6684(1997)' 3sul"hi,P.,Iranpoor,N., Behbahani, F. K. 254, 943(1997). aYang,H., Li, B. C. Y. SC28, 1233(1993). 5Kamal,A., Reddy,B. S.N. CI 593(1998). ochristoffers. J. JCS(PI ) 3 l4l (1997). Tchristoffers. J. TL 39,7083(1998).
5" 16.167-169,190-191;17, l. ::c' tbrmed.
Iron(IID 2-ethylhexanoate. Hetero Dicls-Alder reactinns.'
The iron carboxylate is a mild and highly selective catalyst. Thus, crs-2,4-disubstituteddihydropyranyl ethers are readily obtained.
o't"Yto'tn
'Go.man.D. B., Tomlinson,l.A. CC 25 (199'l).
o 81'/" as well as allylic I).',rcetylation2 x:i': ar catalyst. AcetYlation and I .r: rcrlic acidresini
Iron(IID nitrate. Ofidations.
Sulfides are converted to sulfoxides, thiols to disulfides,l while a combination of iron(IID nitrate and silica gel cleaves 1,3-dithianes.2The same reagent effectsoxidation of benzylicalcoholsto aldehydes.l Bicyclo[3.3.0]octan-3-ones.a l-Trimethylsiloxybicyclo[5.1.0]oct-2-ene is converted to the bicyclo[3.3.0]octanone by iron(Il!
nitrate (1,4-cyclohexadiene added as
206
Iron pentacarbonyl
hydrogen donor). From substratescontaining a 3-(alk-3-enyl) substituentfurther cyclization to the angular triquinane system is possible, when the hydrogen donor is omitted.
Ph
ill I
Fe(CO)s EtMgBr- CuO
Ph
-ffi.P,r A"'"\:vl*rl DMF L(2 ] Y Y rFirouzabadi, H., Iranpoor, N., Zolfigol,M. A. SC28, 1179(1998). 'Hirano,M., Ukawaq,K., Yakabe,S.,Morimoto,T. SC27, 152'7(1997). 3Khudilk., B., Borkar,S. sC2E, 207(lgg9). aBooker-Milburn, K. I., Dainty,R. F. 7L 39,5097(1998).
THF,MeCN
rCrivello,J. V., Kong,S. JOC 63,6745( l9S 'Dolham, E., Ocafrain,M., Nedelec,J. Y.. Tn 3Rudhukirhnun, Periasamy, U., M. OM 16.ll
Iron(III) perchlorate. C-C bond formations.t lront III r 1,5-cyclooctadienesto bicyclo[3.3.0]c naphthalenes.Thiols are also oxidized to
() Iron(IID nitrate-dinitrogen tetroxide. Phenols undergo selectivemono and dinitration. Nitration.t Oxidation of alcohols2 and their trimethylsilyl ethers3 at room Oxidations. temperatureaffords carbonyl products. Copper(Il) nitrate*dinitrogen tetroxide can also be
Fe(oo.b M€cil
\_/-r'
used. rFirouzabadi, N., Zolfigol,M. A. SC27,3301(1997). H., Iranpoor, 'Iranpoor,N., Firouzabadi, H., Zolfigol,M. A. BCSJ71,905(1998). rFirouzabadi, H., Iranpoor,N., Zolfigol, M. A. BCS,I71,2169(1998).
oxide-oxygen-aldehyde. This system is capable of effecting epoxidationr and conversion of Oxidations, sulfides to sulfoxides.2
Esterificatian. Iron(IIf perchlrr acidsto esters(28 examples,55-88%).: I
lKu.ar, B., Parmar,A., Rajpal,A., Kumar. H 'Parmar,A., Kaur, J.,Goyal,R., Kumar.B.. X 'Zhang, G.-S.sC 28, I 159(1998).
Iron(IIf
rl-i, X., Wang,F.,Lu, X., Song,G., Zhang,H.SC27,20'75(1997). 'Song, Wang,F., Zhang,H.,Lu, X., Wang,C. SC2E,2'183(1998). G.,
Iron pentacarbonyl. 13, 152; 18, 196 Allyl ethers are converted to an (E/Q-mixture of enol ethers. Isomerizatinns.t Ketones.2 An electrochemical method for ketone synthesis which produces RCOR from RX is mediated by Fe(CO)r"and(bpy)NiBrr. An alkyne, a Grignard reagent, and Fe(CO)t Three-component coupling.' contribute to the skeletal elements of butenolide which is formed in the presenceof CuCl, albeit in low yields. Cyclobutenedione is another product which is formed without participation of the Grignard reagent.
L-(Isocyanomethoxy)benzotriazole.
Oxazoles.t Oxazoles are formed aldehydesand acid chlorides. The isoniu by dehydration with POC\-EIrN.
N
)ruF N 6J
N
'Sasaki,H. CPB 45, 1369(199'7).
1-(Isocyanomethoxy)benzotriazole
r\ . . rbstituent further cyclization hi'{3n donor is omitted.
Ph
ill I Ph
o
^A' 1/ -J s s
Fe(CO)s , EtMgBr- CuCl
Ph
'nJ,-ro
Ph
pnAo
THF,MeCN 13Yo
267o
o
^' ( fl"'/
297
l l
lCrivello,J. V., Kong,S..rOC63,6745(1998). 2Dolhurn.E.. Ocafrain,M., Nedelec,J. Y., Troupel,M. T 53, 17089(199"1)' 'Rudhukirhn-, U., Periasamy, M. OM 16,1800(1997).
c"" Iron(IID perchlorate. of cyclization effects perchlorate Iron(IID C-C bondformations.l l,5-cyclooctadienes to bicyclo[3.3.0]octane derivatives and oxidative dimerization of naphthalenes.Thiols are also oxidized to give disulfides.
C\ b:'.:::,rttttn. ::rrrcthylsilyl ethers3 at room c - j::r rtrogentetroxidecan also be
\_r''
l*'
| :r,ridationl and conversionof
MeCN
70/" Esterification.
9F.
Fe(Cl04)3
Iron(III) perchlorate adsorbed in silica gel effects transformation of
acidstoesters(28examples,55-88Vo)?Iron(III)sulfatecanalsobeusedfortrispuropse'l rKumur,8., Parmar,A., Rajpal,A., Kumar,H- IJC 3TB'593(1998). 2Pur.-, A., Kaur,J.,Goyal,R., Kumar,B', Kumar,H. SC28' 2821(1998)' 3zhang,G.-S.sC 2E,I 159(1993).
1-(Isocyanomethoxy)benzotriazole. Oxazoles.t Oxazoles are formed using this building block on reaction with aldehydesand acid chlorides. The isonitrile is preparedfrom the corresponding formamide by dehydration with POCI-EIrN.
N rl ,2,-mixtureof enol ethers. : .'.:'.:hcsiswhich ProducesRCOR lr::nrrd reagent, and Fe(CO)t i: :,,nned in the Presenceof CuCl' n'.-rr.t which is formed without
) r uN F N 5J rSasaki,H. CPB 45, 1369(1997).
t-BuOK'THF +
PhCHO
*I)
Lanthanum(Ill) trifl uoromsthrrq Cyclizntion.t Chelationeffcc ether.
Lanthanum(Ill) chloride. 18,201 Esterification.r Selectiveacetylationof primary alcohols occurs with methyl asreagentandLaClr/SiO2ascatalyst. orthoacetate
MeO-. ,4
u
La(orf)3
\
;il
ro)
AcO LaCl3 / SiO2
HO,,',
MeC(OMe)3
'Fujiwara,
K., Mishima, H., Amano..{ .l
92% Hydrodehalogenation.2
Aryl halides are reducedby nanometric NaH using LaCl, as
catalyst. 'Biun"o,A., Brufani,M., Melchioni,C.,Romagnoli, P. TL38,651(1997). 'Zhang,Y., Liao,S.,Xu, Y., Yu, D., Shen, SC27,4327(1997). Q.
Lanthanum(Ill) tris(hexamethyld Tishchenkoreaction.t Vanq esters. rBerberich, P.W.ACIEEn. H.,Roesky,
Lanthanum(IlD
iodide. The acyl group of such a derivative is reAlcoholysis of N-acyloxazolidinones.t moved with an alcohol in the presenceof LiI,.
Lead.19, 184 Oxazolidin-4-ones.' Difluqo with leadpowder.Tr fluoromethane ylideswhich,in thepresence of aldc
tFukuru*u, Hongo,Y. TL39,3521(1993). S.,
Lanthanum(Ill) isopropoxide. 17, 160; 18, 201; L9, 184 Self-condensationofaldehydes as well as Robinson annulation are Aldol reactions.t effected. The latter processis conducted in the presenceof molecular sieves 44 in aprotic solventssuch as toluene.
Ph
I
r^" Ph2'
P b - 8 +
PhCHO
*d ot
Ph
*
l
I
(i-PeO)3La
--rAo
MS.4A
\
PhMe
.) en/\\o 85%
lokano,T., Satou,Y., Tamura, M., KUi,J BCSI70, I 879(1998). 208
Bn
I -N (' Ph
rNovikov,
M. S., Khlebnikov, A. F.. Krtl
Lead(IV)acetate.13,155-156:l{ 6-Lactones. Oxidativecycl with Pb(OAc)oresultsin destannlb areobtainedwhenalkanolsundergo
Lead0v)acetste
2W
Lanthanum(IlD trifluoromethanesulfonate. cyclic cyclizntion.r Chelationeffect directsthe formationof an eight-membered ether.
n
.rliohols occurs with methYl
"*;O
HOJ
""o{3'n La(orrb ';
'
,,.,,,( '6-J
MeCN
)
Meo\"'\/\ 6.t---/
(98 : 2) A:l -1 \/
-:
\ iO
71"k
al .-r,
,),',,orvte
/-r..
tFuli*u.u, T.,Murai,A. TL39'393(1998)' A.,Tokiwano, H.,Amano, K.,Mishima,
OH 92n"
NaH using LaCl, as I i': :r.rnometric
A<
Lanthanum(Ill) tris(hexamethyldisilazide). Ttshchenkoreactinn.t various atdehydesundergoTishchenkoreaction to give esters. rBerberich, P.w. ACIEE37,1569(1998). H.,Roesky,
lq97).
F'
I g:',rp of such a derivative is re-
Lead.19.184 oxazolidin-4-ones,t Difluorocarbeneis generatedby reaction of dibromodiwith leadpowder.Trappingof the carbeneby iminesleadsto azomethine fluoromethane heterocycles. providesfive-membered of aldehydes, ylideswhich,in thepresence
I \--;
'.rcll as Robinson annulation are S J. sieves4A in aProtic : rrr,rlecular t
Bn
Bn I
(" Ph
Pb - Bu4NBr
+
PhCHO
Br2CF2 cH2cl2
Bn
I Nl
Ph1'":V;" \ o-t
I
^
/
Pnr.1N:ZO +
o_1 Ph
Ph 25%
1 4"/o
Ph
I
l
l
rNovikov.M. S..Khlebnikov, 133(1998)' A. F., Krebs,A., Kostikov,R' R. E'"IOC
pnl^)5o ,/\ 85"/"
Lead(IV) acetate.13, 155-156;14, 188; 16,193-194|'lE,20l-202; 19' 184-185 6-Lactones. Oxidative cyclization of 3-hydroxy-5-tributylstannylpentanoic acids with pb(OAc)o results in destannylation and lactone formation.r o-Substituted 8-lactones are obtained when alkanols undergo oxidation under CO (20 examples,32-15Vo).2
210
LeadflI)fluoride-sodiunbromide
Pb(OAc)a
*o{rsnr,,
+
LCOOH
CH2C!2
Ho<-l" *\ 887o
OH (,
Lead(II) iodide-hexamethylphocpH Epoxides, Allylstannanes rerr u compounds such as cr,B-epoxyketoncsr r other hand, the reaction of l-chloro-,1-rr vinyl-epoxides.
Pb(OAc)4 + co / PhH
cl
Atr
cHo
\,--s.
4oo 51o/o
Vinylogous amide deriva3-Acetoxylationof N-acyl-2,3-dihydro-4-pyridones.3 at C-3 (trans to an acetoxylation dihydropyridones undergo smooth tives such as the productsare useful toluene. The with Pb(OAc)o in refluxing existingsubstituentat C-2) syntheticintermediates.
'Shibata,I., Fukuoka,S.,YoshimuraN.. Itrs 2shibuta, I., Fukuoka, S.,Baba,A. CL 533r l9
rYamamoto,M., Hirota,M., Kishikawa,K., Kohmoto,S.,Yamada,K. S 937(1997). 2Tsunoi,S.,Ryu,I., Okuda,T., Tanaka,M., Komatsu,M., Sonoda,N. "/ACS120,8692(1993). tco-inr, D. L., Stolze,D. A., Thakker,P.,McArdle,C.L. TL39,5693(1998).
Lipases. 17, 133-1341'18,202-2M'. 19. Modiftcations. Better lifetirne fc Application of such lipases includes re:d
hydrolysis of \rr lipase-catalyzed reactions proceed fes (by 3- to 9-fold).r enantioselectively acetylation,r and
Lead dioxide. Under acidic conditions (70Vo perchloic acid in HOAc) Quinones from phenols.t phenols are converted to p-benzoquinones at room temperature.The oxidation proceeds even with p-halophenols such as 2,4,6-trihalophenols, giving 2,6-dihalo-p-benzoquinones in high yields. Mi.xed carbonates,2 Lead dioxide oxidizes N-hydroxycarbamates to nitrosoformates O=N-COOR which react with alcohols and phenols to afford mixed carbonates.
\,,r
,^"" .
""h,,*
{ff1
-:
"cooMe 34o/o
tornu.u,K. S I145(1998). 'Mindl, J.,Halama, A., Cernosek, Z. CCCC61,1053(1997).
LeadflD fluoride-sodium bromide. Aromatic compounds undergo allylation ( I I examples, Friedel-Craf* allylation.t 45-997o) in the presenceof composite lead fluoride which is prepared by mixing PbF,
rlchihara, CC lg21 (1997). J.
Useful chiral intc
2-tributylstannyl-cyclopropylcarbinols.f ketones,s butylthioethylene diacerarc
3-trimethylsilyl-3-buten-2-yl hydmperor enone),r0 and 2,3-bis(acetoxymethrv selective acylation of certain dendrinrr accessto (S,S)-trans-2,12-bis(acetox
HzO
powder and aqueousNaBr.
New substrates.
by lipases are: ftchlorodifluoronre0ryl-pp
reported. Deracemization.ta
Enzymatic u racemizing conditions using a rutheniurn OH
PN Ph
\/a\ Ph--Yr P(
q
Lipases
Fo-----. o .-J \\ U
88". n
Lead(II) iodide-hexamethylphosphoric triamide. Epoxides. Allylstannanes reactunderthe influenceof pblr-HMpA with carbonyl compounds suchascr,p-epoxyketonesrandcr-bromoketones2 give epoxyproducts.on the otherhand,the reactionof l-chloro-3-tributylstannyl-l-propene with aldehydesleadsto vinyl-epoxides.
v'-$O
Arr. cHo
\.,,
cl +
Pbo2- HMPA
\,,,-
SnBu3
h'":-r1997). (1998). \ . 1( 5 120.8692 h.1 .9981.
^'\f o
THF
51.o
\ ::.r logous amide derivao\\ .:lr\)n at c-3 (trans to ul luc:l The productsare useful
ztl
Ar= Ph 58% rshibata, I., Fukuoka,S.,yoshimura,N., Marsuda,H., Baba,A. JoC 62,3790(lgg7'). 'Shibata, I., Fukuoka, S.,Baba,A. CZ 533(1998).
Lipases. 17, 133-134; 18, 202-204; 19, I 85-188 Modifications. Better lifetime for the enzyme is afforded by immobilization. Application of such lipases includes resolution of propargylic alcohols by enantioselective acetylation,r and hydrolysis of water-insoluble acetates.2 Microwave-promoted, lipase-catalyzed reactions proceed faster (rate increases up to l4-fold) and more
7r, r',:rchloricacid in HOAc) a:-:: The oxidation proceeds re l r-Jrhalo-p-benzoquinones
enantioselectively(by 3- to 9-fold).3 New substrates. Useful chiral intermediatesthat are now available from resolution by lipases are: B-chlorodifluoromethyl-B-propiolactone,aB-methyl-cr-methylenepropiolactone,s 2-tributylstannyl-cyclopropylcarbinols,6 Baylis-Hillman products,? o-acetylthiomethyl
dr, '. r . arbamates to nitrosols :, .rttirrdmixed carbonates.
ketones,8 butylthioethylene diacetate (by hydrolysis of the primary acetate),e 3-trimethylsilyl-3-buten-2-yl hydroperoxide (one of the enantiomers is converted to an enone),r0 and 2,3-bis(acetoxymethyl)bicyclo[2.2.1]hepta-2,5-diene.rrLipase-catalyzed selective acylation of certain dendrimers by poly(e-caprolactam) at the end groupr2 and
' '"ScooMe
accessto (s,s)-trans-2,12-bis(acetoxymethyl)-2, 12-dimethyl-18- crown-6r3 have been reported. Deracemization,ta Enzymatic acetylation of secondary benzyric alcohols under racemizing conditions using a ruthenium catalyst leads to chiral esters.
OH
VoAc
,,4
9o' Ph/\
lipase Ph
dc:i,' allylation (l I examples, h :. prepared by mixing PbF,
Ph
f,7o-p'o-.,;i
tn1{-t"
"n)ffen
Ph Ph r,"---.-B( oc\ " /'co co oc
212
Lithium
is Resolution by selective acetylation of 1-(heteroaryl)ethylamines Amidatian. esters'16'17 ofCr-oxygenated aminolysis catalyze to successful.I5Lipases have alsobeen used rAllevi, P.,Ciuffreda,P.,Anastasia, M. TA 8, 93 (1997)' 2Akita.H., Umezawa,I., Matsukura,H. CPB45'272 (1997)' 3t-in.c.. Lin. w.-Y. TL39,4333(1998). alto,T., Shimizu,M., Fujisawa,T. f 54' 5523(1998)' sAdam.W.. Groer,P., Saha-Mtiller, C. R. ZA 8' 833(197)' 6lto,T., Emoto,S., Kondo,M. I54, 5225(1998)' THayashi, K., Tsuboi,S' ZA 9,3825(1998)' N., Yanagihara' 8lzawa.T., Terao,Y., Suzuki,K' ?A 8' 2645(1997)' eBrand,S.,Jones,M' F., Rayner,C. M ZL 38, 3595(199'l)' loAdurn,W., Mock-Knoblauch, C., Saha-Miiller,C R' fA 8' 1947(199'7)' G', Buono,G' TA9' 581(1998)' lrRanchoux, Iacazio, J.-M., M., Brunel, ''io.ao"u, A., Hult,A., Ihre,H.' Iversen'T'' Malmstr6m, E' JACS120'13521(1998)' t'fr4*"ot", N{.,Ueda,A.,Zhang,W., Kida, T', Nakatsuji'Y ' Ikeda'I'' Kanehisa'N'' Kai' Y ?t 38' 9493(199'7). rol-u..-n, A. L. E., Persson, B' A., Biickvall' J'-E'ACIEE36' l2ll (1997)' r5lgl"siur,L. E.,Zanchez,V.M., Rebolledo,F', Gotor'V' ZA 8' 2675(199'7)' r6Adum"ryk,M., Grote,J.,Rege,S. IA 8, 25W (199'7)' rTAdamczyk, M., Grote,J.TA8'2099(199'7)'
Lithium-liquid ammonia.13' 158:17 l,2-Amino altohols.' A ne*' ry1 -nonesinvolvesreductiveremovalof a c
"Y ,/-fl^
+
VrlV" --
P
h
V.,uq
\\ o
TiCl4
F|o
1,2-DiaryI-1,2-diaminoethancs. from benzilsvia a spirocyclic2H-imide
Lr
Lithium. 13, 157-158; 15, 184; 18,205-206;19' 190-191 cleavage of the c-N bond of l-substituted benzotriazoles Debenzotriazolylation. have been by lithium generatesnucleophilic reagents,for example,c[-alkoxybenzyllithiums prepared.r
'Agami, C., Amiot, F., Couty, F., Dechotr. I 'Corey, E. J., ke, D.-H., Sarshar,S. IA 6. l
n
L i . L | B T/ T H F ;
"D
EtO
*'*--*
,r>
OH
EtO
,}-{1l Ph' \/ 66%
primary amines.2 The Barbier-type reaction of N-trimethylsilylimines with Li and an alkyl halide constitutesa convenient synthetic method'
(Me3Si)2NLi
,l*o
Et2O
-3oo
i
9TBS
'l Nsiur".Li / BnBr
l"^" j
Et2O
Lithium aluminum hydride. 14, l9OReductiveesteriftcation.t A cad LiAlH4 reductionandthenqu-enchdsr Cleavageof TBSetherc.' Usud neighboringgroupparticipationmakes
pr,Acooue
lYHz '^Artn
rKatritzky,A. R.,Bao,W., Qi, M., Fali,C' N', Prakash, I TL39'643'7(1998)' 2cyenes,F., Bergmann'K. 8., Welch,J' T ' JOC 63' 2824(1998)'
63"/"
Thes. Propargylic mercaptan.' produo acetatewith LiAlH4. Often the sulfides.
Lithium aluminum hydride
is t',: l-(heteroarYl)ethYlamines n'. r .i. of cl-oxygenatedesters.16'17
213
Lithium-liquid ammonia.13, 158;17, 16l: 18,206 l,2-Amino ahohols.t A new approachto chiral \,2-aminoalcoholsvia oxazolidi -nonesinvolvesreductiveremovalof a chiral auxiliaryby LilNH..
\--
^i/
(
l
o
Y'f(o
\-r.f
,".-r+ #Y
)^"T' TiCla
Pti 9.:- ..r97). B "'rs r. A ( ' l : 0 . 1 3 5 2(11 9 9 8 ) . N., Kai, Y. ZI, 38, lr:.:,'. L. Kanehisa,
Li/NF
?" .
o
Pli
Bs% 85o/"
A synthesisof theseimportantchiral diamines 1,2-Diaryl-1,2-dianninoethanes.2 proceedsby reductionandresolution. from benzilsvia a spirocyclicZH-imidazole
Ie 9 7 ) . :: | :^-: r1997).
Li/ NH3,THF;
Ph
H'
Ph
....................'.....'.,.'.............* HzN
- l a _
or.;,,i l -substitutedbenzotriazoles , (r -.rlkoxybenzyllithiumshavebeen
NHz
89o/o
rAgami, C., Amiot, F., Couty, F., Dechoux,L., Kaminsky, C, Venier, O. TA9,3955 (1998). 'Corey, E. J., Lee, D.-H., Sarshar,S. TA 6,3 (1995).
Eto.
oH
*>o
Lithium aluminum hydride. 14, 190-191; 18,20'l;19, 191 A carbonyl compound is converted to the acetic ester by Reductive esterifrcation.t LiAlH4 reduction and then quenchedwith EtOAc under reflux. Cleavageof TBSetherc.2 Usually TBS ethers are not affected by LiAlHo but
OO-/o
'
\-::rnrethylsilylimineswith Li and
neighboring group participation makes exception to the stability.
r\:
QTBS _
+
pnAcootvte
NHz | ^.
BnBr
LiAtH4 Et2O
9H PhA/oH
T I I
o{"/
7Oo/"
63%
. _r9'J1? (1998). F'
Propargylic mercaptan.3 Theseunstablecompoundsare obtainedby cleavageof the acetatewith LiAlH4. Often the products are used in direct alkylation to prepare propargyl sulfides.
214
Lithiumborohydride
tGno,Z.,Sindelar, R. D. SC28, 1031(1998). ts*uuunun,P., A., Gupta,S., Singh,V. K. SC27, 2695(lgg7) Gupta,S.,DattaGupta, 'Castro,J.,Moyano,A., Pericas, M. A., Riera,A. S 518(1997).
Lithium azido(isobutyl)aluminum hydride. at room The reagent is prepared from DIBALH and Li\ FAzido alcohols.r temperature in THF. It attacks epoxides at the less substituted site (5 examples,
Lithium bromide. 18, 209-210:19. l 9l Desilylation.t Primary TBS ethc 18-crown-6in acetone.Secondary TBS cd AryIcyclobutenes.2 A mild and 1-arylcyclobutenes is by heatingthec1.ch
7O-78Va).
u i-Bu2Al(H)N3
cuHd
OH I
".rA'*' 78"4
'Tandon, M.,Begley, T.P.SCn,2gS3(l}gil 'Juteau, H.,Gareau, Y. SC28,3795(1998r.
rYoun, (1998). Y. S.,Cho,L S.,Chung, 8.Y.TL39,4337 Lithiurn bis(diisopropylamino)boracetylide. Allcynones.t The reagentis an excellentequivalentof lithium acetylide.Its reaction with RCOCIdeliversketoneoroducts.
-2-N.
>*(t-t'
PhCOCI/ THF + -78 - 250
/-
o
lt
Ph
Lithium t-butoxide.18,210 Allylic alcohots.t Epoxy sulforn which the epoxideactsas the leavinggru affordsthe allylic alcohols.
t&'
(Yr.5l'n'o \r'/
a
60"/o
'Blanchard, C., Vaultier, M., Mortier, J. TL38,8863 (1997).
'Evans, P.,Taylor,R.J.K. If 38,3055( 1997 r
Lithium borohydride. 19, 192 Alcohols from acids.t After formation of O-acylureas by reaction of carboxylic
Lithium chloride.18,211 Deprotectians. Cleavageof TBS c aqueousDMF or DMSO.
acids with N,M-dicyclohexylcarbodiimide, reduction leads to the alcohols. a\Trimethylsilyl)allqtamine s.2 c-(Trimethylsilyl)imines undergo reduction with LiBHo in the presenceof (+)-diethyl tartrate. The resulting amines have moderate levels of optical activity. rHerbert, M., Hewson,A. T., Peace, E. J. J. SC28,823(1998). 2Picard, J.-P.,Fortis,F. TA9,3455(1998).
O--(r
(o,v
P'-
bJ
I
r.
Lithiumchloride
r:-
: 6 9 5( 1 9 9 7 ) .
2lS
Lithium bromide. 18,209-210; 19, 192 Desilylation.t primary TBS ethers are removed by refluxing with LiBr and TBS ethersareretained. l8-crown-6in acetone.Secondary Arylcyclobutenes.2 A mild and neutral condition for the generation of with LiBr in DMF at 75'. is by heatingthecyclobutylacetates l-arylcyclobutenes
at room D I B \ L H and Li\ (5 examples, Uf . : rt L l t e dsite OAc
L|BT/ DMF
..........'''..* 750
CH tt.
-
N
86o/o
a
rTandon, M., Begley,T.P. 5C27,2953(1997). 2Juteau, Y. SC28,3795(1998). H., Gareau,
ri .r:hrumacetylide.Its reactton
Lithium t-butoxide. 18, 210 Epoxy sulfones undergo the Ramberg-Biicklund reaction in Allylic alcohols.t which the epoxide acts as the leaving group. Decomposition of hydroxylated episulfones affords the allylic alcohols.
OH
o tl Ph
on.#"
t-BuOLi / DMSO 250 827.
60"h
( E :Z = 1 : 1 \
rEvans, R.J.K. If 38,3055(1997). P.,Taylor,
r3.:- b) reaction of carboxYlic r:,':he alcohols. in'.:nc. undergo reduction with I r:t'.tn!'shave moderatelevelsof
Lithium chloride. 18,2l I Deprotections. Cleavageof TBS ethersrand acetals2is achievedwith LiCl in aqueousDMF or DMSO.
(p-t)
p{}""o DMSO- H2O 900
\o/91"/o
Lithium 4,{'-fia-6utylbiphenylide
Aldol and Knoevenagel condensations.r The aldol reaction between l,4-cyclohexanedioneand aldehydesto give 2-substitutedhydroquinones is conducted with LiCl in refluxing pyridine. Microwave irradiation facilitates Knovenagel condensationusing LiCl
Li-DTBB/THF
as catalyst, otherwise NMP is employed as solvent.
Et3Al
oHc...,/,ph ,i^, no'.7p'en
o\,^
\Ao"ilxao'
,l,rro" ;-
!Ao.
-*
tofuon
+
\'4il
'Fanas, J., Serra,C., Vilarrasa,J. TL39,327 (1998). tM*dul, P. K., Dutra,P., Roy, S. C. TL38,72'11(lgg7). 'Sabitha, G., Reddy,B. V. S., Babu, R. S., Yadav, I. S. CL'173 (1998).
Lithium 4,41di-r-butylbiphenylide.13, 162-163;16, 195-196;l7 , 164;18,210-2ll; 19,192-193 CULiexchange. Functional propargyllithium reagents.l lithiated compounds chlorides.Many containingacetal2'3 and allylamineaareobtainedfrom the corresponding dichloridesundergolithiation5andthenreactwith electrophiles.
'Gomez, C., Huerta,F. F., Pastor,I. M.. yus. V 'Bachki, A., Foubelo, F., Yus,M. I53, rtgll r I 'Si-Fodil, M., Ferreira,H., Gralak,J., DuhanrL -Gomez, C.,Huerta,F. F., Yus,M. Ig.6l:r 'Gomez, C., Huerta,F. F., Yus,M. IL 3t. 68- r oBachki, A., Foubelo, F., Yus,M. TL39.7159r 'Choudhury, P. K., Almena,J.,Foubelo,F.. \'u ozhu, S.,Cohen,T. T 53, l76M (lgg:.). 'Foubelo, F..Cutierrez. A.. Yus,M. fL 3t. {t-r '"Dvorak. C. A., Rawal,V. H. CC2381r 199-,
Lithium dicyclohexylamide. a-Chloroben4yl anions. Deprorone presenceof organoboranesgives rise to
oxidation to afford secondarybenzylic alcr
9Et
cl..A^-. v
OEt
Li-DrBB/rHF, ?* ?t'
*
PhcHo:
p/Voe,
+
,n^r"oot'
,Bu
>(n
73yo
HzO
o-q
llrh
+
Bncl
\t-l
Li-DTBB/THF
-
cl
Me35iCl -50o 83o/o
C-O and C-S bond scissian. Ethers6'7and alkyl aryl sulfides8'eare cleaved to generatecarbanions.A significantapplicationis in the synthesisof modhephener0 in which fragmentation of an oxetane reveals the desired diquinane intermediate.
(Y"Y \.\,,o
rKabulka, yu, s. rA 8.38.r-1 c. w., Li, N.-S., i I'
Lithium diethylamide.15, 188;18,2t: Enolization of carboxylic acids. Err formed.Alkylation leadsto usefulsynrhco
Li- DTBB/THF ;
Hzo
vcooH . \
200 46o/"
Br
E
Lithiumdiethylamide
ir.:.:rr\n between 1,4-cyclOr,... :. conductedwith LiCl in usineLiCl nji.. .ondensation
L i - D T B B / T H F; Et3Al
217
h:$
modhephene
*"oYNrn \.Att'
- I -^ 17. 164;18,210-2ll; lithiated compounds g.::.. -nrnding : chlorides.Many r':: llll.
'Gomez, C., Huerta,F. F., Pasror,I. M., yus, M. f 53, l72}l (lgg7\. 'Bachki, A., Foubelo,F., Yus,M. T 53,4921(1gg7). -Si-Fodil, M., Ferreira, H., Gralak,J.,Duhamel, L. TL39,8975(199g). -Gomez, C., Huerta,F. F., Yus,M. T 54,6171(1998). 'Gomez, C.,Huerta,F. F., Yus,M. TL38,697(1997);T 53,t3}g:.(tggi), T 54,1853(1998). "Bachki, A., Foubelo, F., Yus,M. TL39,7759(1998). 'Choudhury, P. K., Almena,J.,Foubelo, F., Yus,M. T 53,17373(lgg7\). ozhu, S.,Cohen,T. T 53,17606i:I.gg7\. eFoubefo. F..Gutierrez. A.. Yus.M. It 38. 4837(lgg7r. ''Dvorak, C. A.. Rawal,V. H. CC2381( 1997).
Lithium dicyclohexylamide. a'chloroben4yl anions. Deprotonation of benzyl chlorides by (c-HxN)rNLi in the presence of organoboranesgives rise to benzylic boranes which undergo conventional oxidation to afford secondarybenzylic alcohols. chiral alcohols are available]
,nAr"oot'
pu o-q
x, llrlr
,- _l-
(c-Hx)2NLi/ THF - 7go
Bncr
\1..,
NaOH,HOOH
9* Ph
Bu
,SiMe3
83"k n,. .ultldes8'eare cleaved to in which r.:. ,,t modhephenelo li.:rllL'diate.
+
77% (72%ee)
'Kabalka, c. W.,Li, N.-S.,Yu,S.ZA8.38430997).
Lithium diethylamide.15,188;18,212 Enolizationof carboxylicacids. Enolatesincluding that from acrylic acid are formed.Alkylation leadsto usefulsyntheticintermediates.
VcooH
.
Br
\
E t 2 N L/iT H F
-
- 78o
cooH
52o/o
1
I ti
ll
2f8
Lithiumdiisopropylamide
ftPhenethylarnines.2 Theseaminesarederivedfrom styrenes. rBrun, (1998). R.,Parra, M. T 54,15305 E.M.,cil, S.,Mestres, :Sei.|as, M. P.,Entenza, C.,Martinez, M.M.,Onega, M. G.,Veiga, S. TL39,5M3 J.A.,Vazquez-Tato, ( I 998). Lithium diisopropylamide.13, 163-164;15, 188- I 89; 16, 196-197; 17, 165-167; 18, 212-214:19.193-197 Eliminations. Homopropargylic alcohols are formed from 3,3-disubstituted 2-methyleneoxetanes.r Alkenyl triflatesgive alkynes.2
*A
f-O
Ring expansion of lactonesTby reaction of rhc sulfoxide with subsequenttreatmentwith KH and r transformation. Episulfone is readily deprotonaro obtained.s A convenient synthesis of trimerhlls MeNCS and reaction with Me.SiCl.e
Ph_F
//--\
(i-Pro)3 B;
b--' /l-
HN(CH2CH2OH)2
filr H'do Br
\---l
I
b-\
. / \ ^ M e i-Pr2NLi/ THF
MeN_1
-78;- 2Oo
Ph
v-"^[
-78o;
cyclohexanone
o
{
A route to 2-cyclohexenonesfrom mangancscc to effect the cyclization.12
o)l'*)"'tn MeN-{ Ph 91"h
Alkylation of imines that provide 2,3-alkanediones5and o-acylphenols6
Atkylations. is worth mentioning. The latter involves dianions.
}-cosnt
i-Pr2NLi/ THF -........_
{
a4"/"
\_/-o;\,*)...'n
Aldol reactions. A route to laryliderrt lithiated butenolide with aromatic aldehydes fo formed by reaction of enolates with S-aryl c1r
undergo decarboxylation at slightly abor.e l( compoundsis achieved.ll
H
"t--\
Me3SCl
d'o!
Arylboronic acids containing an o-carboxyl group are prepared Directed lithiations, from the corresponding neopentyl esters via directed lithiation and boration.r Chiral o-hydroxyaryl phosphine oxides which are potential chiral ligands are obtained from a rearrangementprocess.a
i-Pr2NLi / THF ;
i-Pr2NLi/THF -7t'
o\,<
Ph 85"/o
,P
I
A-*/
ao' I
i-Pr2NLi/ THF Oo HOH
Y-< *
YO Ao
X \x. oc-yn= oc
)
i-Pr2NLi/ THF -7d
-
NH4CI
/r
\ o
-
Lithium diisopropylamide
rJ :r,'nt stYrenes. t!. | \i
Y'K 4-*/
Y" ,'\o
( )nega.M. G.' Veiga, S' TL39'50'13
i-Pr2NLi/ THF -78o; BnBr; HCI
Pn$O
ztg
Y
84o/.
t.-
; 17, 165-167; 18, I6. 196-19':.
ara
:,,rmed from 3,3-disubstituted
obtained.8 A convenient synthesis of trimethylsilylmethyl isocyanate is by lithiation of MeNCS and reactionwith Me,SiCl.e
t -
,' >
Ring expansion of lactonesTby reaction of the latter with lithiated chloromethyl phenyl sulfoxide with subsequenttreatmentwith KH and then t-Bul-i is a mechanistically intriguing transformation. Episulfone is readily deprotonated.Tris(trimethylsilyl)episulfone has been
/oH l "n-F
's' I d'--
85% prepaled !:.:-1: .rno-carboxyl group are Chiral n :..: lrthiation and boration'3 a from b; -:.rral ligands are obtained
S1s];'sives d,"\ SiMe3
i-Pr2NLi / THF -78o;
o
Ph
Me3Sic
850/"
Aldolreactions. A route to y-arylidenebutenolidesrOinvolves reaction of the lithiated butenolide with aromatic aldehydes followed by dehydration. p-Lactones are formed by reaction of enolates with S-aryl cyclopropanethioate. Since these lactones undergo decarboxylation at slightly above 100', cyclopropylidenation of carbonyl compoundsis achieved.ll
H
,,s4_ filr
841"
(
i-Pr2NLi/ THF -78o;
F-cosnt
+
cyclohexanone
1200
o 77-81"k
{
A route to 2-cyclohexenonesfrom manganesecarbeneanions and enonesemploys LDA to effect the cyclization.12
\-<
/foH Me
\ /N\.'.Ph ozP\ /' MeN_1 Ph 91o/o
X \X. oc-yn=
and o-acylphenols6 r : :r 1..]-alkanedioness
oc
\J
i-Pr2NLi / THF -784; NH4CI
o"-Tnoc
-
tl
Ph3Pra>
\f' R
220
Lithiumdiisopropylamide-N,M-dimethylpropyleneurea
Tandem aldol-Tishchenko reactions occur.l3 The highly stereoselectivenature of such processesmakes them very valuable in the accessto diols and triols.
o tl
hft.
Phl\ N I
o o
i-Pr2NLi/ THF -78o;
ETCHO
,^,
t-BuOO
oH o^/ t :
" f
with aldehydes are readily The condensation products of dithiocarboxylic converted to ketene dithioacetals.ra Isoxazoles.ts 3,5-Disubstituted isoxazoles are formed by condensation of imines with esters.
*\ A
i-Pr2NLi/rHF, +
c7H15_cooEt
NHpHG;.
Ph
I-Aminodihydroisoquinolines.2 R.r silylaldiminesleadsto cyclization,formrn rHara, O..Iro,M.,Hamada ,y. TL 39,5537 r l9 'Beaton. p..Tinker. H..Hamley. A. C. IL J9.I
Lithium diisopropylamide-hexamethy Eliminations.t Either l-chloro-1.from 1-chloro-4,5-epoxy-2-alkenes b1.rn productsariseaccordingto thequantideso
"rr,u{.o-ll -/..'c \_j\ 64"/"
tDolling"., L. M., Howell, A. R. "/OC 63, 6782 (1998). 'Brummond, K. M., Gesenberg,K. D., Kent, J. L., Kerekes,A.D. TL39,8613 (1998). 3caron, S., Hawkins,J.M. JOC 63,2054 (1998). alrgrand, O., Brunel, J. M., Constantieux,T., Buono, G. CEJ 4,1061 (1998). sGopal, D., Nadkarni,D. V., Sayre,L.M. TL39,1877 (1998). oCimarelli. C.. Palmieri.G. T 54, 157 I I (1998). TSatoh, T., Kurihara,T. TL39,9215 (1993). 8Dishington, A. P., Douthwaite,R. E., Mortlock, A., Muccioli, A. B., Simpkins,N. S. "/CS(P1)323 (199'7). eBrandsma, L., Nedolya, N. A., Verkruijsse, H. D., Tromfimov, B. A. S 423 (1997). toPoh.ukotr, M., Tuchinda, P., Premkaisom, P., Reutrakul, V. T 54,11297 (1998). rrDanheiser, R. L., Lee, T. W., Menichincheri,M., Brunelli, S., Nishiuchi,M. 5L469 (1997). r2Mongin, C., Lugan, N., Mathieu, R. OM 16,3873 (199'7). r3Bodn-, P. M., Shaw,J. T., Woerpel, K. A. JOC 62,56'14(1997). ralchertchian, S., Vallee, Y. T 54,77'17 (1998). l5Bunnelle, W. H., Singam,P. R., Narayanan,B. A., Bradshaw,C. W., Liou, J. S. S 439 (1997).
Lithium diisopropylamide-N,M-dimethylpropyleneurea. a-Aminoketonesfrom imides.t N -+ C acylmigrationof N-alkylimidestakesplace on exposureto LDA-DMPU/THF. The solventsystemmustbe changedto etherif optical benzylamides. of N-(a-substituted) activityis to be maintainedduringrearrangement
M,A9\^",
H
lYadav,
J. S., Barma, D. K., Dutta, D. IL 3t..1{l
Lithium hexamethyldisilazide. 13, 165:l{ Alkenyl sulfur compounds. Dierhll (LHMDS; PhSO2F).Direct additionof atd sulfones.r Lithium (E)-l-alkenylthiolarc episulfoxides with LHMDS andthenLiAlH.
r\ )-sO
Bu'
(Me3si)2NLi / rHF ;
;;;r"* [ " ,
Lithiumhexamethyldisilazide
hlr .:crr'oselectivenatureof such I :i.l
o
:
ilrrlr.
,nA*irn I
n
?
tl cH o/\,/ .\t ./\: ./ -
Y
V
I 76"'" .ir:h aldehydes are readily
tr. rr:-
h\ condensation of imines
F
o .ll. ph
i-PrzNLi/ Et2O
,{ Y..
- 7go
r BuOOCNH
t- BuOOC
85o
(g4okee)
I'Aminodihydroisoquinolines.2 Reaction of lithiated o-toluonifile with N-trimethylsilylaldimines Ieadsto cyclization, forming a formamidine unit. IHara, O.,Ito,M., Hamada,y.TL39,5537(199g). "Beaton, H., Hamley,p., Tinker,A. C. TL 39, 1227 ..lgg$. Lithium diisopropylamide-hexamethylphosphoric triamide. Eliminations.t Either 1-chloro-1,3-dien-5-ols or hydroxy enynes can be obtained from 1-chloro-4,5-epoxy-2-alkenesby treatment with LDA-HMpA. The two types of products arise according to the quantities of the baseemployed.
CzHrs
!ur
?Al
gH i-Pr2NLi(1 eq)
64"/"
z\z\A/v)ct 82yo
8H
. 1 9 . 8 6 1039 9 8 ) ,
*^
I e98).
85"/" \ :
\rmpkins. N. S. ,/CSfPlJ 323
B \ \-r:3(1997). 'sr :t97(1998). \ . - , - t r . M . S L 4 6 9( 1 9 9 7 ) . r C
''\ Liou, J. S. S 439(199'7).
!a. Irr,,:r,'f .V-alkylimidestakesplace lu.: l-: changedto ether if optical -. :..ti tuted)benzyl amides.
rYadav, J. S.,Barma,D. K., Dutta,D. Za 3g, 4479|tggT. Lithium hexamethyldisilazide.13, I 65; 14, 194; lg, 2t 5 _216; lg, tg.,_lgg Alkenyl sulfur compounds' Diethyl methylphosphonate undergoes sulfonylation (LHMDS; PhsqF). Direct addition of ardehydesto the reaction mixture gives alkenyl sulfones.rLithium (E)-l-alkenyrthiolates are formed after treatment of l_alkyl episulfoxides with LHMDS and then LiAlHo. Such speciescan be capturedby s-silylation.2
,,2'o ffi# f ,,t"Iffi,,/"'""' 64o/"
222
Lithiumhydroxidehydrate
Allcynes. Alkylation of 3-alkoxy-3-(benzotriazol-1-yl)alkynes is accomplished using LHMDS asbase.The products arehydrolyzed (HrO*) to fumish alkynones.sCoupling of thiols with trichloroethene results in 1,2-bis(alkylthio )acetylenes.a
ot l
L<
(Eto)2Pv\cooMe
Plr
rYx
fr"
(Me3Si)2NLi / Et2O; CICH=CHClz -79-00
qfr'*=4
thiol Conjugated isonitriles.s Isocyanoalkyl epoxides undergo ring opening by reaction with LHMDS. T\e (ElQ-isomer ratios are different from (usually higher than) those arising from using LDA.
"*.fL""''
( Me3Si)2NLi/ THF
cN.7Vc8H17
- 150
lr
o
=H
9 6 %( E : Z 7 : 1 ) Allylic amines.o LHMDS and KHMDS may be usedto displace allylic halides when catalyzed by (PhrP)oPd. rJang,W. B., Jeon,H. J.,Oh,D. Y. SC28, 1253(1998). 'Schwan,A. L., Refvik,M. D. St 96 (1998). 3Katritzky, A. R.,Yao,J.,Qi, M. JOC62,8201(1997). "Balsells, M. A., Riera,A. TA 8, 1575(1997). J.,Moyano,A., Pericas, sBuld*in,J. E.,Chen,D., Russell, A.T. CC 2389(1997). "Briining,l. TL 38,3 l8'1(1997 ).
Lithium hydride. 13, 165-166; 18,217:'19, 198 Diselenides.t Reductive coupling of RSeCN gives RSe-SeR. rK.i"f, A., Delmotte,C., Dumont,w. ?I 38, 30'79(1997).
Lithium hydroxide hydrate. 18, 217; 19, I 98 Methyl aryl ethers.t The chemoselective O-methylation of phenols with dimethyl sulfateproceedsin THF, (E,E)-2,4-Alkadienoic esters.' Lithium hydroxide hydrate can be used as a base to effect the Emmons-Wadsworth reaction of 4-phosphonocrotonateswith aldehydes.
IBasak, A., Nayak, M. K., Chakaborti, A. K f 'Takacs, J. M., Jaber, M. R., Clement. F.. \r.ah
Lithium indium hydride. 1,2-Diok.t Acyclic2-hydroxlkac reductionwith LiInI{o (prepared from InBr For example,benzoinis convertedto rhca rYamada,
M., Horie, T., Kawai, M., yamamun
Lithium iodide. Reactionwith epoxidesand cycEcnl hydrins.Epoxyketonesareconverted to oj Dealkoxycarbonylation.3 Enolalesr synthesis ofy- and6-lactones.
tacooEt
tl
| i l i i \-'x-o\CooMe /\
'c
tKotsuki, H., Shimanouchi,T., Ohshima.R.. Fuy 'Jang, D. O., Joo, Y. H. SL 279 (1997). 'Bunce, R. A., Schilling, C. L. f 53, 947't rt99ir
Lithium 3-lithio-3-tosylalkanoates. Batenolides.t ThesespeciesareFr carbonylcompounds, with subsequent reau A synthesisofrosefuranis basedon this pr
%"oo"#'.lT:
\rA" I
Lithium 3-lithio-3-tosylalkanoates
l-r. rlkvnes is accomPlished CouPling Ir.: -mr\h alkYnones'3 .
ot l
(EtO)2Par\COOMe
LioH.Hro
+
r"oot"
,nA
P h C H O/ T H F
l
l:\.-l:11'\.
mol. sives 4A
r'\,q 93o/o
xir::,, ring openingbY reaction r.J.l..\ higherthan)thosearising
lN. '{/ zr.
Y
FaHfi
lr o = H
89%
rBasak, A. K. ZL 39,4883(1998). A., Nayak,M. K., Chakraborti, 'Takacs,J. M., Jaber,M. R., Clement,F., Walters,C. JOC 63,675'1(1998).
Lithium indium hydride. Acyclic 2-hydroxyketones and cr-diketonesundergo ultrasound-assisted 1,2 -Diok.t reduction with LiInHo (preparedfrom InBr, and LiH) in a highly diastereoselectivemanner. For example, benzoin is converted b rhemeso-diol exclusively. lYamada, H., Araki,S. 253, 15685. M., Horie,T., Kawai,M., Yamamura,
Lithium iodide. Reactionwith epoxides andcyclic sulfates. Opening of epoxides affords iodoenones.rCyclic sulfatesgive alkenes'2 hydrins. Epoxy ketonesareconvertedto cx,-iodo Enolatesderived from this reaction can be exploited in the Dealkorycarbonylntion,3 synthesisofy and 6-lactones.
96'h(E:Z 7"1)
r1 : .lr.place allYlic halides when
y'->/
,a"oo" ll
Lir
+
o \-\"1--,-cooMe u
1ooo
f-1
MeN"NMe
A
(cooEl
(YY voAo
627o l+.
s R::-SeR.
t\. j::,,n of Phenolswith dimethYl Ir : , .irlte can be used as a base to r\: ,:',nateswith aldehydes'
'Kot...ki, H., Shimanouchi,T., Ohshima,R., Fujiwara,S. 254, 2709 (1998)' 2Jang, D. O., Joo, Y. H. SL27g (1997). 'Bunce, R. A., Schilling, C. L. T 53,9477 (1997).
Lithium 3-lithio-3-tosylalkanoates. Their reactionwith Butenolides,t ThesespeciesareB-acylvinylanionequivalents. butenolides. affords and DBU, TFAA treaffnentwith with subsequent carbonylcompounds, A synthesisof rosefuranis basedon this process.
%.oo" '"*"-,rYYo- )^"": BuLi
Li
O
Lithiurn perchlorate-diethyl ether
Lidhr diastereoselective.I Propargylic amirrs are formed in a LiClOo-catalyzed reru
rBonete, (1994). P.,Najera, C.JOC59,3202 Lithium naphthalenide(LN). 15, I 90- 19I ; 18,217-218; 19, 199-200 De-O-benzylation. The reductive cleavage of benzyl ethers with LN is a deprotectionprotocol.r Benzyl anions thus generatedare useful for other synthetic purposes.2 Defunctionalizations. The cyano group of o-cyanoketones3and estersaand the are removedby LN. Carbanions and gem-bissulfones6 sulfonyl residueof tosylamides5 derivedin this way canbe alkylated.
cooEt CN
tt:A
Lithium homoenolates are formed from F-a.yl-c1,pIJnusualcarbanions, unsaturatedketones and esters.Their reaction with carbonyl compounds leads toy-lactols and lactones.TReductive dechlorination of cr-chloroimines provides cr,-aminocarbanions.8 Accessto 1,2-aminoalcoholsis assured. Carbonyl reduction.e Reduction is conducted in the presenceof NiC!'2HrO.
L i N p/ T H F ;
!o
Et
t1"'cHo \"/
+
'tt/
I
SiMe3
t * r
82"/"
Et
B-amino esters3and ketonesaare prepdt
Er O-4
V
t,'Y Ph^/cooM"
Ph
- 78o
86"/o
.o
\
'Liu, H.-J.,yip, J.,Shia,K.-s. ?L 38, 2253(1997). 'Azzena,U., Carta,S.,Melloni,G., Sechi,A. I53, 16205(1997). 3shiu,K.-S.,Chang,N.-Y.,Yip, J.,Liu, H.-J.?t 38, '7713(1997). *Liu, H.-J.,Zhq J.-L.,Shia,K.-S.IZ 39,4183(1998). 5Alon.o,8., Ramon,D. J.,Yus,M. ? 53, 14355(1997). 6Yu,J.,Cho,H.-S.,Chandrasekhar, S.,Falck,J. R., Mioskowski,C. TL35,543'1(1994). tAlonro,8.,Ramon,D. J.,Yus,M. ?53, 26/ 1 0997). 8Alon.o,E.,Ramon,D. J.,Yus,M. I54, 12007(1998). eAlonro,E., Yus,M. T 54, 1g2l (lgg}).
Lithium perchlorate-diethyl ether. 18, 218-219 ; 19, 200-201 Functianalized amines. The LiClOo-catalyzed three-componentcondensation,that result in the formation of cr-aminonitriles using chiral amines and aldehydes is
Deacetylation. u-Substitured a-h in the presence of LiClOo-Et N. Thu cl-bromoestersbecomesavailable.s Indolines.6 Indolines are readily < reaction of 2-aminofurans in which th cycloaddition is promoted by LiClO..
Meooc* \'^ lt-o. \2-N'
)
LO
booet
Glycosylation.t Th" reaction of I and 2,6-dideoxy glycosyl fluorides *.irh 1 require an additional promoter.
lHeydari, A., Fatemi,P.,Alizadeh,A.-A. TL! 'Saidi, M. R., Mojtahedi,M. M., Bolounchra tsaidi, M. R., Khalaji,H. R., Ipakrschi.J. .rcsl A., Naimi-Janal, M. R., Webb,S. ,{-. I larghi, 'Hu, Y., Bai, D. IZ 39, 23'15(1998\. uPadwa, A., Dimitroff, M., Watenon,A. G. f 'Schene, H., Waldmann,H. CC 2759,|99tr
Lithium tetrakis[(phenylbistrifl uora Conjugate additions.t Efficienr rct carbonyl compounds in nonpolar apror TMEDA) is possible when catalyzed b1 I LiAlH4 and HOC(CF,)rPh.
Lithiun tetrakis[(phenylbistrifl uoromethyl)methory]aluminate
l - l . . : : 1 9 ,1 9 9 - 2 0 0 , : henzyl ethers with LN is a ra:..: rre useful for other synthetic t-,\rno ketones3and esters4and the ts. .rL' removed bY LN. Carbanions
diastereoselective.rPropargylic amines are obtained from N-trimethylsilylimines (which are formed in a LiClOo-catalyzed reaction) when lithium acetylides are added.2Similarly, B-amino esters3and ketonesaare prepared.
a
LiClOa.plrg
f\-cHo
\N/
+
\-/
I SiMe3
BTZnCH2COOMe 200
.,^* \/
COOMe
710k
Deacetylatian o-Substituted ct-bromoacetoacetates undergo deacetylation in ether in the presence of Licloo-EhN. Thus, an altemative method for the preparation of o,-bromoestersbecomesavailable.s
82Yo
F. .,re formed from F-utYl-s'Fleadstol-lactols c:r- nll compounds rn.:'::. providescl-aminocarbanions.8 of NiCl'2HrO. d :: ::c presence
Et o-// \/ \
.o
E I I Ph 86'/"
4'-..: C TL35,5437(1994).
1 9 .l r x ) - 2 0 1 that condensation, rJ ::.rr'e-component n: - hiral aminesand aldehYdesis
Indolines.b Indolines are readily obtained by means of intramolecular Diels-Alder reaction of 2-aminofurans in which the nitrogen atom carries a 3-butenyl group. The cycloaddition is promoted by LiClOo.
""ootx^\
\2-*/
Lictor.Etzo _ 10oo
MeOOC._',/-._,--r llI \ \A*'
cooEt
booer 660/"
Glycosylation.' The reaction of protected 2-deoxyglycosyl trichloroacetimidates and 2,6-dideoxy glycosyl fluorides with glycosyl acceptorsin 0.l M LiClOdEtrO does not require an additional promoter. rHeydari, A., Fatemi,P.,Atizadeh, A.-A. TL39,3049(1998). "Saidi, M. R.,Mojtahedi, M. M., Bolourtchian, M. TL38,8O71(1gg'7). 'Saidi, M. R., Khalaji,H. R.,Ipaktschi, J. JCS(Pl)1983(1997). A., Nairni-Janal, M. R.,Webb,S. A., Balalaie,S.,Saidi,M. R., Ipaktschi,J. EJOC tg't (1998). ]Zarghi, 'Hu, Y., Bal.,D.TL39,2375(1998). oPadwa, A., Dimitroff,M., Waterson, A. G.,Wu,T. JOC 63,3986(1998). 'Schene, H., Waldmann,H. CC 2759(1998\.
Lithium tetrakis[(phenylbistrifl uoromethyl)methoxy]aluminate. Coniugate additions.t Efficient reaction betweensilyl keteneacetalsand conjugated carbonyl compounds in nonpolar aprotic solvents (such as toluene, while containing TMEDA) is possible when catalyzed by LiAl[oc(cF3)2Ph]4. The catalyst is derived from LiAlH4 and HOC(CFr)rPh.
226
Lithium2,2'6,6'tetramethylpiperidide(LTMP)
rBarbarich,T. J., Handy, S. T., Miller, S' M', Anderson' O' P'' Grieco' P A'' Strauss'S'H' OM 15' 37'16(1996).
(LTMP)' 13' 167; 14' 194-195:. 17' l1l-172; Lithium 2,2,6,6-tetramethylpiperidide 18,220-221;19,202 chlorides (by reaction with Insertion into C-Zr bonds. Lithiated propargylic Reaction of the ring-expanded species LTMP) are capable of inserting into zirconacycles. Stereodefined llithio-1-chlorowith electrophiles leads to open-chain compounds.l to afford (E)- or alkylzirconocenes with reacts isomer each and l,3.butadienes are pfepared (Z\-dienes.2
:.'--\z o
'o{
6 - ' o
rcordon,G. J.,Whitby,R. J. CC l0t5 r t( 2Kasatkin, A., Whitby,R. J. 7L 3t. {tS3Mutrrmoto, T., Kurilann' T., Hamura, aHolton. C., Kim. H.-B . I R. A., Somoza, H.. Suzuh.\' C. C.,Kim, S.,Nadizadeh, L. N.. Liu. J. H. ./ACS116.1597( l9+r I
Lithium tri-s-butylborohydridc I L tuyl rncd De-O-methylation. THF.' By this method removal of th
in the presenceof r-butyl carbamara LTMP / THF
ZrCp2
-_Ph
,
-78o
aoecY + 1.--^a*rn
-
--) I \rn
(86 : 1a) 7970
unit A regioselective incorporation of an aromatic aldehyde Isochroman-3'ones.t is l-arylisochroman-3-ones give to accompanying oPening of benzocyclobutenones promoted bY LTMP.
I,2-Dinls and l,2-amino alc*r L-Selectride reduction of cdibenzl L anti-1,2-diol monobenzyl ethen lrrd increased dramatically by changug (>99:l\.4
LTMP/THF OO t
PhCHO 70"/o
OBn
such as that IntramolecularC-acylation' Treatmentof 4-acyl-l'3-dioxan-2-ones of contraction in ring for taxol synthesidwith LTMP results appearingas an intermediate the heterocycle.
I
a(
Lithium tri-s-butylborohydride (L-Selectride)
TESO-.
P , ::.-.o. P. A., Strauss,S' H' OM 15'
."--\z
:.'--\z o
l7 , 171-1'72; . . " l.l. 194-195:, ;r:- chlorides (bY reaction with icJ.:r(\nof the ring-expandedspecies b Siereodefined llithio-l-chlororti .,.rr lzirconocenesto afford @- or
TBSO'"'
LTMP
o{ 6 - ' o 90% 'Gordon,G. J.,Whitby,R. J. CC 1045(1997). 2Kasatkin, A., Whitby,R. J. rL 38, 485'7(1997). 3Mutrurnoto, Y., Suzuki,K. TL38,8985(1997). T., Kuriyama, T., Hamura, oHolton,R. A., Somoza, P. D., Shindo,M.' Smith' R. J.,Boatman' C., Kim, H.-B.,Liang,F.,Biediger, H., Suzuki,Y., Tao,C.,Vu, P.,Tang,S.,Zhang,P.,Murthi'K. K., Gentile' C. C.,Kim, S.,Nadizadeh, L. N.. Liu. J. H. JACS116.159'7(1994).
Lithium tri-s-butylborohydride (L-Selectride). 19, 202-203 Aryl methyl ethers are cleaved with L-Selectride in refluxing De-O-methylation. THF.I By this method removal of the protecting group from methyl carbamatesis possible in the presenceof r-butyl carbamates.2
ph
-,,\6=
L-Selectride .,.#
THF
(86 : 1a) 797"
A
OMe
MeO
237o
t\',
'n of an aromatic aldehYdeunit '.c l-arylisochroman-3-ones is
L-Selectride
I-BuOOC-N
N-COOMe
I-BuOOC-N
THF
NH
25O
87% syn-1,2-Amino alcohols are obtained by l,2-Diols and l,2-amino alcohols. Interestingly,O-benzyloxy ketonesgive ketones.3 L-Selectridereduction ofa-dibenzylamino (e.g., anti:syn =6:1) which can be ratios with low isomer anti-1,2-diol monobenzyl ethers to lithium tri*-butylborohydride agent the reducing increased dramatically by changing (>99:I ).4 701o
OBn
OBn
such as that 4-,, r.- 1.3-dioxan-2-ones of contraction ring in results T\tP i iLts
I /\/
Li(n-BusBH)
...................* tl
o
Et2O- pentane CH2CI2 -7Bo
^/ 6H > 70'/"
22E
Lithiumtriethylborohydride
1Coop, A., Lewis, J. W., Rice, K. C. JOC 61,6774 (1996). 'Coop, A., Rice, K. C. TL39,8933 (1998). 3chung, S.-K., Kang, D.-H.TA8,302"1 (1997). 4Faucher, A.-M., Brochu, C., Landry, S. R., Duchesne,I., Hantos,S., Roy' A., Myles, A., Legault, C. rL39,8425 (1998).
Lithium triethylborohydride. ftHydroxy sulfones.t The reductionof a-sulfonyl ketonesproceedsby different steric courses when exposed to LiBEt3H-CeCl, and to BHr/pyridine-TiClo' The anti-isomerdominatesin the former reaction.
o tl
So2Ph
-tto ,
9*so2Ph
SO2Ph +
I
I - CeCl3 85'/" LiBEt3H
<1 : 99
- TiOla py.BH3
87 : 13
85%
cleavage of diselenides.2 Reductive acylation is accomplished by sequential addition of LiBEqH and acyl chloride (including chloroformates and chloroformamides). rMarcantoni,E., Cinolani,S.,Bartoli,G., Bosco,M., Sambri,L. JOC 63'3624(1998). 2Reinerth. W. A.. Tour.J.M. JOC 63,2397(1998).
Magnesium.13, l7O;15,194:16. l9 Desulfunylation. Varioussulf These include alkenyl sulfones. (p-toluenesulfonhydrazides,a N-tosrh group, ring cl electron-withdrawing precedence to detosylation.6
o'l .-NHTs
-
Mg / MeOl-l - 230 (R = Ac)
97"/"
Conjugate reduction. Kererr r a conjugate systemsuffer reduction to by an Ar-complexed tricarbonl'lchru (also with transesterification)is a cno
Wittig reagents.' Magnesium , generationfrom alkylphosphonium se
Arylboronic acids.to Afvl tralx ultrasonication. Hydrolysis of the rq Pinacols.tt A simple merhod presenceof NHnCl.
Reductive silylatian. One of d replaced by a silyl group when m ultrasound.12Aroylsilanes are formcd (with iodine) and MerSiCl in NltPr reactantsis a vinylchlorosilane. r'
\.. Myles, A., Legault, C.
c:,\n.\ proceedsby different o BH,/pyridine-TiClo. The
QH qn^Pn : "
/\
t"-z'
Y
I
o'l \NHTs
-
*-p*-r.
Mg/ MeOH _ 230 (R = Ac)
99 :
Magnesium.13, 170: 15, 194; 16, 198- 199; 18,224-225; 19, 205 Desulfunylation. Varioussulfonylgroupsarereductivelyremovedby Mg/MeOH. These include alkenyl sulfones,r alkyl tosylates,2and N-Boc-arenesulfonamides3 (p-toluenesulfonhydrazides.aN-tosylaziridines5). ButwhentheN-tosylaziridine contains an group, ring cleavageto give B-(N-tosylamino)derivativestakes electron-withdrawing orecedence to detosvlation.6
Mg / MeOH
.................._ ))))) (R= Bn)
tn))*-,
78"/"
977o
I J
Conjugate reduction. bY sequential
xr,'nplished B:c. .rndchloroformamides).
Ketene dithioacetalsin which the C=C double bond is part of
a conjugate systemsuffer reduction to give dithiane derivatives.TThe stereocontrolafforded by an Ar-complexed tricarbonylchromium moiety during reduction of a conjugated ester (also with transesterification)is a critical feature of a synthesisof mutisianthol.n
rer:61-{(1998).
(OC)3Cr. Mg / MeOH
-
cooEr Wittig reagents.e Magnesium (activated by iodine) can serve as a base for ylide generation from alkylphosphonium salts. Arylboronic acids.to Aryl halides, alkyl borates,and magnesiumin THF react under ultrasonication.Hydrolysisofthe reactionmixturesprovidesarylboronicacids. Pinacols.tt A simple method for coupling of aldehydes uses Mg in water in the presenceof NHrCl. Reductive silylation. One of the bromine atoms of gem-dibromocyclopropanesis replaced by a silyl group when mixed with Mg and MerSiCl and inadiated with ultrasound.r2Aroylsilanes are formed from methyl aroateswhen treatedwith activated Mg (with iodine) and Me.SiCl in NMP.r3 A more profound change occurs when one of the reactantsis a vinylchlorosilane.ra
230
Magnesiumbromide
*a) # NHBn
V>U.COOMe
I ll \./
*
z\^..c| /o\cr
M g - 1 2 /N M P ; aq. NH4CI 570k
[6+4]Cyctoadditions.t5 The Cr(0)-mediated cycloaddition reaction is rendered catalytic in chromium by adding Mg powder to maintain it in the proper oxidation state.
__/-\_
Hydride transfer.6 Aromarizarx transferto unsaturated substrates in rhc
Np-C(Co)3 ....."...+
BuCN Mg 14Oo rHolzapfel, C. W., Portwig, M. H 45, 1433(lgg'1). "Sridhar, M., Kumar, B. A., Narender, R. fL 39, 2847 (1998). 3Nyurr", B., Grehn,L., Ragnarsson, U. CC I0l7 (lggl). -Grehn, L., Nyasse,B., Ragnarsson,U. S 1429(1997). 'Alonso, D. A., Andersson.P.G. JOC 63.9455 (1998). 6puk, c. S., Kim, T. H., Ha, s. J. ,/oc 63. 10006il998). tM"ll"n., J . M . , S c h o f i e l dS , . R . , K o r n ,S . R . 7 5 3 , l 7 l 5 l ( l g g : ) . oHo, T . - L . , L e e , K . - Y . , C h e n ,C . - K . J O C 6 2 , 3 3 6 5( 1 9 9 7 ) . "Shen, Y., Qi, M. SC 27, 43lg (lgg7). "'Hu, H., Song,Y.-L., Fang,Y., Zhou, C.-8., Tao, F.-G., Cti, J. yH 17, 4i8 (lgg7). "Zhang, w . - C . , L i , C . - J .J C S ( P t ) 3 l 3 l ( 1 9 9 8 ) . '-Touster,J., Fry,A. J.TL38,6553 (1997). ''Tongco, E . C . , W a n g ,Q . , P r a k a s hG , . K. S. SC27, 2tl7 (1997). '*Tongco, E . C . , W a n g ,Q . , P r a k a s hG , . K. S. S l08l (1997). ''Rigby, J. H., FiedlerC , . H . J O C 6 2 , 6 1 0 6( 1 9 9 7 ) .
Magnesium bromide. 15, 194 - 196; 16, 199; 17, 1'14 ; 18, 226-227 ; 19, 206-20j Deprotection.' p-Methoxybenzyl ethers suffer cleavage on treatment with MgBrr.OEt, and MerS at room temperature.Benzyl ethers survive such conditions. Acetonides and trityl ethers are deblocked with MgBr, in refluxing benzene.2The facile regeneration of carboxylic acids from their B-(trimethylsilyl)ethoxymethyl esters without affecting Boc, Cbz, Fmoc, and Troc carbamatesmakes them useful in peptide synthesis.3 Anomertzatian,a o-Glucosides are obtained from the B-anomers by treating with MgBrr.OEt, and a catalytic amount of Ti\. 3-Hydroxyazeti.dines.5 2,3-Epoxy amines undergo isomerization (cyclization). The reaction is stereoselective.
Imine aldol reaction. Efficienr o promoted by MgBrr-EtrN. Remarkabl; temperature, whereas at lower tcnT configuration.T
t .,,\I U
l RCHo/ MsBr2- e MECN
Chiral 2-bromoalkanols.s [li
r
Magnesium bromide
NHBn
57o/.
\:J:::,,n reaction is rendered ir ::': properoxidation state.
"Y
dioxane A
sw
Bn N
Bn ,N.,
MgXz
Ph?y
Ph<\,/> : 6H
OH
X= Br
73oh
X= |
52Yo
23,
92
:
6.5
7 : 9 3
Hydridetransfer.b Aromatizationof NADH modelcompoundsoccursby hydride of MgBrr. substrates in thepresence transferto unsaturated
Mg Br2/ THF
tvteO-"\r/-yCONH2
r'r"oVruj
Me
Efficient condensationof imines (as donors) with aldehydesis Imine aldol reaction. promoted by MgBrr-Et N. Remarkably, threo products are formed predominantly at room temperature, whereas at lower temperatures the major products have an erythro configuration.T
7 ; 1 - : - S 11 9 9 7 ) .
o o H RCHO/ MgBr2 -Et3N MeCN
.\^-
o o H
( r +
.\-L" t
l
54 -927o (70-90 : 30 - 10)
::'
i17:19,206-20'7
r .J.:. .i!e on treatment with t-- . .urvtve such conditions. The facile | :-:. r\ing benzene.2 .::hLrrymethyl esterswithout lr. n ..-.iul in peptidesynthesis.3 A.: .j-.rnomersbY treating with r. :r'.nzation (cyclization).The
Chiral 2-bromoalkanols.s [N-(p-Toluenesulfonyl)sulfoximino]oxiranes undergo ring opening to give o-bromoaldehydes which suffer reduction immediately, on exposure to the combination of MgBr, and BunNBHo.
Br
^riV'-,r-'z TsN
MgBr2 - Bu4NBH4
torA.,r\,/
cH2ct2 -El2o 79"/" (ee7o"/")
r
232
Magnesiumsulfate
rOnoda, T., Shirai, R., Iwasaki, S. ?Z 38, 1443 (lgg7). 'Haraldsson, G. G., Stefansson,T., Snorrason,H.ACS 52,824 (1998). 3Chen, W.-C., Vera, M. D., Joullie, M. M. fL 38, 4A25 OggT). oMukaiyama, T., Takeuchi, K., Uchiro, H. CL 625 (1997). 'Karikomi, M., Arai, K., Toda, T. TL 38, ffi59 (1997). 6Vasse, J. L., Chalpentier, P., Levacher, V. Sa 1144 (1998). 'Hayashi, K., Kogiso, H., Sano, S., Nagao, Y. SL l2O3 (1996). nBailey, P. L., Briggs, A. D., Jackson,R. F. W., Pietruszka,J. JCS(PI) 3359 (1998).
Magnesiumiodide. Malate esters from tartrute esters.t Derivatization of tartrate esters to cyclic the and subsequent exposureto MgI, in refluxing MeCN accomplishes thionocarbonate deoxygenation.
COOMe I ^u,\a,,,,.COOMe / \
2-o
+
MecN
a
,1 ,COOMe MeOOC v
S'
The chelation effect of Mgl is critical to the aldol reaction between Aldol reaction an aldehyde and a silyl ketene acetal which establishesa stereocenterin an intermediate of
/-oH
M
\
l l l ) \-,,/\N' H
'Grieco,
QH
Mslz
Magnesium triflimide. Alkylations.r Allyl and I nucleophilessuchas silyl kererr i In most casesthis reagentis sl4p
+
P
N /
br
P. A., Handy, S. T. fa 3t. l
Manganese.
Ketones. Organomangar benzyl,r ary1,2heteroaryl3)wirh R halides with lithium naphthalend ketones.
Pinacol coupling and allyh MerSiCls effects pinacol couplinl by Mn in aqueousacetic acid. hr becomesthe major reaction coun
lactacystin.2
Mgl2 I
CH2CI}
OH
I tn\Aon
ru"olores - z^^o u
90%
lactacystin
I OH
Mn - ltOA.
Hzo
740/o
'Rho,H.-s.sc 28,843(r998). 2corey,8.. J.,Li, W.,Reichard, C.A. JACS120,2330(1998).
Magnesium sulfate. t-Butyl esters,t Theseesterscan be preparedfrom acids andt-butanol in the presence of MgSOo and sulfuric acid. r-Butyl ethers are obtained in an analogousmanner. rwright, W., Hageman, (lgg7). D. L., Wright,A. S.,McClure,L.D. TL38,'7345 S.
Tetrahydrofurans. Acrirr Mg turnings which are treated rr radicals from iodoacetaldehy& I Other tetrahydrofuran derivarirt a-iodoalkyl silyl ethersand rrirr The parent carbonyl ylide is gcrr system, 3-substitutedand 3,4{rsl
Manganese 233 Magnesium triflimide. Allyl and benzyl acetates serve as adequate alkylating agents to Alkyhtions.' keteneacetalswhen magnesiumtriflimide is usedto activatethem. as silyl nucleophilessuch reagent is superior to magnesium perchlorate. In most casesthis
: 1 5 9( 1 9 9 8 ) .
/-oH : tilrtrate esters to cYclic lur:r:r MeCN accomPlishesthe
,\
\,,4-^i
/
COOMe
Mg(NTf2)2
* !.ro""
bres
cH2cl2
'Grieco,P. A., Handy,S. T. Zf 38, 2645(199'7).
OH c3:
^1(
v ,cooMe
60"/. t.r. :', the aldol reactionbetween s:.:i, \L'nter in an intermediateof
Manganese. Ketones. Organomanganesereagentsare formedby reaction ofvarious halides (e.g., benzyl,r ary1,2heteroaryl3)with Rieke Mn, which is preparedby reduction of manganese(Il) halides with lithium naphthalenidein THF. Such reagentsreact with acid chlorides to afford ketones. Pinacol coupling and allylatian.
Either activated manganesealoneaor Mn-CCl3-
MerSiCls effects pinacol coupling of aromatic aldehydes.The reactioncan also be mediated by Mn in aqueousaceticacid, but with Mn-Cu and in the presenceof allyl halides allylation becomesthe major reaction course.o
OH
tn\Aon t ' OH
lactacystin 74"/"
r:.:. .rndt-butanolin the Presence n .::r.lnalogousmanner. r: -lH
-iJ5 (1997).
Mn - HOAc .+ Hzo
Mn-Cu,
PhCHO cr/t/ Hzo
'nt/\/ I
OH 831o
Activated Mn is also available from reduction of LirMnClo with Tetrahydrofurans. Mg turnings which are treated with 1,2-dibromoethane.Using this Mn to generatecarbon radicals from iodoacetaldehydeacetalsderived from allyt alcohols,cyclization takesplace.? Other tetrahydrofuran derivatives are formed in the intermolecular addition involving a-iodoalkyl silyl ethersand activated alkenesin a 2:1 ratio, when promoted by Mn-PbCl.8 The parent carbonyl ylide is generatedfrom bischloromethyl ether using the samereagent system, 3-substitutedand 3,4-disubstitutedtetrahydrofuransare obtained in good yields.e
Manganese(Ill)acetate
n4
6'\,A,2\
Epoxidation.' Cooxidation of al solvents has been effected by Mnt OAc r pla.ctams.s Radical cyclizaoo
Mn- / THF
BnO
Bno!l
sulfide deliversB-lactamspossessrne us 70"/"
osiEt3
Mn- Pbcr2/ THF
^
- t
,'\6^
\
rvreooc:.., a
Meo,\-aoMe
l
,sPh
fNan
Wurtzcoupling.to In water, alkyl halides undergo reductive coupling with Mn-CuCl, (30:l). In some casescross-couplings are possible(e.g., 2-methylene-5acid). hexenoicacidfrom allyl bromideandbromomethacrylic 'Kim. s.-H..Rieke,R. D. Joc 61,6766(1998). 2Ki., s.-H.,Rieke,R. D. sc 28, 1065(1998). 3Ki., s.-H.,Rieke,R. D. TL38,gg3(lgg7). *Kim. S.-H..Rieke.R. D. JOC 63.5235(1998). 5Svatos, A., Boland,W. SZ549(1998). 'Li, C.-J.,Meng,Y., Yi, X.-H.,Ma,J.,Chan,T.-H.JOC 63,7498(1998). 'Tang, H., Oshima,K. Sl, 1075(1998). J.,Shinokubo, oTakai,K., Kaihara,H., Higashiura,K., Ikeda,N. JOC 62,8612(199'7). 'Ho.jo,M., Aihara,H., Suginohara, Y., Sakata,K., Nakamura,S.,Murakami,C., Hosomi,A. JOC 62, 8610fl997). r0lvla, J.,Chan,T.-H. TL39,2499(lgg1).
Macrodiolides,o yields.
\
oyo
1/" \J Ph
)Zt:,,'--,,r:l / Ph
These dilacroocr
o'vo
t 'O
-Ph
\ pn
Polyene cyclization.T A hightl sn Mn(OAc)r.2HrO-Cu(OAc)r.HrO in cr
Manganese(Ill)acetate. 13,17l;14,197-199;16,200;17,175-176;18,229-230;19, 209-210 Deoximation.
Regenerationof carbonyl compounds from oximes by refluxing with Mn(OAc), in benzeneis quite efficient (l l examples,86-967o).1 Addition of thiols to alkenes/alkynes.2 Formation of 2,3-dihydro-1,4-oxathiins by cycloaddition and alkenyl sulfides by simple addition is catalyzed by Mn(OAc)r.2HrO. Dibenzoindolizidines.3 N-Aroylindoles undergo free radical cyclization acrossC-2 ofthe indole nucleus and an o-position ofthe N-aroyl substituentby incorporating a malonic
rr,{or
ester.
an \Ar.r'
lp
COOMe Mn(OAc)3- HOAC CH2(COOMe)2 8oo
'Demir, A. S.,Tanyeli,C.,Alrinel,E. fL 3|.' 'Nguyen, V.-H.,Nishino,H., Kajikawa-S..Kr 'Chuang, C. P.,Wang,S.F. 7t 35, 1283r t99{ -Ravikumar, K. S.,Barbier,F.,Begue,J.-p. & "Attenni, B., Cerreti,A., D'Annibale.A.. Rcrr oYoshinaga, T., Nishino,H., Kurosawa.K. Z 'Zoretic, P. A., Chen,Z.,Zhang,Y.,Ribeiro..f
235
Manganese(Ill)acetate
Epoxidation.a cooxidation of alkenes and pivalaldehyde with oxygen in fluorous solvents has been effected by Mn(OAc)r'2HrO. by an allylic fuLactams.s Radical cyclization of malonic monoamides directed pJactams groups' functional possessing useful sulfide delivers
-:foltt F:
MeO-1,
\
/sPh
UeOOC-] a
1-Olvte
/_,d,.,,,
Mn(OAc)3 HOAc
fNen
7Oo
81"/" , --Jr'rgo reductive couPling with p ,:r possible (e.g., 2-methYlene-5n.:- r.'td).
These dilactones of ring sizes I 2 to I 8 are obtained in fair to good
Macrodiolides.u yields.
o)/o
\ o
Or
.O I ,Y
trf
Ph l .- : ,1997). r:, . . \lurakami,C.,Hosomi'A' JOC 62'
! :
Mn(oAc)s
\
Ph -.:.rs r1998). ar
\ Vo
'Ph
HoAc looo
.5
^>-r#< Ph-.Ph
I
F{
-Ph
Prl
Ph
A highly stereoregioselectiveradical cyclization mediated by Mn(OAc)r.2HrO-Cu(OAc)r'HrO in acetic acid is realized. Polyene cyclization.l
l7 . l'l 5 -176; 18,229-230; 19,
DF -:Jr from oximesbY refluxing with b. ."-96%).1 trr.:: ,n of 2,3-dihydro-1,4-oxathiinsby x': . .atalYzedbY Mn(OAc)r'2HtO' :ree radical cyclization acrossC-2 lr. r. . :r'tituent by incorporatinga malonic
o'wo
Mn(OAc)g - Cu(OAc)z
cooEt 38-45% tD"-i., A. S., Tanyeli, C., Altinel, E. TL38,7267 (199'7)2Nguy"n, V.-H., Nishino, H., Kajikawa, S., Kurosawa,K. T 54,11445 (1998). 'Chuang, C. P., Wang, S. F. T4 35, 1283(1994). aRavikumar, K. S., Barbier, F., Begue, J.-P., Bonnet-Delpon' D. I54,7457 (1998)' sAttenni, B., Cerreti, A., D'Annibale, A., Resta, S., Trogolo, C- T 54' 12029 (1998). oYoshinaga, T., Nishino, H., Kurosawa,K. TL39,9197 (1996). lZoretic,P. A., Chen,Z.,Zhang, Y., Ribeiro, A. A. TL37' 7909 (1996).
Manganese{II) chloride
Manganese(Ill) acetylacetonate-sodium chlorite. Mn(acac).-NaClO, in the presenceof moist alumina chlorinates Halogenations. aromatic ethersl and alkenes2at ambient temperature.By using NaBr, nuclear brominations of ArOR is achieved.
Ao"-V"l.rlr,Oar\
H 8
tHi.^ano, M., Yakabe,S.,Monobe,H., Clark,J. H., Morimoto,T.JCS(P1)3081(1997). tYukub", Hirano,M., Morimoto,T. SC28,1871(1998). S., 3Hi.uno, M., Monobe,H., Yakabe,S.,Morimoto,T. SC28, 1463(1998).
Manganese(Il) bromide. 18, 230 The commonly used Pd catalysts can be replaced with StiUecoupling.' with iodides (15 examples, MnBrr-NaCl in NMP for the coupling of organostannanes 5O-927a).The disadvantageis that the turnovernumbersare low. (CuI can be usedinstead of EtrZn and MnBrr.) Organozinc reactions.
Halides are converted to organozinc halides in the presence
of MnBr,-CuCl in DMPU.2 Properlyconstitutedhaloketonesfurnish cyclic alcohols.r
A;--r t t l
\
t
/
Manganese(Il) chloride. Diarylketones.' The modified Stille coupling (using diaryliodonium salts) is catalyzed by MnCl' When it is carried out under CO (l atm) diaryl ketones are produced.
,-\
Pl
t - "
Oxidations. B-Hydroxr sultb sulfides.2A modified procedureinr< Various conventional oxidaum inexpensive,stable,commercialll ar
for dry battery manufacture.a'5 Degradation of proparglic ala oxidation with MnOr. In the prescrr aldehydesalso occurs. Aromatizationt Mangune.e combinationfor the dehydrogenatt
Ph
(s\
Mncr2 / co N M P, T H F
Mnq
827o
'Kang, S.-K., Kim, J.-S.,Choi, S.-C. JOC 62,4208 (1997). 2Riguet, E., Klement, 1.,Reddy,K. C., Cahiez,G., Knochel,P. TL37,5865 (1996). 3stti
snBu3
I '"\AA^,., Br
600
Ph2tBF4
Manganesedioxide. 14, 200-l0l: I Wittig reaction' Allylic "t"l stabilizedylides in the presenceof \
Br
8H
C u C l- M n B r 2 + Et2Zn 7 9P1Pg
rKang, S.-K.,Kim, W.-Y.,Lee.\'.-T . .t 'Hojo,M., Murakami, C.,Ohno.K.. Kub 3Kazmaier. Maier. U.. S. CC 2535r l9t
o 82"/o
Chlorination.2 Alkenes form dichlorides under oxidative conditions (MnCl,give 1-lactones. LiOMe-Or; HCI). Lithium 4-pentenoates The enolate Claisen realrangement of allyl esters of rearrangement.' Claisen addition of MnClr. control by the dipeptides is under chelation
OTBS
Manganesedioxide
: : :r\rist alumina chlorinates ir - \.,Br. nuclearbrominalionr
Boc-var\N^.or^ il
i r ) 8 1( 1 9 9 7 ) .
I
/ THF,; LDA- Mnclz
a\
I Boc-Var..,u
cH2N2
I
237
H
COOMe
88'/"
lr lc-
ll. .
. rn be rePlaced with ,.rlh iodides(15 examPles, .,. ,Cul can be usedinstead ':ni halidesin the Presence .rnish cyclic alcohols.3
rKang, S.-K., Kim, W.-Y., Lee, Y.-T., Ahn, S.-K., Kim, J'-C. TL39'2131 (1998)' 'Ho;o, M., Murakami, C., Ohno, K., Kuboyama,J., Nakamura'S., Ito, H', Hosomi, A H 47' 97 (1998)' 'Kazmaier, U., Maier, S. CC 2535 (1998).
Manganesedioxide. 14,200-2Ol; 15, I 97- 198; 18,230-231; 19' 210 Wittigreaction' Allylic andpropargylicalcoholsundergotheWittig reactionwith of MnQ, afterin situ oxidation. stabilizedylidesin thepresence
Br I nt\AA.,,.
t " "
Br 827o
:-r- <\(,5(1996). l:
,.,\|
u . ' - J i a r y l i o d o n i u ms a l t s )i s .rtm) diaryl ketones are :( r
Br MnO2/ Ph3P=CHCOOEI
c{2ct2
Etooc/\/YVcooEt Br 84o/o
oxidations. B-Hydroxy sulfoxides are obtained by oxidation of the corresponding sulfides.2A modified procedureinvolves MnOr/SiO, with microwaveirradiation.l Various conventional oxidations mediated by MnQ can be carried out with the inexpensive,stable,commerciallyavailablechemicalmanganesedioxide which is produced for dry battery manufacture.a'5 Degradation of propargylic alcohols.6 These alcohols lose the tcFLoHl unit after oxidation with MnQ. In the presenceof KoH, deformylation of the resulting propargylic aldehydesalso occurs. t Mungun"se dioxide in methylcyclohexane is the preferred Aromatization combinationfor the dehydrogenationof 1,3-and 1,4-cyclohexadienes'
82"/" , -:.rtire conditions (MnClt'aa: h.(
rdrnent of allYl esters of
238
Mercury(Il)chloride
'W"i, X., Taylor,R. J.K.TL39,3815(1998). 'Gabbi, Ghelfi,F.,Grandi,R. sc27,2857 (1997). c., 3Vu.-^, R. S.,Saini,R. K., Dahiya,R. fZ 38, 7823(1997). 4Hi.-o, M., Yakabe,S.,Chikamori, 308,310(1998). H., Clark,J. H., Morimoto,T. ./CR(S) sAoyurnu, K., Anzai,M., Ando,A., Shioiri,T. SZ35 (1998)' M., Toriyama, T., Sonoda, N., Yamauchi, ncodt,A. Joc 62,'7471 (199i,. Tcorey,E. J.,Lazerwith,S. E. "/ACS120,12'7'77 (1998).
Mercuration initiates cyclization of allylic position.s The alkenylnrcrcrr intermediates. Hydrolysis of alkenyl sulfues.' Me,SiCl. NaI in MeCN containing eeneratedin situ.
Mercury(Il) acetate.15, 198- 199; 17, 176-17'l ; 18' 232: 19, 2l I Pyrazolines.t The synthesis involves oxidation of hydrazones to nitrile imines by Hg(OAc), and in situ capture by alkenes. c'-Aminoalkynones undergo a 5
o . x
o
H t l
=
X
/ MeNO2; Hg(OAc)2
Boc-N/\.
\
F\
l^ry^"nt,,n
Ph
tcnHln
Ph'/
l^l^"rt,n Ph il"
Boc
x=H,cr
AcO
HO
(+)-preussin
88%
rR^i,K. M. L., Linganna, N. sC 27, 3'737(lg9'7). 2overhand. M.. Hecht.S.M. Joc 59. 4121(lgg4).
Mercury(Il) chloride. 13, 175; 15, 200; 18, 232; 19, 211 are Guanidines.t'2 Thioureascontainingat leastoneelectron-withdrawingN-substituent convertedto guanidineson reactionwith amines,using HgCl-Et,N as catalyst. t Chuin extension of 1-aryl-l-propynes via lithio derivatives by C-Benzylation reaction with a benzyl halide is catalyzedby HgCl. Cyclizntions. Substituted furans are formed from HgC!-catalyzed cyclization of allenyl carbinolswhich are derived from 3-methoxy-l-phenylthio-l-propynel
Phs LDA, I/eCHo
/
OMe
-t=-I
\-^J
OMe
\-^J /-"1 Pi
OMe
rPh HO
I "n", ""'% ]
Mercury(Il) oxide. D ecarb oxylativ e dimeizgtiot' presenceof HgO to give Kolbe rero< Rearrang Dihydropyranones.z dilute sulfuric acid gives 2,3-dihy&ofused to a ring, furans are formed.
OH
Phs.
l"*;
toH
PhS
I "n",,
rkvallet, C.,Lerpiniere, J.,Ko, S. Y. f 53 'Jirgensons, A., Kums,I., Kauss.V.. Kelrt 'Ma, S.,Wang,L. JOC 63,3497(1998r aTso,H.-H.,Tsay,H. 7t 3E,6869( 199-' sHu-g, H., Forsyth,C. J. "/OC62. 8589r I ncrieco,P. A., Dai, Y . TL 39,6997t l99t r
/\\ ,l"d 69%
I
Y\ LO
'\,
.n
.JOME
/\\
prAoAPn 60%
'Habibi. M. H., Farhadi, S. "/CR(S/ 7?6 ( l{ 2Mu.son, C. M., Harper,S., Oare,C. A.. $
Mercury(Il) oxide
I 308,310(1998). n: : , T. JCR(S) r. ., \1 . Ando,A., Shioiri,T. SL 35(1998).
Mercuration initiates cyclization of enynesin which the alkene moiety is silylated at the allylic position.s The alkenylmercurio derivatives thus formed are useful synthetic intermediates. Hydrolysis of alkenyl sulfides.6 These sulfides are converted to ketones by HgClr, Me,SiCl, NaI in MeCN containing calculated amounts of water. Hydrogen iodide is generatedin situ.
I t . i : 1 : 1 9 , 2 lI rr,,: rri hydrazonesto nitrile imines by HgCl2 +
rx:i:!(r a 5-endo-dig cyclization that tcJ :' r \vnthesisof (+)-preussin'
Me3SiCl- Nal MeCN (H2O)
AcO'
AcO
HO
)'cEH
rg
[^N^"rt'n Ph il"
;.--
(+)-preussin
i 3""
19._l F( I ..tron-withdrawingN-substituentare n5 li:('L-EI"N ascatalYst. ;. .:':,'pvnes via lithio derivatives by I t ,, '',r HgCl-catalyzed cyclization of tr. :-renllthio-l-ProPYnel
I r,le
CH2Q|2
/\ ,/'td
Q : _Ph
fused to a ring, furans are formed.
$\r.^
69"/" : r'le
Mercury(II) oxide. Arylacetic acids decompose photolytically in the Decarborylative dimerization' presenceof HgO to give Kolbe reaction products. Dihydropyranones.2 Rearrangementof l-alkynyl-2,3-epoxy alcohols with HgO and dilute sulfuric acid gives 2,3-dlhydro-4H-pyran-4-ones.Note that when the epoxy group is
o i'
hs.. HgCl2
a
rlrvallet,C.,Lerpiniere, J.,Ko, S. Y. T 53,5291(1997). 'Jirgensons, A., Kums,I., Kauss,V., Kalvins,l. 5C27,315(1997). 3Ma,S.,Wang,L. JOC 63,3497(1998). aTso,H.-H.,Tsay,H. TL38,6869(199'l). sHuung, C. l. JOC 62,8589(1997). H., Forsyth, oGrieco, P.A., Dai,Y.TL39,6997(1998).
H Hso-HzSoa
ffi
o J
{"\,^.^. 74"/"
OMe
Hscr2 r< p,XoApn ffi 60"/"
'Hubibi,M. H., Farhadi,S. JCR(S)'176(1998). 2Mu.ron, JOC 63,3798(1998)' C. M., Harper,S.,Oare,C. A., Walsgrove,T.
240
Methanesulfonylchloride-triethylamine
Mercury(Il) perchlorate. Spirocyclizatian.t On exposureto various Hg(II) salts' particularlyHg(Clo/2, allenyl benzyl ketonesin which the aromaticring is p-alkoxylatedcyclize to furnish 2,5-cyclohexadienones. 4-spiroannulated
Altylic chlorides.z A facilc s Baylis-Hillman products invohes n 7,2,3-Trienes.3 A formal t cumulenesis realized on C-stannl lr
OH
Hg(ClOr)z
I
+
o
aq.MeCN
\
,csHrr
Y SnBu3
rHashmi, A. S. K., Schwarz,L., Bolte, M. TL39,8969 (1998).
Methanesulfonicacid. are converted to Rearrangements, Trimethyl Cr-ketotrithioorthocarboxylates rearrangement Fries For MsOH.l with contact on thiolcarboxylates U,,cr-bis(methylthio) reagent.2 efficient to be an MsOH-AlrO,appears
SMe ph l-stvte \./ \ SMe fl
o
o
IMorimoto,Y., Kurihara,H., Yokc- C . 2chuuun,S. P.,Ethiraj,K. S.,Kamar-S 3Araki,Y., Konoike,T.TL39,55{9 r l9
N-(4-Methoxybenzyl)-o'benzeocd Alcohols arr Benzyhtion.t NaH' with deprotonation
tl
t,N ,\ -SME \1
MsoH cH2ctz
MeS SMe
.o
92% Arylmesylates,3 Decomposition of arenediazonium o-benzenedisulfonimides in MsOH affords ArOMs (21 examples, 52-90Vo).
OMe O2 S )u S O2
PhN; .
+
MsOH
MsOPh
6oo
'Carlsen, P.H. J. TL39,1799( l99t '
85Yo
rDegani, I., Dughera, S., Fochi, R., Gazzetto, S. JOC 62"7228 (199'7)' 2Sharghi, H., Kaboudin,B. JCR(S)628 (1998). 3B-bero, M., Degani,I., Dughera,S., Fochi, R., Penacino'P. S 90 (1999)'
Methanesulfonylchloride-triethylamine. 13, 176; 18' 233;19,21l-212 is broughtaboutwithout of pyridine N-oxi.des.t Thedeoxygenation Deoxygenation of thepyridinering. chlorination
4-MethoxybenzYl trifl uoroectt The reageo Benzglation" trichloroacetimidate. It is obaia dehydration product of u-rfluat 4-methoxybenzYl alcohol. Even ! reagent.
tNaku.limu, N., Saito,M., UbukataM-
4-Methorybenzyl trifl uoroacrtimidate
I l{i llr salts. parricularly Hg(ClO/r, n: :. ,r-alkoxylatedcyclize to furnish
Allylic chlorides.z A facile synthesis of (z)-z-chloromethylcinnamic esters from Baylis-Hillman products involves reaction with MsCl_Et,N. 1,2,3-Trienes.3 A formal l,4-dehydration of propargylic alcohols to afford cumulenesis realized on c-stannylation and subsequenttreatmentwith Mscl-Et.N.
OH
^
MsCl - Et3N
.-..............."'_ \qt''
\cux.,,
_ 7go
I
85"k
SnBu3
h'.: \ rrtloxylates are converted to r::- \l.OH.r For Fries reaurangement
U
l.n
tl
\1 /\
'Morimoto. Y.. Kurihara,H., Yokoe, C., Kinoshita,T. CLg\g (lggg). 'Chavan. S. P.. Ethiraj, K. S.. Kamat, S. K. ZL 38, j4l5 (tgg7). 'Araki, Y., Konoike, T. TL39,5549 (1998).
N-(4-Methoxybenzyl)-o-benzenedisulfonimide. Benzylation.t Alcohols and phenols are benzylated with reagent I deprotonation with NaH.
after
,}{--SME
MeS SMe 92yo t-1, ::rnt o-benzenedisulfonimidesin
(\ \:./
O2
s.
N
s'
(\ \:/
v2
\
o
N a H/ T H F
(1)
bc-
\
o ( \ Me
MsOPh
t:
'Carlsen, P. H. J. TL 39,1799(1998). 6C-/o
J ..1 r1999).
: 9,2ll-212 ;lt. l.r-l1 h,\ . ir-nationis broughtaboutwithout
4-Methoxybenzyl trifl uoroacetimidate. Benzylation.t The reagent is much more stable than the corresponding trichloroacetimidate. It is obtained by reaction of trifluoroacetonitrile, which is the dehydration product of trifluoroacetamide under Swern oxidation conditions, with 4-methoxybenzyl alcohol. Even tertiary alcohols form 4-methoxybenzyl ethers with this reagent. rNuku.li.u, N., Saito,M., Ubukata, M. TL39.5565099g).
U2
Methylaluminoxane
B-Methoxy-9-borabicyclo[3.3.1]nonane. B-AIkenyt-9-BBN.l A borane/borinate exchange takes place at remarkably low temperature(0" vs. ca. 100" for boratesand boranes)when alkenyldicyclohexylboranesand B-methoxy-9-BBN are mixed together in THF. The B-alkenyl-9-BBN are not directly accessibleby hydroboration of alkynes because formation of 2:l adducts (gen-bisboryl derivatives) predominates. rHoshi, M., Shirakawa, K., Arase,A. CC 1225Ogg$. N-(1 -Methoxyprop-2-yl) l-t-butyldimethylsilyl)ethylideneimine. Acylsilanes.l The lithiated species formed by using LDA undergoes alkylation. Hydrolysis of the products afford the acylsilanes.A key intermediatefor dammarenediol-Il has been preparedby this method.
Y\\ Y\oM"- +
LDA ; NaOAc - HOAc pentane , H2O
Cp2Zt(HlCl
\*1o.'".
'Akakura, M., Yamamoto,H. SL 17'r l9t'Yamanoi, S., Imai, T., Matsumoto.T.. Sua
Methylaluminum bis(4-bromo-2"5d Mukaiyamaaldol reaction' Tlt MerSiOTf.)greatlyenhances ther ield. Cyclizationof epoxyalkenes.:
MARB
.^.\k
'Corey, E. J.,Lin, S. "IACSl18, 8765(1996);Corey,E. J.,Lin, S.,Luo,C. ZL 38,5.171(tgg.t).
Methoxy(tosyloxy)iodobenzene. Tosylates.t Hydrazonesof aromatic aldehydesand ketonesareconvertedto tosylates
Methylaluminoxane.
,
- 7go
'Oirhi, M., Aratake,S., Yamamoto.H../.{Cl 2Murur", N., Maruoka, K., Ooi, T., Yarnann
Methyl bis(2,4-difluorophenyl )pb@ Emmons-Wadsworth reactiott' (.]-2-alkenoicesters.
by PhIO(OMe)OTs. rRamsden, C. A., Rose,H. L. SZ21 OggT\.
[
cqzct2
(1,\8
v \-,
tz4:.r,^y.
o.\
F1
// \\
a
)-o
x.zP - \CooMe
F
Lewis acid,t
This organoaluminum reagent (MeAlo)", a partial hydrolysis product of trimethylaluminum, is more efficient than conventional lrwis acids such as Me.Al, as catalyst for inducing Diels-Alder reactions and aminolysis of esters. Carbozirconatian.2 The presenceof MAO is essential for the reaction of alkynes with the allylic zirconocene chlorides derived from allenes. The Lewis acid presumably enhancesthe carbozirconation of alkynes by promoting formation of cationic Zr speciesin the same manner as during the polymerization of c,-olefins.
'Kokin, K., Motoyoshiya, J.,Hayashi. S . .{o
Methyl chloroformate. Nitriles.' Elimination of dinrrhl occurson exposureto CICOOMe.
Methvl chloroformate
c8Hj7-
Ec :Aes place at remarkablY low rn ri kenyldicyclohexylboranesand 8-.rikenyl-9-BBN are not directly lrr,,n of 2:l adducts@em-bisboryl
Ideneimine. -i.:ns LDA undergoesalkYlation. i rn:trmediate for dammarenediol-Il
Cprz(H)cl
\-1o.,".
tzrtvN^vosiR3+ Ph'
f'
zz
ll
-""'"-y/\-'Yrot'"' lvlAo
pn/
lAkakura,M., Yamamoto,H. SL2'l'7(199'l). 2Yamanoi. T., Suzuki,K. fL 38,3031(1997) S..Imai,T.. Matsumoto,
Methylaluminum bis(4-bromo-2,6-di-t-butylphenoxide). Th" addition of a bulky aluminum cocatalvst(with Mukaiyama aldol reactiont Me,SiOTf) greatly enhancesthe yields of the adducts. Cyclization of epoxy alkenes.'
:: -;\ t
MARB
t
CH2CI2 - 780
-CHO ll
(
t
i
l
\r..,,,,,,.-\ T I
f,r, F.l
r r I.uo.G. TL38' 5'l'll (199'l)
'Oishi,M., Aratake,S.,Yamamoto, H. JACS120,8211(1998). 2Murur",N., Maruoka,K., Ooi,T., Yamamoto, (1997). H. BCSJ70,'1O'7
Methyl bis(2,4-difl uorophenyl)phosphonoacetate. ' The reagent is suitable for the preparation of Emmons-Wadsworthreaction (Z-2-alkenoic esters.
lrrJ \.rr)nes are convertedto tosylates
o.\\ D/ / \ \ 1 ' \
F_<
lc t.t ) r.. a partial hydrolysis product i(.r.r. Lewis acids such as MerAl' as )lr.i. rrfesters. c.<'ntral for the reaction of alkynes d.:r.'. The kwis acid PresumablY lq :. 'nnrtion of cationic Zr speciesin l c :l : . .
\)_d\z
a
NaH/ THF +
CooMe
pri PhCHO oo
F
COOMe
93k(Z:E=96:4)
fKokin,K., Motoyoshiya, S.,Aoyama,H. SC27' 2387(1997) J.,Hayashi,
Methyl chloroformate. Elimination of dimethylamine fromN,N-dimethylhydrazones of aldehydes Nitriles.t occurson exposureto CICOOMe.
244
Methylenetriphenylarsane
tseyer,
txiao,Z. Timberlake,J. W. 754, 12715(1998).
N-Methyl-2-chloropyridinium iodide. Guani.dines.l Substituted thioureas are converted to guanidines by reaction with primary amines under the influence of the chloropyridinium salt in the presenceof Et N. N-Methoxy-N-methylamides.2 A convenient preparation of RCON(OMe)Me from
A., Alcaraz, L., Miosko*'ski. C ].I
)pf c Methylenetris(dimethylamino Allenes,t On activation *ith (MerN)rP=CH2 reacts with aldehld obtained when such salts are funhcr d
carboxylic acids employs the Mukaiyama reagent' rYong,Y. F., Kowalski,J. A., Lipton,M. A. JOC 62,1540(1997). 2sibi,M. P.,Stessman, J.W., Lu, J.,Marvin,M' SC25' 1255(1995)' J. A., Christensen, C. C.,Schultz,
(iPo)zTiclz / THF: (Ms3Si)zNNa / THF; (Me2N)3P=CH2 4-MeC5HaCHO:
trifl uoroacetate. Methyl(2,6-dimethyl-4-nitrophenoxy)aluminum Intramolecular capture of a propargyl cation, which is CycliZation-reaftangement.t stabilized by hexacarbonyldicobalt complexation at the triple bond by the double bond of an allylic alcohol, is followed by rearrangementto give a cyclic ketone.The tricyclic portion of ingenol is thereby created.The presentorganoaluminum catalyst appearsto be the most efficient among those screened.
Aco \
U
I '
aq. NaBPha
tReynolds, K. A., Dopico,P. G.' Bro4. \
Methylidynetricobalt nonacorh! Th Pauson-Khandreaction.t h intermolecular and intramolecular
(Co)g
lcolt
rSugihara, T., Yamaguchi,M. JACSlt.
O
.._\f'co1coy. (cFsCoo)AlMe(oA0 CH2C|2
N-Methylmorpholine N'oxide. Dct Acylnitrosocompounds.t enophtl very reactive generatesthe oxidation is carried out in the presca t Pauson-Khandreactians.2
- 23o
-J
A,= o,N{-)-l
1
participate in the reaction.
'Nukurnu.u, T., Matsui,T., Tanino,K., Kuwajima,I. JOC 62' 3032(199'7).
Methylenetriphenylarsane. L-Alkenes.t This analog of Wittig reagents transforms activated halides and mesylatesto I -alkenes.
rrreo_..,Zt'er MeOV
v"o-..,/-A Ph3As=CH2 THF. HMPA
frrf"OV
-"lK
Co2(CO)g NMO
rHF- ayq
Us
N-MethylmorpholineN-oxide
rSeyer,A., Alcaraz,L.,Mioskowski,C. TL38,7871(1997).
l : !l:] ii:
ruanidines by reaction with ..rlr in the presenceof EqN. :,'n of RCON(OMe)Me from
Methylenetris(dimethylamino)phosphorane. Allenes.t On activation with (iPrO)rTiCl,
and (Me,Si)rNNa the phosphorane (MerN)rP=CH2 reacts with aldehydes to form alkenylphosphonium salts. Allenes are obtained when such salts are further deprotonatedand treated with other aldehydes.
(i-po)2ricr2/ rHF;
u - \lan in, M. SC25,1255(1995).
Droacetate. rs ,: r propargylcation,which is nr.: hond by the double bond of r - :. ketone.The tricyclic portion m'.-.:trlvst appearsto be the most
( M e 3 S i ) 2 N/ N a F: TH (Me2N)3P=CH2 4-Mec6HacHo:
-BPh+ u
-{:7^ v ,nr,, THr;
. ,/f-\\ LP(NMe2)3 mesitatdehyde
'4,
\
'a\ h
i-
Y
aq. NaBPha
lReynolds,K. A., Dopico,P. G., Brody,M. S.,Finn,M. G. JOC 62,2564(199'7).
nonacarbonyl. Pauson-Khand reacti.on.' The stable cluster HC[Co(CO)r]. is a catalyst for intramolecular and intermolecular Pauson-Khand reaction.
Methylidynetricobalt
rSugihara, M. ,IACS120,10782(1998). T., Yamaguchi,
N-Methylmorpholine N-oxide. Acylnilroso compounds.t Dechlorinative oxidation of s-chlorooximes with NMO generatesthe very reactive enophiles. N-Allylhydroxamic acids are obtained when the oxidation is carried out in the presenceof suitable alkenes. Pauson-Khand reactions.2 4-Alkylidenecyclopentenones are formed when allenes participate in the reaction.
)::
\-l
nr)r).
. flr-Ja;;, tit-"*,"o,.
NMo
-\
ll
LO
a:.: ,nns activated halides and
:"TK
Co2(CO)6;
NMO THF - cH2cl2
\
Y,"-"_"r-^-r,1 | Fo
MeOoc-| lvrEvvv
f"
K Meoocor-12\-o
Meoo/\
'
(90 : 10)
246
Methyl(trifluommethyl)dioxirane
oxidation.3 Tricarbonyliron-complexed dienols in which the hydroxyl group is allylic undergo oxidation to afford the correspondingcarbonyl compounds by NMo in the presenceof molecular sieves.Alcohols further removed are not affected.
oxone -il€C{ N a H C O g /a
J/
[e(Co)3 OH z-1r
Fe(Co)3
NMo
\LJ""
\ \
o
--J/[=^ \\_
.+
ether L-oH
\
MS4A
s1%
Lon
rQuadrelli. P.. Meila. M.. Carmeila.p. TL Jg,3233 ilggg). -Ahmar, M.. Chabanis,O., Gauthier,J., Cazes,B. ZZ 3g, SZll (tgSl). 'Dasgupra, B., Donaldson,W. A. TL39,343 (199g).
2,3-Ep ory sulfo nyI chb ridet chloridesthe reactivereagenr instabilityof the sulfonylchlori<
o-o
r3cXr 2-(Methylselenomethyl)-2-propenyl methyl selenide. Allylsilanes.l Replacement of one of the serenosubstituents by a s'yl group is achievedby reactionwith BuLi and a chlorosilane.A secondSe/Li exchangeon the remainingMeSegroupprovidesreactivenucleophilic reagenrs.
SiMe3 SeMe
BuLi
;i
== ,z-SiMe3 OH
| --t-sirt'r"'
I
l-\L
l
b
\_l_ ( \ \__,/ 87/"
'Kriefl e., Dumont,w., Marko,I.8., Murphy,F.,vanherck, J.-c.,Duval,R.,orevier,T., Aber,U. sz t2t9 (1998).
/\Vsozcl
cFl&
'Yang, D., Yip, Y.-C.,Wang,X.-C. Il 'Bonini, B. F., Kemperman, G..Willa fi998).
Methyltrioxorhenium.
ll, 192- | Preparation,t A relativell MeoSn.The first reaction generarc
and then alkylated with MeoSn.Th and offers the possibility of recl.cU
Allylic transpositions.2 All, temperaturewith MeReO. as catal
6-(Methytsulfi nyl)hexanoic acid. oxidation.t This compound servesas a substituteforDMSO in the Swern oxidation. Its advantagesinclude recoverability of an odorless thioether. It can be tied onto a solid support by derivatization of the carboxyl group. rl-iu, Y., Vederas, J. C. JOC 61,7856(1996).
Methyl(trifl uoromethyl)dioxirane. 15, 2 | 2; 16, 224; lg, 242; 19,2 | g_2 lg cleavage of oxarcrines.t 2-Aryloxazolines suffer oxidative ring scission to give nitro esterson exposureto the dioxirane reagent.saponification leads to carboxylic acids.
Dicls-AUerreactions.' Ul various solvents (including walerr I 7,3,5-Trioxanes.a MTO is aldehydes.With two different aldc from the limiting RCHO are fornu
Methyltrioxorhenium
tlc .:rdror)l group is F'-:J. b1 NMO in the I ::'J
j
'
###1f b) Y,^
*a
^
.
/
c
r
c
oxone-MecocF3> d<" NaHco3 / aq.MecN Y
cr
+
blrrrO. br _^
W
l
d^"oo'. Y
br 90o/"
1 LOH
2,3'Epoxysulfonylchhrides,2 obtainedby epoxidationof the unsaturated surfonyl chloridesthe reactivereagentsare transformedinto cyclic sultones.The hydrolytic instabilityof the sulfonylchlorideslimits theepoxidizingagent.
oaP - ^--r_-cH3 F3c/\/so2ct s .; .r silyl groupis l1 : .'rchangeon the
o;lsozcr
Et3N
\o'soe
cH2ct2
48y"
'Yang, D., Yip, Y.-C.,Wang,X.-C. TL38,7083(tggl). 'Bonini, B. F., Kemperman, G.,Willems,S.T. H., Fochi,M., Mazzanti,G., Zwanenburg, B.
( ree8).
SL l41l
-SiMe3 OH
-1.\ E7o,"
r.. Abel,U. SZ
Methyltrioxorhenium.17, 192-193;lg, 21j Preparation.t A relativelyinexpensive perrhenate saltis treatedwith Mersicl and MeoSn.Thefirst reactiongenerates Rero, whichis cleavedby anothermoleculeof Me,SiCl andthenalkylatedwith Me.Sn.The methodavoidstheuseof themoisture-sensitive Re^oandoffersthepossibilityof recyclingspentcatalyst(asperrhenates). Allylic lranspositions.2 Allylic alcohols undergo 1,3-transpositionat room temperature with MeReO,ascatalyst.
MeReO3
hc Sir ern oxidation. h' :red onto a solid
PhH
Ylo, 86"/"
i-:1e rs ..r\sion to give o . rrlroxylic acids.
Diels-Alder reactions.3 Using MeReo to catalyze the Diels-Alder reaction, 3 various solvents (including water) can be used. 7,3,5'Trioxanes'a MTo is an effective catalyst for the cyclotrimerization of aldehydes.with two different aldehydespresent mixed trioxanes containing one R group from the limiting RCHO are formed. Water inhibits both forward and reversereactions.
U8
Methyltrioxorheniurn-urea-hydrogenperoxide
tH"..-ann, W. A., Kratzer,R. M., Fischer,R.W.ACIEEX,2652(lgg7). 'Jacob, J., Espenson,J. H., Jensen,J. H., Gordon,M. S. OM 17,1g35 (199g). '.Zhu,Z., Espenson,J. H. JACS 119,350i. (tgg7). -Zhu,Z., Espenson,J. H. S 417 (1998).
Methyltrioxorhenium-hydrogen
peroxide. 19, 217 Epoxidations. The MeReor-pyridine -30vo lr"o, system finds wide applicability as an effective epoxidizing agent.l 3-cyanopyridine2 and pyrazole3 have also been used instead of pyridine. The role of pyridine in suppressingthe acidity of MeRee and thereby ensuring survival of sensitive epoxides was discovered accidentally.a Oxidation of nitrogen compounds. Secondary amines are converted to nitrones in fair yields. While benzylamines are oxidized to oximes, other primary aminesgive mixtures of products which include oximes, azoxy compounds, and nitrosodimersl N'N-Dimethylhydrazones of aldehydesundergo oxidation that results in nitriles in excellent yields when treatedwith an ethanolic solution containing a catalytic amount of MeRee and 2 equiv of HrOr.6,7Pyridine N-oxides are easily prepared.s a,Ketok." The MeReo,-pyridine -30% rto2 system offers a new alternative to older reagentsfor the conversion of silyl enol ethers to g-ketols.
Methyl(triphenylpbocp Dimethyl aceUls.l (PhrP)AuMeand MsOH stoichiometric mercurys
rTeles, J. H., Brode, S.. Che
Molybdenum carbeDc ( Alkene metathesk. Grubbs catalysts (e.g.. in are more demanding srcl must be carried out. Tlr i
efficient preparation of Mo-carbene catalyst ir tetrahydropyridine subun
-rY o/\l
tvillu d" P.,A. L., De Vos,D. E.,MontesdeC.,C.,Jacobs, p. A. TL3g,g52l(199g). tcop"."t, C.,Adolfsson, H., Sharpless, K. B. CC 1565(1997). 'Herrmann, W. A., Kratzer,R. M., Ding, H., Thiel,W. R., Glas,H. JOMC SSS,2g3 (lggg). -Sharpless, K. B. JACS119,6189(1997). -Yamazaki, S. ACS./70,877(1997). nstankovic, S.,Espenson, J. H. CC 1579(1998). 'Rudler, H., Denise,B. CC 2145(1998). Ecoperet, c., Adolfsson, H., Khuong,T.-A.v.. yudin,A. K., Sharpless, K.B. Joc 63,1740(199g). eStankovic, S.,Espenson, J. H. JOC 63, 4l2g (19gg).
Methyltrioxorhenium-urea-hydrogen
peroxide. 19, 2lj -21 g Furanopening,r Enediones are produced when furans are oxidized with the urea-HrO, adduct catalyzed by MeReO..
MeOOC-*-^.-72
TBSO MeReO3- urea.H2O2 i+
c{zct2 871o
sulfuxides.2 oxidationof sulfidesin MeCN takesplaceat room temperature. rFinlay, J.,McKervey, M. A.,Gunaratne, H. N. Il, 39,5651(199g).
e. 'Gunaratne, H. Q.N., McKervey, M. A., Feutren,S., Finlay, J., Boyd, J. TL39,5655 (199E).
Molybdenum carbenecomplexes
r.r -1616520997). r i t t 1 7 .1 8 3 5( 1 9 9 8 ) .
Methyl(triphenylphosphine)gold. Dimethylacetals.t The addition of methanolto alkynes requires I molvo of (PhrP)AuMeandMsOH or HBF,. The catalystsystemis far superiorto that comprising mercurysaltswhich aretoxic. stoichiometric rTeles, J. H., Brode, S., Chabanas,M. ACIEE37,1415 (1998).
Ft,o, system finds wide applicability drn.-r and pyrazol€ have also been used r..rng the acidity of MeReQ and thereby i'l
n crcd accidentally.a drn amines are converted to nitrones in [lmc.. otherprimary aminesgive mixtures ;ompounds, and nitrosodimersi r\ r\ : irr lon that results in nitriles in excellent tb:: rns a catalytic amount of MeReQ and rtf .rrcd.s H.( ). rvstem offers a new alternativeto rr. :,, cr-ketols. :\r.
R
[)
.\
. rL 39,8521(1998).
. , . .H. JOMC 555,293(1998).
Mof ybdenum carbene complexes. 17, 194 - 195 : 18, 242-243 ; 19, 219-221 Alkene metathesis. Generally the Schrock catalysts are more reactive than the Grubbs catalysts (e.g., in the formation of 8-membered rings) but experimental conditions are more demanding such that rigorous purification, drying, and degassingof the substrates must be carried out. The intramolecular version of the alkene metathesisis applicable to the efficient preparation of fused p-lactams,l and to chiral dihydrofurans with catalyst 1.2 Mo-carbene catalyst is superior to Ru-carbene catalyst for the closure of the tetrahydropyridine subunit during an approachto tabersonine.3
o/'\y'
PhH
ft
a N
8 6 % ( 9 3 %F )
,ilioo* .{ \
(1998). iharpless,K.B. JOC63,1740
(1) d r . 1 9 .l l 7 - 2 1 8 hi r. hen furans are oxidized with the
""-r.\
tttleOOC-"2^::Z Schrock catalyst PhH
.).._)* tl 1"",
600
/\-2
|
,F: l:
Ozru€',,/
{
Fru1
(
,/:\
c\ :rles
ioo"-r.\ (),r =
place at room temPerature.
!e :"5 I r 1998). i : . ' ,i . Boyd,J. TL39,5655(1998).
|
-rV H
ll
I
I COOMe
tabersonine
il |
ricrs-rn.onc
Molybdenum carbene complexes
In assembling 6:8-fused ring systems as those found in brevetoxin the intramolecular ring closing metathesiscannot be applied to the formation of more heavily substitutedenol ethers. In such casesit is expedient to use allyl ethers and effect a double bond migration afterwards.aOne should be careful about double migration (from a l-alkene to 2-alkene) prior to the ring closing metathesis, as shown in the generation of an S-membered oxacycloocteneinstead of a desired 9-memberedhomologue.s
o
IMol
Imine metathesis.e
Tr.o
of four possible imines. tBurr"tt,
A. G. M., Baugh, S. P. D. -8. L., Procopiou,P. A., White. A 'La, D. S., Alexander,J. B.. Cefdo. (1998). 3Kozmin, S. A., Rawal, V. H../.,rC acl*k, J. S., Keule, J. c. rr 3t. l: 5Joe, D., Overman, L. E. IL 3t. 86 oFeng, J., Schuster,M., Blechen. S 'Brummer. O.. Ruckert. A.. Blecln 8stragies, R., Blechert, S. SL 169 r I 'Cantrell, G. K., Meyer, T.Y. O.V
nr"'(o
and B,y-unsaturated of allylstannanesb is a conduitto T-substitution Crossmetathesis esters.T
./"-z
t
Schrockcatalyst CH2CI2
\z\.cooMe
Molybdenumhexacarbonlt I 19,221-222 Deoximatian.t The u-an F riedel- Crafts alkylatba by Mo(COt reactioncatalyzed
,COOME
o
ot\"s=--z
A
\-\,coorvte AcO 83'/"(E:Z=2:1)
Tandem ring-opening/closing metathesis.s A nice method for the elaboration of derivativesrelies on metathesisof endo-5-alkenyl-2-norbornenes bicyclo[n.3.O]alk-2-ene with other alkenes. The initial intermolecular ring-opening metathesis that splits the norbornene nucleus is followed by an intramolecular metathesis involving the endo-S-alkenechain. While [Ru]-carbene complex is useful for inducing formation of the 5:5-fusedbicycles,reasonableyields ofthe 7:5- and 8:5-fusedanalogsare obtainableonly
Dihydrobenzofuransand, is observed*tx rearrangement prenyl example, aryl ethersgir
4Yo)
\-/ v
with a [Mo]-carbene complex.
I
H
z+\
Qo-,..
|
[.r'''t"'
\-T"
|
>""'/
: H
Ores
/-
lMol
83%
[Ru]
71o/o
'sitvle3
Oxidation." Oxidationc supercritical carbon dioxide 1 epoxidesbut vinylnaphthalerlcs aldehydes.
Cyclopentenones.l Allc presenceof Mo(CO)uin DMSO
Molybdenumhexacarbonyl251
t \ : ,\\in the intramolecular
f,crvily substitutedenol
f,\:l
r-: Jouble bond migration n::' .r l-alkene to 2-alkene) t l . : ,'n of an 8-membered
Imine metalhesis.e of four possible imines..
Two imines containing different groups give equimolar mixtures
rBarrett, D. C.,Flack,K., Gibson,V. C.,Giles,M. R.,Marshall, A. G. M., Baugh,S.P. D., Braddock, P. A., White,A. J. P.,Williams,D.J'JOC 63,7893(1998). E. L., Procopiou, 2Lu.D. S.,Al"*under,J. B., Cefalo,D. R., Graf,D. D., Hoveyda,A. H., Schrock'R. R. JACS120'9'720 (1998). 3Kozmin.S. A.. Rawal.V. H. JACS120,13523(lgg8). acl*k, J. S.,Kettle,J. G. rl.38, 127(1997). tJo",D., Overman, L.8.TL38,8635 (1991). 6Feng,J.,Schuster, M., Bleche(,S. SL 129(199'r-). 'Brummer,O., Ruckert,A., Bleche(,S. CEJ3, 441(199'7)' 8Stragies, S. SL 169(1998). R.,Blechert, 'Cantrell,G. K., Meyer,T.Y. OM 16,5381(1997). -244 ; Molybdenum hexacarbonyl. 13, I 94- I 9 5 ; 15, 212-213 ; 16, 225-226; 18, 243
nir.rlc-:6and p,y-unsaturated
ta
19,221-222 The transformation is carried out in aqueousMeCN at reflux. Alkenes and ethers are used as electrophiles in the Friedet-Crafts alkylations. reaction catalyzedby Mo(CO)".2 Allyl acetatesand alcohols are also suitable substrates.l Deoximntian,t
.COOMe 'v
*
/f-Ph
tr,to(co)u
r--1,,COOMe
lsso
Acd
80%
)3".(E:Z=2:1) l:: \l lor the elaborationof r.j i-alkenyl-2-norbornenes t :r',.lrthesisthat sPlits the involving the :rT.'tJthesis [, : ::rJucingformation of the are obtainableonlY I ::r.rir19s
.-tl
r
) As,n,".
l i = >
ai'.
1 / -\J-'n f
skeletal with Cyclization Dihydrobenzofurans and 2,2-dimethylchromans. for in toluene, with Mo(CO)o are heated reaffangementis observed when aryl allyl ethers example, aryl prenyl ethers give 2,2-dimethylchromans'4'5
er"\
Mo(CO)e P h M e 11 0 o
Oxidation.b Oxidation of cyclohexene and norbornenewith Mo(CO)u-l-BuOOH in supercritical carbon dioxide gives vic-diols. Some alkenes (e.g., cyclooctene) afford epoxidesbut vinylnaphthalenesand cis-stilbeneundergo oxidative cleavageto the aromatic aldehydes. Cyclopentenones.l Allenynes undergo a Pauson-Khand-type reaction in the presenceof Mo(CO)u in DMSO. The substitution pattern of the allenyl moiety has profound
252
Montmorilloniteclays,metalion doped
effects on the product structures. Thus, monosubstituted allenes give Cr-methylene cyclopentenones,whereasdisubstitution alters the course.
q-''"* Mo(Co)o
+
SiMe3
fY\-o
Nafion-H. 14, 213:'lt, 246 Ep oxide cy clizntio tr-l formation.However,this t presence of Lewis acids.
DMSO - PhMe
\
1000
687o
(
B --\^
u
Mo(C0)6 + DMSO - PhMe
/--Zf l l '("
1ooo
\
F
2>/
o
U
Bu 607o
'Geneste, F., Racelma, N., Moradpour, A. SC 27,957 (199'l). 2shitnirr, I., Khien, K. M., Nagatomo,M., Nakajima,T., Yamamoto,A. CL 851 (1997). 3shi-iru, I., Sakamoto,T., Kawaragi, S., Maruyama, Y., Yamamoto, A. CL 137 (199'1)aBernard, A. M., Cocco, M. T., Onnis, V., Piras,P. P. S 41 (1997). sBernard, A. M., Cocco,M. T., Onnis,V., Piras,P. P. S 256 (1998). oHaas, G. R., Kolis, l.W . OM l7 , 4454(1998). 7Brummond, M., Wan, H., Kent, J.L. JOC 63,6535 (1998). K.
Montmorillonite clays. 15,213 -214: 18,244-245; 19,222 Montmorillonite clays,metal ion doped.15, l}l , 178-179;18,244-245;19,223 The effectsof clayson practiallyall typesof organicreactionshavebeeninvestigated.
&
rTaylor, S.K.,Dickinson. M, (
Nickel.12,355;13, 197:lt UIJmanncoupling.l electrolysis of a DMF solu current.aryl halidesunderg Reductianof nifivnnt catalystpreparedby reduco nitroarenes areconvertedlo Hydroindolaneform alkaloidsinvolvescyclizar acidin refluxingisopropao
Meo-lz)a t"o'^Vf(
FV
/
D
\--l
3-demefit
trlr..:rtuted allenes give ct-methylene xlLr.a
SiMe3
f-(Yo
Nafion-H. 14,213;18,246 with Nafion-Hleadsto ring Epoxidecyclimtian.t Treatmentof o-epoxyalkylarenes formation.However,this transformationdoesnot alwaysparallelthat conductedin the
\
of Lewis acids. Dresence
68%
a'^\z\ l l F
\N
o
CH2C|2 - CF3CH2OH
\n
I Bu
88"/o
60"h
F-
'\ '\
ara =,Y
r : . r m o t oA. . C L 8 5 1 ( 1 9 9 7 ) . 'r.1moto.A. CLl37 (199'7).
I q9N ).
t: le.ll2 1 . . r- I 79;18,244-245;19'223 r ! , . reactionshavebeeninvestigated
lTaylor,S.K., Dickinson, P' C' S 1133(1998)' D A', Sadek, M. G', May' S.A., Pickering,
Nickel. 12, 355 : 13, 197; 14, 213; 18, 246; 19, 224 Using the highly reactive nickel which is prepared by Ullmann coupling.t electrolysis of a DMF solution in an undivided cell (Pt cathode, Ni anode) at a constant current, aryl halides undergo coupling to give biaryls at 100" (4 examples, 58-90Vo). Reduction of nitroarenes.2 with hydrazine hydrate as hydrogen sourceand a nickel potassium. catalyst preparedby reduction of anhydrousNiCl, with ultrasonically dispersed nitroarenesare converted to arylamines at room temperature(9 examples' 90-lNVo). An expedient method for the synthesis of erythrina Hydroindolone formation,3 enamideswith nickel powder and acetic of N-trichloroacetyl alkaloids involves cyclization acid in refluxing isoproPanol.
rvreoffi
.o
""oy)fi.
o*"o
%*t"'
""o'Jr-s1"t-'' j"'*rY :*^".;; ,V Xt (r" Y l Ir MeO
3-demethoxyeMhratidinone
(,
254
Nickel, Raney
rYasuhara, A., Kasano, A., Sakamoto,T. OM l7 , 4754 (1998). tLi,H.,Zhung,R., Wang, H., Pan,Y., Shi, Y. SC 27, 304'7(lgg7). tcassayre, J., Quiclersire, B., Saunier,I.-F ., Zard, S. Z. TL 39, 8995 ( 199S).
Nickel, Raney. 13,265-266; 14,270; 15, 2'18;17,296; 18,246 Cleavageof hydrazines.t Hydrogenolysis follows addition of alkyllithiums to SAMP/RAMP hydrazonesin chiral amine synthesis(13 examples,4l-73%o). Isoquinolines.2 N-Benzylsulfonyl- 1,2-dihydroisoquinolines undergo aromatization heating on with Raney-Ni in dioxane(6 examples,6l-99%o).
Ra-Ni
MeO
NS02Bn
dioxane
MeO
A
7 5"/o
Hydrogenations.'
The Raney nickel-isopropanol system shows superiority over
Nickel accirr Desulltri N-methylpip (generally5dramaticin cr Aminab Ni(OAc),-2. lKuehm-Caubcr 2Brenner, E.. R
Nickel(U) r Crussr:a aryl chlorida divalentsulfu reagents.3 For exceedingll preparationo reactionwith
many others in catalytic hydrogenation. Epimerization.a The C-3 of digitoxosides undergo epimerization under hydrogenation conditions (Raney Ni, MeOH, 50') to afford olivosides (7 examples, 96-997o). With nascent Raney nickel generatedfrom Ni-Al alloy in Hydrodechlorination.s dilute aqueous alkaline solutions, chlorinated biaryls can be dechlorinated or have the chlorinated ring completely converted to a cyclohexane moiety.
(ffi''
w w
100%
Stille-ryp provides sqrr
For acccs catalyzed b} i Orgatu (particularll t
catalyzed by system effect Homoally 3-buten-I -1lt
100Yo tEnde.r, D., Nubling, C., Schubert,H., Bartzen,D. LA 1089(1997). 'Larghi, E. L., Kaufman,T. S. 7L 38, 3159 (1997). rRegla, I., Reyes,A., Korber, C., Demare,P., Estrada,O., Juaristi,E. SC 27,817 (1997). *Toshima, K.,Inagaki, K., Nakata,M., Matsumura,S. S4 695 (1997). 'Lin. G.-B., Tsukinoki, T., Kanada,T., Mitoma, Y., Tashiro,M. TL39,5991 (1998).
i
,
Nickel(Il)
<
.u\ |
x.:::r,rn of alkyllithiums to r r . r . : . .J l - 7 3 7 o ) . l. .::1.\undergoaromatization
acetylacetonate
Nickel acetate. Desulfurization.t The reagent system constituted with Ni(oAc)r-NaH and sodium N-methylpiperidin-3-oxide shows excellent capacity for desulfurization, the low Ni/S ratio (generally 5-10) required is quite notable. Rate enhancement by such an alkoxide is dramatic in comparison with other ligands. Amination.2 The conversion of aryl chlorides to amines is catalyzed by Ni(OAc)r-2,2-bipyridine and sodium r-amylateA.{aOHin THF. rKuehm-Caubere, p. TL3g,g9g7099g). C., Guilmart,A., Adach-Becker, S.,Fort,y., Caubere, 'Brenner, 8., Fort,Y. TL39,5359(1998).
acetylacetonate. 17, 201; 18,247 -248; 19,225-226 cross couplings. Functionalized biaryts are obtained from Ni-catalyzed coupling of aryl chlorides with arylzincs.r Functionalized alkyl iodides including those containing divalent sulfur groups undergo normal coupling with both aromatic2 and aliphatic zinc Nickel(If
OMe
i.:.:r \hows superiority over
reagents.3For the latter which is generally a difficult process(linkage oftwo sp3centers)an exceedingly active promoter is n-trifluoromethylstyrene. A useful method for the preparation of l-arylalkenes is by replacement of the nitro group of rD-nitrostyreneson reaction with alkylzinc iodides.a
epimerization under [,:.: ,'livosides(7 examples, L'.;,,
Noe
csHrr
c5H11-Znl Ni(acac)2- Et3N
c - r : . r r c df r o m N i - A l a l l o y i n tr.' .irchlorinated or have the
THF 910/"
l:'
Stille-type coupling in the presenceof Ni(acac)r-DIBALH and an additive (e.g., p\p) provides styrenessand alkynylarenes.6 For accessto arylzincs from diaryltelluriums the reaction with diethylzinc is smoothly catalyzedby Ni(acac)r.7 organometallic reactions of carbonyl compounds. cyclization of S-haloketones (particularly the 5-iodoketones) is accomplished.SThe reaction of aldehydes with Me.Al catalyzed by Ni(acac), is acceleratedby trivalent phosphorus ligands.eThe same reagent system effects a homo-Michael reaction with ring opening of cyclopropyl ketones.r0 Homoallylation of benzaldehyde is initiated by Ni-catalyzed formarion of II 3-buten-I -ylboron speciesfrom 1,3-dienes.
OH
PhcHo ..' :7.E17(1997)
) t9 rqel (1998).
,\\cooMe
>
Ni(acac)2 - Et3B
COOMe
THF
911" (anti: syn >25: 1'1
256
Nickelbromiile-phosphinecomplexes
to alkynes in the The addition of organometals Addition-coupling sequences' used to couple with allylic Itotnylmetals which canle presenceof Ni(acac)r ,"tJ** Cu (in casesof Zrit3 ' 1'4-Dienes Al)12 or after exchangewith halides directly (rn casesof are formed.
CouPtitq o
electrochemrcel halides in alcot
elecnochemica (bpY)"NiBr-.
tn..
* c':,A
( I
Ni(acac)z- THF +
Me3Al \
250
ireN -s
68%
rMiller,J. A., Fanell'R' P' ?L39' O+lt'72'15(lW' (1ee8)
Indanols deficientalla to substiuted
P rACs120'r 1186 Knocher' .^ (1998)' {;;;;iln., C.,rno"n.r,p' Ac.lEE37' 2387 3ciovannini, R.,stiio"*unn,f, Ju,*-ri"n, 1213^(1998)' ti", ".,'""' i-' "ang,S''wang'J'-X''Yin'Y' sL t^tnirJ"*"' e ' Yaniasaki' r''"iivama't' s ts++(1??9]'.' Oee'l')' til;;;,;, r'' uiiu'u' r' ICS(Pt)244e Yamasaki, P' IL,3& 1005(1997)' L'' Knochel' Tstiidemann' v" engrn'an' T.,Cupta' P sL 143(1998)' Knochel' sStiidemann, T.,Ibrahim-ouaf'*,'A"t' G',
' 5""rri:i :i;il;;;;; :.':li*i.$ illlllllT::iliill?33),
( \
lolchiyanagi. s T., KuniYama' 4033(1998)' "Kituru, M., Ezoe,e', stt'uaia'f'' Tamaru'Y' JACS120' ' oM 11' 4316(1ee8)' 'ti;;;;,; , Mivashita,H'' Sato'Y (Lee't)' 'til;;;;"'i., Knochel'P' ACIEE36'e3
Nickel boride-borohydride
1,+Au to a conjugl
exchange resin'
t: addition"l tnll eroury'fom y :t::t-deficient Cross-couplings'Conjugate resinin methanol exchange Uo:rofrydride anO tV " .",if',li "-""n "f mp isprom"OA esters'2 alkenes utttn"*-O ct-uromalkanoic 40-937o)'tetitf'"'"""ptLg inuoln"t (39examples'
o tl
Ni2B
a\-
\--r-
+
r-cooEt
B{
(/ \ \'r- /
r-COOEI
I
borohydrideexchangeresln MEOH
91"/"
(J99'l)' 'siln, T. B , Choi,J', Joung'M' J'' Yoon'N' M' JoC 62' 235'1 (d1.998)' 63'2'755 JOC M' N' Yoon' 2Joung, M. J.,Ahn,J' ff " "*' U W ' complexes' Nickel bromide-phosphine groups from an aromatlc removal of mesyloxy -+ArH't t;'';il;"t AroMs presenceof dppb' of @htP)'NiBr' in the nucleus with Zn-Kl t, ."t"ipJ
I
a
rSasaki.K-. I 2Kamekana3Courtois.v aDuran&nr. sGrigsbv. s 6Jou,D.-C..
257 Nickelbromide-phosphinecomplexes
(::.rn(rmetalsto alkynes in the ai \,' used to couple with allYlic r ( .. rn casesof Zn)r3. l,4-Dienes
Alkenyl bromides are homologated in an Coupling of alkenyU aryl halides. Biaryls are formed in an electroreductivecoupling of aryl carboxylation.2 electrochemical is observed in arylation by means of induction Asymmetric solvents.3 halides in alcoholic for all the above types of reactions is catalyst The electrochemical cross-coupling.4 (bpy)rNiBrr.
9
3
o
.\
ll
M"\' ,lu-v",
(bipy)NiClz +
Phl
BuaNBFa
I
'Ph
r'
M"\'
o
J '|l-\-pn t i l
\___J '1 a:
r
P
h
-i
DMF 57"/o QO"/" ael
Indanols.s o-Acylarylmanganese tetracarbonyl complexes react with electrondeficient alkenes in a tandem demetallative conjugate addition and aldol reaction, leading to substitutedindanols.
[.' .r- :]lt7 (1998). i
9ir. . q97). s. :r 1998) : :: 1998). ' :.r,i997) []:: a98).
(Ph3P)2NiB12
,\^"
\A"n,.o,o
MeCN
a
MVK 910/"
Two identical units derived from an organohalidecan be introduced
1,4-Additions.u rr .... tiom RI to elecfion-deficient r. :...lnde exchangeresin in methanol :r,r, .:nJ c.-bromalkanoicesters'2
to a conjugated diene.
tl 9€
l
'ts . 91"k
: "
998).
n-f.\l)\v groups from an aromatic t .:.\cnce ofdppb.
(Ph3P)2NiB12
l
l
+ 80o/o
rsasaki.K., Kubo,T., Sakai,M., Kuroda,Y. CL617(199'7). 2Kamekawa, H., Tokuda,M. CLgl'/ (199'l). H., Kudoh,H., Senboku, 3Courtois, J. f 53, 11569(1997). R.,Troupel,M., Perichon, V., Barhdadi, "Durandetti, J.-Y.JOC 62,7914(1997). M., Perichon, J.,Nedelec, 5crigsby,W. J.,Main,L., Nicholson, B.K. JOMC 540,185(1997). oJou,D.-C.,Hsiao,T.-Y.,Wu, M.-Y.,Kong,K.-C.,Cheng,C.-H.f 54, 1041(1998)
Nickel chloride-phosphine
complexes
Nickel chloride-phosphine complexes. 14, 125; 15, 122; 16, 124; 18, 250; 19,22'l -228 Ar-Ar couplings. A self-coupling of aryl triflatesl and halides2employs Zn-DMF. With the nickel catalyststhe Suzuki-type couplings3-5are more convenient. Coupling with alkenyl seleni.des. Stereoselective synthesis of arylalkenes (6 examples, 85-95Vo),6 1,4-dienes(6 examples,73-87%o)i by this method is complementary to other approaches.
,'SePh 1en.e1rruicr, ll
asePh (Ph3P)2Nicr2 i
l
-
Br/
r
l \ Y phMgBr/ THF 2so
tl \V
Nickel peroxide. Drpeptide cleavage.
3_MephMgBr / THF
_l
'Adoni, N. Yu., Ryabinin,V. A.. SrrrE -Indolese, A. F. ZI 3E,3513( 1997r. -Saito, S.,Oh-tani,S.,Miyaura-\..tO( 'Ueda, M., Saito,S.,Oh-tani,S..\ti1r ozhu, L.-S.,Huang,X. SC 27,39ttgy] 'Huang, X., Sun,A. M. SCt.272-s r lr uKobayashi, S.,Takahisa,E., Usmaor! eKobayashi, S.,Watatani,K., Tokqo. I r0lipshutz, B. H., Kim, s.-K.,Molhd. I llwille, A., Tomm,S.,Frauenrath. H. .5 '"Ager, D. J.,East,M. B., Eisensradr..L
25o 95o/"
The C-l
88%
Allylic subst'ttution with borates.s'e Arylation of allylic acetateswithout transposition using B-alkyl-B-aryl-1,3,2-dioxoborolidines occurs in the presence of (P\P)2NiCl2.Notetheexclusivetransferof thearyl group.
"),*/*A**
LI
Ho,,,/\,,"oAc \
\:/
/
Ph.-,/\ +
F
t
l
-
(Ph3P)2NiCt2
Ho,,,o/Ph
Nal / t-BuCN-THF
--r/\/-\)
250
Alkylation with ben4ylic halides. Chloromethylated p-quinones couple with RAlMe, by (Ph,P)rNi which is obtained from dechlorination of the complexed nickel chloride with BuLi.r0 An expeditious route to vitamins K, and I! is basedon this method. Isomerizati.on Allyl ethers and allyl acetals undergo isomerization to furnish the (Q-alkenyl ethers with (dppb)NiClr-LiBHEt,.rr On the other hand, the isomerization mediated by (Ph.P),RuClr-LiBHEt, is almost totally stereorandom.
o'^v\
w
'Easton, C. J., Eichinger,S. K., Pina V
(dppb)Nicl2 + LiBHEt3 / THF
v 8 1 o k( Z : F 9 5 : 5 )
Teniary phosphines.t2 A.yl triflates react with mediation with Zn and catalyzed with (dppe)NiClr. rJutand,A., Mosleh,A. JOC 62,261(1gg7').
diarylchlorophosphines by
Nitric acid. 18, 251-252; 19, 228 Hydrolysisof t-esterc. r-Bun (9 examples,92-99%).1
lStrazzolini, P., Dall'Arche, M. G.. Gruu
Nitric oxide. 19.229 Nitroalkenes,t A facile nrdl usinsNO in zeolites.
j lf
Nitrosations. Aromatic conp acetic-sulfuric acid mixrures.:Sq solvents.3
Nitric oxide
11 16.124;18,250;19,227-228 employsZn-DMF. s ,nd halides2 tB ltrrrB convenient, : .\ nthesis of arylalkenes (6 i :,. :his methodis complementary
"Adoni,N. Yu., Ryabinin,V. A., Starichenko, V. F. RIOC34,286 (1998). 'Indolese, A. F. TZ 38,3513(1997). "Saito, S.,Oh+ani,S.,Miyaura,N. JOC e2,8024(1997). -Ueda,M., Saito,S.,Oh-tani,S.,Miyaura,N. 254, 13079(198). ozhu, L.-S.,Huang,X. SC27,39(1997). 'Huang, X., Sun,A. M. SC27, 2725(1997). oKobayashi, S.,Takahisa,E., Usmani,S. B. fI, 39, 597(1998). 'Kobayashi, Watatani, S., K., Tokoro,y.TL39,7533 (1998). r0lipshutz, B. H., Kim, S.-K.,Mollard,P.,Blomgren, P. A., Stevens, K.L.T 54,6999(1998). "Wille, A., Tomm,S.,Frauenrath, H. S 305(1998). r2Ager,D. J.,East,M. 8., Eisenstadt, A., Laneman,S. A. CC 2359(lgg'1).
|:.-Nickel peroxide. Dipeptide cleavage.
THF
E:. 5
The C-N bond scission is selective to glycine moietiesJ
88o/.
o
f . , . . lri c acetates without trans5 \ a u r s in the presence of lut
Ph
H r l N
Y o
'ntilJ**,
Ni02
./\, N H
COOMe ---
5 r
PhH A
-
740/o
) ..^
Ho,,,o/.Ph
'Easton, (1997). C.J.,Eichinger, S.K.,Piua,M. J.253,5609
€-:'r-THF
2a
84"/"
rur'J p-quinones couple with t::.r:l()n of the complexed nickel K ::rJ K. is basedon this method. dc:- , rsomerization to furnish the tl^.c ,ther hand, the isomerization rt, rlndom.
Nitric acid. 18, 251-252; 19,228 Hydrolysisof t-esters. r-Butylandadamantylcarboxylates arecleavedby nitric acid (9 examples,92-99Vo).1 rStrazzolini, P., Dall'Arche, M. G., Giumanini, A. G. Z:L3g,9255(lgg8).
Nitric oxide.19,229 Nitroalkenes,r A facile methodfor the conversionof alkenesto nitroalkenesis bv usingNO in zeolites.
^ , -t r'" , '\.'31". (Z: E 95:5)
NO / CCr4 H-zeolite 75o
U
Noz
78"k
r:::
diarylchlorophosphines by
Nitrosatians. Aromatic compounds undergo nitrosation with NO in C{COOH or acetic-sulfuric acid mixtures.2 Secondary amides form N-nitrosamides in nonpolar solvents.3
260
Nitrogendioxide
Deamination, On exposure to nitric oxide and a catalytic amount of oxygen the group amino of arylaminesaand heterarylamines5is removed. Similarly, arylhydrazines are converted to the hydrocarbons although aryl azides are also formed as minor products.6 rSreekumar, R.,Padmakumar, R.,Rugmini,P. TL39,2695(1998). 'Atherton, J. H., Moodie,R. B., Noble,D. R.,O'Sullivan,B.JCS(P2)663(1997). 3ltoh,T., Nagata, K., Matsuya, Y., Miyazaki,M., Ohsawa, A. TL38,5Ol7(1gg':-). -Itoh, T., Nagata,K., Matsuya,Y., Miyazaki, M., Ohsawa,A. JOC 62,3582(199'7). 'Itoh, T., Matsuya,Y., Nagata,K., Ohsawa,A. CPB 45, 154'7(1997). oMatsuya, Y., Itoh,T., Nagata, K., Ohsawa, A. 253, 15701(1997).
Nitrido[Ntnr'-(1,1,2,2-tetramethyl)ethylenebis(salicylideneaminato)]manganese(V). 19,229 2-Aminosugars.l Glycals are functionalized. An amino group is introduced at C-2 (9 examples,62-80Vo).
OH
(saltmen)Mn(N)
pn""(o"'
(CF3CO)2O;
ph.'
,,,NHCOCF3
silicagel
tDu
MeHN HN
Nitration." Catalyzed b1 FeCl achieved with NO'-O., at abour O' derivativein excellentyield.
rSuzuki, H., Takeuchi, T., Mori.T. BCSI1 2Suzuki, ,I H., Nonoyama, N. ft 39.{5-1-1 rEvans, D. A., Carter, P.H.,Dinsmorc. CJ -Suzuki, H., Tatsumi, A., Suzuki.H.. It--d
2-(4-Nitrophenyl)ethylsulfonyl
chlc Hydroxylprotection,t Ribonrr cleavedunderaproticconditionson ur
tPfister, M., Schirmeister, H., Mohr.\l . Fr S.,Charubala, R., Pfleiderer,W. HC.t 71.
Boir,J.,Tomooka, C. S.,Hong,J.,Carreira, E. M. ./ACSllg,3l'1,g(lg9'1).
4-Nitrobenzenesulfonyl azide. *Diazo esters.t A brief reaction of B-keto esterswith 4-O2NC6H4SO'Nr-DBU and then with pynolidine accomplishesincorporation of the diazo group and disengagementof the acyl unit. cr-Diazoalkanoic esters of propargylic alcohols are readily prepared in this
o -Nitrophenyl selenocyanate. 1,3-Hydroxyl transposition.: A selenidesby reactionwith ArSd\-Br the presence of pyridine a sponurnc alcohols are liberated.
manner, lWeingarten, M. D., Padwa,A. Sl, 189(1997).
\ Nitrogen dioxide. 15, 219; 18, 252-253 Oxi.dativecleavage of methyl ethers.t Carbonyl compoundsare generatedwhen the ethers are treated with NO, water in the presenceor absenceof ozone. Without water but in the presenceof ozonethe reactionis slow. Iododeamination.2
Arylamines are rapidly converted to aryl iodides under nonaqueousconditions on treatment with nitrogen dioxide in MeCN and NaI. Hydrolysis of secondary amides.3 A mild procedure for hydrolysis of polyfunctional secondaryamides consistsof N-nitrosation and treatment with LiOH-HrOr. As featured in a synthesis of vancomycin a secondaryN-methyl amide is hydrolyzed without affecting a primary amide.
,^./:\_oH_-3!1*
r
rrY*
.%*q
tKri"l
A., Laval,A.-M. BSCF134.86O,IS
4-Nitrophenyl triflate. Triflation.t This stable, cqsu triflating agent for phenols.
4-Nitrophenyltriflate
cr:J.\tic amount of oxygen the rej \rmilarly, arYlhYdrazinesare l. :,,nled as minor Products.6 B t, r _' 66-i( 1997). , - r s< r l r t 1 9 9 7 ) . x 6::582(1997).
l lcneaminato)lmanganese(V). L-- -r,' :Iroup is introducedat C-2
OH
"'NHcocF3
I MeHN--{
I
orBS
No2/MecN.ol
J.
l;;:
.Xlo\__/-
tf,o"r"*\".
Na2so3
"o{
261
orBS A
^tVoJ bocr,
brt'rt
55"/"
Nitration.a Catalyzed by FeCl, the nitration of electron-deficient arenes can be achieved with NO'-O, at about 0'. Thus, trifluoroacetylbenzene furnishes the 3-nitro derivativein excellentyield. 'Suzuki,H., Takeuchi, T., Mori,T. BCSJ70,31I I (1997). 2suzuki,H., Nonoyama, N. 7L 39,4533(1998). 3Evans, P.H.,Dinsmore, C.J.,Barrow,J.C.,Katz,J.L., Kung,D. W TL38,4535(1997)D. A., Carter, aSuzuki, H., Tatsumi,A., Suzuki,H., Maeda,K. S 1353(1995).
2-(4-Nitrophenyl)ethylsulfonyl chloride. Ribonucleotides protected as the sulfonyl derivatives can be Hydroxyl protection.' cleaved under aprotic conditions on treatment with DBU involving a B-elimination process. lPfister,M., Schirmeister, K.-P.,Reiner,T., Dunkel,M., Gokhale, H., Mohr,M., Farkas, S.,Stengele, W. HCA78, 1705(1995). R.,Pfleiderer, S.,Charubala,
-qrl997). 9 I
r ::: -1-O.NC.H,SOrNr-DBU and of l:.,z. Lroup and disengagement in this prepared r\i, .. rre readily
o -Nitrophenyl selenocyanate. Allylic alcohols are transformed to the allylic 1,3-Hydroxyl transposition.) selenidesby reactionwith ATSeCN-Bu.,P.On further oxidation with hydrogenperoxidein the presence of pyridine a spontaneous rearrangement intervenes and isomeric allylic alcohols are liberated.
tu"
\Ny:\_on
HO
, v\.,l./:\-s"n,.9
61,sectr .:l\r.lo,
v^v^.,>\
940/"
;, :lr( )undsaregeneratedwhen the s':r,. ()f ozone.Without water but rr.: inL'd to aryl iodides under ric :: \leCN and NaI' tbr hYdrolYsis of PolYxl.,:r N ::.Jrrnentwith LioH-HrOr. As r:: .. .unideis hYdrolYzedwithout
tKriel A., Laval,A.-M. BSCF134,869(199'1).
4-Nitrophenyl trifl ate. Triflation.t This stable, crystalline, nonhygroscopic compound is a valuable triflating agent for phenols.
Nitrosonium tetrafl uoroborate
rzhu,J.,Bigot, A.,Elise,M.,Dau,T. H. TL38,1t8l OggT\. Nitrosonium tetrafluoroborate.14,215; 19,230 Isoxazoles't Halogenated cyclopropanes undergoring openingandincorporateNo to form substituted isoxazoles.
tn
NOBF4
(tt Br
MeCN 25o
Ph\,'V,Br \ \ / N-O
890/"
'Lin,
S.-T.,Kuo,S.-H.,yang,F.-M."/OC62,5229 lggT.
Organocerium reageot 19,231
Reaction with an*lt c,,c,-disubstitutedbenzl li even when the reagenris 1 for the ketone synthesis. casesof clsilylated denr
.+ a'ljA
MeoAz\z/
frl".Si ,,
(
Addition to imincs.
B-amino silanes is hingcd hydrazones.a Conjugated allylamines.5
'n*'{)
a-Silyl ketones.b Thc method for the accessof rhc
FE:.
-: rnd incorporateNO
./-Flr
( h-3 if:_
Organoceriumreagents.13, 206;14, 217_2lg; 15,221; 16,232;17 ,205_207; lg, 256; 19,231 Reactionwith amides. Benzamides and thiobenzamides are converted to o,c-disubstitutedbenzylamines.r Tertiaryamidesform ketoneson reactionwith RCecl, evenwhenthereagentis presentin largeexcess, thereforeWeinrebamidesarenotnecessary for the ketonesynthesis.2 Enaminones arealsoattackedat the carbonylgroup,andin the casesof c'-silylatedderivativesthereactionproductsarep,y-unsaturated ketones.3
\_
,-..-l-{ l u l \ )
MeCeC12 IHF
- t6-
MeO MeO
.YY" 95%
NHPh
r
Vfessiar\7\
BuCeCl2
B u O t t l /\/\
THF - 78o. 100/"Hcl
770h
Addition to imines- A diastereo- and enantioselective synthesis of protected B-amino silanes is hinged on the addition of organoceriums to a-silyl sAMp/RAMp hydrazones.a conjugated imines show regioselectivity that favors the generation of allylamines.5
tn..9A.2*\-1
Bucect2
t
\_,/
l
Et2o - 78o;
H
en.Taarttt \-'\ I (,
+
Bu
^Y-" Bu
53%
(90 : 10)
a-Silyl ketones.6 The reaction of silyl ketenes with RCeCl, represents a simple method for the accessof thesecompounds. 263
264
Organocopperreagents
- \_4 .O
Diastereoselectiveadd the entry crs to the estergr reacts with MeCu(CNllj
Me"Si
PhCeCl2
MellSi.
\
aq. NH4CI
Ph
79o/"
Alkenes.T Organoceriumsattack allylic alcohols by the S*2'displacement pathway. Thus, internal alkenes are formed from 1-alkene-3-ols.
fl-c,or
04^,{'i
Bn
Boc
LiH/rHF01
Rr,A/r,z\,2
3 RLi - CeCl3
'Calderwood, D. J., Davies, R. V., Rafferty, P., Twigger, H. L., Whelan, H. M. IL 38, 1241 (1997). 2Ku.o.u, M., Kishi, Y. TL39,4793 (lggS). 3.Dulpo"ro,R., De Nino, A., Bartoli, G., Bosco, M., Sambri, L., Marcantoni, E. JOC 63,3745 (lgg}). -Enders, D., Leriverend, C. fA 8, 278'l (1997). 5qian, C., Huang, T. JOMC 548, 143(lgg7). nAkai, S., Kitagaki, S., Matsuda,S., Tsuzuki, Y., Naka, T., Kita, Y. CPB 45, 1135(199'].). 'Dalpozzo, R., De Nino, A., Tagarelli,A., Ba(oli, G., Belluci, M. C., Bosco,M., Sambri,L. JOC 63, 9 5 5 9d 9 9 8 ) .
Organocopperreagents.13,207-209; 14,218-219;15,221-227 ; 16,232-238;17, 207-2 18; 18,257-262; 19,232-235 Conjugatead.ditions. Cuprateadditionto ynoateestersandtrappingwith aldehydes (in thepresence of EtrAlCl) providespecialanalogsof Baylis-Hillmanreactionproducts.r Trappingwith phosphonoacetatic estersis anothersyntheticallyvaluablevariation.2Silyl keteneacetalsderived from 1,6-additionto allyl alk-4-yn-2-enoates undergoClaisen reiurangement at roomtemperature.s Ph Me2CuLi/ Et2O ;
-........-.'........',...'....-
-COOMe
PhCHO
.
Fou
/
COOMe
H
A combinationof Tlu and permitstheir applica controlis manifestedin rh atom8 bondsaway.7
d\
?.
oAo
)Aa
Mixed cuprate reagen thermally stableyet highll tetramethylsilaneas by-prc
Introduction of organor heterocupratesis quite ga making available p-srann propargylic alcoholsro and
illustrated in a novel synrh for example, by sequenda PhMerSeLi, and an econor
71% (68.5%de)
catalytic in copper.
z*
OMe
OSiMe3 Me2cuLi - Me3SiCl Et2O
- 3Oo
a)4o
J
,oo
Hso* ; CH2N2
V"14" t \ r '
(Bu3Sn)prr
Vru
Organocopperreagents 265
Y
,o
Diastereoselectiveaddition to 4-substituted 2,3-didehydropyroglutamate estersrevears the entry crs to the estergroup.aunexpectedly, 5-(r-butyldimethylsiloxy)-2-cyclohexenone reactswith MeCu(CN)Li in a cls-selectivemanner(cis:trans>99:1).5
P
:9" "
t \
r Srl' displacement pathway.
F\
-a4', i
-cooet
'
*--"-'
a
n
Me2culi/ rHF
*
"
*
J oA'>"oo=' ,gn ,|
Boc
=
Boc
.---\,,'\A,/
'.i
73k
.,r. H. M. rL 38, t24t (1997).
A combination of rMEDA and Me,Sicl makes benzylic copper reagentsmore stabre and permits their applications to conjugate addition to c,p-unsaturated esters.6chelation control is manifested in the cuprate addition to conjugate estersby a trivalent phosphorus atom 8 bonds away.7
\'l ,-..::rr()ni, E. JOC63,3745(1998\.
a \l
':
l ' 8 . 1 5 . I 1 3 5( 1 9 9 7 ) . fi,sco, M., Sambri,L. JOC 63. Me2CuLi
5. l-.
?
PPh2
oAo
127; 16,232-238;17,
c.ir:. und trappingwith aldehydes 1.. :. Hillmanreactionproducts.l f,.': -.':lr valuablevariation.2Silyl l-:, . :r-l-enoates undergo Claisen
\
roH
,
COOME 71% (68.5%de\
l+.
Mixed cuprate reagents derived from RLi and (trimethylsilyr)methylcopper(I) are thermally stable yet highly reactive. They transfer the R groups efficientiy while giving tetramethylsilane as by-producton workup.8 Introduction of organostannyl and silyl moieties into organic compounds by means of heterocupratesis quite general. 2-Alkynoic acids accept a tributylstannyr group readily, making available B-stannyl-a,p-unsaturatedacidse in a straightforward manner. (Note propargylic alcoholsr0and ethynelr also undergo stannylcupration,the utility ofwhich is illustratedin a novel synthesisofcyclobutenes.)Silylcuprate reagentsare generatedin situ, for example, by sequential addition of Merzn and catalytic amount of Mercu(cN)Li, to PhMerSeLi, and an economicalmethod foi silyl transfer is established.r2 Such reactionis catalyticin copper.
Ph
\
93o/o (anti : syn gS:5)
OMe
2oa H:o* ; cH2N2
v"+" I
\
Z
-
(Bu3Sn)2CuLi / THF ; \---7
Y
TMEDA
oH /:\ Bu3Sr/ \-J
TsCl - Et3N;
Organocopperreag€nts
l-Aza-1,3-alkadienes containing an N-trimethylsilylmethyl substituent also undergo conjugate additions.l3 Allenes.ta The thiaphilic reaction of cuprate reagentson 2-alkynyl-1,3-dithiolanes gives allenyl sulfides. The residual sulfur substituent is replaceable by a Ni-catalyzed Grignard reaction.
sS.r.rS
\.2
tBu2culi ;
.----------------_ MeoH ,rr"
./-en Ph/t
Me
MeMgl
...s 1rn
(dppf)NiC12
-Ph
Ph 81"/"
88o/o
a-Amino acids.rs Copper enolates of amides react with N-lithio /-butyl tosyloxycarbamateto afford N-Boc derivatives of cr-aminoamides.An asymmetric version of this processis highly successful.
a.
\-N,
/
Pri
"';4g
-/o BuLi/THF-78o;
t('^\
l
+
)
CUCN; TsON(Boc)Li
/a
\2
,48
6NHcr
T
vo"
'wei. H.-x.. willis. s.. Li.c.TL39.8to_r r "Piva. O . . C o m e s s eS, . f L 3 g , 7 l 9 l t l 9 9 - , 'Becker, M., Krause,N. L4 725 ( 199- r -Guillena, G., Mancheno,8., Najen. C. Er 'Hareau-Vittini, G., Hikichi, S., Saro.F {C -van Heerden,P. S., Bezuidenhoudr.g. C I 'Breit, B . ACIEE 37 , 525 (tggg). oBertz. S. H., Eriksson.M.. Miao, G.. Snr,l .''Betzer. ' T h i b o n n e r J. . . L o u n a y .V . . A b a r b n .\ 1 . . ' D u J.-F..Delaloge.F.. Miiller. 8.. parx "Barbero, A.. Cuadrado.p.. Carcia.C.. func '-Lipshutz, B. H., Sclafani, J. A., Takanarnr_ ''Bonini, B. F., Fochi, M., Franchini. \l ( , ,Aizpurua,J.-M., Palomo,C. ,lL 132I r l99r '"Tseng, H.-R., Luh, T.-y . JOC 62.4566 r I 9 ',-Zheng. N.. Armstrong.J. D.. McWilhams. I '"Bergmeier, S. C.. Stanchina,D. M. -/OC al
Organocopper/zinc Preparation.
reagents. lE. 16: _ Alkylzinc_copper
r activated Zn and then with Cu(OAcl_1.-r Allylic displacements. n-Complcr
reaction with the organocopper/zinc rcq of configuration.2 For chain extensron nr is reacted with MeCu(CN)Li and rhen sr
,,.f{*",
Zn'- ire39(
86% (98% ee)
77% (>990/6del
rrpsoAr'\r\z' l,2-Amino alcohols.t6 By decomposition of allylic azidoformates to produce bicyclic oxazolidinone substratesfor ring opening reactions, a stereoselectiveentry into syn-1,2-amino alcohols is delineated. Thus, after treatment of the aziridines with organocopper species,trans-4,5-disubstituted oxazolidin-2-ones (14 examples, 55-9l%o) are obtained.
MsCu(Cr
\)<'
trans-l,2-Disubstituted cyclulLaxt of 1-substituted cycloalkenes arereadill c with CuCN.2LiCla smoothcouplingurth resultsdemonstrate the configurational su
n
ll o-1 I
'P
N
PhLi - Cul
-
/1^ EI2BH; /- ,-('n .......'.............''..* \-J,,.__l \_)
THF .78O
iPr2Zn
75v"
Organocopper/zincreagents
tlr.
.ubstituent also undergo
s , r l-alkynyl-1,3-dithiolanes tc..rieable bY a Ni-catalYzed
Me
$€'.'Jl
-Ph
rc, \rcl2
Ph 81"/"
t-butYl Nlithio version asymmetric ar:.:Jc..An with
rrJ!:
Y
o +
\*
-^
.
'Wei, H . - X . , W i l l i s , S . ,L i , G . T L 3 9 , 8 2 0 3 ( 1 9 9 8 ) . 2Piva, O., Comesse,S. fL 38, 71g1 (lgg7). 3Becker, M., Krause,N.I"4725 (lgg7). -Guillena, G., Mancheno, B., Najera, C., Ezquerra, J., Pedregal,C. f 54,9447 (1998). 5Hareau-Viftini, G., Hikichi, S., Sato, F. ACIEE 37,2}gg (1998). ovan Heerden, P. S., Bezuidenhoudt, B. C. B., Ferreira, D. T 52, 12313 (1996). 1Breir.B. ACIEE37, 525 (1998). 8Bertz, S. H., Eriksson,M., Miao, G., Snyder,J. P. ,/ACS1f8, 10906(1996). 'Thibonnet, J., Lounay, V., Abarbri, M., Duchene,A., Parrain,J.-L.TL39,42'17 (1998). r0Betrer, J.-F.,Delaloge,F., Miiller, B., Pancrazi,A., Prunet,J. JOC 62,7'16S(1997). "Barbero, A., Cuadrado,P., Garcia,C., Rincon, J. A., Pulido, F. J. JOC 63,7531 (1998). r2lipshutz, B. H., Sclafani,J. A., Takanami,T. JACS 120,4021 (1999). ''Bonini, B. F., Fochi, M., Franchini, M. C., Mazzanti, G., Ricci, A., Picard, J.-P., Dunogues,J., J.-M., Palomo,C. SL 1321 (1997). ,,Aizpurua, '-Tseng, H.-R., Luh, T.-Y . JOC 62, 4568 (199'1). '.'.Zheng, N., Armstrong,J. D., McWilliams, J. C., Volante, R. P. fL 38,2817 (199'7). 'oBergmeier, S. C., Stanchina,D.M. JOC 62,4449 (199'l).
Organocopper/zinc reagents. 18, 262-263 ; 19, 235-236 Preparation. Alkylzinc-copper reagents can be prepared by treatment of RI with activatedZn and then with Cu(OAc)r-LiCl in THF.r Allylic displacements. n-Complexation with a tetracarbonyliron group prior to reaction with the organocopper/zinc reagentsleads to substitution products with retention of configuration.2 For chain extension with a hydroxylprenyl group an organozinc reagent is reactedwith MeCu(CN)Li and then with isoprenemonoxide.l
/
p(
/
/---\ -NHz Z n - - M e 3 S i C/l T H F ;
86% (98% ee)
7. ..
,,,,O\AAZ'
I
i1 rPSo&oH
\)<"
lr. ,rzidoformates to Produce x1.. r st€r€osolectiveentrY into lnrcnt of the aziridines with l-.'ncr ( l4 examples,55-91Va)
MeCu(CN)Li ;
87"/"
trans-1,2-Disubstiluted cycloalkanes." Organoboranesderived from hydroboration of I -substitutedcycloalkenes are readily converted to cycloalkylzincs. On further exchange with CuCN.2LiCl a smooth coupling with l-haloalkynes and allylic halides is realized. The results demonstratethe configurational stability of such organozinc reagents.
o
o-4
,+/Yi'rH J
.-Ph
I-("n
\-.U
;, -AEI2BH
(j,'n
""=S
,
cucN.2Licr/rHF; U:,'
ph:Br
\* 41o/o
?58
Organolithiunreagents Reductive couphng wit chiral componentsby this nr
tHu, Y., Yu, J., Yang,S.,Wang,J.-X.,Yin, Y. sC 28, 2793(1998). 2End"rr,D., von Berg,S.,Jandeleit,B. SZ 18(1998). 3lipshutz,B. H., Woo, K., Gross,T., Buzard,D' J.,Tirado,R- SL 47'l (1997). aBoudier,A., Flachsmann, F., Knochel,P. SL 1438(1998).
NNHTs
Organolithium reagents. 1,4-Diketones.r Squaric acid derivatives are converted to the diketones after reaction with RLi and quenching with NHrCl.
/t l TDSO'Y I
*
Rearrangement.6
BuO H
A rt
allylic alcohol which conrarr of a 2-methylenetetrahydrofu
OBu
/\
U\
MeLi / Et2o; aq. NH4cl
92o/o
Addition reqctions. At low temperaturesct,p-unsaturatedacids behave as Michael acceptors toward RLi.2 The addition of benzenesulfonylmethyllithium to nitrones containing a vinyl group can lead to pynolidineN-oxides after workup, due to a retro-Cope elimination which occursat room temperature.s
O2
O2
o",,./\:,/'i | o,/\^,,,\ v il tl
\./
Phso2cH2Li
-
THF - 78o
rn") -.-rro""(^ry-
Ph's> 200
oH
Ao"'\
, P""r'^x*l > ( l N / to"'Y; "'o' 'a
tl 83%
m-substituted phenones.a olefination of tricarbonyl(qa-5-oxocyclohexadienyl) iron is accomplished by organolithium reaction at -78o followed by dehydration [HB{' (EtCO)rO; H2O, Al. m-Substituted phenones are secured on further reaction of the alkylidenecyclohexadiene tricarbonyl complexes with RLi (or higher-order cuprate reagents),carbonylation, and oxidative decomplexation (with MqNO).
rVarea,T., Grancha,A., Asenslo 2Aurell,M. Mestres, R.,Mum J., 3Hanrahan, J. R., Knight,D. \[' ( -Iwakoshi, M.. Ban,S. H., Harr sMyers.A. G.. Movassaghi. \i ./ "Ovaska.T. V., Roark,J. L.. SIE
Organomanganese reageDG Allylmanganese reactb
transferan allyl groupto vanc exchangewith MerMnLi (pr which can be used to open . provide 1,4-dienes.3 Cyclizntinn.a
Allyl
o
compounds furnish dihydroh reaction with Bu.MnLi.
fS.
sr_rr-y,Fe(Co)s
!-\J
B u L i ; a q .N H 4 C I ; C O ; M e 3 N O/ D M A
L,.V
?-"
G"/
Organomanganesereagents
Red.uctive coupling with tosylhydrazones.s chiral comoonentsbv this method. r
Carbon chains can be assembledfrom
..NrI
NNHTs
tl
TDSA/ I
+ l-i
= P 'h \,/ \,/' ^
C:,' :hediketonesafterreaction
THF- Er2O-780; HOAc - CF3CH2OH
: TDSOA/WPh I
I
95"k Rearrangement.b A remarkable transformation by catalytic amountsof MeLi on an allylic alcohol which contains a silylalkyne moiety is the result of a Claisen rearrangement of a 2-methvlenetetrahvdrofuranintermediate.
c
OBu
f)rv L.-,/
OH
t'.
ra:.'J acids behaveas Michael 1r.:rc'thyllithium to nitrones er '.,',rkup, due to a retro-Cope
v2 Ph-"\
:r
= , P""r-:*l x | .N._ ',O,z 'gt,---./, z 83"/o
--5-oxocyclohexadienYl) nr . f ll.'s ed by dehydration[HB{, d ,'n further reaction of the lI-: ,r)r higher-order cuprate th \le\O).
..) MeLi(cat.)
\s,".. 85%
rvarea,T., Grancha,A., Asensio,G. Z 51, 12373(1995). 'Aurell, M. J.,Mestres, R.,Munoz,E. TL39,6351(1998). 3Hanrahan, R., Knight, J. D.W. CC 2231(1gg8). -Iwakoshi, M., Ban,S.H., Hayashi, Y., Narasaka, K. CL 395(1998). sMyers,A. G.,Movassaghi, M. ,/ACSf20, 8891(1998). "Ovaska, T. V., Roark,J. L., Shoemaker, C. M., Bordner,J.TL39,5705(1998).
Organomanganese reagents. 19, 236-237 Allylmanganese reactions. Such reagentsformed from allyl halides and BuMnLi, transferan allyl group to variouselectrophiles.rAltematively, allylstannanes undergometal exchange with MerMnLi (preparedfrom MeLi and MnClr) to fumish the reactive species which can be used to open epoxides.2Acetylenes react with allylmanganesereagents to provide 1,4-dienes.3 Cyclization.a Allyl o-iodoaryl ethers, N,N-diallyl-2-iodoaniline, and related compounds furnish dihydrobenzofuran and indoline products via radical intermediateson reaction with BurMnLi.
-S -S
e("/
B u 3 M n L/i T H F
oo
n0
reagents Organozinc
Activated dibromides such as 2,2-dibromoalkanoic Alkylationlaldol reaction. amides5and a 1,3-dihalopropene6incorporate R from R,MnLi and apparentlygeneratenew organomanganesespecieswhich can react with aldehydes.On the other hand, Bu,MnLi can remove the functional group of c[-acetoxy and cr-(t-butyldimethylsiloxy) ketones and the resulting enolatesreact with aldehydesin a syn-selectivemanner.T Alkenylmanganese compounds generated by Acylmanganationofalktnes." reaction of alkynes with RMn(CO), undergo photocyclization with an alkene linkage five bonds away. Solvent plays an important role in the last reaction.
alkenyl halidesTand with aryl halides ! triflates make it possible to derive a bar the first of a two-stagedcoupling.u rrh
(r.,^.2\ "2
t"
I
CoBrz / THF _1oo
Meooctal-1Meooc-\ MeOOC. Z-
MeMn(CO)5
Meooc/\ -_\
I
rior^', ro/v
Zn' I JHF :
Arl / (dba)2Pd
54"/"
r.*
rro&
Fu3P
\\
Biaryls.e
r*,
Et2O
^[,i,|]:s^"rr The cross-coupling
of ArMnCl
with
aryl halides
and triflates
using
(PqP)2PdCl2 as catalyst is an alternative method to Ullmann and related reactions. tHoio, M., Harada, H., Ito, H., Hosomi, A,. CC 207'r.(199'1-). 'Tang, J., Yorimitsu, H., Kakiya, H., Inoue, R., Shinokubo,H., Oshima,K. 7I 38, 9019 (1997). 'Tang, J., Okada,J., Shinokubo,H., Oshima,K. f 53, 5061 (1997). *Inoue, R., Nakao,J., Shinokubo,H., Oshima,K. BCSJ 70, 2039 (1997). slnoue, R., Shinokubo,H., Oshima,K. JOC 63,910 (1998). 6Kukiyu, H., Inoue, R., Shinokubo,H., Oshima,K. CL'73 (1998). 7Hoio, M., Harada,H., Ito, H., Hosomi, A. JACS llg,5459 (1997). ol-ee, J. E., Hong, S. H., Chung, Y. K. 24 38, l'781 (199'7). eRiguet, E., Alami, M., Cahiez, G. IL 38, 439'7(1997).
2 -Zinc io - I, 3 -dithiane s are valtd 4-acetoxy-1,3-dioxanesserve a-( p 1,1-diarylallenesinvolves Pd-carallz
derived from 1-arylpropynes by lirhrer sp2-sp2 bond formation process r
2-cyclopentenones a facile synthesirof
BuLi; I f, /-S, ( fsiMe3 + l( \-S znct2 -, L
Organozinc reagents. 13,220-222; 14,233-235; 15,238-240: 16,246-248; 17, 228-234;18,264-265 Preparativemethods for diorganozincs (e.g., RZnEt) include photoinduced exchangeof alkyl iodideswith EtrZn under photochemicalconditions.rBenzylzincsare obtainedfrom benzylic mesylatesand Bu,ZnLi.2 Various derivatives of Me,Zn(R)Li, where R = Me, CN, SCN can be obtained from Me,ZnLi and RLi.r Diisopropylzinc which is availablefrom i-PrMgBr and zinc bromide can be used for effecting rapid IlZn exchangea and BlZn exchange,senabling accessto complex secondarydialkylzincs. Coupling reactions. Cobalt(Il) bromide catalyzes the coupling of diorganozincs RrZn, allylic chlorides and phosphateswithout disturbing the configuration of the double bond.6Other couplings useful for skeletal construction feature alkenylzinc compoundswith
PdO?.
a,
Triorganosilyl(dizincio)methanesc. alkca,
Pd-catalyzed couplings with ra 3-silvl-1.5-dienes.
Organozinc reagents
rl-. .'. 2,2-dibromoalkanoic i r: j rpparently generatenew | ::.J ,,lherhand,Bu,MnLi can rx'::r ..iloxy) ketonesand the
alkenyl halidesTand with aryl halides.8The different reactivities of benzylic halides and aryl triflates make it possibleto derive abenzylzinc reagentfrom 4-triflyloxybenzyl bromide for the first of a two-staged coupling, with the secondstep involving the triflate.e
!r:.: c,:t.il()Unds generated by r .'::h ln alkenelinkagelive
(:ztz^I "2
l(.r'
cl
z"
coBr, I txF _1 o o
A t l ) 90" (z >90"h)
MeOOC./^--.--1 x l H
Meooc\
I
54"/.
U*-'
MeOOC. a-.\-----\ Y N \ . il MeOOC'L-I2 5'l"h
i. :-.,.lrlesand triflates uslng r ::.i rclatedreactions.
i:-. {
rio(^t'
rrc/"/
Zn' I THF Arl / (dba)2Pd TfO Fu3P
fi'^r^l-V\cooEr /\4
A/ZnBr/ THF (dba)2Pd- dppl
cooEt
Based on reactionsof organoztncs 2-Zincio-1,3-dithianes are valuable rcagentgto synthesis of of cnli-1,3-diols.rrA precursors as serve 4-acetoxy-1,3-dioxanes which are species organozinc of the coupling Pd-catalyzed involves 1,1-diarylallenes By an halides.r2 with aryl exchange lithiation andLilZn by derived from l-arylpropynes C-2 of to substituent a dienyl process introduce to sp2-sp2 bond formation a facile synthesisof nakienone-Awas developed.rr 2-cyclopentenones
rL38,9019(1997)
BuLi: I f \ ,SiMe3I ,."rr.oo=, ,/-s,, ( FSiMe3 ---------*l\ X l-----.td znct2 rHF \-d znct I L
q--
7-S, ,siMe3 ( X \-S' \-cooEt 71"k
-;:
16,246-248;17,
lu.:: nhotoinducedexchangeof Br' zr lzincsare obtainedfrom c / RtLi,whereR=Me'CN' ,r.. ':. uhich is availablefrom n.of diorganozincs A- -.'Lrpling Ar ,,'ntiguration of the double lr. .: \L'nvlzinccomPoundswith
Triorganosilyl(dizincio)methanescan be usedto unite two carbon chains.Thus, stepwise Pd-catalyzed couplings with alkenyl bromides and allylic bromides leads to ra 3-silvl-1.5-dienes.
272
Organozincreagents
siMe2R _/\ BrZn- '2ng,
+
SiMe2R
(dba)3pd2.cHct3 E,r\ ///\ v
e,z?6pn
Ph
1,l-Bimetallic reagentsare availaHc /\rr,
to alkenyllithiums.23
+
R=Me 73% R=Ph 67% SiMe3
Brzn^2ns,
*
(dba)3Pd2.CHCl3tran.
"r$"n
. - - - - - - - - - - ^- * 1A"n"
',,.s'" ,Br M".Si\Z..A"n ,
SiMe3
/\/r"ao.
\ /
(
Reagents formed in situ by reaction of t-BurZnl with organic Addition to C:X. halides add to carbonyl compounds, such mixed zincates do not transfer their t-butyl group.rs o-Diazo-B-hydroxy estersare formed by treatmentof diazoaceticesterswith EgZn and aldehydes at low temperature.r6Allylzinc species derived from allylic esters add to carbonyl compounds to give o- or 1-adductsaccording to the nature of the latter.rT
(Y \
."S ;P=,
OAc I (Ph3P)4Pd
run,t",
v*"",
El2ZnI PbCHO
9*"",
'. \:/
L
i
r^'s& ZnBI2 | Etp
Intramolecular addition of orgarmt exchange and hydrolysis deliver prope different zincate reagents can lead to difl and cyclization.25
SiMe3 1-3rJl-; 7 Et2O -5oo
The bimetallic species derived from E,trZn and MeMgCl transfers an ethyl group to imines. Asymmetric induction is observedin imines derived from chiral amines.rs Addition reactions. Mixed diorganozincs of the type RZnCHrSiMe, donate the R group to enones.re After lithiation and LVZn exchange the zinc derivatives of N,N-dimethylhydrazones react with vinylsilane at the c,-position.2oZincated species are derived from dimethylhydrazones, vinylmagnesium bromide, and zinc bromide which afford o-ethylated products.2lIfbenzaldehyde is addedbefore workup a net cinnamylation results. The Ni(acac)r-catalyzed addition of diorganozincs to substituted phenylethynes proceedsin a highly syn-selectivefashion (>99Va).22
Et2Zn- Ni(acac)2
Ph-----Ph
(.yo/Y ' (
cooEt
NMP. THF;
...,......_
CuCN.2LiCl;
Cyclopropanols.26 Zinc enolara react with diiodomethane to give cyclo?
cooEt Bi
717"(E:Z >98:2)
reagents n3 Organozinc
.z
SiMe2R l
..
R=Me R = Ph
1,l-Bimetallic reagentsare available from reaction of allylmagnesium halides and ZnBr2 to alkenyllithiums.23
73%
-""'(o",
' B r
t
Y
67010
. ""rr,V...Arn
\/\zMsBr ZnBt2 I El2O
847"
r'
(
M
Hso'
80% (dr >95:5)
or: . : r-Bu,Znl with organic d, n,rt transfer their l-buryl idi:J./(ucetic esterswith EqZn estersadd to allYlic rJ :r,rm
Intramolecular addition of organolithiums to an enyne moiety followed by Lt/Zn exchange and hydrolysis deliver propargylcycloalkanes.z The reaction of a halide with different zincate reagentscan lead to different products, as shown by simple dehalogenation
r.i:.rrc of the latter.l7
and cyclization.2s
Li SiMe" -
SiMeg r-BuLi/ Et2O NMe2
2"/" an ethyl group to l. ::.rnst-ers 18 ir,,nr chiral amines. I RlnCH,SiMe3 donatethe R rg::he zinc derivatives of
-5oo
l
fcasiv". . ",,,,O
znBrz! Li
fc4siur". "",,O
r.r::,,rr.rr)Zincated speciesare xlc .rnd zinc bromide which k- .\ , 'rkup a net cinnamYlation r, ..rhstituted PhenYlethYnes
/
-
cooEt
-/-\
P.
Ph
- ' ' . r E : Z> 9 8 : 2 )
cyclopropanols.26 Zinc enolates generated from g-iodoketones and diethylzinc react with diiodomethane to give cyclopropanols.
274
Organozincreagents
Ene reactions. An allyl acetateacts as enophile toward an alkene linkage situated four bonds apart on treatment with a Pd(0) catalyst and then EtZnOlPl or diethylzinc.2s Cyclization by the enereaction pathway transposesthe metal to a new position. Allenylzincs generatedin situ also undergo z\nca-enereaction.ze
.oo"\
ll rr
pd(oAc)z-Buzp, a\.,.-...-,J /,,9 i l ' r i |
\ ---\
Et2zn;
|
I
-
.r,
I
\./
. ?'-t .
lt a\
r-BuoKatR + r I "r*
\
\f'
-J--
I so%
(-)-erythrodiene
Ketones. Ketones are readily obtained by the reaction ofthiol esterswith organozinc reagentsusing (Ph,P)rPdCl, ascatalyst.30The o-acylation ofaryl carbamatesvia organozinc speciessets up substratesfor the Baker-Venkataraman rearrangement,thus rendering the | accessto 4-hydroxycoumarinsreadily available.3
21to, S., Shinokubo, H., Oshima- K. II -'Oppolzer, W., Schrdder, F., Kahl. S , l8oppolzer. W.. Flachsmann,F. ft t. "Meyer. C.. Marek. I.. Normanl J.-F 'oTokuyu-u, H., Yokoshima, S.. !-arnr "Kalinin, A. V.. Da Silva. A. J. M.. L,o 32l-ung"., F., Piintener, K., StiirrFr. R .
Osmium tetroxide.13, 222-215. 236-240;18,265-267;19, 2.tl -:. Ch emoselec tive dihytlrorybi allylic alcoholsarepreferenriall)d nonconjugated dienesis favored: Asymmetricdihydrory latioa. bothends,producingmajorprodwl Anothertypeof polymer-bound Dl
Chiralphosphines.32 These important ligands can be obtained from chiral organoboranesby consecutivereaction withEtrZn and various chlorophosphines. lCharette, A. B., Beauchemin, A., Marcoux,J.-F.JACS120,51t4(1998). 2Harada, T., Kaneko,T., Fujiwara,T., Oku,A. JOC 62,8966(1997). ''Uchiyama, M., Kameda, M., Mishima,O.,Yokoyama, N., Koike,M., Kondo,Y., Sakamoto, T. "/AC,S r20,4934 (1998). -Micouin,L., Knochel, P.5L327 (199'7). 5Oestreich, M., Micouin,L., Knochel,P. ACIEE 36, 245(lgg'7). 6Reddy, C. K., Knochel, P. ACIEE35,1700(1996). Tlipshutz, B. H.,Ullman,B.,Lindsley,C.,Pecchi, S.,Buzard, D. J.,Dickson, D. JOC 63,6092(lgg8). nRossi, R.,Bellina,F., Ciucci,D. JOMC 542,113(1997). 'Rottlender,M., Knochel, P. ?t 38, 1749,]1997). loCere, V., DeAngelis,S.,Pollicino,S.,Ricci,A., Reddy,C.K., Knochel, P.,Cahiez, G. S 1174(1998). "Rychnovsky, S. D., Powell,N. A. JOC62,6460(1997). ''Mq S.,Zhang,A. JOC 63,9601(1998). ''Pour, M., Negishi,E. TL38,525(1991). r4Matsubara, S.,Otake,Y., Morikawa,T., Utimoto,K. SL 1315(199S). r5Kondo, (lgg'7). Y., Fujinami,M., Uchiyama, M., Sakamoto, T. JCS(P1)'7gg r6Moody, C. J.,Morfitt,C. N. S 1039(1998). "Kimura,M., Ogawa,Y., Shimizu,M., Sueishi, M., Tanaka, S.,Tamaru,Y. TL39,6903(1998). '8Alu-o, G.,Pacioni,P., Savoia,D. CEJ3,726(lgg'1 ). reJones, P.,Reddy,C. K., Knochel,P. T 54,1471(lgg8). '0Nukurnu.u, '..0gg(199'..). 8., Kubota,K. fL 38, ''Nakamura,8., Kubota,K., Sakata,c. "/ACSll9,545'l (199'1). "Stlidemann, T., Knochel,P. ACIEE36,93(1997). 23Bahr, A., Marek,I., Normanr, J.-F.TL37,5873(1996). 24lorthiois,E., Marek,I., Normant,J.-F. TL 37, 6693(1gg6i. 25uchiyama, M., Kameda,M., Mishima,O.,Yokoyama,N., Koike,M., Kondo,Y., Sakamoto, T. "/ACS r20,4934(199U.
K 2 O S O 2 ( O H ).2o
\r
.'A
K3Fe(CN)6Kp t- BuOH d
(cat')
Aminohydroxylations. Sere the conesponding N-chloro-l/-sod employed as nitrogen source in d complexed osmate. The products diamines.eIn one version the cinch through thiopropyl chains.T The regioselective process p-amino-c-hydroxycarboxylic rcrd
corresponding acrylic acid substrr anthraquinonemediatesenantiosclo
Osmium tetroxide
,s rJ irn alkene linkage situated hc:: F-IZnOTP?or diethylzinc'28 !- r .r new Position. AllenYlzincs
'3-oK -rrqn
)l,o
v\ ,r_
(-)-erythrodiene i..: ': rhiol esterswith organozinc , ' .,r I earbamatesvia organozinc frrn.,n !€lrl€Ilt' thus rendering the
'6lto,S.,Shinokubo, H', oshima,K' TL39,5253(1998)' 21Oppol"er,W., Schrdder,F'' Kahl, S' HCA 80' 204'7(1997)' t8Oppot"".,W., Flachsmann, F' TL 39,5019(1998)' tntnl.y".,C.,Marek,I., Normant'J'-F'TL37' 857(1996)' T'TL39' 3189(1998)' t"r;ily;.;, T'' Fukuyama' S', Yamashita' H.' Yokoshima' y (1998)' 3tKulinin,A. v., Da silva'A. i. M., Lop"', c' c', Lopes' s'c'' Snieckus' 'TL39' 4995 \' "l-*g".,'f., Piintener,K., Stiirmer'R', Knochel'P' IA 8''715(199'l)' -239; t5' 240-241; 16' 249-253; 17' Osmium tetroxide. L3, 222-225: 14, 235 -242 236-240; 18, 265'26'l ; 19, 241 By adding TMEDA to the reaction medium Chemoselective dihydroxylations' Reaction at the terminal double bond of allylic alcohols are pret'erentiuttyaifryO.o*yiated.r 2 nonconjugateddienesis favored at cx''o-Dienesundergo asymmetric dihydroxylation Asymmetric dihydrorylations' bothends,producingmajorproductswhicharehomochiralatthesecondafyalcoholsitesJ-s DHQD ligands has been developed'o Another type of polymer-bound DHQ and
..::r he obtained from chiral ... chloroPhosPhines' r
- cat' K2OsO2(OH)2
\,4.4 l r
ag8 ).
K3Fe(CN)6 K2CO3 t- BuOH 0o
L : r1 Kondo,Y., Sakamoto'T JACS
oH
9H
,oaAloi*** 6H
on
(34 : 1) 50%
Ph
D. JOC 63'6092(1998)' rrckson,
MeO
"oYYo
*Y* Ph
. \-
, ' S I 174(1998)' . : ! ' 1 .P . , C a h i e zG
-'^t
r 1997).
, lrru. Y. fL 39,6903(1998)'
T' "IACS ,c:r.-. \1.. Kondo,Y., Sakamoto'
(cat-) = l-Bu'8'e Cl'Ct{0)' Several carbamatesHTNCOOR (R Et'7 Aminohydroxylations. have been N-bromoacetamiderr and the corresponding N-chloro-N-sodio derivatives' employedasnitrogensourceinthereactionmediatedbybis.cinchonaalkaloidligand complexedosmate.Theproductsarereadilymanipulatedtogivetwopairsofchiral derivatives are linked to silica gel surface diamines.eIn one version the cinchona alkaloid through thioProPYlchains.T for the synthesis of protected The regioselective process is suitable p.amino-cr-hydroxycarboxylicacidderivatives(racemic'nochiralligandadded)fromthe the other hand, 1,4-bis(dihydroquininoxy)conesponding acryIic acij substrates.r2on anthraquinonemediatesenantioselectiveformationofN.benzyloxycarbonylphenylserine'13
276
Oxalyl-1,1'-bis(benzotriazole)
""rt,*oi#
tKatritrky,
A. R.. Lerc
bAr"
r^*^-\"J-\/
o
Megsi'-
Oxalyl chloride. 17 Nitriles.t Prin
K2OsO2(OH)2
tNaka.lima, N., Ubulau
H2O - ProH TOYo
'Donohoe, T. J., Moore, P. R., Waring, M. J., Newcombe, N. J. It 38, 5027 (199i). 2And.rr, M. B., Lepore, S. D., Sclafani, J. A. TL 38,4043 (lggi). 'Maier, M. E., Reuter, S. LA 2043 (199':.). -Takahata, H., Takahashi, S., Kuono, S., Momose, T. JOC 63,2224 (1gg9). 5Hoye, T. R., Mayer, M. J., Vos, T. J., Ye, Z. JOC 63,8554 (1998). oBolm, .1ggT. C., Gerlach,A. ACIEE36,741 7song, C. E., Oh, C. R., Lee, S. W., Lee, S., Canali,L., Sherrington,D. C. CC 2435(1gg8). oo'Brien, P., Osbome,S. A., Parker,D.D. JCS(Pl ) 2519 (1998). vHan, H., Yoon, J., Janda,K. D. JOC 63,2045 (1998). toR"ddy, K. L., Dress,K. R., Sharpless,K.B.TL39,3667 (tg98). "Bruncko, M., Schlingloff,G., Sharpless,K.B. ACIEE36, 1483(1997). '"Rubin, A. E., Sharpless,K.B. ACIEE36,2637 (1997). ''Tao, B., Schlingloff, G., Sharpless,K.B. TL39,2507 (1998).
Osmium tetroxide-N-methylmorpholine oxide. 19, 242-243 Dihydroxylations. The presenceofphenylboronic acid in the reagent mixture leads to dioxoborolidine derivatives which are more easily isolated when polyenes are oxidizedl Another modification is the use of microencapsulated oso, which is recoverable and
S-(1-Oxido-2-pyr*[ Decarborylatiot acidsintendedfor frt
^ gOO+
d ("Yo, ][o""ao{ tGu-".,
P., Anderson. J
Oxygen.18,268-26 Epoxidatians. aldehydesand alken mediafor sucheporx
reusable.2 'Gypser, A., Michel,D., Nirschl,D. S.,Sharpless, K. B. JOC 63,7322(1998). 'Nagayama, S.,Endo,M., Kobayashi, S.JOC 63,6094(199S).
Ph
Oxalyl- 1,1'-bis(benzotriazole). Oxamides.t Unsymmetrical tetrasubstitutedoxamides are readily prepared,using an amine at room temperatureat the first stageof the transacylation, then another amine in the presenceof NaH at a higher temperature(8 examples, 44-75Vo).
%\%
PhNHMe
THF
2OO
l{=Nr
3 to\*fi P h 6
83/o
V
.-B U N H M e THF
A
\\
O B u l l l
.,&N.. ' i ll P h o
Oxidation of sul system can be contrr proportion of the a
NitrobenzophenonesI Conjagated aUcl either palladiumclusr
Oxygen
o
'Katritzky,
A. R., Levell, J. R., Pleynet,D. P. M. S 153 (1998).
) - N H o :
\--\_.\
ll
: V 6 n
Oxalylchloride.17,241-242;18,267-268; 19,243 underthe Swernoxidationconditions. NitriJes.l Primaryamidesaredehydrated rNakali-a,N.,Ubukata, M. ZL38,20gg(lggi).
o
hexafluorophosphate. S-(1-Oxido-2-pyridinyl)-1,1,3,3-tetramethylthiouronium Decarboxylation.t The reagent1 is usefulfor esterificationof hinderedcarboxylic acidsintendedfor freeradicaldecarboxylation.
tlw-r
n'\ C l-i5 r 1998).
_ ' o ]s, i l. ?
{""
]Lo'
(1)
EtsN-DMAP, ,(""'(O>q
;;;*
FNtvtez NMe2
o
iFo"xo{l 78% (2 steps)
'Garner,P.,Anderson, ('1998). J. T., Dey,S.,Youngs,W. J.,Galat,K. JOC 63,5'732
rr'JJentmixture leads oir r.ncsare oxidized] t r. recoverableand
Oxygen. 18, 268-269: 19,243-244 Epoxidations. A novel Ru(III) complex is effective in the aerobic cooxidation of aldehydesand alkenes (10 examples,72-lOOVo).tPerfluorocarbonsare useful reaction media for suchepoxidationprocesses.2'3
02 / I-BUCHO
I
PhA/Ph
CH2Cl2l aq. NaHCO3
h.r prepared,using an n rn()theramine in the
O B u
*t':
i
l
r^,\N...
'i
ll
P h o
l
Oxidation of sulfur compounds. The oxidation of sulfides by the Or-aldehyde system can be controlled to reach either the sulfoxide or sulfone stage by varying the proportion of the aldehyde, in the presence or absence of a nickel complexJ'a Nitrobenzophenonesare obtained from the corresponding diarylmethyl sulfones.s Conjugated aldehydes, Allylic alcohols are converted to enals when treated with under molecularoxygen. eitherpalladium clustercomplexes6or Ru-Al-Mg hydrotalcitesT
278
OxYgen
the The oxygen/DMSO couple recycles As reoxidant of palladium catalysts'8 of conjugatedcyclohexadienes' Pd(II) speciesfor 1,4-difunctionalization to and oxygen' phenols are oxidized tyrosinase of In the presence Quinones. o-quinoneswhicharecapturedbydienophilessuchasethylvinylether'9Chemicaloxidation (6 examples' 36-657o) is mediated by a to p-quinonesro in ttnu*ing benzene "rfi""tt acid' mi^tor" of Co and Mn salts of 4-aminobenzoic
w
oz/ cHcr3 | (Xt
I
V ,-11
\.,,oEt
h'a
G;i L*" i
\'oprcctnr bKalrcor K. I Kancde-K.' \oorr. \l . .t o\lull.'. G H ttastrmr. V ''Adanr. s'-
Saha-Molb ::Blay. G-. Fo
lllT (l99tl :lPaersgl K ttc,os*emi. S '\ea:rmro..
o
a\ t(oH
1rc. r r'. S
oEl 70"/"
from peas mediates the enantioselective various oxi.dations. An cr-oxidase 'r I on acidslto give productsof (R)-configurationl oxidationof hydroxylationof carboxylic theotherhand,a.hy
Orom- f3' I Tatrd.r *'ith zincrn nucleoPhil MI carbonll co
Pd(OAc),-OrlDMSOsystem'r3Thebehaviorofbenzylicbromidestoward(Ph'tP)CoCl differsinthepresenceorabsenceofoxygen;underoxidativeconditionsaldehydesare formed,otherwiseC-C bondcouplingoccurs'ra
(Ph3P)CoCl/ O
-l i-I
(Pn.P)coct ,
o,n$cHo So||l <*alkencx
Noz ozN
PhH
55%
Perfluorodecalinhasbeenusedinaerialoxidationscatalyzedbytransitionm etal alkenes to to aroic acids' sulfides to sulfoxides' complexes,3 e'g., aromatic aldehydes with the oxidation of alkanes to ethersr5 epoxides. The mild conditions for (Ph.,P)rPdBrr-NaOMe-O,are valuable' rK".uuun,V., Chandrasekaran, S JCS(P1)3115(1997) 2Pozr\,G.,Montanari, M'T' SC27' 447-(.1Y' F', Rispens' 3Klement,L, Liitjens,H , Knochel'P ACIEE 36' 1454(199'7)'
:schloss..t tGdatbnrts1lt"rt" c
Omne
(r
-',uple recycles the
a!:: J:l C\.
fr.rnrrl5 are oxidized to r: J: Chemicaloxidation t'- ^5'; ) is mediatedby a
aRao,T. V., Sain,B., Kumar,K., Murthy,P. S.,Rao,T. S.R. P.,Joshi,G. C. SC28,319(1998)' swojciechowski, K. SC27, 135(1997). oKaneda, K., Fujie,Y., Ebitani,K. ?4 38, 9023(1997). TKaneda, T., Ebitani,K. JOC 63,1750(1998). T., Matsushita, K.. Yamashita, 8Ronn.M., Andersson, P. G., Backvall,J.-E.ACS51, 773 (1997). eMiill"., G. H., Lang,A., Seithel,D. R., Waldmann,H.CEJ 4'2513(1998) rhashemi.M. M., Beni,Y. A../CR(S)138(1998). llAdu-,
W., Boland, W., Hartmann-schneider, J., Humpf, H.-U', Lazarus, M.' Saffert' A''
Saha-Miiller, C. R., Schreier, P. JACS 120, 11044 (1998). r2Blay, G., Femandez, I., Formentin, P., Pedro, J. R., Rosello, A' L., Ruiz, R., Journeaux,Y ' TL 39,
o
Y ''-l-->
0:.
Lr-1
3327(r99$. t3P"t".ron, (1993). R.C.JOC63,3185 K. P.,Larock,
racoswami,S.,Mahapatra, A. K. TL 39, I 98I ( I 998). r5v"d".nikou,A. N., Sayakhov,M. D., Solomonov,B. N' MC 205(1997).
oEt 70o/.
rc. :he enantioselective ,:,& configuration]O . r rn rr .lnJ the processrenders
Ozone. 13, 229; 15, 243-244; 17, 253-254; 18, 270-27 2; 19, 244-246 Tandem reactians. Homoallylic alcohols are obtained when ozonides are treated with zinc and allylic bromides.rZinc performs two tasks:to reduce the ozonidesand to fonn nucleophilic agents. Ozonides.2 Treatment of a mixture of ketoxime etherswith ozone in the presenceof carbonyl compounds leads to ozonides.
,. .,'nipounds with the n:.::. toward (Ph,P)CoCl .
.jitions aldehydesare
\ /
FNoMe *
01
,/-cl \-61
Og
cl o-o I )\.^,,^.
pentaneoo
cl 55%
F,HO Solid-phase synthesis. Terminal double bonds in polymer-linked compounds (e.g., esters)can be cleavedby ozone.l
--G*o, .r fi\ transition metal t , , ..rltbxides, alkenes to I
, ethersr5 with the
tS.hlo.r,J. D., Paquette, L. A. sC 28,2887(1998). 2criesbaum, M. 1"41381(1997). A., Scherer, K., Liu, X., Kassiaris, 3sylvain,C.,Wagner,A., Mioskowski,C. TL38,1043(1997).
'Barrett. A. G. M.. Tam, W../OC 8Ranu, B. C., Guchhait, S. K.. Gh nElgu".o, J., Jaramillo, C.. Pardo. roJang, S.-B. TL38, l'r.93(1991t "Briise, S., Waegell, B., de Mei.ra
Palladium/carbon. 13, 230-232; 15, 245; 18,273; 19,247
Palladium(Il)
Hydrogenolysis. Suppression of hydrogenolysis by pd/C adding an amine to reaction media is shown in the formation of 3-phenylpropyl benzyl ether from cinnamyl benzyl ether tn 95vo yield.r (Note that aryl ketones are hydrogenated to afford benzylic alcohols.2)It is also possible to differentiate benzyloxy groups attaching to aromatic and aliphatic carbon atoms.3Retention of a phenolic MPM ether is possible while changesat benzyl ether, benzyl ester, cbz group, double bond, and nitro substituent are being made with 5VaPd/C under hydrogen in methanol-dioxane containing pyridine.a Hydrogenolysis of benzyl ethers is accelerated by a titanium-loaded hexagonal mesoporous silicas without affecting silyl ethers and acetals. 2-Naphthylmethyl ethers undergo hydrogenolysis in the presence of benzyl ethers under standard conditions.6 2-Methylnaphthaleneinhibits hydrogenolysis of benzyl ethers.
t8, 274 -27 7 ; 19, 248 -25 | Heck reactian and othcr c microwave irradiation in D! intramolecular reaction leadrnl
acetate. 13. l-1i
controlled by ligand.3
Hydrogenation. B-Cyclopropylacrylic esters undergo complete reduction which includes cleavageof the three-memberedring at the site close to the original double bond, forming a methyl group.T ordinarily cyclopropanes suffer reductive cleavage only in the presence of Pt catalysts. When using ammonium formate to provide hydrogen, chemoselectivesaturation of the double bonds of conjugated sulfones and phosphonatesis readily carried out.8
COOMe
H2/ Pd-C EtOH
/^'cooMe 90%
C-C bond couplings. Pd/C catalyst can be used for the Stille coupling to form I -arylpyrazolese;cuI and Ph,As are also presentin the system.polymer-bound pd catalyzes the Suzuki coupling efficiently (8 examples,85-98%o).to saturated alkyl halides are not suitable for Pd-catalyzed couplings due to B-hydride II elimination. However, such problem does not prevail in the caseof 1-bromoadamantane. lsuliki, H., Hauori,K., Hirora,K. JOC 63,7990(1998). 'Sajiki, H., Hattori,K., Hirota,K. JCS(P1)4043(1998). -Sajiki, H., Hirota,K. I54, 13981(1998). 'Sajiki, H., Kuno,H., Hirota,K. TL38,399(1997\. 'Itoh, A., Kodama, T., Maeda,S.,Masaki,Y. TL39,946l(1998). oGaunt, M. J.,Yu, J.,Spencer, J.B. JOC 63,4172(lgg}). 280
Symmetrical stilbenes are arenediazonium salts.a l-Erho give either ethyl cinnamate or t
/-\.-Ni \ ,)-')
BF;
The Sonogashiracouplingo of the ligand tris[3-(N,Ndin ligandless Pd speciesin aqueu
PalladiumfiI)acetste
2El
7Bu.r.tt.A. G. M., Tam,W. JoC 62,7673(1997). 8Ranu. S. K., Ghosh,K. JOC 63,5250(1998). B. C..Guchhait. eElgu".o,J.,Jaramillo, C.,Pardo,C. S 563(1998)' loJang, S.-B.TL38,1793(1997). "Brese,S.,Waegell,B., deMeijere,A. S 148(1998).
^ I'J'C adding an amine to r. r.'nzllether from cinnamYl to afford benzylic 1.1:,'r.'nated r!:- rttaching to aromatic and cr .. possiblewhile changesat ru,, ..rhstituentare being made
Palladium(Il) acetate. 13,232-233; 14,248; 15,245-247 ; 16,259-263; 17,255-259; 18,27 4-27'l; 19, 248-251 The Heck reaction has been promoted by Heck reaction and other couplings. at high temperature (225').2 ln the water or in in DMFr microwave irradiation products, the double bond migration can be to spirocyclic intramolecular reaction leading controlled by ligand.3
n::.. prridine.a J :rrrnium-loaded hexagonal :t .. l-Naphthylmethyl ethers
Pd(OAc)2- BINAP
r ..rJer standardconditions.o E -,,mplete reduction which >.{' ,, rhe original double bond, rr.:...lire cleavageonlY in the f,::r.:ri to provide hYdrogen, ls rt ....irrIeSand phosphonates
Et3N- TIOAc MeCN 80o
'.. I.,1'coon,te
x*eo x-=,eo
Symmetrical stilbenes are obtained by using vinyltriethoxysilane to couple with arenediazoniumsaltsi l-Ethoxy-l-trimethylsiloxycyclopropanereacts with P\IBF, to give either ethyl cinnamate or the dihydrocinnamate, depending on the order of mixingl
c: ::c Stille coupling to form n: [',']r mer-boundPd catalyzes r.: -,,uplings due to B-hydride \ i.r .,1 l-bromoadamantane.lr
. ,-0-rr,
Pd(OAc)2
vsi(oEt)3
MeOH 6oo 62o/o
The Sonogashiracoupling of water-soluble iodoarenesand I -alkynes can take advantage of the ligand tris[3-(N,N-dimethylguanidino)phenyl]phosphine.6 suzuki couplings on ligandless Pd speciesin aqueousmedia proceed with different degreesof successJ
282
Palladium(Il)acetate
Additian to muhiple bonds. vlc-Diarylation and alkynyVarylation of norbornadiene to furnish exo, exo-5,6-disubstitutednorbornenesresult when ArxBF4 (X=I, N2) and ArX' [X'=SnBu' B(OHL, CCH] or AroBNa are allowed to undergo the Pd(OAc)r-catzlyzed reaction.8Benzeneselenoladds to terminal allenesto give mainly 2-phenylseleno-1- alkenes.e
+
Pd(OAc)2
Ar2XBF4
+ ArSnBu3 y=l,Nz Unsymmetrical trans-|,4-difinctionalization of l,3-cyclohexadienes occurs when the reagentsystemcontains MeOH and a carboxylic acid.rOTrifluoroacetic acid is probably too acidic, someCF,COONa is also added.rr When catalyzed by Pd(OAc), in the presence of EtrN, propargylic N-hydroxyureas cyclize to afford 2,3-dihydroisoxazoles.r2 Dehydrogenation of carbonyl compounds.I3 Prior formation of silyl enol ethers is not required when the carbonyl compounds are heated with allyl diethyl phosphate and Pd(OAc),-NaHCO.. IndoTes.la A one-step synthesis of 2,3-disubstituted indoles involves Pd-catalyzed condensationof 2-iodoanilines with ketones in the presenceof DABCO. Cyclopropanation.'s't6 The methylene group transfer from diazomethaneto alkenes using Pd(oAc), as catalyst has been employed in the synthesisof cyclopropylboronic esters such as 1. The precursorsare obtained from chiral diols. ph
'-{
Ph
,o-Xo""
B"o)"',*ou" Ph Ph
A.. Kudo, A.. Hira' .'Ogawa. lottip.. e.. Itami. K.. Aranyor. ttAt-yo., A., Szabo,K. J.. Ba '-Stoner, E. J., Roden.B. A.. C r3shvo. Y . . A r i s h a .A . J . l . J ( X lachen, C.-Y., Lieberman.D I l5Luithl.. J. E. A.. Pietrusrrr J r6zhou, S . - M . .D e n g .M . - 2 . . \ r "Weintraub, P. M., King. C.-H
Palladium(Il) acetate-crr Carbonylation Ary I aroatesor alkynyl aryl ketc
lKang. S . - K . .Y a m a g u c h iT. . l 'Kang, S.-K., Lim, K.-H.. Ho. I
Palladium(Il) acetate-{og Coupling reactions, Arylstannanesr and arylsila 2-hydoxybiaryls with alkern
lHirabayashi, K., Ando. J.. )-rsl 'Hirabayashi. K., Nishihara-l'3Miura, M., Tsuda,T.. Sarotr-T
Palladium(II) acetate-litl Heteroannulation. F reaction of properly functicr
Heck reaction/Robins gives hydrophenanthrenorr
(1) Enol ethers." Enol ethersare preparedfrom alcohols by an exchangereaction with ethyl vinyl ether using the complex of Pd(OAc), with l, l0-phenanthroline. 'Larhed, M., Hallberg,A. JOC 61,9582(1996);Larhed,M., Hoshino,M., Hadida,S.,Cunan.D. p., A. JOC 62,5583(1997). -Hallberg, 'Gron, L. U., Tinsley,A. S. TI 40, 227(l9gg). 'Ripa, L., Haltberg,A. JOC 61,714'7(tgg6). -Sengupta, S.,Bhattacharyya, S.,Sadhukhan, S. K. "/CS(P1)275(1998). -Kang, S.-K.,Yamaguchi, T., Ho, P.-S.,Kim, W.-Y.,Yoon,S.-K.TL38,194'l(1997). oDibowski, H., Schmidtchen, F. P. TL 39,525( I 998). TBumagin, N. A., Bykov,y.V. RJGC6,193l (1996). dKang, S.-K.,Kim, J.-S.,Choi,S.-C.,Lim, K.-H. S 1249(1998).
Dienesynthesis.' Fu acetylenemoleculesandanr Pd-catalyzed reaction.
Palladium(Il)
ail(,n of norbornadiene lF. \=1. Nr) and ArX' l*- PdtOAc)r-c atzlYzed nr r-cleno-1- alkenes.g
lenc' occurs when the elri ,rcidis ProbablYtoo It'!\ ilc
N-hydroxyureas
n ,,t .ilyl enol ethersis J:crhvl phosPhateand i -\ ()lvesPd-catalyzed B('() h"u,'rnethaneto alkenes 'c.,'nnrpylboronicesters
acetate-lithium chloride
eoguru,A., Kudo,A., Hirao,T.TL39,5213(1998). L0Hupe, l--8. T 54'5375(1998)' E., Itami,K., Aranyos,A., Szabo,K. J.,B?ickvall' I rAranyor,A., Szabo, K. J.,Blickvall,l.-F,'JOC 63'2523(1998). r2ston".,E. J., Roden,B. A., Chemburkar, S. ZL 38, 4981(1991). r3shuo,Y., Arisha,A. J.l. JOC 63,5640(1998). rachen.C.-y..Lieberman, (1997). T. R.,Reider,P. J.JOC 62,26'76 D. R.,Larsen,R. D., Verhoeven, lsl-uithl",J. E. A., Pietruszka, J.,Witt, A. s 2651(1998). r6zhou,S.-M.,Deng,M.-2.,Xia, L.-J.,Tang,M.-H.ACIEE37,2845(1998)' rTweintraub, P. M., King,C.-H.R. JOC 62,1560(1997)
Palladium0D acetate-carbon monoxide. Aryliodonium salts undergo carbonylation, which results in methyl Carbonylation 2 aroatesor alkynyl aryl ketones,dependingon the presenceofMeOH or l-alkynesl rKang,S.-K.,Yamaguchi, T., Ho, P.-S.,Kim, W'-Y.,Ryu,H.-C.JCS(PI)841(1998)' 2Kang, S.-K.,Lim, K.-H.,Ho,P.-S.,Kim, W.-Y.S 874(1997).
Palladium(Il) acetate-copper(Il) acetate. Coupling reactions. Coupling reactionslead to cinnamateestersand styrenyl ketones. Arylstannanesl and arylsilanols2can be used as substrates'Oxidative cross-coupling of 2-hydoxybiaqylswith alkenesunder aerationgives benzochromenederivativesJ rHirabayashi, Y., Mori, A', Hiyama,T. SL 99 (1999)' K., Ando,J.,Nishihara, 2Hirabayashi, Y., Mori,A., Hiyama,T'TL39,7893(1998)' K., Nishihara, 3Miura.M.. Tsuda,T., Satoh,T., Nomura,M. CL 1103(1997).
Palladium0D acetate-lithium chloride. Furans and o-pyrones are readily formed by Pd-catalyzed Heteroannulation. reactionof properly functionalizediodoalkenesrand alkynes'r Heck reaction/Robinsonannulation.3 The tacticalcombinationof the two reactions gives hydrophenanthrenonesin one step.
o l .'\.hange reactionwith t!ilr,rllne. . tl.Jrda. S., Cunan, D P.,
OH
.
z
) I
Pd(OAc)2 - LiCl
i-Pr2NEt/ DMF g00
al (YY \.,\,,'
56'k(trans:c,s 4 : 1)
1r:-
1997)
Diane synthesis,a Functionalized (E,Q-l-hato-1,3-dienes are assembledfrom two acetylenemolecules and an electron-deficient alkene, with LiX as the halogen sourcein the Pd-catalyzed reaction.
Palladium(Il)
:
*
acetate-phase transfer catalyst
'^\ R' v
X
R
Pd(OAc)2- LiBr >
,
X
tr$
''\/\)-
Bu4rcl Dr#
HoAc- H2o 100%
X = CHO,Ac, Bz, NO2
R=H,X=CHO
43"/"
IG 9,l0-Diarylidene-9. of (Et<>t cross-coupling at the l" 2-hydroxybiaryls
rLarock, R. C.,Doty,M. J.,Han,X.TL39,5143(1998)' 2l-arock, R. C.,Han,X., Doty,M.J.TL39' 5713(1998)' 3Dyker,G.,Grundt,P.,Markwitz,H., Henkel,G. JOC 63'6043(1998)' aWang,Z., Lu, X., Lei, A.,Zhang,Z.JOC 63'3806(1998).
Palladium(Il) acetate-oxY gen. The synthesisof biaryls from arylboronic acids' and l,3-dienes oxidative couplings. under mild conditionsinvolves the Pd(OAcl-O, syst'em' from alkenylstannanes2 Various primary and secondaryalcohols are oxidized to give aldehydes oxidations, Modified and ketones3by Pd(OAc)r-Or-pyridine in the presenceof 34 molecular sieves' and system Pd(oAc)2-o, the employ and chloride copper obviate which processes wacker a water-solubleI , l0-phenanthrolineligand or polypynole as redox-activeligand.s The preparation involves addition of primary amines N,N,-Dinlkylcarbodiimides.6 iodine is also required' Pd(OAc)r-O, to In addition to isonitriles. complex catalyst preparedfrom Pd(oAcl, A rnor. alkynes.t of cyclotrimerization and MsOH under oxygen promotes molybdovanadophosphate, chlorohydroquinone,a alkynes. from formation of benzenederivatives ,l31 lsmith,K. A., Campi,E. M., Jackson' G B' SL C' G' M', Deacon' S.,Naeslund, W. R.,Marcuccio, /1991\. 2Al.u.ur,L., Taylor,R. J. K. SL 791(1997). rNirhirnrr",T., Onone,T., Ohe,K., Uemura,S. fL 39,601I (1998)' atenBrink.G.-J..Arends,I. W. C. E.,Papadogianakis' R' A CC 2359(1998)' G , Sheldon, 5Higuchi, S.,Hiro,T. SL l2l3 (1996). M., Yamaguchi, uPri-Bor, J. CC 34'7(1997). I., Schwartz, TYnkotu, S.,Ishii,Y. IL 38, 3923(1997)' Y., Sakaguchi, T., Sakurai,
Palladium(Il) acetate-phase transfer catalyst. An intramolecular version is exploited in closing the five-membered Heck reaction is via ring to completethe tetracyclicsystemof mappicine.rA new synthesisof B-ketoesters Additives products? the Heck reaction of aryl halides with the Baylis-Hillman reaction have importantintluenceson the productsderivedfrom aryl halidesand 2,3-dihydrofuranl
f]r-' va,
The Heck reactioni\ a 1,2-dihydroq indolines,6'7 is u iu diastereoselectivitY
Reaction of 2-cYanothiod
(Y' \,
.\, mapprcrne
ruHcoc
rurr.
Palladium(Il) acetate-phase transfer catalyst
R
o'\/\J
\--l
,
X
Ph
Y-> \__JJ
a.o
Pd(OAc)z + Bu4NCl- KOAC DMF
Pd(OAc)2
Ph
Bu4NBr DMF
97"/"
100" R = H .X = C H O
437" 9, I 0-Diarylidene-9, 10-dihydroanthracenes are available as (EIZ) mixtures from self Of interest is the regioselective arylation of cross-couplingof (E)-o-bromostilbenes.a 2-hydroxybiaryls at the 2'-position.5
Ph
- Lict, Pd(oAc)z
r:: .::, lhoronic acidsl and 1,3-dienes r P.: ( ) \c)"-O, system. . .rrcoxidizedto give aldehYdes s .o d i f i e d I ' i \ m o l e c u l a r s i e v eM n. r the Pd(OAc)r-O, sYstemand r, - .t. rcdox-activeligand.s rr ..:. addition of Primary amtnes o '-',;.rired.
K2CO3 BuaNBrDMF
*
r - ,'.rlrst preparedfrom Pd(OAc)r' e \l-OH under oxYgen Promotes
11oo 80%
The Heck reactionis applicableto the synthesisof benzo-fusedheterocyclesincluding Influenceof reactionconditionson and benzopyrans.e 1,2-dihydroquinolines,8 indolines,6'7 is witnessedin the cyclizationleadingto geissoschizoland its isomer'r0 diastereoselectivity with aryl halidesintroducesthe aryl groupto the 5-position'1r Reactionof 2-cyanothiophene
, . B. SL l3l . . i .C . G . M . , D e a c o nG Pd(OAc)2- K2CO3 DMF - H2O ( 9 :1 )
R A. cc2359 (1998).
+ Et3N,Ph3P + BU4NBT
i
rJ in closingthe five-membered is via ....r nthesisof B-ketoesters Additives :' rcrction productsi
t:
. hllidesand 2.3-dihydrofuranl
P \
'fu
/-Ts
,yNHTs
10"k
490/"
Pd(OAc)2- K2CO3
( 1 0: 1 )
Pd(OAc)2-Na2C03
-.
491"
147"
DMF - H2O
NHCOOBn
<)^
L
isogeissosch izal
geissoschizal
tr-Ph g.---l
BuaNCl - DMF
(YV,N \-,^N
1ooo
mapprcrne
68"/o
286
Palladium(Il)acetate-tertiaryphosphine
Phenanthrenes are fomed by the reaction of 2-iodobiaryls with alkynes.r2 The 1,2,3,4-tefiahydroderivatives are similarly obtained from the corresponding reaction with I3 2-iodo-I -arylcyclohexenes.
th
., \
+ ph__E_ph
11_l-\ V \_/
^Pd(oAc)z-Licr ..^.
/-\
For intermolecular aslm|IE 2,3-dihydrofuran the hindered < enantioselectivityis due to rhe bulh in the metal complexes.
lPh
A >-\ NaoAc / DMF \_lF1_i 1000
M&/ 89%
M€O\ other couplings. Homocoupling of aryl halides to provide biarylsra using Pd(OAc)r-Bu.NBr is much more desirablethan the Ullmann couplingbecauseit is catalytic and the reactiontemperatureis much lower. suzuki couplingscan be done in water.15 rComins, D. L., Saha,J. K. JOC 61,9623(tgg6). 'Basavaiah, D., Muthukumaran, K. I54, 4943(lgg}). tJ"ff"ry, T., David,M. TL39,575t(1998). -de Meijere,A., Song,Z.2., Lansky,A., Hyuda,S.,Rauch,K., Noltemeyer, M., K6nig,B., Knieriem, B. EJOC2289(1998). 5Satoh, y., Kawamura, y., Miura,M., Nomura,M. BCSJ71,2239(1ggg). T., Inoh,J.,Kawamura, 6Back, T. G.,Bethell,R. J. r4 39.54630998). Tlarock, R. C.,Pace,P.,Yang,H., Russell, C. 8., Cacchi,S.,Fabrizi,G. T 54,9961(1998). nl-arock, R. C.,Pace, P.,Yang,H. TL39,25l5( 1998). 'Larock, R. C., Yang,H., Pace,P., Narayannan, K., Russell,C. 8., Cacchi,S., Fabrizi,G. T 54,7343 ( r998). 'uBir*un, V. 8., Rawal,V . H. TL 39,72lg(lgg8). "Lavenot, L.,Gozzi,C., Ilg, K., Orlova,I., Penalva, V., Lemaire, M. JOMC 567,49(t99g). ''Larock, R. C., Doty,M. J.,Tian,Q.,Zenner, J.M. JOC 62,7536(1997). '-Larock, R. C.,Tian,Q. JOC 63,2$2 (1995). '-Hassan, J.,Penalva, V., Lavenot, L.,Gozzi,C.,Lemaire, M. Z54, 13793(lg9g). '''Badone, ,lggT. D., Baroni, M., Cardamone, R.,Ielmini,A.,Gazzi,U.IOC 62,71.10
Palladium(Il) acetate-tertiary phosphine. 13,91,233-234;14,249,250_253; lS, 247 -248 ; 16, 264 -268 ; 17, 259 -269 : t8, 277 -28 | ; 19, 252-25 6
Heterocycle formation, for err propenols,3and isoquinolines from r extension of the versatile Heck ren
Suzuki and other couplings. of 2- and 4-arylpyridines.s For a sru with potassium vinyltrifl uoroborarcI vinylating agent.
A stepwise Stille reaction cal propen-l-ol derivatives. The hrsr n stannylgroup of 3,3-bis(tributylsr"
(\ortrov Bu3sn,
SnBu3
Pd(OAc)2- TobP
''I'Y
I
Heckreaction A highly regioselective synthesis of cr-trimethylsilylstyrenesl involvesreactionof aryl triflateswith allyltrimethylsilane. ^
..\r-r't l l l t |
v"oP
/fT{
'+ l
,, t l
l
l
\"."/'siMe3
Pd(OAc)2- dppf +
- K2co3 Et3N MeCN 600
MeO
Coupling reactionsinvolving ary electron-withdrawing group are also, and alkenylfluorosilanes.8Functimr reactionsby NaOH has been nored.r
Palladium(Il)acetate-tertiaryphosphine
The n .. \\ lth alkYnes'12 with 16r.p,,nding reaction
2W
between aryl triflates and Helk lea:tionsuperior to BINAP'2 Improved For intermolecular asynmetric diphosphine 1 is 2,3-dihydrofuranthe ftf"OittA enantioselectivityisouetotheuutkyl.butylsubstifuentstocreateamoreidealchiralpocket in the metalcomplexes'
XrsX-
^?A'
:
ueo)l-d-\_{/_,2 I /:<1\ lt*o-1y'.i1-\-{
IF
89%
/
\-)
-7'r'
using I pr,'ride biarYlsla " catalYtic is it .. nr hecause ..r:t hc done in water"'
rr< ::. \1..Kiinig'B ' Knieriem' 71.2239(1998)' u:. \l IJCSJ / s4.e96l (1998)' C-.-.r;. S..Fabrizi,G' T 54"1343
I
,
, , \ / c 5 6 7 , 4 9( 1 9 9 8 )
(1) from allenes and (4-3-iodo-2example' dihydropyrans is an Heterocycle formation' for and N-t-butyl(o-iodobenzylidene)imines'a *'nts propenols,3and isoquinolinJot reaction' extensionof the versatileHeck Suzukiandothercouplings.ThisSuzukicouplinghasbeenappliedtoprepafatlon of2-and4-arylpyridines',For*aSynthesisofstyrenesthe_couplingofarenediazoniumsalts latter is a stable and efficient t'u' U""n developed'6The with potassium ulnytt'inuo'oUo'ut" vinylating agent' unsymmetrical 3'3-diaryl-2enables the synthesis of A stepwise Stille reaction of the (f-substituted nt" '"u"tton occurs by replacement propen-l-ol derivatrves' iit ether'? iuntyl)allyl methoxymethyl stannyl group of 3,3-bott'li"tvf
r - ' , : 11 t ) ! $ ) .
k t':
-170(1997)' Pd(OAc)2 - Tol3P
Pd(OAc)2- Tol3P
for"rot"t 11.149,250-253;15,
Bu3sn/,\snBu3
'YY \2
Bu35n
r-a \Z\1
l:f'
': cr-rimethylsilYlstYrenesr an which the silicon atom bears aryl and alkenylsilanesin carbonates Coupling reactions involving allylic arisefrom *.'ulso valuable.Thus, l,4-dienes electron_withdru*rng groop and promotion of such prepared'e'l. ar.' biaryls and alkenylfluo'o'ilunt''"Fonctionalized noted'e ,"*rton, bY NaOH has been
268
Palladium(Il)acetate-tertiaryphosphine
Displacements. Allylic substrates react with lithium enolates of esters,rr organozincs,r2and other nucleophiles. The regioselectivities of reactions involving vinyloxiraneslr and (1-phenoxypropylidene)-cyclopropanes13are different, representing transpositional and direct substitutions,respectively. A preparative method for allylamines is basedon the Pd-catalyzedsubstitution reaction of N-allylbenzotriazolesby amines.laFormic acid is a convenient hydride sourcefor allylic deoxygenation of Baylis-Hillman adducts via their derived acetates,tsthus the reaction is the conclusion of a three-stepprocessfor accessto trisubstituted alkeneswhich contain one electron-deficient group. Arylations. A rather unusual reaction for the synthesisof triarylmethanesr6is that which involves benzylic arylation of 4-nitrotoluene and homologs catalyzed by Pd(OAc)r-PhrP in the presenceof CsrCOr. One or two aryl groups can be introduced by this method. Arylation of amines by ArX employs the Pd(OAc)r-r-BuONa and a phosphine as catalyst.rTPentaarylcyclopentadienes are readily formed in a reaction of metallocenes(nickelocene,titanocenedichloride, zirconocenedichloride) with ArBr in the presenceof Pd(OAc)r-Ph,P-CsrCOr.rs In some cases/-Bu3P is a better ligand than Ph3P, Allyl sulfonates result from the Pd-catalyzed reaction of allenes with Additions. The enyne formation by the addition of terminal alkynes to those sulfonylhydrazines.le conjugated to electron-withdrawing substituents2o'2ris a synthetically significant process.
oMatsuhashi, H., Asai, S.. Hrnbe (199'7). "Hagiwara, E., Gouda, K.. Hatarul l O s h i b u t u . M i y a z a w a ,K . . C r a o . K.. "Elliott. M. R.. Dhimane,A.-L.. \t: l2Doucet. H.. Brown, J. M. ESCF ll l3Bernard. A. M.. Piras.P. P. SC !7. toKat itrky, A. R., Yao, J., Qi. Y ,r r)Pachamuthu, K., Vankar, Y. D. n r6lnoh, J., Satoh,T., Pivsa-An. S . \ l7wolf". J. P., Buchwald, S. L. /(r l8Miu.u, M., Pivsa-Art,S., D1\ct. C 1eKam1o, S., Al-Masum, M.. l'amr 2oTrost, B. M., Sorum, M. T.. Ch.D2lTrost, B. M., Hachiya,L, Mclnton "Hay,L. A., Mitchell, D. IL 3E. 6,( "Kulasegaram, S., Kulawiec. R J ,
Palladium(Il)acetat€-t€rtiu-l The utilir;-.
Deallylatian.
demonstrated by deprotection r are not affected during dealll-la Solvent-l
Heckreacti.on for
developed
the Heck
ree
electron-defi cient aryl chloridcs are
COOMe
rlr lll I
*
//;/Vcno
Pd(OAc)2 > OMe
by
formed
using
3-(o-iodobenzylamino)acn
MeoocY
'/\/\cHo
p t, (-)-* Y 1 3
exposed to Bu,SnH-AIBN. support
for benzophenanthridines j constitutes
0r
ltc r A PdtO
OMe
A net stereoselective hydroarylation of 3-arylpropynamides2z is achieved by the Pd-catlayzedreaction with ArI in the presenceof HCOOH and EtrNH. Isomerization Aryl-substituted epoxides are converted to benzylic aldehydes or exposure to Pd(OAc)r-Bu.P ( 12 examples,8O-99Vo).23 ketoneson brief
-COOMe I Z>.-\ l l l \,r--J
N
M
e
Bu3snH + AIBN prlr{
40"/" tolofrron,K., Larhed,M., Hallberg,A,.JOC 63,5076(1993). hrabesinger,G., Albinati,A., Feiken,N., Kunz,R. W., Pregosin,P. S., Tschoemer,M. "/ACS119, 6315/L997],. 3larock,R. C.,He,Y., Leong,W. W., Han,X., Refvik,M. D., Zenner,J.M. JOC 63,2154(1998). *Roesch, K. R.,Larock,R. C. JOC63,5306(1998). 5l-ohse,O., Thevenin,P.,Waldvogel,E. SL 45 (1999). 6Darr"r, Michaud,G.,Genet,I.-P. TL39,5045(1998). S., Tquayle, P.,Wang,J.,Xu, J.,Urch,C. J. TL39,485(1998).
Silyl enol ethers can be nx BurNF.5 Either a 5:5-fused o bromoalkadienewith is terrrun ligand and additives control th.
Palladium(Il)acetate-tertiaryphosphine-base
h:i:r'-rnr enolates of esters,ll !e. ,\t reactionsinvolving vinyll .rrc different. representing reaction d--., .,1rzed substitution I cr:.nt hydridesourcefor allYlic thus the reactionis !r: .r.r'lates,ts which containone r:.-:,J .rlkenes is that r..i. \)f triarylmethanes16 , ,::..i homologs catalYzed bY ) trr. . SrouPScan be introduced ::.r PdtOAc)r-r-BuONa and a rl.r.:rlr formed in a reactionof n.',:n.' dichloride)with ArBr in c. :-Fiu,Pis a betterligand than t'.:zcd reactionof alleneswith l(': ,: terminalalkYnesto those r. .t \vntheticallY significant
cHo te:3C
289
sMatsuhashi,H., Asai, S., Hirabayashi' K., Hatanaka' Y', Mori, A'' Hiyama' T'BCSJ70'1943 (1997). eHagiwara, 8., Gouda, K., Hatanaka, Y', Hiyama' T' TL38,439 (1997)' loshibutu, K., Miyazawa, K., Goto' Y. CC 1309 (199'7)' rrElliott. M. R.. Dhimane,A.-L., Mamacria,M.TL39' 8849 (1998)'
r2Douc"t. H., Brown,J. M. BSCF134,995(1997). r3Bemard. A. M., Piras,P.P. SC27,7O9(1997). laKatritzky,A. R., Yao,J., Qi, M. JoC 63,5232(1998). l5Pachamuthu. K., Vankar,Y.D' TL39,5439(1998). 16lnoh. S.,Miura'M', Nomura,M TL39,46'13(1998). J..Satoh,T., Pivsa-Art, r7wolf".J. P.,Buchwald, S.L. JOC 62,1264(1997). t8Miu.u, M., Pivsa-Art,S., Dyker, G., Heiermann,J., Satoh,T'' Nomura' M cc 1889(1998). reKamiio. y.TL39,691 (1998)' S.,Al-Masum,M., Yamamoto, (1997)' 20Trost, B. M., Sorum,M. T', Chan,C.' Harms,A' E', Ruhter,G' JACS119'698 2rTrost, (1998)' M'C.TL39,6445 I., Mclntosh, M., Hachiya, B. 22*ay,L. A., Mitchell,D. IL 38, 6533(1997). 23Krrlur.gu.u.,S., Kulawiec,R I. JOC 62'6547(1991)'
Palladium(Il) acetate-tertiary phosphine-base' The utility of N-allyloxycarbonyl derivatives in peptide synthesis is Deallylation. Prenyl esters demonstratedby deprotection with the Pd-catalyst system in aqueousMeCNI are not affected during deallylation. Solvent-free conditions with microwave irradiation have been Heck reactinn such that even developed for the Heck reaction. Phosphites are excellent ligands Isoquinolines alkenesi different with electron-deficient aryl chlorides can be usedto couple the same note procedurd; are formed by using the more conventional when they are derivatives 3-(o-iodobenzylamino)acrylicesters give dihydroisoindole t-Pr2NEt with together exposed to Bu3SnH-AIBN. A combination of BqP and dppp which leads to constitutes support for Pd(OAc), in an intramolecular coupling j benzophenanthridines
847o
COOMe rl:..:lrdesl2 is achieved bY the H . , : : JE I , N H . rr rrcJ to benzylic aldehYdesor p.. rrt 997o).23
I
COOMe
COOMe .
Bu3SnH z'Yt I
A I B N/ P h H A
ll
\.4\-NM"
I
/I
ph3p
orr4qqlr-
Z\Y,\ l
R r r . N B rK- 2 C O 3
lrr
11oo;
l
l
l
\,,\t'uvte tl
v2
52"/. . Tschoerner,M. JACS 119, t \ 1 . J O C 6 3 . 2 1 5 4( 1 9 9 8 ) .
with BuSQF' Silyl enol ethers can be modified prior to Heck reaction by treatment an acyclic from created be can system ring or 5:6-fused BurNF.s Either a 5:5-fused phosphine The residue' ester malonate a with end at one is terminated bromoalkadiene with pathways6 reaction the lisand and additivescontrol
290
Palladium(Il)acetate-tertiaryphosphine-base
Pd(OAc)2- dPPe
C-Arylatinn. The ar affordsa seriesof 4-hvdror y-positionof o,p-unsarura
\YTicooMe
(-tl
70k
cooMe \ )----\-cooMe
cooMe E = COOMe
\-\.oo""
\-Ll
BnNEt3ClK2CO3 600
DMF
* \--,/J (4:1) 55-/o
Allenespossessing a hydroxylgroupat the allylic positionundergoarylationwhich is accompanied by epoxideformation.TA 3-aryl group is readily introducedto l,2-cyclohexanedione and2-ethoxy-2-cyclohexenone.s Ethyleneacetals of aryl methylketonesare obtainedon arylationof hydroxyethoxyvinyl ether.e
Cyclizntion. 1,4-Dik alkanesareproneto under cyclopentenones areobnino
,rA9^,
v Ph-oTf
\""
Ph2lBF4 + Pd(OAc)2- PhsP Cs2CO3/ DMF
The reaction of enolizab formation of two C-C bonds
6oo
6rb
Pd(OAc)2- dPPP
\
EtsN/ DMF goo
;{ 837"
Suzuki coupling. Water-soluble ligands acceleratethe overall reaction rates of this coupling. The effect is further enhancedby changing to ligands having thermoreversible solvation properties. Carbohydrate-substituted triarylphosphines [e.g., a-(p-GluO) C6H4PPh3lhave such advantages.ro A relay Suzuki coupling of o-iodophenyl methallyl ether affords 3-arylmethyl-3methyl-2,3-dihydrobenzofurans.I I Arylation on nilrogen and on sulfur. Many reports on N-arylation of amines have appeared,with variation of the ligand and additives.l2'|3Benzophenone hydrazone also undergoesarylation.ra Practically the same set of reaction conditions can be applied to S-arylation of thiols, giving rise to aryl sulfides.ls
I Lemaire-Audoire, S., Savignr 'Beller, M., Zapf, A. SL 791 r ll ,Berteina, S., De Mesmaeker.! -Harayama, T., Akiyama. T. \i ,Webel, M., Reissig,H.-U. -St-| oCoudanne, I., Castro.J.. Balnx 7Kang, S.-K., Yamaguchi.T. F oGarg, N., Larhed, M.. HallbcrE Yl-arhed, M., Hallbers, A. JOC t roB"ll"., M., Krauter,J. G. E.. z. "Grigg, R., Sansano,J. M.. Sand W i l s o n ,D . 7 5 3 , I 1 8 0 3 ( 1 9 9 - r
palladium(Il)acetate_tertiaryphosphine_base
2gl
c-Arylation. The arylation of 2,6-di-r-butyrphenol with various aryl bromides affordsa seriesof 4-hydroxybiarylderivatives.16 Introductionof an aryl substituent to the y-positionof c,B-unsaturated carbonylcompounds is alsorealized.rT
s*-
b
4
55'
nlcr-ro arylation which is rn:r,rJucedto 1,2-cyclo[ ,:u-ri methyl ketones are
PhBr - Ph3p Pd(OAc)2
\"'o
CS2CO3 / DNitF 1200
Cyclizntion. 1,4-Diketones generated from rearrangementof 1,2;5,6_diepoxy_ alkanes are prone to undergo cyclization under the mildly basic conditions,accordingly, cyclopentenones are obtaineddirectly.I 8
^9\.Xlo
Ph
.a
\ t!,' . \
cHo
- Bu3P Pd(OAc)2 NaHC03/ t-BuOH
o tl Ph--r/\
\
/
A
72y"
Ph
The reactionof enolizable 1,3-diketoneswith 2-(acetoxymethyl)allyl acerateinvorves formationof two C-C bonds,a 4-methylenecyclohexanone unit is formed.re
:i..
e
;{ 83k ali reactionratesofthis a\ lnr therTnoreversible
E\ [e.s., a-(p-Gluo) ft,'rd: 3-arylmethyl-3r Lrronof amineshave tsn()nehydrazonealso o .l-arylationof thiols,
Pd(OAc)2- Ph3P DBU / MeCN
a\-J,_
d4-L:f-
; 79/"
S.. Sa.vignac, M., Blart, E., Bemard,J._M.,Genet,J._p. TL38,2955 (tggl). ,TT"'t:-1rj"tre, 'Beller. M . . Z a p t .A . S L 7 9 Z ( l g g g ) . -Berteina, S- De Mesmaeker,A., Wendeborn,S. SL 1227(lggg). T., Akiyama, T., Nakano, y. CpB 45, t723 (tggl). .!y*V.u.", 'Webel. M . . R e i s s i gH . . - U . S L I l 4 l t t g g T) . "Coudanne. 1 . .C a s t r o J. . . B a l m e .C . . t L 9 9 5 ( l 9 9 g ) .
y.-r.,Baik, Lee, r._G.rL3s,2t27 (tes8). ,Ii"t.j 5 ITiqr:!,.t,pyun,S.-J.,
N . L a r h e d .M . . H a l l b e r g A . . J O C 6 3 . 4 1 5 9( t 9 9 g ) . aljarg. M . . H a l l b e r g .A . J O C 6 2 , 7 8 5 8( 1 9 9 7 ) . ,-Larhed. '-Beller, M , Kraurer,J. G. E.. Zapf, A. ACIEE 36,772 (tgg:'). "Grigg' R., sansano,J. M., Santhakumar,V., sridharan,v., Thangavelanthum, R., Thornton_pett, M W i l s o n ,D . 2 5 3 , I 1 8 0 3 ( 1 9 9 7 ) .
Palladium(Il) acetate-tertiary phosphine-carbon monoxide
r2sudighi,J. P., Harris,M. C., Buchwald,S. L. Zr 39, 532"1 (1998). ''Yamamoto,T., Nishiyama, M., Koie,Y. TL39,2367(1998). '*Hartwig,J. F. ACI EE 37,2090(1998). 'tzheng,N., McWilliams,J. C.,Fleitz,F. J.,Armstrong, J. D., III, Volante,R.P.JOC63,9606(1998). l6Ku*u-u.u, Y., Satoh,T., Miura,M., Nomura,M. Cf 931(1998). rTTerao, Y., Satoh,T., Miura,M., Nomura,M. TL39,6203(1998). '8Ki*. J.-H..Kulawiec.R. J. zL 39.3107(199s). teBuono, F.,Tenaglia, A. SL I 153(1998).
Palladium(Il) acetate-tertiary phosphine-carbon monoxide. Esters. Reductive carbonylation in the presenceof an alcohol or phenol leads to an ester. Substrates include organoiodonium saltsl and allylic alcohols.2 p,y-Unsaturated thioesterscan be generatedby the method or from allenesj Note that T-lactonesare formed when allylic alcohols are carbonylated without additives.s
\^
'Y
PhSH - CO
f/
provided that it is hydroly rBeller,M.. Eckert,M.. Volt 2Beller.M.. Eckert,M.. Mar
THF lOOO
esters involves carbonylation of A simple route to 2,3-bis(methylene)butanedioic is a suitableligand 2-Pyrimidyldiphenylphosphine 1,4-bis(ethoxycarbonyloxy)-2-butyne.6 -alkyne to give 2-substitutedacrylic esters.T fbr carbonylationof I
EIOH-CO ETOOCO
OCOOET
rTrost,B. M., Higuchi.R. | .
Palladium(Il) bromido-t N-Acylamino acids. under CO to furnish the p
phsr\
Pd(OAc)2- Ph3P
PalladiumfiI) acetat*i Methylenecyclopcrtu to el trimethylenemethane
> Pd(oAc)2_ Ph3P 5oo
E I O Oc
c ooEr
/ / \
Palladium(Il) chlortulc- I Coupling reactiotts. I tris( -naphthyl)boranean
vinyl ketones are obtaino and PdCl, in aqueousDl With aroic anhydrida inorsanic salts is avoid.d
7 1o/"
Stitching of the aryl group of an iodonium salt with a AWnones and indoles. l -alkyne by CO furnishes alkynones.8On the other hand, CO servesas a reducing agent in the cyclizationof 2-nitrostyreneswhich resultsin the formation of indoles2 rKang, T., Ho, P.-S.,Kim, W. Y., Ryu,H.-C.JCS(Pl)841(1998). S.-K.,Yamaguchi, 'Satoh,T., Ikeda,M., Kushino,Y., Miura,M., Nomura,M. JOC62,2662(199'7). rxiao, w.-J.,Alper,H. JOC 63,7939(1998). "Xiao,W.-J.,Vasapollo, G., Alper,H. JOC 63,2609(1998). 5Brunn".,M., Alper,H. JOC62,'7565 (1997). 'Kiji, J.,okano,T., Fujii,8.,Tsuji,J. S 869(1997). TReetz, R.TL39,7089(1998). M. T., Demuth,R.,Goddard, 8Kang, S.-K.,Lim, K.-H.,Ho,P.-S.,Kim,W. Y. S 874(1997). esdderberg, B. C., Shriver,L A..lOC 62,5838(1997).
BuOOc
c {
Arylatinn of 2-hyet in a rertir 2',6'-positions Cyclizttion. l.+t participationof an allylsi is PdClr-LiCl, with benz
PalladiumflI)chloride
itlt
Palladium(Il) acetate-trimethyltin acetate. Methylenecyclopentanes.tThe intramoleculal Pd-catalyzedcycloaddition of alkenesusesMe3SnOAcasa cocatalyst. to electron-deficient trimethylenemethane
F ) ill
\ r r l a n t e ,R . P . J O C 6 3 , 9 6 0 6 ( 1 9 9 8 ) .
Pd(OAc)z- Me3SnOAc
mr)noride. c. : rn alcohol or phenol leads to an rl .,. rlic alcohols.2B,1-Unsaturated cr i. \ote that T-lactonesare formed
PhMe
SO2Ph
'Trost,B. M., Higuchi,R. L /ACS 11E,10094(1996).
provided that it is hydrolyzed before the condensation. rBeller,M., Eckert,M., Vollmiiller,F., Bogdanovic,S.' Geissler,H. ACIEE36' 1494(199'7)' 2Beller, M., Moradi,W. A. Sl, 108(1999). M., F,ckert,
94'/" h. ,.lcrs involves carbonylation of br:-:rr lphosphineis a suitableligand
r
(|-Pro)3P- 3A MS
+ isomers
,,,,COOME
monoxide. Palladium(Il) bromide-triphenylphosphine-carbon N-Acylamino acids. An aldehyde and a primary amide react with PdBr, and PhrP under CO to furnish the protected amino acids.l A nitrile can be used instead of the amide2
rrs
f'
293
:, c'stelS.7
E
c ooEr tooc \ / l-\ / / \
-258 Palladium(Il) chloride. 13,234-235; 15,248-249; 16,268-269; [E,282|. 19' 257 coupling reactions. It is possible to prepare I -arylnaphthalenes from tris(l-naphthyl)borane and ArX in a Pd-catalyzedreaction without phosphine ligand.r Aryl vinyl ketones are obtained by combining diaryliodonium salts, vinyltributylstannane, CO' and PdCl, in aqueousDME.2 With aroic anhydrides serving as arylating agents the formation of large quantities of inorganicsaltsis avoided.l
71"k | ::. :rp of an iodonium salt with a a:.: ( O servesas a reducingagentin I: ::nrtion of indolesl
BuOOC
COOBu
(Phco)2o PdCl2 - NaBr
Ph \:/ BuOOC
COOBu
NMP 18OO
7 3 " / ("E :Z 7 : 2 )
t ( \ ( P 1 )8 4 1( 1 9 9 8 ) . 1 J, , 62.2662(1997). I
I
t-
Arylation of 2-hydroxybioryls.o Aryl groups are introduced to the 2'- and 2',6'-positions in a reaction catalyzedby PdClt-CstCO,. 1,4-Difunctionalization of 1,3-cyclohexadienes by intramolecular Cyclizntinn. participation of an allylsilane group in a side chain leads to bicyclic products.sThe catalyst is PdClr-LiCl, with benzoquinoneas reoxidizer.
294
Palladium(Il)chloride-copper(I/Il)chloride-oxygen
rBumagin, N. A., Tsarev,D. A. TL3g,8l55 (1998). 'Kang, S.-K., Ho, P.-S.,Yoon, S.-K., Lee, J.-C.,Ire, K.-J. S g23 (199g). 'Stephan, M. S., Teunissen,A. J. J. M., Verzijl, G. K. M., de Vries, J. G. ACIEE 37,662 (1998). -Satoh, T., Kawamura, Y., Miura, M., Nomara, N. ACIEE36, l74O (lggi.). 'Castano, A. M., Persson,B. A., Biickvall, J.-F,.CEJ 3,492 Ogg1.\.
Palladium(Il)
chloril Alkynes, The c versatile synthetic nret give significantly hig benzofurans,3alkyli& oneortwosteps.l-All
Palladium(Il) chloride-copper(Il) chloride-carbon monoxide. Aminocarbonylation.t An intramolecular reaction of properly constituted aminocycloalkenes is useful for the synthesisof bridged azabicycliccompounds.An intermediate of anatoxin-ais thusavailable. MeOOC-NH
A\ I N R
PdCl2 - CuCl2
\IJ
CO / MeOH
A\ IRN
I
Cooue / r'
diisopropylamine.6
tE"k".t, T., Ipaktschi.J . t'horand. S..Kraur. S sKundu.N. G..Pal.\t.. \ 4Kundu, N. G.,Pal.M.. \ sKhan.M. W., Kundu.\ 6l-iu, e., Burton,D. J. n
I
\__\,/ s MeOOC
e2:28)
Palladium0l) chlorU Heck reactionconjugate addition can
the Heck reaction can I
61"k
oanatoxin-a toh,
C.-Y.,Kim, K.-S.,Ham,W.-H. TL39,2t33(1gg8\.
Palladium(Il) chloride-copper(UlD chloride-oxygen. 18, 283; 19, 261-262 oxidatian. Terminally silylated homopropargylic alcohols give 1-lactones.r The wacker oxidation can be carried out using substoichiometriccu(oAc) instead of the copper chloride.2This modified procedureis operationally simpler and avoids hydrolysis of acetonidewhen it is present.
R. PH
X \'/- Z
R''
- SiMe3
PdCl2- CuCl2
-
02 / MeCN 1N HCI
lcompain, P., Varele,J. M., Gore, J. SLg43 (1gg4). 'Smith, A. B., III, Cho, Y. S., Friestad,G.K.TL39,8265
t>'o;4o R'. LJ 50 - 74v"
(1998).
Q(
For synthesisof an fluoride is added o rhc Suzuki and Stiltc t the catalytic system c preparedby coupling o the other terminus. and accomplishedwith in s
For accessto aryl borm or that of aryl iodides u
Palladium(II)chloride-tertiarl phosphine
_(.: i 1998). lc \ :r.. J. G. ACIEE37, 662(1998). -ri) I 1997). 16
m monoxide. r:J.:l()n of properly constituted h::.tgc'd azabicyclic compounds. An
af\
f-I
r.i
I R N I \_\,/
+
l . /
-Cooue
MeOOC
(72:281
Palladium(Il) chloride-copper(I) iodide-tertiary phosphine. Alkynes. The cross-coupling of aryl halides with monosubstituted alkynes is a versatile synthetic method,l and the simple substitution of THF for an amine as solvent can give significantly higher yields.2 With o-functionalized aryl halides the assembly of benzofurans,3alkylidenephthalides,aand alkylideneisoindolin-l-oness can be achieved in one or two steps.l-Alkynes undergo dimerization in high yields in a procedurethat employs diisopropylamine.6 lE"k"rt, T., Ipaktschi,J. sC 28, 327(1998). 'Thorand.S..Krause. N. JOC63,8551(1998). 3Kundu, J. S.,De,M. JCS(PI ) 2815,199'l). N. G.,Pal,M., Mahanty, 4Kundu.N. G.,Pal,M., Nandi,B. JCS(P1)561(1998). 5Khan,M. W., Kundu,N. G. SI 1435(1997). 6l-iu, Burton,D. J. TL38,43'71 (1997). Q., phosphine. 19, 261 Palladium(Il) chloride-tertiary the base the selectivity for the Heck reaction versus By changing Heckreactian With glass bead technology the loading of PdCl, for be controlled.l conjugate addition can the Heck reactioncan be kept low.2
610k
r dppp (Ph3P)2PdC12-
l
,r\r'ott
'\"\ rgen. lE. 283; 19, 261-262 r;r , elcohols give y-lactones.'The )r-: 'rretric Cu(OAc), instead of the o: .: .r :implsl 6nd avoidshydrolysisof
-a ,\r\-\
i l l
o
.
O
87"/"
,,\
r
ll
O
,\r^-A i l l
I 15OO DMF Et3N
Y*
75"/"
For synthesisof arylacetic estersfrom aryl bromides and silyl ketene acetals,copper(Il) fluoride is added to the reaction media besidesthe Pd catalyst.r For coupling of aryl chlorides with arylboronic acids Suzuki and Stille couplings. (cy,P)rPdcl' csF in NMP.a or-Arylalkanoic acids are the catalytic system contains preparedby coupling of aryl halides with carboxylic estersbearing a 9-BBN substituentat the other terminus, and saponification.sA biaryl synthesisfrom two different aryl halides is accomplished with in situ boronate formation which dependson the (dppflPdCl, catalyst.6 For accessto aryl boronateseither the coupling of aryl triflates with bis(pinacolato)diboronT or that of aryl iodides with pinacolboraneSmay be employed.
296
Palladium(Il)chloride-tertiaryphosphine
x=
OMe
I
*?'o
r-
*
Y
e,A.O
X
I
OMe
OMe
A
- KoAc (dppDPdcl2
"*
*
Y e'B-o X
*
(dppf)Pdcl2-Na2CO3
r^ Y
h
r,$c'
Y cl
The Pd-catalY Substitutions. methylaluminum and methylgallium halides) is generally efficient'r8 Wid PdCl, the catalYzed reaction of ar1 ( alkynylarenes in excellent yields l ' in from spiro ketones are available
Amphiphilic vicinal diallylation o{ tt coupled through Pd catalysis leads
81V"
Ph Stille couplings with fluorous tin reagents (e.g., ArSn$ )e have the advantage of convenient separationofthe side products.
\:(/
CN
\
c
+ / N
9nBug
J / u
Arylation of amines. With aryl chlorides and amines, the coupling is mediated by (CyrP)rPdClr-t-BuONa.r0 Besidesa more conventional arylation of benzotriazolewith ArI that calls for dppe-coordinated PdClr, and a Cu(II) salt in DMF, it can be carried out in alkaline solution using Pd(OAc), and a water-soluble phosphine.rl With lithiation of N-Boc derivatives of aminesand subsequentLilCu exchange,arylation at the c-position by a Pd-catalyzedreaction becomesroutine.r2 Acylations. Enones exhibit catalyst-dependent regioselectivities toward acylzirconocenechloride,13although both are basedon palladium salts. Ketones are formed in the coupling reaction with halides.ra
o (Ph3P)2PdCt2
to><|"'"rz
-\
(-Jl
* cprzr40 Cr brH,,
-lI
more than l0 times. In the abserrt yields are slightlY lower' of bc Y-Selective allYlation chloridcs allyl with accomplished complex [PhrP(m-CuHoSOrNa)lit
cyanide in the biPhasic sYstemhs Isons Coniugaleddienes' with I halides alkenYlmagnesium
triethylamine.2s F-t FunctionalcYcliution' rt aPParentllan is cycloalkanes rclut a such offers stannylboranes
(/
o
I CouPling of allYlic alcohols ArCH=CHCH(OH)R using Poll'rr advantages.z2The catalYst can bc
810/"
o
!*t
caHtz
BF3.OEt2 Et2o - THF
( \_
Me35n-
55% The fairly well-known destannylative acylation with RCOCI is extendable to the preparation of N-methoxy-N-methylamides using CICON(OMe)Me as a reactant.l5 Electrochemical carboxylation of arylr6 and enol triflateslT occurs in DMF using carbon dioxide and (PhrP)rPdCl, in DMF.
lHasiwara, H., Eda, Y', Moroha*ri' I 2Tonkr, L., Anson' M. S', Hellgard(1997).
ilri
lr
Palladium(Il)chloride-tertiaryphosphine297
OMe
I
:cof)Pdcl2- NazCOg
'.$.,
Subst.t|utions.ThePd-catalyzedmethyltransferfromintemallycoordinated
f^
methylaluminumandmethylgalliumreagentstoanaromaticnucleus(substitutionofaryl ligand to combine with halides) is generally efficlenJ8 With a bidentate aminophosphine
A Y
PdCl,thecatalyzedreactionofaryltriflateswithalkynylmagnesiumhalidesgenerates Benzoannulatedbridged and alkynylarenes in excellent yields (i2 examples, 9O-99Vo).1e the 0-position of ketones'2o at arylation spiro ketones are available from intramolecular allylstannane-allyl halide using Amphiphilic vicinal diallylation of activated alkenes l'7-dienes'2r .oopt"a through Pd catalysis leads to functionalized
Y 81"/o
Ph
CN
rrSnRl )e have the advantage of
snBu3 ct,,
tntr{}* (Ph3P)2Pdcr2
. d . \ = F - /
CN inc.. the coupling is mediatedbY tr\ ,rtlon of benzotriazolewith ArI rn D\lF, it can be carried out in c.phrne.ll 6dqrent Lilcu exchange,arylation Otlc'.
l
ni:,,.electivities toward acylzir' m .rlts. Ketonesare formed in the
q HO--rFcsH,t r
'
;
l
,
\
l l \-,810/"
91"/o with aryliodonium salts to give Coupling of allylic alcohols CHr=g11g1119H)R Pdcl, and NaHCO, enjoys many AICH=cHCH(OH)R using polymeric phosphine ligated from the reaction mixtures and reused advantages.z2rrre catatysican be easily removed morethanl0times.IntheabsenceofbaseorwithacatalystpreparedfromPd(oAc),the yields are slightlY lower. 1-Selectiveallylationofbothaliphaticandaromaticcarbonylcompoundsis accomplishedwithallylchloridesorallylalcoholsinthepresenceofahydrophilicPd in heptanelwater'23A preparation of aryl complex [PhrP(n-CuHrSO,Na) ligand] and SnCl, cyanide in the biphasic sysiem has also been developed'24 Conjugateddienes'Isomericallypuredienesareobtainedbycross.couplingof in the presence of (Ph.P)rPdcl, and alkenylmagnesium halides with alkenyl chlorides triethylamine.25 Functionalcyclizgtion.Fromdiynestheformationofl,2-bismetallomethylenemethod' The Pd-catalyzed reaction with cycloalkanes is an apparently very valuable stannylboranesoffers such a solution'26
Me
( \_ JC-/o
n!: RCOCI is extendable to the N ( )\lc )Me as a reactant.15 rrc. (^-cursin DMF using carbon
\
,N--f MeeSn-B. 'N'/ | Me
(Ph3P)2Pdcl2 PhH
SnMe3 Me
-r:*) MeN79"/"
(1998)' rHagiwara, K'' Suzuki,T'' Ando'M'' Ito' N' ?L 39' 4055 H., Eda'Y., Morohashi' J M J' ?t 38' 4319 Williams' F'' D' Thompson' A' R'' Mirza' K', Hellgardt, honks, L., Anson,M. S., (1997).
298
Palladium(Il)chloride-triphenylphosphine-carbonmonoxide
3Agnelli,F., Sulikowski, G. A. TL39,8807(1998). -Shen, W. rL38,5575 (1997). 5Esteban, Lopez-Sanchez, G., M. A., Ma(inez,8., Plumet,J. T 54,lgi (1gg8). ociroux,A., Han,Y., Prasit, P.TL38,3841(1ggT. tlrhiyurnu, T., Itoh,Y., Kitano,T.. Miyaura.N. fL 38. 3441(1991). oMurata, M., Watanabe, S.,Masuda, Y . JOC62,6458(199'l). vHoshino, M., Degenkolb, P.,Curran,D.P. JOC 62,8341(1997). 'nR"ddy, N. P.,Tanaka,M. ?L 38, 4807(1gg7). "Beletskaya, (1998). L.P.,Davydov,D. V., Moreno-Manas, M. TL39,5617,5621 '"Dieter. R. K.. Li. S.J. JOC 62.7726(1997). r3Hunruru, Y., Tabuchi,N., Taguchi,T. TL3g,8l4l (1998). 'oHunruru,Y., Tabuchi,N., Taguchi, T. TL39,6249(lgg8). r5Murakami, M., Hoshino,Y., Ito, H., IIo,Y. CL 163(1998). 'nJutand, A., Negri,S.EJOCl8l I (1998). "Jutand, A., Negri,S.52,719(1997). rsBlum, J.,Gelman,D., Baidossi, W., Shakh, E.,Rosenfeld, A., Aizenshtat, 2., Schumann, H. JOC 62, 8681(1997). reKamikawa, T., Hayashi,T. JOC 63, 8922(lgg8). 20Muratake, H., Natsume.M. 7L 38. 7581(lggi). 2lNaku-r.u, H., Shim,J.-G.,Yamamoto, Y. JACS119,8l13 (1997). "Jang, S.-B.TL38,4421(1997). "Okano.T.. Kiji. I..Toyooka. Y. CL 5 ( 1998). '-Okano. T.. Kiji. 1..Toyooka.Y . CL 425(1998). '''Ramiandrasoa, P.,Brehon,B., Thivet,A., Alami,M., Cahiez,G.TL38,2447(1997). 'oc)notu*u, S.,Hatanaka, Y., Choi,N., Tanaka, M. OM 16,5384(1997).
Palladium(Il) chloride-triphenylphosphine-carbon monoxide. Carboxylic acid derivatives. Homologation of aryl and heteroaryl halides by the catalyzedcarbonylation in the presenceof amines leads to amides.r'2For the preparation of primary amides,hexamethyldisilazideprovidesthe amino group.3 From 2-bromobenzaldehyde,isoindolinones and 3-alkylphthalidesare obtained by reaction with aminesa-6liminesT; and 1,3-dicarbonylcompounds,8respectively.Alkyl aroates are similarly accessiblefrom aryl tosylates, but the scope is very limited, as only 4-acetylphenyl tosylatefurnishesacceptable yields.q
Some nonconjugated oxadiazoles are formed ir present.l3
(
DiaryI ketones,t'
P
under 1 atmosphereof CC as mesitylboronic acid. go
'CuLM.-2.,Song, C.-S..Hu 2Herbert, J. M., McNeill.{ 3Mo.".u,8., Ortar,G. TL t -Cho,C. S., Jiang,L. H.. t cr 'Cho.C. S..Chu.D. Y.. Lrc. 6cho,c. S.,Jiang,L. H.. sh 'cho, c. S.,wu, X., Jiang.L ol-ee,D. Y., Cho,C. S..Jiaq 'Kubota,Y., Nakada,S..Sq loTilloy,S.,Monflier,8.. B< "Hayashi, M., Takezaki.H . '-Shaughnessy, K. H., Walm ''Young, R.,DeVita. J. R. J '*Ishiyama,T., Kizaki, H.. llr
Palladium(Il) hydroxidc
Alkenes undergohydrocarboxylationand bisalkoxycarbonylationby varying the other reactioncomponentsbesidesPdCl and CO. Using a trisulfonatedtriphenylphosphinethe
Hydrostannylationthe hydroxy group and th hvdrostannvlation.2
hydrocarboxylationcan be performed in a biphasicsystem.r0 The addition of Ph,P=S and CuCl and presence of oxygen in an alcoholic solvent are conducive to bisalkoxycarbonylationresultingin the formation of succinicesters.rr
?'z
""o0\
P d C l 2- p h 3 p = S - C u C l
C O ,0 2 / M e O H
tvteo{
//:\ \ //1
/COOMe LCOOMe
P(v"
Meoocxr-: MeOOC \
-
Palladium(Il)
hydroxide/carbon
Some nonconjugated dienes are converted to cyclic ketoesters.12 5-Aryl-I,2,4oxadiazoles are formed in the carbonvlation of aryl halides when RC(=NOH)NH, are present.l3
(Ph3P)2PdCt2
x_ /.
rt)S )
CO/ BuOH decane1000
COOBu
707"
a r ' . S c h u m a n n . HJ. O C 6 2 .
. ;::- r I997).
le. hrir'rrr11ylhalidesbY the r [-rrrthe preparationof Lri.:rJcs are obtained by n.r.' respectively.Alkyl r :. \ery limited,as only ir: :r hr varying the other :.: :: rphcnylphosphinethe r -,.r.lrtion of P\P=S and . :r.iLrciveto bisalkoxy-
Diaryl ketones.ta Pd-catalyzedcross-coupling of aryl halides with arylboronic acids under I atmosphereof CO provides these products. With highly hindered AIB(OH), such as mesitylboronic acid, good yields of the ketones are obtained only with ArI (not ArBr). tCui,M.-Z.,Song, C.-S.,Huang,X. SC 27,361(lgg7). 'Herbert, J. M., McNeill,A.H. TL39,2421(1998\. 3Mo.".u, E., Ortar,G. TL39,2835(1998). -Cho, C. S.,Jiang,L. H., Lee,D. Y., Shim,S.C.,Lee,H. S.,Cho,S.-D.JHC 34, l37l (1997). 'Cho, C. S.,Chu,D. Y., Lee,D. Y., Shim,S.C.,Kim,T. J.,Lim, W. T., Heo,N. H. SC27,4141(199'1). ocho,C. S., Jiang,L. H., Shim,S.C. SC28,849(1998). 'Cho, C. S.,Wu,X., Jiang,L. H., Shim,S.C.,Choi,H.-J.,Kim, T.I. JHC 35,265(1998). "Ire, D. Y., Cho,C. S.,Jiang,L. H., Wu,X., Shim,S. C.,Oh,D. H. SC27,3449(1997). 'Kubota, Y., Nakada, S.,Sugi,Y. sL 183(1998). 'nTif loy, S.,Monflier,E.,Bertoux,F.,Castanet, Y., Mortreux,A. NJC 21,52g(lgg7). "Hayashi, M., Takezaki, H., Hashimoto, Y., Takaoki,K., Saigo,K. TL39,7529(1998). "Shaughnessy, K. H., Waymouth,R. M. OM 16, l00l (1997). ''Young, J. R.,DeVita,R. J. TL 39,3931(1998). ralshiyama, T., Kizaki,H., Hayashi,T., Suzuki,A., Miyaura,N. JOC 63,4'126(1998).
Palladium(Il) hydroxide/carbon. 19, 262 Hydrostannylation. Allenyl alcohols are convertedto homoallylic alcoholsin which the hydroxy group and the tin atom are separatedby four bonds.r 1.6-Diynescyclize on hvdrostannvlation.2
?' z. e/Yz"
OH SnBua
Bu3SnH - Pd(OH)2/C THF
t
l
Ph,u 58o/o
COOMe
--1
LCOOMe 32".
MeoocX.: MeOOC \-
-
Bu3SnH - Pd(OH)2/C
MeooCOAlZ\snsu, MeooC/
300
PalladiumfiI)triflate
Hydrogenolysis.3 A neat approach to syn-3-hydroxy o-amino acids involves condensationof (S)-5-phenylmorpholin-2-onewith excessaldehyde,methanolysis,removal of the N-(hydroxymethyl)benzyl unit by hydrogenation with Pd(OH)rtC and 1 equiv of CF3COOH, and saponification. The method can be used for accessto polyoxamic acid.
Paraformaldehyde. 18, 284: 19, 26:-I Double Mannich reaction-t l-.{r obtained from reaction of ATCOMe *'rrh in DMF at 125". tci.r"r".,
O - H
)(^Aul-o ,..
H
;'a^l-rb-^"
HCI/ MeOH
(o\ox
H'V" O u
H2 ?" en,,,,1Nt'hao" ro,orr,", r/W"oo" oH "r."oo, MeoH
Ho/M"o\
on r.rx,
(+)-poryoxamic acid
'Lautens, M., Ostrovsky,D., Tao,B. 24 38, 6343(1997). zlautens, M., Smith,N. D., Ostrovsky ,D. JOC62,89'70(1997). 3Harwood, L. M., Robertson, S.M. CC 2641(1998).
U., Heber,D., Schiia,M. S 715r l9
Pentacarbonyl( f -cyclooctene)ctrod This Cr corT Cyclopropanation.r comparableefficiency to Rh catall'srs.
'Pf"iff"r, J.,Dtitz, K.H. ACIEEX, 2818r 199
Pentafluorobutanesulfonyl Epoxides.t
fl uorfulo- li l,2-Diols undergo dd
two reagen6. Palladium(Il) iodide-potassium iodide-carbon monoxide. 18, 283 Heterocyclization. The alkoxycarbonylation of propargylic amines and (Z)-enynes containing an allylic hydroxy group is participated by the heteroatom(s), forming oxazolidinonesr and 2-furylacetic esters,2respectively. rBacchi, A., Chiusoli,G. P.,Costa,M., Gabriele, B., Righi,C.,Salemo, G. CC l20g(lggi). 'Gabriele,B., Salemo, G.,dePascali, F.,Sciano, G. T., Costa,M., Chiusoli,G. p. ZL 38, 68i7 (ggT.
PalladiumflD
triflate. Aldolreaction The syn-selectivity for the condensation of cyclohexenyl tributylstannyl ether with benzaldehydeis the best among various triflates M(OTo" (M= Ag, Cu, Zn, Sn, Y, Sc, and TMS).I Stannyl enol ethers seem to be more reactive than the corresponding silyl enol ethers as donors for aldol reactions, at least in a system catalyzed by a complexedCu(OTf)r.
OSnBus
I
a\ \-,
Pd(OTf)2/ THF - 7go
Ai,,' \ r + (92 : 8) 77o/.
Acetals.2
'Klar,U., Neei G.,Vorbriiggen, H. TLn.'t
Pentafluorophenyl
trifluoroacetrte
Protection-activation of amino anl action with two different functional gror; are good acyl transfer agents.
d::",
CeF: 0't
Pentafluorophenyl estersare usefr.rlfcr
Direct conversion of unactivated terminal alkynes to acetals of methyl ketonesis accomplishedin the presenceof a phosphine-coordinatedPd(OT|r.
with N-n'imethylsilylamides,2and of .\'-\<
lYanagisawa, A., Kimura,K., Nakatsuka, Y., Yamamoto, H. SL958(1998). 'Scheffknecht, C., Peringer,P. JOMC 535,77(199'1).
lcayo,L. M., Suto,M. J. TL37,4915r 199-r 'Andrus,M. B., Li, W., Keyes,R. F. IL t. ! 3zhao,H.,Burke, T. R. I53,4219( 1997r
Pentafluorophenylhifluoroacetate
h.r . c-amino acids involves il.::: r Jc. methanolysis,removal ,r: I'l OH r/C and I equiv of cr.... :,, pnlroxamicacid.
301
Paraformaldehyde. 18, 284; 19, 262-263 Double Mannich reaction.t l-Aryl-2-(dimethylaminomethyl)-2-propen-l-ones .ue obtained from reaction of ATCOMe with paraformaldehyde,dimethylamine hydrochloride in DMF at 125o. lGirrer"r, U., Heber,D., Schtitt,M. S 715(1998).
_
o e "
- . _
_,J4
.,,::*
. H
H Ao
Y Y t OH
.COOH
l NH2
(+)-polyoxamic acid
Pentacarbonyl( f -cyclooctene)chromium(0). Cyclapropanation.l This Cr complex promotes carbeneaddition to vinyl etherswith comparableefficiency to Rh catalysts. 'Pfeiffer, J.,D6tz,K.H. ACIEE36,2828OggT. Pentafl uorobutanesulfonyl fl uoride- 1,8-diazabicyclo[5.4.0]undec.7-ene. Epoxides.r l,2-Diols undergo dehydration to give epoxides by treatment with the two reagents.
le. llt. l8-3 ar:..re aminesand (a-enynes , :I hcreroatom(s).forming
Ho"'AlaY?:\ l+- l:(o I \r\.r'\
r: t, cC 1209(1997). l ,. :. G. P. rL38,6877(199j).
lr ,: ,,r cyclohexenyltributyln: .::c. M(OTf)n (M= Ag, Cu, o \J ntore reactive than the , :i .i..rr[rn a systemCAtAlyZed
oH
\.JJ tKlar,
c4Feso2F'DBU
t "
t'-
U., Neef, G., Vorbriiggen,H. TL37,74gj (1996).
Pentafl uorophenyl trifl uoroacetate. Protection-activatian of amino and thiol carboxylic acids.t The simultaneous reaction with two different functional groups is very desirable.The pentafluorophenyl esters are good acyl transfer agents.
d::",
NHCOCF" c6FsococF3 py / DMF
| , f r "
I I
\t,,
|
'COOCAFA
83"/"
a.\'. nL.sto acetalsof methyl l:.,lrd Pd(OTf)r.
Pentafluorophenyl estersare useful for the preparation of mixed acyclic imides by reaction with N-trimethylsilyl amides,2and of N,N-diaroylhydrazines3from N-aroyl hydrazines. rGayo, L. M., Suto,M. J. TL37,4gt5 (lgg't). 'Andrus, M. B., Li, W., Keyes,R. F. 2t 39,5465(1998). lZhao,H.,Burke, T. R. 253, 4Llg (1g97,t.
302
Phase-transfercatalysls
Periodic acid. 13, 238 -239 ; 16, 292; 18, 285 -286 Sulfune*t The use of periodic acid to oxidize sulfides (16 examples, 84-99Vo) is efficiently catalyzedby a binuclear manganesecompiex. lBu.ton, D. H. R.,Li, W., Smirh,I. A. TL39,7055(1998).
Substitutions. Etherificauq transfer catalyst in dry media undcr preparation of alkyl azides from r catalyst.T Aryl ethyl ethers are deerhl lr exposureto microwaves in the pre!
Perrhenic acid-bis(trimethylsilyl)
perof de. N-oxides.l The HReOo-MerSiOOSiMe. combination is effective for foridine oxidizing both electron-rich and electron-deficient pyridines. rCoperet, C.,Adolfsson, H., Chiang,J. P.,Yudin,A. K., Sharpless,K.B.TL39,76l (1998).
Phase-transfer catalysts. 13, 239-240; 15,252-253; 18, 286-289; 19,264-267 Since there are many routine applications only more significant results are discussedhere. Bromination,t Activation of aliphatic C-H bonds such as those exocyclic to the bridgehead atoms of adamantanevia bromination with cBro (l-bromoadamantane, Tjvo, 1,3-dibromoadamantane, l5Vo) under phase-transfer conditions [502o NaOFVCFITCI, Bn(Et),NCl, Al is quite useful. Cyclohexane provides bromocyclohexane in 44Voyietd. Alkylations. Highly enantioselective alkylation of r-butyl 4,4-bis (p-dimethylaminophenyl)-3-butenoate2and r-butyl N-diphenylmethyleneglycine3in the presenceof a quaternizedcinchona alkaloid results.The salt plays a dual role in asymmetric induction and as a phase-transfercatalyst. The products from the former reaction can be cleaved at the double bond to furnish chiral malonaldehydic esters which have many obvious synthetic applications.A combination of PTC, LiCl, and an organic base (e.g., DBU) favors the enantioselectivealkylation of a chiral N-acylimidazolidinone in which the acyl side chain is derived from glycine.a
Q"* Br CSOH.H2O
of selectivity by the addition of ah Palladium halide complexed ro
haloareneswith powdered NaCr- u Olefinations. Vinylogauon 1,3-dioxolan-2-ylmethyltriphenl lf feasible. Similarly, asymmetric Er been induced by RbOH in the prrg Oxidaio ns and re ductioas.
benzylamines to benzamides *irh aldehydescan be carried out in rolu Epoxidation of various alkca phase-transferconditions using so
economical and environmentalll I a,p-epoxy ketones are deorl H2NC(=NH)SOzH under phase-tra
lschreiner, P. R., Lauenstein, O.. Kold 'Corey, E. J., Bo, Y., Busch-PeterscI 'Lygo, B., Wainwright, P. G. fa 16, 8: -Guillena, G.,Najera,C. ZA9. 3935r t -Toda, F., Takumi,H., Nagami.M,. Tr oBogdal, D., Pielichowski,J.,Borqr- A 'Varma, R. S.,Naicker,K. P. IL t. f 8Oussaid, A., Thach,L. N., Loupy.A T., Iwahara. M.. Kiji. J. SL :r ,"Okano, '"Daubresse, N., Franchesch, C.. Rolar lrArai, S.,Hamaguchi, S.,Shioiri.T. lll "Markgraf, J. H., Sangani,P. K.. FinL'| ''Blanton, R. J. SC27, 2093(1997t. rasato, K., Aoki, M., Ogawa,M.. Haslu "dos Santos,R. B., Brocksom,T. J.. B.r
Phenylboronic acid. 2H-Chromenes.t Michael reactions, The addition of amines to chalcones can be accomplished in aqueoussuspensionsof the reactantsin the presenceof cetyltrimethylammonium halides,5 i.e.. organicsolventsare not required.
Heterrlcl acroleins is favorably mediatedb1 I of conditionsand high efficieno rn bases.
lchauder, B. A., Lopes,C. C., I-opcs.R
Phenylboronicacid 303
li:r.
r l6 examples,84-99Vo)is
. .,'rnbination is effective for
Substitutions. Etherification of phenols with alkylating agents, a base, and phase transfer catalyst in dry media under microwave irradiation6 can be an effective method. For preparation of alkyl azides from alkyl bromides one can use surfactant pillared clays as catalyst.T Aryl ethyl ethers are deethylated selectively without affecting aryl methyl ethers on exposureto microwaves in the presenceof r-BuOK and l8-crown-6. An interesting reversal of selectivity by the addition of ethanediol is also noted.8 Palladium halide complexed to a crown-phosphine effectively promotes substitution of
r. \ B rL39,761(1998)'
haloareneswith powdered NaCN in refluxing dioxane.e of aromatic aldehydeslo by reaction with Vinylogation Olefinations. 1,3-dioxolan-2-ylmethyltriphenylphosphonium salts under phase-transfer condtions is feasible. Similarly, asymmetric Emmons-Wadsworth reaction on prochiral ketones has
i :'r'-189; 19,264-267 ui,.rnt resultsarediscussedhere. l. ..r.h as those exocyclic to the IU :. I -bromoadamantane,70Vo,
beeninducedby RbOH in the presenceof N-benzylcinchoniniumchloride.tr Phase-transfer catalyst enables the oxidation of Oxidationsandreductions. benzylamines to benzamides with KMnOo in an organic solvent,r2whereas reduction of aldehydescan be carried out in toluene using NaBHo and polyethylene glycol.l3
r,n.i:trons [507o NaOFVCtlClt, nlr:r\ ) clohexanein 447oYield. ,,: :-hutyl 4,4-bis (p-dimethYl-
Epoxidation of various alkenes with 3OVo hydrogen peroxide under halide-free, phase-transferconditions using sodium tungstate as catalyst has been developed.14This economical and environmentally benign method can be scaled up. On the other hand, c,p-epoxy ketones are deoxygenated (to enones) by amidinosulfinic acid
lk'.
rlc'n:-rlrcine3in the presenceof a I r,'.c in asymmetricinductionand r: :-c,rctioncan be cleavedat the r\: hr\e many obvious sYnthetic ar.:. h:rse(e.g., DBU) favors the o. :-' rn which the acyl side chain
68 - 83% hr.., jnes can be accomPlishedin ]t: . :nnlethylammoniumhalides,5
condtions.ls H2NC(=NH)SOrHunder phase-transfer Ischreiner, I. V., Nadi,S.,Fokin,A. A,.ACIEE37, 1895(1998)' O., Kolomitsyn, P. R.,Lauenstein, 2corey,E. J.,Bo,Y., Busch-Petersen, (1998). J. JACS120,13000 'Lygo, B., Wainwright, P.G. ZL 38,8595(1997). 'Guillena, G.,Najera, C. TA9,3935(1998). sTodu,F.,Takumi,H., Nagami,M., Tanaka, K. H 47,469(1998). oBogdal, J.,Boron,A. SC28,3029(1998). D., Pielichowski, /Varma, R. S.,Naicker, K.P. TL39,2915(1998). 8Oussaid, A., Thach,L. N., Loupy,A. TL38,2451(1997). eOkuno, T., Iwahara, M., Kiji, J. SL 243(1998). r0Daubresse, I ( I 998). C. T 54,10761 N., Franchesch, C.,Rolando, ttAtai, Hamaguchi, S.,Shioiri,T. TL39,2997(1998). S., ''Markgraf,J. H., Sangani,P. K., Finkelstein,M. SC27, 1285(199'7). ''Blanton,J. R. SC27, 2093(1997). tosato,K., Aoki,M., Ogawa,M., Hashimoto, D., Noyori,R BCS"/70,905(1997). F.,Panyella, r5dos Santos,R. B.. Brocksom,T. J.,Brocksom,U. IL 38, 745(199'/)'
Phenylboronic acid. Heterocyclic annulation that unite phenols and B-substituted 2H-Chromenes,t acroleins is favorably mediatedby PhB(OH)r. The method is characterizedby the mildness of conditions and high efficiency in comparison with those involving other Lewis acids and bases. rchauder, V. S 279(1998). B. A., Lopes,C. C.,Lopes,R. S. C.,da Silva,A. J. M., Snieckus,
Phenyl(tluoro)iodinetrifl ate
Phenyldichloroborane. Aldol reactions. The PhBCl2-EqN combination effects aldol reactions of 2-diazoacetoacetic esters in good yields.l The products can be cyclized to afford 3-oxotetrahydrofurans.
o
PhBCt2- Et3N;
,\coonr" tl
PhcHo / cH2ct2
N2
oHo ,\ /\ ,cooMe P h " 1 1
M. A., Sugathapala, P. M., Zhu, C. TL38,3837 (lgg:-).
Phenyldimethylsilyllithium. Alkenes.t The reagentis preparedfrom PhMerSiCl and Li. Its reaction with ketones and estersleads to alkenes,after dehydration of the resulting alcohols and protodesilylation (with CF.COOH). Enolate formation.2 temperature.
silyl
F-Xe-OTf
-70
lKasumov,T. M., Pirguliyer'.r-, Sh (1997\.
N2
_ 7go
68"h
'Calter,
Cr Phl +
Phenyliodine(Ill) bis(trifl uon 274-27 5; 18, 289-290; 19, 161 ThiosulfunicS-esters. t
sodium triflate is added, RSTf r Iodinqtion.3 Efficienra and heteroarenesby PhI(OCO( Nucleophilic aromatic srld
alkoxyarenes generateselecrrq Me.SiN, and 1,3-diketones.
enol ethers are cleaved by this reagent at room
De-N-sulfunylation.3 The cleavage of sulfonamides of secondary amines (7 examples,72-9lvo) finds exceptionin N-rosylaziridineswhich undergo ring opening to give the B-silylethylsulfonamides. Reductive coupling of amides.a Tertiary amidesare convertedto enediamines.Acid hydrolysisof the productsfurnishescr-aminoketones. rChenede, A., Abd.Rahman, N., Fleming,t. TL38,2381 lgg:). -Fleming, I., Roberts, R. S.,Smith,S. C. "/CS(P/.) I209(199S). ''Fleming, I., Frackenpohl, J.,Ila,H. JCS(PI ) 1229(1998). -Fleming, L, Ghosh, U.,Mack,S.R.,Clark,B.P. CC'71I(1998).
Phenylethanediol. Carbonyl protection.t Conversion of carbonyl compounds to the 4-phenyl1,3-dioxolanederivativesis by a conventionalprocedure.Deprotectionis accomplishedby hydrogenolysis(H,, Pd/C, THF). lChandrasekhar, S.,Muralidhar, B., Sarkar, S. SC27,2691(1997).
Phenyl(fl uoro)iodine trifl ate. Alkenyl aryt iodonium triflates.t By using alkynes ro capture [phlF]+orf-, which is derived from PhI and FXeOTf , mixed iodonium triflates are readily obtained.
"&"'" MeoV
'Xia, M., Chen.Z.-C. SC27. t3Ol r 2Billard, T., Langlois,B. R. JfC t{ rBenhida. R.. Blanchard,P.. Founcl -Kita, S., Tohma, H., Hatanaka K. 3684 (1997\.
Phenyliodine(Ill) diacetate.lJ 280-28 | ; 18, 290-29 | ; 19, 16& A simple prep:uative r CrOr-AcrO-HrSOo in acedc accessible in the samemanner.
Phenyliodine(IlDdiacetate
305
Tfoeft-ects aldol reactions of can be cyclized to afford
l:: N:
pht +
CHcClz -; F_Xe_OTf
[Ph-l-F]'TfO - 70 - -780
,1/'orr
Phl
72%
=-
c H o '. A ,COOMe \,/
Yt l
rKasumov,T. M., Pirguliyev,N. Sh.,Brel,V. K', Grishin'Y. K.' Zrfirov, N' S', Stang,P' J' T 53' 13139 (199'7\.
N2 68q"
S:r .rndLi. Its reactionwith ketones ;r- : ,rlcoholsand protodesilylation
-258; 16' Phenyliodine(Ill) bis(trifluoroacetate). 13,241-242; 14,257; 15,25'7 -268 26'7 19, 274-2'75; 18,289-290; Thiosulfunic S-esters. Disulfides undergo oxidation to give RSQSR.' When sodium triflate is added,RSTf are formed.2 Iodination,3 Efficient activation of iodine enablesiodination of cyclohexenones and heteroarenesby PhI(OCOCFT)rwhich makes the iodo compounds readily available. Nucteophilic aromatic substitutions.a The oxidative procedure applied to alkoxyarenes generateselectrophilic species which are reactive toward reagents such as Me.SiN" and 1,3-diketones.
c.r., -J by this reagent at room r.1" :.j.\ of secondary amines (7 r.-.. ,rhich undergoring openingto i- .1:-' ,{)nvertedto enediamines.Acid
Q+""
Pht(ococF3)2
MeoV
F-
62"/"
rr
-,)nipounds to the 4-phenylnl [-: | ] )f protectionis accomplishedby
I
j .
'Xiu, M., Chen,Z.-C.SC27,1301(1997). 2Billard,T., Langlois, B. R. JFC84,63 (1997). rBenhida, P.,Fourrey,L-L. TL39,6849(1998). R.,Blanchard, aKitu,S.,Tohma,H., Hatanaka, H., Ok4 S' '/ACS116' K., Takada,T., Fujita,S.' Mitoh,S.,Sakurai, /L997\. 3684
Phenyliodine(Ill)diacetate.13,242-243:14,258-259;15,258;16,2'15-276;17, 280-28 | ; 18, 290 -29 | ; 19, 268-27 0 A simple preparative methodr involves oxidation of iodobenzene with
)-
,, .apture [PhIF]+OTf-,which is
3l:
rc readily obtained.
in aceric acid (79% yield). other aryliodine(Ill) diacetates are cror-Acro-HrSOo same manner. accessiblein the
306
Phenyliodine(Illdiacetate
Mixed iodoniam salts, Alkenyl aryl iodonium salts can be obtained by reaction of PhI(oAc), with alkenylzirconocene chlorides,2 and the alkynyl analogs by reaction with alkynylsilanes.3 The direct reaction with uracil derivatives in TfOH affords 5-substituted products.a oxidatians. Alcohols undergo rapid oxidation when exposed to phl(oAc)r-A1ro, (with microwave inadiation)5 or phl(oAc), with catalytic amount of rEMpo.6 The latter procedure is mild and selective. Primary alcohols can be converted to aldehydes without oxidizing secondaryalcohols. (Q-Allylic alcohols give (^e-enals, 1,3-diols afford B-ketols, and cholesterol is oxidized to the 5-en-one without migration of the double bond. Tertiary cyclopropanols fragment to releasecarboxylic acid and alkene moieties.T A route to spirolactamsinvolves oxidation of oxazolines derived from tyrosine. Simple amides give the corresponding spirolactones.Tu
Aco.
--F Nl
Phl(OAc)2/
o lt
ef.eflrefl ; ............................'.."...................."........"....................._
afr'-
Ac2O/ py, DMAP
HO
NHR
-Roh, K. R., Kim, J. Y., Kim. \'. H ( 'Varma, R. S., Dahiya, R., Saini. R- | oDe Mico, A., Margarita, R.. parlarr 'Kirihara, M., Yokoyama, S.. Kafud -'Braun, N. A., Ciufolini, M. A.. F.r oPrakash, O., Sharma, V., Sadana .{' M. J.. Alonso. D. A.. Bc( ,"Sddergren. '"N4urata. M., Satoh, K., Watanabc. S ' 'Combes, S., Finet, J.-P. I54. {_1I _rr "Zhang, L., Kauffman, G. S., pesu. J "De Mico, A., Margarita, R., parlarq '*Bruno, M., Margarita, R., partanu. L
Phenyliodine(Ill) diacetate-iit Oxidations. By treatncnr combinationunderirradiationrrd N-substituent seemsto exengr€atI asthe primarysulfonamideanddr
o4'/
R = Ts, Boc
oxidation of hydrazides leads to N,N'-diacyrhydrazines.s Mechanistically it is possible that the reaction proceeds via [RCoN=N-Iph]+ species which are susceptible to attack by another hydrazide molecule. Actually, the nitrene precursors ArSorN=Iph are formed from the arenesulfonamides.e other interesting transformations include the formation of enol acetates from alkenylboronic acidsrO and N-arylation by Ar.Bi which is apparently activated as ArrBi(OAc)r.rr
R
,\,B(oH)2
Degradations. Loss of rhc r are stable, but if such derivar acetoxylation occurs.a
Phl(OAc)2- Nal
V
DMF
R
O
A
ntot\-o-,-s t
nco"'\fI
Phl(OAc)2- Nal
R
B(OH)2
and magnesium perchlorate. Potassium thiocyanate used in a previous preparation of 1,2-dithiocyanatoalkanescan be replaced with Me,SiNCS. ra rKazmierczak, P.,Skulski,L. S 1721(1998). 'Huang, X., Xu, X.-H. JCS(PI)3321(1998). 'Kitamura, T., Kotani,M., Fujiwara,y. S 1416(199g).
nr
OAc
*/\/oo"
primary amides such as protected asparagines Hofmann rearrangement,'' are degradedby Phl(OAc), in one operation. Difunctionalization of alkenes. cis-|,2-Diperchloratoalkanes are obtained from alkenes,13presumably on reaction with phl(clo/, which is formed in situ from phl(oAc),
l
lTogo, H., Katohgi, M., yokoyama V. 'Hernandez, R., Leon, E. I., Moreno. p'Francisco, C. G., Martin, C. G., Suartz -Francisco, C. G., Gonzalez,C. C.. Sut
Phenyliodine(Ill)
dichloride-lcrd
*Thiacyanatoketones. Orr silyl enolethersaccomplishes theh rPrakash, O., Rani, N., Sharma. V.. Vc
Phenyliodine(Il!dichloride-lead(Il)thiocyanate
L: . , .in be obtainedby reactionof I r.rrnvl analogsby reactionwith rc. rn TfOH affords 5-substituted ;hc: r'\posedto PhI(OAc)r-AlrO, tr, .lnr()untof TEMPO.6The latter [' .,,nrerted to aldehydeswithout Z -cnals.1,3-diolsafford p-ketols, rr::,':r of the double bond. Tertiary a.r':ncmoieties.? rr::. Jerivedfrom tyrosine.Simple
f07
-Roh,K. R., Kim, Y., Kim, Y.H.CL 1095(1998). J. '7029(lgg7). 5vu.-u, R. Dahiya,R., S., Saini,R. K. ZZ 38, oDeMico, A., Margarita,R., Parlanti,L., Vescovi,A., Piancatelli,C. JOC 62,6974(1997). 'Kirihara,M., Yokoyama, Kakuda,H., Momose,T. 254, 13943(1998). S., 'oBraun, N. A., Ciufolini,M. A., Peters, K., Peters, E.-M.TL 39,4667(1998). sPrakash, V., Sadana, O.,Sharma, A.5C27,3371(1997). 'sddergren,M. J., Alonso,D. A., Bedekar,A. V., Andersson, P. G. ?L 38, 689'7(1997). th,{urata,M., Satoh,K., Watanabe, S.,Masuda,y . JCS(PI) 1465( 1998). "Combes, S.,Finet,J.-P.T 54,4313(1998). '.'Zhang, L., Kauffman,G. S.,Pesti,J. A., Yin, J. JOC 62,6918(1997). "De Mico, A., Margarita, R., Parlanti,L., Piancatelli,G., Vescovi,A,.f $, rc877(199'7). r4Bruno, M., Margarita, M.TL39,3847(1998). R.,Parlanti, L., Piancatelli, G.,.Trifoni,
Phenyliodine(Ill) diacetate-iodine. By treatment of Oxidntions.
o-methylarenesulfonamides with the reagent combination under irradiation with a tungsten lamp,N-alkylsaccharins are obtained.l The N-substituent seemsto exert great importance on the efficiency ofthe oxidative cyclization, as the primary sulfonamide and theN-benzyl derivative do not give any products.
Mechanistically it is Jar \.' - .:',..i1'swhich are susceptibleto ri: r precursorsATSOTN=IPhare X:r'..r:r()nof enol acetates from rh.-: r: apparently activated as
oAc
(Y
Phl(OAc)2- 12
\*SO2NHMe
ctcH2cH2cl
l
1-
(\:i' ,.rlkanes are obtained from h .. : 'rrnedin situ from PhI(OAc),
NMe
\.,'-d
61v" Degradations. Loss of the anomeric carbon from sugars is observed.2'3 Glycosides are stable, but if such derivatives contain a free carboxyl group decarboxylative acetoxylation occurs.a
OH
AcO
OAc Phl(OAc)2- 12
....................................* ^^^, A U v'l,rc* i l cHzct2
OCHO
OAc
OAc
v
.1. protected asparaginesare
//
v2
N3
1,oAc
ZV I ll
88o/"
'Togo,H., Katohgi,M., Yokoyama, M. SL l3l (1998). 'Hemandez, R., Leon,E. I., Moreno,P., Suarez,E. JOC 62,89'74(1997). 3Francisco, C. G.,Martin,C. G., Suarez, E. JOC 63,2099(1998). -Francisco, C. G.,Oonzalez, E. TL38,4141(1997). C. C.,Suarez,
s<'- :lr u previous preparation of Phenyliodine(Ill) dichloride-lead(Il) thiocyanate. 18, 297 wThiocyanato ketones. Oxidation of lead(Il) thiocyanate in situ and reaction with silyl enol ethers accomplishesthe heterofunctionalization of ketones. rPrakash, O., Rani,N., Sharma,V., Moriarty,R. M. SL 1255(1997).
308
p-(Phenylthio)acryloylsilane
2 -Phenyl-2-(2-pyridyl)imidazoline. Halohydrins.r Opening of l,2-epoxide ring by halogen at room temperarure ro afford 1-halo-2-alkanols is catalyzed by this heterocycle (14 examples, 80-992o). Thus,
clawlones has been reported. Thc are treated with aqueous tlF in \lc of 3-chloro-4-hydroxy-2
styreneoxide gives o-halomethyl benzyl alcohols. rSharghi, H., Naeimi,H. Sa 1343(1998).
Phenylselenium trichloride. 19, 27 1 o,Phenylselenoaldehydesandketones.t A general functionalization of carbonyl compoundsoccurs at room temperatureon fteatment with PhSeCl. in MeCN (21 examples, 58-91Vo).
csHrr
lHoullemare, D., Ponthieux, S.,Outurquin, F.,Paulmier, C. S l0l (1997).
N-Phenylselenomorpholine. a-Benzeneselenenllation.t The introduction of a conjugated double bond to a carbonyl compound can take advantageof the facile selenenylationby the Se-substituted morpholine at room temperature.Subsequentoxidation and in situ elimination completes the processwhich is readily adaptableto cx,-ketoesters.
tTakedu, K., Nakajima,A., Yoshii.E I 'Takeda, K., Ohtani,Y., Ando.E.. Fup
9-Phenylxanthen-9-yl chlorideProtection of primary alcohd
chloride I with RCHTOH in the pre their cleavagecan be accomplishcd
rBoiuin, S.,Outurquin, F.,Paulmier, C. 753, 16767(lgg7). 1-Phenyl- 1H-tetrazole-5-thiol. Sulfunesfor oleftnation.t A two-step process for access to sulfones involves Mitsunobu reaction with alcohols and subsequentoxidation with MCPBA. Deprotonation of such a sulfone with sodium or potassium hexamethyldisilazide in DME followed by reaction with an aldehyde results in an (B)-alkene.
t /
(Me3Si)2NK
il:_>.6-
RCHO/ DME
Ph
t
t
-
-
^ Y o -1 tl -l l r -
fi-\ r
ll )-soz
|
J
I
Ph
J
I
\_/8'lo/" (E:Z = 99:1)
rMisetic, A., Boyd,M. K. IL 39. 1651
Phosphazene.
Biaryl ethers.t The Utlmanr reaction temperaturecan be lorr eru
tBlakerno.", P. R., Cole, W. J., Kocienski,P. J., Morley, A. SL 26 (1998).
tPulorno, C.,Oiarbide, M., Lopez.R . C
p-(Phenylthio)acryloylsilane. 4-Hydroxy-2-cyclopentenones.The reagentreactswith ketoneenolatesto form functionalized cyclopentenolderivatives which on exposure to TBAF leads to 4-hydroxy-2-cyclopentenones.r A successful application of themethodto thesynthesis of the
Phosphorus(V) oxide. F rie d eI -C rafts alky latio n-' agents the reaction with activared producesI . l-diarylalkanes.
Phosphorus(V)oxide
to Bc: .tr room temperature Thus' l .'r.,nrples.80-997o).
309
clavulones has been reported. The 2-pyridylthio analog is also useful, if the initial adducts are treated with aqueous FIF in MeCN to complete the reaction sequence.2For the synthesis of 3-chloro-4-hydroxy-2-cyclopentenones (B,p-dichloroacryloyl)trimethylsilane is used.
LTMP
u:. :r,'nalizationof carbonYl ic( in MeCN (21 examPles' CsHtt F-
'Takeda,K., Nakajima,A., Yoshii,E. 5L255 (199'7). 2Tuk"du, K., Ohtani,Y., Ando,8.,Fujimoto,K., Yoshii'E., Koizumi'T. CL 1157(1998)' or'.:Luteddouble bond to a t\..1:r\rnby the Se-substituted r: .r:u eliminationcompletes
9-Phenylxanthen-9-yl chloride. The pixyl ethers are formed by a mixture of the Protection of prtmary alcohols.t presence of pyridine. Theseethersare photolabile, therefore chloride I with RCHTOH in the their cleavagecan be accomplishedwithout affecting many functional groups.
3,.s'.. to sulfones involves u : \ICPBA. DeProtonation 5: .:. :Je in DME followed bY
(1)
'Misetic,A., Boyd,M. K. 7L 39, 1653(1998).
Phosphazene. Biaryl ethers.l 81ok (E:Z = 99:'t\
The Ullmann synthesisis improved by using phosphazenebase.The reaction temperaturecan be lowered substantially (e.g., in refluxing toluene). lPulo.o, C.,Oiarbide, E. CC 2091(1998)' M., Lopez,R.,Gomez-Bengoa,
$:::. ketone enolatesto form lF\'..rrc to TBAF leads to |r' ::*-thtd to the synthesisof the
Phosphorus(V) oxide. when 2-methoxyalkanoic acids are used as alkylation Friedel-crafts alkylation.t agents the reaction with activated arenes induced by PrOr-MsOHl or PrOr-TfOH2 and producesl. I -diarylalkanes.
Platinum(IV) chloride
J
oR +
ArH
p2o5 - MsoH +
cOOH
Ethyl alkoxyacetales.3 \'anour O-H bond insertion of alcohols. phc ethyl diazoacetate.PtCl2 is slighrlr nr
Ar Ar
Ar = 4-MeOCoHa 9Oo/o Tetrahydroisoquinolin-I-ones. A significantly improved reagentfor cyclization of phenylethylcarbamatesis the P'O'-POC1, combination.3 rYon"ru*u,N., Tokita,Y., Hino,T., Nakamura, H., Katakai,R. JOC 61,3551(1996). 'Yonezawa, N., Hino, T.,.Tokita,Y., Matsuda,K., Ikeda,T. T 53, 1428'l(199'l). 3Wang, X., Tan,J.,Grozinger,K.TL39,6609(199S).
Polymethylhydrosiloxane. Reductions. Aldehydes.i arom the presenceof BuoNF. Aluminum c
Pivaloyl chloride. 18, 294 Hydroxylprotection. The selective pivaloylation ofhexopyranosides by PivCllor N-pivaloylimidazole2 lwhich is preparedfrom PivCl) is interesting.
oH'-oH
-fcocl
t \
Hovs,.,sPh
OH-OPiv
t \ PivoVS..sPh
reductive cleavage of 2-phenyl- I .-ldr from the 4.6-benzylidenesugarst.'
Deoxygenation. Thionocarbqt decomposedby PMHS using (Bu.S comparableto that employing sroichro benzylic ethers remain unscathed.
rKobayashi, Y., Takahisa,8., Nakano.\l . 'Drew, M. D., Lawrence, N. J.,Fontarrr.D 3chandrasekhar, S.,Reddy,Y. R.. Ramax -Lopez, R. M., Hays,D. S.,Fu,G. C. .r.{C
OPiv
OH
lBoverie, S.,Simal,F.,Demonceau. A .\ TL38.7543(1997). 2Baidossi, W., Lahav,M., Blum,J. J(f aJ 3s"hilr, R.,Simal,F.,Demonceau. A.. \ci 39,7849(1998).
787o N-Acyloxazolidin-2-ones,3 A convenient N-acylation of heterocyclesis performed by heating a carboxylic acid with PivCl and triethylamine in toluene. rJiang,L., Chan,T.-H.JOC 63,6035(1998). 'santoyo-Gonzalez, F.,Uriel,C.,Calvo-Asin, J. A. S 1787(1998). rPrashad, M., Kim, H.-Y.,Har,D., Repic,O.,Blacklock,T. J. TL39,9369(1998).
Potassium J-butoxide. 13, 252-1-il: I t-BuEl esters.t By subjecring temperature,exchangeofthe alkll gro
Eliminations. Based on an reaction between MeONHR and ehc synthesized.t-BuOK is an excellenrb
compounds also undergo elimination t Platinum0V) chloride. Cyclopropanation.t
Platinum(IV) chloride is able to induce the formation of cyclopropanecarboxylic esters from alkenes and diazoacetic esters at 80' (10 examples, '70-95Vo). Hydration of alkynes.2 The reaction is carried out under CO, in either aqueousTHF or tefachloroethane with a phase-ftansfercatalyst. Hft(CO)2Cl is consideredthe actual catalyst.
co / Ptct4
/\ Ph
ctcH2cH2cl Aliquat336 11 o o
I
n
f i l
\
l/J^ - y*'^l- G.*
Isomerimtions. Asynthertcalll triquinanes to the angular isorners.tFo microwave promotion is advanrageou
Potassiuml-butoxide
Ethyl alkoxyacetates.3 Various ptatinum(IlflV) salts and complexes catalyze the O-H bond insertion of alcohols, phenols, and acetic acid by carbenoids generatedfrom ethyl diazoacetate.PtCl2 is slightly more efficient than PtClo.
Ar
ls3 -
311
Ar r'= 4-MeOCoHa 9O"/" n:.! rntprovedreagentfor cyclizationof
lBoverie,S.,Simal,F., Demonceau, I. L., Sidorov,A. A., Nefedov,S.E. A., Noels,A. F.,Eremenko, TL38,7s43(1997). 2Baidossi, W., Lahav,M., Blum,J. JOC62,669(1997). 3s"hilr,R.,Simal,F.,Demonceau, I. L., Sidorov, A. A., Nefedov, S.E. ft A., Noels,A. F.,Eremenko, 39,7849(1998).
A:: :l
[ . R J O C 6 1 , 3 5 5(11 9 9 6 ) . ' (1997). T 5-r.11287
Polymethylhydrosiloxane. Reductions. Aldehydes,l aromatic acids and their esters2are reduced by PMHS in presence of BuoNF. Aluminum chloride is also an effective catalyst in the selective the and dioxolanes(e.g.,4-O-benzylderivatives reductivecleavageof 2-phenyl-1,3-dioxanes
by PivCll or rl::: ,n of hexopyranosides . rnteresting. C.
from the 4.6-benzylidenesugars).r Thionocarbonates derived from alcohols are reductively decomposed by PMHS using (Bu.Sn)rO and AIBN as catalyst, and the efficiency is comparableto that employing stoichiometricquantity of Bu,SnH.aUnder theseconditions Deoxygenation.
benzylic ethersremain unscathed.
lHaoPiv li-\-O Pivogs,-sPh
rKobayashi, K. 753, 1627(lgg7). Y., Takahisa,8., Nakano, M., Watatani, 'Drew,M. D., Lawrence, D., Sehkri,L., Bowles,S.A., Watson,W. SL989(1997). N. J.,Fontaine, 3Chandrasekhar, C. SC 27,2251(lgg'7). S.,Reddy,Y. R., Ramarao, 'Lopez,R. M., Hays,D. S.,Fu,G. C. JACS119,6949(199'/).
OPiv 78"/" r. ' i.rtion of heterocyclesis performed i::.rnc in toluene.
'-
Potassiuml-butoxide.13,252-254:15,2'71-272;17,289-290;18,296-297l'19,273-275 t-Butyl esters.t By subjecting esters to t-BuOK-t-BuOAc in THF at room temperature,exchangeofthe alkyl group takesplace (10 examples,88-99Vo). Eliminations, Based on an addition-elimination sequence initiated by Michael reaction between MeONHR and electron-deficient alkenes, functionalized enamines are synthesized.r-BuOK is an excellent base to promote such reactions.2'3cr-Azido carbonyl compounds also undergo elimination to give a different type of enamines.a
reS).
/ 1_39.9369(1998).
c :- .rble to induce the formation of estersat 80" (10 examples' d:.1/,,rcetic n: ,.rtunderCO, in eitheraqueousTHF or t( ( ) .Cl is consideredthe actualcatalyst.
Z\1^\
t-BuOK; 'l-NHBoc .......................'..'.'...."""..............* I ll
- DMAP (t-BuO)zCO
.y*-(
H
b
460/"
o
l
\
. t l l ) - o
YM'n lo l
(o\
P
h
Isomerizations. A synthetically useful transformation is the rearrangementoflinear triquinanesto the angular isomers.SFor the conversion of propargyl ethersto allenyl ethers microwavepromotion is advantageous.6
m'l I ltl
tlrl il:l
3r2
Pot.sium ,-butoxide
l lB"ll"., M., Riermeier.T ''Foray. G.. penenon. A I '-Evans.p.. Taylor. R. J. K
I-BUOK/ t-BuOH
64y"
olefination and cycropropanation. preparation of alkenyl allyl ethersby the wittig reactionT is readilyachieved.Telruriumandarsonium ylidestendto producecyclopropyl ketoneson reactionwith enones.8
Ph.P-)
o
rNayak, M. K., Chakraborn. 'Boas, U., pedersen,B.. Chn
cl \\ 7804
siMes .
=
iauri")
i
I-BUOK I
t'- -
/
SiMe3
1-iBu2re4
t^
ph
^
I ,,.\--\^ Y"/
I
I
.*;-
SiMe3
f
cyclizations. A route to substituted naphthalenes by intramolecular cyclizatione involves attack by a nascentallyl anion to u k"ton" g.oup. on the other hand, the generation of N-arylindolinesl0 from-arylamines and o-halosry-renes ls a more complex process. Arylamines. The pd-catalyzed arylation of amrnes dependscritically on r-BuoK.l r synthesis of surfur compounds. a,-Sulfenylation under mild conditions is realized by reaction with iy'-phenylthiocaprolactam.r2 An appropriate milieu is provided by I-BUOK/DMSO. Cinnamyl sulfides are prepared from BnSOTC(Br)=CH. and RSH promoted by r-Buo6.t: Ramberg-Biicklund reaction fbllows the initial addition. j:,i".I. M-.G.,Gagne.M. R. Joc 62.8240( tssT ). 'Seko, S..Komoto,I . JCS(p I ) 2g:l5(lggfir. 'Seko. S..Tani,N. TL 39.8tt 7 ( 1998). -Armstrong, J. D., III, Eng,K- K., Keller,J. L., purick, R. M., Hartner,F. W., Jr.,Choi,W._B.,A skin, R. p. Za35, 3239(tgg4\. .D., Volanre, MacDougall,J. M,. Moore.H. W. JOC 62, 4554( tggT). F. M.. Emami.R. sc 27. 4073ilssT ;yt:ghadd1m. ).
o, s, Rasne, R.M.ir tt, t+sssse7. ;f:]|T'..."l^T, Y l:"$*jar,rD . Dai, L._x., sun, r.,Xia,w.roc 62,ss4(tsel). ,)!j:1 I.l de Koning, C. B., p,,
r'"Beller'
Potassiumfluoride. lJ. Deesterifuatinn.: PhSHusingKF asbaser Tetramethylfluorola from tetramethylurea b1 , mediatingthecondensa CS, in thepresence of Fr
Michael, J. Rousseau,A. L. TL 3g, gg3(lgg7). M" Breindr, c., Riermeier, T. H., Eichbereer, tut.,i.uuttr*"rn,
H. ACIEE 37,3389 o 99g).
Potassium fl uoride/aluu As base. Manv rea for example, in deproron indole2 which is basc q,-heterosubstitutedWeinr
Microwave faciliraes aldehydesaand dehydrobn
rshi, D.,Lu,2.,wang.S..Tu 'Smith, W. J.,Sawyer, J. S. ff -Tius, M. A., Busch_peter: -Villemin, D., Martin,B. SC2 -Saoudi, A., Hamelin,J..Bcn
Potassium hydrogen fluor Hydrofluorination.i into fluorides at room temp
'Tamu.a, M., Shibakami. \1.. t( Potassium monoperox!.sul 300;19,217
Epoxidations. A mrr is an effective epoxidizing epoxidation of a prorrr
4-oxothiane-S,S-dioxide. an
asymmetricepoxidationof i ketonesand [email protected]
Potassiummonoperoxysulfate(Oxone@)
F
:
:
-
\
)
I rBeller, M., Riermeier, T. H., Resinger, C.-P., Herrmann, W. A. ?t 38, 20'73(lgg7). '"Foray, G., Penenory, A. B., Rossi, R. A. ZL 38, 2035 (199'1). "Evans, P., Taylor, R. J. K. SL lM3 (1997).
I
F
313
O
H
Potassium fluoride. 13, 256-257 ; 15, 272; 18, 297 -298; 19,27 5-27 6 Deesteriftcation.l Carboxylic acids are recovered from estersby an alkyl transfer to PhSH using KF as basein catalyticamounts.
640/o
rr . ., .r I ethersby the Wittig s-.: 1,,producecyclopropyl
Tetramethylfluoroformamidinium hexafluorophosphate.2 The reagent is prepared from tetramethylureaby consecutivereactions with POCI, HPF., and KF, and finds use in mediating the condensationof acids and hydrazine (to form hydrazides) and of amines and CS, in the presenceof Et3N (to form isothiocyanates). INayak,M. K., Chakrabom,A. K. CI, 297(1998). 'Boas, Pedersen, U., B., Christensen, J. B. SC28, 1223(1998).
-
,ro'^'J/
t - \
Potassium fl uoride/alumina. As base. Many reactionsthat are promoted by a basecan be effected with KF/Al2Oj, for example, in deprotonatingmalononitrile for Michael reaction.rin N-pyridylation of
78%
=-
'Y" '/)
Dh
SiMe3
^
I
-_\
Ph
I l-.::.!nt()lecularcyclizatione r :::r hand,the generation t,:r , ()tllplexprocess. n ; . - r r t i c a l l yo n t - B u O K . r :.:.J ionditionsis realized [c ::rrlieu is provided by rSrt ('i Br)=CH, and RSH k' :::rtrrladdition.
indole2 which is based on the S*Ar mechanism, and in the preparation of o-heterosubstitutedWeinreb amides from N-methoxy-N-methyl chloroacetamide.l Microwave facilitates the KF/ALo3-promoted condensation of oxindole with aldehydesaand dehydrobromination of yic-dibromides to bromoalkenes.5 'Shi, (1998). D., Lu,Z.,Wang, S.,Tu,S.,Dai,G. SC28,4003 2slnith,W. J.,Sawyer, H 51, J. S. 157(lggg). 'Tius.M. A.. Busch-Petersen. J. SL 531(199?). aVillemin. D.,Marrin,B. .tC28,320| ( 1998). sSaoudi, A., Hamelin,J.,Benhaoua, H. TL 39,4035( I 998).
Potassium hydrogen fluoride-silicon tetrafluoride. Hydrofluorinatian.t This combination readily transforms unsaturatedcompounds into fluorides at room temperature(4 examples,5l-95Vo). 'Tamura, M., Shibakami, M., Kurosawa, S.,Arimura,T., Sekiya,A. CC l89l (1995).
Potassium monoperoxysulfate (Oxone@).13, 259; 14,267:15,2'74-275;16, 285; 18, [ '\ . Jr..Choi,W.-B.,A skin,
Epoxi.dations. A mixture of Oxone@ and an iminium salt derived from pyrrolidine is an effective epoxidizing agent.' An imino group can also be exploited for directing epoxidation of a proximal double bond.2 The oxodiazepinium salt 13 and 4-oxothiane-S,S-dioxideaare also general and efficient catalysts. A popular approach to
I
Ftti
300:19.277
\ ( t E E 3 7 , 3 3 8(91 9 9 8 ) .
asymmetric epoxidation of alkenes is based on generating dioxiranes in situ from chiral ketonesand [email protected]
314
Potassiummonoperoxysulfate(Oxone@)
,,\
I
-\
o
\
N
oxoneo;
+
|
H
+
\
B
n
)
M
e
o
/'-,'2
J-,-aJ
\
r
f
:
t \-/
l
aqNaHCo3
Ox id.ation of nitro gcnt alkanesraare oxidized to kc formed under different corxt give c,-chloroniftoalkanes:i
).-/.= ( \ t F o \* / 2r1a ,,.Na
The formation of diplrr presenceof carboxylic rids Episulfunes.2o Eprs
(1)
Oxone@-trifl uoroacetonc.
Oridation of carbonyl compounds. Oxidation of aldehydesto acidsewith Oxone@ is accomplished in aqueous acetone. The conversion of c-acetyl-Y-butyrolactone to 2-methyltetrahydrofuran-3-oner0may involve hydroxylation, decarboxylation, and ring closure of the dihvdroxvketone.
oxone@
, NaOH - Na2BaOT aq. KOH
Either diacids or the monoa-Nitrocycloalkanones undergo oxidative cleavage. rr reaction conditions. may be acquired by adjustment of the methyl esters
Noz oxone@
....€
cooR OMe R=H,Me
Regioselective oxidation of trifluoromethyl ketones (via dioxiranes) occurs at the unactivated 6-carbon atom 12
o\.'co(
rArmstrong, A., Ahmed.G . ( 2A.rnrtrong,A.. Draffan.A ( lDenmark, S. E.,Wu.Z. JOC aYang, D., Yip, Y.-C.,Jiao.C sWang,Z.-X.,Shi,Y. JOCaI 6zhu,y.,Tu,Y., Yu, H..Shr iSong. C. 8., Kim. Y. H.. L.c 8Yang,D., Yip, Y.-C.,Tang. I 'Webb,K. S.,Ruszkay. S.J I loRagoussis, V., Lagouvardo llBallini,R.,Curini,M., Eprfr l2Yang. Y.. Wong.M.-K..\tr'r lsBore,D. S.,Srinivas, P.SCI laCeccherelli, P.,Curini.M..t l5Bose. D. S..Vanajatha. G. S l6Bose, D. S.,Narsaiah, A. \' lTCeccherelli, P.,Curini.M..E '8Ki., J. N.,Son,J. S.,l-ff. H lecu.ini,M., Rosati, O.,Pisar 2oJohn.on, P.,Taylor,R. J. K.
Potassium perman gansl,a Well-kr Oxidatians. assistance,ldispersion of kieselguhr.6
tvur.u, R. S.,Naicker,K. P l 'Hu.rir, \l'.. ! C. 8., Chrisman. (1997). sBenhaliliba, H., Derdour.A.. I aOussaid, A., Loupy,A. JCRIj
permanganate 315 Potassium
COOMe
,.
+
oxone@ NaHCO3
H2O - MeCN
r.': : -
OH
\''o:TcooMe t \-/
l
86Yo
Oxidation of nitrogenous compounds. Both ketoximesr3 and secondary niftoalkanesraare oxidized to ketones. Aldoximes are converted to nitroalkanes,l5 but niffiles are formed under different conditions.16In the presenceof a chlorine source(NaCl, HCI) ketoximes give c-chloronihoalkanesrT and nihoalkenes give the cr-chlorinated products.l8 The formation ofdiphenylmethyl estersrewhen benzophenonehydrazone is oxidized in the presenceof carboxylic acids most likely involves diphenyldiazomethaneas intermediate. Episulfones.2o Episulfones can be isolated when episulfides are oxidized with Oxone@-trifl uoroacetone. ri.:rhr des to acidsewith Oxone@ ,: (1-acetyl-Y-butyrolactoneto a:: :r. decarboxylation,and ring
559io
F.itherdiacids or the monoIl i.': , ,,nditions. ,
1,
-COOR
v Ycoon cr,rg
I
, r.r dioxiranes)occurs at the
tArrnrt.ong, A., Ahmed,G.,Garnett, I., Goacolou, K. SL 1075(1997). 'Armstrong, A., Draffan,A. G. St 646 (1998). 'Denmark,S.E., Wu, Z. JOC 63,2810(1998). -Yang, D., Yip, Y.-C.,Jiao,C.-S.,Wong,M.-K. JOC 63,8952(1998). ".Wang,Z.-X., Shi,Y . JOC 62,8622(199'7 ). ozhu,y., Tu,y., yu, H.,shi,y. 2a 39,7819(1998). 7song, C.8., Kim, Y. H., Lee,K. C.,Lee,S.,Jin,B. W. fA 8, 2g2l (lggi). nYang, D., Yip, Y.-C.,Tang,M.-W.,Wong,M.-K.,Cheung, K.-K. JOC63,9888(1998). 'Webb,K. S.,Ruszkay, S.J. I54, 40t (1998). r0Ragoussis, V., Lagouvardos, D. J.,Ragoussis, N. SC28, 4273(lgg8). "Ballini, R., Curini,M., Epifano,F.,Marcotullio, M. C.,Rosati,O. SZ 1149(1998). ''Yang,Y., Wong, M.-K.,Wang,X.-C.,Tang,Y.-C.JACS120,661I(1998). '-'Bose, D. S.,Srinivas, P.5C27,3835(1997). laCeccherelli, P.,Curini,M., Marcotullio, M. C.,Epifano.F.,Rosati,O. SC28,3057(1998). rsBose, D. S.,Vanajatha, G. SC28,4531(1998). 'oBose, D. S.,Narsaiah, A.y. TL 39,6533(199S). ''Ceccherelli, P.,Curini,M., Epifano,F.,Marcotullio, M. C.,Rosati,O. TL 39,4385( 1998). r8Ki., N., J. Son,J. S.,l,ee,H. J.,Jung,K. S. SC27, 1885(1997). tncu.ini, M., Rosati,O.,Pisani,8.,Cabri,W., Brusco,S.,Riscazzi, M. TL38, 1239(1gg7). 2oJohnron, P.,Taylor,R. J. K. ZI, 38,5873(1997).
Potassiumpermanganate.13,258-259;14,267;15,2'73-2'14;18,301;19,277-278 Oxi.dati.ons. Well-known oxidation processeshave been modified by ultrasound assistance,rdispersion of KMnOo on solid supports such as alumina,2-azeolite,5and kieselguhr.6 rva.-u, '7463 R. S..Naicker,K. P. Zt 39. OggS\. tHurrir, C. 8., Chrisman, W., Bickford,S. A., Lee,L. Y., Toneblanca, A. E.,Singaram, B. ?f 38,981 (r99't\. 3Benhaliliba, H., Derdour, A., Bazureau, F., Hamelin,J, TL39,541(1998). J.-P.,Texier-Boullet, -Oussaid, A., Loupy,A. JCR(S)342(199'7).
316
Pyridiniumdichromate
5sreekumar, R., Padmakumar, R. fL 38, 5143(lgg'1-). 6l-ou, J.-D.,tnu, W.-X.SC27,369i.(lgg7).
Potassium persulfate. Cleavage of N\thiophenyl)benzyl group.t The oxidative cleavage with KrSrO, in aqueous MeCN does not affect a BJactam ring; therefore, imines containing such can be used to condensewith ketenesto form p-lactam adducts. Dimethyl qc*alkanedicarboxylates.
o-Nitrocycloalkanones suffer ring scission on
Rhenium(VU) oxide. 17. I Epoxidation.l Ttre u
exposureto &SrO, in methanol containing sulfuric acid. The dimethyl estersare obtained.2
epoxidation catalyzed b1 R
Note the accessibility of or-formylcarboxylic esters by sequential treatment of with alcoholic KOH and KMnOo-MgSO, (Nef reaction).3 cx,-nitrocycloalkanones
tYrdin,
a\^ \
K O H / M e O HA ; KMnOa MgSOa
(f"oo"" \--cHo
Noz 77o/"
rKarupaiyan, K., Srirajan, V., Deshmukh, A. R. A. S.,Bhawal,B. M. 254, 4375(lgg8). 'Ballini,R.,Bosica, (1997). G.253, 16131 3Buuini,R.,Bosica,G.,Gigli,F. T 54,'7573 (1gg8).
Potassium superoxide-o-nitrobenzenesulfonyl chloride. Benzglic oxidatian. By this reagent combination in MeCN, benzyl ethers are oxidized to benzoic esters(11 examples,8l-93vo).t Arylacetic acids undergo oxidative decarboxylation which results in aromatic aldehydes( l0 examples. 52-84Vo).2 'Kir, y. H.,Kim,H. I., Kim,J.y.JCS(pt)633(1998). 'Kim, Y., Kim, Y. H. TL39,639(1998\.
Pyridinium dichromate. 14, 269 N-Aryloxazolidines. Many 1-(N-methylanilino)-2-alkanols unexpectedly give the oxazolidines in good yields on oxidation with PDC.
(-(o*"
*TIV o H l
A. K., Sharpless. K. B
Rhenyl trichloride, bis trl (El-crOlefination.t with ethyl diazoacetate'* hc lledford,
B. E., Carreira.E. \t.
Rhodium/alumina.
Hydrogenation.t Th tetrasubstitutedalkenesu hr Oxazolidines.2 Ther 1,2-aminoalcoholsand nim the presenceof 57o Rh/C.
rYamaguchi, M., Nitra,A.. R6d 'Letinnois, S.,Dumur.J.-C..l|r
Rhodium carbonyl clustcn Carbonylation The carbonylation method is t introduction ofa ketone si*
€{"
(pyH)2Cr2O7
cH2ct2
"T,o
Rhe(COr
891o
MeNt--NPY lYli-Kauhaluoma, J. T., Harwig, C W., Wentworth, P.,Janda, K.D. TL39,2269(1998).
:ll.1rc with KrStOr in suchcan be x':::.1lning oxide. 17, 296-297 ; 18' 305; 19, 280 The utility of bis(trimethylsilyl) peroxide is critical for the efficient Epoxidation.l epoxidation catalyzedby RerOt. Rhenium(Vll) .rlfcr ring scissionon l\. !.'tersareobtained.2 Ju.nriill treatment of ic::.'action).3
rYudin,A. K., Sharpless, K. B. 'IACS119,11536(1997).
COOMe ;F.3
Rhenyl trichloride, bis(triphenylphosphine) complex. (E;-o,B-Unsaturated esters are obtained from reaction of aldehydes olefination.t when catalyzed by (Ph,P)rReOClr. ethyl diazoacetate with
T.
rLedford,B. 8., Carreira,E. M. ?L 38, 8125(1997).
r:-< 1998).
Rhodium/alumina. The catalyst is particularly useful for the saturation of Hydrogenation,t are conjugated to a ketone group. which alkenes tetrasubstituted compounds are formed from mixtures of heterocyclic These oxazolidines.2 (17 89-997o) underhydrogenationconditionsin examples, nitriles 1,2-aminoalcoholsand
henzyl ethers are l\ rrj- undergooxidative
the presenceof 57o Rh/C.
.:l-S-17c)'2
rYamaguchi, M., Nitta,A., Reddy,R. S.,Hirama,M. sr 117(1997). 2letinnois.S..Dumur,J.-C.,Henin,F.,Muzart,J. TL39,232'7(1998).
Rhodium carbonyl clusters. 13,288; 15,334;18' 305-306; 19,280-281 The development of a 3-isochromanone synthesisr using the Carbonylation carbonylation method is the extension of some previous work. More unusual is the , re r.pectedlygive the
introduction of a ketone side chain to the piperazine system.2
lYo
<-\-\^
R h 6 ( c o ) 1 6c/o
J
OMe 1750
720/.
Rha(CO)12lCO 8!'.
). ::'"
MeNt--rNPv r 1998)
(;
Et3N/dioxane,H2O
ethylene 1600
[t
)R
lh
-
' , N rt
I veN, A IL )l1 -
\-
F_
oJ
l * " " 1 / -\_r .*ru /l I
Rhodium carboxylates
318
rYoneda, S. ?L 39,5061(1998). E., Kaneko,T.,Zhang,S.-W.,Takahashi, 'Ishii, Y., Chatani,N., Kakiuchi,F., Murai,S. OM 16,3615(199'7).
While ser eral Heterocycles. reaction of 2-dtazo-l,3-c1'clohev electron-withdrawing or electrond analogous reaction of N-(cdrazo
Rhodium carboxylates. 13, 266; 15, 278-286; 16, 289-292; 17, 298-302; 18' 306-307; 19,281-285 The species generated from decomposition of diazo Carbenoi.dinsertions. compounds in the presenceof rhodium carboxylates are capable of inserting into various
indolizidine skeleton,and accordrn
X-H bonds. Thus, N-C bond formation has beenexploited for the preparation ofprecursors of indoles,roxazoles,2and peptides.s The demonstration of a diastereoselective C-H insertion to form the furofuranoid nucleusopensa way to total synthesisoflignans suchas asarininl
nJ
fr tr\-o Y
PT
/Y'
("rr
/v
a
\-i' fi""'(oA"
^/'\/ -.
tn-so9\--\
Rh2(OAc).
*)',.-*J
SO2Ph V " n " t
Two different approaches""'to t generationof oxonium ylides.
Etoocylby,^..--oMoM MeOOC--l_
I
_J
Me3SiO :
-otgops
asarinin Steric effects are important in determining the site of C-H insertion, thus ap-lactone or a Ylactone may result.s
Rh2(OAc)4
Rh2(OAc)4
cH2ct2
cH2cl2
(B=Ph)
COOMe
(R=Me)
55"/"
5a"h
Cyclopropanation.
l_\ \o/
Rh2(OAc)4 N2CHCOOEt
A route to furan-3,4-diacetic esters6is via the tricyclic adduct.
Etoocl
etoocpcooet
HCI EIOH A
l-\ \o/
/-cooEt
CH2Cl2
Rhr(OAc)o catalyzes the ransfe and episulfoxides to norbornenearr Conjugatedketenes. q-Dtaz
to ketenes which enter Diels-AH Substituted phenols are acquired, when 2-diazocyclohexane-I .-1-droo Rhr(OAc)..r3
58/o
Rhodium carboxylates
) ' .
l-
,1998).
lql: 17, 298-302; 18, 306-307;
decomposition of diazo i-::()rn r:. .,rpableof inserting into various k::r.l i',rrthe preparationofprecursors I :r-cnion to form the furofuranoid t r..r..rrinini
Heterocycles. While several reports deal with formation of furan derivatives by reaction of 2-diazo-1,3-cyclohexanediones and alkynes which are substituted with electron-withdrawing or electron-donating groups,Tan cr-pyridone synthesis based on an analogous reaction of N-(o-diazoacyl)amides is applicable to the elaboration of rhe indolizidine skeleton,and accordingly,a synthesisofipalbidine.s
tn-?o?Y1
*?Y*-
902Ph
\
Rh2(OAc)4
so2Ph v p n n
HO MeO ipalbidine
^-
P
r
^
/-("
,'o\.y'\-/
- -
Two different approachese'I0 to the core structureof the zaragozicacids are basedon the generationof oxonium ylides.
\ /
f-)""'\o2 n/Y -\-o
rtooc.-/to_,.^-,.-
OMOM Rh2(OAc)4
veooc!
COMe I
Me3SiO =
asarinin
\oteops
a
PhH^
COMe
[] insertion,thus ap-lactoneor
lh2(OAc)4
Rh2(OAc)4
ETOOC--$-n MeOOC-\j
OMOM
Me3SiO
o. \--
t z no i
Meooc\9'l\
f
cH2ct2
a
COOMe
q=Me)
PhH
--2 580/"
64"/"
tr r.iirs^ is via the tricyclic adduct.
Erooc-\ :-, -
\
/-cooEr
,-n 'O-
Rht(OAc)o catalyzesthe transfer of S and SO from more readily available episulfides and episulfoxidesto norborneneand norbornadiene,albeit in modestyields.rt conjugated ketenes. q-Diazo-y,6-unsaturated B-ketoestersundergo reiurangemenr to ketenes which enter Diels-Alder reactions as dienes toward electron-rich alkenes. substituted phenols are acquired.r2 3-Acyloxy-2-chloro-2-cyclohexenones are formed when 2-diazocyclohexane-1,3-diones are treated with acid chlorides in the presenceof Rhr(OAc)..r3
Ruthenium-carbenecomplexes
320
o ll
Ph-
)t
rz Fh2(oAc)4 nr
,\'cooet ll ll Na
With water-soluble cata!1r methanol and water is succc substratesshould be substiur
cooEt -r\^
p h H^
ll
""o
unstable).
Ph/
84v" Using Rhr(OAc)o in phosphonium tosylates for hydroHydroformylation.la formylation of l-alkenes at 120", the catalyst recovery is facilitated. Thus, on cooling of the reaction mixture the rhodium acetateis completely retained in the solid phaseand the liquid products are obtained by simple decantation. Variation of substituentsat the phosphorus atom of ionic solvents [e.g., (Ph,PEt)*OTs- vs. (Bu,PEt)*OTs-] has remarkable effects on
P Clr,'' ' RI
ct- | (t
the ratio of alkanals and 2-methylalkanals. lMoody,C. J.,Swann,E. Sf 135(1998). 'Bagley,M. C.,Buck,R. T., Hind,S.L., Moody,C.J. JCS(Pl)591(1998). 'Moody, C. J.,Ferris,L., Haigh,D., Swann,E. CC 2391(199'1). "Brown,R. C. D., Hinks,J. D. CC 1895(1998). 5Bululi, (1998). B.M. TL39,6381 B. S.,Chanda, 6Wenkert, 8., Khatuya, H. HCA81,2370(1998). 7Pi^rng,M. C.,Zhang,J.,Morehead, A. T., Jr. TL35,6229(1994). osheehan, S. M., Padwa,A. JOC 62,438(199'7). eBrogun, C.K. TL39,l69l (1998). J. B.,Zercher, l0Kataoka,O., Kitagaki,S.,Watanabe, N., Kobayashi, J.,Nakamura,S.,Shiro,M., Hashimoto,S. ?L (1998). ..39,2371 "Kendall,J. D., Simpkins, N. S. Sl 391(1998). ''Collomb, D., Doutheau, A. TL38, 139'7(1997). '''Lee,Y. R.,Suk,J. Y. CC 2621(1998). r4Karodia, J.-A'.CC 2341(1998). C.,Andersen, N., Guise,S.,Newlands,
u".fi2
(
Interestingcompoundsth (alsothos bicyclicB-lactamss cyclic ethers,Tcyclic silor spiroannulateddihydrofurarx by Cu(I).to organized
F(
f\x"-r: 3i: R
Ruthenium-carbene complexes. 18, 308; 19, 285 -289 Metathetic ring closure. The application of this reaction, particularly utilizing the Grubbs catalyst 1, is accelerating. There have been many efforts aiming at relating the process to other stereoselective reactions, in other words, designing advantageous approachesto substratesfor the cyclization. Although previously in most ofthe substrates the doublebondsareisolated.that is not a restriction.Thus. vinyl ethers.ralkenylboronates.2 and acrylic estersscan be used.
I E
\K
\--l\
crt
\",/ /"'-o 1 \--^.. \ / o B
z ( ?cYsPn wtr".7iuJ ct- lPCyg (1)
oty
""'; Ct'
I
n
tl
A photoactivatableR"C{ enyne metathesis which forn
Ruthenium-carbenecomplexes321 With water-soluble catalysts 2 and 3, the ring-closing metathesisof acyclic dienes in methanol and water is successful.aHowever, at least one terminal double bond of the substratesshould be substitutedwith a methyl or phenyl group (methylidene-[Ru] species
-N)z\ t
\-,/
unstable).
Ph l 84"/o
cl
M"oN" )
r,.fhr')nium tosylates for hydroL.: .r.rlilated.Thus,on cooling of the ln..: rn the solid phaseand the liquid n ,: .ubstituents at the phosphorus -{ 3; )Ts I has remarkable effects on
+l -il
\ ct,,, lcyz '"Ru-
\--{ ^, V t r r r , .?cyz f r r _ j _ .pn
Ph
ct/ l(t"r'
ctl l(-(""'"
-fut/
u"rfi2 6sr. ..,r , l99g).
l
(2)
9-
cl
, (3)
Interesting compounds that have been acquired from the metathesis process include bicyclic B-lactamss(also thosecomprising a diene unit by the enyne metathesis6),cl-stannyl cyclic ethers,T cyclic siloxanes8 which can be opened to afford (2,)-alkenediols, spiroannulated dihydrofurans and dihydropyrans.e and [2]catenanes from precursors r.::- --.:.S.. Shiro,M., Hashimoto,S. ZL
-i:
organizedby Cu(I).to
"""!,?\'n
q9lJ ).
/\ro-\ l Y \__/\
j!
\
\\
s ::.:.tion, particularly utilizing the rn:: r cfforts aiming at relating the r .,,'rds. designing advantageous p::::,ru5ly in mostof the substrates ru. : rnr I ethers,lalkenylboronates,2
y
'
3
(1) a-\
P-\
l X t ) \_-/ \--{/
--
cH2ct2
s1"/"
Pn
)silo
sy
ctl'l:-
P -- c
(
2 (
f^o,,.'
?cYs wtt"'piuJ (1) cll | PCyg OBn
OBn
937o
A photoactivatableR C=C=C=Ru complex proves useful for promoting intramolecular enyne metathesis which forms 2,2-disubstituted 3-vinyl-2,5-dihydrofurans (7 examples,
Ruthenium-carbene complexes
4l-84vo).r1 In adapting the cross yne-ene metathesisfor generating conjugated dienes to solid-phase synthesisl2 the linkage of the alkynes to the support is more advantageous because the [Ru]-carbene complex reacts faster with triple bonds so that the homodimerization of the alkenesin the solution is not competitive, and the oligomerization of the bound alkynesis slow.
(x^
\\\
-;* hv;
+
Cl-R]u=g=C=CPhe t -
pcys
*^ €
PF,
84"k
Some triynes undergo isomerization to give benzene derivativesl3 on exposure to
Useful preparations. Thesc glycosidesr6and 2,3-bis(acetor\1 ethylene.lT A new preparation of catalrricall-l by using accessible starting nutcrr
diazoalkanes and diphenylcyclopru Mg/ClCHzCH2Cl in the presene of r followed by cooling to -40'ard ad A more reactive species dr.o ring-opening polymerization is rhc
catalyst with [(p-cymene)RuCl. representedby the air-stables.tr'C activities (turnover frequencresr rn
IPhCH=Ru(PCy3)2C12].
WlIt,.:
?cYs/ pn
ct-tlu: rl PCys
"l/ pCy3 |
/ \
;;;-
(4) 68Yo
Ring-opening crossmetathesis, significant reactionsbelonging to this category are the formation of the cyclic acetals of 1,4-alkadien-2-oneslafrom cyclopropenone acetals and l-alkenes, and the assemblageof 1,2-dialkenylcyclobutanesls en route to complex I ,5-cvclooctadienes.
'Stu.ino, C . F . , W o n g ,J . C . Y . T L t . , 'Renaud. J.. Ouellet.S. G. JACS l2O.' 3chosh, A. K., Cappiello,J., Shin. D i -Kirkland, T. A., Lynn, D. M.. Grubh( 'Barrett, A. G. M., Baugh, S. P. D . C
.cc t55(199'7).
oBarrett, A. G. M., Baugh, S. P. D. 8l
t3'7s(199'7).
"^,r r , ,?cYg j u J Pn
.)
X
Ctl
=;-
| PCyg
(1)
t
o-*'o
t
V \Z\
/
527o
o1:: . Y:F I ff^,-o*-r "45 (o.\ ("\ ; ;Q,^^,,.
7l-ind".-un, R. J., Siedlecki, J.. O'Scrl oChang, S., Grubbs,R. H. ft 3t..1-5YMaier, M.8., Bugl, M. SL l39O r l99t 'oMoh., B., Weck, M., Sauvage.J.-P . ( "Picquet, M., Bruneau,C., Dixneuf. P ''Schtirer. S. C.. Blechert.S. SL 166 l! l3P"t"rr. J.-U., Blechert.S. CC t,rs.r , lr 'oMi.huut, M., Panain,J.-L.. Sarrellr. \ l55nappe., M. L., Tallarico,J. A.. Rann 'oDominique, R., Das, S. K., Ro1. R O "Kinoshita, A., Sakakibara,N.. \lan. t l8woli J., Stiier,w., Gri.inwald.C.. \tc reDias, E. L., Grubbs,R. H. OM 17. :-l 2Oweskamp, T., Schattenmann.\l'. C . S "Bartz, M., Kiither. J., Seshadri.R.. Tn
Ruthenium-carbenecorrplexes323 r\'\ '!)r seneratingconjugateddienesto x :, rhe support is more advantageous r.:.: \\ lth triple bonds so that the n . ,rnpetitive.and the oligomerization
hv;
/-vPh
I
z
diazoalkanesand diphenylcyclopropenes).l8It involves reduction of RuClr.3HrO in TIIF Mg/C1CH2CH2CIin the presenceof fficyclohexylphosphine under hydrogen at 60-85' which is followed by cooling to -40o and addition of a l-allqzne along with a small amount of water.
\
+
\or\
84"/. \-'r,/.ne
These include 2-butene-1,4-diyl glycosides from allyl Usefulpreparations. from 1,4-diacetoxy-2-butyne and glycosidesr6and 2,3-bis(acetoxymethyl)-1,3-butadiene ethylene.17 A new preparation of catalltically active ruthenium-carbene complexescan avoid difficulty by using accessible starting materials such as (Ph,P)rRuCl and carbene precursors (e.g.,
derivativesl3 on exposure to
A more reactive species than the Grubbs catalyst for ring-closing metathesis and ring-opening polymerization is the bimetallic complex 4,le obtainedby reacting the Grubbs catalyst with [(p-cymene)RuClrJr. A novel class of alkene metathesis catalysts is representedby the air-stable 5.20Catalysts bound to gold colloids are found to have better activities (turnover frequencies)in ring-opening metathesispolymerization.2r
Ph
#,n
"l/ !"u
(
(4)
**.-,Q',_J' Ct- jr-,.Ph
-i-5=, (5)
68/o
l:..,. :,In\ belongingto this categoryare t-l- :re.' from cyclopropenone acetals i\ . . -l(lbutanesls en route to complex
=llt |
=
J
,Ph
a ^-^- (11 >
:_:
.) o-*'o
VV\ 52%
/
rstu.ino, C. F., Wong, I.C.Y. TL39,9623 (lgg8). 'Renaud, J., Ouellet,S. G. JACS 120,7995 (1998). 3chosh, A. K., Cappiello,J., Shin, D. rL39,4651 (lgg8). *Kirkland, T. A., Lynn, D. M., Grubbs,R. H. JOC 63, 9904 ( 1998). sBarrett, A. G. M., Baugh, S. P. D., Gibson, V. C., Giles, M. R., Marshall, E. L., Procopiou,P. A. cc tss (t997). 6Barrett, A. G. M., Baugh, S. P. D., Braddock,D. C., Flack, K., Gibson,V. C., Procopiou,P. A. CC t375 /L997\. ?Lind".rnun, R. J., Siedlecki,J., O'Neill, S. A., Sun, H. "/ACS1f9,6919 (1997). oChang, S., Grubbs,R. H. ft 38, 4'757(1997); Evans,P. A., Murthy, V. S. JOC 63, 6768 (1998). eMaier, M . 8 . , B u g l , M . S L 1 3 9 0( 1 9 9 8 ) . 'uMoh., B., Weck, M., Sauvage,J.-P.,Grubbs,R.H. ACIEE36, 1308(1997). "Picquet, M., Bruneau,C., Dixneuf, P.H. CC 2249 (1998). ''Schiirer, S. C., Bleche(, S. SL 166 (1998). ''Peters. J.-U.. Blechert.S. CC 1983(1997). raMichaut, M., Parrain, J.-L., Santelli, M. CC 256'l (1998). t5snupp"r, M. L., Tallarico,J. A., Randall,M. L. "/ACSllg, 1478(lgg7). 'oDominique, R., Das, S. K., Roy, R. CC 2437 (1998). "Kinoshita, A., Sakakibara,N., Mori, M. "/ACS119, 12388(1997). '8wof f, J., Stiier,w., Griinwald, C., Wemer, H., Schwab,P., Schutz,M. ACTEE 37, 1124(lgg}). reDias, E. L., Grubbs,R.H. OM 17,2758 (lgg}). 20werkamp, T., Schattenmann,W. C., Spiegler, M., Herrmann, W . A. ACIEE 37 ,2490 (1998). "Bartz, M., Ki.ither,J., Seshadri,R., Tremel, W . ACIEE 37 ,2466 (1998).
324
Ruthenium(Ill)chloride-sodiumperiodate
chloride. 13, 268; 14, 27 | -27 2; 19, 289-290 t Aldolreaction Th" Ruclr-catalyzed condensation of ketones with aldehydes at 120oin a sealedtube leads to a-alkylideneketones or a,cr'-dialkylideneketones. Reactionofepoxides. Epoxides are converted to acetonides2on refluxing with RuCl, in acetone,but with NH4SCN in MeCN the products are episulfides.3 Ruthenium(Ill)
Heterocyclization. Indoles are obtained when anilines and trialkanolamines are ffeated with RuCl,, PhrP, and SnClr.2HrO in dioxane,a and dihydrobenzofurans from 2-allylphenols with RuCl, hydrate, AgOTf, Cu(OTf.l, and ph,p.5 It appears that 2-(3-butenyl)phenol also undergoescyclization to give benzopyran derivatives.
HO. NJ
roH
NHz
SnCl2'2 1116
H
Aromatization,"
Samarium. 14, 275 ; 17, 34 In the ro Reductions. included.For example.iodrr aryl azides,zand sodium alt
preparation of unsyrruneu
dioxane 180o
Dehydrogenation
\J
Titanium0V) chloride an e.g., in the transformation of amines,5respectively. The cleavage of diselen
RuCl3 - Ph3P
J
+
-t
\
46"/"
of Hantzsch 1,4-dihydropyridines
occurs under
Sm-MerSiCl-HrO.6 During a synthesis of t Sm/HMPA-MeOH save ns
an oxygen atmosphere in the presence of RuClr. Ruthenium
carbene complexes,'
A
complexes, e.g., (Cy.P)rRuClr(=CHMe),
convenient
preparation
of
the
carbene
involves reaction of RuCl, hydrate with Mg and
Cy,P under hydrogen and then treatment with acetylene. tlrunpoo., N., Kazemi, F. T 54,94'75 (1gg8). 'Iranpoor, N., Kazemi,F. SC 28, 3189 (1998). 'Iranpoor, N., Kazemi, F. T 53,11377(lgg7). -Cho, C. S., Lim, H. K., Shim, S. C., Kim, T. J., Choi, H.-1. CC 995 (199'7). tHo.i, K., Kitagawa,H., Miyoshi, A., Ohta, T., Furukawa,I. CZ 1083(1998). oMashraqui, S. H., Kamik, M. A. TL 39,4895 (1998). 'Woll J., Stiier,W., Grtinwald,C., Werner,H., Schwab,P., Schulz,M. ACIEE 37, ll24 (lggg).
Ruthenium(Ill) chloride-sodiumperiodate.18,3 10; 19,290 qd -Dihydroxyketones.t Allenesareconverredto the highly oxygenated producrs by thereagentcombination.
R u C l 3- N a l O a
.....-
a*"oo"
E t O A c ,M e C N
OH OH
)l
I fl o
Diorganochalcogcni& involves formation of alll ls THF. For a similar approd the presenceof BiCl,.ro Aqr Reactions of aUimiut
coupling.However.titanc of imines is subjectto l..l-r accessibleby this method.i:
.cooEt
\a l
32v" rlaux,
M., Krause, N. 5L765 (lgg'1.).
pnAn-\ I Ol/l€
*
4
. l.- l9(t L\.:i:,r trf ketoneswith aldehydesat (I.II -Jlalkllideneketones. $ : rcetonides: on refluxins with o\:-,'. rre episulfides.s n r : : . l n c \ a n d t r i a l k a n o l a m i n easr e ia:r.- .tnd dihydrobenzofuransfrom ]T: and Phip.5 It appears that ri \-' - /\)pvran derivatives.
Samarium. 14, 275; 17, 305-307 ; 18, 3 1l ; 19, 291 Reductions' In the reduction of organic compounds by Sm some additives are often included. For example, iodine is presentin the system for the reduction of nitroarenesrand aryl azides,2and sodium alkyl thiosulfates.3 Titanium(IV) chloride and titanocenedichloride have catalytic effects on the reduction, e.g., in the transformation of alkyl thiocyanatesto dialkyl disulfidesaand nitroarenesto aryl
)'rP
c
S
C .-: i;O '8Oo tE-€
460k
. j-.::h\ dropyridinesoccurs under
amines,5respectively. The cleavage of diselenides to generateorganoselenideions, which are useful for the preparation of unsymmetrical selenides through alkylation, is readily achieved with Sm-MerSiCl-HrO.6 During a synthesis of taxolT the reductive cleavage of a cyclopropyl ketone with Sm/HMPA-MeOH gave rise to an enol which was processedfurther.
n ' ::tparation of the carbene - : " ,: RuCl, hydratewith Mg and
r Sm - HtvlPA
,*"Ffiik--taxol :--ry
'( -.< i 997). .t, t998). :i :. -
.:
Pli
\l .4CtEE37, tt24 (1998).
; 1 9 .l e ( ) t, ::e highly oxygenatedproducts
OH OH
r l
'/\ t /\I U
I
Diorganochalcogenides. A method for synthesis of allyl sulfides8 and selenidese involves formation of allylsamariumbromide and its reacrionwith phx-xph (X=S, Se) in THF. For a similar approach to benzyl sulfides, the benzylsamarium halides are formed in the presenceof BiCl,.r0 Aqueousmedia can be usedin this latterreaction. Reactians of aaimines. The formation of 1,2-diamines follows the pinacol coupling.However,titanocenedichloride is usedin the aldiminecoupling.rI The allylation of imines is subjectto 1,3-asymmetricinduction, thereforechiral homoallylic amrnesare accessibleby this method.12
/cooEt
Y pn^ru4
?.Y
?''Y
#Ua , y'.,.-l,-1 THF
OMe
'
. -H')
OMe
OMe (96 : 4) 85%
326
Samarium(Ill)chloride
Iodohydrins.t3 aldehydes,
The
reagent derived
and the iodohydrin
products
from from
Sm and CH2I2 reacts readily a-amino
aldehydes
with
are precursors
of
allylamines and azetidines. rBanik, B. K., Mukhopadhyay,C., Venkatraman,M. S., Becker,F. F. fl, 39, i243 (1gg8). 'Huang, Y., Zhang,Y., Wang, Y. 7L 38, 1065(1997). 3Huang, Y., Zhang, Y., Wang, Y. SC 27, lO43 (lgg7). -Guo, H . , Z h a n , Z . , Z h a n g , Y .5 C 2 7 , 2 7 2 1 ( 1 9 9 7 ) . 'Huang, Y . , Z h a n g ,Y . , W a n g ,y . S C 2 7 , 1 0 5 9 ( 1 9 9 7 ) . oWang, Y., Zhang,Y. JCR(S)598 (1998). 'Morihira, K., Hara,R., Kawahara,S., Nishimori, T., Nakamura,N., Kusama,H., Kuwaiima, l. JACS 1 2 0 , 1 2 9 8 0( 1 9 9 8 ) . nYu, M., Zhang, Y . SC 27, 2'743 (199'l). 'Yu, M., Zhang,Y.,Bao, W. SC 27, 609 (1997). rol-u, c., Zhang, Y. SC 28, 4479(tggg). ' 'Liao, P., Huang, Y., Zhang, Y. SC 27, 1483(199'7). ''Negoro, N., Yanada,R., Okaniwa,M., Yanada,K., Fujita,T. Sf 835 (1998). '''Concellon, J. M., Bernad,P. L., Perez-Andres, J. A. J O C 62, 8902 ( 1997\.
Samarium-samarium(Il) Deoxygenative
1,3, 5- Tn.orI lh enze net.i cyclotrimerization on treatrE
tFu,x.-L., wu, S.-H.sc n. rcl 'Shiraishi.H., Nishitani,T.. S& 3Cheng, K.-J.,Ding,Z.-B..wu !
Samarium(Il) iodide. 13, 11 307-3ll'.18. 312-3 l6; 19. l Reductians. Double I saturatedwith SmI, in the pt
\\
-c(q
.4
iodide.
alkylation
.^"Arn
of ami.des.t
*
(-J
The unusual reaction affords amines.
S m - S mr l
Apn
.*-
Fpn /^ru (,
pn
Additives (cosolvens) r power of sml2.2 Allylic3 a! species,and the proton souro Chiral allenic esters are o
organosamariumspeciesdcn 45o/"
'Ogu*u,
A., Takami, N., Nanke,T., Ohya, S., Hirao, T., Sonoda,N. f 53, 12895(lggi).
Samarium(Ill) chloride. 14, 275-27 6; 15, 282;'18, 3 12; 19, 292 I,2-Amino alcohols.t Epoxide opening by amines catalyzed by SmCl, is regioselectiveand stereoselective. The nucleophilesattackfrom the lesssubstitutedcarbon atoms. Pynoles.2 A three-componentcoupling among an aldehyde, an amine, and a nitroalkanein the presenceof SmCl.,leadsto a substitutedpyrrole.
Srn
oPo(oE02
If the reduction systcm I proton source the allylsarne Thus, (Z)-allylsilanes ar€ d
Pinacol formation from r
cHo +
cHo
^*o,
TH, Bu
SmC13 THF A
chemists. In the presenceof cyclitol synthesis the diasta of the aldehyd cr,-substituents effect on the reactivity of S
pinacol coupling of keto(6 reduced to a few minutes).ro
Samarium(Il) iodide
n-: ( ll.l. reacts readily with I .,.::hrdes are precursorsof
r:
1-r9.7243(1998).
\...rltril. H., Kuwajima, I. JACS
\
327
methyl ketonesundergodeoxygenaflve I,3r5'Triarylbenzenes'3 Acetals of aryl on ffeatmentwith SmClr-AcCI' cyclotrimerization tFu,x.-L.,wu, S.-H.sc 27,167'7 (199'7)' 63'6234(1998)' tir,ir"irni,'H.,Nishitani, S''Ishii'Y'-JO.C T'' Sakaguchi' (1997)' 'ln"ng, i.-1.,Ding,z.-B',wu, S'-H'sc27'rt 17' 27 6-281; t5' 282-284;16' 294-300; Samarium(Il) iodide.13,27 0-2'72;14' 30'7-3 | | ; 18,3 l2-3 16; 19, 292-296 complexesare selectively Reductions' Double bonds of the styrene-Cr(CO)' of water'r wirh SmI, in thepresence saturated
Sml 2 / THF j..' 9
-
.q98).
-c(co)s
H M P A- H 2 O
.4
-rrJ-).
+c(co)3
z 94'/"
r- -. :,:r()naffordsamines.
W-pn
,^tl
Apn
reducing ligands have great influence on the Additives (cosolvents) which serve as n-allylpalladium via are reduced Allylic3 and propargylic derivativesa o"*;;;;.i'2 generationof allenesor alkynes' the on effects species,and the proton sou'c" hat important proton to racemic when pantolactone delivers a chiral allenic esters are obtained 4-phosphato-2-alkynoic esters's orqanosamariumspeciesderived from
,) 450h
r ..
5-1.D895(1997).
Sml 2
oPo(oE02 I le.:el r-.:"-. eatalYzed bY SmCl. is -' :rr rhe lesssubstitutedcarbon ;\ | .1 .,ldehYde,an amine, and a a.: :- . :'r()le.
- (Ph3P)aPd THF
Ph \-^J
80% i-BuOH tvte,tartrate glz
,n--J(>99 : 1) (15 : 85)
instead of a phosphatesis supplied with MetSiCl If the reduction system for allylic allylsilanes' afford to would be captured proton source the allylsamarium intermediates this method'o Thus, (Z-allylsilanes are accessibleby promoted by sml, continues to interest compounds pinacol formation from carbonyl In a the products are cyclic carbonates'7 chemists.In the presenceof methyi chloroformate the on dependent be for cyclization is found to cyclitol synthesis the diastereoseiectivity aprofound have Lithium halides (chloride' bromide) cr-substituentsofthe aldehydegroups.8 and pinacol coupling is favored.eThe reduction the and effect on the reactivity o/s-i, hours from time (reaction is acceleratedby Me'SiCl pinacol coupling of ketones in fff reduced to a few minutes)'l0
328
Samarium(Il)iodide
9* ._ zO,,,,CCHO
Ao\.cHo l
?*
Smt2 / t-BuoH
A",,./-"-OH \ , / l l
*
-;-;."*
Aol\zAoH
I OR
OR ( 1 1: 8 9 ) (93 : 7)
76% R=Bn R = si(Ph)2But 85%
Forthepreparationofl,2-diketonesthecouplingofacylcyanidesisadirectmethod.It which is followed by an aldol Enones undergo reductive dimerization at the B-position Benzylideneimines give mainly syn-1,2-diaminesl3 reaction in sterically favorable cases.12 inthereductivecouplingwhichisalsoacceleratedbyYb(oTf)..
o
Smt2/THF
,nA.*
n v tl
ArPn
benzotriazole from M-(benzornt o preparation of selenoesters:t E defunctionalized are selenides I DefunctionalizPtion'\ bcn the include These removed. tn the demethoxYlation Process enantiosrlc good with proceeds ralu propionanilides, which are froc obtained are by alkYlation, gror LiCl.27 A P-toluenesulfinYl n1 cr-(p-toluenesulfi reaction of Dithioan serving its PurPose'28
benzene'29 u' F unctionalize d organa c formed when dichloroaceuc -1 at SmI, ffeatment with cr-halocarboxYlic acid denrl
InterestinglY, 1-diiodosamano and pk higher temPerature,32
\J
82"k are by SmI' For example'.sulfonyl halides Many other functional groups are reduced of nitro compounds by this reagent enables converted to disulfides.ra The reduction initiated by nitronate addition to of 1,2-diamineslsbased on a reaction sequence ,r"*".t, and that of isothiocyanates amidines'r6 furnishes aldimines, and in the presenceof nitriles it of succinic esters'r7 derivatives thioamide in the presenceof conjugated esters,the half Thereactioncoursesof2,3-epoxyhalidesdependonstructuresandreactionconditions. WhenC-3issubstitutedwithanarylgroupandthereductioniscarriedoutinTHF_HMPA' the products are the allylic alcohols' 2-arylcyclopropanols are produced'18Otherwise
+
Ph--
H
F
| l
ll
smr2
-rHF -
I
Cleavageof a glYcosidrc
catalYtic amount of an alcolx ' group coming from THFI sulfones can be used as Prec AminomethYlsamarium -YlmethYlam benzotriazol-I carbonYl comPounds to fc benzotriazole3sor the othet f
OH
Smr2
?
utaAor,
Ph< -
relative reduction Potentials
Ph__<7 HMPA
| 5'/o
\_OH N= N
T h e s c i s s i o n o f t h e c h e m i c a l b o n d b e t w e e n t w o h e t e r o a t o m s b y S m l , i s t h e b abe sisfor The nascent samarium species can deprotection of amines fiom sulfonamides.le'20 from from RSCN for opening of epoxides'2r employed as nucleophiles: sulfide anions anions from diselenides to displace ArSSiMe" for synthesis of ArSR'22 selenide
Bn
,Nw, N
Samarium(Il)iodide 329
9" O,",/-"--OU
{
\ , / tl l l / )r--- -t' .,^Oft v I OR
,. ll
-.', !
:a'"
( 1 1: 8 9 ) ( 9 3: 7 )
I . r ,rnidesis a direct method.rr u:.r.h is followed by an aldol gr'.: nrainlysyn-1,2-diaminesr3
benzotriazole from M-(benzotriazol-1-yl)methylhydrazides,23or from ArSeSiMe, for the preparation of selenoesters2aon reaction with acyl chlorides. Tosylates and organic selenidesare defunctionalized by SmI, under photochemical conditions.zau A functional group at the a-position of a ketone is easily Defunctionalization. group,25methoxy group,26and many others. In the benzotriazolyl include These removed. the demethoxylation process interception of samarium enolates by chiral proton sources proceedswith good enantioselectivity by virtue of conformational effects. Atropisomeric propionanilides, which are valuable for the synthesis of chiral carboxylic acid derivatives by alkylation, are obtained from reduction of the amides of O-acetyllactic acid with SmIrLiCl.21A p-toluenesulfinylgroup that is employed as stereocontrolelement for the Michael reaction of a-(p-toluenesulfinyl)-a,p-unsaturated esters can be removed by SmI, after serving its purpose.2sDithioacetals are converted to sulfides by SmI2-HMPA-,-BuOH in benzene.2e cr-Chloro-p-hydroxyalkanoic esters are a-FunctianaliZed organosamariuns. formed when dichloroacetic esters and carbonyl compounds are exposed to SmIr.3OBy treatment with SmI, at -78o Reformatsky reagent analogs are generated from cr-halocarboxylic acid derivatives, including chiral N-bromoacetyl oxazolidinones.st Interestingly, ydiiodosamario-p-oxobutanoates are formed from bromoacetic esters at a
tT:'
3 - P h
( . / c
higher temperature,32and p-ketoestersundergo deacylation.rl
r.\..rrnple,sulfonylhalidesare r:-.:. hv this reagent enables u:r.::rd by nitronateaddition to . .rndthatof isothiocyanates I
*Jo*+i ""\llo*
a)ro \--l
;
aq. HCI
,-\Pt ff ? \_-AAA.,, 98%
1 . : r : I C r O f S U C C i n i Ce S t e r S . l T
r\ :.-:'i\ and reactionconditions. r :. , .rrriedout in THF-HMPA, !. ::r' the allylic alcohols.
OH t.._\
700/o \j:
h--<
LOH
75"/o
Cleavage of a glycosidic bond from trichloroacetimidate with SmI, in THF containing catalytic amount of an alcohol as promoter leads to 4-iodobutyl glycosides (the iodobutoxy group coming from THF).3aBy virtue of transformation into samario derivatives glycosyl sulfonescan be usedas precursorsof C-glycosides.3s Aminomethylsamarium reagents are obtained from tosylmethylaminess6 or react with SmIr and benzotriazol-l-ylmethylamines.Bis(benzotriazol-l-ylmethyl)amines carbonyl compounds to form oxazolidines.3TIn benzotriazolylmethyl derivatives either benzotriazole38or the other functional group3esuffersreductive removal, dependingon their relative reduction potentials. Bn
a:,'r:r' by SmI, is the basis for r:: .anrarium speciescan be r Rnrng of epoxides.2lfrom fr ::
diselenides to displace
Sml2/ THF-HMPA;
d-*--b
EICOEt
,rN-
\
/
b-tEt Et
330
SamariumfiDiodide
A general approach to p-functional alkanols involves formation of c,-substituted reagents and their reaction with carbonyl compounds. Thus, p-phenylselenoalkanols,a2 syn-iodohydrins,al and B-phenylthioB,B-diiodoalkanols,4
samarium
alkanolsa3are preparedfrom the correspondingsubstitutedhalides. The products with a syn disposition are predominant.
The formation of 4-h1'drorl two-step process, the s€c
y-(3-halopropyl)-y-butyrolacto same products is initiated b1
Properly constitutedketonitnl< pfocess.
I
-
-\,
Sml2
caHlscHo
{.n,',
I -\-cnH1t
*
: 6n
I
OH (97 : 3)
G " +
Halide-carbonyl reacfions. The intramolecular reaction of an allylic chloride with an aldehyde to form cyclooctanol and cyclononanol derivatives is very efficient.4 Ring expansion results when 2-bromomethyl-2-carbethoxycycloalkanonesare treated with SmI, in THF at room temperature(without the estergroup, tertiary cyclopropanols are formed).45
o
ff r-Bl
(Y-fcooEr
\\
Sml 2 / THF +
Z>,:--=., | i l \ \-\--l
\z-\./
cooEr
OC-/o
Reaction of ketyls. The carbonyl group reacts with SmI, to generareketyl species which may be reduced further. Capture of the ketyls with suitable reactantsexpands the utility of the samarium chemistry. Important reactionsinclude butyrolactone synthesisthat is amenableto asymmetric inductiona6when chiral acrylic estersare employed. The reagent system(catalytic in SmIr) generatedin situ from SmI, and Zn-Hg is more economical.aTThe system also contains LiI and MerSiOTf, and in practice MerSiOTf is added to the mixture of the other componentsat just the rate to maintain a light blue color (indicating the presence of SmIr). When NiI, is added as a catalyst, p-propiolactone instead of acrylic esterscan be used.a8Sometimes steric factors preclude cyclization, and yhydroxy estersresult.aeKetyl addition to acrylamides opens a route to 1,4-amino alcohols.5o
a\_,/- \ - o
. <>o o
smrz-Nirz rHF
y-cooEt
oq\"
Dihydroxy allenes are gerr ketones undergo reductive clcu further, for example with an e-i' bond does not have to be r
tricarbonylchromium-comPlerc the net result is a cine-subsdru
w ,')tl'/ ./trt'"*
Me3si-
o'c{.orr
Samarium(Il)iodide 331 c. :,,rrnation of 0,-substituted rr\'nr I compounds. Thus, il\rn,rls.{r and B-PhenYlthiora.:.rr'..The productswith a syn
The formation of 4-hydroxycycloheptanones(in the form of bicyclic lactols;sr is a two-step process, the second step involving intramolecular reaction of An alternative route to the 1-(3-halopropyl)-y-butyrolactoneswhich is photoassisted. from 1-ketoesters's2 derived ketyls of the same products is initiated by C-alkylation bond formation via a C-C to cr-ketolss3 are converted Properly constitutedketonitriles process.
I
I
.\.-CsHrg
: OH
t,,n rri an allylic chloride with a::r!'. is very efficient.a Ring aretreatedwith SmI, ili.rr1rrn€s | . !,l(rpropanolsareformed).45
o
\
OH
O="* Mc ;l# do ;cooEt
A
6-r - r\rir^
70%
Dihydroxy allenes are generated from ketoenes and ethynyl epoxides.saa,B-Epoxy ketones undergo reductive cleavage but the p-hydroxy ketones thus obtained can react further, for example with an e,(-double bond to give cyclic 1,3-diols.55Note that the double bond does not have to be activated, and furthermore, a silylalkyne moietys6 and a tricarbonylchromium-complexed arenesTcan play the samerole, although in the latter case the net result is a cire-substitution.
i --FcooEt 55% Sr'l t,r generateketyl species .-::,rble reactantsexpandsthe d.' h.rrlrolactonesynthesisthat [3:. Jre employed.The reagent The r- il : r. moreeconomical.aT r.\:( )Ti rs addedto the mixture r .. .,'r t indicatingthe presence lr..:.rd of acrylic esterscan be f :...Jrr)\v estersresult.agKetyl
x\" 68Yo
w I
|
'\,..,, -
Sml 2/ HMPA THF, MeOH
"o!-t-
-
L?;1"
oo
.// (
/\/...AJ
smrlHMPA
;*. "i 00
.
Me3Si-
-./\.,.cooPh
V
or"\,oras
T
-
sml 2/ HMPA
rHF,t-BuoH oo
OTBS
332
Samarium(IDiodide
Formation of a bicl cyclopropane unit and a p Sml
HMPA
paeonilactone-8.6r
2/ ....,...................._ THF, (HOH) 250
r(CO)3
Y:b The reversalof the ketyl addition is fragmentationofT-haloalkanoicesters.A key step in a synthesisof invictolide58involves such a process. The three-memberedring of cyclopropylcarbinolssufferscleavagewhen an acyl substituentis presentat the adjacent ring carbon.5e A strainedring connectedto a ketonealso undergoesreductivecleavage,as shown in the releaseof a butyl chain from a photocycloadductduring a synthesisof (-)-perhydrohistrionicotoxin.60lNote cis-1,2-diacylcyclobutanes may undergo intramolecularaldol reactionafter the C-C bond scission.6l)
OTBS
l
s
r ),,,'
m
+
OTBS
r z
l
cooMe I
--
Sat HIPA
i,2
t-a.o
Cross-coupling r.ala bromide or two bromides undergo photoinducedda
RCOR.64cr,s-Difl uorotrr anion, accessiblefrom crc Conjugate additiont of (-iodo-a,p-unsarurat enones (and Mukailam
thermodynamicenolsilrla
I
ct' \
G)-invictolide
cooar' I "",,,/ 2 \J : . .
d..,rb
fs-----"s (}<
,/\ Sml2 THF
Rearrangements. i sonitrile-nitrile rearrang have been effected '* ith d
bHo
a' tl
rfl
) ^ : r^) * ':525"r,. \'r*3 :,..!!}"l-*o", /
lfr r-/ aY
o-.'.ph
"'''-
1 .\
f g-"'Ph-:.4
perhydrohistrionicoloxin
Aror rschmalz, H.-G., Siegel.S . zshabangi, M., Sealy.J. \t . rYoshida, A., Hamamoro.T
Samarium(II) iodide
Formation of a bicyclic alcohol by radical cyclization involving a methylenecyclopropaneunit and a propargyl ether makes the method most valuable for a synthesisof Daeonilactone-B.62 10 : 1 isomers(majorshown)
)', uo. / ll
(co)s 75./"
.,roalkanoicesters.A key step I lrc three-memberedring of ' t". .rnt is presentat the adjacent ) .. :,'rsoesreductivecleavage,as f
!-
.,.lduct during a synthesisof .:.rnes may undergo intra-
X}62
Sml2
{)
+
HMPA-THF
Y""=
t-EluOH 0o
6J
r] ll
!.r^ |
|
Y"'r o-\ o
63%
paeonilactone'B
cross-coupling reactions. The wurtz coupling of an alkyl iodide and an alkyl bromide or two bromidesby SmI, is catalyzedby a copper salt.63Organic chloridesRCI undergo photoinduced dechlorination to afford RH, but under CO the products are ketones RCOR.e c,a-Difluorobenzyltrimethylsilaneis a useful precursorof the substitutedbenzyl anion, accessiblefrom cross-couplingof the benzyl chloride and Me,SiCl.65 Cyclopentaneaceticestersare readily preparedby cyclization Conjugate additions. The Michael reaction of silyl ketene acetalswith esters.66'67 of (-iodo-cr,B-unsaturated enones (and Mukaiyama aldol reaction) can be promoted by Sml,.68 However, under similar conditionsis noted. thermodynamicenolsilylationof carbonyl compounds6e
GFinvictolide
\ ^o,,,1 2
\J : . . d'.rO
COOBut
cooau' +
Sml 2
1 isomers(majorshown)
HMPA.THF lreoH -78 - 0o
9106
cHo
72 the and rearrangementsT0 Rearrangements. Both [2,3]sigmatropic isonitrile-nitrile rearrangement(for those cr-substitutedto a carboxylic acid derivative.lTr havebeeneffectedwith the aid of Smlr.
-HMPA Smr2 oVPh
r."
**
ll ?t Mrn 81"/"
perhydrohistrionicotoxin
rSchmalz, H.-G., Siegel,S., Bernicke,D. TL39,6633 (199S). 2shabangi, M., Sealy,J. M., Fuchs,J. R., Flowers,R. A. 7L 39, 4429 (1998). 'Yoshida, A., Hamamoto,T., Inanaga,J., Mikami, K. TL39,1777 (1998)-
334
Sanarium(ID iodide
aYoshida, A., Mikami, K. SL t3i5 figgi\. sMikami. K . . Y o s h i d a .A . A C I E E 3 6 , 8 5 8( 1 9 9 7 ) . 6Hamamoto. T.. Sugino.A., Kikukawa. T.. Inanaga.J. ASCF 134. 391 ( 1997). 'Lu. L.. Fang.J.-M.. Lee, G.-H., Wang, y. JCCS 44,2j9 (t997). "Carpintero, M., Fernandez-Mayoralas,A., Jaramillo, C. JOC 62, 1916 (lgg7). J. R., Mitchell, M. L., Shabangi,M., Flowers,R. A. Il, 38, glST (lgg:.). ,'Fuchs, roHonda, .i.ggi\. T., Katoh, M. CC 369 rrBaruah, B., Boruah,A., Prajapati,D., Sandhu,J. S. ?"l,3g, :1603(lgg:,). "Cabreta, A., Le Legadec, R., Sharma, P., Arias, J. L., Toscano, R. A., Velasco, L., Gavino. R.. C., Salmon,M. JCS(Pl) 3609 (1998). .^Alvarez, "Annunziata, R., Bengalia,M., Cinquini, M.,Cozzi,F., Raimondi,L.TL39,3333 (199g). '*Guo, H., Wang, J., Zhang,Y. SC 27,85 (1997). t'Adams, H., Anderson,J. C., Peace,S., Pennell,A.M.K.JOC63,gg32(19gg). ':_Zhou, L., Zhang, Y . J CS(p t ) 28gg (1997). "Kim, Y. H., Park, H. S., Kwon, D. W. SC 28. 4517 fi998). r8P*k. H . S . . C h u n g .S . H . , K i m , y . H . S L 1 0 7 3( 1 9 9 8 ) . ''Hill. D. C.. Flugge.L. A.. Petillo, P. A. JOC 62,4864 0997). '"Knowles. H., Parsons,A. F., Pettifer,R. M. SL 21-1(1997). 2lstill, L W . J . , M a r t y n ,L . J . p . s c 2 8 , 9 1 3 ( 1 9 9 8 ) . "Zhang, S., Zhang, Y. M. "/CR(S)48 (1998). "Lu, G., Zhang,Y. SC 28,4501 (1998). '*Zhang, S., Zhang, Y. M. SC 28, 3999 (t998). '*uOgawa, A., Ohya, S., Doi, M., Sumino, y., Sonoda,N., Hirao, T. TL39,6341 (199g). --Katritzky, A. R., Wang, J., Henderson,S. A. 1148, 1567(199g). 'oMikami, K., Yamaoka,M., Yoshida,A., Nakamura,y., Takeuchi,S., Ohgo, y. SL 607 (199g). ''Hughes. A. D.. SimpkinsN . . S SL 967 ( I998). '-Matsuyama. H.. Itoh. N., Yoshida,M., Kamigata,N., Sasaki,S., Iyoda, M. CL 375 (lggl.). 2eKunishima, M., Nakata,D., Hioki, K., Tani, S. CpB 46,1g7 (199g). '"Castagner, B., Lacombe,P., Ruel, R. JOC 63,4551 (199g). ''Fukuzawa, S., Tatsuzawa,M., Hirano, K. TL39,6899 (1g98). "Utimoto, K., Takai, T., Matsui, T., Matsubara,S. BSCF 134,365 (1997). "Alvarez-lbarra, C.. Csaky, A. G., Lopez de Silanes,I., euiroga, M. L. JOC 62,47g (1gg7). --Adinolfi. M.. Barone,G., Iadonisi,A., Lanzerta,R. fZ 39,5605 (1999). --Skrydstrup, T., Jarreton,O., Mazeas,D., Urgan, D., Beau,J.-M. CEJ 4,655 (199g). 'oKatritzky, A. R., Feng,D., Qi, M. JOC 62,6222 (tggi-). ''Katritzky. A . R . . F e n g .D . . Q i . M . r L 3 9 . 6 8 3 5 ( 1 9 9 8 ) . "Aurrecoechea. J. M., Lopez, B., Fernandez,A., Anieta, A., Cossio,F.p. JOC 62, ll25 (lgg7). '-Lu. C . . Z h a n . Z . . Z h a n g .y . S C 2 8 , 3 6 5 7 0 9 9 8 ) . -"Concelf on, J. M., Bemad,P. L., Perez-Andres,J. A. TL 39, 14Og(lggg). 4rMatsubara, S., Yoshioka,M., Utimoto, K. ACIEE 36,617 (tgg: ). otHuang, X . , D u a n ,D . - H . S I I l 9 l ( 1 9 9 8 ) . "''Kasuga, Y., Matsubara,S., Utimoto, K. SL 841 (1998). ooMarrudu, F., Sakai,T., Okada,N., Miyashita,M.TL39,g63 (199g). tsHur.gu*u. 8.. Kirazume,T., Suzuki, K., Tosaka,8.TL39,4059 (199S). -"Fukuzawa. S., Seki, K., Tarsuzawa,M., Mutoh, K. "/ACSll9, 1482(lgg.l). -'Corey. E . J . . Z h e n g ,G . 2 . T L 3 8 . 2 0 4 5 i 9 9 7 t . "oMachrouhi. F.. Namy. J.-L. T 54, lll I I (1998).For an alternativemethodfor the preparationof such lactonesfrom y-ketoacids or succinic anhydride by reaction with organic halides, see Machrouhi, F., .-Parlea.8., Namy. J.-L. EJOC 2431 (1998). o'schwaebe. M . K . . L i n l e . R . D . S C 2 7 , 8 3 7( l g g 7 t .
soAoyagi, Y., Maeda, M.. Mco. "Molander. G. A.. Sono. \1. f 5 52Molander, G. A., Alonso.Al;r 53Molander. G. A.. Wolfe. C. \ s4Aurrecoechea. J. M., Alonso. t ssMolander. G. A.. del Pozo l-ori 56Buld*in. J. 8.. Tumer. S. C. V 57s.h.ulr, H.-G., Siegel,S.. Bl O.. Schmalz.H.-G. SL 1426r l, 58Honda, T.. Yamane. S.. lshilrr 59Niul"t. A.. Le Guen. v.. Decb6 uoco-inr, D. L., Zhang, Y.-\l-. i o'Comins, D. L., Lee, Y. S.. Bo!' 62Boff"y, R. J., Santagostino.\i o'Berkowitz. W. F.. wu. Y. IL t sogaru, A., Sumino, Y.. \anr.. o'Yoshida. M.. Suzuki.D.. Irodl 66Molander. G. A.. Harris. C. R u7B.nn"tt. S. M., Biboutou.R. K 68ciur"ppon", N., Van de r*'egh 6eHyd.io, J., van de weghe. P. ( ToKunishima. M.. Hioki. K.. Ko TlHioki, K., Kono, K., Tani. S.. t '-Kunishima, M., Nakata. D.. Crc ?3Kang, H.-Y., Pae,A. N.. Ctn.'
Samarium[ID nitrate. Nitration.t An unusu rGu,
S . ,J i n g ,H . , W u , J . , L i a n g . '
Scandium(Ill) hexameth$d Tishchenko reactian.' the conversion of benzaldehl of yields (987o vs. 5lQ Preparativelyusing I molQ c
rBerberich, H., Roesky,P. \r' .4(
Scandium(IlD triflate. l& -1 Allylation. Scandiurn of ketone moieties) with alll primary amines as the third cr cases the aldehydes react to hydrazonesreact accordingh
Scandium(Ill)triflate 335
q9- ).
P
9 - q97). Ft.- 1997) q*R
\ . \'elasco,L., Gavino,R., (1998). -19-3333 I9 9 8 ) .
re 61.{l(1998). r:,ri,.Y. SL607(1998).
CPB44' 1812(1996)' 5oAoyagi, Y., Maeda,M.' Moro'A', Kubota,K', Fujii,Y', Fukaya'H'' ohta' A' 5rMolander, (1998). G. A., Sono,M.T 54,9289 52Molander, C' JOC 63, 4366(1998)' G. A., Alonso-Ali1a, 53Molander, G. A., Wolfe,C. N. "/OC63,9031(1998). s4Aurrecoechea, J. M., Alonso,E., Solay,M' 7 54,3833(1998)' ssMolander, C. 254' 5819(1998)' G. A., delPozoLosada, s6Buld*in,J. E., Tumer,S. C. M., Moloney,M. G. r50, 9425(1994)' ti"t -"f", H.-C.,Siegei,S.,Bats,J. W. ACIEE 34,2383(1995).For ketimineanalogs,see,Hoffmann O., Schmalz,H.-G.SI 1426(1998). 58Honda, F', Katoh,M' T 52,l2I'17(1996)' T., Yamane,S.,Ishikawa, (1998)' tnNiuf"t.',A,., rc Guen,V., Dechoux'L., Le Gall,T', Mioskowski'C'TL39' 2115 uocorrrin., (1998)' D.L.,Zhang,Y.-M.,Zheng,X. CC2509 6rcomins, D. L., Lee,Y. S.,Boyle,P.D' TL39,187(1998)' 62Boffey, W' G', Kilbum'J'D' CC 1875(1998)' M., Whittingham, R. J.,Santagostino, 63Berkowitz, Y.TL38,3171(199'7)' W. F., Wu, *o;;;", ,q- Sumino'Y.' Nanke'T', ohya' S', Sonoda'N'' Hirao'T ' JACSl'^9'2'145(1997)' 6sYoshida, M., Suzuki,D., Iyoda,M. JCS(PI)@3 (199'l)' 66Molander, G. A., Harris,C.R. JOC 62"1418(199'7)' 67B.nn"tt,S.M., Biboutou, R. K., Zhou,Z.,Pion,R'I54' 4761(1998)' (1998)' 68ciu."ppon", N., VandeWeghe,P.,Mellah,M', Collin'J' ?54' 13129 6eHyd.io, (1997)' S 68 J.,Van deWeghe,P.' Collin'J. (1997)' T0Kunishima, M., Hioki,K., Kono'K., Kato,A , Tani,S' JOC62'1542 TrHioki,K., Kono,K., Tani'S.' Kunishima, M' TL39' 5229(1998)' TzKunishima, M., Nakata'D., Goto'C.,Hioki,K', Tani,S' SL 1366(1998)' y (1997)' ?3Kang, H.-Y.,Pae,A. N., Cho,Y S.,Koh,H' Y', Chung'B' ' CC 821
\t cL 375(1997). Samarium(Ill) nitrate. An unusual n-nitration of phenols is reported' Nitration'|
I
l l
, )(' 62.4' 79 (199'7).
' t 1 "55 ( I 998).
,. I t' .t()C62, ll25 (1997).
rGu,S.,Jing,H., Wu,J.,Liang'Y' SC27,2'793(199'7)'
Scandium(Ill) hexamethyldisilazide. This reagent comparesfavorably with other catalysts' Thus, Ttshchenko reaction.t room temperaturein terrns the conversion of benzaldehydeto benzyl benzoatesproceedsat ofyields(gSTovs.5lZowithaluminumisopropoxide)andturnoverfrequencies. preparatively using 1 molTo of the catalyst the reaction is conducted without solvent' rBerberich, H., Roesky,P.W. ACIEE3T'1569(1998)'
t ! 3,\
il
.^r-,
r(.': J ior the preparationofsuch ::i:r , ialides, seeMachrouhi,F.,
Scandium(Ill) triflate. 18, 3 I 7-3 I 8; 19' 300-302 (in the presence Scandium(IlD triflate promotes allylation of aldehydes Allylation. By adding nitromethane'r aqueous of ketone moieties) with allylgermanium reagents in (in such amines homoallylic primary amines as the third component, such reactions deliver Benzoyl problem)3 cases the aldehydes react too slowly to cause any chemoselectivity hydrazonesreactaccordinglY.l
336
Scandiun(Ill)triflate
Allylstannanescan be used instead of the germanium reagents,and the reaction can be performed in micellar systems.4The reaction with acylsilanes provides cr-hydroxysilanes.s Aldol and Mannich-Epe reactions. Micellar systems favor aldol reactions6 and much faster rates in water than in organic solvents are observed using scandium trisdodecylsulfate as catalyst.T Acylhydrazones,8particularly those embodying an electron-deficient acyl group (e.g., 4-trifluoromethylbenzoyle), condensewith silyl keteneacetalsin the presenceof Sc(orf)r. The efficiency can be judged by a quantitative reaction utilizing 5 mol%oof Sc(OTf)., versus the secondbest reaction (42vo) whichrequires l00 molTo of the Lewis acid BFr.oEq. since the N-N bond of the products is easily cleaved by hydrogenation (Raney nickel catalyst), a convenient route to B-amino estersis developed. The Sc(OTf)r-PhrP is effective to promote the Reformatsky reaction.l0 Amines via condensations. Tryptophan derivatives are obtained by reaction of indoles with N-substituted aziridinecarboxylic esters at 0" or room temperature.ll Stoichiometric amount of Sc(orf, is required. By Sc(orf), catalysis the strecker-type
oOyamada, Kobayashi.S.5L I H., YKobayashi, Furuta, T.. Sugrte S., loKagoshima, H., Hashimoro. \' . ! "Bennani. Y. L., Zhu, C.-D.. Frec l2Kobayashi, S., Busujima.T. \q ''Heaney, H., Simcox, M. T.. Sler laBarrett. A. G. M.. Braddock- D r rs zhao, H., Pendri, A., Greeng ald l6Aggar*al, V. K., Fonquerna-S . "Oriyama, T., Kobayashi.Y.. Nc lsAggarwal,V. K., Vennall. G P. tgKotruki. H.. Oshisi,T.. lnouc. V 2oKobayashi,S., Moriwaki. \t . ll "Hanamoto, T., Sugimoto. \' . Jrn
18,318 Selenium. Selenoamides.t A fo alkynyllithiumswith Se.andd
synthesis from aldehydes, amines, and BurSnCN can be carried out either in organic solventsor in water.12Pictet-spenglerreactionis directly accomplishedusing acetals.13 Protectionof oxygenfunctions. The powerful caralysis of Sc(OTf), in the direct acetylation of alcohols using HoAc is shown by the formation of l-adamantyl acetate (7lVo).ta Primary alcohols do not require reflux temperature.When using DMAp and diisopropylcarbodiimide the acylation of teniary alcohols succeedsat room temperature.15 Aldehydes (but not ketones) are converted to l,l-diacetates; the backward hydrolysis by water is also catalyzedby Sc(OTf),.'6 With Sc(OTf), the selective hydrolysis of aliphatic TBS ethers in the presenceof aryl analogsis feasiblein aqueousMeCN.rT Carbonyl-ene reaction.ts Homoallylic alcohol derivatives are synthesized by this reaction, valid for both intermolecular and intramolecular versions. Friedel-Craf* reactions. For alkylation ofarenes with secondaryalkyl triflates at 80o the sc(orf). catalyst can be reused without significant loss of activity.le Direct acylation of I -naphthol at C-2 andFries rearrangementof I -naphthyl estersare effected by Sc(OTfl , and LiClOo-MeNOr.2o structural homolog.2t Scandium(Ill) perfluorooctanesulfonate has been used to catalyze the hetero-Diels-Alder reaction of nonactivated dienes and aldehydes to form 2H-pyrans. 'Akiyulnu, T., Iwai,L TL38,853(1997). 'Akiyama, T., Iwai, I. 5L273(1998). 'Kobayashi, S.,Sugita,K., Oyamada, H. SL l33 (1999). -Kobayashi, S.,Busujima, T., Nagayama, S. CC l9 (1998). 'Bonini, B. F.,Comes-Franchini, M., Fochi,M., Mazzanti, G.,Nanni,C.,Ricci,A. TL39,6737(1998). 6Kobayashi, S.,Wakabayashi, T., Nagayama, S.,Oyamada, H. TL38,4559(1gg7). ' Kobayashi, S.,Wakabayashi, T. TL 39,5389( I 998).
PF
Carbodiimides.'
Selcnr
oxidation completes the s1'nth \\t Dialkylselenides.l
methanol at room temPennn' RSeR are obtained (6 exarnpl or foul-smelling RSeH.
fMurai,T., Ezaka,T.,Karo.S. 8( 2Fuli*-u, S.,Matsuya, T.. \lac'& 3Yanada, K., Fujita,T., YanadaI
Selenium dioxide. 13, 2'l 2-2' Rec: Allylic oxidation.
and its extensionto the ori' combination on silica under allylic oxidation.2
Seleniumdioxide
u.. r.tgents, and the reaction can r. \ ..rlanesProvideso-hYdroxYfavor aldol reactionsband .rrc observed using scandium
\:.::. [.
c. r, ::,rn-deficient acyl group (e.g.' a.r:.,.' in the presenceof Sc(OTf)r' r::.:,/rns5 molVaof Sc(OTf), versus f ,: :ht Lewis acid BF,'OEtr. Since oi j'r.rtron(Raneynickel catalyst)'a x:: .r:.k) reaction.lo nrj- .rre obtained bY reaction of F .:i {): or room temPerature.ll 1 { rl'.r. catalysisthe Strecker-type a '.. ,.rrried out either in organic
8Oyamada,H.' Kobayashi, S' Sf 249 (1998)'
(1998)' sL 10^19 til;;nt' s.' ro-iq T ' Sugita'K'' ovamada'H' ttii;;;"htr';' H., Hashimoto,i'' suigo'K' rL 39' 846s^(1998)' J C' sL 754(1998)' tts;;nuni, Y.L.,Zhu,G'-D',Freeman' t'r"i"v".rti, S.,Busujima'T , Nagayama's CC 981 (1998)' (1998)' "H"un"y, H.' Simcox,M T "Sla;;' A'M'z''Giles' R' G sr 640 tos;",ti, e. G. M., Braddock,D c' cc 35I (1997)- - .. ^uiiuo,tt.,Pendri, A', Greenwald' R' B' JOC63' 7559(1998)' thggu.*ut, V. K', Fonquema' S'' Vennall'G' P' S' 849(1998)' 'toiiv;., T., Kobayashi, Y , Noda'K' sL 1047(1998)' C'TL39' 1997(1998)' rsAggarwal, V. K., Vennall'G' P'' Davey'P' N'' Newman' tefilrun, H., oshisi,T', Inoue,M' sL 255(1998)' ttii"l"v"tii' s., Moriwaki' M'' Hachiva'r' BCSJ70'26'7^(-199'7)' 1421(1997)' 2rHanamoto, Y ','Jin'Y"Z''Inanaga'J BCSJ70' T., Sugimoto,
18,318 ""'"'iiir"*^r^) Selenium.
involves ffeatment A four-component condensation allylic bromidesandamines' alkynyllithiumswith Se,andthenwith
t'
. '
..eeedsat room temPerature.ls :.. rhe backwardhYdrolYsisbY
of
Se tl
;t.r .,,.omplishedusingacetals'13 .:'., r.is of Sc(OTfl, in the direct ':r,rrionof l-adamantYlacetate 3 :
and 4*- ::.rrc. When using DMAP
337
B u L i/ T H F ; S e ;
tn:A*') |
Ph---pynolidine'CHz=CHCHzBT
\-,
\.,' 92o/"
; I il\ c'thersin the Presenceof aryl .rtivesare sYnthesizedbY this U .i : la -' t-:l
: r.ions. r irh secondaryalkYl triflates at ,.rnt loss of activitY.le Direct -naphthylestersare effectedbY .rncsulfonatehas been used to .lrenesand aldehYdesto form
:. C..Ricci,A. rL39'6'73'7(1998) -rr.1559(1997).
Carbodiimides'2Seleniumassiststheadditionofprimaryaminestoisonitriles.An ' oxidationcompletesthesynthesis' "^'";:;';;;';;;r;;rr, r-:r^ exchange ^*^L^-,, resln rn when Se is reduced with borohydride of yields good addition of alkyl halides or tosylates' methanol at room remperature and procedure avoids formation of toxic $Se RSeR are obtained (6 examples' 84-98Vo)'This or foul-smelling RSeH' rMurai,T., Ezaka,T.,Kato' S BCSJTf' I193(1998)' N' SL 75 (1999)' Kambe'N ' Sonoda' 2Fu.ii*u.u, S.,Matsuya'f" vf"tO"' U ' Shinike'T'' (,l998)' 3Yunudu, K., Fujita,T., Yanada'R' SL971 -3 17' 3 l2_3 13; 18' 3 18 19 ; 19' 302-303 Selenium dioxide. 13,2't 2-2'l 3 ; in situ is an old technique' t-BuOOH with Allylicoxidation' Recycling'of SeO' The same reagent of alkenyl fluoridesl is routine. and its extension to the o*idution combinationonsilicaundermicrowaveirradiationshortensthereactiontimeforthe allylic oxidation.2
338
Silicagel
Benzils.3 These compounds are available from oxidation of 1,2,5-thiadiazolidine 1,1-dioxides.
Condensation reacrbt from o-phenylenediamrr microwave irradiation. Tl sulfoxide for dehydrogena
IJ
,n__\ | .soz tn'^[
Ph'-7:o I
S e O2 / D M F ; NaOH / THF
Pht\o
Acetalization of cartrr preparedfrom colloidal irlr
58"/"
2'Acetylfurans.a 3,5-Alkadien-2-ones are oxidized to the furan derivativesby seleniumdioxidein refluxingbenzene, althoughin moderateyieldsfor manycases.Dienoic esters,amides,andnitrilesdo not reactin the samemanner.
5^^
Xr>A
SeO2/ PhH
protected,using EtOAc-\ Reaction of oximes.
H2SO4-SiO2under micror NH2OH.HCI, and HCOOI of ketonesfrom ketoxinre NalO! or NaBiDO; ro &
Silica gel. 15,2821'18, 3 I 9; 19, 303-304 Isomerizations. A facile l,3-rearrangement of an allylic phS group on silica gel chromatography transforms allylic alcohols into the homoallylic isomersl while bringing the functionalities closer together. on chromatography, the propargyl ketones obtained from the Dess*Martin periodinane oxidation are prone to isomerization to give the allenic ketones.cross-conjugated systemsare further susceptibleto Nazarov cyclization.2
o
tn.-A.
\./
sio 2
l l l l
fi
lG.iso.'euu,N. Y., Tsiklaun 2Hu;rni. A. s. K.. Bats.J \\ 3Nugurno, T.. o S.,Furukar+a. 45iro. G.. Martin.J..Gan-r J. tKurn-, H. M. S.,Reddl.B I oBenAlloum,A., Bakkas.S . TTanaka. \ .h Y., Sawamura.
Silica gel-supported rceg Adsrq Acetylntion. symmetricaldiols.' For g
\-".-Ci
'Emet,T., Haufe,G. S 953(1997). 'Singh, J.,Sharma,M., Kad,G. L., Chhabra,B. R. "/CR(S)2e OggT). 'Pansare, S. V., Malusare,M. G. SI 671(lgg7). -No, 2Z., Chae,Y. B., Shin,C. J.,Chung,Y. TL39,6l9t (1998).
periodinane Dess-Martin
Defunctionalizntion. tosyloxy group is not unus lactone3 when a strategica N-Boc groupsaby silica ge
Ph-.'\
\
/
Oxi^dations. GIycol and microwaveirradiatirrn same method seems to I titanium/tartaric acid caul hydrogen peroxide as the r
A percarboxylic acid. orthosilicateto aqueoused is hydrolyzed and treatedr Miscellaneous reactit
Friedel-Crafts reaction derivatization that introd
catalyzing Michael reacr supponedon silica gel br
'Ogunuu, H., Amano.I't.. Cht
Silica gel-suPPorted reagents
Defunctionalimtion' f i.1.5-thiadiazolidine
v/o
of a homobenzylic Aryt participation in the ionization
tosyloxygroupisnotunusual'Suchaphenoniumionintermediateisreadilyconvertedtoa lactone3whenastrategrcallylocatedesterispresentinthesamemolecule.Removalof of microwaves is an expedient method' N-Boc groupsaby silica gel with assistance Cond'ensationreactions.Thenitroaldolreactionsandformationofbenzimidazoles6 with are caried out in silica gel support from o-phenylenediamine and aldehydes microwaveirradiation.Thelatterpreparationalsoincludesnitrobenzeneordimethyl condensationproducts' sulfoxide for dehydrogenatingthe initial AcetalizationofcarbonylcompoundscanbeperformedwithamesoporouscatalystT preparedfrom colloidal silica and CtrHrr(Me),NBr'
,\o
: iuran derivatives bY ftrr r]taflYcases.Dienoic
'Grigor'"uu,N. Y., Tsiklauri'P' G ' Buevich'A V' MC 76 (1998)' -H" Schwarz' L TL39' 7491(1998)' zHashmi, A. S. K., Bats,J W', Choi'J 2849(1997)' 38' fL H' tNugu*o,S.,Furukawa, Akita' T'' Ono'M ' 147(1998)' aSiro,J.G.,Martin,J.,Cu"tu-Nluio'I L'Remuinan'M'J'Vaquero'JJ SL ( 1998)' 637 CL S tfu*ur, H. M. S.,Reddy,B V' S ' Yadav'J' 6B"neliourn,A., Bakkas,S'' Soufiaoui' M' TL39' 4481(1998)' tiunutu, Y., Sawamura, N ,Iwamoto'M' TL39' 9457(1998)'
II ,'-
. - -r\ '
n
Silica gel-suPPorted reagents' of gel enables selective monoacetylation Acetylation. eOsJrption on silica
-3
symmetricaldiols.'Forp'itury/'"tondarydiolpairsthelesshinderedalcoholgroupis as the reage.nt' protected,using EtOAc-NaHSOl or HC(OMe)t-LnCl] with dehydrated io afford nitriles on treatment Reaction of oximes. Aldoi.imes are H2So4-Sio2undermrcrowave.aActuallyitsufficestoirradiatethemixturesofaldehydes, NH2OH.HCI,andHCooHwithmicrowaveforthedirectaccesstonitriles'5Regeneration while adding wet achievedby the sametechnique' of ketonesfrom ketoximes is readily NalO! or NaBiDOl to drive the reactton' gel support can be improved using the silca Oxidations. Glycol cleavageby NaIOt Ph\ qroup on silica gel r\\\nr!'rsrwhile bringing F.r!\ I ketones obtained r2r:r\,nto give the allenic !',.r ;r, CliZati6n.2
-";---x
i ^.
o ph-*A
andmicrowaveirradiatlon.8Th"o*idutionofsulfidestoeithersulfoxidesorsulfonesbythe samemethodseemstobedependentonthedurationoftheirradiation.gSupported titanium,/tartaricacidcatalystiSsuitablefortheconversionofsulfidestosulfoxidesusing hydrogenperoxideas the main oxidant'r0 Apercarboxylicacid'preparedbyadding2.cyanoethyltriethoxysilaneandtetraethyl silica which I -dodecylamineto give a cyanated orthosilicateto aqueousettranotcontaining rI agent MsOH' is a useful epoxidizing is hydrolyzedand treatedwith HrO, and gel the silica and. tvtediated Uy grounded FeCl't Miscellnneous reactions' F r i e d e l - C r a f t s r e a c t i o n o f a r e n e s w i t h ' l r C C t ' t p r o v i d e s b e n z o p h e n ouseful n e s ' r for 2After pendants the silica.is derivatization that introduces dimethylaminopropyl catalyzingMichaelreactions.l3Alcoholsareattachedtocarboxylicacidswhichare supportedon silica gel by esterification''" togu*u, H., Amano,M', Chihara' T' CC495(1998)'
340
Silver nitrate
2Breton, G.W. JOC 62,8952 (lgg7). 3Biun"o, A., Melchioni, C., Romagnoli, P. ZL 38, 651 (1997). tKu.ur, H. M. S., Mohanty, P. K., Kumar, M. S., Yadav, J. S. SC 27, 1327 (199'1). sFeng, J.-C.,Liu, B., Bian, N.-S. SC 28, 3765 (1998). ovarma, R. S., Dahiya, R., Saini, R. K. fZ 38, 8819 (1997). 7Mit u, A. K., De, A., Karchaudhuri,N. Sl, 1345 (1998). ozhong, Y.-L., Shing, T. K. M. JOC 62,2622 (199'7). 'Varma, R. S., Saini, R. K., Meshram, H. M. ZL 38, 6525 (1997). rOFraile, J. M., Garcia,J.l.,Lazaro, B., Mayoral, J. A. CC 1807 (1998)' rrElings, J. A., Ait-Meddour, R., Clark, J. H., Macquarrie,D. J. CC270'7 (1998)''Khadilkar, B. M., Borkar, S. D. 24 38, 164l (199'7). 13Mdo", J. E. G., Clark, J. H., Macquarrie,D. J. SL 625 (1998). 'odu G.u.u Nasscimento, M., Zanotto, S. P., Scremein, M., Rezende,M. C. SC 26' 2'715(1996).
Silverfi)oxide.18,321 Protection of alc ohols.' benzylationusingAg"O asb
rBouzide, A., Sauve,G. fL 3t. :
Silver perchlorate.16,]CX Transannular cYclizoi in the caseof a macrobicl'c dependingon thereactiontc
Silver carbonate/celite.18, 320 addto of AgCOr/celite I,3-dicarbonylcompounds Cycloadditions. In thepresence include The alkenes various electron-richalkenesto form dihydrofuranderivatives. andenolethers.3 alkenylsulfides,2 l ,1-dialkylalkenes,r
ETOOC\ I zAO
+
\ rl-gp6
Ag2COsCelite MeCN
Agd THF
EIOOC.._--1
60"/"
ll FsPn ./-ci tKuto,
Silver trifl uoroacetateOrthocarbonales.t I anchor to gather four alb spirocycliccomPounds.
rLee.Y. R.,Kim, B. S. TL38,2095(1997). 2l-ee.Y. R.,Kim, N. S.,Kim, B. S. ?L 38, 5671(199't). 3lee,Y. R., Kim, B. S.,Wang,H. C. T 54,12215(1998)
Silver nitrate. 18,320; 19, 305-306 N-Acyloxazolidinones can be cleaved by EISK. Thioester that is part Deacylation.t of a 1,3-dicarbonyl system undergoes C-C bond cleavage on exposure to AgNO.,-2,6-lutidinein aqueousTHF.
i l l Y
N -An t'n
T., Tanaka, M.' Ho6hlt
EISK;
fa\-o" V-o" OH
AgNO3 / 2,6-lutidine
NHPh
aq.THF 99%
rEvans, D. A., Ripin, D. H. B., Johnson,J. S., Shaughnessy,E.A. ACIEES6'2119 (1997).
C-Glycosylation.- I alkl le Friedel-Crafts-tYPe
Silver trif luoroacetate
-(, :- t -.r:7( 1997).
341
Silver0) oxide. 18, 321 Symmetrical diols are maskedat one site by such method as Protection of alcohols,r as base. benzylation using AgrO lBouzide.A., Sauve,G. ?L 38, 5945(199'1).
(
-, : r- t I 998).
Silver perchlorate. 16' 300-301; 18,321-322 The silver salt assistsionization of allylic chlorides and Transannular cyclization.t in the case of a macrobicyclic triene the exposure leads to formation of one or two rings, depending on the reaction temperature.
c-
. \r c.sc26, 2715(1996).
i i-Jrcarbonylcompoundsadd to dc::. rtives. The alkenes include
AgClOa
AgClOa + THF - 2OO
I:OOC.,a ll )-sPh a"-ci
THF 2OO
60%
'Kuto,
T., Tanaka,M., Hoshikawa,M', Yagi, M. 71 38' 7553 (1998)'
Silver trifl uoroacetate. orthocarbonates.t when activatedby cFrcooAg, carbondisulfideprovidesan anchorto gatherfour alkoxy groups from alcohols.Amino alcoholsform analogous spirocycliccompounds.
r -.: .r EISK. Thioester that is part )c.: ileavage on exPosure to
ri\ro" \zLot
AgOCOCF3 +
cs2 - Er3N
G}"D
MECN
ro*
,'t
-NHPh
AgOCOCF3 D cs2 - Et3N MeCN
\
I r /t-.f J6, 2119 (1997).
c-Glycosylation.2 A combinationof cFrcooAg andSnCloeffectivelypromotesthe alkylationof activatedareneswith glycosylesters' Friedel-Crafts-type
342
Sodium
R
'Shibuyu, I., Gama, Y., Shimizu,M. H 48,461 (1993). 'Kuribayashi, T., Ohkama,N., Satoh,S. TL39,453'7,4541 (tggS\.
n"ruA
\_c
Silver trifluoromethanesulfonate.13,274-275; 14, 282-283;16,302;t7 ,314: 18, 322-323;19,306 Allylation. Carbamatesof 2-Allyl-1,2-dihydroquinolineand the isoquinoline analogsare formed by the catalyzedreactionof the heteroaromatic compoundswith CICOOR and allyltrimethylsilaner(also alkynylation2).Heterocyclizationof isonitriles containingan allylsilanemoiety,initiatedby C-acylation,is promotedby AgOTf.3
'.siHres
a> **.--,J
d,"",
tshi,2.,Gu,H. sc 27.270 2Yu,Z.,verkade, J. G. It i 3R"ddy,G. v., Iyengar.D I
Sodium amalgam. l& I Ar Deuteration.t is by ffeatrnent of halides
t-BuCOCl /CH2CI2:' AgOTI
SiMe3 82%
'Yamaguchi, R.,Hatano,B., Nakayasu, T., Kozima,S. 7L 38, 4O3(lggi). 'Yamaguchi, R.,Omoto,Y., Miyake,M., Kozima,S. CL 547(1998). 'Kercher, T., Livinghouse, T. JOC62,805(1997).
rMiura,Y., Oka,H., Yarnr
Sodium-ammonia. lG C-S bond scissiot
example, benzothioPhc ammonia. Acyloin condengi glasspowder,polyethl I
competentemployment Sodamide. Amides or alkenes.t Mannich salts undergo fragmentation on reaction with sodamide. The major products obtained from the salts derived from ketones are primary amides, but those derived from aldehydesare alkenes. tMol..
D.. Risch.N. I-4,1765(lggi\.
Sodium. 13, 27'l ; 18, 323-324 RCOOH -+ RCHO. 2-Substituted imidazolines prepared from acids and ethylenediamine in hot toluene are reduced by Na in ethanol to the imidazolidines. Acid hydrolysis of the latter affords aldehydes.r Desulfurizntion. sulfides are converted to alkane fragments2on heating with Na in an inert solvent at high temperatures.Conversion of phenyl styryl sulfone to styrenein 957o yield indicates that double bonds are not affected. Cleavageof oxazolidines.r A route to o-substituted allyl amines starts from N-acetyl cx-amino acids via the oxazolidinones. The latter compounds are converted to dichloromethylene derivatives by reaction with P\P-cclo and the final step involves dechlorination and ring opening (and removal of an HCo unit) with Na in refluxing THF.
lYu,2.,Verkade, J.G. Ps tMukorru,M., Grela.K- 5l
Sodium azide. lE, 325l,2-Azido alcohols hydroperoxides on irrad (e.g., rhodamine B) in furnishes the azido alco Azides.z
Benzl b
system. Other aliphauc
tn\A I OH
rGriesback, A. G.,Hun&
2Kuma., H. M. S., Red{.
Sodiumazide
^.1;{.,
343
Na / THF
r,- l
-.
.rl{: 18,
HN)V Ac 61 - 72%
o.: ::c
rsoquinoline u:- ,,'nrpoundswith hr":. ,n rrf isonitriles | ..
\rOTf.r
'shi, 2., cu, H. sc 27.2701figgr. 2Y u, 2' y erkade, I. G. TL 39, 26'71 (1gg8'). 3R"ddy, c. V., Iyengar,D. S. Ct t23'7(tgg8).
Sodium amalgam. 18, 324; 19, 306 Deuteratian.t A convenient intoduction of deuterium atoms into organic compounds is by treahnentof halideswittr NaAIg in refluxing MeOD (17 examples,74-98%).
l
/-
SiMe3
rMiura, Y., Oka,H., Yamano,8., Morita,M. JoC 62,11880997). Sodium-ammonia. I 6, 303-3 04 ; 18, 324; 19, 306 -307 C-S bond scission,\ Selective reductive bond scission is accomplished. For example, benzothiopheneis converted to o-ethylbenzenethiol(99Vo) by Na in liquid ammonia. Acylain condensation.' Sodiurn deposited on a solid support which can be NaCl, glasspowder,polyethylene,or polypropylene,is easilypreparedin liquid ammonia.It finds competentemploymentin acyloin condensation.
. :. rcactlon with t.'
:tc\ are primary
rYu,2., Verkade, J. c. PSS133.79 (1998). 'Mukorru, M., Grela,K. SL 267( 1997);Makosza, M., Nieczypor, P.,Grela,K. I 54, 10827( 1998).
Sodium azide. 18, 325-326;19,307 l,2-Azido alcohols,r Alkenes
are functionalized give to cis-|,Z-azido hydroperoxides on irradiation with Na\ under oxygen in the presenceof a photosensitizer (e.g., rhodamine B) in an aqueous medium. Reduction of the produc(s) with LiAlFl f: ::: acids and rlidines.Acid r: -:.:zr hr.:illt{ with Na in r : .rr renein 957c
furnishes the azido alcohois. Azides.2 Benzylic and allylic alcohols are convertedto azidesby the Na\-BF3.OEI2 system. Other aliphatic alcohols do not undergo this transformation.
tnY*ot
t:- :::luxing THF.
PhvlvoH I
OH n::i. \tarts from s .r:r .onverted to i:.., .rep involves
NaN3- BF3.OEI2
N3 847"
I Griesback, A. G., Hundertmark, T., Steinwascher,J. TL 37, 836'1(1996). 'Kumar, H. M. S., Reddy,B. V. S., Anjaneyulu,S., Yadav, J. S. ZZ 39,7385 (1998).
Y4
Sodiun borohydride
Sodiumbismuthate. Aryl ketones.t Benzylic oxidation is convenientlycarriedout with NaBiO. and aceticacidin aqueousacetone. tBanik,
B. K., Venkatraman, M. S., Mukhopadhyay, C., Becker, F. F. fL39,7247
(lgg8).
Sodium borohydride. 13, 278-27 9; 15, 290; 16, 304;.lE, 326-327 ; 19, 307 -309 A method for the conversion of dicarboxylic acids to Esterreduction. ohydroxycarboxylic acids involves formation and reduction (with NaBH) of dilactonesin which the two carbonyl residuesare linked by an OCH'O chain.t Arylpyruvic esterscan be reducedto either the a-hydroxyestersor |,2-diols.2
O\,.O - O z.o t r I
OH
I
\ l la r -H
OH | tnaA"oor
# I
H ----- l | COOMe I
/\ Ll--Mn(co)s
Ph'
6so/"
The subsequent reduction is carried out with NaBH, in methanol. Oximes of cr-aminocycloalkanones undergo fragmentation and reduction, fumishing co-amino nitriles.6 A route to substituted ureasTinvolves reductive alkylation, condensation with aldehydesin the presenceof Me,SiCl followed by treatrnentwith NaBH4. The borohydride reduction of p-amino-a,p-unsaturatedestersin the presenceof isobutanoic acid8 may also proceed via iminium species.
o
PhMgCl
"
Chiral oxazolidones are readily preparedr from carbamates of c-amino esters by reduction with NaBHo-LiI in refluxing THF. Note that imides (N-acyloxazolidinones) are reducedto alcohols, therefore the reduction representsa method for recovery of both chiral products and auxiliaries.a l,3-Diamines can be elaborated via reduction of the Reductionof iminiumsalts. monoiminium speciesswhich arise from condensationof enamineswith aldiminium salts.
tn.""o
PFa
-.^, "-'o
OH I PhvvoH
I NaBH4> EIOH
*
I
Solventeffectsin r.h ln of NaBHois increased.r( promotesgenerationof thc
F 92o/o
"ttyttt
ao) (*/
NaBHa
\.,/
o | Ph,/z\
Reduction of cationic t
hexenones from the morPho reactivation with NOPF.. h in MeCN. The preParation< secondnucleophiles other d
HOAo/ Me3SiCl; +
NaBH4
H P h N
\,/ V ll o 600/"
NHz
Hydrodebrominatiot
corresponding tin iodide tr: in the presence of AIBN
m
lBenitez,P., Delgado.A.. Ft 'Dullu. v., cotelle, P., Cancl 'Sudhu.rh*, M., Hultin P. ( aPrashad,M., Har, D., Kirt I sMerla, B., Arend, M.. Risci, oPetukhov,P. A., Tkachcr. I 7Xu, D., Ciszewski,L.. Lr. T 8Xu, D., Prasad,K., Repic.O gP"u.ron, A. J., Vickernran I loYang, C., Pittman,C. L. 5C t'Barror, M. T., Maycat- C, l2Dumartin, G.. Pourcel. I{.. I
345
SodiumborohYdride
Du: \\ith NaBiO,
and
-1.r,i 1998).
: 19. .r07-309 ra*xrxylic acids to laBH. I of dilactonesin ripr rur'ic esterscan be
,'OH
Reduction of cati.onic metal complexes.e A route to 5-substituted 2-cyclo' hexenonesfrom the morpholinobenzene-Mn(CO), complex involves a Grignard reaction, reactivation with NOPF., borohydride reduction and hydrolytic decomplexation with HCI in MeCN. The preparation of more highly substitutedcyclohexenonesby finding suitable secondnucleophiles other than NaBHo has to be tealized.
Q I
o ,\
PF"
t i l Ph"'\/
@r.,"o,
68% overall
in diglymethe reductionpower Solventeffectsin reductions. At high temperature of epibatidinethe additionof DMSO In thecontextof a synthesis of NaBH, is increased.lo alcohol.rI of the desiredsecondary promotesgeneration 7 1"/"
cl--/N-\ oH i l | | \/",,,//\
),.Je NaBH4
.
DMSO- MeOH - 200
F.
OTBS
t
l
\-,/ : Oras
(62 : 26)
ot c-amino esters by cr .,'razolidinones)are r..r\r ery of both chiral d rra reductionof the s rlh aldiminium salts. Nrhrnol. Oximes of rurnishing o)-amino on. .ondensationwith Ell. The borohydride u:rni)lc acidsmay also
')/ NHz l U
96% totalyield
Generation of a polymer-supported tin hydride from the Hydrodebromination.t2 correspondingtin iodide with NaBHo for the reduction of I -bromoadamantane(93Voyield) in the presenceof AIBN minimizesorganotincontaminants' P.,Delgado,A., Farrera,J.-A.,Ribo,J. M. SC27, 16972(199'7\. ^rBenitez, 'Dalla, V., Cotelle,P.,Catteau,J. P. IL 38, 15'7'7 (1997). 3sudharshan, M.. Hultin,P. G. SL 171(1997). aPrashad, M., Har,D., Kim, H.-Y.,Repic,O. TL39,'7067(1998). 5Merla,B., Arend,M., Risch,N. SL l'77(199'7). 6P"tukhou. P. A.. Tkachev.A. V. I53, 2535(199'7). 7Xu,D., Ciszewski, T. J. TL39' 1107(1998). L., Li, T., Repic,O.,Blacklock, 8Xu,D., Prasad,K., Repic,O., Blacklock,T. J. fA 8, 1445(199'7). eP"urrorr, A. J.,Vickerman,R. J. fZ 39, 5931(1998). roYang,C., Pittman,C. U. SC28, 202'l (1998). llBunos,M. T., Maycock,C. D., Ventura, M. R. TL 40,557(1999). r2Dumartin, M. TL39,4663(1998)' B., Donard,O.,Pereyre, M., Delmond, G.,Pourcel,
:-at"
:l
346
Sodiumborohydride-nickelsalt
Sodium borohydride-antimony. ArNOz-+ATNHOH,I While a previous report indicates that reduction of nitroarenes with the combination of NaBHo and SbCl, leads to arylamines, the antimony-catalyzedreduction gives N-arylhydroxylamines (5 examples, 73-88Va).
(Z,E)-l,3-Dicnol ahqt reduction with NaBH"-Nit C
rRen,P., Dong,T., Wu, S. SC27, 1547(lgg7).
Sodium borohydride-iodine.
17, 3 16; 18, 328; 19, 309 Cleavage of allyl ethers.t This systemservesto remove O-allyl groups in THF at 0" without affecting other ethers such as THP, TBS, benzyl derivatives. Coniugate reduction.2 Conjugated dienamides undergo regioselective reduction with the borohydride iodine system in THF ar 0o at one of the double bonds, forming y,6-unsaturatedamides. 'Thornur, R. M., Mohan,G. H., Iyengar, D. S. ZL 38, 4.l2t(lggi). 2Das, B., Kashinatham, A., Madhusudhan,P. TL39,6i'j (lgg$.
Sodium borohydride-nickel
salt. Cleavageof aziridines.t Aziridine-2-c:rboxylic esters undergo ring opening to afford B-aminoesters.Accordingly,this regioselectiveC-N bond cleavageis crucial to the indirect but more efficient Michael reaction for the synthesisof B-amino acids.
Ph--N -cooEt
rsil>
N a B H a- N i C l2
.....................*
Ph"'vcooEt I NHTs
MeOH
95% NaBHa- NiCl,
rs(\co6t' Ph
-
H
MeoH
L
T5N/\.COOEI
'
Ph
.Y"\ Y""en lDauban,P., Dodd,R. H. fL t tBu.ton, D. H. R.,Liu. W. It I
Sodium borohydride-titr ' Secondary amines.' MeNHr.HCl is easily accorq 'N"idigh,K. A., Avery,M. A.l
Sodium bromate. lE. 3-30 Bromination.t Select system is reported. In aqueo nuclear bromination predorn
Oxidations. Seconda by NaBrO,-NHrCl in aqu oxidation is sensitive to soh, profi le, affording o-diketonc
9Oo/"
Amides.z The intermediatesfor a two-carbon homologation via the Barton estersby photochemical decomposition in the presence of acrylamide need to be defunctionalized. Removal of the pyridylthio group is achievedby the nickel-mediated borohydride reduction.
OH OH
rd{# O".-"'*" O^"Q#ffiO
'Kikuchi, D., Sakaguchi. S..Istu 'shaabani,A., Ameri, M. JCR'S ''Sakaguchi, S.,Kikuchi.D.. lstu
Sodiumbromate
r e d u c t i o no f !-:rat l. :,' arylamines, the --l-887o). p r.
(Z,E)-1,3-Dienolethers' Thesecompounds reductionwith NaBHo-Ni(OAc)r.
ar^--/O-:--
l 1 l : r\)upsin THF at 0'
U''*\z-"
are available from
NaBH4- Ni(oAc)"
-;-
s
enynyl
347
ethers by
(
Jt:
r : .:lcctive reduction d ^ic honds, forming 'Dauban. P..Dodd.R. H. 7L 39,5739(1998). 2Button.D. H. R.. Liu. W. ZL 38, 2431(199'7).
rrng openlng to lc.:..:Lcis crucialto the u : r ; ' :' l c t d s . h:-
\, :ooEt t.*-s
:: \
tooEt
isopropoxide. Sodium borohydride-titanium(IV) The reductive amination of carbonyl compounds with Secondnry amines.t MeNHr.HCl is easily accomplished.Triethylamine is presentin the reaction mixture. rN"idigh,K. A., Avery,M. A., Williamson, S. JCS(P1I2527(1998)' J. S.,Bhattacharyya'
Sodium bromate. 18,330 Selectivebromination of alkylbenzenesusing the NaBrO,-NaHSO, Bromination.t system is reported. In aqueousEtOAc, benzylic bromination occurs, but in aqueousMeCN nuclear bromination predominates. Oxidati.ons, Secondary and benzylic alcohols are oxidized to carbonyl compounds but the by NaBrOr-NH,,Cl in aqueousMeCN.2 l,2-Diols are converted to cx,-ketols, product the changes oxidation is sensitive to solvents.3Thus, addition of dichloromethane profi le, affording cr-diketones.
\:.: :he Bafion estersby : \' defunctionalized. t ,: ,hrdride reduction.
OH OH cH2cl2
-y,^\-.CONH,
.2 1 000
lKikuchi,D., Sakaguchi, S.,Ishii,Y. JOC 63,6023(1998). 2shaabani, 100(1998). A., Ameri,M. "ICR(S.) 3Sakaguchi, S.,Kikuchi,D., Ishii,Y. BCSJ70,2561(199"1)
aYo \-Ao
348
Sodium(cyclopentadienyl)tricarbonylmolybdate
Sodium chlorite. Guanidines.t A synthesis of guanidines from thioureas features reaction with amines which is promoted by NaClO, (9 examples, 53-80%).
Sodium2-ethylhexanoate. Amideformation.t In thc is a usefulscaven BuCH(EI)COONa
Chlorination.2 Activated arenes are chlorinated with (salen)manganese(III)complex, and moist alumina in dichloromethane.
lFitt,
NaClO,
rRamadas, K., Janarthanan, N., Pritha,R. SL 1053(1997). 2Hi.ano, Yakabe, Monobe,H., Morimoto,T. M., S., CJC75,1905(1997).
Sodium cyanoborohydride-tributyltin chloride. 19, 3 l I Radical cyctization and reduction,t Tetrahydrofuran derivatives are formed when mixed allylic acetals of bromoacetone are treated with NaBH.CN-Bu.SnH (AIBN).
J.,Prasad,K., Repic,O., BlactlaL I
Sodium hexamethyldisilazide. l& -li Aryl cyanides.r Aromaric esrcr in the presenceof 1,3-dimethylimidrt Bridged rnr Wittig reactians.2 olefination with various aldehvdes.
Cyclization as well as dealkoxylation occur. 1Ph
\ -NMe --R.--.
M-1 eN/ \
/ \
Bu3SnCl- NaBH3CN AIBN/ I-BUOH
-itrr,rA \ /
\r.f-)
/
lHwu, J. R., Hsu, C. H., Wong, F. F.. Clrt "W ang,2., Verkade, J. G. TL 39. 93-1I r l9 'Srikrishna, A., Viswajanani,R., Yelamaggad,C. V. 253, lO4'79(1997).
Sodiumcyanoborohydride-trimethylsilylchloride. 19,3 I I Reductions.t While aryl aldehydes andketonesarereducedto thebenzylicalcohols, 2-acylbenzofurans andtheir acetalsundergodeoxygenation.
Sodiumhexanitrocobaltah(m ). Nilrosation,r This rcagenr 1,3-diaryltriazenes. Hydrazidesgir e r ArN=NNHAI. tSt"fune,
CHO
B., Kocevar, M., Polarrc.S. ./oC
Me3SiCl- NaBH3CN MeCN
'Box,V. P.C. TL39,7059(1998). G. S.,Meleties,
Sodium hydride. 14, 288; 16, 307--1 Cyclizatians, Cyclization of isomerization to the corresponding r acceptors.Access to the indolizidrrr 5-tosyl-4-pentenamideand subseqln A synthesisof resorcinolsl from & involves a Michael reaction-Dieckrnr
Sodium (cyclopentadienyl)tricarbonylmolybdate. Pauson-Khandreactions.t This salt Na[CpMo(CO),] converts alkynedicobalthexacarbonyl complexes into mixed Co-Mo analogs which often show higher reactivities in the cyclopentenonesynthesis. rRutherford, D. T., Christie,S.D. R. ZI 39,9805(1998).
rslYr trt{
l|
Sodium hydride
l!ur!'. reaction with r::i:
NaClO,
Sodium 2-ethylhexanoate. In the acylation of Amide formatian.t scavengerfor HCl. is a useful BuCHGt)COONa
amines
with
acid
chlorides,
rFitt,J.,Prasad, T.J. TL39' 6991(1998)' K., Repic,O.,Blacklock,
r Sodium hexamethyldisilazide. 18, 332 Aryl cyanid.es.l Aromatic estersare converted to nitriles by reaction with NaHMDS in the presenceof 1,3-dimethylimidazolidinone at 110oin a sealedtube' (E)-selective wittig reactions.2 Bridged triaminophosphonium salts participate in ,c. .rrc formed when \-Uu.SnH (AIBN).
olefination with various aldehydes.
,(tn
- o
MeN"-'\\Nlvle /
\J,/
)*"
(Me35i)2NNa/ THF RCHO
*/\rtn
rHwu,J. R., Hsu,C. H., Wong,F. F., Chung,C.-S.,Hakimelahi' G' H' S 329(1998)' 2Wang,Z.,Verkade, (1998). 1 TL 39, 933 L G.
tl^.chcnzylicalcohols,
Sodium hexanitrocobaltate(Ill). fumish Nitrosation.t This reagent reacts with arylamines readily to diazoaminoarenes furnish arylamines and azides give acyl 1,3-diaryltriazenes.Hydrazides ArN=NNHAr. lstefane.B.. Kocevar,M., Polanc,S. JOC 62,7165(199'7).
i\---\
\)/-
r /^rr
r:
.,\n\erts alkyne,:ten show higher
Sodium hydride. 14,288:16,307-308; 18, 333; 19,312-313 Cyclizntions. Cyclization of hydroxylated propargyl sulfonesr may involve isomerization to the corresponding allenyl sulfones which should behave as Michael of acceptors.Access to the indolizidine skeleton2by an intramolecular Michael reaction quite efficient' is carbon and nitrogen at alkylation 5-tosyl-4-pentenamideand subsequent A synthesis of resorcinols3 from dimethyl acetonedicarboxylate and alkyl alkynoates involves a Michael reaction-Dieckmann cyclization sequence'
rslV, tr*{
NaH - BTCH2CH2CH2BI
j
350
Sodiumnitrite-aceticacid
a-Alkoxyketones.a A series of epoxy mesylates derived from 2-trimethylsilyl2-alkenols is transformed into allene oxides (elimination of MerSi/OMs units) which are rapidly attackedby the alcohol presentin the reaction milieu. Wiiliamson ether synthesis.s An improved method for etherification of hindered alcohols involves promotion by NaH and a catalytic amount of 15-crown-5 in THF.
"')i\
Nar{q HOAG - tl
\z\'-B'
o"
lDui,w.-M.. Lee.M. Y. H. 254. 12497(1gg$. 2cutuiu, F., Najera, TL C. 38, 3789(1gg7). 3Covam.rbias-Zuniga, A., Maldonado, L. A., Rios-Barrios,E.,Gonzalez-Lucas, A. SC28,3461(199S). -Shipman, M., Tholpe,H. R.,Clemens, I. R. f 54, 14265(1998). 'Aspinall,H. N., l,ee,W.-M., Mclver,E. G., Smith,P. M. ?L 3E,4679(1997). C., Greeves,
lMatt, C., Wagner, A., Mioslor 'Maiti, D., Bhattacharya"P. K !
Sodium hydrogen telluride. 13, 2821,18, 333-334; 19, 3 13 Conjugate reduction.t o,-Amidoacrylonitriles are reduced by NaTeH in ethanol at room temperatureto give N-acyl c-aminonitriles (8 examples, 65-85Vo).
Sodium perborate. 14, 29O Epoxidation.t The q promoted by microwaves t6
Tellurochromones.z These compounds are available from o-bromoaryl alkynyl ketones on treatment with NaTeH in DMF.
Formamides.z An or of N-arylaldimines with \r dismal to moderate.
t^Zeng,P.,Hu, Y., Hu, H. SC27,939(1gg'1). 'Sashida, H. S ?45(1998).
Sodium hypochlorite. 15, 2931'16, 308; 17, 316; 18, 334-335 ; 19, 313 Nitriles.' Primary amines of the type RCH2NH2 are rapidly dehydrogenated (via N-chlorination)to furnish nitriles on treatmentwith NaOCI (16 examples,52-97Vo). Carboxylic acids.2 Carbonyl compoundsundergo ct-cleavageon exposureto NaOCI under microwave conditions. a-Amino aWchydcsand acids. With 2,2,6,6-tetramethylpiperidine-l-oxyl (TEMPO) as catalyst the oxidation of N-protected 1,2-amino alcohols with NaOCI affords the corresponding aldehydes in
a two-phase system without disturbing extant stereocenters.3[n acetone the oxidation proceedsfurther to the carboxylic acid stage and this process is applicable to a synthesis of enantiopure a-arylglycines from styrenes.a
rYamazaki. S. SC27.3559(1997). 2Yang, D. T.C.,Zhang,C.J.,Haynie.B. C.. Fu,P. P..Kabalka, c. W. SC27, 3235(1997\. 'Jurczak, J.,Gryko,D., Kobrzycka, E.,Gruza,H., Prokopowicz,P. T 54,6051(1998). -Reddy,K. L., Sharpless, K. B. JACS120,1207(1998).
Sodium nitrite-acetic acid. 19, 313-314 Carboxylic aci^ds.l A new method for converting RCH,X (X=Cl, NOr) to RCOOH involves treatment with NaNO,-HOAc in DMSO. pro."., as above apparentlygeneratesnitrile oxides which Nitrile oxides.2 The.*. can be captured with dipolarophiles.
Ph
r'NY\
U\
Oxidative decorbonyb using aqueousNaBO,. Halogenatbns. Thc r halogen that can be used to metavanadate.molyMate.
halogenating aromatic comp Dethioacetalizttion d regenerated from the protcu and cyano groups suffer orx
tShu.ifi.A.. Bolourtchian. \1.. \ 2Nongkunsam, P..RamsdenC 3Mor.orn,N., Ramsden, C. A.. S -Kabalka, W., G. Yang,K.. Rcd 'Kabalka, W., G. Yang,K. SC2 oHanson, J. R., Harpel,S.. Vcd! 'Beinker,P., Hanson, J. R.. \lea 8B-dg"., B. P.,Nigal,N. J. SC 'Bandgar,B. P., Kulkarni. S. A .
Sodiurn perborate
E. .rc'nv€d from 2-trimethylsilylon ': \le.Si/OMs units) which are nt. i.'.t
rr: irrr etherification of hindered r,rni rrf l5-crown-5in THF.
t_i
-.'
A. SC28,3461(1998). r'z-Lucas,
F
r: [' \1. rL 38, 4679(1997).
) tra ::Juced by NaTeH in ethanolat Ll I r.. 65-857o).
.,hlr from o-bromoaryl alkynyl
"'n
NaNO2
\z\,-8,
HOAc - DMSO oo
351
['r--^"*lo-]l-'l)..'--*, 1oo.,
[
1"""-
'Matt,C., Wagner,A., Mioskowski, C. JOC62,234(1997). 'Maiti, D., Bhattacharya, P. K. Sr 385(1998). Sodium perborate. 14, 290 -29 | ; 16, 3 10 ; 18, 33'l -338 ; 19' 3 | 4 The epoxidation of enones in dioxane with aqueous NaBQ is Epoxidation.t promoted by microwaves (6 examples, 5t-lOOVo). Formamides.z An oxidative rearrangementroute to formamides involves treatment of N-arylatdimines with NaBQ in trifluoroacetic acid under reflux. Yields range from dismal to moderate.
Ph
Ph l:-r l.j5:19,313 H .rrc'rapidl! dehydrogenated(via
NaBO3
4N cF3cooH
i K'l , l6 examples,52-97Vo). g,, rr-ileavageon exposureto NaOCI rnrrrhr lpiperidine-1-oxyl (TEMPO) :.,,,hols with NaOCI affords the !.:r *ithout disturbing extant r:::.rr to the carboxYlicacid stage er.:ntiopure a-arYlglYcinesfrom
\r (r \\' sc27,3235(199'7). x . ' I ' r 5 4 , 6 0 5 1( 1 9 9 8 ) .
n; RCH,X (X=Cl, NO2) to RCOOH nitrile oxideswhich u::r:1r generates
t-rr-*-y'\
oi l i\z\l
t
54"k Oxidative decarbonylation.3
Arylpyruvic acids are converted to arylacetic acids
using aqueousNaBOr. The combination of NaBO, and NaX (X=Br, I) generatesnascent Halogenations. to add to alkene# and alkynes.s When sodium (or ammonium) that can be used halogen or tungstate is added, the reagent system is capable of molybdate, metavanadate, halogenating aromatic compounds.6-8 are ketones and Aldehydes Dethioacetalizationanddethioacetalization.o amino Aromatic in HOAc. by NaBQ-NarCO., protected derivatives regeneratedfrom the and cyano groups suffer oxidation by this reagent. rshu.ifi, A.. Bolourtchian,M., Mohsenzadeh, F. JCR(S)668( 1998). 2Nongkunsarn, P.,Ramsden, C. A. 753,3805(1997). 'Morrow,N., Ramsden, B. J.,Wallett,C. D. T 54'9603( 1998). C. A., Sargent, oKubulku, C. sC 28,925(1998). G. W., Yang,K., Reddy,N. K., Narayana, sKubulku, G. W., Yang,K. sC 28,3807(1998). 6Hunron,J. R., Harpel,S.,Medina,I. C. R., Rose,D. JCR(S)432(1997). 7B"ink".,P., Hanson,J. R., Meindl,N., Medina,L C. R. "/CR(S)204(1998). sBandgar, B. P.,Nigal,N. J. SC28, 3225(1998). 'Bandgar,B. P.,Kulkami,S.A., Nigal,N. J. OPP130,706 (1998)'
Sodium triacetoxyborohydride
Sodium phenylselenoate-triethyl borate. B-Hydroxy carbonyl compounds.t The oxirane ring of o,B-epoxy carbonyl compounds undergo reductive cleavage(29 examples, 8O-lOOVo). rMiyashita,M., Suzuki,T., Hoshino,M., Yoshikoshi,A. f 53, 12469(1gg'1-).
Sodium telluride. 18, 340 Cleavage of 2,2,2-trichloroethyl esters.t A methodfor the regenerationofcarboxylic acidsfrom suchestersis by treatmentwith NarTe in DMF (10 examples,74-98Vo).
Sodium triethylgen Desulfurative al
electron-withdra'*'in1 organogermanium ir halides.2 Trifluoromethyl
group from PhSCF. t iminesais also obser
lBlay, G.,Cardona, L., Garcia,B., Garcia,C. L., Pedro,J. R. SC28, 1405(1998).
Sodium tetracarbonylhydridoferrate. 19, 3 I 5 Conjugate acids.t Alkynes undergo carboxylation with NaFeH(CO)'. It appearsto be quite sensitive to reaction conditions, since cyclobutenedionesare formed at a different temperature.
tn\-zo l l ph-l'\o
l
+
NaFeH(co)a l l l Me3sict THF 600
it 'l' Ph
lYokoyu-u, Y., Mochr 2Yokoya.a, Y., Mochr 3Yokoyu-a, Y., Mochr aYokoya.4 Y., Mochr
NaFeH(CO)4 Me35iCl
:}*"-
THF 25O
'Peria.amy, M., Rameshkumar,C., Radhakrishnan, U., Brunet,J.-J. JOC 63,4930 (1998).
Sodium triacetoxyborohydride. 13, 283; 16, 309-3 10; 18, 340; 19, 3 15-3 16 Decomplexation.t In the assemblyof l,5-diols (and 1,5,7-triols)via tricarbonyliron
Sulfamic acid. Acetylation.t l (including phenolstu rJin,T.-s.,Ma,Y.-R..
complexesthe removalof the metalresidueis convenientlyachievedwith NaBH(OAc), in TFIF. y-Amino acids. By homologation of ct-amino acid derivatives via condensationwith
Sulfur. 15,297: l& i 'l Thioamides.
Meldrum's acid the acyl group originating from the cr-amino acid residue is conveniently removed (via 1,2-reduction,dehydration,and 1,4-reduction)by NaBH.,-HOAc without affecting the adjacent stereocenter.The products are readily converted to y-amino acids.
amines.l'2
o
t^)
l
l U
)
- HoAc NaBH4
Y"{ Boc-,u\\o H
h
;Ht.;' l
l
"Y"F ^
n
PhCHO
l
Boc-,uz\,_\O H
l
V
l
o
767" rley, S. V., Burckhardt,S., Cox, L. R., Wonall, J.M. CC 229 (lgg8). 'Smrcina, M., Majer, P., Majerova,8., Guerassina,T. A., Eissenstat, M. A. 253, 12867(1997).
Thiacycles.
A involves lithiation an transferto conjugated in the presence of c CprTiS' CprZrS.).'
iulfur
: ..J-c'pox) carbonyl
t F'
I :i_i ri.rttion ofcarboxylic -l-987c). F r'
(
353
Sodium triethylgermanate. 19, 3 16 Desulfurative alrElations.t Surfides in which the cr-carbon is substituted with an electron-withdrawing group undergo reductive cleavage by EtrGeNa. The organogermanium intermediates are reactive toward carbonyl compoundsl and allylic halides.2 Trifluoromethylation. Sodium triethylgermanate mediates the transfer of a cF, group from PhscF3 to methyl esters,forming trifluoromethyl ketones.3Addition of cF, to iminesa is also observed.
,. COOMe
an I
i:l ,.i{ CO).',.It appearsto | .:::.: rrrnedat a different
)'"o' Ll :.. i, I I i998).
1 9 .i 1 5 - 3 1 6 !: . \ra tricarbonyliron r:.- \.rBH(OAc). in THF. l. . :.r!()ndensationwith rJ.:.1Llc ls conveniently \.,FJtl.-HOAc without t..r ,,, 7-o_rnoacids.
^
n
" Y"Y-
t
-\a-o
l
\.\Z
'Yokoyama, Y., Mochida, K. 'Yokoyama, Y., Mochida, K. -Yokoyama, Y., Mochida, K. -Yokoyama, Y., Mochida, K.
?ocF3
an \-v
PhSCF3 -
Et3ceNa ."....................'........."...........'...._ HMPA . THF
SZ 37 (199g). CC 1093(199g). SLg07 (lgg:.). fL 3g, 3443 OggT.
Sulfamicacid. Acetytation.t Sulfamic acid is an excellentcatalyst for acetylation of alcohols (includingphenols)with aceticanhydrideat roomtemperature. lJin,
T . - S . ,M a , y . - R . , Z h a n g , Z . - H . , L i ,T . _ S .S C 2 8 , 3 1 7 3 (1998).
Suffur. 15,297; 18, 341-342 Thiaamides. The Willgerodt_Kindler reaction can be extended to primary amines.l'2
PhcHo
+
PhCH2cH2 NH2 +
"""o Sn -
D M F ^
-
Ph
Y*$rn
I
tl
r s.r tri67(1997)
99% Thiacycles. An expedient preparation of 1,3-dithiol-2-thiones3 from r-alkynes . involves lithiation and consecutive treatment with sulfur and carbon disulfide. For sulfur transfer to conjugateddienes,such asdithiin formation, the yields are significantly enhanced in the presence of catalytic amounrs of metailocene polysulfides lcpruosj cprwSo, CprTiS' CprZrSr).a
354
Sulfur trioxide
fi'"*
BuLi/ THF -78o
s<,s-..-,siMes tl
..+
Se i
S...-
CSz
82"/"
that results in thioketenes.
Tantalum(V) chloride-silice 3c Functional group prot ctia acetylation of alcoholsr and thc anhydride, the latter processztss
rKunyonyo,M. R., Gozzo,A., Lambert,D. M., Lesieur,D', Poupaert, J. H' BSCAl0f.'39 (199'7)' rDing,P.-Y.,Li, R.-T.,Cai,M.-S.SC27,9'73(199'7). 3Tuki.iyu,K., Morikami,A., Otsubo, T. SL 319(1997).
tetrahydropyranationof alcohols o V.t). tl Prins reaction microwavins a mixture of alkerr
I-Auqnyl disulfides.s on reacrion of lithioalkynes with sulfur and sulfenyl chlorides the disulfides are formed. These compounds are prone to undergo realrangement
A. Z'Harpp D. N. ZL 39,9139(1998). ]Rys, 'Norklaer,K., Senning,A. CB 126,'73(1993)'
Sulfur dioxide. Aminals and aminol ethers are activatedby sulfur dioxide, thus Aminomethylation, electrophilic aromatic substitution with electron-rich arenescan be performed.l
/\.\ l
v fi'\ro* l
\/
l
l
-
,NMe2 'NM",
soz *ail
6'\ro" \orl-...-,r'rrtr",
'Heaney, G.,Wilkins,R. F. 753' 13361(1997). H., Papageorgiou,
Sulfur trioxide. Sulfunic acids. Complexes of sulfur trioxide have been used to introduce the SO,H group to organic molecules.For example, organolithium reagentsare converted to sulfonic acidsby the trimethylamine complexr and the dioxane complex is useful for replacing a silyl
l
l
+
(
H
'Chandrasekhar. S.. Ramachan&t. T 2Chandrasekhar, Takhi. M.. S.. Unu. 3chandrasekhar. S., Takhi. M.. Rod /L99'7). aChandrasekhar, S., Reddy, B. \' S .
Tellurium. 15,298;18, 343 Allylic abohols and a,miret Te-NaBHoprobablyinvolvescg requirestheprescnc aziridines2
group in an aromatic ring.2 rsmith.K.. Hou,D. JoC 61, 1530(1996). 2wuts,P. G. M., Wilson,K. E. S 1593(1998).
z\/ )."
,S=--",,SiMe3
"c J tr/
il
821" 1i.13. with sulfur and sulfenYl l:i lr()ne to undergo rearrangement
\ -:.:r'r. J. H. BSCB106,39(1997)'
Tantalum(Y) chloride-silica gel. Effective mediation by TaClr/SiOt is noted in the Functianal group protections. acetylation of alcoholsr and the formation of phthalimides2 from amines and phthalic anhydride, the latter processassistedby microwaves. The catalyst system is also useful for tetrahydropyranationof alcohols and dithioacetalization of aldehydes.s o v"ry rapid formation of 1,3-dioxanes is accomplished by Prins reaction microwaving a mixture of alkenes and paraformaldehydein the presenceof TaClr/SiOt.
i ::r .r,tir atedby sulfur dioxide, thus r.:rti. .Jn be performed.l
.^A \)
TaCl5/ SiO2
+
(HCHo)n
))))) 88V"
t4.-
al J \'.n usedto introducethe SOrH lr: ::.1lentsareconvertedto sulfonic c, ::.:.cr is usefulforreplacinga silyl
rchandrasekhar, S., Ramachander,T., Takhi, M. TL39,3263 (1998). 2Chandrasekhar, Takhi, M., Uma, G. TL38,8089 (1997). S., 3chandrasekhar, Takhi, M., Reddy, Y. R., Mohapatra' S., Rao, C. R.' Reddy, K. v. T 53, t4997 S., (1997). aChandrasekhar, Reddy,B. V. S. SL 851 (199S). S.,
Teflurium. 15,298;18,343 Allylicalcoholsandamines. Isomerizationof epoxidesto allylic alcoholsr by Formationof allylic aminesfrom Te-NaBH,probablyinvolvesepitellurideintermediates. group at thecl-position. sulfonyloxy of a requiresthepresence aziridines2
Te - NaBHa
Tetrabutylammonium chloride
The coupling of carbonyl compounds can be effected by Pinacolfonnation.3 (7 examples, 85-95Vo)' temperature Te-KOH at room lPepito,A. S.,Dittmer,D. C. JOC 59,43ll (1994);Kumar,A ' Dittmer,D' C' z' 35' 5583(1994)' te.pito, ^L.S.,Dittmer,D. C. JoC 62,7920(199'1). 3Khan.R. H.. Mathur,R. K., Ghosh,A. C. SC27,2193 (199'7).
pnAoA
(
Tetrabutylammonium borohydride. 18' 344 Reductions, The reagent is useful for reduction of many bifunctional compounds and containing estergroups in refluxing chloroform.l Amides and imines give amines' acids alkenes afford alcohols. The combination with ZnCl, is capable of deoxygenating Cr,-ferrocenylcarbinols, aldehydes,and ketones.2 lNarasimhan, R.' Velmathi'S' SL 1321(1998)' S',Balakumar, S.,Swarnalakshmi' 2Bhattacharyya, S. SL 837(1998).
rBrandange.S..
Tetrabutylammonium bromide. Tin enolatesprefer reaction with allylic halides to carbonyl compounds Allytatian. in the presenceof BuoNBr.r Thus, the chemoselectivity is reversedby this salt'
HOarr.._,ph
A
?n .,\
eu3sno,\.(-J-er'\'Zrrn
+
OB
THF B u a N B r /M e C N
ph
. &pn
Tetrabutllu Triflaon (RR'NCSSN of BuoNH,F Clcavag sa.ltl this and
(>99 : 1) ('1
: 99)
Me3Si Cation exchange from Li to BuoN in water tetrabutylborate is is the most convenient method of preparation for the reagent. Lithium Tetrabutylammonium
tetrabutylborate.2
made from Buli and BuoB.
lKanie, K.. I{i 2Mo.i, A., Fuy
rYasuda, (1998)' M., Hayashi,K., Katoh, Y.' Shibata,I.' Baba' A' JACS 120' 715 2Hoff, R. H., Hengge,A. C. JOC 63,195 (1998).
Tetrabutylammoniumchloride. ROSiRt,-+ ROCOR,I The quaternaryammoniumchloridecatalyzesdesilylative canbeusedto controltheselectivity(primary acylation.rVariationof reactiontemperatures alkYlsilYlethers). vs. secondary
Tetrabutlh 18,344-34 Desilyb benzylicani of synthesis
,:
i
'i I
Tetrabutylammoniumfluoride
r nc effected by
er.' oAfosiMe2rhx . -r5 a583(1994).
OSiMe2Thx
357
EICOCI- Bu4NCl 220
OSiMezThx 721o BuaNCl I CleH2lCOClI
o
tr,,nll compounds i rrlnesJ acidsand
tl
en^o^fov o'?o
n.-cnr I carbinols,
I CtoHzt 92'/"
rBrandange, S.,Leijonmarck,H., Minassie,T. ACS51' 953(199'7)' ftr'nr I compounds u...rlt.
p.l
Tetrabutylammonium dihydrogen trifluoride. An access to these compounds from dithiocarbamates Trifluoromethylamines.t (RR'NCSSMe -+ RR'NCF,) is by oxidation (with NBS, dibromohydantoin) in the presence of BuoNHrFr. Cleavage of disilanes.2 Triorganosilyl anions are generated in situ from disilanes and this salt. It is a better reagent than TBAF for inducing cleavage of the disilanes'
?srn !-:
Me3si-siMe3+ L,
+5 HMPA
M"'sir..,\Asir,,r". 81"/o
l.r :,, Bu+Nin water is :c:r.rbutYlborate rKanie, K., Mizuno, K., Kuroboshi,M., Hiyama, T. BCSJ 7l' 1973 (1998)' 2Mori, A., Fujita, A., Ikegashira, K., Nishihara, Y., Hiyama, T ' SL 693 (199'7)'
rt.
r zts desilylative citivity (primary
Tetrabutylammoniumfluoride.13,286-287:14,293-294;15,298,304:'17'324-326; 18,344-345: 19,3 19-32 | anion#and Desilylation. Allylic iodination,lgenerationof 2'2-diflrtorocyclopropyl a new Thus, benzylicanions3from silanesby treatmentwith TBAF havesyntheticutility. is basedon thelastreaction. svnthesisof isoquinolones
Tetrabutylammonium fl uoride
o
3Couture, A., Cru aAlbanese, D.. L:n sKang, S.-K., Kin bMatsuhashi, H.. .{ TFugami, K., Ohnu 8Molina, P., Aller. l eRodriguez, G.. Cr loJones, G. B.. rlng Davidson,J. P..lO
o
.z-"A-/-no, Me l.) I ll
BuaNF
\,.}.,Me3-'-7
THF
Me3Si 840/"
Alkyl fluorides are obtained from other halides by reaction with Fluorination.a (9 4O-lOOVo). TBAF examples, Coupling reactions. Formation of biaryls, dienes, and diynes by homocoupling of (8 examples, 71-94Vo)-s The organo(halo)silanes is effected by CuI-TBAF (PhrP)oPd-catalyzedcross-coupling ofhaloarenes with alkyltrifluorosilanes requiresexcess TBAF to trap tetrafluorosilane.6The Stille coupling is facilitated. Thus, biaryl formation from p-MeCuHoSn(Bu)rC1and 4-iodoanisole in reflexing dioxane in the presence of (dba)rPd and PhrP is resurrectedby adding 2 equiv. of TBAF (\Vo -+ 72Vo yleld).1 3,4-Dihydroquinazolin-2-ones.o Methyl o-(N-triphenylphosphoranylimino)cinnamate is converted to mixed carbodiimides on reaction with RN=C=O. TBAF promotes cyclization ofthe carbodimidesto give 2-fluoro-3,4-dihydroquinazoline derivatives. Cyclic ureasare obtained on hydrolysis. Cyclization.e An unusual transannularcyclization involves an alkenylsilane and an amide unit.
Tetrabutylammo Fluorinatiot
used to displace1 aliphatic series *i
tAdu.r, D. J..Clad 2Moughamir, K...\t
Tetrabutylammr Hydrolysis o1 racemization. 2,3-Dialhtb provide 2,3-didl
photoinduced rea
degassedtoluenc BuaNF
Decomplexation.to Alkyne-hexacarbonyldicobalt complexes are decomposed by TBAF in THF (4 examples,8l-99%o).
(oc)3ct\ (oc)3cy
BU4NF - 1oo
r-) r\:r/t > 95%
lNirhiyu.u, T., Esumi, T., Iwabuchi, Y., Irie, H., Hatakeyama,S. ?4 39,43 (1998). 'Shibuya, A., Pietz, S., Taguchi, T. TL38,5537 (1991).
rAbdel-Magid, (1998). 2Vannelle,
A. t
P., Tem
Tetrabutylamr Cleavageof b1 accomplished lAkui,
s., Nishino.
Tetrabutylanmonium nitrite 3coutu.", A., Cornet, H., Deniau, 8., Grandclaudon' P., Lebrun, S. JCS(P1) 469 (1997)' 4Albanese.D.. Landini, D., Penso,M'.IOC 63,9587 (1998)' 5Kang, S.-K., Kim, T.-H., Fyun, S.-J.JCS(P1)'79'7(199'l)' 6UutJufturfti, H., Asai, S., Hirabayashi, K., Hatanaka, Y', Mori, A', Hiyama' T ' BCSJ 70' 43'1(1997)' ?Fugami, K., Ohnuma, S., Kameyama, M.' Saotome' T , Kosugi, M' S' 63 (1999)' oMolina,P., Aller, E., Lorenzo,A. S 283 (1998). eRod.igu"r, G., Castedo,L., Dominguez,D.' Saa,C. ?' 39' 6551 (1998)' roJoneslG.B.,Wright, J. M., Rush,T. M., Plourde,G. W', Kelton, T' F', Mathews'J E'' Huber' R S '
84"/"
Davidson,I.P. JOC 62,9379 (1998).
o:her halides by reaction with n.t ir\nes by homocouPlingof :r.rmples, 7l-94%o).s The 'I::::l uorosilanesrequiresexcess
Tetrabutylammonium hydrogen difl uoride. BurNHF, is a convenient sourceof nucleophilic fluoride which can be Fluorination. exchange in the used to displace groups such as NQ of4-nitrobenzonitrile.l For halogen an activator'2 is pyridine aliphatic series with BuoNHF,
:r.::.,ted.Thus, biarYl formation tg .tl()\ane in the presenceof {F ,1.; -+'7270yield).7
rAdu.r, D. J.,Clark,J. H., Nightingale,D' J. SC28, 4295(1998)' zMoughamir, C' TL39' 7305(1998)' C', Francesch' H', Rolando, K., Atmani,A., Mestdagh,
;s :rr .phosphoranylimino)cinnai:: R\=C=O. TBAF promotes ou- :n.rzolinederivatives.Cyclic I', , ,.\ cSan alkenylsilaneand an
Tetrabutylammonium hYdroxide. Hydrolysis of polypeptide esters.t
BuoNOH is useful for hydrolysis with minimum
racemization. to 2,3_Dialkytanthraquinones.2 A two-step annulation of l,4-naphthoquinone a and (HCHO, HCI) provide 2,3-dialkylanthraquinones involves bischloromethylation in BqNOH of presence the photoinduced reaction of the products with nitroalkanes in degassedtoluene(7 examples,5l-70%;o).
o ll
'l0o/o
n
)n',nlr'\esare decomposedbY
a\
(YY =r^)r* o
cl /'\|
R
*
\-Noe
BU4NOH H2O - PhMe NV
TYATYR \.ff* o 51 - 7O7o
rAbdel-Magid,A.F.,Cohen,J.H.,Maryanoff,C A,Shah,R D''Villani'F'J''Zhang'F'TL39'3391 (1998). 'Vunnill", P.,Terme,T., Maldonado, J.,Crozet,M P', Giraud,L' SL 1067(1998)'
\:// > 95Vo
l-1-1e.-13(1998).
Tetrabutylammonium nitrite. from the carbamates is cleavageof N-phenylcarbamates.t Recovery of alcohols accomplished by treatment with BurNNOr-AcrO' rAkai.S..Nishino,N., Iwata,Y., Hiyama'J.,Kawashima, E', Sato'K'' Ishido'Y'TL39' 5583(1998)'
Tetraethvlammonium trichloride
Tetrachf orosilane. 19. 323 Aldol reactions. Chalconesare formed by exposing aryl methyl ketones to SiClo in ethanol.l With Hg(OAc), as catalyst trimethylsilyl enol ethers are converted by SiClo to trichlorosilyl derivatives2at room temperaturewhich are useful donors in aldol reactions.
Tetrafluorosilane. Arylfluorides.' De.r.,, presenceof SiFoprovidesar but terminatedb1 temperature lTu.uru,
OSiMea "
SiCl4- Hg(OAc)2
osic13
-;;=
73./" Removal of N-t-butoxycarbonyl groups.3 In solid-phasepeptide synthesisan amino group can be releasedfrom N-Boc derivative by treatment with SiClo-PhOH.
M., Shibakami. M.. S€b,
Tetrakis(dimethylaminofrhl qa-Difluoroketones.: I chlorodifluoromethylketone. readily. aldehydes
rEl.o.ry, S. S.,Khalil, A. G. M., Girges,M. M., Salama,T. A. ./CR(S.) 232(1997). 'Denmark,S.E.,Stavenger, P.A. JOC63,9517( 1998). R. A., Winter,S.B. D., Wong,K.-T.,Barsanti, 3Sivanandaiah, B.P. TL37,5989(1996). K. M., Suresh Babu,V. V., Gangadehar,
Tetracyanoethylene. 19, 323 Esterification and transesterification.t
Tetracyanoethyleneused at about lO mol%o is the first fi-acid catalyst for esterification of carboxylic acids with various alcohols. Transesterification requires higher temperature. rMasaki,Y., Tanaka,N., Miura,T. CL55 (199'].).
rBurkholder. C.. Dolbier. !\'. R . \l
Tetraethylammonium hydrogen carbonate. Carbamates.t Amines are converted to carbamatesby reaction with Et NHCO, in MeCN at room temperaturefollowed by addition of alkyl halides (l I examples, 53-977o)' rlnesi,A., Mucciante, V., Rossi,L. JOC 63,1337(1998).
Tetraethylammonium trichloride. t This reagent is stable and easy to handle. lt can be Chlnrinationandoxidation used to introduce chlorine atoms to C-2 of 2-substituted 1,3-dioxolanes,the o,-position of aldehydesbesides alkenes and alkynes. Oxidation of alcohols such as benzyl alcohol and cyclooctanolin MeCN requirespyridine-DABCO (4: 1) as acid scavenger.
Tetrakis(triphenoxyphcpt$r Reduction.l The srable (to compounds alcohols).sulfa
amines) with ammonium fornu Heck reaction.) This ru catalystsfor the Heck reactiofl conditions.
o
d\i* t t l
\
Et4NCt3
-/
cH2ct2 -7go 88"/"
tschla.a,
T., Gabriel, K., Gouvemeur, V., Mioskowski , C. ACIEE 36,2342 (1997)
-:l llyer, S., Sattar,A. K. SC 2t. l 'lyer, S., Ramesh,C., Ramanr.A i
Tetrakis(triphenoxyphosphine)nickel(0)
rr'::r I ketonesto SiCloin a:: ,,,n\ertedbY SiCloto 1.r.,':. in aldol reactions.
Tetrafluorosilane. Deamination of aryl amines by treatment with t-BuONO in the ArylJtuorides.r pfesence oi siF4 provides aryl fluorides. The reaction is initially carried out at room temperaturebut terminated by heating to 130-140'. rTu.u.u, M., Shibakami, M., Sekiya,A. EJOC725(1998).
J>rur?
-
Tetrakis(dimethylamino)ethylene. Enolates of Cx,Cr-difluofoketonesare generated from q,A-Difluoroketones,l on treatment with the reagent 1' These enolates react with ketones chlorodifluoromethyl
j ' ,
anamino F I rJesynthesis S : ( -PhoH. ::_
. ) 9 7) .
a : i
\ /oc63,9s17(1998).
aldehydesreadily.
c96 ).
:.cd at about 10 molTo .rirh various alcohols.
td
Me2N. - \
/NMez
Me2N
NMe2
(1)
rBurkholder, Dolbier, W. R, Medebielle,M., Ndedi, A. TL39' 8853 (1998)' C.,
ftsJ,::\)n with EI4NHCO, in I r'xamPles,53-91Vo).
.-
Tetrakis(triphenoxyphosphine)nickel(0). The stable Ni(0) complex is a useful catalyst for reduction of carbonyl Reduction.t (to compounds(to alcohols),sulfonyl azides(to sulfonamides),iminesand nitro compounds amines) with ammonium formate. t Thi. nickel complex offers an altemative to the many palladium Heck reactinn reaction catalystsfor the Heck reaction.Alkynes also react with aryl iodides under the same
d J.r.\ lo handle. It can be i. '. ..rncs,the cr-positionof .-. . .r\ benzylalcoholand d .,.rr c'n$€r.
conditions.
o
o
Z\A^rv" a
\-\
(Pho)3Pl4Ni + K2CO3
\
il
NMP
al
:3'. I r1997).
rlyer,S., Sattar,A. K. SC28, l'721(1998). 2lyer,S.,Ramesh, C.,Ramani,A. fL 38,8533(1997).
ZlArurr,r"
\,V I
79"k
362
Tetrakis(triphenylphosphine)palladium(0)
Tetrakis(triphenylphosphine)paltadium(0). 13, 289-294; 14, 295 -299 ; 15' 300-304; 16, 3 17 -323 ; 17, 327 -33 1; 18, 347-3 49 ; 19, 324-33 1 carboxylic acids are reduced to aldehydes by hydrogen in the Hydrogenation.t presenceof (PhrP)oPdand pivalic anhydride. Alkenoic acids (oleic acid, erucic acid) give unsaturatedaldehydes.Diacids are similarly reduced. Sulfinic acids or their sodium salts assist Allyl and propargyl group transfer. Pd(0)-catalyzed deallylation by accepting the allyl group.2 In addition to allylic esters, allylic sulfoximines can also deliver the allyl group to nucleophiles such as amines.3 Acrolein acetalsreact with 1,3-dicarbonyl compoundsbut the regiochemistry is strongly dependenton reactiontemperatures.4
O (Ph3P)4Pd
I
o
tl
OMe
( Y + \-t,Ao
ueoM
rHF 40"
^
THF 4OO; go- 11oo
VoMptr
o
L>'/t l
OMe
\v,\o
Ph
70/"(E:Z83:'l7l
Distributive addition to benzylidenemalononitrile occurs when the decomposition of allyl B-oxoalkanoatessor carbonates6is canied out in its presence.The counteranionsof the initially formed n-allylpalladium salts are not stable so that the nucleophilic addendsare the decarboxylated species. The reaction with vinyloxiranes generates tetrahydrofuran derivatives.T
Ph Ph \
C
N
Y CN
"t'a: +
(Ph3P)4Pd
3-Allylindoles are generatedfrom lC allyl transfer process which acconry correspondingaryl allyl ethersroand frm allyll I and propargyl carbonates.r:
.<
/
t\\.,\o l
610/"
|
THF
OMe
_lI I (pnrp)opo_
rFft
OCOOMe
. nXn Enediynes are obtained when propul in the presenceof (PhrP).Pd.'3Allllarx involvesring openingof the laner.:'
cN
o|f.* K.z
90% 4-N-Mesylamino-2-alkenyl carbonates undergo intramolecular displacement to give vinylaziridine derivatives.8This reaction affords the cis-isomersas major products.
Synthesis of Suzuki coupling. temperature in the presence of thc H reusablepolymer-supported (Ph.P t,Fd c arylboronic acids with poly(eth1'lenc 1
Tetrakis(triphenylphosphine)palladium(0)
): 15. -100-304; hrdrogen in the erucic acid) give
I
(Ph3P)4Pd-
^f"cooMe
+
THF 600
NHMS
Ms (94 : 6)
lrunr salts assist | :,' rllylic esters, a. .rmines.3 rmr'try is strongly
N I
72o/" 3-Allylindoles are generatedfrom 2-alkynyl-N-allyl-Ntrifluoroacetanilides in an N -) C allyl transfer process which accompaniescyclization.e In a similar reaction from the correspondingaryl allyl ethersloand from phenols with external electrophilesin the form of allylr I and propargyl carbonates.12
le -z
/,
.<
(Ph3P)4Pd
.*oMpn
t,,
THF - MeCN 900
.'4otvt" I
(Ph3P)4Pd Z 83:17)
l€
T H F- M e C N
n{:1 \.'A-d
900
59"/"
Jc.(,mpositionof xn:.'ranionsof the .h. rJdendsarethe \ :ctrahydrofuran
3N UI\ - t =
v_'
f!.J..lnent to give x :rtrducts.
Enediynes are obtained when propargyl carbonatesand excess l-alkynes are combined in the presenceof (PhrP)oPd.'3Allylation of pronucleophilesby alkylidenecyclopropanes involvesring openingof the latter.14
,rcN
1*
*
>:t
(PhsP)4Pd
-\-rn
THF
1OOO
\%{,tr* 82%
Suzukicoupling. Synthesis of biaryls by the Suzuki coupling at ambient temperaturein the presenceof the Pd catalystand TlOHl5 and using recoverableand (PqP)4Pdcatalystl6havebeenstudied.The cross-coupling of reusablepolymer-supported quite The successful.lT is arylboronicacids with poly(ethyleneglycol) iodobenzoates
3g
Tetrakis(triphenylphosphine)palladium(0)
by the use of a catalyzedreactionof bulky arylboronic acids with halopyridines is favored partners for coupling as well serve salts strong base and large cations.rs Diaryliodonium arylboronic acids.le starts from A method for the stereoselective synthesis of Cr-silylstyrenes2o g-BBN) coupling Suzuki the by followed (with hydroboration-oxidation of alkynylsilanes of the alkenylborinateswith aryl halides.
.5=
+ PhBr
d,,'",
I
Zt\ NaOH
a-"Yo'"1orn,, O \-'^t--,,/ Functionalized macrocyclic dl using polymer-bound stannarcs
Ph
(Ph3P)4Pd
On conversion of lactones to c compounds with organostannarn
SiMe3
/
870k
a basein Intramolecularcoupkngofphenolswilhhaloarenes' Using CsrCO, as for Preference couplingis quite regioselectivethe Pd-catalyzed N,N-dimethylacetamide couplingat theo-positionof thehydroxylgroup(vs.p-position)is noted.2r
(( 6r...-,SnBue
OH
A \z\
a-\ \,^..
(Ph3P)4Pd > Cs2CO3
",J I
AcNMe2 9oo
oH 4-r
.\.V l t t
l
\Z\ru'
Other reactions of organon Pd(0) is regiochemically distirrt I Insertionofcarbon dioxide into r
I
COOMe
COOMe
76'/"
.k
pfi to Geminal allylic diacetates undergo substitution.22 Access Stillecoupling. methyl of couplings 2,3-disubstituted and 2,3,5-trisubstituted furans23 by stepwise to 3-tributylstannylsulfolene of conversion the and 2,3-dibromofuran-5-carboxylate preparations are among the useful 3-arylsulfolenes (and thence to 2-ary1-1,3-butadienes)24 2-organoselenenyl-1,3-dienesare as such dienes Functionalized method. based on this -selenoalkenes -stannyl-I with haloalkenes'2s available by Pd/Cu cocatalyzedcouplingof 1
Brr-
,,-(}"ooMe
(Ph3P)4Pd
V:.,..r.snBus ;;*
t''-)--o
ZrJr)=cooMe
(prb
,-snBu3
_5
60%
8,.r3 TH;
(E:Z >95:5)
Thect Negishicoupling. as demonstrated 5-bromo-2,4-pentadienal.sB1 styrenes containing fluorine aro
moieties
synthesis of terminal alk.rncs coupling,32ethynylzinc bromi& corresponding Grignard rcagea arylation [(Ph3P)4Pd-ZnCl.]."
73lo
Tetrakis(triphenylphosphine)palladiun(0)365 11,r,'redby the useof a t .,,upling Partnersfor
On conversion of lactones to cyclic ketene acetal phosphatesand coupling of the latter compounds with organostannanes,cyclic enol ethers are obtained.26
s:\:!'neslo starts from t fr :he Suzuki couPling
* B,3snA
(/o';to*r'
(Ph3P)4Pd- LiCl
8Oo/"
Functionalized macrocyclic alkenescan be synthesizedby intramolecular Stille coupling using polymer-bound stannanes.The products are releasedduring the coupling process.2T
Ph 1t\
SiMe3 O
" ' - [ " . , , t t t ^ ,
R
O
r
(Ph3P)4Pd
a7'. 3; ('.CO3 as a basein nc.:erive. heference for
PhMelooo
MEMO,,{4'
no% 54/" R=MEM +
,U"
s :,,rcd.:l
7(aA"l-,,^r.'
R=H
(Slzearalenone
6a.,,SnBuz
Hydrostannylation of allenes catalyzed by Otherreactionsoforganostannanes. Pd(0)is regiochemicallydistinctfrom reactionspromotedby Lewis acids Ie.g.,(C6Fs)38].28 Insertion of carbon dioxide into allylstannanesgives stannyl 3-butenoates.2e COOMe
5SnBus
(Ph3P)4Pd +
u!..:rtution.22Access to s- J()uplings of methYl if,-:\ l\tannylsulfolene to n: :hc useful PreParations ox'.c'nenll-1,3-dienesare 1.n.. $ ith haloalkenes.25
3r__.,_ / \ \ VolcooMe 73'/"
Ph 60"/"
Bu3SnH THF ^
r w: Pri
Ph3B
BuaSn
+
Bu3SnH PhMe Oo
Ph
(E;Z>95:5) Negishi coupling. The coupling of organozincs with halides does not affect enal moieties as demonstrated by a facile synthesis of 2,4-alkadienals from 5-bromo-2,4-pentadienal.30By using fluorinated ethenylzinc reagents in the coupling styrenes containing fluorine atoms in the side chain are readily prepared.3l For a direct synthesis of terminal alkynes from aryl and alkenyl halides by the Pd(0)-catalyzed coupling,32ethynylzinc bromide is recommendedfor sterically demanding caseswhere the corresponding Grignard reagent is inefficient. Note that l-alkynes undergo catalytic arylation [(P\P)4Pd-ZnC12].33
t{i
1[l
36
Tetrakis(triphenylphosphine)palladium(0)
Arylcyclopropanes are obtained from coupling using cyclopropylzinc halides.3a Carbonylative coupling. Symmetrical ketones are formed on treatment of (PhrP)oPd organozinc reagentswith under CO. In the presenceof aryl iodides the reaction gives with RZnI RCOAr.35 Methacrylic acid derivatives are formed by a Pd-catalyzed reaction of allene, carbon monoxide, and nucleophiles.s6
Phl
NHBoc
V{Y=
(Ph3P)4Pd
eooue
Pht zlr'NHBoc i l : O
CO / THF
Arenes from enyl. intermolecular cyc load the products are 2.64i
that benzynes underer o-trimethylsilylphenlI
Hx---E
COOMe
60%
(Ph3P)4Pd>
P h N H 2 + c o . H
tl
ph
THF- HOAc
Cyclization.x ft is highly dependenton
N H
80"/"
.J
Carbon monoxide diverts the coupling of diaryliodonium salts and arylboronic acids to the generation of diaryl ketones.3TAdditive carbonylation leading to B-substituted butenolides38is observedwhen propargylic alcohols and diaryl chalcogenidesare subjected to the carbonylationconditions. The reductive carbonylation ofpropargyl alcohols in the presenceofthiols which results in p,y-unsaturatedthioesters3eis in contrast to the formation of 5-hydroxy-2,3-alkadienoic estersaofrom ethvnvloxiranes.
Ph-SH
(Ph3P)4Pd
\.,
n"oJ
S
\
.J A"oJ-\
PhS
T H F- T S O H
MeOOC
Y
co
MeOOC The tricarbonylchromium complexes of (o-chlorophenyl) but-3-en- | -y1 ethers undergo carbonylative cyclization stereoselectively.alHomologation of benzylic alcohols to form arylacetic acids is achievedby Pd(0)-catalyzedcarbonylation using HI and CO.a2
(Ph3P)4Pd Et3N/ MeOH
co
COOMe
MeCN - PhH R=Me
73% (>98'kde\
RearrangemenL to the bridged ring slsrr bond migration.ot Th. I
-T--q \---+Y oA3.
/,
Tetrakis(triphenylplpsphine)palladium(0) 367
rr-..nalides.3a | ,r treatment of I : "irJes the reaction r: .r a Pd-catalyzed
Arenesfromenynesanddiynes. A novel synthesis of alkynylarenes by the intermolecular cycloaddition of enynesand diynes has beendeveloped.43With enynesalone the products are 2,6-disubstitutedstyreneswhich are formed by cyclodimerization.4 Note that benzynes undergo trimerization to give triphenylenes in situ, e.g., by treatment of o-trimethylsilylphenyl triflate with CsF in the presenceof (Ph.P)oPd.as
t"-:_1
t, r Boc
(Ph3P)4Pd + cod / THF
OCt'le
1000
867"
c
Cyclization.a6 Intramolecular alkylation involving an allylic acetateas electrophile is highly dependenton the locationofa silyl substituentin the substrate.
.Y ll -..
r:<
n ,:r lhoronicacidsto h : : i() p-substituted ' ! , ':.rllcsaresubjected o: :::(rlswhichresults lr, rr -1.3-alkadienoic
ncoJ
/siEt3 COOMe
(Ph3P)4Pd
Y
NaH/ THF
COOMe
__l
,"OO"?
OOMe
74%
acoJ
r:<
,siEr3 cooMe
(Ph3P)4Pd
Y
NaH/ THF
COMe
Et.Si -
V"\-,-
\ t l
l"oo"" 69"/.
SiEIC
MeOOC /:< \ , / \-OAc f
MeOOC
(Ph3P)4Pd
N a H/ T H F
MeOOC
siEt3
MeOOC 50"/.
:r . rlethersundergo r. :- .rlcoholsto form HI .,nJCO.a2
RearrangemenL An entry into the trichothecanenucleus from a fused ring portion to the bridged ring system is based on ionizarion of the allylic lactone that triggers a C-C bond migration.aTThe product is a synthetic precursor of vemrcarol.
(Ph3P)4Pd- Ph3P
COOMe -r
, (>98%de)
liI}i,ii iil rll
Ii
368
Tetrakis(triphenylphosphine)palladium(0)
lNuguy^.a, K., Shimizu, I., Yamamoto, A. CL 1143 (1998). 'Honda, M., Morita, H., Nagakura, l. JOC 62,8932 (1997). II 38, 3623 (1997). lPyn., S. G., O'Meara, G., David, D. M. "Vicart, N., Gore, J., Cazes,B. 254, 11063(1998). sshi-, J.-G.,Nakamura,H., Yamamoto,Y. JOC 63,8470 (1998). 6Nuku-u.u, H., Sekido,M., Ito, M., Yamamoto,Y . JACS 120, 6833 (1998). TShi-. J.-G..Yamamoro.Y. JoC 63.3067 (1998). 8ohno, H., Ishii, K., Honda, A., Tamamura, H., Fujii, N., Takemoto, Y., Ibuka, T. JCS(Pl) 3703 ( l 998). vCacchi, S., Fabrizi,G., Pace,P. JOC 63,1001 (1998). l0Monteiro, N., Balme, G. S1,746(1998). rrcacchi, S., Fabrizi,G., Moro, L. SL74l (1998). r2Monteiro, N., Amold, A., Balme, G. Sl, 1111 (1998). r3Hayashi, M., Saigo, K. IL 38, 6241 (lgg'7). raTsukada, N., Shibuya, A., Nakamura, I., Yamamoto, Y. JACS 119,8123 (199'7). ''Anderson, J. C., Namli, H., Roberts, C. A. f 53, 15123 (1997). r6F"ng"r, I., Le Drian, C. TL3g, 4287 (1998). "Blettner, C. G., Konig, W. A., Stenzel,W., Schotten,T. SI 295 (1998). 'rzhung, H., Kwong, F. Y., Tian, Y., Chan, K. S. "/OC 63, 6886 (1998). leKang, S.-K., Lee, H.-W., Jang,S.-B., Ho, P.-S.JOC 61,4'720(1996). 20Soderquist, J. A., Leon, C. TL39,3989 (1998). ''Hennings, D. D., Iwasa,S., Rawal, V.H. JOC 62,2 (1997). "van Heerden,F. R., Huyser,J. J., Williams, D. B. G., Holzapfel,C.W. TL39,5281 (1998). "Bach, T., Krtiger, L. SL I185 (1998). 2aBew, S. P., Sweeney,J.B. SL 1273(1gg':.). 25Mu, Y., Huang, X. JCS(Pt ) 2953 (lgg'7). 26Nicolaou, K. C., Shi, G.-Q., Gunzner,J. L., Giirtner,P., Yang, Z. JACS 119,5467 (199'7). ''Nicolaou, K. C., Winssinger,N., Pastor,J., Murphy, F.ACIEE37,2534(1998). 28c"uo.gyun, V., Liu, J.-X., Yamamoto,Y. JOC 62,2963 (1997). ?eshi, M., Nicholas,K. M. JACS 119,5057 (199'1). 30vicart. N.. CasterCaillabet,D., Ramondenc,Y., Ple, G., Duhamel,L. SL 41 1 (1998). 3lNguy"n, B . V . , B u r t o n ,D . J . J O C 6 3 , 1 7 1 4( 1 9 9 8 ) . "Negishi, E., Kotora, M., Xu, C. JOC 62,8957 (1997). "Crisp, G. T., Tumer, P. D., Stephens,K. A. JOMC 570,219 (1998). '"de Lang, R.-J.,Brandsma,L. SC 28,225 (1998). "Jackson, R. F. W., Turner, D., Block, M. H.JCS(PI) 865 (1997). tucrigg, R., Monteith, M., Sridharan,V., Terrier, C. 754, 3885 (199s). ''Kang, S . - K . ,L i m , K . - H . , H o , P . - S . ,Y o o n , S . - K . ,S o n ,H . - J .S C 2 8 , l 4 8 l ( 1 9 9 8 ) . ttogu*u, A., Kuniyasu,H., Sonoda,N., Hirao, T. JOC 62,8361 (1997). 3exiao, W.-J., Alper, H. JOC 62,3422 (lggi). a0Piotti, M. E., Alper, H. JOC 62,8484 (199'7). otc.ourr", B., Xu, L.-H., Bemardinelli,G., Kiindig, E. P. SL 658 (1998). otl-in, Y.-S., Yamamoto,A. BCSJ 71,723 (1998). 43c"uo.gyun, V., Takeda,A., Yamamoto, Y. JACS 119, I l3l3 (1997); Gevorgyan,V., Quan, L' G., Yamamoto. Y. JOC 63. 1244 (199$. *Gevorgyan, V., Tando, K., Uchiyama, N., Yamamoto, Y. JOC 63,7022 (1998). 45Pena, D., Escudero,S., Perez,D., Guitian, E., Castedo,L. ACIEE 37,2659 (1998). a6Thorimbert, S., Malacria, M. TL 39, 9659 ( 1998). aTwhite, J. D., Kim, N.-S., Hill, D. E., Thomas,J. A. S 619 (1998).
Tetrakis(triphenylphmphir Sonogashira coupling. substituent (i.e., enol and yno alkenyl iodides.r Alkynylsih alkenyl and aryl triflates.:
Ro--
+
RO----
+
'-\
l-
\\
co{
lDussault, D. G..S1 P.H.,Sloss, 2Nirhih*u,Y., Ikegashira. K..Vr
Tetrakis(triphenylphcphb Hydr ocarbonylation ol t l-alkynes under CO in thc generationof the regioisonu reactionon 5-hydroxy-I -pen
?*lll + F
Diboration of allcncs. reactionof al Pt(0)-catalyzed
(Prf
.,-cooEt o. ,8-t o
(Pr{ OMe
o. B-
o
Tetrakis(triphenylphosphine)platinum(0)
369
iodide' 18' 349-350 Tetrakis(triphenytphosphine)palladium(0)-copper(I) Stereodefined enynes including those bearing an alkoxy sonogashiracoupling. on coupling with substituent (i.e., enol and ynol ethers) are readily preparedfrom alkynes the coupling with in alkenyl iodides.r Alkynylsilanes can be used instead of l-alkynes alkenyl and aryl triflates.2 l*,' : )
I h u k a ,T . J C S ( P 1 )3 7 0 3
RO---
*
- Cul (Ph3P)aPd
'-\coH,
D
l: : .997)
-CaHg
i-PrNH2 - Cul (Ph3P)4Pd
l---:r
RO---:
RO:-\\
\\ coa/
*O-:-\
i-PrNH2
coa/
lDussault, D. J' SL 1387(1998)' P. H., Sloss,D. G.,Symonsbergen' 2Nirhihu.u,Y., Ikegashira, K., Mori, A'' Hiyama,T' CL 1233(199'7)'
t I I
(1998), I .'r -re.5281
(1997). ( . I 19.5,167 _ <: :
.998).
Tetrakis(triphenylphosphine)platinum(0). from Hydrocarbonylation of alkynes. 2-Substituted acrylic thioesters are obtained to the contrast l-alkynes under co in the presence of the Pt complex and thiols, in Pt-catalyzed generation of the regioisomeric products when using (PhjP)3RhH(CO).r The yields c-thiomethyl-6-lactones'2 reaction on 5-hydroxy-1-pentyne
lll oH 'l'
+
PhSH
\-/
ff
-co (ph3p)4ft ---= MecN
o/?spn | |
120"
\,"
L .. rl I (1998).
73"k
1-propene is formed in Diborationof allenes. 2'3-Bis(pinacolatoboryl)reactionof allenewith bis(pinacolato;diboron'3 Pt(0)-catalyzed I
t-r. I 998). r
(Ph3P)4Pl
z-COOEt
pJ-
-\-o.
l B - l -td bf
)",
\--,r-cooE'
+! Yx.>f.f"# (93 : 7)
r-
r : i \ o r g y a n r V . , Q u a n ,L . G . ,
:, :: 1998). ? t^<e( 1998).
90'/.
(Ph3P)4Pt
OMe
-fo. l B -fd
-
.oJl bf
ioot'
the
2 '#
+!\
370
Tetrapropylammoniumperruthenate,TPAP
'Ogur"u, A., Kawakami, J., Mihara, M., Ikeda, T., Sonoda, N., Hirao, T. JACS llg,12380 (Igg:). "Ogawa, A., Kawabe,J., Kawakami, J., Mihara, M., Hirao, T., Sonoda,N. OM 17,31l t (1998). 'Ishiyama, T., Kitano, T., Miyaura, N. fZ 39, 2357 (Iggg).
N,N,N',N'-Tetramethylguanidine.17, 332 As base. Nitroaldolcondensationr and conjugateadditionof dialkyl phosphitesto o,,B-unsaturated carbonylcompounds2 arereadily catalyzedbytetramethylguanidine at 0o. rSimoni, D., Invidiata,F. P.,Manfredini, S.,Ferroni,R., Lampronti, L, Roberti,M., Pollini,G.P. TL 38,2749(199'1). 2Simoni, D.,Invidiata, F. P.,Manfredini, M., Lampronti, I., Rondanin, R.,Roberti, M., pollini,G. p. It 3 9 , 7 6 r 5( 1 9 9 8 ) .
2,2,6,6-T etramethyl-4-methoxy-1-oxopiperidinium
chloride. a-Oxygenationofketones. Piperidinoxylation of ketones is observed with the reagent I (prepared from TEMPO and chlorine gas) in MeCN at room temperatureJFor ketones containing an active methylene group thecr-oxyfunctionalized derivatives undergo elimination to afford c-diketones on heatine with TsOH in MeCN.2
,/u
ketones.2 A modified perruthenate and trimeill
rYates, M. H. ZI 3E,281I , 2Tokrnugu, Y., Ihara,M.. F 3Hinren, B., Ley,S. V. .lC
Thallium(Il!
acetatcr a-Ketols.t The re the products with aqueo
rLee, J. C.,Park,C.,Chor.
Thallium(Ill)
acetatH 2-Alkyl-S-aryloxu condensationof alkyl cy
J. C.,Hong,T. i.L 3t.
*N=o
V-;
"a'* (1)
Oxidations. This N-oxide) has been used the presence of AgOA<
rlee,
ci __\.. Meo{
Tetrapropylammoniur
tl
P(V
Thallium(IlD
tl
58v"
nitrate. I Cyclaalkanecarbo4 ketonesundergo ring ca
rRen, T., Liu, Y.-C.,Guo,Q.-X. BCSJ69,2935(1996). 'Liu, Y.-C., Ren,T., Guo,Q.-X.CHJC14,252(1996\.
Tetrapropylammonium
perruthenate, TPAP. Oxidation of alcohols, The pemrthenate salt is an excellent catalyst for aerobic oxidation of alcohols to aldehydes and ketones in the presenceof 44, molecular sieves.r'2 The use of a polymer-supported ammonium perruthenatd is perhapsan improvement, with good discrimination in the oxidation in favor of primary alcohols. Another versio#
Regeneration
of co
sis is carried out in medr
lFenaz, H. M. C., Silva- L I 2Wang, J., Lin, J., Zheng.,t'
specifies a system containing CuCl and 2-aminopyridine also. rl-enz, R., Ley, S. V. JCS(PI ) 3291(1996). "Marko, I. E., Giles,P. R., Tsukazaki, M., Chelle-Regnaut, I., Urch,C. J.,Brown,S. M. JACS119, 12661(1997\, 3Hinren, 8., Lenz,R.,Ley,S. V. S 977(1998). -Coleman, K. S.,Lorber,C. Y., Osbom,J. A. EJIC 1673(1998).
Thiourea. 19,336 Thiols. Activated thiourea in the presence< halides (e.g., 4-chlorop ammonia.2
Thiourea
. r \cs l19, 12380(1997). L \ r ) r / 1 7 , 3 1 1(11 9 9 8 ) .
r:: :r \,f dialkyl phosphitesto )\ :.:rrmethylguanidineat 0". M., Pollini,G.P-TL . 1 R ,bc'rti. M., Pollini,G. P.7l r. i{ R,'berti,
de. a:,':c. is observed with the c\ .rr rooffi temperatureJFor tr, :r.,lrzedderivativesundergo It:'( \.l
371
Tetrapropylammonium perruthenate-l-amine oxide. 14' 3021,16' 325; 18' 351 This reagentcombination (the amine oxide being N-methylmorpholine Oxidations. N-oxide) has been used to oxidize organoboranesto furnish carbonyl compounds,r and in the presence of AgOAc and 44 molecular sieves it oxidizes secondary nitroalkanes to ketones.2 A modified reagent consists of a polymer-linked trimethylammonium perruthenateand trimethylamineoxide.l tYuter,M. H. TL38,2813(199'7). tTokunugu,Y., Ihara,M., Fukumoto,K. JCS(Pi) 207(1997). 3Hinr"n,B., Ley, S. V. JCS(P1)l9O7(199'1).
Thalliumfl ID acetate-4-nitrobenzenesulfonic acid. The reagentcombination oxidizes ketonesat the cr-position.After heating a-Ketols,t the products with aqueousDMSO o-ketols are obtained. rLee, J. C.,Park,C.,Choi,Y., Hong,T. SC27, 4079(1997)-
Thallium0lD acetate-triflic acid. triflate formed in situ promotes the Thallium(Ilf 2-Alkyt-5-aryloxazoles.t (20 examples,7l-86%o)' ketones with aryl of alkyl cyanides condensation ILee,J. C.,Hong,T. TL38,8959(1997).
P - Y o
Thallium(IlD nitrate. 16,326;18' 351; 19,334 On treatment with TTN in dichloromethane cyclic Cycloalkanecarborylic acids.t ketones undergo ring contraction to give ring-contracted acids (6 examples,36-98Vo).
a3 ' "
+G"
Tt(N03)3 CH2CI2
){"oo" 87"/"
The rapid hydrolyof carbonyl compounds ftom tosylhyilrazones.2 (9 75-93Vo). examples' temperature at room in methanol sis is carried out Regeneration
.\-.'llent catalyst for aerobic c:,: ,rf .1A molecularsieves.l'2 i r:naps an imProvement,with r. .:;cohols.Another versiorf
rFenaz, H . M . C . , S i l v a ,L . F . T L 3 8 , 1 8 9 9 ( 1 9 9 7 ) . 2wang, J., Lin, J., Zheng,Y., Huang,J.5C27,2583 (199'l).
s^
c: r J..Brown,S. M. "/ACS119'
Thiourea. 19,336 Thiols. Activated benzyl alcohols are converted to the thiols by reaction with thiourea in the presenceof HCl, followed by saponification.r Substitution of activated aryl halides (e.g., 4-chloropyridine) is accomplished by treatment with thiourea in liquid ammonia.2
372
Tin
Sulfur heterocycles. Replacementofthe oxygen atom in 1,3,4-oxadiazolesby sulfur to furnish 1,3,4-thiadiazoles3is effected by heating with thiourea at 120-150" (4 examples, 55-69Vo). Using (CFTCOO)2TiOascatalystepoxides are convertedto thiiranesaby thiourea (or ammonium thiocyanate). lvetter, S. 5C28,3219(1998). 'Combellas, C.,Pellerue, S.,Manhey,G.,Thie'bault, A. TL38,539(lggi). -Linganna, N., Rai,K. M. L. SC28,4611 (1998). -Iranpoor, N., Zeynizaded, B. SC28,3913(1998).
Tin(II) chloride. 13. Allylations. R SnCl, leads to allyl kr (from the bromohydri
Thiourea dioxide-sodium hydroxide. Deoxygenation,t u,B-Epoxy aldehydes and ketones undergo deoxygenation with basic thiourea dioxide to provide enals and enones,respectively, in good yields. BuoNBr is added to the reaction media as a phase-transfercatalyst.
(H2N)2C=S02
cHo
6% NaOH / THF
a
Bu4NBr
rHrvatin, P., Sykes.A ( 'Qian, W., Bao, W.. Zl 3sun, P., Zhang, Y. SC i -Crimmins, M. T.. Kinr
system in water-dich Homopropatgrl, depending on reagen
(
4t"
cHo
. l l
(
700/"
rdos Santos,R. B., Brocksom,T. J.,Brocksom.U. ZL 3E.745(lggl.\.
Tin. 13, 298; 17, 333-334; 18,352 Formanilides.i A one-step conversion of nitroarenes to formanilides involves heating with tin and formic acid in toluene under a Dean-Stark trap. *selenoalkanoic esters.2 Diorganodiselenidesare cleaved by tin and the reagents thus generatedcan be used to displace u-haloestersin aqueousTHF. pAmino nitriles.3 The organotin species derived from bromoacetonitrile adds to aldimineswith the assistanceof MerSicl. Mild hydrolysis of the silylatedproductsgives B-aminonitriles. 3-Butenal.a A convenient preparation of this unsaturated aldehyde is via an ultrasound-mediated Barbier-type reaction of allyl bromide with glyoxal followed by oxidative cleavageof the vic-diol product.
OH
*
Br^/
jTHF - H2O
Naro4> ,* OH 521o
lYasuda, M., Tsuchida.I 2Kundu, A., Prabhakar.! 3Muruyurnu, Y., Ito. A.
Tin(IV) chloride. 13 19,338-339 Deprotections. ethersrandBoc-protc with a hydroxylicsolr Pinacol rearmng effectiveinducerfor orthoesters.
o
/\vcHo 72o/o
a-+ t'.--f t
o
;'r
TinflV)chloride
.-:.-i-oradiazolesby sulfur a: . l0- 150' (4 examples, ri :,, thiiranesaby thiourea
373
rHrvatin,P., Sykes,A. G. St 1069(1997). 2qiun,W., Bao,W., Zhang,Y. 5L393(1997). 3sun,P., Zhang,Y.SC 27,3175(1997). acrimmins, M. T., Kirincich,S.J.,Wells,A. J.,Choy,A.L. SC28,3675(1998). -338 Tin(II) chloride. 13, 298 -299 ; 15, 309-3 I 0; 16, 329; 18, 353-3 54'' 19, 337 g-bromoketones presence of in the allylstannanes with Reaction of Allylations, process realrangement in situ from an SnClr leads to allyl ketones.The new skeletonsarise the snc!-cuClt by is mediated (from the bromohydrin derivatives).r1-Selectiveallylation
f-
le:i,' deoxygenationwith rr. -irrodyields.BurNBr is
systemin water-dichloromethane.2 Interesting variations in Homopropargyl alcohols. dependingon reagentsand conditionsare noted.l
4*
Tcno
propargylation/allenylation
aYo'" aYo*" . o".nY\./ 4Y OH
OH
X = Br, SnCl2- Bu4NBr 74% X = Cl, Snl2- BuaNl
r,' l,rrmanilides involves r.i
(100 : 0 )
8oo/" (17 : 83)
rYasuda, M., Tsuchida,M., Baba,A. CC 563 (1997). 2Kundu, A., Prabhakar,S., Vairamani,M., Roy, S. OM 16,4796 (199'7). 3Muruyu-o, Y., Ito, A., Fukuzawa, M., Terada, K., Kurusu, Y - CC 2025 (1998\.
c' .r tin and the reagents l-HF adds to t: ,rrroacetonitrile .:.rlated gives products :c a:eJ aldehyde is via an r::h glyoxal followed bY
Tin(IV) chloride. 13,300-301; 14,304-306;L5,31 1-313; 17,335-340:18' 354-356; 19, 338-339 Deprotectians. Convenient procedures for the cleavage of O-p-methoxybenzyl ethersrand Boc-protected guanidines2consist of treamentwith tin(lV) chloride and workup with a hydroxylic solvent. Pinacol rearrangement.3 A combination of SnCloand trimethyl orthoformate is an effective inducer for the rearrangement,which presumably involves intermediate cyclic orthoesters.
\a o+,
/\vcHo 72"/"
Ou OPNB sncra /'\-^ l l ) HC(oMe)g \-ry c{2cl2 oH
A t
\
\. ..oPNB 1 t
<,/\,
97"k
Tin(IV) chloride
Aziridines. A synthesis of azindine-2-ca$oxylic esters by the reaction of in the presenceof SnCl4 is subjectto hexahydro-1,3,5-triazines with alkyl diazoacetates asymmetric induction by a chiral substituentattachedto the nitrogen atom.1
Phv
P
sncto
I
r
ruicooet
Y[--]-r"
CH2CI2
.Ph l/
Eroo
Ni
Tin(IV) chloride-tri hrt-vl Bodl o-Vinylation. tion at an orlro position r
67%
bond.s Tin(IV) chloride also catalyzes the anti-selective carbonyl-ene reaction between N-tritylaziridine-2-carbaldehyde.n Thus, the steric courseis different from that involving BFj.OEt2 as catalyst.
n
SnCl4
YT
SnCl4
Ph...=il
r*
-.Jn-cl ':"' cl"" l
Ph
r-r*
..................................*
fov"
OMe
( 1998). oHa,H.-J.,Kang,K.-H..SuhSRur-ussen.K. G.. Hazell.R 6Nayak, S. K., Thijs,L.. Zsu TDixon,D. J.,try, S. v.. Tdc 8Akiyurnu,T., Suzuki,M. CC
ErOO (67 : 33)
-78o
Formation of cls-disubstitutedaziridinesfrom N-(2-methoxyphenyl)aldimines can be attributed to intermediatessuch as 1 (isolatable and identified) possessingisomerized C=N
r-
tKu.tha.K. P. R.. Kiso.M.. l! 2M"i1,H., Rault,S. 7L 3t. 7t( 3Kita,Y., Yoshida,Y.. Mihlr
N1\cooet
n
Ph
cl
OMe
N
subsequent reaction of d
trifluoroacetic anhydri& r 100") 2,6-divinylphenolsc
converted to the correspo purposesby reaction with .
OH
r^
p2
SnOla - Bu3N +
:
booet
(1)
C-Glycosi.des.' 2-(Trimethylsiloxy)alkenylglycosides undergo rearrangement exposureto SnClo to afford 2-(l -hydroxy-2-oxoalkyl)tetrahydropyrans.
l
l
p
h
cuH,fo^ol\f OSiMe3
o snc,a- ff * a) ;; "u",rAoAAPh c.H,^oMtn n6" "6" -3oo
'Yamaguchi, M., Arisawa V'Yamaguchi, M., Arisawa. M rYamaguchi, M., Arisa*a- \| "Yamaguchi, M., Kobayastu.
(3 : 1) 86%
3-Triorganogermyltetrahydrofurans.s addition
with
carbonyl
compounds
Allylgermanes such as ct-ketoesters
undergo formal under
Remarkably, the ester carbonyl group participates in the reaction.
catalysis
[3+2]cycloof SnClo.
Tin(II) hexamethyldidh Stillecoupling.t P, is reactivetowardtriflarcs tFouquet, 8., Rodriguez. .{ [
Tin(II) hexamethyldisilazide
:he reaction of .r.Cl. is subjectto t: I
Ph l/'
Ni
.rldiminescan be : r\omerizedc=N . r!'actionbetween ' ,nr that involving
t
n Y' A
(1998). aHu,H.-J.,Kang,K.-H.,Suh,J'-M.,Ahn,Y.-G.TL37,7069(1996)' sRu..urr"n,K. G.,Hazell,R. G.' Jorgensen, K' A' CC i 103(1997)' 6Nayak, (1998)' 1187 B. SL L., Zwanenburg, S. K., Thijs, TDixon,D. J.,Ley, S.V., Tate,E. W. SL 1093(1998)' 8Akiyurnu,T., Suzuki,M. CC 2357(1997).
Tin(IV) chloride-tributylamine. 18, 356-357 Both phenolsr and anilines2undergo 2,2-bis(trichlorostannyl)vinylao-Vinylation. styrenes are obtained on tion at an ortho positionwith snclo-BurN. The ring-substituted (phenol cases) or I!co, methanolic either subsequent reaction of the products with (e'g" temperatures reaction higher At (aniline cases)' trifluoroacetic anhydride and KOH are intermediates 100") 2,6-divinylphenols can be prepared.3The bis(trichlorostannyl)vinyl synthetic other for derivatives converted to the corresponding bis(trimethylstannyl)vinyl purposesby reactionwith MeLij
,,A
:,2
N
Ph
rKartha,K. P. R.,Kiso,M., Hasegawa, H' J' JCC 17,811(1998)' A., Jennings, 2Meil,H., Rault,S. TL38,'7865(1997). 3ritu.'V., yostrida,Y., Mihara,S.' Furukawa,A', Higuchi,K', Fang,D'-F'' Fujioka'H' T 54' 14689
OH OMe
375
-BusN sncrr
:
SnC13
SnMe3 MeLi; AczO
SnMe3
cooEt
rdlrrangementon f:.
rYamaguchi,M., Arisawa,M., Omata,K., Kabuto,K', Hirama,M'' Uchimaru 'T' JOC 63'7322 (1998)' 2Yamaguchi,M., Arisawa, M., Hirama' M. CC 1399 (1998)' 3Yamaguchi,M., Arisawa, M., Kido' Y., Hirama' M' CC 1663(1997)' 4Yamaguchi,M., Kobayashi,K., Arisawa,M' SL l3l7 (1998)'
:()rmal[3+2]cyclolc: ,.rtalYsisof SnClr. e:.
-340 Tin(II) hexamethyldisilazide. 18, 357; 19, 339 Reaction of the reagent with RX provides RSn(X)[SiMgl, which Stille coupling.r is reactive toward triflates in the coupling process catalyzedby Pd(0)-TBAF' rFouquet, A' L. SL 1323(1998). 8., Rodriguez,
376
Titaniurn(Il)chloride
357-358; Tin(II) triflate. 13,301-302;14,306-307:,15,313-314;17,341-344;18, 19,340 Allylation.t Certainhomoallylicalcoholsserveassourceofallyl groupsfortransfer of 4,{ molecularsieves. to aldehydes whentheyaretreatedwith Sn(OTf;,in thepresence
tnaA""o
+
Sn(OTf)2/ CH2C|2
'n"fal'A
-
M.S. 4A
- 250
OH
For the prepar
to MerSiCH(ZnB Pinacols.z ketones are indrx moderate coordin additives such as
interact with the r
lMatsubara, S..Mu 2Mukaiyama, T.. K
95%
A (p-selective synthesis of cinnamic esters is realizedby condensing aryl ketones with bis(trifluoroethoxy)phosphonoaceticestersusing a mixture of Sn(OTf), and N-ethylpiperidine as promoter.2 The method is useful for the Emmons-Wad.sworthreaction.
preparation a,-fluoro-cr,B-unsaturated esters.3
Titanium(Ill) ci 'l Alkenes. I -(2-hydroxyalkl
stoichiometric an 1,2-Dianire
lNokami, H., Sumida,S. "/ACS120,6609(1998). J.,Yoshizane, K., Matsuura, 2sano,S.,Yokoyama, K., Fukushima, M., Yagi,T., Nagao,Y. CC 559(lgg'r.). rSano,S.,Ando,T., Yokoyama, K., Nagao,Y. 5L777(1998).
Titanium(Ill) borohydride. Dialsfromcyclicenolethers.\
The reagent is formed in situ from TiClo and ring Et,N(Bn)BHo. It effects reductive opening of cyclic enol ethers.Perhapsthis method is oflittle synthetic significance becauseit should be possibleto achievethe reduction much more conveniently using simpler borohydride reagentsin mildly acidic aqueoussolutions.
valuable ligands.
rKatritzky,A. R..( tTulukd-, S.,Nalz 3Tulukd., S.,Barr
Titanium(Ill)
d
Pinacollon
Semifullcrtt debrominative cc
lRavikumar,K. S. T 53,2973( 1997). S.,Chandrasekaran,
Titanium(Il)
chloride.
while methylenation of aldehydes with CHr(ZnI)2 proceeds Alkylidenation' presence smoothly, the of TiCl, is essentialfor a similar reaction with ketones to give the yields. It meansthat chemoselectivity is achievableby adjusting the alkenes in reasonable reagentcomposition.
rLipski, T. A.,Hilf 2sygula, A.,Rabr TiCl2' CH2(Znl)2
cHo
CH2(Znl)2
Titanium(IV) d 344-347:'lE,35 Allyhtions. allylsilanesto pr
Titanium(TV) chloride
rl.r. groupsfor transfer 'j \ r-nolecularsieves.
For the preparationof (E)-alkenylsilanesthe Me,SicH(znBr)r-TiClrreagent is inferior to MerSiCH(ZnBr)r-CrCl, in terms of stereoselectivity. pinacols.2 With zinc in the presence of pivalonitrile both aromatic and aliphatic ketones are induced to couple at 0o to ambient temperature (11 examples, 6l-97Vo).The moderate coordination of the nitrile to the low-valent Ti speciesappearsimportant; other additives such as pyridine, HMPA coordinate too strongly to permit the titanium speciesto
.-/^\,z\4.
interact with the carbonyl substrates.
3-!. r8, 357-358;
I
OH
lMatsubara. S..Mizuno,T., Otake,T., Kobata,M'' Utimoto'K.' Takai,K' Sf 1369(1998)' 2Mukuiyu-u,T., Kagayama, A., Shiina,1. CL l|Oi (1998).
g5%
(\: . tnnamic esters is estersusing h,,r.,'.rcetic r::.'rl is useful for the
i
Titanium0ll) chloride-lithium. 19' 340 The low-valent titanium species is useful for defunctionalization of Alkenes. 1-(2-hydroxyalkyl)benzotriazoles.rThe reagent is activated by the addition of stoichiometric amounts of iodine for the McMurry coupling of carbonyl compounds.2 7,2-Diamines.3 Reductive dimerization of imines affords diamines which are valuable ligands. rKut itrky, A. R., Cheng,D., Henderson, S.A., Li, J. JoC 63'6704(1998)' 2Tulukdur, S.,Nayak,S. K., Banerji,A' IOC 63,4925(1998). 3Tulrkdur, S.,Banerji,A. JOC 63,3468(1998).
.::.: irom TiClo and : Pr'rhapsthis method cr. :tc reductionmuch
Titanium(Ill) chloride-zinc . 19, 341 pinacolformatian.t This processis subject to modification by ligands to the metal. Semifullerene.2 A nonpyrolytic route to the C30hydrocarbon is by an intramolecular
xJ:. .rqueoussolutions.
debrominative coupling.
+
TiCl3 - Zn Me3SiCl
r ( ll.rZnl), proceeds 'xctones to give the i:::. e,..:ric'by adjustingthe
MeCN
20"k semifullerene
rlipski,T. A.,Hilfiker, S.G.JOC62'4566(1997)' M. A.,Nelson, rSygula, (1998)' 120,12666 P.w. "/ACS A., Rabideau,
|':
Titanium(fV)chloride.13,304-309;14,309-311;15,3l'1-320; 16,332-337; l7 , 344-347: 18,359-361; 19' 347-344 Allylations. B-HydroxylaminoaldehydesundergoTiClo-catalyzedallylationwith This approachoffersan alternativeto direct allylsilanesto provide5-allylisoxazolidines.r
rllii
378
Titanium(IV)chloride
cycloaddition in accessing such heterocycles. A two-step synthesis of [a]-fused 4-methylenepyrrolidines (i.e., izidine derivatives) involves (2-chloromethyl)allylation and intramolecular N-alkylation.2 For the (2-chloromethyl)allylation of carbonyl compounds the substitutedallylsilanereagentcan be replacedwith methylenecyclopropane.s 3-Silyl-4-alkenals undergo cyclization which gives 3-cyclopentenols'a When the intermolecular allylation of enoneswhich favors the conjugate addition pathway is applied to 1,8-bis(trimethylsilyl)-2,6-octadienethe four stereocentersof the 2: I adduct emergein a defined fashion.5
The possibiliq ol the following equau<
/\ i l t
Yscl
( +
z
Tict4
\./v'n Il
*
MeNO2 CH2C|2
o
SiMe3
-90--600 740k
Aldol reactions a-position of a ka Baylis-Hillman rea
In the reaction ofN-Boc derivatives of lactim ethers the desilylation step is aborted by neighboring group participation which leads to 6+rimethylsilylmethyloxazin-2-ones.6 Allylation is divertedto annulationin casessuchas l-acetylcycloalkenes.T
'-Yo
o tl /-'f'\ \-JJ
Elimination. ferythro -+ (D,
+
(siPh3 \ o /
ricr4 o \ > - CJ-),,,,r,rn, - u _78_-20" f ,run
The highly stereoselectiveconversion ofiodohydrin estersto alkenes threo -+ (D) bV the allyltrimethylsilane-TiCl. mixture8 enables
stereoretentivedeoxygenation of epoxides via the iodohydrins. l-substituted tetralins are obtained from cyclic ethers Friedel-Crafts alkylations. such as 2-(3-arylpropyl)tetrahydrofuranse and alkyl N-(l-hydroxy-4-arylbutyl) carbamatesloby treatment with TiClo.
Tict4
cH2cl2
a m
\r'4 OH 67"/"
Beckmann rts
TiClo-catalyzed nn I,2-dehydro-I-amin product completell .
tNiu,D., Zhao,H.. D 'sudukun",M., vahk 3Miura,K., Takasum aMasse, C. E., Dakin sPellissier, H., Torpc 6Brocherieux-[:no1
(t9e'7). 7Kniilk..,H.-J..Foru 8Yachi,K., Maeda X gHanowven, D. C.,f loD"Ninno,M. P..Ell ttl-ur*"ua, M. I.. K4
(1e98). l2Muht-uld, R.. G.d l3Kataoka, T., Iwann laYokomatsu, T., Mu
Titanium(IV)chloride 379
f-n::..\is of [a]-fused or',erhI I )allYlation and f ..rrbonYl comPounds rg:,.Pr,lpane.3 g,tntcnols.aWhen the tr..r pathwayis aPPlied I 1 .rdductemergein a
Thepossibilityofefficientmulticomponentassemblyofcarbonchainsisillustratedby the following equation'rr
.)*" ..#,,"".# *qk"""" + scl
77"k
74%
A l d o l r e a c t i a n s . R e g i o s e l e c t i v e a l d o l r e a c t i o n l 2 a t a m o r ealso high l y s u b s t the ituted catalyzes by TiClo' This Lewis acid a-position of a ketone il'p'"-"'"0 13 by dimethyl sulfide' Baylis-Hillman reaction participated OH
rl:i:,,nst€Pis abortedbY ih!oxazin-2-ones'6 1 .::-.c t i:;rc..
o
dycHs orNP
r)
','siPh3
I r r Jnn estersto alkenes -Tr( 1. mixture8 enables xtrr:rid from cYclic ethers d:, rr --l-arYlbutYl)carba-
w-^) I
t/ /'/
3*1 D
'
lt
TiCla- Me2S F
+
i l )
v
QH2C!2
oeN 68%
mesylates undergo Six-membered cyclic ketoxime Beckmannrealrangemenf' leading to phosphite' in the presence of triethyl TiClr-catalyzed ring expansion corresponding the give The lower homolog fails to 1,2-dehydro-l-aminophosphonates'r4 product comPletelY' 'Niu, D., Zhao,H.'Doshi' A', Zhao'K' sL 979(1998)'.. ( 'Sudukun",M., Vahle,n., S"ttietf"'f', Kolter' D'' Steckhan'E SL 95 1997)' 4587(1997)' 38' IL Hosomi'-A H'' Saito' 3Miura,K., Takasumi, U', ttl"l""f ' '.JoC 62'9335(1997)' aMasse, C. E'' Dakin'L 'l', Knight'B' S'' Panek'.J-S (19e8)' JoC63'2148 M' u., roupet,L'' Santelli' $;ii;"., C" Lhommet'G' JCS(Pl) 2163 6Brocherieux-Lanoy' S'' "rttt""l' H ' Poupon'J'-C ' Vlnucci' cEJ 3' s38(1ee7)' H'' craf' R'' Jones'P G'' wanzl' G' tlliSi];., H.-J.,Foitzik,N , Goesmann' (1997)' sYachi,K., Maeda'K'' Shinokubo' H ' Oshima'K' IL 38' 5161 '7123(199'7)' nHurro*u"n,D. C., Dainty,R' F' Tt 38' loDeNinno, M. P.' Eller,C' TL38'6545(1997)' R'' Smit'w' A ?L 39' 1083 "Lut*"uu,14. I.' Kryschenki'v' r'' n'vrclti' A'' Lovdahl'M'' Caple' (1998). l2Mutr*atd,R.,Gundogan, B' JACS120'413(1998)' s' r 54' 11813(1998)' T'' watanabe' r3Kataoka, T., twamat', rsili;;;;' t ' I*utu'u' (1997)' 111 S' H 44' l4Yokomatsu, T', Minowa,f ' votniau'Y'' Shibuya'
380
Titanium(IV)chloride-lithium-trirnethylsilylchloride-nitrogen
Titaniumfl V) chloride-aluminum. McMurry couplings.t Both alkenes and vic-diols are prepared from carbonyl compounds by reductive coupling with this reagent system. tHu,Y., Du,2Z., Wang,J.-X.,Xi, Y., Gu,S. SC 28,3299(lgg8).
and tridehydroindohr slight modification transformation of &k anhydrides is simila lycopodine.
Titanium(IV)
chloride-amines.
Cyclizntion of unsaturated esters,t'2 Intramolecular C-C bond formation of malonates and a-phosphono esters is induced toward an unactivated multiple bond via titanation (for double bond the cyclization requires iodine to initiate).
-z| -v
Tict4 - Er3N
6cootrre
COOMe
cH2cl2
&",** 657.
Unsaturatedylactams.3 Vinylogous iron complexes are transformed lactamsby incorporatinga primary amine.
rA, \J(-
,Ph
o"-'B;\
Ticl4 - Et3N
..............'''.'....* t-BuNH2
cHo Acetalizption."
lMori, M., Hori, M.. Sa 2Mori, M., Hori, K.. A\ into
the
">--ri'
x*-
Titanium(IV) chlori Amidines.t Cr to amidines.The inu
formation of 2-amirx
I Zhou,L., Zhang.\'. -s
80%
Aldehydesare acetalized(yields >90%) with TiClo-R.N (R=H, Et)
as catalyst.This protocol is suitablefor acid-sensitivesubstratesand conjugateddouble bondsdo not migrateunderthe reactionconditions. 'Kitugu*u, O.,Suzuki, T.,Inoue,T.,Taguchi, T. TL39,7357(1998). 'Kitagawa,O., Suzuki,T., Inoue,T., Watanabe, Y., Taguchi, T. JOC 63,9470(1998). 3Ril.k-B.uun, K. ACIEE 36,509( 1997). 'Clerici,A., Pastori, N., Porta,O. T 54,I 5679( 1998).
Titanium(IV) chlorl Desulfunylatios temperaturewith Tr(
ftArylthioprop
of conjugatedesten r
rGuo,H., Ye, S..\\'ans 2shi,o., Lu,2.,Mu.L
Titanium tetraisopr 34'7-348;18, 363--r Titanium(IV) chloride-lithium-trimethylsilyl chloride-nitrogen. Reductive amination, The low-valent titanium speciesderived from TiClo, Li, and Me.SiCl absorbsatmosphericnitrogen at ambient temperatureto form a complex which is capableof elaborating nitrogen azacyclessuch as pyrroles from I ,4-dicarbonyl compounds,
Transesterificat,
Ti(OPri)4 as catalys carboxylic acids r*rd the presenceof Tit O
Titanium tetraisoPropoxide
I ::',m carbonyl
compounds'r With and tridehydroindolizidines (alkaloid precursors)from 1,4,8-tricarbonyl instead of Ticlo the slight modification of employing titanium tetraisopropoxide via the mixed phosphoric transformation of 6-ketocarboxylic acids to dihydro-g-pyridones is a key step in a synthesis of anhydrides is similarly achieved.2 This latter process lycopodine.
t:,'nnation of r..-:rt.lebond via
ffi1fi
?5
(EtO)2P=o
o*"
Ao""Li.(.pro)4'
g d/\/\
1^$).1
:(o{A" \-/
oy'-.r,\-r\ 40%
lycopodine
t,': lrln
rMo.i,M., Hori,M., Sato,Y. JOC63' 4832(1998)' M' ACIEE3T'636(1998)' tM;;. M, Hori,K., Rkashi, M, Hori,M', Sato'Y, Nishida' s: ':)rd into the Titanium(IV) chloride-samarium' by TiClo-Sm in THF leads Amidines.t Co-reductionof nitro compoundsand nitriles as illustratedby the temperatures lower requires to amidines.The intramolecularversion
F.
formation of 2-aminoquinolines. tZhou,L.,Zhang, Y. SC28'3249(1998)'
R \ (R=H, Et) .rsateddouble
Titanium0V) chloride-zinc. desulfbnylation at room Desulfunylation.t B-Ketosulfones undergo reductive temperaturewith TiClr-Zn' Reductionof arenesulfonylchloridesin the presence ftArylthiapropanoic esters.2 of conjugated estersis followed by Michael reaction' rGuo,H., Ye, S.,Wang,J.'Zhang,Y' JCR(S)ll4(199'7)' 2stri,D., Lu, Z'.,Mu, L.. Dai,G. sc 28' 1073(1998).
Titanium tetraisopropoxide. 13, 3 I I -3 341-3 48; 18, 363-3 64; 19, 346 4'7 fiCl' Li, and which is e - :n1.rlex i:
a- rr I compounds,
-3 I 3; 14, 31 | -3 12; 15' 322'' 16' 339:.17'
TransesteriJication'Thealkylgroupofcarbamatescanbeexchangedusing esters of functionalized Ti(opri)1 as catalyst.r [Note that transesterification of common borneol, and isopinocampheolin carboxylic acids with hindered alcohols such as menthol, the presenceof TitOEt)o has beenreported'21
382
Titanium trichloride triflate
HN-cooBut I-BuOOC-N \-J
(i-pro)aTi + I-BuOOC-N. \-J BnoH
HN-cooBn
1,3-Dioxobt (e.g.,acetone)to t Ilranpoor, N., Z1m 2lranpoor, N., Zeyu
PhMe a UC-/o
A polymer ligand in combination with Ti(OPri;o is effective for Epoxi.dations. (Z.l-allylic alcohols.3A class of novel donors of the oxygen atom for allylic epoxidation of alcohols is representedby 2-hydroxy-2-methylpropanol.a Disubstituted conjugated esters of (Z)-configuration are readily Isomerizstions. isomerizedat low temperaturesto the (E)-isomers5on treatmentwith a reagentderived from Ti(OPri)oand PhSLi. The aldol reaction between two aldehydesleads to syrt-adductswhen promoted by TiClo and base.These products undergo isomerization to afford the anrl-isomers on exposureto (!PrO).Ti-TMEDA at -25'C.n
Titanocene bis(t Alkenes. 1 titanocene dichlc
gem-dichlorides derived from ena analogous reactrc dithioacetal and t
tnrAr o
OH
)
R
.
(
CHO
TiCl4- base CH2Cl2
cHo
I (i-Pro)4ri_^&cHo R = TMEDA
R'
i
A bidentatecomplex formed on treatmentof (i-PrO)oTi (2 equiv) Epoxide opening.l with I ,8-dihydroxyanthraquinoneis a stronger Lewis acid and it activatesepoxides toward reactionwith nucleophiles. and vinyl ethers is [3+2]Cycloadditions.s The cycloaddition between nitrones shows the best Ti(OPri)4 accelerated by Ti(IV) catalysts, among which diastereoselectivitY. r56npiro, G., Marzi, N. JOC 62,'7096(1997). tKrurik, P. TL 39, 4223 (lgg8). 3Kuriuluin"n, K., Hormi, O. E O., Sherrington,D. C. TA 9' 2019 (1998)' J. aRaam.W., Peters,K., Renz,M. JOC 62,3183 (1997). 5cluurr, R., Hinz, W., Hunter,R. SI 57 (1997). bMahrwald,R., Costisella,B., Giindogan,B. S 262 (1998). 7Asao. N., Kii, S., Hanawa,H., Maruoka, K. TL39,3129 (1998). 8Bayon, P., De March, P., Figueredo,M., Font, J. 754' 15691(1998)'
Titanium trichloride trifl ate. undergo 1,3,5-Triarylbrnzen"r.' By the agency of Ti(OT9Cl3 acetophenones Other (7 98-1007o). examples, at 90-100' tube sealed in a trimerization deoxygenative TiCl/. (e.g.,5OVo with yield Lewisacidsarelessefficient
y-Substituuu
titanocene derivi allylsilanes area 1,3-Dienesa alkynes.8
Desulfutai
with CprTi[Pt( dithioacetals ol obtained. Cyclopenu
cyclocarbonylat CprTiCl, Mg. I
lTak"da,T., s2Fujiwara,T.. lu 3Horikawa, Y.. r oRuhi.,M. n.. l tTuk"du,T.. r 'oFujiwara,T.. Tl 7Tuk"du, T.. wt 8Tuk"du,T., shi eTak"da,T.. \* tozhao,z.,Ding
Titanocenebis(triethylphosphite) 383
HN-COOBn
1,3-Dioxolanes,2
The titanium salt promotes condensation of epoxides with ketones
(e.g., acetone) to form 1,3-dioxolanes at room temperature' tlranpoor, N., Zeynizaded, B. SZ 1079 (1998). 2l.unpoo., N., Zeynizaded, B. ./CR(S)466 (1998).
T ()Pr')r is effective for tc \\gen atom for allylic c, ::lguration are readily 'r:: .rreagentderivedfrom s .i:.n promotedby TiClo y;-,., rlnBrSon exposureto
Titanocene bis(triethyl phosphite). Titanocene bis(triethyl phosphite), which is prepared in situ from Alkenes. with titanocene dichloride, triethylphosphite, and Mg, promotes carbonyl olefination those including gem-dichloidesl and dithioacetals [e.g., 1,1-bis(phenylthio)cyclobutane2] in the derived from enals3(to give 1,3-dienes).Enol ethers'andalkenyl sulfides are obtained of Cross-coupling analogous reaction with dithioorthoformates and trithioorthoformates'a (D-alkenyl sulfides.5 dithioacetal and thiolesters furnishes predominantly
"aa^ .'n'o"n
[(EtO)3P]2TiCP2
r.).:
OH I R
/cHo =
P:
THF
A 7 1o/o
Y
R'
rr:: ,t ri-PrO)rTi(2 equiv) if, ::\ .rtesepoxidestoward lr:.
o
.ind vinyl ethers is .hows the best
y-Substitution of allylsilanes is observedwhen they are treatedwith dithioacetalsand the titanocene derivative.6 The major products have a (Q-configuration. Alternatively, these allylsilanes are accessibleby carbonyl olefination with dithioacetalsof2-silylacetaldehyde.T 1,3-Dienesare also produced by the catalyzed desulfurative addition of dithioacetalsto alkynes.s Desulfurative silylation,e Dithioacetals are converted to alkylsilanes on reaction p'1-unsaturated with CprTi[P(OE0:]z and EtrSiH. Allylsilanes are produced from dithioacetals or 1,3-bis(phenylthio)-l-alkenes.Germanes and stannanesare similarly obtained. Cyclopentenones,to As an alternative method to the Pauson-Khand reaction the cyclocarbonylation of enynes is achievable with the titanocene reagent derived from CprTiCl, Mg, and (EtO)3P,followed by treatementwith triphosgene'
,- e:,rphenonesundergo rr',: ... 98-100%). Other
rTuk"da,T., Sasaki,T., Fujiwara,T. JOC 63,'7286(1998). 2Fuli*-u, T., Iwasaki,N., Takeda, T. CL'741(1998). 3Ho.ika*u,Y., Watanabe, M., Fujiwara,T., Takeda'T. JACSll9, 1127(199'l)' aRuhirn, T' TL39' 2153(1998)' M.' Fujiwara,T., Takeda, H., Watanabe, M. A., Taguchi, sTuk"da. (1998)' 115 T. CL M., Nozaki,N., Fujiwara, T., Watanabe, oFuiiwara, T. CC 51 (1998). M., Takeda, T., Takamori, 7Tuk"du. M., Rahim,M. A., Fujiwara,T.TL39' 3753(1998)' T., Watanabe, 8Tuk"du, T. CC 1055(1997)' H., Miyachi,Y., Fujiwara, T., Shimokawa, eTuk"da, T. TL39,3533(1998). T., Nozaki,N., Fujiwara, l0zhao,Z.,Ding, Y., Zhao,G.JoC 63,9285(1998)'
3E4
Titanocenedichloride-zinc
Titanocenedicarbonyl. 19,347-348 y-Lactones.t Annulation of o-allyl aryl ketonesto provide fused lactones by of CprTi(CO)r' underCO is observedin thepresence carbonylation
Opening of eryxt anti-Markovnikov sen while other reagenr s
and Zn in the Presen readilv. and collidinc i
Cp2Ti(CO)2 Me3P - CO PhMe
rKablaoui,N. M., Hicks,F. A., Buchwald,S. L. JACSll9' 4424(1997).
Titanocene dichloride-manganese. Free radical reaction using titanocene dichloride as an Alcoholsfromepoxides.t electron transfer catalyst effects reductive opening ofepoxides in the presenceof a hydrogen donor (e.g., 1,4-cyclohexadiene).
'Ding,Y., Zhao,Z..Dn 2Gansauer, A., Moschrq 3Hirao,T., Hatano'8.. '! achakraborty, T. K.. Dt 5Gansauer, A., Bluhnr-I
Titanocene difluorii Lactolslrom lu temperatureis quite 1
rGansauer. M., Bluhm,H. ACIEE37,l0l (1998). A.. Pierobon,
Titanocene dichloride-trimethylaluminum. Alkenyl chlorides, ethers, and carboxylic estersare homologated Allyltitanocenes.l with CprTiClr- MerAl to furnish allylic titanocenechlorides which can be used to reactwith carbonvlcompounds.
lverdaguer,X., Hansc
p-ToluenesulfonYlir A Aziridines.t from TsN=IPh (and t
Sulfuximines
il?*
Cp2TiCl2
*^"
Me3Al/PhMe; PhCHO
Ph
l
Ph
50%
TsN=IPh at room tct Allylic tosYlani introduction of an al which is catalYzedb
rHanru*u. Y., Kowase,N., Momose, S., Taguchi' T. T 54' I1387 (l998)'
T!
Titanocenedichloride-zinc. y,y-dicyanobutanoic esters from Conjugofeadditian.l Formation of estersis effectedby CprTiClr-Zn ( I 3 examples' andbromoacetic alkylidenemalononitriles 43-93Vo). by themetalreagentin the Pinacolformation. Thereductivecouplingof aldehydes Aliphatic aldehydesgive 2,4,5-trisubstituted presenceof MerSiCl is syn-selective.2 dioxolanes.s
q I
tCho,
D.-J.,Jeon.S.-J
p-Toluenesutfonyliminoiodosobenzene
Dn.- l() provide fused lactones bY r r( ' r . T i r C O ) " .
Reductive opening of the epoxy alcohols in the Openingofepoxyalcohols. with 1,4-cyclohexadiene, anti-Markovnikov senseto give 1,3-diols4by [Cp2TiCl] together is derived from CptTiClt fail' [CprTiCl] while other reagentssuch as Red-Al and EtrSiH andzninthepresenceofZnCl,,Adductswithacrylonitrileoracrylicestersareformed readily, and collidine is a good activator for the catalyst's
GL J-::: 1997).
)r. ,r.rng titanocenedichloride as an an r rJcsin thepresenceof a hydrogen
*
:\oon
Cp2TiCl2 Zn -ZnCl2
rDing,Y., Zhao,Z.,Zhou,C.T 53'2899(199'7)' tcuniau"r,A., Moschioni, M., Bauer,D. EJOC1923(1998)' 3ftiruo,f., fUtuno,8.,Asahara, Y', Ogawa'A' TL39'524'7(1998)' M., Muguruma' ochukubo.ty,T. K., Dutta'S. JCS(P1)1257(199'l)' 5Gansauer, A., Bluhm,H. CC 2143(1998)'
Titanocene difl uoride-potymethylhydrosiloxane' Reduction of lactones by this reagent system at room Lactolsfromlactones.t temperatureis quite general (13 examples' 69-97Vo)'
F.
rVerdaguer, M. C.,Berk'S' C', Buchwald,s'L'JOC 62'8522(1997)' X., Hansen, rr.; ,.rrboxylic estersare homologated rl.,::.ic' which canbe usedto reactwith
rr
OH
,nvrn 50"/o
p-Toluenesulfonylimino iodosobenzene' 17,348; 18' 365; 19' 348 transfer A CuOTf complex of ferrocenyldiimine is effective for nitrene AZiridines,t alkenes' from TsN=IPh (and also carbenefrom diazoacetic esters)to undergo S-imination using sulfoxides CuOTf by catalysis Sulfuximines.2 On TsN=IPh at room temperature(7 examples,79-93Vo)' the stereoselective Allylic tosylaminis.3 In an approach to hispidospermidin with TsN=IPh reaction by is skeleton tricarbocyclic the group to introduction of an amino which is catalyzedbY Cu(OTf.lr.
r I 998).
-AA*M*"", Me
lrom :'1-.:r.tanobutanoic esters rf:::..rcdby CprTiClr-Zn (13 examPles,
Cu(OTl)2 MeCN 52"k
ri ,'.Jchydesby the metal reagentin the c,lJehydes give 2,4,5-trisubstituted
hispidospermidine
rCho, D.-J.,Jeon,S.-J.,Kim, H.-S., Kim, T.-J sC 28' 617 (1998)'
386
Triallylborane
2Miille., J. F. K., Vogt,p. TL39,4805(1998). 'Overman, L. E., Tomasi,A.L. JACSlJn,4039 (lg9g\.
tBubnou,Y. N.. Klu
p-Toluenesulfonylmethyl isocyanide. The general synthesis of substituted pyrroles by the [3+2]cycloaddition ffnolc* pathway involving TOSMIC and conjugated carbonyl compounds has been extended to 3-arenesulfonylacrylic esters.l c-stannylation prior to the cycloaddition enables the preparation of pyrroles containing a stannyl substituentat C-2?
Triarylcarbeniul Aldol reactiot 1,2;5,6-dibenzoc
stereochemicaldq
rDi Santo,R.,Costi,R.,Massa,S.,Artico,M. SC28, 1801(1998). "Dijkstra, H. P., tenHave,R., vanLeusen,A. M. JOC 63. 5332099$. p-Tolyliodine(Ill)
difl uoride-hydrogen fl uoride-triethylamine. Fluorinations. Alkenes are transformed into l,2-difluoroalkanesr by this reagent combination at -78". Alcohols, esters,acetals,and other halides are not affected. Selective fluorination of the isolated double bond is possible in a substrate containing also a conjugated double bond. Benzocycloalkenes (6-, 7-, utd 8-membered) undergo ring contraction while being difluorinated (resulting in gern-difluoroalkyl derivatives).2
lChen, C.-T.,Chao
Triazidochlorosil
roFrF2
1-
r{-)""cooue
ffi
Q""'oo""
Tetrazoles.t with triazidochlon 'El-Ahl, A.-e. s.. E
55"
2-Fluoro-I-iodo-1-alkenes.' These compounds are preparedfrom I -alkynes by the same fluorination procedurefollowed by treatment of the products with cul, KI in DMF at room temperature.3rHara, S., Nakahigashi, J., Ishi-I, K., Sawaguchi, M., Sakai, H., Fukuhara,T., Yoneda,N. 54 495 (1998).
Tributylphosphir Isocyanales. is useful for con&
2Hara, S.,Nakahigashi, J.,Ishi-I,K., Fukuhara, T., Yoneda,N. 2L39,2589(1998). 'Hara, S.,Yoshida, M., Fukuhara, T., Yoneda, N. CC 1l (1998).
aromatic aldehl dr peroxide.
2-Aryli.dencst
Triallylborane. Epimerizntion' On derivatization of rrans-6-substituted 2-allyl-1,2,3,6tetrahydropyridines with triallylborane followed by heating at 160-200" (neat) and deborination with alkali at room temperaturethe cis isomers are obtained.
.> z\....\rA" I
.I /\48 , 3
a\
.\
A....("A"
--i-H o A.l^,lD
r,-^,, N a o H^ a) #T^"
-i-':
125o )
(
)
(
H
(-'("' ttteOV
Decarboryl of Bu.P(catalltic r process.
Tributylphosphine 387
'Bubnou,Y. N., Klimkina,E. V., Ignatenko, A. V., Gridnev,L D. ZL 38, 4631(199'l).
ilc. hr the [3+2]cycloaddition rg,:nds has been extendedto r -rcloaddition enables the
Triarylcarbenium hexachloroantimonates. A study of the Mukaiyama aldol reaction using 7-arylAldol reactions.t hexachloroantimonates1 as catalyst shows 1,2;5,6-dibenzocycloheptadien-7-ylium stereochemicaldependenceon the nature of the silyl enol ethers and the counterlons.
..: l.
.f)ll \,/\'('9
tmine. Iu,':,,alkanesrby this reagent iit. rre not affected. Selective I ..r'frrtrat€containing also a | .-nrc'mbered)undergo ring or ',r.krI derivatives).2
Ar
sbct;
(1)
rChen, C.-T.,Chao,S.-T.,Yen,K.-C. 5L924(1998).
Triazidochlorosilane. Tetrazoles.t Primary amides are converted to 5-substituted tetrazoles on reaction with triazidochlorosilanein refluxing MeCN (8 examples,76-94Vo).
,,COOME
'El-Ahl,A.-A. S.,Elmorsy,S. S.,Elbeheery, (1991). A. H., Amer,F. A. rL 38, 125'7 rBr.rrcdfrom l-alkynes by the ri:it' u ith CuI, KI in DMF at . r:rir.rguchi,M., Sakai, H.,
I l < . q r1 9 9 8 ) .
Tributylphosphine. Isocyanates.t The Mitsunobucomplex from BqP and diisopropylazodicarboxylate is useful for condensingaminesand carbondioxide. 2-Arylidenesuccinicesters.2 A convenient preparation of these esters from aromaticaldehydesand fumaric estersinvolvestreatmentwith BqP and then hydrogen peroxide.
(Y"'o .
's-n.trtuted
2-allyl-t,2,3,6in; rt 160-200' (neat) and a::,,htained.
v"oV
rr"oot'
Erooc,'
Bu3P/ THF ;
..il-=YcooEr
\"oo=,
tl"oV 82"/o
l'
""or,.,-(-)* I H
Decarboxylation.3 cr-Imino acids undergo catalytic decarboxylation in the presence (catalytic quantities)at room temperature.Acetic acid or pyridine can acceleratethe ofBu,P process.
388
Tributyltinchloride
Cyclopentenesand 2,5-dihydropyftoles.a 2-Alkynoic esters react with o,Bunsaturated esters and N-tosylaldimines to give cyclopentenecarboxylic esters and N-tosyl-2,5-dihydropyrrole-3-carboxylic esters, respectively. The processes probably involve C-C bond formation which is initiated by the conjugate addition of Bu3P to the allenic esters (derived from the alkynoates) to generate ester enolates to act as Michael donors, and a subsequent cyclization furnishes phosphonium ylides. An elimination
accomplishedby trih BurSnCl and Et.SiH alkenylstannanes( E e
reaction via prototropic shift regeneratesthe catalyst.
\
cooEt I
tll
+
Ar / N
I
J
/-\
R,,,,\N/,,,Ar
.:I S
R)
Alkylphosphotu chain lengthscan b< propyl)and l-alkerr NaBH.,an Bu.,SnCl,
cooEt BusP/ PhH
Ts
to'N"ill,I. A.,Souttr 2c"uorgyun, V.,Liu.J -
rHorvath, M. J., Saylik, D., Elmes,P. S., Jackson,W. R., Lovel, C. G., Moody, K. TL40,363 (1999). 'McCombie. S. W., Luchaco,C. A. ff 38, 5'175(199'7). 3Bu.ton, D. H. R., Taran,F. T 54,4777 (lgg}). 'Xu, 2., Lu, X. TL 40,549 (1999).
3-Tributylstannyl-2-(trimethylsilyl)methylpropene. radicalallylationras well as thosevia 24Trimethylsilyt)altylatian. Photoinduced areusefulsynthetically. ionic pathways(e.g.,reactionwith acidchlorides2) of aldehydes andimineswith reagentI in 4-Methylenepiperi.dines.rCondensation 4-methylenepiperidines. thepresence of Me.SiClresultsin 2,6-disubstituted
38alczewski,
P., Pietnl
Tributyltin diisopro Michael reactb enolateswith enon enolizationagentthc
Ph. ., .
P
Y O M e + Ph ,u-SiMe3 -
t
+
LSnBu3 (1)
("n \pn
* oHq Pr
Me3sicl MecN
-f{rrn Y
Pr
697o
'Clive, D. L. J., Paul,C. C., Wang, Z. JOC A,'7028 (199'1). 2Kang, K.-T., Sung,T. M., Kim, J. K., Kwon, Y.M. SC 27,11'73(199'7). 'Kang, K.-T., Kim, E. H., Kim, W. J., Song,N. S., Shin, J. K., Cho, B. Y. SL 921 (1998).
Tributyltin chloride.13,315;18,368 Alkenylstannanes. Aryl ethyl sulfoxidesareconvertedto (1-arylthiovinyl)tributylstannanesron treatmentwith LDA and Bu.SnCl. Hydrostannylationof alkynes is
lshibutu, L, YasudaK
Tributyltin hydrkl 351-361;lE, 368-3 Alkenylsnnut (dba)rPd, and Ph.I couplingimmediatc l-bromoalkenestlte reagent.
Tributyltinhydride
:L'rcr with c[,Brtr,'.rlic esters and Fr,\.csses probably il::',n of Bu,P to the
389
accomplishedbytributyltinhydridegeneratedinsitu.Thus,amixtureofthealkyneswith into the a Lewis acid (e'g" Ph'B) is transformed BurSnCl and Et,SiH in the presenceof alkenvlstannanes(8 examples,7O-90Vo)'
l. i,, tct as Michael dc- .\n elimination
oI s+
LpA/ rHF:
1->
,zsysnaus
Bu35nCl
esters with P-alkyl groups of different Alkylphosphonate esters'3 Phosphonate
aaatrt
chainlengthscanbepreparedfromiodoalkylphosphonates(alkylbeingmethyl,ethyl' process' using an initiating system comprising propyl) and l-alkenes by a radical addition BurSnCl, NaBH4' and EtrB (O2)'
r r
/L 40,363(1999)'
ro'N"ill, I. A., Southem' J. M. sL 1165(1997)' 2ceuo.gyun,V', Liu, J.-X'' Yamamoto'Y ' CC 3'7(199'l)' 3Balczivski,P.' Pietrzykowski, w' M' r53' 7291(1997)'
Tributyttin "'";rr;;;;;;;;;;.'diisoProPYlamide' ,,?rlselectivity
is observed in the reaction of tributvltin
enolateswithenones'Ontheotherhand,usingbutyldichlorotindiisopropylamideas the syn-isomers' enolization agent the major products are : .1-rrell as thosevia t:.-1.1\.
u.i. \\ith reagentL in an.l l llcs.
ph.A "'Y'o""
o
J
Ph
Pr
I -..:. ithiovinYl)tributYlnr..::r()nof alkYnesis
Io
-
Y f Y o P h o
OMe Ph I ,^. .Ph + \1 Y f ll
o
66%
(22 : 78\
i-Pr2NSn(Bu)Cl299'/"
(82 : 18)
:
ll
P h o
'Shibutu,I., Yasuda'K', Tanaka,Y', Uasuda'M'' Baba' A' JOC 63' 1334(1998)'
-3 325 -333 : 16' 343-3 50; 17' hydride. 13, 3 16-3 19; 14, 3 12 l8'' 15' 351-361; 18, 368-371; 19, 352-353 by employing ButSnH' Hydrostannylation of l-bromoalkynes Alkenylstannanes. It is convenient to effect a Stille (dba),Pd, and PhrP provides (E)-alkenylstannanes'r -alkynes and Pd catalystis already present'From I coupling immediately becausethe proper tin requires only catalytic amounts of the l_bromoalkenes the synthesis of l,3-dienes2
Tributyltin I 998).
*
i-Pr2NSnBu3
NPh
65"/.
o
PhV.\/Ph
OMe tn]r.,Ph
reagent.
390
Tributyltinhydride
Dehalagenation, The stereochemical results in the debromination of l-bromol-alkenylboranes3 according to the bulkiness of substituents on the boron arom are interesting. Stereoselective removal of the (E)-configured bromine atom of 1,1-dibromoalkenesawith the BurSnH-(pqp)4pd combination is synthetically valuable. Acid chlorides are rapidly converted to aldehydessat room temperature on exposure ro BurSnH-(dppe)Nicl' although sometimes decarbonylation occurs as side reaction. This
Deoxygenative irradiation (350 nr cycloalkoxy radica and the carbon rad cyclization process
method is applicable to the synthesisof aldehydescontaining nitro groups.
n.B\
''-k
R2B
/< R = dicyclohexyl R = cycloherylthexyl
,n
",fk
Bu3SnH
(99 : 1) (1 : 99)
Reductive detr hexacarbonyldicob possibleto conven
Bu35nH
rr' Br
+
(Ph3P)4Pd PhH
(
the decomplexatiot 82k
A method for the conversion of iodides to alcohols via free radical intermediatesconsrsts of trapping by 2,2,6,6-tetramethylpiperidin-I -oxyl and subsequentreduction.6
(ocbc
(oc)3c Bu3SnH TEMPO PhH ^
50v. Deoxygenation. The centrally located functionality of 2,3-dihydroxycarbonyl compoundsis selectively destroyedvia their cyclic thionocarbonates,by meansof Bu.SnH.7 Ring expansion of certain fused cyclopropylmethyl xanthatesoccurs,8the extent of which has some dependenceon the concentrationof Bu.SnH.
rBoden, C. D. J.. Pr 2Maleczka, R. E.. Tc lHoshi, M., Takahar aUenishi, J., Kawalu sMul-gu, C., Mann 6s"hultr, A. G.. Dar. 7Rho, H.-s. sc 27. l 8Kantorowski, E. J..
eKi., s.,oh,D. H..
loHosokawa,
b"j.""
S.. Isoh
Bu3SnH(>0.8M)
.......'...,...............* PhH 1350
+
Tributyltin hydri Cyclizttions. bis(phenylthio;ac
391 Tributyltinhyrlride-2,2'-azobis(isobutyronitrile)
n,:.1nationof l-bromot'r. :he boron atom are ni rromine atom of i. .r ntheticallyvaluable. tO ll\-:.1iure On exPOSUre This u1. ." :ide reaction.
crr-haloaldehydesby Deoxygenative cyclization to form 5- and 6-memberedrings from method'e The a useful is Ph3P and BurSnH with mixture irradiation (350 nm) and its Ph,P=O eliminate which triphenylphosphine by in situ cycloalkoxy radicals are captured radical Tandem hydride. tin the from hydrogen with and the carbon radicals are supplied cyclization processesare possible'
oEt
f- jrrJUPS.
o{
Bu3snH
",8/:X
hv
Ph3P
)-A t t \,,'t-J
)
H 78%
''^ Br
for removal of the Reductive decomplexation.to Although the common practice oxidants, it is also mild involves complexes hexacarbonyldicobalt residue from alkyne is used If triethylsilane Bu.rSnH' with (Z)-alkenes possible to convert the complexesto free the decomplexation is followed by in situ hydrosilylation'
:2 consists r! J. ::ltermediates n: :r.luction.o
-l "--z__
t: ): : i-dihydroxycarbonYl r!.. r\ meansofBu.SnH.7 c..-:-.' the extentof which
(OC)sCo
Bu3SnH
(OC)sCo
PhH A
\\ Ph
6170
rBoden, D. J., Pattenden,G. JCS(P1)2411 (1996)' C. 2Maleczka, R. E., Terstiege, I- JOC 63,9622 (1998)' 3Hoshi,M., Takahata,K., Arase,A. TL38,453 (1997)' aUenishi. Kawahama,R., Yonemitsu,O., Tsuji, J' JOC 63,8965 (1998)' J., 5Mul^anga, C., Mannucci,S., Lardicci, L. TL38' 8093 (1997)' us.hulti, A. G., Dai, M., Tham, F. S.' Zhang,x. TL39' 6663 (1998)' 7Rho, H.-s. sc 27,388'7(199'7). sKantorowski,E. J., Borhan,B.' Nazarian,S', Kurth, M' J TL39' 2483 (1998)' eKi'n, s., oh, D. H. sL 525 (1998). r0Hosokawa,S,, Isobe,M. TL39,2609 (1998).
19, 353-35'l Tributyltin hydride-2,2'-azobis(isobutyronitrile)' example'the Cyclizations. Formationof five-memberedrings is favored' For of 5-hexenalgives 2-methylcyclopentylphenyl sulfide'r r-Butyl bis(phenylthio)acetal
3g2
Tributyltinhydride'2,2'-azobis(isobutyronitrile)
3-bromopropylsulfideandN-(3.bromopropyl)iminesundergocarbonylativecyclizationto under co. Several macrocycles afford the y-thiolactone2and pynolidinones,3 respectively, and a transannularcyclization to have been prepared4on the basis of radical cyclization, form a propellane is the basis of a route to modhephene'5
Br CO - Bu3SnH
O-\j
^*";il
(>1 ,P \-J N< \2
81"/o
t_._Z\
=(a\
Bu35nH
o .'j=/
AIBN / PhH
\-,=,\,.,J
"+il)-:* H,
RearrangemcnE opening which is foll 2-allyloxy enonesfct from 3-arenesulfonll BurSnH-AIBN.
modhephene
Formationofcls3-alky1-2-hydroxymethyl-4-trimethylsilylmethylene-cyclopentanol group attachedto can be initiated by the free radical generatedfrom a bromomethylsiloxy of to-formyl oxime ethersT c-3 of a 1,5-enyne.6The diastereoselectivereductive cyclization is also a useful Process.
o.
o=1r--trotvte
HO Bu3SnH
N.
$HOMe
\-it
AIBN / PhH A
\,./ 79"/o (trcns: ctb 18 : 1)
Me3Si
OBn Bu3SnH
Ring-opening d aldehydes in the presr bearing an a-ethyl g
methylenecycloprope
A I B N/ P h H A
o il
Thetandemcyclizationinitiatedbydeselenylation,C.radicaladditiontoan to generatea new radical at N-aziridinylimine molety which is followed by decomposition theacceptorsiteandadditiontoasidechainvinylgroup,isthebasisofskeletalconstruction toward a synthesisof pentalenene'8
^,/Yv \ 867"
,r It!
til
Ir j
I
i i I
Tributyltinhydride-2p'-g765;.1;sobutyronihile) 393
Lr.rtr r e cyclization to Sc\ !'ral macrocycles nnuiar cyclization to ( 1 : 6 ) 84"/"
N-4
:H,
Rearrangements, Cyclopropylalkenoyl selenidesundergo deselenylation and ring opening which is followed by reclosure to the cyclohexenones.eBoth cyclic and acyclic 2-allyloxy enonesform ketyls which are prone to capture the allyl group.roAryl migration from 3-arenesulfonyloxyalkyl iodides to give 3-arylpropanolsrr occurs on reaction with BurSnH-AIBN.
tl
BuasnH
modhephene
t t \.,'\
A I B N/ P h H A
n.:nc'- cyclopentanol o\\ rroup attachedto >i,'nnr I oxime ethersT
l
607o
^:r'tlJ
Bu3SnH
+
A I B N/ P h H
50 - 76v" - - s 1 8: 1 )
\--oBn ,{
Cyclopropyl ketones react with alkyl iodides and Ring-opening alkylation. aldehydesin the presenceof Bu.SnH-AIBN by a ring-opening pathway, leading to ketones bearing an a-ethyl group.12A related bicyclizationr3 is via intramolecular addition to the methylenecyclopropaneunit following by ring opening and another addition.
,/\/ ' h.r. addition to an rl<':rrc a new radical at r: . i.'letal construction
Bu3SnH
AIBN/ PhH A
t
Qcxo
Il
Bu3SnH
,^
Aa \.1,2
A I B N/ P h H ; DBU
^,)Ao o o H
!94
Tributyltinhydride-triethylborane
Tributyltin
perchh
fu''t{#,**$.'.fu
Condensationssaturatedaldehydes. of trityl perchlorarcI
lchen, J.,Otera,J. Sl I
67"/"
Triethylborane. Different regioisomers are obtained in the reaction of methyl Hydrostannylatinn,\a 3-tributylstannylpropynoate with Bu.SnH when the catalyst varies from AIBN to (Ph3P)4Pd.
Alkylhalogetu
can also lead to crc under acidic or basrc
o. COOMe | Bu3snH-ArBN lll -
l^
SnBuq
.zCOOMe ll
Bu3Sn..,,,COOMe
*
ar3snAsnar3
ll
\rnrr,
110/
+ (Ph3P)aPd
Hydrodehalogenation.ls
tNuku-u.u, T., Yorim 320/"
The reaction can be performed in water.
lTsai, Y.-M., Chang,F.-C., Huang,J., Shiu, C.-L., Kao, C.-L., Liu, J.-S. f $' 4291 (199'7)' 2Ryu, I., Okuda, T., Nagahara,K., Kambe, N., Komatsu,M., Sonoda,N. JOC 62,7550 ( 1997)' 3Ryu, I., Matsu, K., Minakata,S., Komatsu,M. JACS 120, 5838 (1998). aBeckwith, M', Philippon,A. CC 499 (1997). A. L. J., Drok, K., Maillard, B., Degueil-Castaing, sDe Boeck,B., Pattenden,G. TL39,6975 (1993). 6Belval. F.. Chavis,C., Fruchier,A., Montero, J.-L., Lucas,M. TL39' 5367 (1998). 7Torrno, J., Hays,D. S., Fu, C. C. JOC 63,201 (1998). 'Kim, S . ,C h e o n g J, . H . , Y o o , J . S L 9 8 1 ( 1 9 9 8 ) . 'Herbert, N., Pattenden,G. Sf 69 (1997). rOEnholr, E. J., Moran, K. M., Whitley, P. E., Battiste,M. A. "/ACs f 20' 3807 (1998). t'Stud"., A., Bossart,M. CC 2127 (1998). r2Enhol-. E. J., Jia, z. J. Joc 62,9159 (199'1). r3Pik", , . , A n s o n ,M . , K i l b u r n ,J . D . T L 3 9 , 5 8 7 7 ( 1 9 9 8 ) . K . G . , D e s t a b e lC raquayle, P., Wang, J., Xu, J., Urch, C. J. TL39,4'79,481 (1998). r5su.rnu, K. D., Maitra, U. T 54,4965 (1998).
Tributyltin hydride-triethylborane.15,333;16,350;17,363-364;18,372 estersby Bu,SnH-EtrB Hydrodehalogenation. Thereductionof c-bromo-B-alkoxy whenchelationcontrol(by MgBrr) is exercised. is syn-selective 'cuindon, (1998). J.JOC63,6554 Y.,Rancourt,
\
o. I \//
Trifluoroacetic d 1,2-Diaryl-2-ptt the benzylic aroyll lz
benzotriazolyland u Thinl esten.z TsOH can be used in Vinyl haMes.'
halides in CFTCOOI Mixed dithinct preparedin CF.CO(
",$c"o
Triarylbismuthi from thecorrespon (3 exam temperature
Trifluoroaceticacid
Tributyltin
Q I ' l .o ^J ,
395
perchlorate.
Condensatians, The reaction ofsilyl keteneacetalswith aldehydesfavors enalsover saturatedaldehydes.when promotedby BurSnClOo.rThecatalystis obtainedfrom reaction of trityl perchlorate and tributyltin hydride.
t.-/..-.,j
lchen,J.,Otera, J. SL29 (1gg'1). 2O"/"
Triethylborane. cJ,ll()n of methyl :i,'rn AIBN
to
'.,SOOMe
Alkylhalogenations. The distributive addition of RX to alkenes catalyzed by EtrB can also lead to cyclization in favorable cases.Such radical reactions can be performed underacidic or basicconditions.
o. \\ o,
\---\
l
+
A 4<
fo{
Et3B
\-OH
RX
> n EJU3
tNuku-uru,
) 9 7) . ,, 1997). ) ( )I 1 9 9 7 ) ,
T., Yorimitsu, H., Shinokubo,H., Oshima,K. SZ l35l (1998).
Trifl uoroacetic acid. 14, 322-323 ; 15, 338-3 39; 18, 375-37 6 From I -( I -benzotriazolyl)-2-trimethylsilylethylarenes 1,2-Diaryl-2-propenones.t the benzylic aroylylation followed by exposureto CF.COOH effects the elimination of the benzotriazolyland trimethylsilyl groups. Thiol esters.2 Hydrationof alkynyl sulfidesgivesthiol esters(7 examples,5l-86Vo). TsOH can be usedinsteadof CF,COOH. Vinyl hali.des.3 Ketones are directly converted to vinyl halides on reaction with acid halidesin CFTCOOH.Triflic acid is also effective, Mi"xeddithioacetals.' Dithioacetals containing one heteroarylthio unit are readily preparedin CF.,COOH.
F^^^^^^^\
o-(:hcro l. :-l h . t . ir.SnH-Et,B
*
4'l
rrA/
* HS''Ph
cF3cooH
ilil
7u t t l-\
cl1 X * , \ \
-
D
l
,s-'\.2 P
h
81"/.
TriarylbismuthinebistriJluoroacetates.sThese compoundsare readily prepared at room from thecorresponding diacetates on reactionwith CF.COOHin dichloromethane -87 (3 7 temperature examples,5 7o).
Trifl uoroaceticanhydride.TFAA
and homologs undergo Polycyclicaromati.ccompound.s.o 2-Alkynylbiaryls cyclization in CF.COOFVCHTCI, at room temperature. Detachmentfrom polymer supports. Many products of solid-phase synthesis are detached from polymer supports by N-C and O-C bond cleavage with CFTCOOH. The former casesinclude amides,Tsulfonamides,sand polymer-linked 9-xanthenylamines,r0the
A synthetic rr Conversionof theC sulfoxides.a
+.#
latter, benzylic esters. 'Kutritrky,A. R.,Toader, D., Chassaing, C. JOC 63,9983(1998). zBraga, A. L., Rodrigues, O. E. D., deAvila,8., Silveira,C. C. TL39,3395(199S). 'Moughamir,K., Mezgueldi, H., Rolando, C. TL40,59 (1999). B., Atmani,A., Mestdagh, *Gauthier, J.Y.,Zajac, N., Mayhew,D. L., Hughes,G. J., Martins,8.,Guay,D., Young,R. N., R. J. SL 289(1998). Zamboni, sArnauld. T., Barton,D. H. R.,Doris,E. TL38,365(1gg'r.). 6coldfing".,M. B., Crawford,K. B., Swager,T. M. "/ACS119,4578(1997). 'Hutchins, TL37,4865(1996). S.M., Chapman,K.T. nBeaver, K. A., Siegmund, A. C., Spear,K.L. TL37,l 145(1996). 'Boyd,E. A., Chang,W. C.,Loh,V.M. TL37,1@7(1996). l0Ruhland, B., Bhandari, A., Gordon,E. M., Gallop,M. A. JACS118,253(1996). "Guil"., W., Johnson, S.G.,Munay,W.v. JOC 61,5169(1996). J.
aminophosphonica in methanol to rern
Trifluoroacetic anhydride, TFAA. L8, 376-377 ; 19, 361 A useful method for the synthesisof thesecompoundsis by Trifluoropyruvamides.\ reaction of isocyanideswith TFAA.
lEl Kui., L., Pinot-F 2Karase, M., Teshinn 3l*u-u, T., Kataoka l oKita, Y., Iio, K., okey sKud"in, z.H.,Lyztr'
.'-{-}--l (cF3co)2o
\:/
*|{...
,p
#
Ph.SO O,O-Diethyl I<
1-Trifluoroacetvlh Trifluoroac4vl (7 examples,54-95
UI
(Hzo) 63%
HO
Trifluoroacetonyl azines.2 Methylazines such asmethylpyridines are functionalized at the side chain by reaction with TFAA at room temperature. Pummererreaction. 4-Arenesulfinyl-p-sultams undergo Pummerer reaction which also triggers ring opening and loss of sulfur dioxide. cr-Amino acid thiol esters
lKatritzky,
A. R.. Yaq
are obtained.3
tn)-T- -
(cF3co)2o cH2ct2
Ph-a..rLSOt
o
Phs.l
Y "1 ) o
2,2,2-Trifluorodil Trifluoroethyl t CFTCHN,senesto1 in carbohydrate nu heatingwith r-BuO IProud,
A. D., Prodga
2P,2-Trifluorodiazoethane 397
[-r,itr9S
undergo
i:r-3 synthesis are ti^ ('F.COOH. The
synthetic route to 1,4-naphthoquinones traverses 4-phenylthio-1-naphthols. Conversion of the C*-S bond to a C-O bond is by Pummererreaction of the corresponding A
sulfoxides.a
*.:nr lamines,lo the
F.
(CF3CO)2O/ styrene ;
.:- 1999). rr I) . Young, R. N.,
aq.NaHCO3; TBAF
A two-step esterification of the O,O-Diethyll-aminoalkanephosphonates.s and then with NaBHo TFAA-HC(OEt)3 aminophosphonic acids consistsof treatment with in methanol to remove the N-trifluoroacetyl group.
i\' - ,)mpoundsis bY
1-Trifl uoroacetylbenzotriazole. Protection of amines ( 1I examples, 85-100Vo) and alcohols Trifluoroacetylatians.\ (7 examples,54-95Va,includingphenols)is achievedwith this reagentat room temperature.
\ , , lr. --{,
-ci-cre t ro
-
r. .rrctunctionalized >-l::lnerer reaction t: .reid thiol esters
l
tEl Kuiln,L., Pinot-Perigod,E. T 54,3799(1998). 2Ku*ur".M., Teshima, M., Saito,S.,Tani,S. A 48,2103(1998)' 3l*ur^a,T., Kataoka,T., Muraoka,O., Tanabe,G. JOC 63,8355(1998). oKitu,Y., Iio, K., okajima,A., Takeda, K., Whelan,B. A., Akai,S. SL 292(1998)' Y., Kawaguchi, 5Kudrin,Z.H.,Lyzwa,P.,Luczak,J.,Andrijewski, G. S 44 (1997).
G)'
+
R-NH)-
R-NHCOCF3
+ THF
\ cocF3
85 - '100%
rKatritzky,A. R., Yang,B., Semenzin, D. JOC 62,726(199'l).
2.2.2-Trifl uorodiazoethane. Trifluoroethyl sulfates.t The conversion of ROSO3H to ROSOTCHTCF, by CF.CHN, servesto protect the sugarsulfates.Such estersare stableto many conditions used in carbohydrate manipulations such as deacetylation. Deprotection is accomplished by heating with t-BuOK in r-BuOH. rProud,A. D., Prodger,J. C., Flitsch,S. L. ZL 38, 7243(1997).
39E
Trifluoromethanesulfonicacid(triflicacid)
Trifluoromethanesulfonicacid (triflic acid). 14, 323-324;15,339;18,377;19, 362-363 Friedel-Craftsreactians. The reaction of osmium-complexedanisoles with electrophilessuchas enonesis catalyzed by TfOH.t Benzylationof arenesby a reductive alkytation2with arenecarbaldehyde acetalsinvolves an intramolecularredox process (hydrideshift) afterprotonationof thebenzylicetherintermediates.
tKolis, p., s. Kopact "Fukuzawa, S.-1..Tsu 3shah, pike, A., v. \r au"hiro, H., Waki;-an -Schildknegt, K.. Agn oAggarwal, V. K.. Va 'Marson, C. M.. Faild 8labrouillere, M.. [.c
(1ee9).
gMiyatake, K., Yarna
Diaryliodonium triflates are preparedfrom ArI(OAc), and arenesin triflic acid.l Hydrolysisof thioglycosides. Aqueous TfOH and Bu"NIOo effect hydrolysis of thioglycosides,aprobably by way of Pummerer reaction. Mannich reactions.s In situ generationof [PhNH=CH]OTf from benzyl azide in the presenceof ketones is followed by the condensationto give a-anilinomethyl ketones. The reaction pathway differs from that (amideAactamformation) promoted by TiClo.
tl
a^) \-,
TfoH> N3
Ph
tl 1^]^r.rHen
fdfluel6nsrh-na! 15,339-340;16,3l Oxidotions. EtrN.rApparentll'd Transformatb (dimethyl)iminiumr hydrolysis.Amidin bridged orthoesre monohydricalcoho
H-7uO Tt2O | NMe2
\-, 63"/"
5,6-Dihydropyrans. Either by cycloaddition6 of dienes with aldehydes (electron-richaldehydesnot suitable)or by sequentialoxo-enereaction.i the synthesisis catalvzed bv TfOH.
/-coNH2
o^o (o)
TfOH
cH2ct2
I
a-) \^.1
Ph-
rNenajdenko, V. G.. \i (1997). ^2483 'Sforza, S., Dossena-A 3ch*"tt., A. B., Chue. 4charette, A. 8., Chue" 5Charette, A. B., Chur
58v" Other preparations.
Bismuth(Ill) triflate is conveniently obtained by dissolving Ph.Bi in TfOfVCH2Cl2.8 Treatment of sulfides and alkyl esters with TfOH leads to sulfonium triflates.eThe alkyl group of the ester is transferred.
N-Trifluoromerhrq N,N'-Diprotech amineat room tempc
rFei"htinger, K., Singr
lV-Trifluoromethanesulfonylgunidines,lf,M-diprotected 399 -.19.
Lr:.()les with b,r .r reductive reJ,,r process
'Kolis, S.P.,Kopach,M. E.,Liu, R.,Harman, W.D. JOC 62,130(1997). 'Fukuzawa, S.-I.,Tsuchimoto, T., Hiyama,T.JOC 62,151(1997). 'shah,A., Pike,v. w., widdowson,D. A. JCS(?|)' u63(tgg7). -Uchiro, H., Wakiyama,Y., Mukaiyama,T. CL 567(1998). -Schildknegt, K., Agrios,K. A., Aube,J. TL39,7687(1998). oAggarwal,V. K., Vennall,G. P., Davey,P. N., Newman,C. TL 38, 2569(lggi). 'Marson, C. M., Fallah,A.TL38,9057(lggil. 8labrouillere, M., Le Roux,C.. Gaspard.H., Laporterie.A., Dubac,J., Desmurs,J. R. TL 40,285 fi999\. eMiyatake, K., Yamamoto,K., Endo,K., Tsuchida,E. JOC 63,7522(1gg8).
rr . .rzidein the ' : \ i t ( ) n e sT. h e
Trifluoromethanesulfonic anhydride (triflic anhydride). 13, 324-325;14,324-326; 15,339-340; 16,351 -358; 18, 377-378; 19, 363-365 Oxidatians. Alcohols are oxidized (RCIOH -r RCHO) by using MerS-TfrO and EtrN.l Apparently the system is a variant of the Swern oxidation. Transformations of amdes. N,N-Dimethylformamide forms triflyloxymethylene (dimethyl)iminium triflate which reactsreadily with alcohols. Formic estersare obtained on hydrolysis. Amidines are available similarly.2 Other amides can be converted to estersl bridged orthoesters,aand thiazoliness by quenching the analogous iminium salts with
i(
monohydricalcohols,alkane-1,1,1-trismethanols, and 2-mercaptoethylamine, respectively.
r .r,id.r :.,.Jrolysis of
H:7zO |
NMe2
Tl2o +
H
+ 'Yoso2cFs NMe2 Tfo
T=t,
pnAo
.rldehydes hr .r nthesisis ti
NaOH
RoH HyoR
*ilu", Tfo
tYo* o
TtzO-py/CHzClz,, Mec(cH2oH)3
?X ,nk?) 69%
'Nenajdenko, V. G., Vertelezku, P. V , Koldobskij, A. B., Alabugin,I. V., Balenkova,E. S. JOC62, 2483(1997). 2sforza, Dossena, S., A., Corradini, R.,Virgili,E., Marchelli,R. ZL 39,711(1998). 3ch*"tt", A. B., Chua,P. SI 163(1998). 'Charette, A. B., Chua,P. ZL 38, 8499(199'1). tch."tt", A. B., Chua,p. JOC 63,908(1998).
xr tlissolving [:( )H leads to
N-Trifl uoromethanesulfonylguanidines, N,M-diprotected. N,N'-Diprotectedguanidines.r The N-triflylamino group can be replaced by an amine at room temperature(5 examples, 85-1007o). tF"i"hting".,
K., Sings,H. L., Baker,T. J., Matthews,K., Goodman,M. JOC 63,8432(1gg8).
400
(Trifluoromethyl)trimethylsilane
o- Trifl uoromethylbenzyl bromide. Ethers. These ethers are formed by a conventional procedure (ROH, NaH, ArCHrBr in DMF) and they show stability toward free radicals such as NBS bromination conditions.
Trifluorometh;-|ri
Glycosyltlaoa fluorides is accom react when TiF. ir I
'Miethchen, R, H"sc
,9 o^4
Dh---\-n--1 h+v
Ph"\01 o--\vY
un--J4**\
/\ H
NaH / DMF un/ OMe
\\ /r\
(
Rr
vr3
'|\'/
(.Bt
X's\-O
:o-\-\i h I -* 'u,s1\;or-1* \{ ("ou" (- or,r. Ftc-',/-n
br. F.cr.,{ t t l
br.
t t l \.,,
\.,2
Triisopropylsil.r-l r Protection of I 2,5-bis(triisoproplI
substituted succim
desilylation with di
'Martin,S. F.,Limbo
s4%
lLiotta,
L. J., Dombi, K. L., Kelley, S. A., Targontsidis,S., Morin, A. M. fL 38, 7833 (1997).
L5, 34 I ; 18' 37 8-37 9; 19, 366-367 and u,s-difluoroketones. Trifluoromethyl ketones A direct approach to trifluoromethyl ketones is by reaction of estersr (also with Me,SicF. activaredby TBAF (7 examples,68-95Vo).A similar oxazolidin-5-ones2; which may be usedas Michael reactionof acylsilanesleadsto I ,I -difluoro-2-siloxyalkenes
Trimethylaluminr Opening of ox compounds such as
(Trifluoromethyl)trimethylsilane.
donorsfor the synthesisof 2,2-difluoro-1,4-diketones.l
Bu35nr ro-
H1.
Polyoxygenatcd
o ,n^r,"",
; Me3SiCF3, (BuaN)(Ph35nF2) MVK / Yb(OTO3 2Oo
,,4a/\ F
F
677o
N-(qa-Disubstituted-B,B,fttrifluoro)ethylami.des.aAddition of a [CFrl unit to ketones followed by a Ritter reaction leads to the fluorinated amides. Aromatic trifluoromethylation.s Activated nitro and cyano groups on an afomatic nucleus are subjectto nucleophilic substitution by CF, generatedin situ from Me1SiCF, and
ring-openingalkll: regioselectively(at Alkylation da
advantageofthe F-
*AX,
KF in dimethylacetamide. 'Wiedemann, G. K. S.,Olah,C. A. ACIEE3T'820(1998). J.,Heiner,T., Mloston,G.,Prakash, 2wulte.,M. w., Adlington, c. J. JoC 63,5179(1998). R. M., Baldwin,J. 8., Schofield, 3l"f"bu.e,O.,Brigaud,T., Portella, C. T 54,5939(1998). *Tongco,E. C.,Prakashi, G. K. S.,Olah,G. A. SI 1193(1998). sAdurnr, 3081(1998). V. C.,Tavener, S.J. '/CS(P1.) L. B., Sanders, D. J.,Clark,J. H., Hansen,
Ketones. Es The presence of ch A Lewisacidis em
401
TrimethYlaluminum
e ROH, NaH' ..r.h as NBS
uoromethYlzincbromide' Trifl ^ ' ^;;;;;;; A facileconversionof glycosylbromidesro the corresponding fr"-oirr., fluoridesisaccomplishedbyreactionwithCF,ZnBrinMeCN.Protectedpyranosesalso reactwhenTiFois Present. rMiethchen,R., Hager' C., Hein, M' S 159 (1997)'
: ^
-Br \
ryv\
n
-^-r---\-i
( -_
-rZ\
z w l
i \,,'
oMe
l
trifl ate. TriisoproPYlsilYl -^*;;;;;:;" N-substituted Primary aminesare protectedin the form of o,.n,nr'' the Thesecompounds*" f"T:9 by enolsitylationof 2,5-bis(triisopropylsiloxy)pyrroles' involves and Et,N. Deprotection substitutedsuccinimidesLy ,."urrn"n, with rIPS-cl hydrate' hydrazine with desilylationwith diluteHCI andtreatment tMurtin,S.F.,Limberakis, C. IL 38,2617(199'7)' -315" 18' 365-367; 19' 369-37 0 Trimethylaluminum. 15,34 | -3 42;17,312 openingofoxacycles.Theopeningofcyclicacetalsenablesaccesstointeresting compoundssuchaschiralG-alkoxyalkylstannanes''
: ..tersr (also i 'i . t. A similar i<- ...cd as Michael
o
BusSn.ro--.,""CoNMe2
MegAl/ cHzclz
,ra*r.j*'
*AoA"or*", from alkyl glycosides via the Polyoxygenated carbon chains can be fashioned by Me3Al stereoselectivelyand alkylation'2 1,6-Epoxy acrylates are attacked ,i"g "p*i"! regioselectively(at the internalcarbon)'l Alkytationwitht-alkylfluorides.aAlkylationofsilylenoletherswithr-RFtakes of the F-Al interaction' advantage
.F
,: ., lCF.1l unit to Li'. ,'tl an aromatic i: r \Ie,SiCF. and
*fo*" =# OSiMe3
,',J,
/ cH2ct2 Me3At
O
"'tS V
R'
R = R'= Me t - ' l ( ) (1 9 9 8 ) . ^r\ ).
Ketones.
63"
regioselectively'5 Esters are converted to ketones with R,Al, sometimes
ThepresenceofchelatingligandssuchasN,N-dimethylethylenediamine-isadvantageous'o with acid chlorides'7 A Lewis acid is employeOin ttre analogousreaction I rl t1998).
402
Trimethylphosphine
o. Me3Al/ CH2CI2 + 0,200
.a*)-t
7N. N
(4,.
\/
tl
o
COOMe
'Alul*in,
The conjugate addition of organoaluminum reagents to quinols is directed by the hydroxy group at C-4.8 Removal of organotin halides.e A procedure for the troublesome separation of organotin halides (side products) in reaction mixtures involves treatment with MerAl. The R.,SnMethus formed arenonpolar and easily removed by silica gel chromatography(elution with hexane). Alternatively, treatment with lM NaOH before chromatography converts such tin halides to R,SnOH and/or R.SnOSnR, which stay on silica gel during elution with hexane-EtOAc. Thus, the two methods are complementary, and their use dictated by the polarity of the desired product(s). rCintrat,J.-C.,Blart,8., Parrain, J.-P.f 53' 7615(1997) J.-L.,Quintard, 2olrron,R.,Rundstroem, B., Frejd,T. CR3U7,13(1998). P.,Persson, 3Miyuru*u,M., Matsuoka,E., Sasaki,S., Oonuma,S., Maruyama,K., Miyashita'M' CL 109 ( l 998). oooi, T., Uraguchi,D., Kagoshima, N., Maruoka,K. IL 38' 5679(1997). sGirardot, J. K. JOC 63,10063( 1998). M., Nomak,R., Snyder, nchung, E.-A.,Cho,C.-W.,Ahn,K.H. JOC63,7590(1998). ?A.iru*u.M., Torisawa, M' JOC 62,432'7 M., Nishida,A., Nakagawa, M., Yamanaka, Y., Kawahara, (199'7). 8c-..no, M. C.,Gonzalez, M., Houk,K. N. "fOC63' 3687(1998)' M. P.,Ribagorda, eRenaud, L. TL39,2123(1998). P.,Lacote,8.,Quaranta,
Trimethyl phosphate. Etherification of primary and secondary alcohols is achievable by Methyl ethers.' heatingwith (MeO).P and PPA at 180-190'.
M., Molina- I
Trimethylsilyl azitl Nitriles.t In d to RCN directlyb1 I
rsandberg, M.,Sydrn
Trimethylsilyl azil a-Azidosulfu introduction of an (-40" I temperatures
""oY \
tTohrnu, H., Egi, M,. C
Trimethylsilyl bHl Deacetalizttiot neutraland anhydr -78".
rVanDykeTiers,G. ACS 52,1223(1998).
1Kaur,
Trimethylphosphine. The intramolecular aza-Wittig reaction by treatment of Azeto[2,1-b]quinazolines.t N-(o-azidobenzyl)azetidinones(also the N-benzoyl analogs)with triorganophosphinesRrP is only successfulwhen R = Me (when R = Bu, Ph, complex reaction mixtures are generated
Trimethylsilyl bi{l Alkyhtions.l effectivelycatalyzc Hetero-Diels-'4 from allyltrimethllr
which do not contain the desired products).
G., Trehan. A .
Trimethylsityl bis(trifl uoromethanesulfonyl)imide
Ort ---N. N //
r't
zrf*\/ l l l 5ANs
l O
o tl
\ \ /
n l
Me3P -
2-?-N' t t l
PhMe ^
\.,\N tl PMe3
i - 1 -'. cooMe
l)ft-r \A*90%
1Alu.|u.in, Molina, P., Vidal, A., Tovar, F. SL 1288 (1998)' M.,
q - : : ' ' l r i s d i r e c t e db Y t h e tr '..f iesome seParationof rij.rinleflt with MerAl' The (elution rc. - hr' )matograPhY I - :r\)matographyconverts r. -.: :tl duringelutionwith n; :h.'ir use dictatedbY the
r
-3"12 Trimethylsilyl azide. 13,24-25; 14,25; 15,3 42-343: 16, 17; 18,379-380; 19' 37l of a Lewis acid acylalste.g.,PhCH(OAc)rlareconverted Nitriles.t In thepresence (6 70-95Vo). to RCN directlyby Me.SiN, examples, rSandberg, (1998). L.K.TL39,6361 M.,Sydnes, 17,378; 18,380;19' I 78 Trimethylsilyl azide-iodosylbenzene. conditions (e.g., with PhI=O present) the oxidative Under a-Azidosuffides.t with MqSiN, is accomplishedat low reaction group on introduction of an azido -25'). (-40" to temDeratures
ueofr
\{iyashita, M. CL 109
Phl=O- MesSiNg
\,\j
Meo\7x-^ I ll \.,\j
FN"
63Vo
\
\ .,Lagawa,M JOC 62' 432'7
3
,^.- r1998).
rr .rtcoholsis achievablebY
lTohmu,
(1998)' H., Egi, M., Ohtsubo,M., Watanabe,H., Takizawa' S'' Kita' Y' CC 173
Trimethytsilyl bis(fl uorosulfonyl)imide. Carbonyl compounds are deprotected from their acetals under Deacetalimtion,t at neutral and anhydrous conditions by reaction with MqSiN(SOrF), in dichloromethane -78'. rKaur.G..Trehan,A., Trehan,S.,/OC63' 2365(1998).
'l::ii
reactionby treatmentof RrP r ::i: triorganoPhosPhines lJ.:l\)n mixturesaregenerated
Trimethylsityl bis(trifl uoromethanesulfonyl)imide. are Atkylations.t Friedel-crafts alkylation and allylation of carbonyl compounds effectively catalyzedby Me,SiNTfr. Th" catalytic activity of MerSiNTf, (generated Hetero-Dials-Al.der reactions.' methyl from allyltrimethylsilane and triflimide) can be gauged by the condensation of
Trimethylsilylchloride
acrylate with 3-trimethylsiloxy-2-aza-1,3-dienesin uniformly good yields, whereas<5Vo yields of the products are obtained using MerSiOTf. rlrhii, A., Kotera,o., Saeki,T., Mikami,K. sf 1145(1997). 2Muthi"u,B., Ghosez, L. TL38,549'l(1gg'l).
Trimethylsilyl bromide. 15, 5l; L6,50; 18,380; 19,373-374 N,N-Bis(trimethylsiloxy)enamines.t Nitroalkanes (except nitromethane) undergo double O-silylation by MerSiBr in the presenceof EtrN (7 examples, 80-90%). The heterocycleofthe Birch reduction (Na, 3-Alkyl-6-hydroxy-2-cyclohexenones.' is cleavedby Me,SiBr. NH,, MeOH) productsfrom 4-alky1-1,2-methylenedioxybenzenes
Me3siBr
-*,":
-2oo
Mannich bq dimethylamine h1 Fricdel-C4 discovered. Protodesil-vlt
treatment with M O-Silylnitnt N-trimethylsilorr
tn)^ro, o:--\
o\'\a'^\f/
I
Ho)J 80"k
'Dilman,
A. D., Tishkov, A. A., Lyapkalo,I. M., Ioffe, S. L., Strelenko,Yu. A., Tartakovsky,V. A. S t8l (l998). 2sylvain, C., Wagner,A., Mioskowski, C. S 970 (1998).
Trimethyfsilyl chloride. 15, 891; 16, 85-86; 18, 381; 19,374-375 Trimethylsilyl chloride provides a chlorine Chlorohydrinsandvic-dichlorides. atom to effect epoxide opening. A phosphaferrocene1 acts as catalyst in the regioselective formation of chlorohydrins,r i.e., 1-chloro-2-alkanolsfrom 1,2-epoxyalkanes.Under oxidizing conditions (tetradecyltrimethylammonium pemanganate) chlorine is generated from Me,SiCl to serveas an addendfor alkenes.2
+,"-#(1)
Esters. Aliphatic acids including a-amino acids and citric acid form methyl esters selectively (in the presenceof aromatic acids) and in excellent yields when treated with Me.SiCl-MerC(OMe), in methanol at room temperature.r The combination of trimethylsilyl chloride with an alcohol is useful for converting nitriles to esters.4(Note the absenceof the alcohol,Me.SiCl activatesnitriles toward hydrolysisto give primary amidess.)
'Gu.."tt, C. E.. Fu. ( 2Hazra,B. G., Ctrcr 3Rodriguez, A.. r.-m al-uo, F.-T., Jeevane 5Basu, M. K., Luo. I 6Arend, M., Risch. l TSrivastava, N.. Ktm 8Rudn"., F., Wistran gHur.ne., A., Friedr
Trimethylsilyl c-v
ftTrimethyki asymmetricinduc promotedby LiC recommended. 2-Cyanocycl usesMerSiCNin r lSchi.iru,
K. D.. C( 36, l'704 (1997t. 2Jenner, G. TL 4. ll sNishiyama, y.. Kar aThi"ry, V., Cou&n
Trimethylsilyldir Asymmetrbd 1,3-dipolar cycloa
Trimethylsilyldiazomethane405
e..:..qhereas(57o
Mannich bases,6 The preparation is a simple mixture of enamines, aldehydes, dimethylamine hydrochloride, MerSiCl, NaI, and EtrN. The catalytic activity of MerSiCl in this reaction hasbeen Friedel-Crafts reaction.l discovered. Protodesilylation.8
)n:.:hane)undergo [r
Trimethylsilyl groups .re removed from an aromatrc ring by treatment with Me,SiCl and KI in aqueousMeCN at room temperature. Silylation of unsaturated nitroalkanes can lead to bicyclic O-silylnitronates.' N-trimethvlsiloxvisoxazolidines directlv.
qi ).; ).
lr:, r reduction (Na, lr. eJ hv Me.SiBr.
Phr
tn)^ro, o.=^
Ph-
Me3sicr
-,.^,*
T
-'^.-No(osiMe3)
o'=^
+
g
PSiMe3
i-ft-I* \ 74!o
1 -:.riolskY,V. A. S
J, .1c. a chlorine l!: :irJ regioselective r r; .,ikanes.Under L :r:rc is generated
rGanett, C. E., Fu, G. C. JOC 62,4534 (199'7). 2Hazra,B. G., Chordia,M. D., Basu,S., Bahule,B. B., Pore,V. S , Naskar,D JCR(S)8 (1998). 3Rod.igu"", A., Nomen, M., Spur,B. W., Godfroid, J. J. TL39,8563 ( 1998). "Luo, A. TL39,9455 (1998). F.-T., Jeevanandam, 5Basu. M. K., Luo, F.-T. TL39,3005 (1998). 6Arend, M., Risch, N. SLg74 (1997). TSrivastava, N., Kumar, A., Dwivedy, I., Ray, S. SC 27,28'/7 (1997). nRadner, F., Wistrand,L.G. TL36,5093 (1995). 9Hurrn"., A., Friedman,O., Dehaen,W. l-4,587 (1997).
Trimethylsilyl cyanide.13,87-88; 14,lO'7;15,102-104;17,89;18' 381-382;19,375 The TiClo-promoted epoxide opening is subject to ftTrimethylsilnxy nitriles. asymmetric induction by chiral ligands.r The derivatization of aryl ketones is efficiently promoted by LiClOo and LiBFo.2 For safety consideration the use of LiBF.,/MeCN is recommended. 2-Cyano cyclic ethers.3'a A convenient replacementofthe hydroxyl group oflactols usesMe,SiCN in the presenceof a Lewis acid.
I : :nr ntethYlesters l'. .r:cn treatedwith k',,,nrbination of : -'.rcrs.4(Note the i. l:nrarv amides5.)
rs.hi.iru, K. D., Cole,B. M., Krueger, M. L., Hoveyda,A'-H.ACIEE C. A., Kuntz,K. W., Snapper, 36.1't04i997). 2Jenner, TL40,4gl (1999). G. 3Nirhiyama, Y., Katoh,T., Deguchi,K., Morimoto,Y., Itoh,K. JOC 62,9139(199'7). "Thiery,V., Coudert,G., Guillaumet,G. 7 53, 2061(1997).
Trimethylsilyldiazomethane. Chiral pyrazolines are accessible through Asymmetric dipolar cycloadditions.\ to N-(2-alkenoyl)borane-10-2-sultams. 1,3-dipolarcycloadditionof trimethylsilyldiazomethane
-,,p* R=R'=6
72o1"
Diazomethyl ketones are formed when B-lactams Ring expansion of ftlactams.z are exposed to the conjugate base of trimethylsilyldiazomethane [deprotonation with NaN(SiMer)rl. A subsequentphotoinduced Wolff rearrangementis accompaniedby ring closure to give pynolidinones. Benzofurans.3 A method for the preparation of benzofurans from o-hydroxy phenonesinvolves conversion to the alkynes (deoxygenation with one-carboninsertion) by reaction with lithiated trimethylsilyldiazomethane, and treatment of the products with TBAF.
o (\.\
Me3SiC(Li)N2
\-\o
.'z l-rl \.'\o
-_rd<
--rs\-<'-./
t
t / \
TBAF THF
/-78"/o
2,5-Dihydrofurans.a
Alkylidenecarbene formation
from
cl-alkoxyketones is
can be madethis way, followed by C-H bond insertion.2,8-Dioxabicyclo[3.2.1]oct-6-enes although such compounds are unstable.
C)A
Trimethylsilyldi( Silyl enol etfu benzenefor enols Aminoalkyb Liclq the addirio thefunctionalcha
o$t I
rfr \2
lYamamoto, Y.. Ma 2suidi,M. R.,Khale
Trimethylsilyl iod Aminesfron r generated in situ fr Conjugatedr compounds is pron Trifluoromct MerSiI with CF.S nucleophilicsubst Tetrahydropn Me.,SiI-PhrPcata
rKamal, A., Rao. \ ! 2E ikr.on, M., Iliefst 3Ada.r, D. J., Tarea 4cha, K. H., Kang. T t
MegscHNzBuL + [a!t
tMirh, M. R., Guena,F. M., Carreira,E. M. JACS119,8379(1997). 2Hu,D.-C.,Kang,S.,Chung,C.-M.,Lim, H.-K. TL39,7541(1998). 3lto,Y., Aoyama,T., Shioiri,T. SL 1163(199?). "Walker,L. F., Connolly,S.,Wills,M. TL39,5273(1998).
S--
Trimethylsilyl iso Isonitriles frot reasonable yields.
Trimethylsilylisothiocyanate-zinciodide
br-Q i.-run ors' F=a
=H
72ok
4Ul
Trimethylsilyldi(ethyl)amine. 18' 382; 19' 376 silyl enol ethers.t The application of the Me,SiNEtr-MeI combination in refluxing benzenefor enolsilylation of ketones is demonstrated(6 examples, 85-93%)' Aminoalkylationof aldehydes.' Aft.r imination of aldehydes under catalysis of LiClO4 the addition of proper carbon nucleophiles (e.g., Reformatsky reagents)completes the functionalchain extensionprocess.
31 * hen Plactams dcprotonation with ;.,'npanied bY ring
Me3SiNEt2- LiClOa; + BTZnCH2COOEt
n. :rom o-hYdroxY crr\rn insertion)bY [ ::J Productswith
tya'''umoro,y.. Marui,c. oM 16,2204(199'7). 2suidi,M. R., Khalaji,H. R. ./cR(s)340(1998)
Trimethylsilyl iodide. 16' 188-189; 18' 383; 19,376-377 Amines from azides.l The rapid reduction occurs at room temperatureusing MerSiI generatedin situ from Me.SiCl and NaI in MeCN. Conjugate qdditions.2 The reaction of copper acetylides to conjugated carbonyl 717o
(r-.!lkoxyketones is cri, hi made this waY'
'1
compoundsis promotedbY Me1SiL This reagent is obtained by reaction of TriJluoromethyl trimethylsilyt suffide.' Me.SiI with CFrSag in pyridine at 80'. It is a source of trifluoromethanethiolate for nucleophilic substitution of activatedhaloarenes. the alcohols using Tetrahydropyranyl ethers.a Tetrahydropyranation of protocols. tens ofbetter There are overkill. an represents system catalyst Me,SiI-PhrP rKamal,A., Rao,N. V., Laxman,E. TL38,6945('1997) 2E.ikrron.M.. Iliefski,T., Nilsson,M., Olsson, T. JOC62, 182(1997). 3Adurnr. S.J.,Clark,l.H. JFCm,87 (199S). D. J..Tavener, achu,K. H.,K-g, T. W.,ke, H.-W.,Kim,E.-N.,Choi,N.-H.,Kim,J.-W.,Hong,C.I. SC28'2131(1998)'
\sc
r-Si2Cl€
Trimethylsilyl isothiocyanate-zinc iodide. Tertiary alcohols are converted to isonitriles in Isonitrilesfromalcohols.t yields. reasonable
af\ LY-oa
- Znr2; Me3sicN rBAF
ar-\
t t I fl-"-ttttc L--./
408
Trimethylsityltrifluoromethanesulfonate
rKitano,Y., Chiba'K', Tada,M'TL39' 1911(1998)'
2-(Trimethylsitylmethyl)prop-2-enyllithium' The lithium 2-Trimethylsilyu-at*enis''
reagent
is
prepared
from
the
BF3.OEt2.Subsequ system. HeterocYlc as* (E)-allylsilanes ir fr and piperidines.: I
tetrahydrofuransan
conespondingselenidebytreatmentwithBuLi.Itsreactionwithalkylhalidesprovidesthe allylsilanes'
SiMe3
SeMe
BuLi; C12H25l
c
SiMe3
I
ctz{zs
Ph/
83%
lRyter,K.,Livinghouse, T JOC62'4842(1997)' TrimethYlsilYl ^--"ir"ryttrtrnu'i'' PhenYlselenide' to the selenides ls Direct converti:i of benzvlic alcohols combrnatton' achievedusingtheMerSiSePh-AlBr, T' CPB46'1311(1998)' tAb.,H.,Yamasaki' A'' Harayama'
Cationic cYch
Me,SiOTf in higN by alkenesto girc I 8-oxabicyclo[3.2
acetal of 2-(triethl steps)is Promotcd
2-Trimethylsilyl- 1,3'propanediol' Acetalizption.|Thesilylateddiolisusedintheprotectionofthecarbonylgroup (dehydrationwith3A*ol".ulu.sievesindichloromethane).Carbonylcompoundsare regeneratedfromthe5-trimethylsilyl-1,3-dioxanesbytreatmentwithLiBlninrefluxing THF. V' fL 38' 1873(1997)' rLipshutz, B. H., Mollard'P'' Lindstey'C'' Chang'
-OtUr'u"on 1-TrimethYlsilYl-2-ProPanone' obtained from of enolates (such as those Isopropenylation't HF-pyridine with *r, o",on. followed by treatment deprotonation of uutvroractonJsl*J* leads to the isopropenylatedcompounos' G' f 53' 6281(199-l)' rHanessian, S.,Abad-Grillo,T'' McNaughton-Smith' 15' 346-350; 13'329-331;t4'333-335; Trimethylsilyl trifluoromethanesulfonate' -386; 18, 3 83-3 84; 19' Y 9 -38 | t6, 3$ :364; 17, 3'79 with 2-Cyclohexenones form' adducts a-Alkoxyalkylationof2-cyclohexenones" of presence acetals in the t"utt with 2-substituted cyclic Me,SiOTf and pyridine 'i'n'"i
R3
Sulfenylatio introductionof s Disilyl ketc reagent.Althou siloxyalkynesit 1 0 0 - 1l 0 ' . Enaminolr with secondan:
Trimethylsilyltrifluoromethanesulfonate409 the enone BF3.OEt2. Subsequentdetachment of pyridine from the products regenerates
ri..rri'd
from
the
f..'.rJcs Provides the
system. Heterocylea'ssembly.Theallylationofaldehydesusingfunctionalized (E;-allylsilanes is followed by cyclization to give trans-2,3-disubstitutedtetrahydropyrans and piperidines.2 using a (Z;-allylsilane of shorter chain length cis-2,3-disubstituted tetrahydrofuransare obtained'3
r-SiMee
(
OMe
-
pnAor'l"
\
Me3SiOTf MeCN
Me3Sio/
Ph 100%
:he selenides is
is induced by cationfu cycloadditions. Ionization ofp-benzoquinone monoacetals in situ captured are carbocations the and (LiClOo@tOAc) media Me.SiOTf in highly polar 2-(1'-phenylethoxy)of A synthesis derivatives.a by alkenesto give bicyclo[3.2.1]octene in good enantiomericpuritys from furan and a mixed 8-oxabicyclo[3.2.1]oct-6-en-3-one in three acetal of 2-(triethylsiloxy)acrolein (prepared from pyruvaldehyde dimethylacetal steps)is promoted bY MerSiOTf.
/
-J
/-\
r : 1'.j carbonyl group t' : r, compounds are r::' LrBF. in refluxing
-oMe
* o a\:1/ 1 oMe
R.sio-a( " \ \ '
,- : : <. 15,346-350; adducts with n.. :,,111.1 presenceof the rll tsi.:
OMe
OMe
MeO, FO
from tl: -r obtained ' s ith HF-PYridine n' ;'
Me3SiOTf- LiClO4 + EtOAc -23o
P
R'o Me35iOTl
-P l
)-r-\ ^-J A "-\_.f--J
tl
h
groupsto enable sulfunytatian.o quinon" mono-o,s,acetalsare donors of sulfenyl introduction of such substituentsto ketones in the presenceof Me.SiOTf' as Disilylketenes.T Silylation of monosilyl ketenesis facile using Me.SiOTf-EtiN (-50') also contaln reagent. Although the products obtained at low temperatures by heating at possible is ketenes to disilyl latter of the isomerization siloxyalkynes, 1 0 0 - 11 0 " . 1,3-diketones Enaminoketones.s Me.SiOTf is a catalystfor the condensationof with secondaryamines.
'{
410
Trirnethylsilyltrifluoromethanesulfonate
Naznrov cyclization.e
A trifluoromethyl group at one of the cr-positions of the
Trimethyltin fluoril Fluorosilanes.: (e.g.,MerSiCl. -+ \lc
cross-conjugateddienone substratescontrols the regioselectivity.
o
o
egc\,r\,,,\
il rt__,,\
Me3SiOTl > (cF3)2cHoH
lRoesky, H. W.. Keller.l
FgC
cH2cl2 N-Triorganosill'lp1rl O-Silylation.l
symmetrical or Enolsilylation of trans-2,3-Disubstitutedsuccinimides.lo unsymmetrical N,M-dimethyl-N,M-diacylhydrazines is followed by a [3.3]sigmatropic rearrangementand recyclization.
o
\
Me3SiOTf +
I
Et3N/ cHzcl2
-N-v^n, tl
o
toluh, G. A., Klumpp.D
o
OSiMe3
tl -tt&R
with TfoH follo*.ed I 70-l00%o) withour rhr
-*t\-R
\
p
- N/--/"l
-*r*'
Triphenylphosphina
\/,,,a,
Isomerizations.
o
OSiMe3
R = R'= Me
dienes is by treatnrenr 2,4-alkadienolsrfrom
667"
The combination of MerSiOTf and a tertiary amine Pummerer rearrangement."'t2 is valuable for the rearrangement.A nucleophilic component present in the sulfoxide may engagein a further reaction which results in a cyclic product.
o?-tn
r^
Y"
oArun
Me3SiOTf- Et3N
4-'ro',
(-\-lLl
q h\*"?Y \.,\,,/--
isomerization with Ph bromide can be isonn alkadienoic esters arx
alkynoateson reacdon amountof PhrP. The (4- to (E)-ison
efficient (8 examples.9
Addition to allym provide (E)-alken1.lor phthalimideis obsene<
o ) o
64"/" 'Wang, F., Zibuck, R. 5L245 (1998). 'suginome, M., Iwanami, T., Ito, Y. JOC 63,6096 (1998). 'Sano, T., Oriyama,T. 5L716 (1997). 'Collins, J. L., Grieco, P. A., Walker, J. K. 74 38, l32l (199'l). sStark, C. B., Eggert, U., Hoffmann, H. M. R. ACIEE 37,1266 (1998). oMatsugi, M., Gotanda, K., Murata, K., Kita, Y. CC 138'1(1997). 'Nikolaeua, S. N., Ponomarev, S. V., Petrosyan,V. S., Lorberth, l. JOMC S3S,2I3 (1997). oCartaya-Marin, C. P., Henderson,D. G., Soeder,R. W., Zapata, A. I. SC 27, 4275 (1997). 'Ichikawa, J., Fujiwara, M., Okauchi, T., Minami, T. 5L927 (1998). toMill.., S. J., Bayne, C.D. JOC 62,5680 (1997). "Padwa, A., Waterson,A. G. TL39,8585 (1998). "Magnus, P., Mitchell, I. S. 7l, 39, 9131 (1998).
,X .:
o.
I
N-OH
TriphenylphosPhine
-F\''rrions of the
4tl
Trimethyltin fluoride. Thir reagent is useful for converting chlorosilanes to fluorosilanes Fluorosilanes,t -+ MerSiFr, 977o)at room temperature(7 examples' 86-97Vo)' (e.g.,MerSiCl, rRoesky,H. W., Keller,K. "If'C 89, 3 (1998).
i\ nrmetrical or r : ilsigmatroPic
trifl ate. N-Triorganosilylpyridinium are prepared from allyltriorganosilanes by treatment reagents These O-Silylation.t are useful for silylation of alcohols (7 examples, They pyridine. with TfOH followed by 70-l0OVo) without the needfor aqueousworkup. roluh,G. A., Klumpp,D. A. S'744,1997).
i -
/
N
\ l
n l
Y",e' il =a =Me
66"/o
nJ .r tertiary amine r ::r rulfoxide may
Triphenylphosphine. 18, 385-386; 19, 382-383 A convenient method for the conversion of alkynes to conjugated Isomerimtionr. preparation of dienes is by treatment with PhrP. The synthetic application is shown in the pentafluorophenol, with 2,4-alkadienolsl from 2-alkynoic acids involving esterification Even propargyl isomerization with Ph,P (PhMe, 50'), and reduction with DIBAL-H' yield. conjugated bromide can be isomerized to give 1-bromopropadiene,2albeit in 29vo pentafluorophenyl alkadienoic esters and amides are obtained in one step from the with catalytic treatment after respectively, amines, and alcohols alkynoateson reaction with amountof PhrP. is highly The (D- to (D-isomerization of nitroalkenes3using polymer-supported Ph.P
P. 7 v"\
\--^o
efficient (8 examPles,96-lO0Vo). esters to Addition to alkynoic esters. conjugate addition of oximes to alkynoic by o-addition provide (E)-alkenyl oxime ethersais catalyzed by Ph]P. Interestingly, acids's phthalimide is observed.Such adductsare useful precursorsofdehydro-cr-amino
ooEt o
X
N-oH
Ph3P + 3-COOEI
t - : ,1997) r:-< 1997). NH
+ *-COOEI
CH2Cl2
o
X
Ph3P + HOAo- NaOAc PhMe A
N
o
arA / $'1oo,, o 9Sio
412
Triphenylphosphine-carbon tetrabromide
l2+2lCycloaddition of enolizable ketoesters to the presumed adduct of PhrP and dimethyl acetylenedicarboxylate is followed by elimination of PhrP=O in situ. On thermolysis the cyclobutenetricarboxylic estersundergo electrocyclic opening.o
*
a;r["ooE,,n.,I a.-atA:":' l_ 1^$g,"oo=, =1.
"a"-,,L t-
E/tPPh3 I E = COOMe
R-\'/
H., Morohasl
.4, a I pnu" I
o
cooEr ,/z
78 - 871,"
The use of polymer-supported PhrP for debromination of cr-bromoketonesThas been advocated.Intramolecular reductive coupling of bis(acrylic esters) to form carbo- and oxacycles is effected photochemically in the presenceof Ph.,Pand 9. l0-dicyanoanthracene.s Reduction and reductive coupling.
rKazmaier, lJ. T 54,1491(1998). 'Kttnig, B., Eilers,B. SC27, 1685(1997). 'Stanetty, P.,Kremslehner, M. TL 39, 811 ( 1998). -Yavari, I., Ramazani, A. SCn, 1449(199'7\. sTrost,B. M., Dake, R. c. JACSllg,'15g5 OggT). 6Yavari,I., Samzadeh-Kermani, A. R. IZ 39, 6343( 1998). 7Dhuru, S. P.,Padiya,K. J.,Salunkhe, M. M. "/CR(S) 56 (1998). oPandey, G.,Chorai,M. K., Hajre,S. ?L 39, l83l (1998).
Triphenylphosphine-N-bromosuccinimide. 19, 386 Acylations.' Activation of carboxylic acids including pivalic acid and trifluoroacetic acid for acylation is achieved by treatment with Ph.P and NBS. Acyloxytriphenylphosphonium bromides are the acylating agents. 1-Alkylbenzotriazoles,' These useful synthetic intermediatescan be prepared from primary alcohols by reaction with benzotriazole,PhrP, and NBS. rF.oyen, I1.38, P. 5359(1997). 'Katritzky,A. R., Oniciu,D. C., Ghiviriga,l. SC27, 1613(1997).
Triphenylphosphine-carbon tetrabromide.13,331-332;15,352;16, 366-368; 18, 386-387; 19,383-384 Esterification.r Formylation and acetylation of alcohols can be effected using Ph.P-CBro in ethyl formate and ethyl acetate,respectively.
lHagiwara,
Triphenylphosphinc18, 387; 19,384-385
Deoxygenotions. with Ph,P-DEAD and Formation of o-hydroxybenzaldortn accomplished at room
Amines. Chiral reaction employing nucleophile.aThe c-an means of an intramolc
acids.5 Thus, subject conditionsleadsto pl:
OH
*"*-
Mesylates.o
Boc. ,S N H
Forr
achieved when MsOH r
rMyers, A. G., Movassigtu 'Poissonnet, G. SC 27. ,1tl 3wang, F., Hauske,J. R. I -Decicco, C. P.. Gror.er. p sJin, Y., Kim, D. H. st l lt 6Davis, A. P., Dresen.S . L
Triphenylphosphinc--d 387-388;19,385 Alkylations.t Mc mediationof PhrP-DIA
Triphenylphosphine-diisopropylazodicarborylate 4f3
a.rJ--t of Ph.P and Pl t'=O in situ. On
Ph3P- CBra
RCH2OH
RCH2OCOR' R'COOET
qrjiIfl_9.6
(R'=H,Me)
or l .'
H
tHagiwara, H., Morohashi,K., Sakai,H., Suzuki, T., Ando, M. f 54.5g45 (199g).
-)*uuu='
l l l
E
E
t I pnue t ^
^nnEr
I
; . \/\:.y'\
Triphenylphosphine-diethyl azodicarboxylate. 13, 332;14,336-337;17, 3g9-390; 18, 387; 19, 384-385 Deoxygenations, Unhindered alcohols are deoxygenated in one step by rrearment with Ph,P-DEAD and o-nitrobenzenesulfonylhydrazine.r Formation of 1,2-benzoxazole* and 2-substituted benzisoxazoles3 from o-hydroxybenzaldoximes
78 - 870/"
sullrrrted Ph,P for lrr :.Juctive coupling x':,shemicallyin the
and N-acyl-2-hydroxyanilines, respectively, is readily accomplished at room temperatureor below on treatment with p\p-DEAD. Amines. chiral g-amino acids are obtained from cyanohydrins via a Mitsunobu reaction employing N-r-butoxycarbonyl-N-(2-trimethylsilyl)ethylsulfonamide as the nucleophile.aThe s-aminonitrile derivatives rhus generatedare hydrolyzed with acid. By means of an intramolecular displacement B-hydroxy acids are transformed into B-amino acids.s Thus, subjecting the derived o-benzylhydroxamides to Mitsunobu reaction conditions leads to B-lactamswhich are readily processed(LiOH; H,, pd/C).
w2
*"*.
r r,: rnd trifluoroacetic lS -\cyloxYtriPhenYl,.r:r he preparedfrom
O2 Boc. ,S. ,1 "
il
Ph3P- DEAD
SiMe3
to".n,t./.a,"".
a^?;
NHz + \ . / \ ? ^
v
v
booH
Mesylates'6 Formation of mesylatesfrom alcohols with inversion of configuration is achievedwhen MsOH is addedas nucleophilein the Mitsunobu reaction. lMyers, A. G.. Movassighi. M.,Zheng,B."/ACSllg,8572(tggl). 'Poissonner. G. SC27.3839( I 997). 'Wang, F., Hauske,J. R. fZ 38, 6529(199j). -Decicco, C. P.,Crover,P. SL 529(1997). 'Jin, Y., Kim,D. H. SI 1189(1998). 6Davis, A. P.,Dresen, S.,Lawless, L. J. TL3t,4305 Ogg'.\.
18' l. 16.-166-368;
Triphenylphosphine-diisopropyl
:d:. be effectedusing
387-388; 19, 385 Alkylations.t Meldrum's mediation of Ph,P-DIAD.
azodicarboxylate. 15,352-353;17, 390; lg, acid undergoes c-alkylation
with
alcohols by the
414
Triphenylphosphine-haloketone
Epoxides.' 1,2,3-Triols give 1,2-epoxy-3-alkanolsdue to selective activation of the primary hydroxyl group which is followed by cyclization.
HO---r \
Ph3P-DIAD
R /
+
Fz Hd bH
/
\
PhMe o- r.o"
/
n
o-z
.R
'ou
1,1,1-Triflaot trifluoroacetone. reduction and corx
lvilleneuve, G. B..( 2Tanaka, A., Oriran 3Tanaka, A., Oriunr asaito, A., Saito.K . sshen, Y., Zhang.)'
rshing,T. K. M., Lai,L.-H.,Narkunan JOC62,161'7(lgg'7). ,K. 'Gravier-Pelletier, J.-C.SC 24,2843(1994). C., Le Merrer,Y., Depezay,
N-(Triphenylpbc
Triphenylphosphine-halogen. Sodium sulfonates can be used as sulfonylating agents when N-Sulfonylation.' activated in situ to form sulfonyl halides with Ph3P-X2 (X=Cl, Br). yic-Diols are converted to alkenes2via cyclic sulfates,i.e., reaction Deoxygenation. of the latter with Ph,P-I, at room temperature. This reagent combination together with
'Froyen, P., SkrarLs
imidazole can be used to transform cr-hydroxy amides to nitriles.s Tetrahydroisoquinolin-4-ones.a 3-Alkoxy- I ,2,3,4-tetrahydroisoquinolin-4-ol derivatives undergo rearrangementto give the ketones.
MeO MeO
OMe s
Ph3P- t2 PhH
MeO
Triphenylstannea
Desulfuizatb Ph,SnH-AIBN in r esters and lactone 2-Thiono-1,3-dior can be protected in
to acid-sensitiveen
Meo
rKataoka, T., Iwama,T., Setta,T., Takagi,A. S 423(1998). 2Jang,D. O.,Joo,Y. H., Cho,D. H. SC27, 2379(lggi). 3Ruut"r, J. A. JCC 17,1037(1998). A. C.,Figueiredo, A. P.,Femandes, aPonzo, T. S. IL 39,3409(1998). V. L., Bianchi,D. A., Kaufman,
Triphenylphosphine-haloketone. t Acid chlorides are formed under acid-free conditions by reaction Aci.d chlorides. with PhrP and hexachloroacetone. Alkyl bromides and azides. Substitution of hydroxyl groups by bromine is readily THP ethersand many performed with Ph,P and2,4,4,6-tetrabromo-2,5-cyclohexadienone.2 silyl ethers3are also converted to bromides directly. When zinc azide dipyridine complex is also present alcohols are transformed into azides.a lnversion of configuration of the carbinolic center accompaniesboth transformations.
Tertiary amin readily achieved c aminophosphoniu (PhNlMel-PPh.rl
-Jo{
rsato, M. Nr(l(508 r I 2De Angelis, F., Marz
Triphosgene. lE,3l Carbamoylchl benzylamines(deb carbamoylchloride is obtainedfrom chl
TriPhosgene 415
, r : : r r n ( ] ) ft h e
3-bromo-l'l'1PhjP, reaction of 1,7,1-Trifluoro-3-alken-2-ols.' Th" Meerwein-Ponndorf-Verley involves aldehydes (i-PrO)rTi with trifluoroacetone, reduction and condensation. lvilleneuue, G. B., Chan,T. H. IL 38, 6489(1997). 2Tanaka. A.. Oritani,T. 7L 38, 1955(1997). 3Tanaka, A., Oritani,T. TL 38,1223(199'7). osuito,A., Saito,K., Tanaka, A., Oritani,T. TL38,3955(199'7). 5shen,Y., Zhang,Y.,Zhou, Y. CC2195(1998)
N-(Triphenylphosphonio)amines. Transformation of alcohols ROH to tertiary amines RR'R"N is Tertiary amines.t The readily achieved on reaction of the derived sodium alkoxides with (R'R"NPPh.')I. between aminophosphonium salts can be obtained by an exchange reaction a:int\ when
(PhNtMel-PPh.)I and excessR'R"NH. 'F.oy"n,P.,Skramstad, J. TL39,6387(1998).
.:i.reaction h :rther with rl:---l-ol der-
Triphenylstan nane-2,2'' azobis(isobutyronitrile). Thiono derivatives are desulfurized by heating with Desulfurization, of Ph3SnH-AIBN in toluene(10 examples,72-99Vo).1Accordingly, a two-stepconversion this basis' on achieved can be esters and lactones to ethers via thionoesters/lactones are similarly desulfurizedto give the dioxolanes,2thereforediols 2-Thiono-1,3-dioxolanes can be protected in the form of heterocycleswhich are acid-stablebut eventually switched to acid-sensitiveentities. q
oAo
oAo
,H'
e1 r9
+J'oJ-
P h 3 S n H- A I B N PhMe A
H
o{ t
-fd
)
Fq ( t
'o-I_
85v"
'Sato,M. NI(K 508(1997). 2DeAngelis,F., Marzi,M., Minetti,P.,Misiti' D., Muck,S. JOC 62,4159(199'7)' )r. h\ reactlon n:::reis readilY r.!:.r- and many d::rrettmPlexis !J:.:tlon of the
Triphosgene. 18' 388; 1.9'386 A direct preparation of carbamoyl chlorides from tertiary carbamoyl chlarides. benzylamines (debenzylation) is by reaction with triphosgene'l N-Methoxy-N-methylcarbamoyl chloride, which is useful for coupling with various unsaturatedorganostannanes' is obtained from chloroformylation of the methoxylamine in the presenceof pyridine.2
416
TrirutheniumdodecacarbonYl
o il cr3co^occl3 _;;:
o-,/-1N-Bn
Bir;r;Ea Pauson-Kl bicyclicbur
o{lr-cocr
rHua,R..Ta
2Kakiuchi.F3Suzuki.l\-. I aMorinroro.1 sKondo.T.. I uchut-i. s-.
90%
rJorand-Lebrun' D 'Halazy'S'SC28' 1189^(1998)' C.' Valognes, tftlr*t".i, M., Hoshino'Y', Ito,H ' lto'Y ' CL 163(1998)' 308; 19' 386-387 Triruthenium '^'^;;;;;;;;;;;;;;;;.idodecacarbonyl' 18' acids to l-arkvnes to arrord 'o'oaition or diphenvlphosphinic is catalyzed by Rq(CO)12' 2-diphenylphosphonoxy-1-alkenes Aromatitsubstitution.2Theprofileofgroup-di,e"tedo-substitutionofaromatic varies with the Ru catalyst' compounds with alkenyl and alkynylsilanes
\ / {
*
l
'\.sAo Ru3(CO)12
{
*
r
l(.sAo
Tris(cccry Rfuq ueC(CH
tTeunisscr
Tris(+h I lE,389: Ouir
the amirut
i l l (ErO\ssi/'J\Z 100%
w
{
*
l
'\fo i
i(oE0s
l
l
\l\,,\si(oEt)3
PhMe 135o
96%
Conilensedhydroquinones.3Annulationofnorbomeneswithalkynes,catalyzedby norbornenes' Ru.(CO)q2under CO, gives benzoannulated
M(
cyc condiu attrkcd l-octca lTuk 1r tMir"fz
Tri{d |
rlr lll lll I
+
7\ ri \ | ll ll \2
Co - Ru3(Co)12 -
N-methylnioeridine t+oo
389-3! N
neutrd carrici
r
ilr i
417 Tris(dibenzylideneacetone)dipalladium in the samemanner as the Carbonylative cyclization of 1,6-enynesa's BicycliZntion. Similarly' ynals give presence of Rur(CO)r2. Pauson-Khand reaction also proceedsin the bicyclic butenolides.6
CC
1Hua,R.,Tanaka, M. CL 431(1998). 2Kakiuchi,F., Sato,T., Tsujimoto,T., Yamauchi,M., Chatani,N', Murai, S' CL 1053(1998)' 3suzuki.N.. Kondo,T., Mitsudo,T. OM 17,766(1998). aMo.imoto,T., Chatani,N., Fukumoto,Y., Murai,S' JOC 62,3762(199'1). sKondo,T., Suzuki,N., Okada,T., Mitsudo,T. ./ACSll9,618'7 (1997). 6chatani,N., Morimoto,T., Fukumoto,Y., Murai,S. ./ACSll9' 5335(199'1)
dirr nes to afford
Tris(acetylacetonato)ruthenium. Hydrogenation of esters in the presence of Ru(acac), and Reduction.t MeC(CHrPPh2)3provides the alcohols. Double bonds are also saturated.
h.'n of aromatic
lTeunissen, C.I. CC 1367(1998). H. T., Elsevier, Tris(4-bromophenyl)aminium hexachloroantimonate. 14,338; 16,369-3"10; l7 ,391:' 18, 389; 19,387-388 Phenol derivatives are oxidized to quinones under mild conditions by Quinones,t the arninium salt, permitting accessto complex and sensitive synthetic intermediates.
soc'u
Noe [",QJtr THF
Noz
OO
Ao \---\si(oE.;3 D':
n!'.. iatalyzedby
Cyclopropanation.z The cyclopropanation with ethyl diazoacetate under mild conditions (-78" to 0") is selective. The more highly substituteddouble bond of a diene is attacked. Excess alkenes are not required and simple alkenes such as norbornene and I -octeneare unreactive.The maior limitation is when a substratecan undergocycloaddition' rTukeya,T., Motegi,S.,Itoh,T., Tobinaga,S. CPB 45,613(1997). zMirafzal,G. A., Lozeva,A. M., Olson,J. A. TL39,9323 (1998)-
)ts
I \-.\\
) l
Tris(dibenzytideneacetone)dipalladium. 14, 339; 15, 353-3 55 ; 16, 3'72; 17, 394; 18, 389-393: 19.388-390 Allylit substitutions, Substitution of pronucleophiles with allylic acetates under neutral conditions uses (dba)rPdr-PhrP as the catalytic systemr; reactions can also be carried out in perfluorinated solvents.2Carbonatesderived from y-hydroxy-oc,p-unsaturated
418
Tris(dibenzylideneacetone)dipalladium
sulfones react with enolizable ketones to afford dihydrofurans3in a substitution-Michael reaction tandem. An intriguing bicyclization is initiated from reaction of a diorganozinc reagent with the propargylic carbonatemoiety of an enyne system.aApplication of the processto a synthesis of (-)-thujone demonstratesits synthetic potential.
Ts- N,
speciesfor the synrlrsi and MerSiCl in TltF secondary amines prq
f--\.r
/ ,ocooMe
tr
Me2Zn I Et2O Sgyo
Equally interesting is the triene bis(iodozincio)methane, and allyl halides.
facile because it can I indicates that employ
t"-*{
(dba)3Pd2(2-Fu)3P
synthesis5 from
Sulfonium sahs da with organotin, boron. Arylamines. hl by Pd(0)-catalyzedt'-: contains(dba),Pd..r-B
propargylic
ligand in the aminau< possible.
bromides,
Br
n ^r,
; . , (dba)sPdz | [ tZncH2znt
Lfr^/z.t
+
R
?
Y"'
!,*
\.4
r
B \-.rz
J-\r\
Additiontodienes. 1,4-Difunctionalization of conjugated dienes, especially proceeding with good regio- and stereoselectivity, is synthetically desirable. Access to 4-stannyl-2-alkenylboranes6by the pd(0)-catalyzedaddition is such a process.
. \ //
Me ?Hl ,N-] pncnorer..oetl pnAA
M
\\
e (dba)3pd2 ,N\ Me3Sn-B.'N-/ | RP(OR)S Me
'N-/ Me
80"/"
NaoH/ HooH
t-oH 74%
coupling reactions. The suzuki coupling invorving chloroarenesTuses (dba)rpd, /-BurP, and csrcor. For other coupling reactions (e.g., Stille coupling) good results are obtained in supercritical carbon dioxide.8 N-Trifluoro-o-ethynylanilines undergo cyclization and arylation to provide 3-arylindolese in one step on treatment with ArI in the presenceof (dba)"pd,, ILCo. in DMSO.
Phthalanitrilcs.t' Pd(0)-catalyzedre:rctrq Ben4yl ketones.tt the less substitutedsirc r
cs"
'Giambastiani, poli. G., C_ 'Kling, R., Sinou,D.. poza -rL39,9439 (t998t. 'Garrido, J. L., Alonso. I . r -Oppolzer, W., Pimm. A .l -Utimoto, K., Toda. \-.. \t oOnozawa, S., Hatanaka y 7littk", A. F., Fu, G. C. .4( oMorita, D. K., Pesiri. D. R 'Cacchi, S., Fabrizi. G.. It rosrogl, J., Allred, G. D,. l-r "Hori, K., Mori, M../ACS I
419 Tris(dibenzytideneacetone)dipalladium . -i..titution-Michael 01:nereagentwith the F:,,!essto a synthesis
,-".':k r
tr8"/.
t]cJrs\'lic
Sulfonium salts derived from tetrahydrothiopheneare excellent partners for coupling with organotin, boron, zinc reagents.l0 Primary,rr secondary,l2and tertiary arylaminesr3have been prepared Arylamines. by Pd(0)-catalyzedN-arylation methods.The most corlmon and effective catalytic system contains (dba),Pd? r-BuONa, and a tertiary phosphine such as BINAP. The nucleophilic speciesfor the synthesisof primary anilines is a Ti-N complex formed from (l-PrO)oTi' Li' and Me,SiCl in THF under nitrogen at room temperature (8 h). N-Arylation of chiral secondary amines proceeds without affecting the stereocenters.IaArylation with ArI is facile because it can be carried out at room temperafure.ls More recent development indicates that employment of 2-dimethylamino-2'-dicyclohexylphosphinobiphenylas ligand in the amination of unactivated chloroarenesr6under mild conditions is also possible.
bromides, (dba)3Pd2
B r +
Hztlr--rllHer
....................,.- ( BINAP- t-BuONa
\-,/
\-*.r
NHpr \J
PhMe 85o
A route to thesecompoundsfrom catecholsinvolves triflation and Phthalonitriles.ti Pd(0)-catalyzedreaction with zinc cyanide. Benryl ketones.ts Pd(0)-catalyzedarylation of ketones is regioselective.Reaction at the less substitutedsite is observed. t Jrenes, especially r .::.irable. Access to
r\ l
r ar' )CeSS.
P-16e, l
(
o H l t l tF.lEr2 Eli
PhAA \o* 74Yo
n3:!" uses(dba),Pd, p.:::r r -eoodresultsare r'..,tion to provide r: J!,a),Pd, KrCO, in
l
l
*
v'
(dba)3Pd2
l
/\o
Tol-BINAP- t-BuONa THF 7OO
csx"
rGiambastiani, G.,Poli,G. JOC 63,9608(1998). 2Kling,R.,Sinou,D., Pozzi,G.,Choplin,A., F.,Busch,S.,Kainz'S.,Koch,D.,Leitner,W. Quignard, TL39.9439(199$. 3Garrido. J.C. JOC 63,9406(1998). J. L., Alonso,I., Canetero, aOppolzer, B., Hume,W.E. HCA 80,623(199'7). W., Pimm,A., Stammen, tutirnoto,K., Toda,N., Mizuno,T., Kobata,M., Matsubara, S. ACIEE36,28M(199'/). oonozawa, M. TL39,9043(1998). Y., Tanaka, S.,Hatanaka, tl-ittk".A. F..Fu.G. c. ACIEEt7,3387(1998). 8Morita.D. K., Pesiri,D. R., David,S. A., Glaze,W. H., Tumas,W. CC 139'1(1997). vCacchi, S.,Fabrizi,G.,Marinelli,F.,Moro,L., Pace,P. SL 1363(1997). r0srogl,J.,Allred, G. D., Liebeskind,L. S. "/ACSl1r9,12376(1997). "Hori, K., Mori,M. JACS120,7651(1998).
420
Tris(dibenzylideneacetone)dipalladium-chloroform
l2Hong,
Y., Senanayake,C. H., Xiang, T., Vandenbosche'C. P., Tanoury, G. J., Bakale' R' P'' Wald'
) Asr€
s. A. rz 39,3121(1998).
t3Mo.itu,S.,Kit^no,K., Matsubara, J.,Ohtani,T., Kawano,Y., Otsubo,K', Uchida,M. T54' 4811(1998)' S.L. "IACS119,8451(1997). Buchwald, R. A., S., Rennels, llvagu*, t'Wolfe,J. P.,Buchwald, S.L. JoC 62,6066(199'7). r6o1d,D. w., Wolfe,J. P.,Buchwald,S. L..IACS 120,9'722(1998). lTDrechsler, U., Hanack,M. SL 1207(1998). r8Palucki. S.L. "/ACS119,11108(1997). M.. Buchwald. 19, 390 -392 Tris(dibenzylideneacetone)dipalladium-chloroform. with an alkoxycarbonyl phosphate allylic of an Substitution Allylb substitutions. of C-allylation/carbonylation vicinal and derivatives,2 group,l formation of oxazolidine phosphine. (dba)rPdr-CHCl a and allene system3are mediated by
cooH
(dba)3Pd2CHCl3 (2-Fu)3P / CO
.4
MeO|o-o
Ph
YI
CN
*
4
cooEt
Arylsilanes.e A4 However.a arylsilanes. Cyclizntion. Rel triflates to form rncd trifloxydienesto hydro serveto elaboratethesc
HOAc
58% (majo0
are susceptible to fragmentatio# on Fragmentation. 4-Vinyl-1,3-dioxan-2-ones exposureto Pd(O)reagents.
/
H
r-[-io ( t t
:
vf\oAo
(dba)gPdz.CHCls
Z : E 6 ' .1
I
H
The intramoleculr systemrr related to gels
811"
Addition to allenes. reactions.
Ph \-^-
'"ilr-^ *
Allylic carboxylates5and amines6are formed in such addition
+ HN(CHaCOOEI)I
o .^/
f+-/ tI \/O (dba)3Pd2.cHcl3 ph.,/z:.,N(OH2COOEO2 -- -----......."..-----* dPPf/ HOAc THF 100%
A significant application of this reaction Destannylative acylation and alkylation peroxy moietyl Vinylstannanesdimerize while a is in the preparation of ketones containing alkylating pronucleophiles.8
\
'Imada, Y., Fujii, M.. Kd 'Larksarp, C., Alper, H, J 'Doi, T., Yanagisawa-A"Harayama, H., Kuroki. T sAl-Murur. M.. Yamarm
427
Tris(dibenzylideneacetone)dipalladium-chloroform
j
(dba)gPdzcHCrg
llakale. R. P., Wald,
) tu \1 r54,4811(1998).
+ Phcocr
/\
r'r"o).-o.d
(2-Fu)3PlrHF
dnaq
YY\ ueofo-o
oApn 691"
CN Ph
r'
.4\
| * cooEt
l itf. rn alkoxycarbonyl lu:,'ncarbonylationof
-coon
CN
(dba)3Pd2.CHCl3 THF
-.^ji:, Ervvv
I
/\AcooEt tn
CN 51Yo
of Arylsilanes.e Arylation of hydrosilanesis a useful method for accessto a variety suitable' not groups are arylsilanes.However, aryl iodides containing electron-withdrawing Related to the Suzuki coupling is the cyclization of ruborylalkenyl cyclimtion. proper triflates to form methylenecyclopentane derivatives.l0 Thus, subjecting the (dba),Pdr-CHclj to products trifloxydienes to hydroboration and then exposure of the serve to elaboratethesecompounds'
?a:'
tl
:,' fragmentatiof on
,,o-[ "--r'','i)-f^rr X\z
TfO-{
ll
\_J
-
-
E
O : l
(dba)3Pd2'cH.r3 )"-
o-FrFrN
BR,
ffiL/\"*"o" _*oo"
The intramolecular Heck reaction is valuable for elaborating the spirocyclic oxindole systemll relatedto gelsemine.
o.
o r:r:J
in such addition
s8%
aYAo," f-V\/ 2-.<' \-o W
\-tltvle
(dba)3Pd2.CHCl3 BINAP - Ag3PO4 AcNMe2
.1=-,}. i+2 \2 \ro
81% (71"/" ee)
t-,\tCH2COOE02 ' L"" it,:r..n of this reaction Ln:rrnes dimerizewhile
rlmada, Y., Fujii, M., Kubota,Y', Murahashi,S.-I. IL 38, 8227 (1997)' 2l*kr".p, C., Alper, H. JACS 119,3'709 (199'l). 3Doi, T., Yanagisawa, A., Yamamoto, K., Takahashi, T' CL 1085 (1996)' (1997)' oH-uy^a-u, H., furoti, T., Kimura, M.' Tanaka, S., Tamaru, Y ' ACIEE 36'2352 sAl-Murur. M.. Yamamoto,Y. JACS r20, 3809 (1998).
422
Tris(trimethylsilyl)methane
6Al-Mururn, M., Meguro, M., Yamamoto,Y.TL38,6071 (lggi). 'Dussault, P. H., Eary, C. T . JACS 120,7 133 (1995). oNakamura, I., Tsukada, N., Al-Masum, M., Yamamoto, Y. CC 1583 (1997). "Murata, M., Suzuki, K., Watanabe,S., Masuda,Y. JOC 62,8569 (1997). 'ocho, S . Y . , S h i b a s a k iM , .TA9,3751 (1998). "Ashimori, A., Bachand,B., Overman,L. E., Poon,D. J. JACS 120, &77 (1998).
'Lappert,
M. F., L:yh" Y
Tris(trimethylsillf H RadicalcyclizAl this methodusing Hl thionocarbonates.l c r
Tris(dimethylamino)sulfur (TAS-F).13,336;15,355;18,393 trimethylsilyldifluoride Desilylation.t Silicon-basedprotecting groups such as N-[2-(trimethylsilyl) ethoxycarbonyll arereadilyremovedby TAS-Fin DMPU at roomtemperature (8 examples, 68-98Vo). tS"h"idt,
j
K. A., Chen, H., Follows, B. C., Chemler,S. R., Coffey, D. S., Roush,W. R.,rOC 63, 6436
( r e98).
Trisisopropylsilylethynyl
A
trifl one.
Ethynylation,l
On photoactivation in the presenceof hexabutylditin the reaction of the triflone with various alkyl iodides leads to the silylated alkynes. To minimize polymerization of the reagentreactions are conducted at low concentration. 'Xiang, Fuchs, J., P.L.TL39,859?(1998).
Cyclic ketoncsthepresence of CO.5! an intramolecularradi
Tris(pentafl uorophenyl)borane. Ketone reductinn.t By coordination with (CoFr),B the carbonyl group of d- and p-alkoxy ketonesis activatedtoward reductionby BqSnH. Homoallylic alcohols.t Predication of the regioselective attack on o-alkoxybenzaldehydes in preferenceto those at other positions by an allylstannane reagent is assistedby (c6Fs)jB. 'Ooi,T., Uraguchi, D., Kagoshima, N., Maruoka,K. JACS120,5327(lgg8).
Tris(trimethylsilyl)chlorosilane. Hydroxyl protection.t Derivatization of alcohols into the "sisyl" ethersusing DMAP as base at room temperature fumishes their protection. These silyl ethers are resistant to fluoride ion but can be removedon photolysisin methanol.
lBatey, R. A., MacKal. I 'Evans, P. A., Manangr 'Kim, S., Joe,G. H.. Do. aRigby, J. H., Danca D 5Ryu, I., Nagahara.K.. X oNagahara, K., Ryu. t.. !
(re97).
rBrook, M. A., Gottardo, (199'1). C.,Balduzzi,S.,Mohamed, M. Zf 38, 699'1
Tris(trimethylsilyl)rnethane. Alkynyttrimethylsilanes.l
Arylethynylsilanes ,ue obtained from aromatic nitriles by reaction with tris(trimethylsilyl)methyllithium which is in turn derived from the silane (MeLi/THF, 65'). The initial adducts eliminate lithium hexamethyldisilazide on thermolysisin benzene.
Tris(trimethylsitylH Hydroxyl prcterti highly stable 'sis1-l protectinggroupis ca lBrook,
M. A., Goturdo.
Tris(trimethylsilyl)silyl chloride
rlappert,M. F.,Layh,M.TL39,4745(1998).
t-\
Tris(trimethylsilyl)silane. 19, 393 Radical cyclizntions. Closure of carbocycles and heterocycles can be achieved by this method using HSi(SiMe3)3 and an initiator (e.g., AIBN, Et B) to act on halides,r'2 thionocarbonates,3or acyl selenides.a
l : ^ 1 5 .3 5 5 ;1 8 , 3 9 3 \ i-ttrimethylsilyl) lf (-:.1ture (8 examples, ',\ R.JOC63.6436 r.-
(Me3Si)3SiH + AIBN/ PhH
OsCl)
Ts 6'l% i\.Jr:rnthe reactionof llr:;c.. To minimize
Cyclfu ketones. 1,5-Dienesundergo silylcarbonylation and cyclization in tandem in the presenceof CO.5 Macrocyclic ketolactonesare acquired from cO-iodoalkylacrylatesby an intramolecular radical Michael reaction6under similar conditions'
)r.. rroup of cr- and
(MesSi)sSiH
+ C O t[ :r,,-alkoxybenzalby : ::.,--cntis assisted
. -':hers usingDMAP .:: -';. irre resistantto
)r' ::Lrriliticnitriles by :,r from the silane L:: ::hrldisilazide on
SiMe3
AIBN / PhH 857o
rBatey,R. A., MacKay,D. B. TL 39, 7267(1998). 'Evans,P. A., Manangan, T. TL38,8165(1997). 3Kirn,S.,Joe,G. H., Do, J. Y. JACS116,5521(1994). onigby,J. H., Danca,D. M., Horner,J.H. TL39,8413(1998). sRyu,L, Nagahara, K., Kurihara,A., Komatsu,M., Sonoda,N. JOMC 548' 105(1997)' 6Nagahara, K., Ryu, I., Yamazaki,H., Kambe,N', Komatsu,M.' Sonoda,N., Baba,A' f 53' 14615 ,199'7\.
Tris(trimethylsilyl)sityl chloride. Employing ClSi(SiMer), to silylate alcohols to form the Hydroxyl protection.t 'sisyl' ethers permits multiple chemical manipulations. However, the highly stable protecting group is easily removed photolytically in the presenceof methanol' rBrook,M. A., Gottardo,C., Balduzzi,S.,Mohamed,M TZ 38, 6997(1997).
I
I
4U
Tungstencarbynecomplexes
Trityl perchlorate. Mukaiyamaaldol reactions,t An exampleof complex structureassemblyis the introductionof a bis(tetrahydrofuran) unit to C-1 of 6-methyldihydrocarvone.
l tttteesio/).'."'
o
,
\
Tungsten(Vl)chloridc. Carbonylprotcctiot andhydrolysisof acetals
rrcro4
Hj_+H
lFirouzabadi, H.,hanpc. i 'Firouzabadi, H.,Iranpmri
1 , "
Vl . d J *l , oMe
.,"\
73"/" tMeulmans, T. M., Stork, G. A., Jansen,B. J. M., de Groot, A. TL39,6565 (1998).
Tungsten carbyne complexes. Cycloalkynes.t Ring-closing metathesis of long-chain dialkynes using tungsten carbyne complexes such as tri-t-butoxy(r-butylalkynidene)tungsten represents a new approach to cycloalkynes. Tolerance of functionalities including ester, amide, and siloxy groups in such reactions makes the method particularly valuable.2
o
H Y o
\
o
2
) =*-l -7-
o
rlr \r\ /
o
o
H Y o
o
\-:J
Phct 8oo
73v"
Furans." Fischer-type complexes with alkynyllithiums condensewith aldehydesto provide substitutedfurans (6 examples,62-86Vo).
Ot\4€
M€O
R'----:-U
'Fiirstner. A.. Seidel. G. -{C 2l*ururvu, N., Maeyama K.
*
I
R'---w(co)5
|w1co1u
R
R RrcHO 8F3'oEt2 I
*\o) R'AN
Hso'
,,oIM] R"--< \-^J R '
OM€ R
Tungstenhexacarbooy Cyclirutian. Sill l (THF)W(CO)5.' Similar Ureasandfornuni treatmentwith W(COr./c secondary aminesto fcrn
lMaeyurnu, K., Iwasasa- \ 'McDonald. F. 8.. Zru. H. I 3Mccusker, J. 8., Logan J . -McCusker. J. E.. Abborld I
Tungstenhexacarbonyl
J..embly is the 'ne.
425
rFtirstner,A., Seidel,G. ACIEE 37, 1734(lgg8). 2l*uru*u, N., Maeyama, K., Saitou,M. "/ACs119,1486(1997).
Tungsten(Yl) chloride. 19, 395 Both dithioacetalization of carbonyl compoundsr Carbonyl protectionldeprotection, and hydrolysis of acetals2are effectively accomplished in the presenceof WCl. rFirouzabadi, H., Iranpoor,N., Karimi, B. SZ739 (1998). 'Firouzabadi,H., Iranpoor,N., Karimi,B. ./CR(S)664 (1998).
J:ln8 tungsten
t.
r.Pra\ents a new dnrde. and siloxy
o
J
r)
' ,\::h aldehydes to
olrs [-w,cot^ 't F
8Fr OEt2
I OMe R
Tungsten hexacarbonyl. Silyl enol ethers of rrl-alkynyl ketones undergo cyclization with Cyclization, (THF)W(CO)5.1 Similarly, 4-alkynols give dihydropyrans.2 Ureasandformamides. Carbonylation of amines takes place to afford ureas on treatment with W(CO)u/carbon monoxide 3 or [IW(CO)2N2]2.4The latter complex converts secondaryaminesto formamidesi tMu"yu.u, K., Iwasawa, N. "/ACS120,1928(1998). 'McDonald,F. 8., Zhu,H. Y. H. JACS120,4246(1998). 3Mccusker, OM 17,4037(1998). J.8., Logan,J.,McElwee-White,L. *McCusker, J.8., Abboud,K. A., McElwee-White, L. OM 16,3863(199'7).
Ultrasound. 15, 363; 16, 377-379; 18' 395; 19, 396 A protocol for the deprotection of these Cleavageof dimethorytrifylethers.l alcohol derivatives is by ultrasonication in MeOH-CCI.' are improved: Improvement of reactions, using ultrasound the sample reactions oxidation MeCN,2 in NaHCO, with on reaction chlorides acid formation of anhydridesfrom ketols of cyclic cleavage oxidative NCS,3 with salts of alcohols via the bromomagnesium aldehydes,5 of aromatic reactions nitroaldol and to diacids with NaOCl,a Knoevenagel to give allyl ethers'6 alkylative cleavageof2-alkenyl-1,3-dioxolanes with Grignard reagents
Vanadocenedicbloridc-ri ReductivecouPlingspresenceof a chloromagr However,quitedifferentstc * hicl aldehYdes unsaturated
c{
and Wolff reanangement.T lWang,Y., McGuigan, C. SC27,3829(199'7). 2Hu,Y., Wang,J.-X.,LLS. SC27,243(199'1). 3L"",A. S.-Y.,Kung,C.-C.JCCS44,65(199'7). aYang,D. T.C.,Zhang,C.J.,Fu,P. P.,Kabalka,G'W' SC27' 1601(1997)' 5McNulty,J.,Steere, J. A., Wolf' S. fr 39' 8013(1998)' 6Lu,T.-J.,Cheng,S.-M.,Sheu,L.-J.JOC 63'2'183(1998)' 7Miill".,A., Vogt,C.,Sewald,N. S 837(1998).
Uranium(IV) chloride. pinacolformation.t
The reductive coupling of carbonyl compounds by LilHg is
catalyzed by UClo. rMaury,O., Villiers,C., Ephritikhine,M. NJC 21,l3'l (1997)' rHirao,T., Asahara. M.. Itu3l 2Hutuno, B., Ogawa,A.. lhm.
Vanadyl acetylacetoo.tcOxidative opening of t go ring cleavagewith a cal ketones and B-diketones.
Me3sio-
vo( (,
xc.rion of these n. ife improved: I!.'C\.r oxidation le ,,i cyclic ketols
Vanadocene dichloride-zinc. coupling in the Reductive couplings. Aldehydes and aldimines undergo reductive respectively' diamines,2 and diolsr presence of a chlorotriorganosilane to give vicinal observedfor also is cyclization However, quite different stereoselectivitiesare observed. I unsaturatedaldehydeswhich fulfi ll certain structural requirements'
r.:tri aldehydes,s r :rr c allyl ethers,6
cHo
cp2vclz-zn-Me3sicl 2OO
THF
960/. (dl : meso = 85:15)
Cp2VCl2-Zn - Me3SiCl THF
2OO
r-\ ./ "ff"' 0t-t
c.rrJ. bY LilHg is 92"/"(u_Me: g-Me= 77 : 231
rHirao,T., Asahara, Y., Ogawa,A ' JOC 63'2812(1998)' M., Muguruma, 2Hutuno, B., Ogawa,A., Hirao,T . JOC 63,9421(1998)' Vanadyl acetylacetonate-oxygen. L9, 39'7 Teniary cyclopropanol systemsunderOxidative opening ofsiloxycyclopropanes't p-hydroxy go ring cleavagewith a catalytic amount of vo(acac), under oxygen to fumish ketones and B-diketones.
o
X
tl
Me3Si
\-,
/ EIOH VO(acac)2
-
"
f-\
\_}ot 41Yo
A \_fo 240/,
428
Vanadylnitrate
'Kiriha.a, M., Ichinose, M., Takizawa, S.,Momose,T. CC 169l (199g). Vanadyl alkoxychlorides. coupling reactions. organolithium and Grignard reagents undergo homocoupling by vo(oEt)cl, at -78o.r Alkenylboranes are converted to alkenes via migration of a B-substituentto the sp2carbon, and the processis (E)-selectivein the presenceof a fluoride source.2 Heterocoupling of lithium acetylides with alkenylalanes and arylalanes gives enynes and alkynylarenes,respectively, using (i-PrO)rVOC1 as catalyst.3
Water, supencrit Diels-AAcr t dienophiles. lKorzenski,
vo(oP/)2cl
Ph--:-L i-Bu2AlCl
Li*
Et2O 64"k
Oxidative cleavage of a-ketols.a ketols are treated with VO(OE|2CI
Esters of dicarboxylic
acids are formed when the
under oxygen in ethanol.
'Ishikawa, T . , O g a w a ,A . , H i r a o ,T . O M 1 7 , 5 7 1 3( 1 9 9 8 ) . 'Ishikawa, T., Nonaka,S., Ogawa,A., Hirao, T. CC 1209 (1998). -Ishikawa, T., Ogawa,A., Hirao, T. JACS 120, 5124(1998). -Kirihara, M., Takizawa,S., Momose,T. JCS(P I ) 7 ( 1998).
Vanadyl nitrate. Aromatic nitration.t
The VO(NO.), is a mild nitrating agent. rDove, M. F. A., Manz,B., Montgomery, J.,Pattenden, G.,Wood,S. A. "/CS(p1)l5g9 (199S)
M. 8.. I
r: , homocoupling ,r.: nrigrationof a s{'nic' of a fluoride J .rr-\lalanes gives
Water, supercritical. Diels-Alder reactions.l
No catalyst is needed for the cycloaddition of dienes and
dienophiles. rKorzenski. M. B., Kolis,J. W. ZL 38,561I (1997).
64./.
: : ,:ned when the
:..t,1998).
Xenon(II) fluoride. 13,345,19' 399 Fluorocyclizttion,t Alkenyl iodides undergo cyclization to afford (5- and6-membered rings)on reactionwith XeF . cycloalkanes
-
XeF2
\."\l
(\' \-,, 75Y"
Iodination iodofluorides
and. iodofluorination,2
The XeFr-I,
fluoro-
\,,"\F
Ytterbium. 14.j Isomeriz&*t inwardsis catal; Allqnylsih by theYb-imirx Vi.cinal diirr dehydrogenati suitablehydrogc
5T" mixture converts alkenes to vicinal
and it iodinates arenes.
Ph
' Pat.ick, T. 8., Zhang, L. TL 38, 8925 (199'l ). 2sh"lhu-"., D. F., Jones,B. C., Pettus,B. J., Pettus,T. L., Stringer,J' M.' Heasley,V . L. JFC 8E' 3'7
(l ee8). Xenon[D fluoride triflate. Diarytiodoniumtriflates.t The reagentis derivedfrom XeF, andTfOH, andit is an triflates. into aryl(iodoaryl)iodonium oxidantfor convertingiodoarenes 'Kururnou,
T. M., Brel, V. K., Koz'min, A. S., Zefirov, N. S., Potekhin,K. A., Stang' P. J NJC 2l' iL99' 7\. t34'7
rMakioka,Y.. Tm 2Tukuki,K., Kurrc 3Jin,w.-s., MuLr
Ytterbium(tr)i Hydrodcbn near-UV light.
lOgu*u,A., Ohle
Ytterbium(IllI Functional
Yb(OTf), as car Addition n group with alll lr of aldehydes ui
synthesis of hot estersare obtain
il J\ 'ro-
Ytterbium. 14,348;15,366;t6, 384;18' 401; 19' 400 Isomerizationof l-alkynes.t Migrationof the triple bondfrom a terminalposition inwardsis catalyzedby a complexpreparedfrom Yb andPhrc=NPhin HMPA/THF. silylationof l-alkynesby RrSiHis alsopromoted Alkynylsilanes.z Dehydrogenative by the Yb-imine complex. These compounds are formed from aldimines in a Vicinaldiimines.' l-naphthaldehyde is a dehydrogenative dimerization process using Yb-HMPA-THF; suitablehydrogenacceptor.
NPh ) r :. tnal
rr llt..i-
dr:t.an
\.i( 21.
pnAn
Yb / THF - HMPA; +
1-NpCHO
NPh tl -*,,,'\\,-Ph r " l l NPh 81o/"
rMukioku,y., Taniguchi,Y., Kitamura,T., Fujiwara,Y., Saiki,A., Takaki,K. BSCF134',349(199'7). 2Takuki.K.. Kurioka,M., Karrrata, T., Takehira,K., Makioka,Y., Fujiwara,Y. JOC 63,9265(1998). 3Jin,W.-S.,Makioka,Y., Taniguchi, T., Fujiwara,y ' CC 1l0l ( 1998)' Y., Kitamura,
Ytterbium(Il) iodide. Hydrodebromination.' Reduction of alkyl bromides by Ybl, is enhanced by near-UVlisht. rOgu*a, A., Ohya, S., Sumino,Y., Sonoda,N., Hirao, T. TL38'9Ol'7 (199'7)'
Ytterbium(Ill) triflate. 18, 402-403; 19, 401-402 Functional group cleavage. Prenyl ethersr and N-Boc amides2 are cleaved with Yb(OT|3 as catalyst. Hydrates of cr-ketoaldehydesreact selectively at the aldehyde Addition to C=O. group with allylsilanes3under the influence of Yb(OTfl, at room temperature.The allylation of aldehydes with allylstannanesis acceleratedby benzoic acid.4 Another method for the synthesis of homoallylic alcohols is by the ene reaction, thus 1,6-unsaturatedcr-hydroxy estersare obtained from glyoxylic estersat room temperaturein a catalyzed process's 431
i,I l
Ytterbium(Ill) triflate
o tl o^-/-..-oH
t
OH
Yb(oTf)3
-
Ph\Y^-r'
MesSi< cHzct2
OH 7 10/"
The combination of MerSiCN and Yb(OTfl? serves to convert aldehydes to trimethylsilyl ethers of cyanohydrins.6Addition of amines to the system provides the Strecker adducts.T The Yb(OTf) r-catalyzed organometallic addition to o-alkoxy ketones favors a nonchelationtransitionstate.s Reactions of imines. Silyl enol ethersfavor aldimines to aldehydesin the catalyzed condensation.eGeneration of aziridines from ethyl diazoacetate and aldiminesro'rr or aldehydesand aminesrr is realized even at 0". The cis-isomers are predominant products.
Bn Yb(OTf)3
N
P h C H O + B n N H 2 + N 2 C H C O O E I . * A exane p{
tcoon
8 3 %( c i s : t r a n s = 9 5 : 5 ) Michael reactians.
Many commonly known conjugate additions can be carried out
in waterr2in the presenceof Yb(OTf;., sometimesalso at high pressurer3and sometimeson silica gel supports.ra Cycloadditions.
Both hetero-Diels-Alder reactions of polymer-bound aldimines
with Danishefsky's diene to afford 2-uyl-2,3-dihydro-4-pyridonesrs and l,3-dipolar cycloadditions of nitrones with o,B-unsaturated amidest6 ue catalyzed by Yb(OTf),. Remarkable switch in diastereoselectivityby solvent is observedin the latter reactions. Nilration of arenes.t1 Using Yb(OTf), it is possible to nitrate arenes with 697o HNO.,. This lanthanide triflate has the best efficiency and La(OTfr, the worst. rshurma, V. M., Ilangovan, A., Mahalingam, A.K. JOC 63,9103(1998). G. 'Kotsuki,H., Ohishi,T., Araki,T., Arimura,K. TL39,4869(1998). 3Yang,Y., Wang,M., Wang,D. CC 1651(lgg7). 'Aspinall,H. N., Mclver,E. G. TL39,9283(1998). C.,Greeves, (1997). Huang, T. rL38,6'721 C., lQian, oYang,Y., Wang,D. SL 13'79(199'7). /Kobayashi, Ishitani,H., Ueno,M. Sf 115(199?). S., oMolander, A. M. BSCF134,275(1997). G. A., Estevez-Braun, eKobayashi, S.,Nagayama, S. JOC62,232(1997). th.ur-urr"n, K. K. A. JCS(P/) 1287(lgg7). G., Jorgensen, ttNuguyu*u, S.,Kobayashi, S. CL 685(1998).
l2K"ll"., 8., Feringa. I "Harrington, P.. Kerr. toKotsuki, H., Arimr.u ttw-g, Y., Wilson. S l6Minukata, S., Ezoe. l7wull"., F. J., Baneu
Ytterbium(Ill) rir Fricdel-Ctsfr fluorideshowshigh tNirhikido,
J., Naka;u
Ytterbium(Ill)trisl(perfluorobutanesulfonyl)imide]413 r2K"ll"., E., Feringa,B. L. SI 842(1997). r3Harrington, P.,Kerr,M. A. CJC76, 1256(1998)' IaKotsuki,H., Arimura,K. II 38' 7583(1997). ttwung, Y., Wilson,S. R. ?L 38, 4021(199'1)' t6MinJkutu, M'TL39' 5205(1998)' K., Ryu,I., Komatsu, S.,Ezoe,T., Nakamura' t7Wull"..F. J..Barrett,A. G. M., Braddock,D. C.' Ramprasad,D'CC 613(199'7)'
a* ) F
p:,'r ides the
Ytterbium(Iil) tris[(perlluorobutanesulfonyl)imide]' Friedet-crafts acll,tions anil Diels-Alder reactions,t fluoride shows higher catalytic activity than Yb(OTQ'
|e. l3\ ors a
rNirhikido,J.,Nakajima, H.' Saeki,T', Ishii,A., Mikami'K' Sf 1347(1998)'
ilichrdes
to
rhl iatalYzed ll lnl:nc'slrJ oI n: nr()ducts.
c:.:,Et i-:=95:J)
n-. .,irried out L\i'tIl!'trmes on
unJ aldimines ru 1.3-diPolar t. \'b(OTf).,. r:'i.ratlons. r.:. *ith 697o r\:
This catalyst in benzotri-
Zeolites.15,367; 18,405-406;19, 403-404 Allqt azides.r Alkenes and alcoholsare convertedto azides with an aqueous of HY-zeolite. methanolsolutionof NaN, in thepresence with and 1,2,4-tnazinone Alkylatians. N-Methylationof methylthiopyrimidinones MeOH overHY-zeolite2takesplaceat2l0". Diaryl ureas.3 Zeolite HSZ-360promotesthe reactionof arylamineswith ethyl at 180"to furnishdiarylureas. acetoacetate
z'\-NHz ll |
\ .
zeolite HSz-36o faooEr 6
ueo&
looo
Zinc, 13,346-311. Hydrodefluorit aqueousammonla. Elimination. I(CFr)uCl-Na"S.O ReductivecouV aldiminesby 7n rn UsingMerSiClin !v processis therebr I generated, the meth solubilityin certain Acid chloridesut whereassulfonl'l cl EtOAc.TThe prese
rfr'Y\n o %o""
u.oP
760/o
Aromaticnitration.o A simplemethodof nitrationinvolvestreatmentof areneswith of zeolitep at 0". HNO,-AcrO in thepresence ofalkoxybenzyl Rearrangement. Zeolitep hasbeenusedto inducerearrangement (10 examples, 4l-83%o). at roomtemperature andketoness allyl ethersto aldehydes
Sulfunes. Or
I
,r\r,,\^r.\,r^\ i" l
zeoliteP i
l
OMe
|
%otut" 41/o
tsreekumar,R., Padmakumar, R., Rugmini,P. CC 1133(1997). 2Heravi,M. M., Oskooi,H. A., Mafi, M. SC27, l'/25 (1997). 3nigi,r., Maggi,R., Sartori,G.,Zambonin, E. Cc 513(1998). osmith.K., Musson,A., DeBoos, (198). G. A. JOC 63,8,148 sWennenberg, J., Olofsson,C., Frejd,T. JOC 63,3595(1998).
434
react with sulfonl l c Alkylations. involves reductire i
alcoholslo is anain regioselectivityis ot (aliphatic vs. arorvrl
N
)r
N
Zinc
435
Zinc.13,346-347;14,349-350:16,3g6_387;17,406_07;1g,406_40g;1g,404_405 polyfluoroarenes undergo partiar Hydrodefluorination.t reduction with Zn in aqueousammonia. Elimination. A method for cleavageof allyl estersand ethers2involves reaction with I(CFr)uCl-NarSrOr,and then zinc dust.
t r:
aqUeOUS
iazrnonewith c. arrh ethvl
Reductive couplings. Claims for simple reduction3 and reductive couplinga of aldimines by Zn in aqueous NaoH under rather similar conditions have been recorded. Using MerSiCl in MeCN to trap the ionic site of radical anion intermediatesthe coupling process is thereby favored.5 Although nearly equal amounts of dl and neso-dimers are generated, the method is practical owing to the ease of their separation (very different solubility in certainsolvents). Acid chlorides undergo partial reduction by Zn andthein situ captureforms enol esters,6 whereas sulfonyl chlorides give thiosulfonic ,i-esters when they are treated with Zn in EtOAc.TThe presenceof AcCl is critical.
t'-\
-4ou" Zn / EtOAc
V/\Vcocl
A 887"
f, r:ane\ r* ith
ilr ,rr benzvl t:
"^,,'^t,
Phs02cl
-
Znl AcCl
Phso2sPh
EtOAc 90%
-ot,,te
sulfones. organozinc species derived from halider as allyl and benzyr bromides reactwith sulfonyl chloridesin etheror aqueousmedia.8 Alkylations. A stepwise synthesis of amines via l-aminomethyrbenzotriazores involves reductive alkylation with Zn in DMF.e Stereoselective synthesisof r,2-amino alcoholsl' is attained by Zn-mediated alrylation of c-amino aldehydes. change of regioselectivityis observedin the reactionsoffluorinated prenylzinc specieswith aldehydes (aliphaticvs. aromatic).rI
-
Zn - BnBr DMF
2OO
436
Zinc, activated
""Y-*
OH
Xen
I
FsC 70"k is initiated by allylation of MeCN (using A practical preparationof (E)-3-penten-2-one12 DBU' Zn-Agcouple) and conjugation of the allyl methyl ketone with presence Reaction of carbonyl compoundswith gen-dichlorides in the olefinations. also compounds of Zn-Me,Sicl provides alkenes.r3Reformatsky reaction on thiocarbonyl ra gives conjugated esters. with AcCl using Friedel-Crafts acylation.ts Electron-rich arenesundergo acylation Zn as promoter. rLaev,S. S.,Shteingarts, V. D. IL 38,3'765(1997)' 2Yu,8., Li, B., Zhang,J.,Hui,Y. rL39' 48'71(1998)' 3frutinot i, T., Mito=ma' S', Kawaji'T" Hashimoto'I'' Tashiro'M' ZL 39' 8873 Y.' Nagashima' (l 998). oDuttu.M. P.,Baruah, J' S' SL 857(1998)' D', Sandhu' 8., Boruah'A., Prajapati' 5Alexakis, (1998)' 873 P' S, A., Aujard,I., Mangeney, 6chemla,F., Normant,J. F. f 53, 17265(199'7)' Tchemla, F. sL 894(1998). 8sun,X., Wang,L., Zhang,Y.TL38,5549(1997);SC28, 1785(1998)' eKatritzky, S.A I54,'716'7(1998)' A. R., Strah,S.,Belyakov, r0Hanessian, 353(199'7)' SL R.-Y. Yang, H., Park, S., (199'l)rrCo.mini,C., Rollin,Y., peri-chon, C'' Tordeux'M'' Marival'L' I 53' 602"7 J , Wakselman, '2chiu,P.,Wong,S.T. sC 28,4513(1998). r3lrhino,Y., Mihara,M., Nishihama, l' BCSJ7l'2669 (1998)' S.'Nishiguchi' f4Chandrasekharan, H' TL33'6439 (1992)' M., Bhat,L., Ila, l', Junjappa, (1998)' r5Meshram, H. M., Reddy,G. S.,Reddy'M M'' Yadav,J' S SC28' 2203
Zinc, activated. 19' 405 with The structural relationship of several alkyl bromides Atkylzinc halides.t an aliphatic tertiary bromide reactivity toward Zn- has beendetermined.with I equiv of zn* canbeconvertedtothealkylzincbromidewhileretainingaprimarybromide.However. 1-bromoadamantaneis less reactive than l-bromopentane' are obtained Di_t-butyt N-alkylhydrazine-N,N,-dicarboxylates.2 These compounds azodicarboxylate. to di-r-butyl (RX + Zn-) by addition oforganozinc reagents
a,TriPheny RCOC(=PPhr) at room temPer reactionwith ch
lGuijano, A., Rid zVerlade-Ortiz. R3Meshram,H. \1,.
Zinc, amalger Alkoxycycl orthoformicesu
Ph/
'Fletcher,R. J.. I
Zinc-cerium( Allylatbn 1,3-asymme rltsuno,S., El-S
Zinc-iron(III Reductbt in aqueousD temperature
lsadavarte. V. S
Zinc-iron(Ill)chloride
1",
-
Zn'lrHF
437
7t-*x.,-...4i o ^4, r'' a4-
DTBAD
75y"
*Triphenylphosphoranyr pketoesters.3 A facile synthesis of the compounds RCoc(=PPUCooEt involves zinc-mediated acylation of phrp=CHCooEt with Rcocl at room temperature(8 examples,80-85Vo).The analogousmalonate estersare obtained by reaction with chloroformates. f \leC\ (using rr.:hr presence
lcui.ju..o, A., Rieke,R.D. ACIEE 37,1679(1998:r. 'Verlade-Ortiz, R.,Guijano,A., Rieke,R. D. ZL J9, 9157(1998). 'Meshram, H. M., Reddy,G. S.,Reddy,M. M., yadav,J. S. TL39,4l0: (1gg$.
lnlf\ runds alSO
'r:: -\dcl using
'l
Zinc, amalgamated. 19, 405-406 Alkoxycyclopropanes.t In the presenceof Mersicl the zinc amalgam reacts with orthoformic estersto generateorganozinc carbenoidswhich are captured by alkenes.
1 / - 1 9 .8 8 7 1
ph/\y'
+ HC(oMe)3
Zn(Hs).
Ph-\,,1
Et2O A
\..-oMe
6 4 % ( c i s : t r a n s= 2 : i ,
rFletcher,
r l- r1997).
R. J., Motherwelt, W. B., popkin, M. E. CC 21gl OggS\.
Zinc-cerium(Ill) chloride. Allylation.l Theadditionof an alryl groupto polymer-bound aldiminesis subjectto 1,3-asymmetric induction. rltsuno, S., El-Shehawy,A. A., Abdelaal,M. y., Ito, K. NJC 22,775 Oggg\.
cnrrde: with rr1 hromide le Ho\r'eV€r.
Zinc-iron(Ill)
chloride. Reduction of carbonyl compounds.t The reduction system made up of Zn-Fecl, rn aqueous DMF is capable of reducing carbonyl compounds to arcohols at room temperature.
arl,'htained lsadavarte, V. S.,Swami,S. S.,Desai,D. G. SC2E,1139(1998).
43E
Zinc bromide
Zincande. Azidesfromalcohols.L
2R"ddy, P.t'. 3cl*k,J.H-.r
tsuito,
Zinc chlori I,+Dih ZnClr, witlx
On activation with triphenylphosphine and 2,4,4,6tetrabromo-2,5-cyclohexadienone in situ, an alcohol undergoes substitution with the pyridine complex of zinc azide (13 examples,60-lNVo). A., Saito,K., Tanaka,A., Orirani,T. TL38,3955(lgg7).
Zinc borohydride. 14,351; 16, 388-389; 18,409; 19,408-409 Reductions.t Conversion of aromatic estersto benzylic alcohols by zinc borohydride is catalyzed by alkenes.rQuinolines are reduced to the 1,2,3,4-tetrahydroderivatives2with ultrasound assistance.Reductionswith the reagenton solid supportshave been shown in the caseof imines on silica gel3and of epoxidesand enoneson Y-zeolite.4
bAni^ with protec Chiral Slr employsO-
lNarasimhan, S.,Madhavan,S.,Prasad,K. G., Balakumar,R., Swamalaksimi, S. SC27, 385(1997). 'Ranu, B. C.,Jana,U., Sarkar, A. SC28,485(1998). 3Ranu, B. C., Sarkar, A., Majee,A. JOC 62,1841(1gg7). -Sreekumar, R.,Padmakumar, R.,Rugmini,P. TL39,5151(1998).
-o
Zinc borohydride- l,4-diaz abicy clo[2.2.2]octane. Reductians.t The complex is a stable reducing agent, converting carbonyl compounds (including enals) to alcohols in THF solutions.
dithio derir r which unde
Debrcn
r Firouzabadi, H., 7,eynizadeh, B. BCSJ 70, 155 ( 1997).
Zinc bromide. 13, 349; 15, 368; 16, 389-391 ; 18, 409; 19, 409 Enones, A synthetic method based on 1-alkylbenzotriazolesconsists of alkylation with cr-bromoketonesand subsequenttreatment with zinc bromide.r The second step is a catalyzed elimin ation.
lYasuda, M.. 2Kunz,H., Br 3Yang, t*, H. alyoda, M.. K
Zirconia. Fricdcl
catalyst. Thr
f)-\* \-/\t\i Frn
N "N BuLi; +
-N\
/o
PhCOCHBT
Pfi
Ph
Pd bn
ZnBr2
Ph
Ph \_^ \-./-" Ptf 91"/"
52"/" Imides." The ZnBrr-HMDS combination constitutes an effective catalytic system for the aminolysis of anhydrides (succinic, maleic, phthalic, and glutaric). Bromination of arenes.3 The selective bromination using ZnBrrlSiO, is environmentally more benign. tKut
itrky, A. R.,Denisenko, S.N., Oniciu,d. C.,Ghiviriga,l. JOC 63,3450(1998).
tPatil,M. L.. 2137(1997t
Zirconium( Ketonc
undergo rea more skeleu
Zirconium(IV)chloride 439
c ind 2,4,4,6r:r:ri)n with the
zrneborohydride derrratives2with rcn .hown in the
2Reddy,P. Y., Kondo,S.,Toru,T., Ueno,y. loc 62,2652(1997). 'Clark, J. H., Ross,J. C., Macquarrie, D. J., Barlow,S. J., Bastock,T. W. CC 1203(1997). Zinc chloride. 13,349-350;15, 368-37 1; 16,391-392; L8' 410-41 l;19,409-410 7,4-Diketones.t The alkylation of tin enolates with s-chloroketones is catalyzed by ZnCl, without which the reaction course is dominated by the aldol mode. The catalyzed condensationof disilyl ketene acetals ftAmino acids and f-lactones. with protected N-arylglucosylimines shows stereocontrol over two new stereocenters.z Chiral pJactones are formed in tandem with a Mukaiyama aldol reaction when the latter employsO-silyl-S-(2-pyridyl) keteneO.S-acetals.r
QTBS :
( :7. .r85(1997).
+
//V.CHO
't"'
(*Y \.,2
ZnCl2 CH2Cl2
62"/. 2,2'-Dibromobiphenyl is converted to biphenylene via the dithio derivative. Treatment ofthe latter specieswith ZnC! apparently leads to a zincacycle which undergoesreductive elimination. Debromocyclizttion.a
,cnrng carbonyl
lYasuda, I., Baba,A. JOC 62,8282(1997). M., Tsuji,S.,Shibata, 'Kunz,H., Burgard,A., Schanzenbach,D. ACIEE36,386(1997). 3Yang,H. W., Romo,D. JOC 63,1344(1998). alyoda,M., Kabir,S. M. H., Vorasingha, M. TL39' 5393(1998). Y., Yoshida, A., Kuwatani, r.:. ,,t alkylation ...()nd stepis a
Zirconia. Aromatic acylation is generally effective with ZrO, as Frtedel-Crafts acylation.t catalyst. Thus, aniline is converted to 4-acetaminoacetophenonein65Vo yield.
Ph p
h
G",
\
Fo
AcCl - ZrO2 +
6oo
ou
,zfuFrunnc
P. 65% 91Yo lPatil,
G. K., Sadbe,D. P., Dungare,M. K., Sudalai,A', Deshpande,V. H. ft 38' M. L., Jnaneshwara, 2137 (199'7).
!r:.rlvtic system
Zr t3r./SiO, is
t
Zirconium(IV) chloride. 18,413; 19, 4ll-412 phenylsulfone Ketonehomolagationt Theadductsof ketoneswith methoxymethyl ketonescontainingone ofzrcf to affordcr-methoxy in thepresence undergorearrangement moreskeletalcarbonatom.
U0
ZirconiumflV)triflate
Zirconocene. I I,4-Dicnes.t BuLi) and allyl trim
tl
rs
PhSO2CH20Me
\z\
ZrCl4
can be used to coupl
BuLi/ THF -7go 997o
24 I -I odovinyl)-3-hydroxyketones.' Aldolizationof allenylketonesis initiatedby the addition of iodide ion (from BunNI). The C-C bond-formingstep is apparently promotedby ZrClo.
o tl tl tl
o H o t t l ZrCla cuH,t/Y\ ............................""-...........* Bu4Nl
+ C5H11CHO
CH2C|1
-78o
t"\
C3H7---:-C3H7-
2-Anilinotetrl ins 1-aza-1,3-dienes 2-anilinorcm leadto
o^)
71Yo
'Cpzz
( Functionalized cyclopentnnes. Formal [3+2]cycloaddition of electron-deficient alkenes with allyldiisopropyl(phenyl)silane gives rise to substituted cyclopentylsilanes.3 Such products are readily oxidized to cyclopentanols.
o -\
tl
tr
tfrn
o tl zrll4 + PhMe
\
,'\--\ | \V
),,
r 'ttrn
Ph
1,1-Dialkoxy-2
Orthoesters of acq' CprZr. These latta y-addition reactiviq presenceof MerSiC mode; conjugate
2-cyclopentenone) 89%
rPhillipron, N., Anson, M. S., Montana, J. G., Taylor, R. J. K. ./CS(P/) 2821 (1997). "Zhang, C., Lu, X. 7t 38, 4831 (1997). 'Akiyama, T., Hoshi, E., Fujiyoshi,S. CC 2l2l (1998).
EtO. -691
Zirconium(IV) triflate. 19, 412 by allylstannanes Homoallylicaminesand ftamino esters.r Aldiminesareattacked andsilyl keteneacetalswhenZr(OTf)oor Hf(OTf)ois present. rKobayashi,
S., Iwamoto, S., Nagayama,S. Sf 1099 (1997).
\XO''
.w
Zirconocene
OMe
\z\
t i l
o
Zirconocene. "Cppr" (from CprZrCl, and 1,4-Dienes.r Consecutivereactionsof alkyneswith derivativeswhich BuLi) andallyl trimethylsilylethergenerate(1,4-dien-1-yl)zirconocene catalysis. Pd(0)-Cu(I) under canbe usedto couplewith iodoarenes
99v"
[|
"Cp2Zt i
crr)nesis initiated by g .rep is apparentlY
41
e.f{7--*CqHz..........."-...............* OSiMe3
Z\..-
".*,
-l
psfi
Phl
\__J
I
l.*'(-\ | L
osiMe3 \
J
Cucl - (Ph3P)4Pd THF A 90./.
o H O
'.-A A
*CprZr and 2-Anilinotetrahydrofurans.2 The complexes derived from with pyridineN-oxide whichon demetallation insertcarbonylcompounds 1-aza-I ,3-dienes andthenceto the1-lactolsandothercompounds' leadto 2-anilinotetrahydrofurans,
o^ol ot !'lectron-deficient t,r clopentylsilanes.3
- , I
'
tr
ttrn
/t
"cp2zt' +
^cP2zru) - 'fr\ l
PhMe^ ' RC.R'/
R'
or,*o
Ph
Ph
I, 1-Diatkoxy-2-propen- 1-yl anion and 2,2 -dialkoxycyclopropyl anion equivalents' Orthoesters of acrylic acid are converted to y,y-dialkoxyallylzirconocene ethoxides with CprZr. These latter species serve as 2,Z.,dialkoxycyclopropyl anion synthon, showing y-uddition reactivity toward carbonyl compounds to afford homoallylic alcohols.r In the presenceof Me,SiOTf cyclopropyl carbinols are formed, due to a switch to the p-addition mode; conjugate addition to enones leads to p-cyclopropyl ketones (e.g., from 2-cyclopentenone).a
43 " "
t - w - t
EtorroEt
\l-oe' cl.'d bv allylstannanes
"Cp2z./
oEt
^y
cr"7 ?=' V/-oEl
,n.\ cHo
EtO\ /oEt
\Z>-Ph
I OH
917o
iI I
Zirconocene,Zr-alkylated
42
rHara,R.,Nishihara, 'T'T.Lt8'44'7(199'7)' Y', Landre,P' D', Takahashi 'gnO"rr.D., Kroll,M., Raabe, G', Runsink'J' ACLEE3T'1673(1998)' 3lto,H., Taguchi,T. TL 38, 5829(199'7)' nito.H.. rrioi, H., Ding,H., Taguchi,T JAcs 120'6623(1998)'
---toMe
(
Zr-alkylated. 15, 8 I ; 18, 414; 19' 412-414 Zirconocene, .-'-' are all vinyl epoxides, vinyl acetonides, and 2,5-dihydrofurans i)"irr"r**t' converted to conjugated dienesby CprZtBu,
,^^u
Qp2ZrBu2', t
1 0 %H C I
\-/ )-o*"
a\a r'.\A*/ \
cHPh2
m-Acylation-o o-lithiated speciesa derivatives.
847"
6\o-o'-
\2
Enones'2Hydroacylationofalkynesisachievedonconsecutivetreatmentwith by replacing the nitriles with ketones' CprZrEqand RCN. Allylic alcohols are obtained
CP2ZrEt2 oh
-
Ph
Ph \J
Ph
/-\
CP2Zi.-u,>
Ph \-1
tn.. - rtn
Ph Hcl
}i
cpzzi.t^X (J
complex propargyl silyl ethers react with Allenes.3 By mediation of zirconocene alkenesto provide allenesin an \2'process'
rKim, s., Kim. K. H , 2Takahashi, T., Xi. C-. 3Takahashi,T., Hara- I 4Millward, D. B.. \A'r1 sMo.i, M., Kuroda S6Akai, s., Peat,A. J . l
Zirconocene bis(tr Mukaiyanad Pr
CP2Z:(CH2=CH2\
TBSq / Pr
/
-
PhCH=CHz
rBSo< ,"" F\ cozzrUz
Bu
Pr
) - CpzZOTBS
I
Zr-catalyzed Procc pathways, low dias lLin, s., Bondar.G. \
Ph Ph
An give 2-methyl-l-methylenecycloalkanesi Cyclimtion. 2-Bromo-1,(n-1)-dienes applicationofthezirconocene.mediatedcyclofunctionalizationofdieneistheelaboratton (-)-mesembrine'5 of a hydroindolederivativefor the synthesisof
Zirconocene dichl Carboalumit aluminacyclopentc
2-cyclopentenone
Zirconocenedichloride
OMe OMe
---r'oMe
( !o"" ({
-,-
\A*/ -<-.lrhrdrofurans are all
\
Cp2ZrBv2;
OMe
OH
MeMgBr; O2
cHPh2 C)-mesembrine
phenyl ethers and benzoic acid derivatives which readily form m-AcyWian.6 o-lithiated speciescan be zirconated with CpZr(Bui)Cl. Treatment with nitriles gives acyl derivatives.
/ - Y - '/z
a:,
F.- .t:1\e treatment with | - ::rlc\ with ketones'
ffi |ry;;.-I- ?"--"ry"='L Y J e n ^ o
8,
Ph
Ph
- rir I ethersreact with
'Ki., s., Kim, K. H. JCS(pt)1095(1997). E. JOC63,6802(1998)' K.,Negishi, R.,Nakajima' M.,Fischer, hatahashi,t., Xi,C.,Xi,Z.,Kageyama, 3Takahashi, T., Hara,R.,Huo,S.,Ura,Y., Irese, M. P.,Suzuki,N. fL 38, 8723(1997). 4Millward,D. 8., Waymouth,R. M. OM 16, 1153(199'7). sMo.i,M., Kuroda,S.,Zhang,C.-S.,Sato,Y. JOC 62,3263(1997). oAkai.S.,Peat,A. J.,Buchwald, S.L. JACS120,91l9 (1998).
Pr. \ EC
Zirconocene bis(trifl ate). Good yields of adducts are obtained in the Mukaiyama aldol reactinnr Zr-catalyzed process. However, due to operation of two possible competing reaction pathways, low diastereoselectivitiesare generally observed.
ral
\
D
\./" tR'
Ho
,
r
\ -,/
.,..*;
Bu
1 /
I Ph
r:. lnecycloalkanesi An o: .rine is the elaboration
rLin,S.,Bondar,G. V., Levy,C. J.,Collins,S. JOC 63,1885(1998).
Zirconocene dichloride. 14, 122; 15, 120-l2l ; 18' 4 I 5 ; 19, 414 The carboalumination of alkynes and enynes generates Carboalumination.t aluminacyclopentenes which can be processed into alkenylcyclopropanes and 2-cyclopentenones.
444
ZirconocenehYdride
Y s 3 E t g AI r ,lffl^r, cz2ztct2 tfi L
\
SiMe3
sive3 BTCH2OMe
47"/o
Bicyclicorthoesters.2TogetherwithacatalyticamountofAgCloozirconocene esters to the 2,7,8-trioxabicyclo[3.2.1loctane dichloride converts 3-methyl-3,4.epoxy derivatives.Theseorthoest""*"-lesssusceptibletoacidhydrolysisthanCorey's 2.6,7-trioxabicyclo[2.2.2]octanes'
lUmekawa, Y., Safrgt
Zirconocene bydro Alkenylzinoni followed by reacrtut enynes.2 In the la heterosubstituted c
prepared,including 2-Substituted l.{ hydrozirconation ol
methoxyaluminoxal
?
I
o/
#
AgClO4
rrlteoocfo/
Cp2Z(Cl2
,r^-],\"
V.-Y
.{$o
//
R = SiPh2(t-Bu)
NHCOOBn
MeOOC
NHCOOBn
CH2Cl2 99%
D' TL39' 2503 (1998)' rNegishi,8., Montchamp,J'-L ' Anastasia'L'' Elizarov'A' Choueiry'
grKetols.6
A
alkenes or alkYrrs affords c-ketols.
H' r s3' r6s7s(1ee7)' +;ffi:l;., x", w., Kim,H.' rakahashi'
415 hydride.13, 108;14,37;15' 32; 18' ""';;;;;;;;-;;;r*""' Zirconocene areformedin thereaction carboxylares anti-3-Hydroxyalkyl
/\,'\/\
with aldehydes' of p-ketoalcohols
o
o, a)q
o o H :
tl
'
.
Cyclopropylo stereoselectivel
Cp27rH2 >99o/. (94% do)
tl
o o H i l l
x
Pnv
oHo
DeoxYgenai oxides.
CpzZrH2
\ 92ol. (90o/. de)
Zirconocenehydrochloride
SiMe3
S --{ H
C.t t. ,1.aono"ana ;r,.,,.r2.Iloctane .:. lhan Corey's
rUmekawa, Y., Sakaguchi,S., Nishiyama,y., Ishii, y. JOC 62,34Og Ogg:/r.
Zirconocene hydrochloride. 14, 8 I ; 15, g0-g I ; lg, 416_417; lg, 415_416 Alkenylzirconiumreagents.t Hydrozirconation of alkynes with Cprzr(H)Cl followed by reaction with iodonium saltsconstitutesa method for synthesis of styrenesland enynes.2 In the latter case it can be seen that zirconium prefers attachment to the heterosubstituted carbon atom; therefore, l,l-difunctionalized l-alkenes are readily prepared, including those pairing Si/Sd and Teffe.a 2-substituted I ,4-dienesare obtained by reductive coupling of allenesand -alkynes l via hydrozirconation of the allenes.5Greatly enhanced regioselectivity is attained by using methoxyaluminoxane as catalyst.
Cp2zr(H)Cl
u--J-/'-'o)
\
z{$*
A
o,
Ph
PhA
f
.,
oR
(13 : 1)
R = SiPh2(t-Bu)
hCCOBn f.
Us
93o/"
*Ketols.o Acylzirconocene chlorides are formed after exposureof hydrozirconated alkenes or alkynes to co. Further reaction with aldehydesin the presence of a Lewis acid affords o-ketols.
F.: tn tne reactlon
-
/\/\/\/
CpzZ(H)Cl;CO; PhcHo / BF3.OEI2
"*^^OH 79"/"
cyclopropyl carbinols.l stereoselectively.
th'.',1.2\rj(
Alkenyl epoxides are converted to cyclopropyl carbinols
cp2z(H)cl; NaHCO3/ H2O
Ph
"* OH
Deorygenation.s CprZr(H)Cl is a useful reagent for the reduction of phosphine oxides.
446
Zirconocenehydrochloride
'Huung,X., Sun,A.-M. SC28, 773(1998). 'Sun,A.-M., Huang,X..ICR(S)616(1998). 'Xu, X.-H.,Zheng,W.-X.,Huang,X. SC28,4165(1998). -Sung, J. W., Park,C. P.,Gil, J. M., Oh,D.Y. JCS(PI)591(199'1). )Yamanoi, Imai,T., Matsumoto,T., Suzuki,K. TL38,3031(199'1). S., 6Harada, y. ACIEE37,1696(1998). S.,Taguchi,T., Tabuchi,N., Narita,K., Hanzawa, i Harada,S.,Kowase, N., Taguchi,T., Hanzawa, Y. TL38,1957(1997). dZablocka, A., Majoral,J.-P.TL38,5997(1997). M., Delest,B., Igau,A., Skowronska,
AUTHOI
Abad-Grillo,T.. { Abarbri,M.,267 Abboud,K. A...1 Abd.Rahman. N.. AMelaal,M. Y.. I Abdel-Magi4A. I Abe,H.,,lO8 Abe,N., l0 Abel,U.,2,16 Abele,E.,73 Abele,R.,73 Abiko,A., 103 Adach-Becker, S. Adachi,K., 143 Adam,W.,9, lO Adamczyk,M., l0 Adams, C.J.,70 Adams, D. J.,98. Adams,H., 102.3 Adams,J., I l7 Adams,N. D.. l9l Adger,B. M., 103 Adinolfi,M.,311 Adlington,R. M.. Admane,S. B.. lt Adolfsson,H., 24{ Adoni,N. Yu.,25 Afifi, T. H., I2O Afonso,C. A. M.. Agai,B.,65 Agami,C., 213 Agata,I.,69 Ager,D. J.,259 Aggarwal,V. K.. I Aghapoor,K., l!) Agnelli,F., 298 Agrios,K. A.,399 Ahem,C., 19l Ahman,J.,42,76 Ahmar,M.,2z16 Ahmed,G., 315 Ahn,C., 17 Ahn,J. H.,256
AUTHOR INDEX Abad-Grillo,T.,408 Abarbri,M., 267 Abboud,K. 4,.,425 N.,304 Abd.Rahman, Abdelaal, M. Y., 100,437 A. F.,359 Abdel-Magid, Abe,H.,408 Abe,N., 10 AbeLU.,246 Abele,E.,73 Abele,R.,73 Abiko,A., 103 Adach-Becker, S.,255 Adachi,K., 143 Adam,W., 99, lO2, 152,212,279,382 M. 100,212 Adamczyk, Adams,C. J.,70 Adams,D. J.,98,359,400,40'7 Adams,H., 102,334 Adams,J., I 17 Adams,N. D., 191 Adger,B. M., 102 Adinolfi,M., 334 Adlington,R. M.,400 Admane,S. B., 185 H.,248,302 Adolfsson, Adoni,N. Yu.,259 Afifi, T. H., I2O Afonso,C. A. M., 133 Agai,B., 65 Agami,C.,213 Agata,I.,69 Ager,D. J.,259 V. K., 101,102,105,33'1,399 Aggarwal, Aghapoor,K., 120 Agnelli,F., 298 Agrios,K. A.,399 Ahern,C., 191 Ahman, J.,42,'76 Ahmar,M., 246 Ahmed,G., 315 Ahn,C., 17 Ahn.J. H., 256
Ahn,K. H.,402 Ahn,M.,24 Ahn,S.-J.,100 Ahn,S.-K.,237 Ahn,Y. H., 19 Ahn,Y.-G.,54,375 M.,51 Aidene, Alhara,H.,234 Aitken,R. A., 162 R.,340 Ait-Meddour, Aizenshtat,2., 149,298 Aizpurua, J.-M.,267 Akabori,S., 127 Akai,S.,264,359,397,443 Akaji,K., 105 Akakura,M.,243 K.G., l4'1 Akamanchi, Akashi,M.,381 Akita,H.,212,339 Akiyama,H., 180 Akiyama,R., l6 Akiyama,T., 8, 29l, 336,3'75, 44O Akiyama,Y., 126 Akula,M. R.,52 Alabugin, I. V.,399 Alajarin,M.,403 Alami,M., 176, 2'70, 298 Albanese, D., 359 Albinati,A.,288 Albone,D. P., 123 8., 12'7,148 Alcaide, Alcaraz,L.,245,2U Alexakis,A., 99, 123,436 J. B., 251 Alexander, Algarin,W.,6l Ali, A., 105 Ali, M. H.,58 Aliyan,H.,46 Alizadeh,A.-A.,225 Allen,J. V., 102 Aller,E., 359 Allevi,P.,2l2 Allred,G. D.,419
,148 AuthorIndex Al-Masum,M. 29,289,42t' 422 J.,217 Almena, Almog,J., 193 Almqvist,F., 102 Alonso,D. A., 101,230'307 Alonso,E., 224'335 I.,419 Alonso, C.' 335 Alonso-Alija, 421 Alper,H., 55,100,292,368' Altamura,A., 152 Altinel,E., 235 Alvarcz,C.,334 Alvarez,L. X., 64 J., 173 Alvarez-Builla' L. J.,49' 130 Alvarez-Garcia' Alvarezlbarra,C., 334 Alvar o,G.,2'74 Aly,M. F., 148 Amano,A.,209 Amano,M',339 Amer,F. A,387 Ameri,M., 34? Amin,S.R., 179 Amiot,F.,213 An,D. K., 179 Anand,R. V., 120 L.,444 Anastasia, M.,212 Anastasia, Anders,E , 2 J'-A.,320 Andersen, E. S.' 101 Anderson, J. C.' 334'368 Anderson, J.T.'2'7'7 Anderson, O.P.'226 Anderson, P.G.,99,100'101,102'n0'n9' Andersson, 30'7 Ando,A.,238 Ando,E., 309 Ando,J.,283 A n d o , K .l ,l ' l 6 l Ando,M., 2,29'7,413 Ando,T., 1O3,201'3'76 J. M.,99 Andres, G.,397 Andrijewski, M.8.,2'16,301 Andrus, Anelli,P. L., 153 S.,343 AnjaneYulu' R., 334 Annunziata, Anson,M. 5.,29'l' 44O Anson,M.,,394
Anzai,M., 238 Aoki,K.,98,179 Aoki,M., 188,303 Aoki,S.,99 Aoyagi,K.,73 Aoyagi,S., 100 Aoyagi,Y., 335 Aoyrna,H.,243 Aoyama,T ',238' 406 Aponick,A., 157 Arai,E., 15,188 Arai,K.,232 Arai,S.,303 Arai,T.,25,102 V. V.' 203 Arakcheeva, Araki,S.,7,223 Araki,T., 191'432 Araki,Y., 241 Aranyos,A., 283 Arase,A., 142'242'391 Aratake,S.,243 Arco,S.D., 57 Arend,M., 154,345'405 Arends,l. W. C. E'' 284 Arias,J.L.,334 Arif,A.M,166 Arimoto,K., 119,121,191 T.,313 Arimura, Arisawa,M., 375'402 Arisha,A. J. I.' 283 Ariza,X.,61 K., 118 Arizono, Arm,C., 120 A.' 315 Armstrong, J -D,, 26'7,292,312 Armstrong, Arnauld,T ., 121' 396 Arnold,A., 368 Aranz,J.,49 Arrieta,A.,334 Artico,M.,386 Arukwe,J.,78 Arvanitis,E.' 23 M.,385'427 Asahara, Asai,M., 130 Asai,S.,289.359 K.,44 Asakawa, N., 101 Asakawa, T.,65 Asano, Asao,N.,8, 10,182'382 K., 8 Asayama,
Asensio,G., 269 Asghari,J., 13 Ashimori,A.,421 A s k i nD , .,21,3ll Asokan,C. V.. l5l Asouti,A., 118 Aspinall,H. C.. 35O.' Atherton,J. H.. 260 Atmani,A.,359.396 Attardo,G., 138 Attenni,B., 235 Aube,J.,399 Aubry,A., l7 L., l0l Audergon, Aujard,I.,436 Aujla,P. S.,123 Aurell,M. J.,269 Auricchio,S.,2Ol J. Il . Aunecoechea, H.. I15. Avedissian, C..67 Avendano, Avery,M. A., 3'l? Azad,S.M.,24 U.,67. 2l{ Azzena,
Baba,A., 10,128.Ii 389,423,439 Baba,Y.,99 Babu,G., 198 B a b uR , .S . , 2 1 6 Babudri,F., 55 Bacchi,A.,30O Bach,J., 102 Bach,T.,204,36E B.,422 Bachand, Bachki,A.,217 Back,T. G., 100.lt B. J., 102 Backes, Biickvall,J.-E..2ll D.,286 Badone, Baek,K.,26 M. C..3lO Bagley, Bagnoli,L., 100.l5 Bdhr,A.,274 Bahule,B. B.,'lO5 Bai,D.,225 W.. 149. Baidossi, Baik,T.-G.,291 Bailey,P. L.. 233 Bailey,W. F..60
Author Index
Baird,C. P., 102 Bakale,R. P.,420 M.,78 Bakasse, Baker,S. R.,59 Baker,T. J., 399 S.,339 Bakkas, Bako,P., 101 Balaji,B. S.,320 R.,356,438 Balakumar, Balalaie, S.,225 Balazs,B., 1 P.,389 Balczewski, Balduzzi,5.,422,423 Baldwin,J. E., 222,335,400 E. S.,163,399 Balenkova, BallT , . W . ,1 1 1 B a l l i n iR, , 1 1 , 1 6 2 , 1 6 7 , 3 13 51 ,6 Balme,G., 291,368 J.,222 Balsells, Ban,S.H.,269 B. P.,184,185,351 Bandgar, Banerji,A., 377 K. K.,64 Banger, Banik,B. K.,326,344 Bansal,V., 167 M. G., l3 Baba,A., 10,128,138,l8l, 198,211,356'3'73, Banwell, Bao,W.,212,326,373 389,423,439 T. J.,226 Barbarich, Baba,Y.,99 Barbero,A., 267 Babu,G., 198 M.,19,24O Barbero, Babu,R. S.,216 Barbier,F., 235 Babudri,F., 55 Barboni,L., 167 Bacchi,A., 300 F.,5,5l Barbot, Bach,J., 102 Barfacker,L., 36 Bach,T., 204,368 G.,52 Bar-Haim, Bachand,B.,422 R.,257 Barhdadi, Bachki,A.,217 Barkley,J. V., 102 Back,T. G., 100,187,286 Barlow,S.J.,439 B. J., 102 Backes, J., 49,54,69,l 1l, 120'130 Barluenga, Biickvall,J.-8., 212,2'19, 283,294 Barma,D. K.,221 D.,286 Badone, Barn,D. R., 13 Baek,K.,26 Bamhart,R. W., 100 Bagley,M. C., 320 Barone,G., 334 Bagnoli,L., 100,158 Baroni,M.,286 B'atu,A.,274 V.,45 Barragan, Bahule,B. B.,405 Barrett,A. G. M., 100,152,251,281,323'337, Bai,D.,225 433 W., 149,298,311 Baidossi, Barrett,D. G.,70 Baik,T.-G.,291 Barrish,J. C., 105 Balley,P.L.,232 Barros.M. T., 345 Bailey,W. F.,69
G.,269 Asensio, Asghari,J., 13 Ashimori,A.,422 Askin,D.,21,312 Asokan,C. V., 153 Asouti,A., 118 Aspinall,H. C., 350,432 Atherton,J. H., 260 Atmani,A.,359,396 Attardo,G., 138 Attenni,B., 235 Aube,J.,399 Aubry,A., 17 L., 101 Audergon, Aujard,I.,436 Aujla,P. S., 123 Aurell,M. J.,269 Auricchio,S.,204 J. M., 334,335 Aunecoechea, H., 115,175 Avedissian, Avendano,C., 67 Avery,M. A.,347 Azad,S.M.,24 Azzena,U.,67,224
450
Authorlndex
Banow,J. C.,261 Barsanti,P., 360 Bartoletti, L., 116 Bartoli,G., 75, 228,264 Barton,D. H. R., 121,133,193,302,347,388, 396 R. A., 156 Bartsch, Bafiz,,M.,323 Bartzen,D.,254 Baruah,B., 44,46,334,436 Baruah, M.,46,75 Basak,4.,223 Basavaiah, D., 286 T. W.,439 Bastock, Basu,M. K.,405 Basu,S.,405 Bataille,P., 100 Batey,R. A.,73,423 Bats,J.W., 138,335,339 Battiste, M. A., 11,394 Bau,R., 12 Bauer,D., 385 Baugh,S.P.D.,251,323 W., 166 Baumann, A., 187 Baumstark, Bayne, C. D.,410 Bayon,P.,382 Bazureau, J.-P.,315 Beak,P.,66,68 Beaton, H.,221 Beau,J.-M.,334 A.,274 Beauchemin, Beaver,K. A.,396 Becker,F. P.,326,344 Becker,M., 267 E. J., 165 Beckman, Beckwith,A. L. J.,394 A. V.,57,307 Bedekar, V., 19l Beghetto, Begley,T. P.,215 Begue,J.-P.,186,235 F. K.,205 Behbahani, P.,351 Beinker, Belanger, D. B., 141 I. P.,43,109 Beletskaya, L.P.,298 Beletskaya, Bell,A. A.,78 Bell,L., 102 M., 78, 185 Bellassoued, Beller.M.. 36,291,293,312,313
F.,2M Bellesia, Belhna,F.,274 Belluci,M. C.,264 Belval,F.,394 Belyakov,S. A., 173,436 BenAlloum,A., 339 Benard,D., 107 P. M., 115 Bendale, Bendall,J. G., 150 I.,62 Ben-David, Benedetti,F., 127 Benedetti,M., 204 Bengalia, M.,334 H., 315 Benhaliliba, H., 11,313 Benhaoua, Benhida, R., 305 Ben|,Y.A.,279 Benitez,P.,345 Y.L.,337 Bennani, D. M., 154 Bennett, Bennett, G. D., 197 Bennett, S.M.,24,335 Bennett, S. M. W.,24 C., 100 Bensimon, H.,209,335 Berberich, R., 102 Berenguer, Berg,T.,99 Berge,J., 141 M.,200 Bergemann, S., 102 Bergeron, K.8.,212 Bergmann, S.C.,267 Bergmeier, Berillon,L., 115 Berk,S.C.,385 W. F., 335 Berkowitz, Bernad,P. L., lll,326, 334 Bemard,A. M., 173,252,289 Bemard,J.-M-,291 G., 103,173,368 Bernardinelli, Bemath,G., 15 D., 333 Bernicke, Bernini,R., 151,152 S.,291 Berteina, Berthe,8.,l9 Berti,F., 127 Bertolini,G.,4 Bertoux,F.,299 Bertz,S.H.,267 A. G., 109 Bessmertnykh, T.. 138 Besson,
Bethell,R. J., 286 Betzemeier, B..61 Betzer,J.-F.,28. 16 Bew,S.P.,368 Beynek,H.,5 Beziat,Y., 152 BezuidenhoudlB. ( Bhar,D., 31 Bharathi,8.,188 Bhat,L.,436 Bhatia,B., I l6 Bhatia,G. S., 152 Bhatt,R. K., 122 Bhattacharya, P. K" Bhattacharyya. S..: Bhawal, B. M.316 Bhupathy, M., 147 B i a nN , .-S.,21.3 Bianchi, D. A.,4l{ Bianco,A., 170.2fr Biboutou,R. K.. -1Bickford, S.A..315 Biediger,R. J.,227 Bienewald, F., l0l. Bigi,F.,434 Bigo|4.,262 Billard,T., 305 Bindu,K. H., 197 Bini,A.,204 Birman,V. B., 286 Blacklock, T. J..31 Blackstock, S.C.. l.l Blades, K.,75 Blakemore,P. R.. -{) Blanchard, C., 214 Blanchard, P.,3O5 Blandin, V.,43 Blank,D. H., 173 Blanton,J. R., 30-1 Blart,8.,175,291. Blay,G., ll4,2'19.t Blechert, S.,l4l.5l Blettner,C. C.,36E Blinov,K. A., 109 Block,M. H.,368 Blomgren, P. A..259 Bluhm,H., 384,385 Blum,J., 149,298.3 Bo,Y.,303 B o a sU, . , 3 1 3
AuthorIndex
la l-_ ' < '
t:
''{ i l Q
-:.
-168
Bethell,R. J.,286 Betzemeier, B., 62 Betzer,I .-F.,28,267 Bew,S.P.,368 Beynek,H.,5 Beziat,Y.,152 Bezuidenhoudt, B. C. 8., 267 Bhar,D., 31 Bharathi,8.,188 Bhat,L.,436 Bhatia,8.,116 Bhatia,G. S., 152 Bhatt,R. K., 122 Bhattacharya, P. K.,351 Bhattacharyya, 5., 282,347, 356 Bhawal, B. M,316 Bhupathy, M., 147 Bian,N.-S.,21,340 Bianchi, D. A.,414 Bianco,A., 170,208,340 Biboutou, R. K., 335 Bickford,S. A., 315 Biediger, R. J.,227 Bienewald, F., l0l, 102 Bigi,F.,434 Bigot,A.,262 Billard,T., 305 Bindu,K. H., 197 Bini,A.,204 Birman, V. B.,286 Blacklock, T. J.,310,345,349 Blackstock, S.C., 141 Blades, K.,75 Blakemore, P. R.,308 Blanchard, C.,214 Blanchard,P., 305 V.,43 Blandin, Blank,D. H., 173 Blanton,J. R., 303 Blart,E., 175,291,402 Blay,G., 114,2'79,352 Blechert, 5., 141,251,323 Blettner, C. G.,368 Blinov,K. A., 109 Block,M. H.,368 Blomgren, P.4.,259 Bluhm,H., 384,385 Blum,J., 149,298,311 Bo,Y.,303 B o a sU, . , 3 1 3
P.D.,227 Boatrnan, Bobb,R. A., 108 Bobbitt,J. M.,2 Boche, G.,42 Boden,C. D. J.,40 Boden,C.D.J.,391 Bodnar,P. M., 220 Boeckman, R. K., 113 E. M., 119 Boehringer, Boffey,R. J.,335 Bogdal,D., 303 Bogdanovic, S.,293 Bogg,J. K., 205 Bohmer,J., 188 Bohnen, F. M., 101 Bohnert, G. J.,58 Boivin,S.,308 Boland,W., 146,234,2'79 Bollmark,M., 130 Bolm,C.,42, 102,144,276 Bolourtchian, M., 120,225,351 Bolte,M.,240 Bomben,A., 150 Bombicz,P., 101 Bonadies, F., 61,62,98,102 Bonaga, L. V. R., 141 Bondar,G. V.,443 Bonete,P.,224 Bonini,B. F., 13,24'7,26'7,336 D., 186,235 BonnetDelpon, Booker-Milburn,K. I., 206 Borah,R., 1, 199 Bordner,J.,269 Borhan,8.,391 Borkar,S.,206,34O Borkar,S. D., 340 Boron,A., 303 Boruah,A., 44, 46,'75, 334,436 M.,75,228,264 Bosco, B o s eD, . S . ,1 3 ,1 9 2 , 3 1 5 Bosica, G., I l, 316 Bosnich, B., 100 Bosret,J., 24 M., 394 Bossart, Botting,N. P., 152 Boudier,A., 268 P., 191 Boudjouk, Bougauchi, M.25,102 R., 191 Boukhenoub, J., 152 Boukouvalas,
451
452
Authorlndex
Boulet,S.L., 202 A.,13,341 Bouzide, Bove,J. L., 102 S.,311 Boverie, Bovicelli,P., 151 P., 200 Bovonsombat, Bovy,P., 153 S.A., 102,311 Bowles, W. R.,21 Bowman, Box,V. G. S.,348 Boyd,E. A., 396 Boyd,J.,248 Boyd,M. K.,309 Boyle,P.D.,335 L., 173 Boymond, D. C', 152,251'323'337'433 Braddock, Bradley,M., 12 C.W.,220 Bradshaw, Braga,A. L.,65,396 Brand,S.,212 S.,357 Brandange, K. M.1.,147 Brands, L., 66,22O,368 Brandsma, Brandt,T. A., 99 S.,281 Briise, Braun,M.,99 Braun,N.A, 307 T., 133 Braxmeier, B.,298 Brehon, C.,312 Breindl, Breit,B., 135,26'7 Brel,V. K., 305,308,430 G. P.,8 Brengel, Brenner,8.,255 M.-R.,38 Brescia, Breton,G. W., I l, 340 Bricout,H., 35 Brigaud,T.,400 Briggs,A. D., 232 G., 131 Bringmann, Brisdon,A. K.,64 M., 153 Brocchetta, S.' 379 Brocherieux-LanoY, Brochu,C., 228 T. J.,303'3'72 Brocksom, U.,303,3'72 Brocksom, Brode,S.,249 Brody,M. S.,245 Brogan,J. B., 320 Brook,M. A.,422,423
Brooks,D. A.,60 Brown,E., 100 B r o w nH , . C . , 5 , 5 31' 9 1 Brown,J. M., 100,289 Brown,R. C.D.,320 Brown,S.M.24, 119'37O Brufani,M., 208 Bruin,M.8., 101 Brummer,O.,251 K.M.,220'252 Brummond, Brun,E. M.,218 Bruncko,M.,276 Bruneau,C., 323 Brunel,J. M.,220 Brunel,J.-M.,99,212 Brunelli,S.,220 Brunet,J.-J.,352 Bntning,J.,222 Bruno,M.,307 S.,315 Brusco, Bryan,V. J., 197 L. J.,6, 129 Brzezinski, Bubnov,Yu. N.,387 S.L., 35,38,42,'76'123'119'191' Buchwald, rg2, 289,292,384' 385' 420,443 Buck,R. T., 320 Bueno,A. 8., 111 A. V.,339 Buevich, Buffet,M. F., 57 Bugl,M.,323 Bull,D. S.,27 Bull, J. R., 29 N' A.,282'294 Bumagin, R. A.,223 Bunce, W.H '220 Bunnelle, Buono,F.,292 Buono,G., 99,212'22O Burgard,A.,439 Burger,K., 191 Burgey,C. S., 103 Burk,M. J., 101 Burke,T. R., 301 Burkhardt,E. R', 53 Burkhardt,S., 352 C.,361 Burkholder, Bumell,D. J.,55 Burns,D. H., 175 Burton,D. J.,295'368 B. 8., 156 Busch, Busch,S.,419
Busch-Peters Busujima.T,. Busujimi. T.. Butler, D. C. I Butsugan,Y.. Buzard,D. J.. Bykov, V. \'..
Cabezas,J. A. Cabreta, A.. 3 C a b r i ,W . . 3 1 Cacchi, S.. 2t Cahiez, G.. I I 274,29E C a i ,D . , 1 5 2 Cai, K., I I
C a i ,M . - S . . 3 J
Ca|M.-2..! Caille, A.-S.. Calderwood I Calo, V., l{6 Calter,M. A., Calvo-Asin. J Campi, E. MCampos, K. I Campos, P. J.
Canali, L.6L Cantrell, G. I Cao, G.-A.. I Cao, G.-Q.. I C a o ,P . , 9 9 . I Caple,R.. 37 Capperucci. / Cappi, M. \l'.
Cappiello.J.. Caputo,R..6 Carboni,B.., Cardamone.I Cardona"L.. Carducci. V. Carlon, R. P. Carlsen,P. H Carmella. P.. Carmes,L.. (
Caron, S.. fl Carpentier. J Carpino. L. ,r
Carpintero. I Carreaux. F.. Carreira. E. !
Authorlndex
J.,303'313 Busch-Petersen, Busujima,T', 123,198,336'337 Busujimi,T., 123 Butler,D. C. D.' 55 Y.,7 Butsugan, Buzard,D. J.,268,2'74 Bykov,V. V.,282
l r 1 7 9 .l 9 l
,':
453
Caneno, M. C.' 402 Carreno,N. C.,59 Carretero,J.C.'419 Carico,l.,27 Canio,J. S.,73 Carroll, C. A., 52 Canoll, P. J.,99 Carta,5.,2i24
C' P'' 410 Cartaya-Marin' J' A'' 64 Cabezas, P H'' 261 Carter' Cabreta,A., 334 M' A ' 117 Casadei' Cabri,W., 315 M'' 146 Cases' iacctri,S., 286,368,419 casolari's ' 27 i''Jn*.,c.,115, l?3, ti5,1"16,236,256,2'lo' CassaYre'J'254 2'.,4,298 B'' 334 castagner' 152 cai, D., Y '' 117'299 Castanet' Cai,K., I I Castano'A'M''294 Cai,M.-S.,354 L'' 359'368 Castedo' Cai,M.-2.'299 D ' 368 Castet-Caillabet' Caille,A'-S'' 100 214'291 J ' Castro' D.1.,2& Calderwood, J' P'' 345 Catteau' Calo,V.' 146 F'' 350 Caturia' 3M Calter,M. A., P ' 65' 255 Caubere' J. A.,310 Calvo-Asin, M' P" 123 Cava' CamPi,E. M.,284 Cavero'M'' 102 K. R., 103 Campos, Cazes'B'' 246'368 P. J.,49 CamPos, P'' 315 Ceccherelli' Canali,L,62,216 E' M'' 75 Cederstrom' Cantrell,G' K., 251 D' R ' 251 Cefalo' Cao,C.-A.,102 Cekovic'Z'' 184 Cao,G.-Q.,198 Cere'Y'274 Cao,P.,99,101 Z'' 210 Cernosek' 379 R., Caple, A ' 235 Cerreti' A.' 116 CaPPerucci, Cha'J K" 141' 1'79 CAPi, U. W.' 102 Cha'J S" 146 t.,:Z: Cuppi"tto, Cha'K' H" 407 Caputo,R., 65 M ' 249 Chabanas' Carboni,B.,4' 65 O ' 246 Chabanis' R.,286 Cardamone, Chae'Y B'' 338 L', 114,352 Cardona, M" 168 ChakrabartY' M., 162 Carducci, A' K'' 313 Chakrabom' P',73 Carlon'R. T K'' 385 Chakaborty' P.H.1.,241 Carlsen, S'' 123 Challenger' carmella,P.,246 R' D ' 165 Chambers' Carmes,L., 65 Chan'A S' C ' 27' 43' 101 Caron'5.,220 Chan'C'' 289 J.-F.'35,43 Carpentier, Chan'D' M' T'' 117 L. A', 157 CarPino, Chan'H'-K ' 175 334 M., Carpintero, Chan'K' S'' 368 Carreaux,F', 65 Chan'T H'' 415 260'31'7'406 101' 100' 51' E M,41' Carreira,
I
454
Authorlndex
B. M', 57,320 Chanda, S.,23,31,278' 376 Chandrasekaran, M., 120 Chandrasekhar, 311'355 S., 130,146,224,304' Chandrasekhar, 436 5'l ,M.' ' Chandrasekharan Chang,F.-C.,394 Chang,N.-Y.,224 Chang,S.,8, 323 S.K.,8 Chang, Chang,V.,408 Chang,W. C.,396 Chang,Y.-T.,1l Chao,D.-Y.,120 Chao,S.-D.,103 Chao,S.-T.,387 Chaplinski,V., 179 E., 135 Chapman, K. T.,396 Chapman, A. B.,67, 103,173,274'399 Charette, P., 232 Charpentier, R.,261 Charubala, C., 131'396 Chassaing, I., 100 Chataigner, C h a t a nNi ,. , 3 1 8 , 4 t 7 C', 75' 191 Chatgilialoglu, Chau,P.,131 Chauder,B. A., 303 B. A.,147 Chaudhari, S.P.,61,146'241 Chavan, Chavis,C., 394 Che,C.-M.,62 I', 370 Chelle-Regnaut, S.,283 Chemburkar, Chemla,F.,436 S. R.,422 Chemler, Chen,B.,99,186 Chen,B.-C.,99 Chen,C., 100,103,rl3, 152,23O,283'38'l Chen,C.-D.,152 Chen,C.-H.,103 Chen,C.-K',230 Chen,C.-T.,103,387 Chen,C.-Y.,283 Chen,D.,ll4,136'222 Chen,D.-W.,l14 Chen,G., 18 Chen,H.,99,422 Chen,J.,48,395 Chen,M.-F.,11 Chen,M.-J.,166
Chen,P.,1O5,l29 Chen,Q.-Y.,121,2M Chen,S.S.,113 Chen,W.-C.,232 Chen,Y.Z.,14 Chen,Y.-X., 187 Chen,2.,99, 101,193,235'3O5 305 Chen,Z.-C.,193, A., 304 Chenede, Cheng,C.-H.,257 Cheng,C.-L.,73 Cheng,D.,22,377 Cheng,K. F., 186 Cheng,K.-J.,327 Cheng,P. T. W., 105 Cheng,S.-M.,426 J.H.,394 Cheong, K.-K',315 Cheung, M., 156 Cheung, Y. Y., 141 Cheung, M' V.,35 Chevliakov, Chevrie,D., 108 T., 38 Chevtchouk, B. R.,338 Chhabra, Chhatriwalla,A., 197 Chiang,J. P.,302 Chiba,K., zt08 Chihara,T., 339 H.,238 Chikamori, Chin,S.-F.,169 Chiu,P., 186,436 Chiu,Y.-H.,100 Chiusoli,G. P.,300 M., 188 Chmielewski, Cho,B. T., 102 Cho,B. Y., 388 Cho,C. S.,299,3U Cho,C.-W.,402 Cho,D. H., 133,158'414 Cho,D.-J.,385 Cho,E. J.,13 Cho,H.-S.,224 Cho,I. S.,214 Cho,S.Y.,422 Cho,S.-D.,299 Cho,Y. H., 152 Cho,Y. S.,294,335 Choi,G. M., 13 Choi,H.-J.,299,324 Choi,H.-S.,26
Choi,J.,8, 256.319 Choi,J. S.,8 Choi,J.-H.,339 Choi,N., 298.40rChoi,N.-H.,2107 Choi,S.-B.,l9l Choi,S.-C.,17.18. I Choi,W.-B.,312 Choi,Y., 122,37| N.. 147 Cholleton, Chong,J. M., 2 Chong,P. Y.. 192 A.,419 Choplin, M. K.,4ll Chorai, Chordia,M. D..4O5 Chou,L-C.,103 B. M.. lt Choudary, P. K.. ll Choudhury, Choueiry,D.,44.1 S..59. Chowdhury, Choy,A. L., 373 W..315 Chrisman, Christensen, J. 8.. 3 Christensen, J. 1*'..l Christie,S.D. R..Y Christoffers, J.. 205 Chu,D. Y.,299 Chua,G.-L.,l9E Chua,P.,399 Chuang, C. P.,235 Chun,Y. S., 102 B. Y.. 196. Chung, Chung,C.-M.,4O6 Chung,C.-S.,349 Chung,E.-A.,4O2 Chung,S.H., 33r Chung,S.-K..I l.I Chung,Y., 141.2? Chung,Y. K., l.ll.: Ciliberti,L.,47 Cimarelli,C., 220 Cinolani,S.,228 Cinquini, M.,311 Cintrat,J.-C.,.l0l Ciszewski, L., ]15 Ciucci,D., 274 P.,2l l Ciuffreda, Ciufolini,M. A.. -{t P.,49 Clapes, S., l4l Claridge,
AuthorIndex
Choi,J.,8,256,339 Choi,J. S.,8 Choi,J.-H.,339 Choi,N., 298,40'7 Choi,N.-H.,407 Choi,S.-B.,191 Choi,S.-C.,17,28, 121,236'282 Choi,W.-B.,312 Choi,Y., 122,371 N., 147 Cholleton, J. M.,2 Chong, Chong,P. Y., 192 A.,419 Choplin, M. K.,412 Chorai, M. D.,405 Chordia, Chou,I.-C.,103 B. M., 188 Choudary, P.K.,21'7 Choudhury, D.,444 Choueiry, S.,59, 116 Chowdhury, Choy,A. L.,373 W., 315 Chrisman, J. B., 313 Christensen, 1.W .,244 Christensen, Christie,S.D. R., 348 Christoffers,J.,205 Chu,D. Y.,299 Chua,G.-L.,198 Chua,P.,399 C.P.,235 Chuang, Chun,Y. S., 102 Chung,B. Y., 196,214,335 Chung,C.-M.,406 Chung,C.-S.,349 Chung,E.-A.,402 Chung,S. H., 334 Chung,S.-K.,11,228 Chung,Y., 141,2'lO,338 Chung,Y. K., 141,2'70 Ciliberti,L.,47 Cimarelli,C.,220 S.,228 Cinolani, Cinquini,M., 334 Cintrat,J.-C.,402 Ciszewski,L., 345 Citcci,D.,274 P.,212 Ciuffreda, Ciufolini,M. A.,307 P.,49 Clapes, S., 141 Claridge,
455
Clark,A. J., 131 Clark,B. P., 304 Clark,C. G., 117 Clark,J. H.,11,72,236,238'340,359'400' 407,439 Clark,J. S.,251 Clark,T., 67 R., 382 Clauss, Clayton,M. D.,20 I. R.,350 Clemens, Clement,F.,223 Clerici,A.,380 Clive,D. L. J.,388 Cocco,M. T.,252 Coe,P. L., 165 Coffey,D.5.,422 Cogan,D. A., 102 D. R.,21 Coghlan, D. A., 173 Cognan, Cohen,J. H., 359 L. A., 133,135 Cohen, Cohen,S.B., 108 Cohen,T., 217 Coin,C.,46 Cokley,T. M., 10 I., 65, 130 Coldham, Cole,B. M.,405 Cole,W. J.,308 K. S.,370 Coleman, P. 1.,132 Coleman, Collet,A., 17,60 Collin,J.,335 J. L.,410 Collins, S.,443 Collins, Collomb,D., 320 Colon,R., 102 S.,151 Colonna, C., 372 Combellas, S.,307 Combes, A., 117 Combs, S.,267 Comesse, P.J.,113 Comina, F.,66 Cominetti, Comins,D. L., 210,286' 335 P.,294 Compain, J. M., 1I 1, 326'334 Concellon, C., 201 Condeiu, Conlon,D. A., 147 Connolly,S.,406 T ., 99, 22O Constantieux,
iifrllr 1l
ti
456
AuthorIndex
M. P., 102,105 Coogan, Cook,A. S., 100 Coop,A.,228 C.,248,302 Coperet, Copp,J. D., 38 A.,212 Cordova, Corey,E. 1.,99, 102,103,213,238'242,303, 334 Comet,H.,359 Comwall,N. J.,60 Conadini,R., 399 Corrette,C.P., 192 F. P.,334 Cossio, Cossu,S., 103 J.,65,146 Cossy, Costa,M., 300 C., l9l Costantino, Costi,R.,386 Cote,B., 10,132 Cotelle,P.,345 I.,291 Coudanne, G.,405 Coudert, V.,257 Courtois, A.,359 Couture, Couturier,l.-L., l1'7 Couty,F.,24,213 A., 350 Covam.rbias-Zuniga, Cowden,C. J., 138 Cox,C.,41 Cox,L. R., 352 Cozzi,F.,334 Cozzi,P.G.,27 Craig,D., 130 S.N.,55 Crane, Crasto,C. F., 197 Crawford,K. B.,396 Crich,D.,20 Crimmins,M. T., 52,3'73 Crisma,M., 19 Crisp,G. T.,368 Cristau,H.-J.,17,152 Crivello,J.V.,20'7 B., 173,368 Crousse, Crowe,W. E., 179 Crozet,M. P.,359 Csaky,A. G.,334 P.,267 Cuadrado, Cui,J.,230 Cundy,D. J.,117 Cuny,8.,I
Curci,R., l5l,152 Curini,M.,315 Curran,D. P.,2, 10,22,165,282'298 Curtis,M. D.,68 Czarny,A., 1l Czuba,I. R., 131 M., 340 Da GracaNasscimento, Da Silva,A. J.,275 Da Silva,A. J. M., 303 Dahiya,R., 238,3O7 ,340 Dahl,A. C., 18 Dai,G.,313,381 Dar,H.,27 Dai,L.-X., 25,76, 102,312 Dai,M.,391 Dai,W.-M.,350 Dar.,Y.,239 Dainty,R. F.,206,3'79 Dake,G. R.,412 Dakin,L. A., 379 M., 102 Dalkiewicz, Dalko,P.I.,99 Dalla,V., 345 Dalpozzo,R.,264 Dalvi,P.V.,53 S., 17 Damestoy, Danca,D. M.,423 Dang,H.,57 R. L., 154,220 Danheiser, S.J.,33 Danishefsky, T. N., 1ll Danks, S.W.,61 Dantale, Darcel,C., 146,l'75 Darcy,R., 191 Darling,G. D., 141 S.,288 Darses, Das,B., 115,346 Das,B. C., 115 B.,246 Dasgupta, O. A.,29,141 Dasse, A.,214 Dattacupta, Dau,T.H.,262 P.,347 Dauban, N., 303 Daubresse, Davey,P. N., 337,399 David,D. M.,368 David,M.,286 David,S.A.,419 N. 8., 152 Davidson,
Davies,H. \t. Davies,R. \'.. Davies,S. G.. Davis, A. P.. 5 D a v i s ,B . G . . i
D a v i s ,F . A . . 9 Davison,A.. I Davydov, D. \ Dayan, S., l9l De Andrade. I
De Angeles. F De Angelis. F. De Angelis. S De Avila-E..: De Boeck. B.. De Brabander De Campo. F-
De Cooman. P De Groot, A,. De Jesus,M.. De Kimpe. \.. De Koning. C. De la Fuenrc.I De la Torre. !Y De Lang, R.-J De Las Heras, De Lomban- S De Lucchi. O, De March. P.. De Mattos. Il. De Meijere. A De Mesmaekc De Mico, A.. : De Nino, A.. l De Pascali.F. De Sousa,S. I De Souza. R- | D e V o s ,D . 8 . . De Vos, M. J, De Vries, A. l De Vries, J. G De,A.,3zl0 De,M.,295 Deacon,G. B, Deagostino. A DeBoos,G. A DeCarli, M. A Dechoux,L.. i Decicco,C. P. Defieux, D.. I
Author Ind€x
:.: les
Davies,H. M. L., 103 D a v i e s ,R . V . , 2 6 4 D a v i e s ,S . G . , 9 9 Davis, A. P., 5'7, 413
Degani,I., 19,240 Degenkolb, P., 298 Deguchi, K.,405 Degueil-Castaing,M., 394
D a v i s ,B . G . , 7 8 Davis, F. A., 99, 100, 166, 1'73 D a v i s o n ,A . , 1 6 1 D a v y d o v ,D . V . , 2 9 8
Dehaen,W.,405 Deka, N., l, 199 Del Pozo Losada,C., 335
Dayan, S., 193 De Andrade,L. H., 65 De Angeles,F., 6i D e A n g e l i s ,F . , 4 1 5 De Angelis, S., 274 De Avila, E., 396 De Boeck, B., 394 De Brabander,J., 146, 175 De Campo, F., 120 De Cooman,P., 108 De Groot, A.,424 De Jesus,M., 102 De Kimpe, N., 108 D e K o n i n g ,C . 8 . , 3 1 2 De la Fuente,C., 78 De la Torre, M. G., 73 De Lang, R.-J.,368 De Las Heras,M. A., 173 De Lombart, S.,24 De Lucchi, O., 103 De March, P., 382 De Mattos, M. C. S., 199 D e M e r j e r eA. . . 1 7 9 . 2 8 1 . 2 8 6 De Mesmaeker, A., 291 De Mico, A.,307 De Nino,A.,264 De Pascali,F., 300 , .8., 107 D e S o u s aS De SouzaR , . F., 31,70 D e V o s , D . 8 . , 1 8 8 ,2 4 8 De Vos,M. J.,24 De Vries, A. H. M., l0l De Vries, J. G.,294 De, A.,340 De, M.,295 D e a c o n ,G . 8 . , 2 8 4 Deagostino,A.,66 D e B o o s ,G . A . , 4 3 4 DeCarli, M. A., 191 Dechoux,L.,213,335 D e c i c c o ,C . P . , 4 1 3 Defieux, D., l2
457
Delaloge, F., 267 Delaney,M. O., 175 Delest,8.,446 Delgado,A., 345 Delmond, B., 345 Delmotte,C.,222 Demare,P.,254 Demina, M., 184 D e m i r ,A . S . , 2 3 5 Demonceau,A., 3l I Demuth, R.,292 D e n g ,J . , l 0 l Deng, L. X., 162 Deng,M.-2.,283 D e n i a u ,E . , 3 5 9 DeNinno, M. P., 379 Denise,B., 248 Denisenko,S. N.,438 D e n m a r k ,S . 8 . , 1 0 3 ,3 1 5 ,3 6 0 D e n t o n ,S . M . , 1 7 9 Depezay,l.-C.,414 D e r d o u r ,A . , 3 1 5 Derrick, A. M., 123 D e s a i ,D . G . , 4 3 7 D e s a i ,M . C . , 1 9 3 D e s h m u k hA , . R. A. S.' 316 D e S h o n gP , .,38 D e s h p a n d eV, . H . , 1 6 , 4 3 9 Deslongchamps,G., 152 Desmond,R., I l4 Desmond-Smith,N. S., 29 D e s m u r sJ, . R . , 4 7 , 3 9 9 Desponds,O.,66 Destabel,C., 394 Destouches,M., 175 Detomaso,A., 152 D e u r ,C . , 1 0 3 DeVita, R. J., 299 Dey,5.,277 Deziel, R., 100 Dhimane,A.-L.,289 Dhimane,H., 379 Dhokte, U. P., 191
i'frr tl li
Author Index
Dhuru,S.P.,412 V., 159 Di Bussolo, Di Santo,R.,386 Dias,E.L.,323 Diaz,M. R.,49 Dibowski,H.,282 M. G.,253 Dickinson, Dickson,D., 274 Didiuk,M. T., 101 U., 2 Diederichsen, Diehl,V., I A., 102 Diep-Vohuule, Dieter,R. K., 6'7,298 Diez,E.,5'7,167 Dijkstra,H. P.,386 Dilman,A. D.,404 DiMichele,L. M., 152 Dimitroff,M.,225 Dinaut,A. N., 166 Ding,H., 248,442 Ding,P.-Y.,354 Ding,X., I Ding,Y.,383,385 Ding,Z.-8.,321 Dinoi,A., 152 C. 1.,261 Dinsmore, A.P.,220 Dishington, Dittmer,D. C.,356 P.H.,323 Dixneuf, Dixon,D. J.,5'7,99,375 Djuardi,8.,200 D o ,J . Y . , 4 2 3 Do,Q. T., 133 A., 101 Dobashi, Dodd,R. H.,347 Doi,M., 334 Doi,N.,64 Doi,T.,43,421 Dolbier,W. R.,40, 59,64,l2l,36l Dolgina,T. M.,43 Dolham,E.,207 Dolling,U.-H.,100,147 L.M.,220 Dollinger, T.,45,46 Domae, Dombi,K. L.,400 D., 359 Dominguez, R.,323 Dominique, D. S.,114 Donald, W. A.,246 Donaldson, Donard,O.,345
Dong,C.-2.,72 Dong,T.,46,346 Dong,T.-W.,46 J. G., 176 Donkervoort, Donnoli,M. I., 102 Donohoe,T. J., 276 Donskaya,N. A., 109 Dopico,P. G., 245 Doris,E., 121,396 Dorokhov,V. G., 203 Dorta,R.,4l R. B., 303,372 DosSantos, Dosa,P. I., 100 Doshi,A.,379 A., 399 Dossena, Doty,M. 1.,284,286 Dtitz,K. H., 301 Doucet,H.,43,289 Dougherty,J. T., 102 A.,320 Doutheau, R. E.,220 Douthwaite, Dove,M. F. A.,428 Doye,S.,123 Doyle,M. P., 103 Drabowicz,I.,127 Draffan,A. G.,315 Driiger,G., 142 U.,420 Drechsler, S.,413 Dresen, Dress,K. R.,276 Drew,M. D., 102,311 Drew,M. G. B., 113 Driver,M. S.,38 Drok,K.,394 Drury,W. J.,4l Du Bois,J.,260 D u ,H . , 6 8 Du,2.,380 Duan,D.-H.,334 Duan,J.,59,121 Dubac,J., 46,47,399 A.,267 Duchene, I., 228 Duchesne, T.,41 Dudding, S.,240 Dughera, L., 99,173, 217,368 Duhamel, P.,99 Duhamel, Dumartin,G.,345 Dumas,F., 185 W.,222,246 Dumont,
Dumur,J.-C.,317 Dunach,8.,45,46 Duncan,M. P.,201 Dungare, M. K.,.{39 Dunkel,M.,261 Dunn,P.T.,99 Dunogues, J., 267 Dupont, J.,31,70 Durand,S., 121 Durandetti, M.,257 Dussault, P. H., 369.{" Dussin, G.,256 Dutta,D.,221 Dutta,M. P.,436 Dutta,P.,196,198.ll6 Dutta,S.,385 Duval,R.,246 Dvorak, C. A.,217 Dwivedy,I.,405 Dyker,G., 284,289
Earle,M. J.,70 Eary,C.T.,422 E a s tM , .8.,259 Easton, C. J.,259 Ebata,I., 36 Ebata,S., 135 Ebinger,A., 102 Ebitani,K.,279 Echigo,T., 75 Eckert,M., 293 Eckert,T., 295 Eda,Y.,29'1 Eggert, U.,410 Egi,M.,403 Egli,P.,4l Egusa,T., 103 Eichberber, M., 36 Eichelmann, H.,99 Eichinger, S. K.,259 Eilbracht,P., 33,36 Eilers,B,412 Eisen,M. S.,48 Eisenstadt, A., 259 Eissenstat, M. A.. 76.-r5 El Gaied,M. M., 167 El Kaim,L.,62,391 El-Ahl,A.-A.s.,387 Elbeheery, A. H., 387 El-Faham, A., 157
, {{tql[lir
AuthorIndex Dumur,J.-C.,317 Dunach, 8'45,46 Duncan,M. p.,201 Dungare, M. K.,439 Dunkel,M.,261 Dunn,P.T.,99 Dunogues, J., 267 Dupont, J.,31,70 Durand,S., l2l Durandetti,M., 257 Dussault, P. H., 369,422 Dussin, G.,256 Dutta,D.,221 Dutta,M. P.,436 Dutta,P., 196,198,216 Dutta,S.,385 Duval,R.,246 Dvorak,C. A.,217 Dwivedy,I.,405 Dyker,G.,284,289 Earle,M. J.,70 Eary,C.T.,422 East,M. 8.,259 Easton, C. J.,259 Ebata,I., 36 Ebata,S., 135 Ebinger,A., 102 Ebitani, K.,279 Echigo, T.,75 Eckert,M., 293 Eckert,T., 295 Eda,Y.,297 Eggert, U.,410 Egi,M.,403 Egli,P.,4l Egusa,T., 103 Eichberber, M., 36 Eichelmann, H.,99 Eichinger, S.K.,259 p., 33,36 Eilbracht, Eilers,B,412 Eisen,M. S.,48 Eisenstadt, A.,259 Eissenstat, M. A., 76, 352 El Gaied,M. M., 167 El Kaim,L., 62,397 El-Ahl,A.-A. S.,387 Elbeheery, A. H.,387 El-Faham, A., 157
Elguero,J.,281 Elings,J. A., 340 Elise,M.,262 Elizuov, A.,444 Eller,C.,379 Ellervik,U., 181 Elliott,M. R.,289 Ellman,J. A., 102,173 Elmes,P.S.,388 Elmorsy,S.S.,360,387 Elothmani, D., 133 Elsevier, C. J.,417 El-Shehawy, A. A., 6, LW,437 Emami,R.,312 Emori,8.,25 E m o t oS, . , 2 t 2 Enders, D.,53,60,98,99, 102,108,166,202, 254,2U,268,442 Endo,M.,276 EngK , . K.,312 Engel,S.,108 England, A. F.,43 Engman, L.,256 Enholm,E. J., 10,394 Entenza, C.,218 Epa,W. R.,201 Ephritikhine, M.,426 Epifano,F., 3t5 Erememnko, I. L., 3l I Eremenko, I. L., 3l I Eriksson, M.,26i , 4O7 Ernet,T., 338 Ernst,H., 23 Escudero, S.,368 Eshghi,H., 199 Espenson, 1.H.,248 Esteban, G.,298 Estevez-Braun, A. M., 432 Estrada,O., 254 Esumi,T., 358 Ethiraj,K. S.,241 Evans, D. A., 10,99,101,103,tl7,132,261, 340 Evans,E. F., 57 Evans,P., 99, 109,202,215, 313,323,423 Evans,P. A.,99, 109,202,323,423 Ewing,G. J.,205 Eydoux,F., 27 Eymery,F., 166 Ezaka,T..33'7
460
Authorlndex
Ezoe,A.,256 Ezoe,T.,433 Ezqu'ert4J.,267 Fabrizi,G., 286,368' 419 Fache,F., 101 Faigl,F.,65 Falck,J.R.,122'224 Fali,C. N.,212 Fallah,A.,399 Fallis,A. G', 114 O.B.'129 Familioni, Fan,Q.,43 F. J.,54,69,111'120 Fananas, Fang,D.,65,375 Fang,D.-F.,375 Fang,J.-M.,334 Fang,X.,4l Fang,Y.,230 E.,200 Fanghanel, Farhadi,S.,239 G. M.,55 Farinola, Farkas,S.,261 Fanas,J.,216 Fanell,R. P.,256 Fanera,J.-A.,345 Fatemi,P.,225 A.-M.,228 Faucher, S.,98 Faure, M., 23' 116 Faure-Tromeur' B. S.' 203 Fedorov, Feichtinger,K., 399 N.,288 Feiken, L.,62 Feldberg, Felder,M., 102 Feldman,P. L., 70 Felici,M., 152 Fell,R. T.,99 Feng,D., 65,334 Feng,J.,21,251'340 340 Feng,J.-C.,21, Fenger,I., 368 B. L., 101,188'433 Feringa, A. C.' 414 Fernandes, A.,173'334 Fernandez, A.-M.' 173 Fernandez, E., 100 Femandez, Femandez,I.,2'79 R.' 57' 167 Fernandez, A'' 334 Fernandez-MaYoralas.
Fenaris,D.,41 Ferraz,H. M. C.,371 Feneira,D.,26'7 Ferreira,H.,2l7 Ferrer,M., 151 Feneri,C., 191 Ferris,L., 320 Fenoni,R., 370 Feutren,S.,248 V., 55 Fiandanese, Fiedler,C. H., 230 Field,R. A, 1,200 R., 102 Fieldhouse, J. A.' 414 Figueiredo, Figueredo,M., 382 Figueroa,R', 102 M.,60 Findeisen, Finet,J.-P.,307 Finkelstein,M., 303 Finlay,J.,248 Finn,M.,78, 245 Finn,M. G.,245 5.,'76' 162 Fioravanti, M., 152 Fiorentino, H., 114,121,206,425'438 Firouzabadi, B., 143 Fischer, Fischer,R', 248'443 R. W.,248 Fischer, Fish,R. H.,62 Fitt,J.,349 Fixari,B., 184 Fizzano,M. R.' 155 F., 268'2'l5 Flachsmann, Flack,K', 251,323 Fleet,G. W. J.' 78 R.,99 Fleischer, fleitz,F.l.,292 Fleming,I., 15'304 F. F.' 175 Flemming, Fletcher,R. J.' 437 Flisak,J. R., 102 Flilsch,S.L.,397 Floris,C., 173 B. E', 102 Flowerdew, Flowers,R. A., 333'334 Flugge,L. A.' 334 Flynn,B. L., 13 Fochi,M., 13'24'7,26'1'336 Fochi,R., 19' 240 Foitzik,N., 379
Fokin, A. A..30-l Foley, A. M., I l-1 Folleas,B., 166 Follows, B. C...ll:
Fonquema, S.. l0:. I Font, J., 382 Fontaine,D., 3l I F o r a y ,G . , 3 1 3 Ford, J. G., 102 Formentin, P.. 279 Forsyth,C. J.. 239 Forsyth,S. A.. I lF o r t ,Y . , 6 5 , 2 5 5 Forti, L., 204 Fortis, F., 214 Fortsch, W., 188 Foubelo,F., 217 Foulon,F., 184 Fouquet,E., 375 Fourrey, J.-L., 3O5 Fraanje,1.,24 Frackenpohl, J.. 3Ol Fragale, G., 100 Fraile, J. M., 3ul0 Fraley,M. E., I08
Francesch,C., 359 Franchesch,C.. 30-1 Franchini,M. C.. 13 Francisco, C. G.. 3O Frank, M.,99 Franzini,L.,66 Fraser,J. L., I l7 Fraser-Reid, B.. 199 Frauenrath,H..259 Freeman, J. C., 3-1" Frejd, T., 102,4O1.l
Frey, L. F., 100 Frick, M., 149 Friedel,T.,67 Friedman,O.,4O5 Friestad, G. K.. 291 Froehlich, O., 103 Frtthlich,R.,67 Frohn, M., 102, l5l Fromhold,M. G..99 Frongia,A., 173 Froyen,P., 412.115 Fruchier, A., 394
Fry,A. J.,230 Fu,F.,101
AuthorIndex
a_
)06. 425,438
i
t :-
Fokin,A. A.,303 Foley,A. M., 113 Folleas, B., 166 Follows,B. C.,422 Fonquerna, 5., 102,141,337 Font,J.,382 Fontaine, D., 311 Foray,G.,313 Ford,J. G., 102 Formentin, P.,279 Forsyth,C. J.,239 Forsyth,S. A., 117 Fort,Y.,65,255 Forti,L.,204 Fortis,F., 214 Fortsch, W., 188 Foubelo, F.,217 Foulon,F., 184 Fouquet,8.,375 Fourrey,J.-L.,305 Fraanje, J.,24 Frackenpohl, J., 304 Fragale,G., 100 Fraile,J. M., 340 Fraley,M. E., 108 Francesch, C., 359 Franchesch, C., 303 Franchini, M. C., 13,267 Francisco, C. G.,307 Frank,M.,99 Franzini,L., 66 Fraser, J. L., I 17 Fraser-Reid, B., 199 Frauenrath, H., 259 Freeman, 1.C.,337 Frejd,T., 102,402,434 Frey,L. F., 100 Frick,M., 149 Friedel,T.,67 Friedman, O.,405 Friestad, G.K.,294 Froehlich, O., 103 Frithlich,R.,67 Frohn,M., 102,152 Fromhold, M. G.,99 Frongia,A., 173 Froyen, P.,4I2,415 Fruchier,A., 394 Fry,A. J.,230 Fu,F., 101
461
Fu,G. C.,50,98, 100,103,192,311,394, 405, 4t9 Fu,P. P.,350,426 Fu,X.-L.,327 Fu,2.,29,141 Fuchibe, K.,200 Fuchs,J. R., 333,334 Fuchs,P. L., 102,184,422 Fuentes, A. S.,73 Fugami, K.,28,31,359 Fuji,K., 24, l01,2m Fuji,M.,39 Fujibayashi, T., 10 Fujie,Y.,279 Fujieda,H., 100 Fujii,A.,42,98 Fujii,E,292 Fujii,M.,421 Fujii,N.,368 Fujii,T., I 13 Fujii,Y.,335 Fujimoto,K.,309 Fujimura, O.,43,137 Fujinami,M.,274 Fujioka,H., 59,375 Fujisawa, T.,212,256 Fujita,A., 191,357 Fujita,K., 103 Fujita,M., 59,123,20O,201 Fujita,S.,305 Fujita,T., 326,337 Fujiwara,K.,209 Fujiwara, M.,410 Fujiwara, N.,7, 197 Fujiwara,5.,223,337 Fujiwara,T., 105,I 18,t2O,2'74,383 Fujiwara, Y., 163,306,431 Fujiyoshi, S.,8,440 Fukaya,H., 335 Fukuhara,T., 386 Fukui,S., 120 Fukuma,T.,46 Fukumoto, K., 371 Fukuoka, S.,2l 1 Fukushima, M.,376 Fukuyama, H., 127 Fukuyama, T., 15,156,188,275 Fukuyama, Y.,64 Fukuzawa, M., 373 Fukuzawa, S.,99, 208,334,399
462
Authorlndex
Fukuzawa,S.-I.' 399 Fulop,F., 15 H., 27 Funabashi, Fung,W.-H.,62 Furlan,R. L'E''71 A.,6' 113,115'425 Fiirstner, A.,375 Furukawa, Furukawa,H., 123 1.,30'324 Furukawa, N.,57' 108 Furukawa, T.,339 Furukawa, Y.,78 Furukawa, Furuno,H., 101 Furuse,S.,75 Furuta,S., 186 Furuta,T., 337 Fusco,C., 152 S.,73 Fustero, Gabbi,C.,238 Gabriel,K.,360 Gabriel,T., 113 Gabriele,B., 300 A.,62 Gacon, N., 151 Gaggero, M. R', 312 Gagne, Gais,H.-J.,99 Galat,K.,2'77 T., 102 Gallagher, M.,78 Gallant, Garna,Y.,342 B. P.' 360 Gangadehar, A., 384' 385 Ganstiuer, Gant,T. G., 103 Gao,Y, l1O'179 Gao,Y.-T.,170 Garcia,B., 114,159'352 Garcia,B. A.' 159 Garcia,C., 114,26'l'352 Garcia,C. L., 114,352 Garcia,J', 102'340 Garcia,J. I., 340 F', 157 Garcia-Calvo-Flores, S.,49 Garcia-Granda, M. A.' 49 Garcia-Martin, J. L., l7 3' 339 Garcia-Navio, S'' 49 Garcia-Rodriguez, Y.,215 Gareau, Garg,N.,291 Garner,P.,2'7'7
I.,315 Garnett, Garot,C.,3 Ganett,C. E.,405 Garrido,LL,419 B.,46 Garrigues, Giirtner,P., 368 Gasc,M.-B.,152 Gasch,C., 167 H., 4'l' 399 Gaspard, Gasparini,V., 38 A.,73 Gaukhman, Gaunt,M. J.,280 J.,246,396 Gauthier, J. Y., 396 Gauthier, Gavino,R., 334 Gayo,L. M.,301 Gazzetto,5.,240 GazzlU.,286 H.,293 Geissler, Gelma,D., 149 D.,298 Gelman, Gelpke,A. E. S.' 24 Genba,A.,4 F., 252 Geneste, Genet,J.-P.,43'288'291 C., 103 Gennari, Gentile,L. N.,227 I., 153 George-Koch' F.,99 Gerhards, Gerlach,A.,2'76 Gero,S.D., 193 K.D.'220 Gesenberg, V., 182'368'389 GevorgYan, A.,152 Geze, Ghelfi,F., 2O4'238 Ghiaci,M., 13 Ghiviriga,l.' 21, 65, 412'438 L., 101,153,404 Ghosez, Ghosh,A. C., 356 Ghosh,A. K.' 323 K.,281 Ghosh, Ghosh,U., 304 Gi, H.-J.,138 G.,419 Giambastiani, Gianotti,M., 10 Giard,T', 107 Giardina,A.' l0 Gibson,V. C.,251'323 S.,191 Giese, G., 138 Giester,
Giffels,G., 102 Gigli,F.,316 Gil,J. M.,446 G i l ,S . , 2 1 8 Giles,M. R., 251.-rl-r Giles,P.R., I 19.185.,r Giles,R., l0l, 337 Giles,R. G.,337 Gilmore,J., 200 T.,75 Gimisis, Gin,D. Y., 159 Ginah,F. O.,38 R., 10.l-11 Giovannini, Girardot,M.,402 Giraud,L., 359 M. M.,36O Girges, Giroux,A.,298 Gineser,U., 301 A. G..159 Giumanini, Giuntoli,A., 124 N.,335 Giuseppone, P. L.. I l9 Gladstone, J. A., 166 Gladysz, Glas,H., 248 Glass,R. S.,66 G l a z eW , .,62,419 W. H.,419 Glaze, Gleason, 1.L.,99 K.,315 Goacolou, R.,292 Goddard, Godfroid,J. J., 148.{O5 G.,52 Godjoian, Godt,A.,238 H.,379 Goesmann, Gokhale, S.,261 D. R., l0l Goldberg, M. 8..396 Goldfinger, Gomez,C.,217 8.. l0l Gomez-Bengoa, Gong,Y. D., l6l Gonzaga,F.,46 S. S.,70 Gonzales, C. C., 307 Gonzalez, J. M.,49. l-{ Gonzalez, M. P.,4Ol Gonzalez, R., 111 Gonzalez, A.. -11 Gonzalez-Lucas, Goodman,M., 399 Gopal,D., 220 G.1.,221 Gordon,
AuthorIndex Giffels,G., 102 Gigli,F.,316 cil, J. M.,446 cit, s.,218 Giles,M. R., 251,323 Giles,P.R., tt9, 185,370 Giles,R., 1O1,337 Giles,R. G.,337 Gilmore,J., 200 Gimisis,T., 75 Gin,D. Y., 159 Ginah,F. O.,38 Giovannini, R., I0, 130,256 Girardot,M.,402 Giraud,L., 359 Girges,M. M., 360 Giroux,A.,298 Girreser, U., 301 Giumanini, A.G.,259 Giuntoli,A., 124 Giuseppone, N.,335 Gladstone, P. L., I l9 Cladysz,J. A., 166 Glas,H.,248 Glass, R. S.,66 Glaze,W.,62,4l9 Glaze,W. H.,419 Gleason, 1.L.,99 Goacolou, K.,315 Goddard,R., 292 Godfroid,J. J., 148,405 Godjoian, G.,52 Godt,A.,238 Goesmann, H., 379 Gokhale, S.,261 Goldberg, D. R., l0l Goldfinger, M. B.,396 Gomez, C.,217 Gomez-Bengoa, 8., l0l, 309 Gong,Y. D., 161 Gonzaga, F.,46 Gonzales, S. S.,70 Gonzalez, C. C.,307 Gonzalez, J. M.,49, i30 p.,402 Gonzalez,M. Gonzalez, R., 111 Gonzalez-Lucas, A., 350 Goodman,M., 399 Gopal,D.,220 Gordon,G. 1.,227
Gordon,M. S.,248 Gore,J.,294,368 Gorman,D. B.,205 Gosmini, C.,436 Gossage, R. A., 176 Gotanda, K.,410 Gothelf,K. V., 101 Goto,C.,335 Goto,Y.,289 Gotor,Y.,212 Gottardo, C.,422,423 Gottlich, R.,51 Goubitz,K., 24 Gouda, K.,289 Gouvemeur, V., 154,360 Goyal,R.,207 Gozzi,C.,286 Gozzo, A.,354 Grabowsk,E. J. J., 100,l 14 Gral C.-D.,98 Graf,D. D.,251 Graf,R.,379 Gralak, J.,217 Granados, A.,54,69 Grancha, A.,269 p., 359 Grandclaudon, Grandi,R.,238 Gravier-Pelletier, C., 414 Gravis,A. G., 100 Green,J.,24 Greenwald, R. B., 337 Greeves, N., 350,432 Grehn, L.,230 Greiner,A., 102 Grela,K., 10,343 Grenzer, E. M.,99 Gribble,c. W., 173 Gridnev, I. D.,387 Grieco,P. A.. 226,233,239,410 Griesback. A. G.,343 Griesbaum, K.,279 Griffith,D. A.,33 Grigg,R., 113,291,368 Grigsby, W.1.,257 Grishin,Y. K., 109,305,308 Groaning, M. D., 8 Groer,P.,212 Gron,L. U.,282 Gros,P.,65 Gross,T., 268
464
Authorlndex
R. B., 100 Grossman, Grote,l.,272 Grover,P.,413 K.,310 Grozinger, Grubbs,R. H.,323 H.-J.,154 Grumbach, Grundt,P.,284 C.,323,324 Grtinwald, Gruza,H.,350 Gryko,D.,350 G u ,C . , 5 7 Gu,H.,343 G u ,R .L . , 2 1 Gu,S.,335,380 Gu,Y.-G.,60 F. O., 57 Guadarrama, A.,65 Guaragna, Guay,D.,396 S. K., 196,281 Guchhait, A., 102 Gudmundsson, T. A.,352 Guerassina, Guerra,F. M.,406 C., 98 Guibourdenche, Guijano,A.,437 Guijano,D., 101,102 Guiles,J. W., 396 Guillard,J., 138 G.,405 Guillaumet, Guillena,G., 99,267,3O3 Guillevic,M.-A., 166 Guilmart,A.,255 Guindon,Y., 394 Guise,S.,320 Guiso,M., 155 Guitian,8.,368 K.-P.,131 Gulden, H. Q. N.,248 Gunaratne, Gundogan,8.,379,382 Y., 129 Gunjigake, Giinther,W.,2 J. L., 368 Gunzner, Guo,H., 326,334,381 Guo,Q.-X.,370 Guo,Y. P.,75 Guo,Z.,2l4 Gupta,A., I, g Gupta,S.,214 Gupta,V.,256 Gurrala,S. R., 57 G., 141 Gutenberger,
A.,217 Gutierrez, Guy,L., 17 A., 102 Guzman-Perez, F., 212 Gyenes, A.,276 Gypser, Ha,D.-C.,406 Ha,H.-1.,54,375 Ha,S.J.,230 Haack,K.-J.,98 Haas,G. R.,62,252 J. X., 136,197 Haberman, Habibi,M. H.,239 H., 138 Hachiken, Hachiya,1.,99,289,33'l Hadida,S.,10,165,282 L. P.' 118 Hadjiarapoglou, Hage,R., 188 D.L.,232 Hageman, Hager,C.,401 E.,42,289 Hagiwara, H.,2,29'7' 413 Hagiwara, S.,31 Hagiwara, Hai,T. T., 159 Haigh,D., 320 Hair,M.,53 A.R.,22,23 Hajipour, Hajre,S.,412 G. H',349 Hakimelahi, A.,210 Halama, S .,416 Halazy, Hallberg,A., 282,288' 291 Ham,W.-H,294 Hamada,Y.,22l S., 303 Hamaguchi, T.,333,334 Hamamoto, B. C.,38,42 Hamann, H.-J.,188 Hamann, B.,7 Hamann-Gaudinet, Y., 116 Hamasuna, J.,11,313'315 Hamelin, Hanley,P.,22l S.D., 123 Hammond, HurrwqT.,22'7 Han,H,276 Han,W.,99 Han,X., 38,284,288 Han,Y., 100,170,298 Hanack,M.,420 T., 101'337 Hanamoto,
Hanano,Y., 198 H.,382 Hanawa, Handy,S.T.,226 S..40 Hanessian, Hannachi,J.-C.,I Hanrahan, J. R.. I L. 8..,10 Hansen, Hansen, M. C.. l! Hansen,M. M.. l Hansen,T., 103 Hanson,J. R., 35 Hantos,S., 228 Hanyu,A., 137 Hanyuda,K., 16 Y..29 Hanzawa, Hao,L., 192 Har,D., 310,]45 HuqO.,22l Hara,R., 120,lt Hara,S.,3, 124.. Huada,A.,27 Harada,H., 270 Harada,S.,445 Harada,T., 103. G. G Haraldsson, H.. Z Harayama, Harayam4T.,2! Harden,A., I Hareau-Vinini.( Hariharasubrah Harman,W. D.. , Harms,A. E., 2t Harpel,S.,351 Harper,S.,239 Harpp,D. N.,3l Haning,S. R.. ll Harrington,P., a Hanis,C.8..31 Harris,C. R.,33 Harris,M., l0l Hanis,M. C..29 Harrod,J. F., 19 Harrowven,D. ( Hart,D. J.,65 Hartmann-Schr Hartner,F. W.. J Hartung,J., 129 Hartwig,J. F.. 1 Harvey,P. J., l0 Harwig,C. W.. l
I
AuthorIndex
lu
:
t
r.
Hanano,Y., 198 Hanawa,H., 382 Handy,S.T.,226,233 S.,408,436 Hanessian, J.-C.,17,60 Hannachi, J. R., 269 Hanrahan, L.8.,40O Hansen, M. C., 191,385 Hansen, M. M., 133 Hansen, T., 103 Hansen, J. R., 351 Hanson, Hantos,S.,228 Hanyu,A., 137 Hanyuda,K., 163 Hanzavta, Y ., 298, 384, 446 Hao,L.,l92 Har,D., 310,345 Han,O.,22l Hara,R., 120,181,326,ML443 Hara,S.,3,124,386 Harada,4.,27 HNada,H.,270 S.,446 Harada, Harada,T., 103,2'74 G. G.,232 Haraldsson, H.,28,421 Harayama, T., 291,408 Harayama, Harden,A.,99 Hareau-Vittini,G., 267 H., 131 Hariharasubrahmanian, W. D.,399 Harman, A.8.,289 Harms, S.,351 Harpel, Harper,S.,239 Harpp,D.N., 31,32,51,354 Harring,S. R., 103 Harrington,P.,433 Harris,C. E., 315 Harris,C. R., 335 Harris,M., 101 Harris,M. C., 292 Harrod,J. F., 192 D, C.,379 Harrowven, Hart,D. J., 65 1.,279 Hartmann-Schneider, Haftner,F. W., Jr, 312 Hartung,J., 129 Hartwig,I. F., 38,42, 292 Harvey,P. J., l0 Harwig,C. W., 114,316
L. M.,300 Harwood, A., 375 Hasegawa, 334 Hasegawa,8., T.,98 Hasegawa, M.M.,2'79 Hashemi, S.,98,101 Hashiguchi, Hashimoto,F., 303 L,436 Hashimoto, N.,99, 102 Hashimoto, S.,320 Hashimoto, Hashimoto,T., 188 Y., 101,170,299,337 Hashimoto, Hashmi,A. S. K., 240,339 Haskel,A.,48 J., 286 Hassan, A.,405 Hassner, Hata,8.,160 S., 127,358 Hatakeyama, T., 200 Hatakeyama, K., 103,305 Hatanaka, Y., 289,298,359,419 Hatanaka, Hatano,B., 342,385,427 Hattori,K.,280 Hauck,B. J., 191 A., 131 Haudrechy, Haufe,G., 338 J. R.,413 Hauske, Hawkins,1.M.,220 Hay,L. A., 38,289 T., l7 Hayakawa, H.,75 Hayase, T.,41 Hayase, A., 169 Hayashi, H., 1, 135 Hayashi, K.,232,356 Hayashi, M., 109,138,299,368 Hayashi, N.,212 Hayashi, S.,243 Hayashi, Hayashi,T., 29, 43,298,299 Y., 50, I 15,130,1'75,269 Hayashi, Hayes,J., 102 Hayford,A.,379 B. C.,350 Haynie, Hays,D. S.,50,192,311,394 R. G.,41,101,375 Hazell, Hazra,B. G.,405 He,M., l0 He,Y.,288 H.,33'1,354 Heaney, V. L.,430 Heasley,
466
Authorlndex
Heber,D., 301 Hecht,S.M.,238 Heck,K. A., 3 Heck,M.-P.,142 S.G.,69 Hegde, L. S., 11I Hegedua, S.J.,29 Heggie, J., 289 Heiermann, H., 158 Heimgartner, Hein,M.,401 Heiner,T.,400 G. R., 8 Heintzelman, Heinz,T., 102 D. K., 163 Heldmann, Heller,D. P., 101 K.,297 Hellgardt, G.,99 Helmchen, Henaff,N.,200 D. G.,410 Henderson, S. A., 334,377 Henderson, A. C.,356 Hengge, Henin,F., 317 Henkel,G., 284 L.,60 Hennig, H., 103 Henniges, D. D.,368 Hennings, Henry,J.-C.,43 Henryon,V., 102 M. F., 102 Hentemann, Heo,N. H.,299 Heravi,M. M.,434 Herbert,J.M.,214,299 Herbert,N., 394 Herker,M.,69 Herm,M.,99 R., 307 Hemandez, J. W., 11I Herndon, Heron,N. M., 101 W. A.,248' 313'323 Herrmann, Hertweck,C., 146 A.,28 Heumann, A.T.,214 Hewson, Heydari,A.,225 Heymer,B., 149 Hicks,F. A.,384 Hicks,R., 188 Hidai,M., 141 Hidai,Y., 156 H'24,102 Hiemstra, Higaki,M.,57,108
Higashijima,T., 100 T., 149 Higashino, K.,234 Higashiura, K., 173 Higashiyama, Hightower,T. R., 38 Higuchi,K.,375 Higuchi,R. I.,293 Hikichi,S.,267 1.P.,42 Hildebrand, Hilfiker,M. A.,37'7 Hill, D. c.,334 Hill,D. E.,368 Hind,S.L.,320 Hindley,N. J., 185 Hinks,J. D., 320 Hino,T.,310 Hinz,W.,382 Hinzen,B., 3'10,3'71 Hioki,H.,64 Hioki, K., 334,335 K., 109,119,144,203'283'289' Hirabayashi, 359 Y.,35 Hiraga, Hirai, A., 100 Hirai,K., 163 Hirama,M., 101,169,170'31'1,375 Hirano,K., 334 Hirano,M., I l, 72, 206,236' 238,348 368'370' Hirao,T., 158,283,326,334,335' 385,427,428,43r Hirashita,T., 7 Hirota,K.,280 Hirota,M.,210 Hiroya,K.,43 Hirt,U. H., 100 Hiyama,J.,359 Hiyama,T., 29, 109,ll9, 144,186'191'203' ,359' 369'399 256,283,289,35'7 Ho, D. S.-C.,197,198 Ho, P.-S.,lO5,282,283,292' 294' 368 Ho,T.-L.,230 Hocke,H., 187 D. M., 113 Hodgson, Hofl R. H.,356 H. M. R.,410 Hoffmann, M.,99 Hoffmann, Hoffmann,O.,335 Hoft,8.,188 '27o Hojo,M., l2'7,234'237 Hokke.Y., 15
Holliday,P., 193 Hollmann,C.. 36 Holman,S.,65 Holmes,A.8.. 150 Holton,R. A.,22? C. W..: Holzapfel, Homma,K., l9l Homsi,F.,33 Hon,S.-W.,l0-1 Honda,A.,368 Honda,M.,368 Honda,T., 334.-1 Hong,B.-C.,l6D Hong,C. I.. zl07 Hong,J.,109.2m Hong,J.-B.,109 Hong,R.-K.,105 Hong,S.H., 270 Hong,T., 371 Hong,Y.,420 Hongo,Y., 208 Honma,T., 137 Honna,M.,46 Hooper,M. W.. ll Hoppe,D.,67 Hiippe,H. A.. 19 Hori,K.,30.l0l. Hori,M.,381 Horie,T., 223 Horikawa,Y.. 38 Horiuchi,C. A-. l Horiuchi,T., l(tr Hormi,O. E. O.. Hormot,O..62 Horner,J. H..4ll Horvat,S., 108 Horvath,I. T., l6 Horvath,M. J..3 Hoshi,8.,zl40 Hoshi,M., 142.l Hoshi,T., 8 M., 35 Hoshiba, M... Hoshikawa, Hoshino,M., lff Hoshino,O.,99 Hoshino,Y.. l3t H..7 Hosokawa, Hosokawa.S..] Hosomi,A., I 19 2'70,379
{uthor Index
rJ.203,283.289.
l-
ilr.375
r :t^ :38,348 5 rrr. -1-35, 368,370,
9 r-r. 1l86,191,203, _::- i69.399 ! :-: r94.368
Holliday,P., 193 Hollmann, C.,36 Holman,S.,65 Holmes, A.8., 150 Holton,R. A.,227 Holzapfel, C. W.,230,368 Homma,K., 191 Homsi,F.,33 Hon,S.-W.,103 Honda,A., 368 Honda,M.,368 Honda,T., 334,335 Hong,B.-C.,169 Hong,C. I.,407 Hong,J., 109,2ffi Hong,J.-8.,109 Hong,R.-K.,105 Hong,S.H.,270 Hong,T., 371 Hong,Y.,420 Hongo,Y.,208 Honma,T., 137 Honna,M.,46 Hooper,M. W., 100 Hoppe,D., 67 Hiippe,H. A., 197 Hori,K., 30,101,324,381,419 Hori,M.,381 Hoie,T.,223 Horikawa,Y.,383 Horiuchi,C. A.,74 Horiuchi,T., 100 Hormi,O. E. O., lO2,382 Hormot,O.,62 Horner,J. H.,423 Horvat,S., 108 Horvath,I. T., 166 Horvath,M. J.,388 Hoshi,8.,440 Hoshi,M., 142,242,391 Hoshi,T., 8 Hoshiba,M., 35 Hoshikawa, M.,341 Hoshino,M., 165,282,298,352 Hoshino,O.,99 Hoshino,Y ., 138,298,416 Hosokawa, H.,74 Hosokawa, S.,391 Hosomi,4., 119,121,123,127,191,234,237, 270,379
47
Hosoya,T., 103 Hossain, M. M., 134 Hou,D.,354 Hou,X.-L.,25,'76,102 Houk,K. N.,402 Houllemare,D., 308 Hourdin,G., 60 Houtekie, M., 153 Hoveyda, A. H., 101,251,4O5 Howell,A. R.,220 Hoye,T. R.,276 Hruby,V. J., 100 Hrvatin,P., 373 Hsiao,C.-N.,20 Hsiao,T.-Y.,257 Hsu,C. H.,349 Hsung, R. P.,111 Hu,H.,69,230,350 Hu,Q.-S.,99 Hu, S., 100 Hu,W., 101 Hu, Y., 4, 225,256,268,350,38O,426 Hu,Y.-H.,4 Hua,R.,417 Huang,H.,239 Huang,J., 152,371,394 Huang,J.-W.,152 Huang,N.-J.,58 Huang,T., 2&,432 Huang,W.-S.,99 Huang,X., 59, 177,259,299,306,334,368,446 Huang,Y., 170,312,326 Huang,Y.-2., 17O,312 Huart,C., 101 Huber,R. S.,359 Huber,V. J., 156 Hudack, R. A., 113 Huerta, F. F.,217 Huertas, R.,53 Hughes, A. D.,334 Hughes, G. J.,396 Hughes,T. V ., 123 Hui,Y.,436 Huisman, M., 154 Hujita,S.,8 Hult,A.,212 Hultin,P.G.,345 H u m eW , .8.,419 Humpf,H.-U.,279 Hundertmark, T., 98,99, 343
46E
Authorlndex
Hungerhoff,B., 103 Hiinig,S.,129 Hunt,J. A., 100 Hunt,J. C. A., 100 Hunter,R., 29, 382 Huo,S., 120,443 Hupe,E., 283 Husfeld,C. O., 109 S. M., 396 Hutchins, Hutchinson,J., 165 Huyser,J. J.,368 Hwang,C.-D.,99 Hwang,D.-R.,99 Hwang,J. P., 188 Hwang,S.H., 141 Hwu,J. R., 349 Hyakutake,M., 27 Hydrio,J.,335 Hyuda,S.,286 Iacazio,G.,212 Iadonisi,A.,334 M.,256 Ibrahim-Ouali, Ibuka,T., 99, 368 J.,210 Ichihara, S., 105 Ichihashi, J.,410 Ichikawa, M.,428 Ichinose, Ichiyanagi,T., 256 Ielmini,A.,286 Y., 101 Igarashi, Igau,A.,446 L.8.,212 Iglesias, A. V., 387 Ignatenko, Iguchi,S., 157 Ihara,M., 371 lhre,H.,2I2 Iibuchi,N., 59 Iida,A., 100 Iida,T.,25 Iio,K.,397 T.,43,98,101 Ikariya, Ikeda,A.,74 Ikeda,l.,2l2 lkeda,M.,292 Ikeda,N., 234 Ikeda,S.,256 Ikeda,T., 310,370 K., 119,357,369 Ikegashira, Ikehira,H.,43
Ikeno,T., 101,141 Ila, H., 304 11a,1.,436 A.,432 Ilangovan, P., 31 Ilankumaran, Ilg, K.,286 Iliefski,T.,407 lmada,Y.,427 Imagawa,K., 160 Imai,K., 103 Imai,N., 103 Imai,T., 69,243,446 Imamoto,T., 102 Imamura,K., 182 T., 101 Imanishi, G. H., 13 Imanzadeh, Inagaki,K.,254 J., 101,333,334'337 Inanaga, Inazu,T., 57 A.F.,259 Indolese, Inesi,A., 111,360 Inoh,J.,286,289 Inoue,H., 123 Inoue,K., 138,198 Inoue,M., 337 Inoue,R., l'16,270 Inoue,S., 101 Inoue,T., 100,380 Inoue,Y., 28 Inui,T., 124 Invidiata,F. P., 370 Ioffe,S.L.,404 D., 157 Ionescu, Iorga,B., 166 J.,225,295 Ipaktschi, Iqbal,J., I 15,116 Iranpoor,N., 74,75, 114,121,199'205' 206' 324,372,383,42s Irie,H., 127,358 M.8., 197 Isaac, J., 157 Isac-Garcia, Isarno,T., 102 Iseki,K., 100,103 Ishida,A., 191 Ishida,J.,45 Ishido,Y., 359 C., 149 Ishiguro, Ishihara,K., 48 Ishihara,Y., 27 Ishii.A..404,433
Ishii,K.,99. 3( Ishi-I,K.,386 Ishii,Y,49. I I 347,445 Ishikawa,F.. J Ishikawa,T.. { Ishikura,M.. d Ishimura,S..J Ishino,Y.,436 Ishitani,H.. 17 Ishiyama,T.. 3 T..9 Ishizuka, Iskra,J., 106 Ismail,M., l5: Isobe,M., l3O Isono,N.,5O Itagaki,Y.. 8 Itami,K.,36. Ito,A.,373 Ito, H, 103.I I 416,442 Ito, J., 30 Ito,K.,6, 10. Ito,M., 15,2 Ito,N.,297 Ito,S.,275 Ito,T.,2l2 Ito,Y.,36,l0 410,416 Ito,Y. N., l0l Itoh, A., 280 Itoh, K., l0l. Itoh, N., 334 Itoh,S.,72 Itoh,T., 260. Itoh, Y., 298 Itsuno, S.,6.l Iversen, T.. ll Iverson,C. N. Iwabuchi,Y.. IwahamaT.. M.., Iwahara, Iwai,J.,336 Iwai,Y.,57 Iwakoshi.M. Iwama,T..31 Iwamoto,K.. Iwamoto,M.. Iwamoto,S.. Iwamura T..
Author Index
Ishii,K.,99,368 Ishi-I,K.,386 Ishii, Y, 49, 115,13"1,141,193,284,318,327, 347,445 Ishikawa,F., 335 T.,428 Ishikawa, M.,69 Ishikura, 5.,3, 124 Ishimura, Ishino,Y.,436 Ishitani,H.,2"1 , l00 , 432 T., 30,298,299,370 Ishiyama, l9l T., 99,102,119,123, Ishizuka, Iska, J., 106 Ismail,M., 157 Isobe,M., 130,391 Isono,N.,50 Itagaki,Y., 8 Itami,K.,36,283 Ito,A.,373 Ito, H, 103,119,121,123,l9l, 237,2'70,298' 416,M2 Ito,J.,30 Ito, K., 6, 100,437 Ito,M., 15,221,368 Ito, N., 297 Ito,S.,275 Ito,T.,212 Ito,Y.,36,101,105,138,139,191,298,406, 410,416 Ito,Y. N., 101 Itoh,A.,280 Itoh,K., 104,180,405 Itoh,N.,334 Itoh,S.,72 Itoh,T ., 260,4l'7 Itoh,Y., 298 Itsuno,S.,6, l0O,437 T., 212 Iversen, Iverson,C. N., 30 Iwabuchi,Y.,358 T., 115,193 Iwahama, Iwahara,M., 303 Iwai,J.,336 Iwai,Y.,57 M.,269 Iwakoshi, Iwama,T.,379,397,414 Iwamoto,K., 149 M., l4l,339 Iwamoto, Iwamoto,S.,182,440 Iwamura,T., 379
Iwanami, T.,410 Iwasa,S., 368 Iwasaki,F., 128 Iwasaki,N., 383 Iwasaki, S.,232 Iwasawa,N., 141, 161, 2O0,425 I w a t a ,C . , 7 5 , 9 9 , 1 0 1 , 1 0 3 I w a t a ,M . , 8 Iwata, Y., 359 Iyengar,D. S.,343, 346 Iyer, S., 361 Iyoda, M., 334,335,439 Izawa, H., 101 lzawa,T.,212 I z a w a ,Y . , 5 9 , 1 0 1 I z u m i ,J . , 4 0 Jaber,M. R., 103,223 Jackson,M. P., 102 J a c k s o nR , . F. W., ll'7,232,368 Jackson,W. R., 284, 388 Jacob, J., 248 Jacobs,P. A., 188,248 ,l00 Jacobsen,E. N.,98,99. 101, 103 Jaeschke,G., Jalmes,L. S., 166 James,A. P., 188 J a m e sB , .,27 James,R. A., 152 J a n a ,U . , 1 9 8 , 4 3 8 Janarthanan,N., 348 JandaK , . D.,2'76,316 Jandeleit,B., 268 J a n e y J, . M . , l 0 l J a n g ,D . O . , I 3 3 , I 5 8 , l 9 l , 2 2 3 , 4 1 4 J a n g ,S . - B . ,2 8 1 ,2 9 8 , 3 6 8 Iang,W.8.,222 J a n i c k i ,S . 2 . , 1 9 2 Jiinsch,H.,42 J a n s e nB, . J . M . , 4 2 4 Jaramillo,C.,281,334 Jare,S. S., 185 Jarreton, O., 334 C. P., l0l Jasperse, Jastrzebski,J. T. B. H., 176 Jayaraman,S., 100 A.,405 Jeevanandam, Jeffery, T., 286 Jegelka,U.,99 Jenner,G.,405
470
Authorlndex
Jennings,H. J., 375 Jensen,J. H., 248 Jensen,K. B., 101 Jeon,H. 1., 222 Jeon,S.-J.,385 Jeong,I. H., 19 Jeong,J. U., 103 J e o n g ,N . , 1 4 i , 1 5 5 Ji,J., 101 J i a ,X . , 2 0 5 Jia,Z. J., 394 Jiang,L., 161,299,310 Jiang,L.H.,299 J i a n g ,Q . , 9 9 , 1 0 1 Jiang,S., 6 J i a n g ,T . , 1 7 5 J i a n g ,Y . , l 0 l J i a o ,G . - S . ,3 1 5 J i a o ,X . , l 2 l J i n ,B . W . , 3 1 5 J i n ,J . , l 3 J i n ,M . - J . , 1 0 0 J i n , Q . - H . , 1 6 ,4 6 J i n ,R . - 2 . , 1 8 0 J i n , T . - S . ,1 7 0 ,3 5 3 J i n ,W . - S . , 4 3 1 J i n ,Y . , 3 3 7 , 4 1 3 Jin,Y.Z.,337 Jing, H., 335 Jnaneshwara, G. K., 16,439 J o e ,D . , 2 5 1 Joe,G.H.,423 Jofre, V., 73 J o h a n n s e nM, . , 4 1 , 1 0 1 Johansson,A., 54 J o h a n s s o nF,. , 9 9 , 1 0 0 J o h n s o nJ, . S . , l 0 l , 3 4 0 J o h n s o nP, . , 3 1 5 J o h n s o nS , . G.,396 Johnstone,R. A. W., 188 Joksovic,L., I 2 J o n ,S . Y . , 1 8 4 Jonczyk,A., 106 J o n e sB , . C.,430 J o n e sD , . E., l0l Jones,G. B., 359 J o n e sM , . F.,212 J o n e sP , ., 10,2'14,379 J o n e sP , . G.,379 Jones,R. V. H., 102
Jono,T.,99 Joo,Y. H.,223,414 Jorand-Lebrun, C.,416 Jorgensen, K. A.,41,101,375,432 Joseph, R., 60 Joshi, G. C.,279 Jou,D.-C.,257 Jouen, C., 186 M. M.,232 Joullie, Joung, M. J.,256 F., 8 Jourdan, Journeaux, Y., 279 Journet, M., 152 Jow,C.-K.,156 E., 254 Juaristi, Jubaulr, P., 102 Iilia,M.,72 Julienne, K., 102 Juliette, J. J. J., 166 Jun,C.-H.,109 Jung,A., 142 Jung,D.-S.,201 Jung,I. N., l3 Jung,K. S.,315 Jung,W.-H.,26 Jung,Y.-S.,75 Junjappa, H.,436 Jurczak,J., 350 Jurczak, M., 188 Jutand, A.,258,298 Juteau, H., 215 V. S.,61 Jyothirmai, Kabalka, G. W., 5, 52,53,57, 142,217,350, 351,426 Kabir,S.M. H.,439 Kablaoui, N. M.,384 Kaboudin,8.,11,240 Kabuto,K., 375 Kaczmarczyk, G., 106 Kad,G. L.,338 K a g a nH, . 8 . , 7 , ' 7 5 Kagayama, A.,377 Kageyama, M.,443 Kagoshima, H., l'70,337 Kagoshima, N.,402,422 Kahl,S.,275 Kahlenberg, F., 74 Kai,Y.,212 Kaihara,H.,234
K a i n z ,S . , 1 6 6 , 4 1 9 Kajikawa, S., 235 Kajiro, H., 109. l0-1 KajishimaD , ..71 K a k i u c h i ,F . , 9 8 . 9 9 . l Kakiya, H., 176.21o Kakuda, H.,307 Kalberg,C. S.. l0l
Kalindjian, S. B.. {J. I K a l i n i n ,A . V . . 2 7 5 Kalita, D. J., l. 199 K a l k o t e ,U . R . . 6 1 K a l l a l ,K . , 4 6 K a l v i n s ,I . , 2 3 9 Kamal, A., 153.105. { K a m a l ,M . , 4 5 K a m a t ,S . K . , 2 . l l Kamata,T., 431 Kamaya,H., 165 Kambara,T., 100
K a m b e ,N . , 1 7 9 .l t t l . . Kameda,M.,27.1
Kamekawa,H.. l-51 Kameyama,M.. -159 K a m i g a t aN , .,51. 1,1Kamijo, S., 289 Kamikawa, K..38 Kamikawa,T.. 298 Kamimura, A., l0O. l: Kaminsky, C., 2l .1 Kamita, K., 14l K a n ,T . , 1 5 6 Kanada,T.,254 K a n a i ,M . , 1 0 0 .l 0 l Kanamori,M.. 7J Kanatani,J.-Y.. 8 KanedaK , .,279 K a n e h i s aN , ..2ll Kaneko,C., 165 Kaneko,T., 274. -1lr Kanemoto,K., l5{ Kang, C.-J., I I Kang, D.-H., 228 Kang, H.-Y., 335 Kang, K.-H., 375 Kang, K.-T., 388
K a n g ,S . , 1 7 , 2 8 . 1 9 .l ( 282,283,291.3:. K a n g ,S . B . , 1 9 6
Author Index
Kainz, S., 166,419 Kajikawa, S.,235 Kajiro, H., 109,203 KajishimaD , .,7i Kakiuchi, F., 98, 99, 318' 41'7 Kakiya, H., 176,27O Kakuda, H., 307 Kalberg,C. S., 101 K a l i n d j i a n ,S . 8 . , 4 4 , 1 0 1 K a l i n i n ,A . V . , 2 7 5 K a l i t a ,D . J . , 1 , 1 9 9 K a l k o t e ,U . R . , 6 l K a l l a l ,K . , 4 6 Kalvins, L, 239 Kamal, A., 153, 2O5, 40"1 K a m a l ,M . , 4 5 K a m a t ,S . K . , 2 4 1 K a m a t a ,T . , 4 3 1 Kamaya,H., 165 Kambara,T., 100 Kambe,N., t 79, I 8l , 337,394' 423 K a m e d a ,M . , 2 7 4 Kamekawa,H.,257 Kameyama,M., 359 K a m i g a t aN , . , 5 1 , 1 3 7 '3 3 4 K a m i j o ,S . , 2 8 9 Kamikawa, K., 38 Kamikawa,T.,298 '100, 129 Kamimura, A., K a m i n s k y ,C . , 2 1 3 K a m i t a ,K . , l 4 l
t 12.z' t'l.350,
K a n ,T . , 1 5 6 Kanada,T., 254 K a n a i ,M . , 1 0 0 ,l 0 l Kanamori,M.,74 Kanatani,J.-Y., 8 Kaneda,K.,2'19 K a n e h i s aN, . , 2 1 2 Kaneko,C., 165 K a n e k o ,T . , 2 ' 1 4 , 3 1 8 Kanemoto,K., 154 Kang, C.-J., l l K a n g ,D . - H . , 2 2 8 Kang, H.-Y., 335 K a n g ,K . - H . , 3 7 5 K a n g ,K . - T . , 3 8 8 K a n g ,S . , l ' 7 , 2 8 , 2 9 , 1 0 5 ' 1 2 1 , 1 9 6 , 2 3 6 ' 2 3 ' 7 ' 282, 283, 29 l, 292, 294, 359' 368' 406 K a n g ,S . B . , 1 9 6
171
Kang, S.-K, 17, 28, 29, 105, 121, 236, 237' 282' 283, 291, 292, 294, 359' 368 Kang, T. W.,407 Kanger, T., 62 Kanie, K., 186,357 Kannenberg,S.,42 K a n o ,A . , 5 9 Kano, D., 103 K a n o ,T . , 1 0 3 Kanomata,N., 101 Kantam, M. L., 188 Kanth, J. V. B., 53 Kantor, L. T. A., 134 Kantorowski,E. J., 391 K a n y o n y o ,M . R . , 3 5 4 Kao,C.-L.,394 Kapfer, I., 57 Karchaudhuri,N., 340 Karikomi, M.,232 K a r i m i ,B . , 4 2 5 Karjalainen,J. K.,62' 102,382 Kamik, M. A'4'7,324 Karodia,N.,65, 320 Kanallas, P., 108 K a r s c h ,H . H . , 6 9 K a r t h a ,K . P . R , 1 , 2 0 0 , 3 7 5 Karupaiyan,K., 316 Kary, P. D., 102 K a s a i ,K . , l 8 l K a s a n oA , .,254 K a s a t k i nA , .,227 K a s h i m aC , ., 173 KashimaM . .,200 KashimaY , .. l3tl Kashinatham.A.. 346 K a s h i o ,M . , 1 3 6 K a s m i .S . . l l K a s s i a r i sA. . , 2 7 9 K a s u ,P . V . N . , 1 6 6 Kasuga,Y., 334 Kasumov,T. M., 305, 308, 430 Katagiri, N.,69 K a t a k a i ,R . , 3 1 0 K a t a o k aO , .,320 Kataoka,T., 3'19,39'7,414 Kataoka,Y., 180 Katayama,8.,43 K a t o ,H . , 9 9 K a t o ,M . , 2 K a t o ,S . , 3 3 7
472
Authorlndex
Kato, T., 341 Katoh, M., 334,335 Katoh, N., 18 Katoh, S.,59 Katoh, T.,405 Katoh, Y., 356 Karohgi, M., 307 Katriuky, A. R., 3, 21, 22, 65, 73' 7 8' 173' 212' 222, 2'7'7, 289, 334, 37'7, 396, 397' 4r2' 436' 438 Karsuki,T., 98, 101, 102,123 Katz, J. L., 117, 261 Kauffman, G. S., 307 K a u f m a n ,T . 5 . , 2 5 4 , 4 1 4 Kaur, C.,44 Kaur, G.,403 Kaur, J., 207 Kaushik,M.,44 Kauss,V., 239 Kawabe,J., 370 Kawachi, A.,64 Kawaguchi, K., 397 Kawahama,R.,391 Kawahara,M.,402 Kawahara, S., 326 Kawai,M.,'1,223 Kawakami, J., 370 Kawakami,T., 1l'1,128 Kawamoto, K., 144 Kawamura, Y ., 286, 292' 294 Kawano, Y.,420 Kawaragi,S.,252 Kawasaki,H.,98 Kawasaki,I., 20 Kawasaki,K.,102,123 Kawasaki,Y.,49 Kawase,M., 397 Kawashima,E., 359 Kawatsura, M., 29 Kaye, P. T.,'1O3,129 Kayser,M. M., 18 K a z e m i ,F . , 7 4 , 3 2 4 Kazmaier, U., 29, 23'7, 412 Kazmierczak, P., 306 K e a y ,B . A . , 1 0 1 K e d a r ,T . 8 . , 3 4 Kee, A., 107 Keillor, J. W., 59 Keith, J., 191, 199 Keller, E.,433
Keller,J. L., 312 Keller,K., 411 Kelley,S.A.,40O Kellogg,R. M.,99 Kelton,T. F., 359 Kempen,H., 108 G.,247 Kemperman, Kendall,J. D., 320 Kendall,J. T., 53 Kent,J. L., 220,252 Kercher,T., 342 A.D.,220 Kerekes, Ken,M. A.,433 Kers,A., 130 Kers,I., 130 V.,278 Kesavan, Kettle,J. G.,251 Keum,G., 196 Keyes,R. F., 301 Khadilkar,8., 115,206' 340 B. M', 115,340 Khadilkar, IGalaji,H. R.,225,407 Khalil,A. G. M.,360 Khan,M. W.,295 Khan,R. H., 116,153'356 R. N., 167 Khanna, Kharul,R. K.,61 S., 168 Khasnobis, Khatuya,H., 320 Khien,K. M.,252 A. F.,209 Khlebnikov, O., 193 Khodzhaev, Khuong,T.-A.V.,248 Kianfar,G., 23 C., 100 Kibayashi, Y::da,T.,272 Kido,Y., 169,375 Kii, s.,382 Kiji, I.,298 Kikuchi,D.,347 Kikuchi,T., 98 Kikukawa,T., 334 Kilburn,J. D., 335,394 Kim, B. H., 129 Kim,B. S.,340 Kim,D. H.,413 Kim, D. Y., 8 Kim, D.-Y.,105 Kim,E. H.,388 Kim, E.-N.,407
Kim, H., 75,221. 7t( Kim,H. I., 316 Kim,H. J.,75 Kim,H.-B.,227 Kim,H.-S.,385 Kim, H.-Y.,310.1r5 Kim,I. K,8 Kim, J,-S.,282 Kim,J.,17,19,28.lr 237,292,301 Kim, J. K., 388 K i m ,J .N . , 3 1 5 Kim,J.W., 14l Kim, J. Y., 19.Iffi. : Kim, J.-C.,237 Kim,J.-H.,292 Kim,J.-S.,17,28.l: Kim, J.-W.,zl07 Kim, K., 16,19.l0'. Kim, K. H.,,143 Kim, K. S., 19 Kim, K.-J.,l6 Kim,K.-S.,294 Kim, N. S.,3zt0 Kim,N.-S.,368 Kim,S.,21,27.l'n 394,423.M3 K i m ,S .S . , 2 1 . 2 7 Kim,S.Y.,21 Kim,S.-H.,234 Kim, S.-I.,179 Kim,S.-K.,259 Kim,T. J.,299.31 Kim,T.-H.,359 Kim,T.-J.,385 Kim,W. J.,388 Kim, W. Y., 292 Kim,W.-Y.,29.lll K i m , Y . ,1 1 ,1 5 9 l.t Kim,Y. H., 188.3 Kim, Y.-J.,159 Kim,Y.-M.,l1 Kimura,K.,42.3m Kimura,M.,28.25 Kimura,T., 124.l0 King,A. O.,55 King,C.-H.R..2t-1 King,J.,13l King,N. P., 130 King,S.A., 147
Authorlndex
\r
316,345,385,444 Kim,H., 75,227,310, Kim, H. I., 316 Kim,H. J.,75 Kim,H.-8.,227 Kim,H.-S.,385 Kim, H.-Y.,310,345 Kim, I. K, 8 Kim, J,-S.,282 Kim,J.,17,19,28,108,121,141,158,236' 237,292,307,3 15,3 16,388,407 Kim,J. K.,388 Kim,J.N., 315 Kim, J. W., l4l Kim, J. Y., 19,108,307,316 Kim,J.-C.,23'7 Kim,J.-H.,292 Kim, J.-S.,1'1,28,121,236 Kim, J.-W.,407 Kim,K., 16,19,102,294,M3 Kim, K. H., u143 Kim,K. S.,19 Kim, K.-J.,16 Kim,K.-S.,294 Kim,N. S.,340 Kim,N.-S.,368 Kim, S.,21,2'7,l'79,184,22'1,234,259'391, 394,423,443 K i m ,S .S . , 2 1 , 2 7 K i m ,S .Y . , 2 l Kim,S.-H.,234 Kim,S.1.,179 Kim,S.-K.,259 Kim, T. J.,299,324 Kim, T.-H.,359 Kim,T.-J.,385 Kim,W. J.,388 Kim,W. Y.,292 Kim, W.-Y.,29, 121,237,282,283 Kim,Y., 11,159,188,196,307,315,316,334 Kim,Y. H., 188,307,315,316,334 Kim,Y.-J.,159 Kim,Y.-M.,ll Kimura,K.,42,300 Kimura,M., 28, 256,274, 421 Kimura,T ., 124,2Ol King,A. O.,55 King,C.-H.R.,283 King,J.,131 King,N. P., 130 King,S. A., 147
Kinoshita,T., Zl M., 103 Kinugasa, Kira, M., 100 Kirihara,M., 142,197,3U , 428 Kirincich,S.J.,373 Kirkland,T. A., 323 Kirschning,A., 142 Kirsten,C. N.,99 Kishi,Y., 113,264 K.,210 Kishikawa, Kishimoto,S., 100,113 Kiso,M.,375 Kiso,Y., 105 Kissel,W. S.,175 Kita,S.,305 Kita,Y., 59,201,264,375, 397'403'410 Kitagaki,5.,264,320 H.,59,324 Kitagawa, O.,59, 100,101,200,380 Kitagawa, Y.,3 Kitagawa, Kitahara,H., 104 N., l0 Kitahara, T., 187 Kitahara, N., 33 Kitamura, T., 163,306,431 Kitamura, Kitano,K.,420 Kilano,T., 298,370 Kitano,Y.,408 Kitaori,K.,78 Kitazume,T., 334 B., 33 Kitsos-Rzychon, Kiyooka,S., 191 Kizaki,H., 299 Kizil,M., 184 Klaas,P. J., 129 Klar,U.,301 Klein,D.,202 Klein,T. R.,200 Klement,1.,236,2'78 Klimkina,E. V.,387 Kling,R.,419 Klos,A. M., 8 Kluge,R., 151,187 Klumpp,D. A.,411 Kneuer,R., 129 Knieriem,B.,286 Knight,B. S.,379 Knight,D. W.,2O0,269 Knight,F. I., 100
473
474
Authorlndex
100'115' 10,38,53'55'62'98' Knmhel.P.' '"'"
2't8 ii.' ni'l,2s6,268'214'n s'
9 Kn6lker,H'-J', 133'37 Knowles'H',334 Ko, S' Y.,239 Ko, S.-L.'120 Kobata'M., 3'l'7,419 J',320 KobaYashi' K',375 KobaYashi, R ' 185 KobaYashi'
2se' 1e8' 182' ffi'*rhl;.' io'zu' too'tzr' 2'76' 336'33'7'432' 44t) T" 39 KobaYashi. 3l l' 337 f"l"ttttti, Y" t00' 103' E',350 KobrzYcka, Kocevar,M', 349 Koch,D'' 166'419 Koch,G'' 101 Kocienski,P' J'' 308 P',38 KocovskY, M',64 Kodama, Kodama'T',280 Kodoi,K', 137 Kodomari,M" 170 Koen,M' J', l7 Koenig,T' M'' 38 Koga,K',98' 99' 103 Koga,N',27 Koga'Y', 39 Kogiso,H',232 Koh,H' Y', 335 Koh,S'-V',198 Kohmoto,S'' 210 Kohmura'Y'' 123 Koide'K', 123 Koie,Y',292 Koike,M',274 Koike,N', 152 Koizumi,T'' 309 Kojima,A'' 40 Kojima,T'' 108 Kokin,K',243 Kokotos,G'' 124 Kokubo,K" 33 Kokubo,M'' 43 Kol, M'' 52 Koldobskij'A' B'' 39S a29 Kolis, J' a1'' 62)fl' 399 P'' Kolis, S' KolomitsYn'I' V'' 303
Kolter,D.. 379"t2' 423'433 lO3'165'210' 394' ri.r""i* *'. N.,45 Komatsu, KomiYama,S'' 27' 100 Komoto'I .' 312 Kondo,K'' 105,126'166 Kondo'M.,212 Kondo,S.,439 Kondo,T.' l3'l '41'7 Kondo'Y., 15,274 Kong,F., 1 Kong' K.-C'' 257 Kong,R.-K',29 Kong,S.,207 Kiinig,B.,286,412 Konig,W. A'' 368 Koning'B'' 99 Kono,K', 335 Konoike,T',241 Konsler'R' G" 99 S'' 12 Konstantinovic' KoPach,M E'' 399 D' J" 99 KoPeckY, Korb,M. N'' 102 Korber,C', 204'254 Kordes,M'' 179 Korn,S.R',230 Korzenski'M' B" 429 Kostikov'R' R'' 209 Kosugi,M'' 31' 359 Kotachi,S', 137 Kotani'M.,306 Kotera,O'' 401 Kotora'M', 120'368 Kotoris'C' C'' 166
ii"**'
412'433 t'' 1s1'223'33'7'
Kouge,K', 103 G', 110 Kovacs' Kowalski,J' A" 2zl4 Kowase'N'' 384' 446 KoYama,M'' 173 Kozawa,M'' 43 Kozera,T',28 Kozima,S'' 342 Kozmin,S' A'' 251 kafft,M'E'' 29' 141 Krahmer,R" 60 KramPs,L'' 102 Krasik,P'' 382 Kratzer,R' M'' 248
N., 26'1.295'1? Krause, Kmuter,J. G. E.. 291 Krebs,A.,2@ M.. 175.{ Kremslehner, Krief,A., 24,222'!J6 'i Krohn,K',62 Kroll, M., u142 Krueger,C. A.' 4O5 Kruger,A.,98 Kriiger,C'' l0l Kriiger,J.' 4l Kriiger,L., 368 Kruger,V.,99 Krulle,T. M.,78 Kryschenko'Y' K" 3n Kubo,T.,257 Kubota,K' 214,315 r Kubota,Y.' 185'?99' J', 237 KuboYama, Kudis,S.' 99 Kudo,A.,283 Kudoh,H', 257 Kudzin,Z. H', 397 C'l Kuehm-Caubere' Kuhnert,N., 50 S" 189 Kulasegaram, Kulawiec,R' J" 289' Kulkami,M' G" 3ll Kulkami'S.A.351 Kumamoto,T" 103 Kumar,A', 356'l0j Kumar,B. A'' 23O Kumar,D., 193 Kumar,H.,20?'139 Kumar,H. M' S" 33 Kumar,K',279 Kumar,M'S'l{6' R.' Kumareswaran. Kums'I.,239 Kiindig,E' P', l0l' Kundu,A.,373 Kundu'B., 159 Kundu,N. G" 195 Kung,C.-C'.426 Kung'D. W" 99' l T',99' l( Kunieda, Kunishima,M" 33 KuniYama,S" 456 H'. 36t KuniYasu, Kuno,H., 280
AuthorIndex
i,rJ.,{23,433
Krause,N., 267,295,324 Krauter,l. G.8.,291 Krebs,A.,209 Kremslehner, M., 175,412 Krief, A., 24, 222,246,261 Krohn,K.,62 Kroll, M., zl42 Krueger, C. A.,405 Kruger,A.,98 Kriiger,C., 101 Kriiger,J.,41 Kriiger,L., 368 Kruger,V.,99 Krulle,T. M.,78 Kryschenko, Y.K.,379 Kubo,T., 257 Kubota,K, 274,335 Kubota,Y., 185,299,421 Kuboyama, J.,237 Kudis,S.,99 Kudo,A.,283 Kudoh,H., 257 Kudzin,Z.H.397 Kuehm-Caubere, C.,255 Kuhnert,N.,50 Kulasegaram, S.,289 Kulawiec,R. J.,289,292 Kulkarni, M.G.,312 Kulkami,S.A.,351 Kumamoto, T., 103 Kumar,A.,356,405 Kumar,B. A.,230 Kumar,D., 193 Kumar,H., 207,339,340,343 Kumar,H. M. S.,339,340,343 Kumar,K., 279 Kumar,M. S., 146,340 Kumareswaran, R., I Kums,I.,239 Kiindig,E. P.,101,173,368 Kundu,A.,373 Kundu,B., 159 Kundu,N. G.,295 Kung,C.-C.,426 Kung,D. W.,99,261 Kunieda, T.,99,102 Kunishima, M., 334,335 Kuniyama, S.,256 Kuniyasu, H., 368 Kuno,H.,280
Kuntz,K. W.,405 Kunz,H., 108,439 Kunz,R. W.,288 Kuo,G.-H.,76 Kuo,S.-H.,262 Kuono,S.,276 Kiipke,J., 62 Kuramoto, Y.,46 Kuribayashi,T., 98, 342 Kurihara, A.,423 Kurihara,H' 48, 104,241 Kurihara,T., 106,22O Kurihara,Y.,43 Kurioka,M.,431 Kuriyama, N., 105 Kuiyama,Y.,227 Kuroboshi, M., 113,I 86,357 Kuroda,S.,443 Kuroda,Y.,257 Kuroi,H.,442 Kuroki,T.,421 Kuroki,Y., 100,103 Kurosawa, K.,235 Kurosawa, S.,313 Kurosu,M.,264 Kurth,M. J.,18,391 Kurtz,S. L., I I Kurusu, Y.,373 Kusama, H., 326 Kushino, Y.,292 Kusumoto, S., 138 Kutateladze, A. G., 162 Kiither,J.,323 Kutsuna, T., 170 Kuwahara, M.,67 Kuwajima, L,67, 143,194,244,326 Kuwano, R., l0l, l9l Kuwatani,Y.,439 Kwon,D. W.,334 Kwon,O., 146 Kwon,P.-S.,1l Kwon,T.-W.,I I Kwon,Y. M.,388 Kwong,F. Y.,368 L a ,D . S . , 2 5 1 Labande, A.,99 Labrouillere,M. 4'7,399 Lachance, N.,78,152 Lacombe,P., 334
475
476
Authorlndex
Lacote,E.,402 Lacour,J.,202 Laev,S.S.,436 Lafargae,P.,l42 D. J.,315 Lagouvardos, Lahav,M.,311 Lai, F.-C.,57 Laj,L.-H,414 Lakomy,I., 120 Lakouraj,M. M., 104 V.' 13 LakshminaraYana, Lallemand,J.-Y', 28 Lam,P. Y. S.,117 Lambert,D. M.,354 Lampe,C.,99 Lampronti,I., 370 Lanaspa,A., 173 Landini,D., 359 Lando,V. R.,38 Landre,P.D.,442 Landry,S.R.,228 S. A.,259 Laneman, Lang,A.,219 Lang,H.,65 M. M. S.' 65 Lang-Anderson, Lange,U. E. W., 192 Langer,F.,275 Langkopf,E., 109 Langlois,B. R.,305 Langlois,Y.,99, 131 Lansky,A.,286 Lantos,I., 102 Lanzetta,R., 334 Laporterie, A'.,4'1,399 Lappert,M.F.,423 Lardicci,L., 391 Larghi,E.L.,254 Larhed,M., 282,288,291 Larina,L., 184 C.,421 Larksarp, Larock,R. C', 38,2'79, 284' 286' 288 Larrow,J. F.,98,99 Larsen,R. D.,55, 152'283 Larsson,A'.L.8.'212 J. M.,57, 167 Lassaletta, D', 120 Lastecoueres, Lathbury,D. C., 102 LilIanz| A.,98, 102 Lau,C.-P.,101 O.,303 Lauenstein.
S.,70 Laurent, Laurent-Robert,H. 46,47 Lautens,M, 32, 30O Laux,M.,324 Laval,A.-M.,261 l-averot,L.,286 D.,43 Lavergne, Lawlwss,L. J.,413 N. J.,5' 102'311 Lawrence, Laxman,E.,407 l-ayh,M.,423 Lazar,L'15 M. I., 379 I-azareva, Lazuo,B.,340 Lazarus,M.,2'19 Lazerwith,S. E., 102'238 Lazny,R.,53,98 Y .,45' 46 LLeBoisselier, tr Drian,C.,368 I,e Gall, T., 335 l,e Guen,V., 335 Le Guillanton,G., 133 k kgadec, R', 334 Le Mener,Y.,414 Ir Perchec,P., 184 lr Roux,C.,4'l,399 Leahy,J. W., 6, 129 lrbedev,M' V.' 163 kbreton, C., 197 lrbreton, J., 100 Lebron,M., 102 l,ebrun,S., 359 kbuis, A.-M., 192 Irctka, T.,41 trdford,B. E.,51'317 '73,184'426 I,ee,A. S.-Y., C.-S.,201 Ire, Lee,D. W.,256 L.eqD.Y.,299 l,ee,D.-H.,213 l-ee,G.-H.,5'1,334 I-ee,H., 1l, 109,299,315' 368' 40'l H. J.,315 L.ee, ke, H. S.,299 Ire, H.-W.,368,4M Lee,I. Y., 184 L.ee,J., 13, 26,27, 122,141,1'79, 270' 294' 3'l 1 I-ee,J. C., 122,3'71 Lee,I.E.,270 I-er,,l.-C',294
Lee,J.-K.,27 l-ee,J.-Y., 26.2 Lee,K. C.,315 Lee,K.-J,291 Le€,K.-S.,lm ke, K.-Y.,23O Lee,L. Y.,315 t e € ,M . Y . H . . Lee,N. H.,201 l,ee,R. A., l 14 l,ee,5.,27,2 Lee,S.W.,27 Lee,T. W., 210 ke, W.-M.,3 Lee,Y.,54,l{ Ire, Y. R., 320 Lee,Y. S.,335 Le€,Y. W.. l{ Lee,Y.-K., !l l,ee,Y.-T., 231 kese, M. P..{ Lefebvre,O..{ l,egault,C.. 22 Leger,I., l3O Legrand,O.. Z I-ei,A'2U Leighton,J. L LeijonmarcL| kitner, W.. l( Lellouche,J.-I Lemaire,M.. I Lemaire-Au& I*may, J., 10 N..7t [,ensen, [.enz,R., 370 Iron, E. I., lO l,eon,G., 36t konel, E., I l' lrong, W. Wkpore, S. Dlrqueux, T. P lrrgenmiillcr, lrriverend C lrrpiniere. J.. [,eshcheva"I. lrsieur, D.. J Letinnois,S.. kung, M.-lC lrung, S.-W kvacher, V..
Authorlndex
l<:f'8.407
l.: :. I 79,270,294,3'7L
Lee,I.-K.,27 Lee,I.-Y.,26,27 Lee,K. C., 315 Lee,K.-1,294 ke, K.-S.,100 Lee,K.-Y.,230 Lee,L. Y., 315 Lee,M. Y. H., 350 Lee,N. H.,201 Lee,R. A., 114 Lee,S.,27,276,315 Lee,S.W.,276 Lee,T.W.,22O Lee,W.-M.,350 Lee,Y., 54,l4l, 150,237,291,320,335,340 lre, Y. R., 320,340 ke, Y. S.,335 Le€,Y. W., 141 Lee,Y.-K.,54 Lee,Y.-T.,23'7,291 Leese,M. P.,443 Irfebvre, O.,400 I-egadt,C.,228 Leger,I., 130 Legrand,O.,220 Lei, A.,284 Leighton, J. L., 135 H.,357 Leijonmarck, Leitner,W., 166,419 Lellouche,J.-P.,142 Lemaire, M., 101,286 Lemaire-Audoire, S.,291 trmay, J., 103 Lensen, N.,78 Lenz,R., 370 Iron, E. I., 307 kon, G.,368 konel, 8., 117 Irong, W. W.,288 Irpore, S. D.,276 lrqueux, T. P.,75 krgenmiiller, M., 139 l-piverend,C.,264 krpiniere, J.,239 I. F., 100 I-eshcheva, Lesieur,D., 354 Letinnois, S.,317 trung, M.-K., 152 Leung,S.-W.,3 Levacher,\.,232
kvai, A., I Levallet,C., 239 Levell,J. R'27'7 Levy,C.1.,443 Lewis,J. W.,228 Lewis,N. J.,57 I.ey,S.V., 57,352,370,3'71,3'75 Leydet,A.,45 Lhermitte,F., 53, 55,62 Lhommet,G.,379 Li, A.-H.,76 Li, A.-R.,204 Li,8.,205,436 Li, B. C. Y.,205 Li,c.-c.,21 Li, c.-J.,136,137,197,230,234 Li, c.-L.,57 Li, c., 5, 146,t88,26' 7 Li, G. M., 146 Li, H., 115,152,254 Li, J.,3, 58,65, 114,175, 377 Li, J.J.,175 Li, J.-P.,58 1 Li, N.-S.,5' ,142,21'l Li, P.,138 Li, R.-T.,354 Li,s.,298,426 Li,s.J.,298 Li, T., 138,170,345,353 Li, T.-S.,170,353 L i ,w . , 5 7 , 2 3 2 , 3 0 1 , 3 0 2 Li, w.-T.,57 Li, x., 102,l9'1,198,206 Li, x.-R.,r97,198 Li, Y., 16,108 Li, Y.-Q.,16 Li,z' tol Liang,C.-H.,173 Liang,F.,227 Liang,K.-W.,57 Liang,Y., 335 Liao,P.,326 Liao,S.,I15,208 Liard,A.,147 Libertini,E., 204 F. W., 1 Lichtenthaler, D. R.,283 Lieberman, Liebeskind,L. 5., 122,419 Liebsch,S., 151 Liesen,P. J., 18
477
478
AuthorIndex
Lightfoot,A., 101 Lim, H. J.,196 Lim, H. K.,324 Lim, H.-K.,406 Lim,J. S.,14l Lim, K.-H., 282,283,292,368 Lim, W. T., 299 C.,401 Limberakis, Lin,G.,212,254 Lin, G.-B.,254 Lin,H.-X.,58 Lin,J.,371 Lin,L.,76 M3 Lin,5.,242,262, Lin,S.-T.,262 L i n ,W . - Y . , 2 1 2 Lin, Y.-S.,368 Linden,A., 158 R. J.,323 Linderman, Lindoy,L. F., 185 C.,2'74,408 Lindsley, E.-L.,54 Lindstedt, S.,60 Linehan, N., 238,372 Linganna, Linker,T., 74,75 Linsell,M. S.,15,188 Liotta,L. J.,400 Liou,J. S.,220 '268' B.H.,27,l9l, 199,259,26'7 Lipshutz, 2'74,408 Lipski,T. A., 377 Lipton,M. A.,244 Littke,A. F.,419 Little,R. D., 334 L i u ,B . , 2 1 , 3 4 0 Liu,G.,102,173 Liu,H., l4l, l'73,224 Liu,H.-1.,224 389,394 Liu,J.,103,111,22'/,368, Liu,J.H.,22'7 Liu,J.-F.,103 Liu, J.-S.,394 Liu,J.-X.,368,389 Liu, L., 102 Liu,M., 101 Liu,Q.,295 Liu, R.,57, 126,399 Liu,R.-S.,57 Liu, W., 347 Liu,X.,2'79
Liu, Y., 120, 181,246,370 Liu, Y.-C.,370 Livinghouse,T., 103, 139, 141'342'408 Llera, J. M., 167 Llorente, I., 49 Lloyd-Jones,G. C., l9'7 Locati, L., 61 Lochtman, R., 53 Loebach,J. L., 154 Logan,L,425 L o h , T . - P . , 1 9 7 ,1 9 8 'Loh, V. M., 396 Lohmer, G., 28, 30 Lohmer, R., 30 Lohse,O., 288 Lombardo,M., 10 Longstaff, S. C.,69 L o p e s ,C . C . , 2 ' 7 5 , 3 0 3 L o p e s ,R . S . C . , 2 7 5 , 3 0 3 Lopez de Silanes,I., 334 Lopez, A., 51,99 L o p e z ,A . M . , 5 7 Lopez,B.,334 Lopez, M., 102 Lopez, R., 309, 31 I L o p e z ,R . M . , 3 l I M. A., 298 Lopez-Sanchez, L o p p ,M . , 6 2 Lorber, C. Y., 370 Lorberth,J.,410 Lorenzo,A., 359 Loreto, M. A., 162 L o u , J . - D . ,3 1 6 Lou, R., l0l Louie, J., 38 L o u n a y ,V . , 2 6 7 L o u p y ,A . , 3 0 3 , 3 1 5 L o v d a h l ,M . , 3 7 9 L o v e ,B . E . , 1 2 7 Love, J. A., 109 Lovel, C. G., 388 L o v e l l ,P . J . , 1 1 3 Lowder, P. D., 60 Lowe, R. F., 152 Lowney, D. C., l8 L o z e v a ,A . M . , 4 1 7 Lr,G.,326,334 Lu,I.,1O2,244 Lu, L., 334 Lu,T.-J.,426
Lu,W.,98,197 Lu,W.-L.,98 Lu, X., 206,284.38t.. Lu,2.,313,381 Lucas,M., 394 Luchaco, C. A., l0l. l Luczak,J., 12'l, 397 Ludwig,A. A.,23 Lugan,N., 220 Luh,T.-Y.,267 Lui, N., 13 Lui,Y.,66 Luithle,J. E. A.. 28-r Luker,T., 114 Lukevics, E.,73 Luo,F.-T.,120.405 Luo,G.,242 P., l5l. 186 Lupattelli, Liitjens,H.,278 Lutz,C., 100 Luzzio,F. A., 108 I. M..4Or Lyapkalo, Lygo,B., 102,303 Lynn,D. M.,323 Lyzwa,P.,397
M a ,D . , 5 8 ,1 2 1 Ma,D.-I.,58 Ma,1.,234 Ma,5.,239,2'74 Ma, Y., 170,177.-15Ma,Y.-R.,170,35-1 MacDonald, G., 57 MacDougall, J. M.. -11 Machrouhi,F., 331 Mack,S.R.,304 MacKay,D. B..41-1 MacMillan,D. W. C.. Macquarrie,D. J.. -I0. Macsari,I., 120 Madar,D. J., 108 Madhavan, S.,438 Madhusudhan. P..-1.1 Madsen, J. O., l8 Madsen,R., 199 Maeda, H.,337 Maeda, K.,8.261.-lr9 Maeda,M., 103,-1-15 Maeda, S.,280 Maestro, M. A.. 15
Authorlndex
Lu, W.,98,197 Lu, W.-L.,98 Lu, X.,2M, 284,388,440 Lu,2.,313,381 Lucas,M., 394 Luchaco, C. A., 101,388 Luczak,J., I27,397 Ludwig,A. A.,23 Lugan,N., 220 Luh,T.-Y.,267 Lui, N., l3 Lui, Y.,66 Luithle,J. E. A.,283 Luker,T., 114 Lukevics, E., 73 Luo,F.-T.,120,405 Luo,G,,242 Lupattelli,P., 151,196 Liitjens,H.,278 Lutz,C., 100 Luzzio,F. A., 108 Lyapkalo,I. M. 404 Lygo,B., 102,303 Lynn,D. M.,323 Lyzwa,P.,397 M a ,D . , 5 8 ,1 2 1 Ma,D.1.,58 Ma,J.,234 Ma,5.,239,274 Ma,Y., 170,177,353,369 Ma, Y.-R.,170,353 MacDonald, G.,57 MacDougall, J.M.312 Machrouhi, F.,334 Mack,S.R.,3(X MacKay,D.8.,423 MacMillan,D. W. C., 103 Macquarrie,D. J., 340,439 Macsari, I., 120 Madar,D. J., 108 Madhavan, S.,438 Madhusudhan, P.,346 Madsen, J. O., 18 Madsen, R., 199 Maeda,H., 337 Maeda,K., 8,261,379 Maeda, M., 103,335 Maeda,S.,280 Maestro, M. A..35
Maetz,P.,124 Maeyama,K.,425 Maezaki, N., 103 Mafi, M.,434 Magnus,P.,202,410 Magnusson,G., 181 Magrath,J.,205 Maguire, A. R., 18 Mahalingam,A.K.,432 Mahanty, J. S., 295 Mahboobkhah, N., 23 Mahmood, S. J., 134 Mahrwald, R.,379,382 M a i e r ,M . E . , 2 7 6 , 3 2 3 Maier, S., 237 Maikap, c. C., 116 Maillard, B.,394 Mun,L.,257 Maiti,D.,351 Maiti, c., 155 Maitra, U.,394 Majee, A., 196,438 Majer, P., 352 Majerova, E., 352 Majetich, G., 188 Majo, V. J., 153 Majoral, l.-P.,446 Maki, T., 128 Makihira, L, l80 Makioka, Y.,431 Makosza,M., 10, 152,343 M a l a n ,C . , 9 8 M a l a n g a ,C . , | U , 3 9 1 Malave, T., 102 Maldonado, J., 359 Maldonado,L. A.,350 M a l e c z k aR , .8.,391 Malenfant, E., 100 M a l i g r e s ,P . E . , 2 l Malinakova,H. C.,68 M a l l a d i ,R . R . , 5 7 M a l l y a ,M . N . , 7 8 Malmstrom, E.,212 Malusare,M. G.,338 Mamacria,M.,289 Man,J.,l22 Manabe,S.,66 Manangan,T.,423 Mancheno,8.,267 Mandal, A. K., 116
479
480
Authorlndex
M a n d a l ,P . K . , 2 1 6 Manfredini, S.,370 Mangeney, P., 99, 123, 436 Manickam, G., 101 Mann, A., 141 M a n n ,G . , 3 8 Mannucci, S., 391 Mano, S., 100 Mansour,E. M. E., 157 Manuel, G., 191 Mm,a8.,428 Manzanal,J., 102 Marcantoni,E.,75, 130,228,264 Marchelli, R., 399 Marcinow,2., 20 Marcotullio, M. C., 315 Marcoux, J.-F.,38, 123,274 Marcuccio,S.,284 M a r e k ,I . , 1 6 6 , 2 1 4 , 2 7 5 Margarita, R., 307 Marhold, A., 13 Mariano, P. S.,75 M a r i n e l l i ,F . , 4 1 9 Marinetti, A.,99 ,l00, 158 Marini, F., Marival, L.,436 Markgraf, J. H., 303 M a r k o ,I . E . , I 1 9 , 1 8 5 ,2 4 6 , 3 7 O Markovic, C., I I Markwitz, H.,284 Marriere, E., 108 Marshall,E. L., 251, 323 Marshall,J. A., 191,200 Marshall,R. L., l0 M a r s o n ,C . M . , 2 3 9 , 3 9 9 Martens,J., 102 M a r t i n ,B . , 3 1 3 Martin, C. G., 307 Martin,8., 57 Martin, J., 339 Martin, S. F.,401 Martin, Y.,99 Martinek, T., 15 Martinez de Marigorta,8., 15 Martinez, E., 298 M a r t i n e z ,M . M . , 2 1 8 Martins,8.,396 Martin-Zamora,8., 167 Marton, D., 10 Martra, G., 124
Martyn,L. J. P., 334 Maruoka,K., 8, 10,15,28,148,150'243'382' 402,422 K.,402 Maruyama, Maruyama,Y.,252 Marvin,M.,244 Maryanoff,C. A.,359 Marzi,M.,415 Marzi,N., 382 Y.,280,360 Masaki, S., 103 Masamune, O. A.,71 Mascaretti, Masella,M., 142 Mash,E. A., 134 S.H.,47, 131,324 Mashraqui, S.,386 Massa, A. R., 199 Massah, Masse,C. 8., 379 Y., 121,298,307,422 Masuda, Masui,M., 101 Y., 373 Masuyama, Mata,E. G.,13,7l Mataka,S., 108 Mathew,J.,74 A., 153 Mathews, J. 8., 359 Mathews, Mathieu,B.,4(X Mathieu,R.,220 Mathivet,T., I l7 Mathur,R. K., 356 K.,394 Matsu., J.,420 Matsubara, S., 31, 32, 144,2'74, 334,3'1'7,419 Matsubara, S., 191 Matsubayashi, A., l8 Matsuda, F., 334 Matsuda, H.,128,211 Matsuda, K.,59,173,310 Matsuda, 5.,179,264 Matsuda, Y., 108 Matsuda, M.,410 Matsugi, H., 289,359 Matsuhashi, Matsui,C.,50 Matsui,M., 102 Matsui,S.,101 Matsui,T., 116,143,244'334 N., I l3 Matsukawa, S.,27 Matsukawa, H., 212 Matsukura, K., 33 Matsumasa,
Matsumi, D., 180 Matsumoto, H., 127 Matsumoto,T., 227.243. a Matsumoto,Y.,44 Matsumura,K.,98, l0l Matsumura, S.,54. 15{ Matsumura, Y., 128 Matsunaga,S.,25 Matsuo, H., 108 Matsuo,T., 141 Matsuoka,E.,402 Matsushima,M., 170 Matsushita,M.,64 Matsushita, T., 279 Matsushita,Y., 116 Matsuura,H.,376 Matsuya, T., 337 Matsuya,Y.,260 Matsuyama,H.,334 Matsuzaki,Y.,69 M a t t ,C . , 3 5 1 Matteoli, U., 191 Matthews,K.,399 Matthey, G., 372 Matui, C.,407 Maury, O.,426 Mauser,H.,67 May, S. A.,253 Maycock, C. D., 345 Mayer, D. M., 10 Mayer, M. F., l34 Mayer,M. J.,276 Mayhew, D. L., 3'9,6 Mayoral, J. A., 340 Mazeas, D., 334 Mazzanti, G., 13, 247. 16:. Mazzone, L., 55 Mbianda,X. Y., 152 M c A r d l e ,C . L . , 2 1 0 McCague,R., 102, 163 McCarron, M., 188 M c C l u r e ,L . D ' 2 3 2 McCluskey, A., l0 McCombie, S. W..388
McCormac, P. B.. 70 McCusker,J. E.,425 McDonald, F. E.,425 McEachern,E. J., I19. l-r0 McElwee-White, L.. 42-r McGeary, R. P.,22
Author Index
t
'|. 143.382'
ll:
r 3 . {3. 7 7 , 4 1 9
Matsumi,D., 180 Matsumoto,H., 127 T., 22'1 ,243,446 Matsumoto, Y.,44 Matsumoto, K.,98, 101 Matsumura, 5.,54,254 Matsumura, Matsumura,Y., 128 S.,25 Matsunaga, Matsuo,H., 108 Matsuo,T., l4l Matsuoka,8.,402 M., 170 Matsushima, M.,64 Matsushita, T., 279 Matsushita, Y., 116 Matsushita, Matsuura,H., 376 Matsuya,T., 337 Y.,260 Matsuya, H., 334 Matsuyama, Y.,69 Matsuzaki, Matt,C.,351 Matteoli,U., 191 K.,399 Matthews, Matthey,G., 372 Matui,C.,407 Maury,O.,426 Mauser,H.,67 May,S.A.,253 Maycock,C. D.,345 Mayer,D. M', 10 Mayer,M. F., 134 Mayer,M. J.,276 D. L.,396 Mayhew, Mayoral,J. A., 340 D.,334 Mazeas, Mazzani,G.,13,247'267 '336 Mazzone,L., 55 Mbianda,X. Y., 152 McArdle,C.L.,210 R., 102,163 McCague, McCarron,M., 188 L.D ,232 McClure, A', 10 McCluskeY, S.W',388 McCombie, P. B.,70 McCormac, J.8.,425 McCusker, F.8.,425 McDonald, E. J., 119'120 McEachem, McElwee-White,L.,425 McGeary,R.P.,22
McGill,P., 188 C.,426 McGuigan, Mclntosh,M. C.,289 Mclver,E. G.,350,432 McKervey,M. A.,248 McKinley,J. D., 157 McKinstry,L.,99 McMonan,D. A., 100 G.' 408 McNaughton-Smith' H.,299 A. McNeill, McNelis,B. J.,57 McNelis,8.,200 McNulty,J.,426 McWilliams,J. C., 26'1,292 Mdoe,J. E. G.,340 T. P.,20 Meagher, M.,361 Medebielle, Medina,I. C. R., 351 Medina,J. R.,53 A', 184 Medvedeva, A. S., 156 Medvedeva, C. V., 185 Meehan, A.,99, 101 Meetsma, Meguro,M.29,422 S.J., 103 Mehrman, Meiers,M., 53 Meil,H.,375 Meindl,N.,351 Melchioni,C., 208' 340 P. C.,348 Meleties, Mella,M.,246 Mellah,M., 335 Melleor,J. M., 230 Mellon,C., 173 Melloni,G.,224 Memina,M. M., 156 Menchi,G., 19l Meng,Q.-H.,2l Meng,Y., 109,234 Meng,Y.-P.,109 M.,220 Menichincheri, F. L., 173 Merchan, H. 8.,57 Mereyala, Merino,P., 173 Merla,B., 345 H. M., 16,340,436'43'7 Meshram, A., l5l Messeguer, T., 156 Messeri, Mestdagh,H., 359'396 R.,218'269 Mestres,
ll8l
82
AuthorIndex
Mirafzal,G' A.' 417 Metz,P., 103 Mirza,A. R.,297 Metzner,P.' 102'108 Misetic,A.,309 T.M.'424 Meulmans, Mish,M' R.,406 Meyer,C.,32'215 Mishani,E,.,62 Meyer,L.,99 Mishima,H.' 209 Meyer,T. Y',251 Mishima,O.' 274 Meyers,A. I., 8' 160 Misiti,D.,415 B.,396 Mezgueldi, Mitani,M., 8 Mi, A., 101 Mitchell,D', 38' 289 Miao,G.,267 Mitchell,I. S.'410 J.P.,312 Michael, Mitchell,M. L.' 334 11 Michaud,D., Mitoh,S',305 Michaud,G.,288 Mitoma,Y.,254'436 Michaut,M.,323 Mitra,A. K.,340 Michel,D.,276 Mitsudera,H., 129 Micouin,L.' 274 T.,417 Mitsudo, Micskei,K', 110 O., 101 Mitsunobu' M. L'' 130 Middleton, A, 134 Mitsutome, Mies,W.,99 Mittra,A.,20 R.,401 Miethchen' Mitzel,T. M., 197 Miginiac,L'' 5, 5l Miura,K., 121,l9l' 3'19 Mihailovic'M. Lj ' 11 294 Miura,M., 33' 283,286' 289'292' Mihara,M., 3'7O'436 Miura,T., 15,28,150,360 Mihara,S.,375 Miura,Y., 343 Mikami, K., 27' 333,334' 4M' 433 MiYabe,H.' ltX) Mikami,M.' 78 Miyachi,Y.,383 Miki,K., 166 MiYai,T., 138,198 127 MikolajczYk,M, 1'l' MiYake,M.,342 Millar,R. W.' 156 A.' 149 Miyashita, Miller,J' A., 256 H.,256 MiYashita, Miller,J. D., 175 K., t01' 141 Miyashita, Miller,M. W.,34 Miyashita'M-, 334'352' 4o2 Miller,N. D., 184 K.,399 MiYatake, Mitler,S J.,4l0 N., 1' 30,34'43' 135'259'298'299' tutiyuuru, Miller,S. M.' 226 3'70 Millot,N., l0 M.,260 MiYazaki, Millward,D. B'' 443 K., 289 MiYazawa' Mimura,R., 18 M',402 Miyazawa, S., 103,165,394'433 Minakata, MiYoshi,A, 324 Minami'T.,410 MiYoshi,N.' 46 T', 357 Minassie' Mizojiri,R., 179 Mincioni'E, 15l S.' 173 Mizuhara, Mindl,J.'210 Mizuno,K.,357 Minetti,P.,415 Mizuno,M., 47' 143 Mink,D., 152 Mizuno'S.,100 K.' 187 MinksztYm, Mizuno,T.,3'17'419 Mino,T.' 120 Mizuno,Y.,99 Minowa,T., 379 Mizutani,M'' 173 335' 2'19' 245' 224' 1 54' 142' Mioskowski,C', Mloston,G.,400 351,404
Mochida, K. l5-r Mock-Knoblauctt Moghaddam. F. \t Mohamed, M.. {I
Mohammadpmr-B Mohan, G. H.. 1s6 Mohanty, P. K-. ,1
Mohapatra. S.. 35! Mohr, B.,323 Mohr,M.,261 Mohsenzadeh.F. Mojrahedi, M. \l . Molander,G. A. I Molema, W. E.. ll Molina, P., 359. {
Mollard, P., 259.. Mollman, M. K.. l Molm, D.,341 Moloney, M. G.. I Momose, S.. 3&l Momose,T.. l{1 Monaco, K. L.. I I Monflier, E.. I l-.
Mongin, C., 220 Monobe, H.. I l. : Montana,J. G.. I
Montanari, F.. l? Montchamp.J.-L Monteiro, A. L.. : Monteiro, N.. 5{ Monteith, M..51 Montero, J.-L.. 11 Montes de C.. C. Montgomery.J.. Monthiller, S.. lr
Moodie, R. B.. ] Moody, C. J.. lO Moody, D. J.. 16 Moody, K.. 3EE Moolenaar.M..1 Moore, H. W.. J Moore, P. R.. l?r Moradi, W. A,. ! Moradpour. A,. I Morales,J.. 6l Moran, K. M.. l( Morehead, A. T. Moreno, P.. 3O?
Moreno-ManasMorera. E.. 299
AuthorIndex
Mochida, K,353 Mock-Knoblauch, C., 212 Moghaddam,F. M., 312 Mohamed,M.,422, 423 Mohammadpoor-Baltork, 1., 23, 46, 73 Mohan, G. H., 346 Mohanty, P. K.,340 Mohapatra,S.,355 Mohr,8., 323 Mohr,M.,261 Mohsenzadeh,F., 351 M o j t a h e d i ,M . M . , 2 2 5 Molander,G. A., 191, 192,335,432 Molema, W. E., 103 Molina, P., 359,403 Mollard, P.,259,408 M o l l m a n ,M . K . , 1 4 1
:':
le+
Molm, D.,342 M o l o n e y ,M . G . , 3 3 5 M o m o s e ,S . , 3 8 4 Momose, T., 142, 197, 276, 30'7,428 M o n a c o ,K . L . , 1 1 7 Monflier, 8.,11'7,299 M o n g i n ,C . , 2 2 0 M o n o b e ,H . , 1 1 , 2 3 6 , 3 4 8 Montana,J. G.,440 Montanari, F., 278 Montchamp,J.-L.,444 M o n t e i r o ,A . L . , 3 1 , 3 8 , 7 0
r< t:e. 198,299,
Monteiro, N., 368 Monteith, M.,368 Montero, J.-L.,45,394 M o n t e sd e C . , C . , 2 4 8 Montgomery,J.,35,428 Monthiller, S., 142 M o o d i e ,R . B . , 2 6 0 Moody, C. J., 100, 196,2'14,320 Moody, D. J., 165 Moody,K.,388 Moolenaar,M. J., 102 Moore, H. W., 312 Moore, P. R., 276 Moradi, W. A.,293 Moradpour,A.,252 Morales,J., 61 M o r a n ,K . M . , 1 0 , 3 9 4 Morehead,A. T., 320 Moreno, P., 307 Moreno-Manas, M., 298 Morera, E., 299
Moret,E.,66 Morfitt,C. N.,274 Morgan,J., 17 Mori,A., 109,119,144,191,203,283,289' 35"t,359,369 Mori, M., 2"1,35, 50,323,381,419,443 Mori,T.,261 Moriany,R. M.,201,308 Morihira,K., 326 Morikami,A.,354 Morikawa,T.,32, 197,2'74 Morimoto,Y.,241,405 Morin,A. M.,400 Morioka,M.,46 Morisaki,Y., 137 H.,27 Morishima, Morita,D. K.,62, 419 Morita,H.,368 Morita,M.,343 Morita,S.,420 Morita,T., 59 T., 128 Moriuchi-Kawakami, Moriwaki,M.,16,33'7 Morley,A.,308 Moro,A., 335 Moro,L., 368,419 Moro,M.,28 M., 10 Morodome, Morohashi,K., 2, 29'7,413 Morphy,J. R., 13 Monow,N., 351 Mortier,J.,65,214 Mortlock,A.,220 Monreux,A., 35,43, 117,299 M.,385 Moschioni, Moser,W. H., 111 A.,258 Mosleh, P., 197 Mosset, D., 188 Mostowicz, Motegi,S.,417 W. B.,437 Motherwell, J.,243 Motoyoshiya, Mouelhi, S.,78 K.,359,396 Moughamir, M.,28 Moukhliss, Mourino,A., 35 Moutou,l.-L.,1'73 M., 185,269 Movassaghi, M.,413 Movassighi, Moyano,A., 141,214,222
84
AuthorIndex
Mu,L., 381 Mu, Y., 192 V.,360 Mucciante, Muccioli,A.8.,22O Muck,S.,415 Mudalior,C' D', 131 Y.,385'427 Muguruma, Muir,J.E'.,57 T.,40, 100,101,159'160'232' Mukaiyama, 3' 1"1,399 C., 326'344 MukhoPadhYaY, M.' 116 MukhoPadhYaY, Mukigi,Y., 127 Mulatier,J.-C.,60 Miiller,A.,426 Miiller,B.,267 Muller,C., 141 Miiller,D.,60 Miiller,G. H.,279 Miiller, J. F. K., 386 Muller,S.,53 Mulzer,J., 138 Munoz,8.,269 Munoz,M., 102 S.-I.'421 Murahashi, Murai,A.,209 Murai,H.,20 Murai,S.,318,417 Murai,T., 337 Murakami,C.' l2'7,234'237 Murakami,M., 36, 105,138,298'416 Murakami,Y.,105, 126'166 M.,99 Murakata, Muraki,T.,200 Muralidhar,B., 146,304 M.,212 Muraoka, Muraoka,O., 397 Murase,N.,243 K.,43,410 Murata, Murata,M., l2l, 298,3O1'422 Murata,S., 123 Muratake,H., 298 Murota,Y.,29 Murphy,C. K.,99 MurphY,F',246'368 MurphY,J. A., 184 A.P.,l'17 MurraY, MurraY,C.L'44 MunaY,M., 197 MurraY,W. V.' 396
Murthi,K. K.,227 Murthy,P. S.,279 Murthy,V. S.,323 R.P.'22 Musgrave, Musharraf,M. A'' 168 Musson,A.,434 K,286 Muthukumaran' Mutoh,K.,334 Muzart,J.,317 Myers,A. G., 99, 108,185,269'413 Myles,A.,228 Myles,D. C.,69 Nacci,A., 146 Nadi,S.,303 H.,227 Nadizadeh, D.Y.,220 Nadkarni, Nadler,G., 130 Naeimi,H.,308 Naeslund,C. G. M.' 284 T., 28 Nagahama, K.,'72, 394'423 Nagahara, Nagai,H.,54 Nagakura,I., 368 Nagami,M.,303 Nagao,Y.,232'3"16 Nagaoka,T', 3 Y.,64' 101 Nagaoka, Nagasaki,I., 149 M.,27 Nagashima, S',436 Nagashima, K.,260 Nagata, T., 101 Nagata, Y.,59 Nagatomi, M.,252 Nagatomo, K., 368 NagaYama, Nuluyu.u, S.' 123,I 98, 2'l6, 336'33'l' 432' 44O M., 143 Nagayoshi, G.,78 NagendraPPa, S.,339 Nagumo, K' P.' 18.303'315 Naicker, M. R.' 225 Naimi-Janal, Nair,L. G.,74 Nair,V., 74 Naito,T., 100 Najera,C., gg,2U, 26'7,303' 350 Naka,T., 264 S.,299 Nakada, M., zl02 Nakagawa, Y', 101 Nakagawa,
Nakahigashi.J . N a k a i ,T . , 4 2 . l ( Nakajima, A.. 3( Nakajima, H.. {i
Nakajima,K.. l. Nakajima, N.. 3r Nakajima,T.. li Nakamura, D.. l Nakamura. E l( Nakamura. H,. l
Nakamura" 1.. I Nakamura. K.. I Nakamura" M.. I Nakamura" N.. J Nakamura" S.. lt Nakamura.T..9 Nakamura. Y.. 3 Nakanishi.A..' Nakanishi,S..6 Nakano,H.. 7
Nakano, M.. E. l Nakano, Y.. 291 Nakao, J., 270 Nakao,Y.,29 Nakashima"H.. Nakata,D., 3I.
Nakata, M., l9 Nakata,T., l0l. Nakatsuji,Y.. 2l Nakatsuka"Y.. { Nakayasu, T.. 3r Nakazawa.K..'7 Nambi, K., 103 Namli, H.,368 Namy, J. L., 75
N a m y ,J . - L . . 7 .! Nan, S., 100 Nandi, B.,295 Nanke,T., 326. Nanno, T.. l0 Naraku,G.. l0l Narasaka,K.. -1 Narasaka,T.. 19 Narasimhan. S.. Narayana,C.. 5j Narayanan, B. .. Narayannan, K,. Narender, R.. 13 Narita, K., ul.l6 Narkunan. K.. {
AuthorIndex
l\< lr'9..113
:-^ 1.16,33'7,432,440
: , ,: . . 1 5 0
Nakahigashi, J., 386 Nakai,T.,42, 163 Nakajima,A., 309 Nakajima, H.,433 Nakajima,K., 120,443 Nakajima, N.,241,27j Nakajima,T., 123,252 Nakamura,D., 200 Nakamura,E, lW,Z74 Nakamura, H.,73, 100,29g,310,36g Nakamura, 1.,369,422 Nakamura, K., 100,433 Nakamura,M., 100 Nakamura, N.,326 Nakamura, 5., 102,127,234,23.1,320 Nakamura,T., 99, 143,244,3g5 y.,334 Nakamura, Nakanishi, A., 7l Nakanishi, S.,6 Nakano,H.,7 Nakano, M., 8, 311 Nakano,y.,291 Nakao,J., 270 Nakao,y.,29 Nakashima, H., 10,44 Nakata,D., 334,335 Nakata,M., 254 Nakata, T., 101,127,148, 185 y.,212 Nakatsuji, Nakatsuka, Y., 42, 44,3M Nakayasu, T.,342 Nakazawa,K., 78 Nambi,K., 103 Namli,H.,368 Namy,J. L.,75 Namy,J.-L.,7, 334 Nan,S., 100 Nandi,B., 295 Nanke,T., 326,335 Nanno,T., 100 Naraku,G., l0l Narasaka, K., 39,50, l3O,161,269 Narasaka, T., 197 Narasimhan, S., 356,43g Narayana, C.,53,351 Narayanan, B. A,220 Narayannan, K.,286 Narender,R., 230 Narita,K.,446 Narkunan, K.,414
Narsaiah, A. V., 315 Naskar,D.,405 Naso,F., 55 Natsume, M.,298 Naud,J.,67 Navarro, A.,73 Nayak,M. K,,21,223,313 Nayak,S.K.,3j5,377 Nazarian, S.,391 ll7, 207,257 . Nedelec,J.-y., Nedolya,N. A., 220 Neef,G.,301 Nefedov,S.8., 3l I Negishi, 8.,2j4,368,443,444 Negoro,N.,326 Negri,S.,298 Neidigh,K. A.,347 Nelson,D., 159 Nelson,J. D., 109 Nelson, S.G.,99,37'7 Nemoto,H., 185 Nenajdenko, V. c., 163,399 Neuberger, M., 100 Newcombe, N. J.,276 Newlands, C.,320 Newman,C.,337,399 Nguyen, B.T,l27 Nguyen,B. V., 368 Nguyen, V.-H.,235 Nicholas, K. M.,4, 39,173,36g Nicholson, B. K,,257 Nicolaou,K. C., 1g4,369 Nieczypor,p., 343 Nielsen,N., 2 Nieman, J. A., l0l Nigal,N. J.,351 Nightingale, D. J.,359 Niguma,T., 165 Nii, s., 179 Niizuma,S., 18 Niknam,K., 199 Nikolaeva, S.N.,410 Nilsson, M.,407 Nirschl,D. S.,276 Nishida,A.,402 Nishida, M., 100,381 Nishide,K., 105,200 y., 198 Nishigaichi, Nishiguchi, I.,436 Nishihama, S.,436
,lE6
AuthorIndex
Y., 109,119,120,144'181'191' Nishihara, 203,283,357 ,369,442 Nishii,Y., 175 Nishikawa,T., 130 Nishikido,J.,433 S., 176 Nishimae, Nishimori,T., 326 K., 101 Nishimura, Nishimura,T., 284 137 Nishinaga,8., Nishino,H.,235 Nishino,N.,359 Nishio,H., 124 Nishitani,T., 327 Nishiuchi,M.,220 Nishiuchi,Y., 124 K., 191 Nishiyama, M.,292 Nishiyama, T., l0l, 358 Nishiyama, Y .,4O5,445 Nishiyama, Nitta,A.,317 Niu, D., 379 Nivlet,A., 335 No,2.,338 Noack,K., 120 Nobili,F., 75 Noble,D. R.,260 Noda,K., 78,337 Noda,Y.,200 Node,M., 105,200 Noe,M. C.,99,103 Noels,A. F.,311 Nogami,G., 191 Noguchi,H., 98 Noguchi,Y.,98 Nokami,J., 103,376 M.,286 Noltemeyer, Nomak,R.,402 Nomara,N.,294 Nomen,M., 148,405 Nomura,K., 101 Nomura,M, 33,283,286' 289,292 Nonaka,S.,428 P., 351 Nongkunsarn, N.,261 Nonoyama, S., 127 Norbedo, Norkjaer,K.,354 Normant,J.-F.,166,2'14, 2'15' 436 Northuis,J. M., 2l Noula,C., 124
Novikov,M. S.,209 Noyori,R.,43,98,101'188'303 Nozaki,K., 100 Nozaki,N., 383 P., 153 Nshimyumukiza, Nubling,C.,254 Nugent,T. C., 102 Nugent,W. A., 99 Niimi, K., 142 B., 230 Nyasse, Oare,C.A.,239 Oba,M., 191 R., 158 Obayashi, Obierey,K. B., 101 Obika,S., 101 Oblinger,E., 35 M.,207 Ocafrain, M., 3,71,114 Ochiai, O d aH , .,31 A. C., 100 Oehlschlager, M., 274 Oestreich, K.,43, 146 Ogasawara, M.,43 Ogasawara, 335'368' Ogawa,A., 22,158,283'326'334' 3'70, 385,42'1,428,431 H.,339 Ogawa, M.,59,188,303 Ogawa, Ogawa,R., lM Ogawa,T., 139 Ogawa,Y.,274 Oguro,D., 170 oh, c. R.,276 oh,c.-Y.,294 oh, D. H., 299,391 oh, D. Y., 222,446 Ohe,K.,284 Ohe,T.,98 Ohfune,Y., 117 Ohgo,Y.,334 Ohishi,T., 191,432 Ohkama,N., 342 Ohkita,M.,69 T.,43 Ohkuma, ohmatsu,T., 109 Ohmori,H., 185 Ohmura,T., 34 Ohno,H., 368 Ohno,K.,237 Ohno,S.,28
Ohnuma S. Ohsawa.A. Ohshima- R Ohta, A.. lt O h t a ,M . . l ; Ohta, S.. 20 Ohta, T.. _1 Oh-tani. S.. Ohtani, T.. I Ohtani. Y.. . Ohtsubo. \{ Ohtsuka- \'. Ohya, S.. -1 Ohyabu. N .
oi, s.,28 Oiarbide. M
Oikawa. I{., O i s h i ,A . . l l Oishi, M.. l. Oka, H.. ]lj Oka, S., 3O5 Okada,J.. f Okada, K.. I Okada,M.. i Okada,N..3 Okada, T.. I Okajima A. Okamoto. K Okamoto. S. Okaniwa" V Okano, T.. 2 Okauchi. T.. Oku, A., l0: Okuda, S.. li Okuda,T.. 2 Okumoto. H Okuyama ! Olah, c. A.. old, D. w..
Olhava, E. J. Ollevier, T.. Ollivier, J.. l Olofsson. COlofsson, K Olson,J. A-. Olsson,R.. { Olsson,T.. 5 Omata, K.. l Omelanczul Omoto, Y.. 3
AuthorIndex
368, 3:.:.1-15,
S.,359 Ohnuma, Ohsawa, A.,260 R.,223 Ohshima, Ohta,A., i8,335 Ohta,M., 113 Ohta,S.,20 Ohta,T., 30,tM,324 Oh-tani,S.,259 Ohtani, T., 188,420 Ohtani,Y.,309 Ohtsubo, M.,403 Y., 101 Ohtsuka, Ohya,S., 326,334,335,431 Ohyabu,N., 130 oi, s.,28 Oiarbide, M.,309 Oikawa,M., 138 Oishi,A., 185 Oishi,M., 243 Oka,H., 343 Oka,S.,305 Okada,J.,270 Okada,K., 176 Okada, M.,59 Okada,N., 334 Okada,T., 13'7,41'7 Okajima,A.,397 K.,6 Okamoto, Okamoto, S., 179 Okaniwa,M., 326 Okano,T., 208,292,298,303 Okauchi,T., 410 Oku,A., 103,2'74 Okuda,S., 101 Okuda,T.,210,394 Okumoto,H.,4 M.,69 Okuyama, O l a hG , . A . , 1 1 ,5 9 , 4 0 0 , 4 1 1 old, D. w.,420 Olhava,E. J., 101 Ollevier,T.,246 Ollivier,J.,38 Olofsson, C.,434 K., 288 Olofsson, Olson,J.A.,417 Olsson,R.,402 T.,54,407 Olsson, K.,375 Omata, Omelanczuk, J., 17 Omoto,Y., 342
487
K.,210 Omura, Onega, M. G.,218 Oniciu,d. C.,438 Oniciu,D. C, 21,65,412 Onishi,Y., 198 Onnis,V., 252 Ono,M., 101,339 Ono,S.,28 Ono,T., 103 Onoda,T., 232 Onone,T., 284 Onozawa, S.,298,419 Ooi,T., 15,28,148,150,243,4O2,422 Oonuma, S.,402 Opatz,T., 138 W., 103,146,175,275.419 Oppolzer, Organ,M. G., 177 Orioli,P.,27 Orita,A., 48,78, 134 T.,415,438 Oritani, Orito,K.,200 T., 78,103,337,410 Oriyama, Orlova,I., 286 Orsini,F., 116 OrtN,G.,299 Ortiz-Marciales, M., 61, 102 Osako, K., 127,148 Osborn, J. A., 370 Osborne, S. A., 276 K., 8, 64,69,144,115,1'16,234,2'70, Oshima, 275,379,395 Oshisi, T.,337 H. A.,434 Oskooi, Ostendorf, M., 102 Ostrovsky, D., 300 Ota,H., 173 Otake,T., 377 Y.,32,274 Otake, Otera,J.,48,78, 134,395 K.,420 Otsubo, T., 354 Orsubo, M.,236 Ouali-Ibrahim, Ouellet,S.G., 323 O u s s a iA d ., , 3 0 3 , 3 1 5 Outurquin, F., 19,308 Ovaska, T. V., 269 Overhand, M., 238 Overman, L. 8., 28,251, 386,422 Owada,Y., 141 Oyamada, H.,336,337
4EE Authorlndex Ozaki,S., 8 Pac,C., 11 Pace,P., 38,286,368,419 K.,289 Pachamuthu, Pacion,P.,2'74 Padiya,K.J.,412 R., 260,316,434' 438 Padmakumar, Padwa,A., 225,260,320,410 Pae,A. N.,335 Page,P. C. B., 102 B. L., 100 Pagenkopf, U. M.,204 Pagnoni, Pai,C.-C.,101 Pain,G., 103 Pajt,A.,62 Pak,C. S.,230 Pal,M.,295 D., 153 Palano, Palmer,M. J.,54 Palmieri,G.,220 L.,61,62 Palombi, Palomo,C.,26'7,3O9 M.,2 Palovich, Palucki,M.,42, 42O G.,65 Palumbo, Pan,O.-G.,184 Pan,X.-W.,46 Pan,Y.,254 A.,28,267 Pancrazi, G.,412 Pandey, Panek,J. S.,379 S. V., 338 Pansare, D., 188,303 Panyella, A.8., 186 Paolobelli, Papa,P., 191 G., 284 Papadogianakis, G., 354 Papageorgiou, L., 98 Pappalardo, L. A. 19'7,2'79 Paquette, N. A., 103 Paras, Pardo,C., 281 D. G.,65,146 Pardo, C.,57 Pareja, Park,C., 3'11,446 Park,C. P.,2146 Park,H., 19,334,436 Park,H.8., 19 Park,H. S.,334 Park,J. C., 152
Park,N. S.,75 Park,Y. S.,66 Parker.,D.D.,276 Parker,Jr.,D. L., 103 Parlanti,L., 307 Parlea,E., 334 A.,207 Parmar, M.,218 Parra, J.-L.,121,267 ,323, 402 Parrain, Parrini,M., 1l A. F., 59,334 Parsons, P., 103 Passetto, I. M., 217 Pastor, Pastor,J., 368 Pastori,N., 380 E.,204 Pastormerlo, M., 100 Paterne, 1.,122,138 Paterson, Patil,M. L.,439 Patiny,L., 153 Patrick,T. B.,430 G., 391, 394,428 Pattenden, J. P., 117 Paugam, Paul,C. C., 388 C., 19,308 Paulmier, Pavia,A. A.,45 Pavich,G.,4 Payne,A. N., 150 Paz,M. M., 156 J.8.,214 Peace, S.,334 Peace, T. M., 197 Peakman, A. J.,345 Pearson, Peat,A. J., 179,443 Pecchi,S.,274 S.,65 Pedatella, B., 313 Pedersen, Pe&egalC,267 Pedro,J. R. 114,279'352 R., 99 Pedrosa, Peglion,J. L., 65 Pehk,T.,62 Pei,J., 198 L,'16,162 Pellacani, S.,372 Pellerue, H.,379 Pellissier, Pena,D., 368 V.,286 Penalva, D. S., 312 Pendharkar, Pendri,A., 337
Penenory. A Peng,S.-M.. Pennell, A. ! P e n s oM , ..3 Peper, V.. l( Pepito, A. S. Percy, J. M-. Pereira, D.. I Pereiro, I. C. Pereyre, M.. Perez,C.. 5l Perez, D.. 36 Perez,I., 35 Perez, R. MPerezS , .,57 Perez-Andre Perez-Encab
Periasamy. ! Pericas, M. r Perichon. J.. Peringer. P.. Perlikowslr, Perlmutter. I Perracino. P. Perraud-Dan Persson,B.. Persson,B. i Pertici,P.. l. Perumal.P.' Pesce,A..7j Pesiri, D. RPesti,J. A.. : Petasis,N. I Peters,E.-M Peters,J.-UPeters,K.. 3 Peterson, C. Peterson, KPetillo, P. A. Petr, S., 27 Petrini, M.. I Petrosyan.V
Petrovic, G.. Pettifer, R. I Pettus, B. J.. Pettus,T. L. Petukhov. P. Peverley. J.. Pfaltz, A.. l( Pfander, H..
Author Index
Penenory, A. B., 313 Peng,S.-M.,57 Pennell, A. M. K.,334 Penso, M.,359 Peper,V., 102 Pepito,A. S.,356 Percy,J. M.,75 Pereira,D., 159 Pereiro, I. C., 102 Pereyre,M., 345 Perez,C., 57 Perez,D.,368 Perez,I., 35 Perez,R. M.,57 Perez,S.,57 Perez-Andres, l. A., 326,334 Perez-Encabo, A., 99 Periasamy, M., 24, 207,352 Pericas, M. A., 141,214,222 Perichon, J.,257,436 Peringer,P., 300 Perlikowska, W., 17 Perlmutter, H. D.,57 Perracino, P.,19,24O Perraud-Darcy, A., 17 Persson, B.,402 Persson, B. A.,212,294 Pertici,P., 124 Perumal, P. T., 153,198 Pesce, A.,75 Pesiri, D. R.,62,419 Pesti,J. A., 307 Petasis, N. A.,3,4,9 Peters,E.-M., 307 Peters, J.-U.,323 Peters, K.,307,382 Peterson, C. S., 103 Peterson, K.P.,279 Petillo,P. A.,192,334 Petr,S., 27 Petrini,M., 10,130 Petrosyan, V. S.,410 Petrovic,G., 184 Pettifer,R. M., 334 Pettus, B. J.,430 Pettus, T. L.,430 Petukhov,P. A., 345 Peverley, J.,50 Pfaltz, A.,101,102 Pfander,H.. 120
Pfeiffer,J., 301 Pfister,M., 261 Pfleiderer,W., 261 Phan,T., 153 Phanstiel, O., 131 Philbin,M., 157 Philbin,S.P., 156 Philippon,A., 394 Phillipson,N., zl40 Phukan,P., 99 Piancatelli, G.,307 Picard,J.-P.,214,267 Piccioni,F., 155 Pichota, A., 101 Pickering, D. A.,253 Pickering,L., 78 Picq,D., 184 Picquet, M., 323 Pielichowski, J.,303 Pierobon, M.,384 Piers,E., 119,12O,184,202 Pietikainen, P., 102 Pietruszka, J.,232,283 Pietrzykowski, W. M., 389 Pietz,S.,358 Pike,K. G.,394 Pike,V. W., 399 Pilgrim,C. D., 107 Pilo,L.,67 Pimm,A.,419 Pinero, L.,61 Pinhey,J. T., l7 Pinho,P.,l0l, 102 PinorPerigod, E.,397 Pintucci,L., 167 Pion,R.,335 Piotti,M.8., 368 Pipik,P., 147 Pippel, D. J.,68 Piras,P. P., l'13,252,289 Pirguliyev, N. Sh.,305,308 Pimrng,M. C.,320 Pisani,E., 315 Piua,M. J.,259 Pittman,C. U., 345 Pius,M. R., 196 Piva,O.,98,267 Pivsa-Art, S.,289 Pizzano, A., 101 Plaquevent, J.-C.,107, 173
89
Author Index
Ple,G., 368 Pleixats,R., 99 Pleynet,D. P. M.,'73, 2'7'7 Plourde,G. W., 359 Plumet,J.,298 Plunkett,S. J., 57 Pohmakotr, M., 220 P o i e s zC , .,60 Poirier,J.-M., 99 P o i s s o n n eG t, .,413 P o i t e v i nC , .,65 Polanc,S., 349 P o l i ,G . , 4 1 9 Pollicino, S., 274 Pollini, G. P., 370 Polniaszek,R. P., 105 Pommelet,J. C., 186 Pompei,F., 162 P o n o m a r e vS, . V . , 4 1 0 Ponthieux,S., 308 P o n z o ,V . L . , 4 1 4 Poole,J. L., 159 P o o n , D .J . , 4 2 2 P o p k i n ,M . E . , 4 3 7 P o r e ,V . S . , 4 0 5 Porta,O., 380 Portella,C., 173,400 Porter,8., I l7 Porter,N. A.,99 Porth, S., 138 Portnoy,M., 104 Portonov,P. S., 100 Portwig, M., 230 P o s n e rG , . H.,27 P o s t e lM , .,45,46 Postema,M. H. D., 184 Potekhin,K. A.,430 Potthofl M., 166 Poupaert,J. H., 13,354 Poupon,l.-C.,3'79 Pour,M.,2'74 Pouranshirvani, S., 73 Pourcel,M.,345 Powell, D. R., 13 P o w e l l ,N . A . , 2 7 4 Pozzi,G.,2'78, 419 Prabhakar,S., 373 Prabhu,K. R.,23, 31 Prajapati, D., 44, 46, 75, 334, 436 Prakash.G. K. S.. 11. 59. 230, 400
I., 212 Prakash, O.,201,307,308 Prakash, Prandi,C., 66 K.,345,349 Prasad, K. G.,438 Prasad, M.,310,345 Prashad, Prasit,P.,298 Pregosin,P. S, 288 P.,220 Premkaisom, Pretot,R., 101 Pri-Bar,I., 284 R. G., 152,163 Pritchard, Pritha,R., 348 C., 155 Procaccio, P. A., 152,251,323 Procopiou, M. J.,29 Procter, Prodger, l. C.,39'7 P.,350 Prokopowicz, Proud,A. D.,397 Prunet,J., 267 Pryor,N.,27 R. M.,99 Przeslawski, Pu,L., 99 Pulido,F. J.,267 T., 116 Punniyamurthy, K.,275 Piintener, D., 144 Pupowicz, R. M.,312 Purick, B., 113 Putnikovic, P y ,S . ,1 1 4 Pye,P.J.,l0l Pyne,S. G., 368 Pyun,S.-J.,29,291,359 Qi, H.,99,166 Qi,M., 173,212,222,23O,289,334 Qian,C.,'7,2U,432 Qian,W., 373 Qin,Y., 101 P.,246 Quadrelli, Quan,L. G.,368 L.,402 Quaranta, Quayle,P.,288,394 Quibuyen,T. O., 57 Quiclet-Sire,8., 147,193,254 F.,419 Quignard, Quintard,J.-P.,l'l 5, 402 M.L.,334 Quiroga, Raabe,G., 99, 166,202,442
Raber,J. C.. l5 Rabideau. P. rl Rabion,A..61 Racelma,N.. I Rachwal,B.. l' Radhakrishnan Radinov. R..9t Radner, F.. {Ol Rafel, S., 129 Rafferty, P.. !6
Ragnarsson. U Ragoussis.\.. Ragoussis.\'.. Rahim, M. A,. Rahn,V. S.. l3 Rai, G. S.. 57 Rai,K. M. L... Raimondi.L... Rajaratnam. R Rajeswaran.rl Rajkumar. A. I Rajpal, A.. 2O] Ramachan&r. Ramachandran Ramadas,K.. i Ramage,R.. ll
Ramani, A.. 3( Ramarao, C.. J Ramazani. A.. Ramesh,C.. J( Rameshkunur. Ramiandraso. Ramon, D. J.. Ramondenc. Y Ramprasad D. Ramsden,C. I Ranchoux, M.. Rancourt. J.. ] Randall,M. L R a n i ,N . , 2 0 1 . Ranu, B. C.. ll Rao, C. R.. 35 Rao, N. V..40
Rao, T. S. R. I Rao, T. V.. l7 Rasmussen.K Rasne,R. M.. Ratovelomanr Rauch, K.. lE( R a u l t .S . . 3 7 5
Authorlndex
l. l."
.rl4
Raber,J. C., 157 Rabideau, P. W., 20,3'17 Rabion,A.,62 Racelma, N., 252 Rachwal, B., 173 Radhakrishnan, U., 29, 207,352 Radinov,R., 99 Radner, F.,405 Rafel,S., 129 Rafferty,P., 264 Ragnarsson, U., 230 Ragoussis, N., 155,315 Ragoussis, V., 155,315 Rahim,M. A., 383 Rahn,V. S., 138 Rai,G. S.,57 Rai,K. M. L.,238,372 Raimondi, L.,334 Rajaratnam, R., 129 Rajeswaran, W. G., 133,135 Rajkumar, A. B., 191 Rajpal,A., 207 Ramachander, T., 355 Ramachandran, P.V.,5 Ramadas, K.,348 Ramage, R., 161 Ramani, A., 361 Ramarao, C.,3l I Ramazani, A.,412 Ramesh, C., 361 Rameshkumar, C.,352 Ramiandrasoa, P., 176, 298 Ramon,D. 1.,lW,224 Ramondenc, Y.,368 Ramprasad, D.,433 Ramsden, C. A.,242,351 Ranchoux, M., 212 Rancourt,J., 394 Randall, M.L.,323 Rani,N., 201,308 Ranu,B. C., 196,198,281,438 Rao,C. R.,355 Rao,N. V.,407 Rao,T. S.R. P.,I16, 153,2'19 Rao,T. V.,279 Rasmussen, K. G.,375, 432 Rasne, R. M., 312 Ratovelomanana-Vidal, V., 43 Rauch,K.,286 Rault,S.,375
Rauter,A. P.,414 Ravikumar, K. S., 186,235,376 Rawal,V. H., 217,251,286 Ray,S.,405 Rayner, C. M.,212 Reamer, R. A., 101 Rebolledo, F.,212 Reboul,8., 185 Reddy, B. S.N., 153,205 Reddy,B. V. S.,216,339,343,355 Reddy,C. K.,274 Reddy,C. V., 188 Reddy,G. S., 16,197,436,437 Reddy,G. V.,343 Reddy,K., 122,236,276, 35O,355 Reddy,K. C.,236 Reddy,K. L.,276,350 Reddy,K. M., 122 Reddy,M. M., 116,436,437 Reddy,M. R.,53 Reddy, N. K.,351 Reddy,N. P., 298 Reddy,P. Y.,439 Reddy, R.8., 100 Reddy, R. S.,101,317 Reddy,Y. R., 3 I 1,355 Redfem, A.L.,20O Reed, A. D.,99,111 Rees, C. W., 138 Rees, D. C., 13 Reetz,M. T.,28,30,292 Refvik,M. D.,222,288 R e g eS, . , 2 1 2 Regla, I.,254 Reichard, G. A.,232 Reider,P. 1.,21, 55,100,l0l, 114,147,283 Reiner,T., 261 Reinerth, W. A.,228 Remuinan, M. J.,339 Ren,P.,16,46,346 Ren,P.-D.,16,46 Ren,T., 370 Renaud, J.,323 Renaud, P., 146,402 Rennels, R. A.,420 Renz,M., 382 Repic,O., 310,345,349 Resinger, C.-P.,313 Resta,S.,75,235 Retsch, W. H., 191
491
492
Authorlndex
Reuter,S.,276 Reutrakul,V., 220 Reyes, A.,254 M., 188 Reynaers, K. A.,245 Reynolds, Rezende, M. C.,340 Rezgui,F., 167 Rhee,H., 108 Rhie,D. Y., 8 Rho,H.-S.,232,391 M.,402 Ribagorda, Ribe,S., 100 Ribeiro,A. A.,235 Ribo,J. M., 345 Ricard,L., 99 Ricci,A., 13,26'7,2'l4 Rice,K. C.,228 Richter,L. S., 193 Rieck,H., 39 Rieke,R. D.,234,43'7 Riemer,C., 157 Riera,A., 141,214,222 T. H., 312,313 Riermeier, Rigby,J. H.'10, 23O,423 Riggs,J.R., 133 Righi,C., 300 Rigollier,P.,202 Riguet,8., 236,2'70 Rincon,J. A., 267 E., 350 Rios-Barrios, Ripa,L.,282 Ripin,D. H. B.,340 Riscazzi, M.,315 Risch,N., 154,342,345,405 Rische,T., 33 M. T.,278 Rispens, M. A., 131 Rizzacasa, Roach,S. L.,205 Roark,J. L.,269 H.,46,47 Robert, Roberti,M.,370 Roberts, C., 199,368 Roberts, G.,70 Roberts,R. S., 304 S.M., 102 Roberts, Robertson, J.,50 S. M., 300 Robertson, Robin,S.,33 A. J.,23 Robinson, R., 157 Robles-Diaz.
Rochet,P., 146,175 Rock,M. H., 13 Roden,B. A., 283 Roder,D., 107 O. E. D., 396 Rodrigues, A., 148,187,375,4O5 Rodriguez, A.L.,375 Rodriguez, Rodriguez,F., 54 Rodriguez,G., 359 M.,49, 124 Rodriguez, M. A.,49 Rodriguez, A., 148 Rodriguez-Vicente, Roesch, K. R.,288 Roesky,H. W., 411 Roesky,P. W., 209,335 Roh,K. R.,307 C.,303,359,396 Rolando, Rollin,Y.,436 P., 170,208,340 Romagnoli, R., 102 Romagnoli, G. P.,49,130 Romanelli, N. N., 100 Romanova, Romea,R. M., 173 Romero,M. A., 120 Romo,D.,439 Ronald,R. C., 199 Rondanin,R., 370 Rong,X. X.,64 Ronn,M.,279 Ronzoni,R.,204 Rooke,S.,131 Roos,E. C., 102 Roque,J.-P.,45 Rosati, O.,315 Rose,D.,351 Rose,H. L.,242 A.L.,279 Rosello, Rosen,K., 101 A.,149,298 Rosenfeld, Rosini,C., 102 J. C.,439 Ross, S.,146,175 Rosset, L., 117,360 Rossi, Rossi,R.,274,313 Rossi,R. A., 313 C., 62 Rothenberg, Rottliinder,M., 38, l'l 3, 274 M.-L.,98 Roumestant, Roush,W. R., 100,422 A.L.,312 Rousseau,
Roussa Roy, A. Roy. S. Roy. S. Rozen Ruano. Rubin. Rubina Ruble. I Rtck-B Rucken Rudler. Ruel. R Rugmin
Ruhter. Ruiz. R Rundsu Runsinl Rush. T Russel Russel Russell Ruszka Rutherfi Ruzzicc Ryabini Ryan. J. Ryan. ! Rychno Rys, A. Ryter. I Ryu. H. Ryu, I..
Saa,C-. Sabitha Sadakar Sadana Sadava Sadbe.I Sadek. I Sadhuk Sadighi Saeki. l Saffert Safrono Sagassc Saha.A Saha"J. Saha-M
Authorlndex
Rousseau, G.,33 Roy,A.,228 Roy,S.,59,ll6, 155,216,3:.3 Roy,S. C., 155,216 Rozen, S.,62,193 Ruano, J. L. G.,59 Rubin,A. E.,276 Rubina,K., 73 Ruble,J. C.,98, 103 Riick-Braun, K., 109,134,3g0 Ruckert,A.,251 Rudler,H.,248 Ruel,R., 334 Rugmini,p., 260,434,438 Ruhter,G.,289 Ruiz,R., 279 p.,402 Rundstroem, Runsink,J., 99, 166,202,442 Rush,T. M.,359 Russell, A. T., 222 Russell, C. 8., 286 Russell, G. A., 129 Ruszkay, S.J.,315 Rutherford, D. T.,349 Ruzziconi, R., I 16,I g6 Ryabinin, V . A.,259 Ryan,J. H., 158 Ryan,M. D.,31 Rychnovsky, 5. D.,274 R y sA , .2.,354 Ryter,K., I39,408 Ryu,H.-C.,t7,283,292 Ryu,I.,72,103,165,210,394,423,433 Saa,C., 359 Sabitha, G., 130,216 Sadakane, M., 379 Sadana, A., 307 Sadavarte, V. S.,437 Sadbe, D. P.,439 Sadek, P.C.,253 Sadhukhan, S. K.,282 Sadighi,1.P.,76,292 Saeki,T., 404,433 Saffert,A.,279 Safronova, L. p., 156 Sagasser, I., 103 Saha,A. K., 134 Saha,J. K., 286 Saha-Moller, C. R., 99, 152,212,27g
493
Saicic,R. N., 184 Saidi, M. R' 120,225, 40-l Saigo,K., 101, 1O2,t}g, 170, 2gg, 337, 368 Saiki, A., 431 Sain,B., 279 Saini, R. K' 238,307,340 Saito,A., 100, 148, 415,438 Saito,H., 379 S a i t o ,K . , 1 7 9 , 4 1 5 , 4 3 8 Saito,M., 241 Saito,N., l8l Saito,S., 15, tO3,259, 397 Saitoh,K., 159 S a i t o u ,M . , 4 2 5 S a j i k i ,H . , 2 8 0 S a k a g u c h iS, . , 4 9 , I 1 5 , 1 3 7 , 1 9 3 , 2 8 4 , 3 2 7 , 3 4 7 , 445 Sakai,H., fi1 ,386, 413 Sakai,M., t, 43, 135,25i Sakai,N., 100 Sakai,T., 334 Sakakibara,N., 323 Sakakibara,S., 124 Sakamoto,A., 103 Sakamoto,K.,4g, I03 Sakamoro,7., 1l, 252, 254,274 S a k a t aG , .,274 S a k a t aK , .,234 Sakuma,C., I97 S a k u r a iH , .,8, 100,305 Sakurai,Y., 284 Salama,T. A., 360 Salaun,J., 38 Salehi,P., 74, 205 S a l e m o ,G . , 3 0 0 Salgado,N. R., 127 S a l m o n ,A . , 4 Salmon,M., 334 Salunkhe,A. M., 53 S a l u n k h eM , . M.,4lz S a m b r i ,L , ' 7 5 , 2 2 8 , 2 6 4 S a m u e l , 8 . ,I 9 2 Samzadeh-Kermani, A. R., 4l 2 Sanchez-Baeza, F., l5l Sandberg,M' 173,403 Sanders,V. C.,400 Sandhu,J. 5., 44,46,75,334, 436 S a n e r t iA , ., 151,152 Sangani,P. K.,303 Sanji, T., 8
494
Author Index
Sankey,J. P., 188 S a n o ,S . , 2 3 2 , 3 7 6 S a n o ,T . , 1 0 3 , 4 1 0 S a n s a n oJ,. M . , 2 9 1 Sanseverino,A. M., 199 Santagostino,M., 335 Santelli,M., l2l, 323'3'19 Santhakumar,Y ., 73' 29 | Santi,C., 100, 158 F., 157,310 Santoyo-Gonzalez, S a n z ,G . , 5 9 S a n z ,R . , 6 9 , 1 2 0 Saotome,T., 359 S a o u d iA , .,313 L. A., 35 Sarandeses, S a r a v a n a nP,. , 1 2 0 ' 2 1 4 Sarbach,D., 120 Sardarian,A.R., I I Sargent,B. J., 35 I S a r h a nA , . A.,6 Sarkar,A., 196, 198' 438 S a r k a rS , ., 130,304 S a r m a J, . C . , I , 1 9 9 Sarma,K. D., 394 S a r s h a rS, . , 2 ' 1 3 S a s a iH , ., 25,5l , 102 S a s a k iH , .,207 S a s a k iK , .,257 S a s a k iN , ., 185 Sasaki,R., 120 Sasaki,S., 334,402 Sasaki,T., 383 Sashida,H., 350 Sasson,Y., 62 S a t o ,A . , 1 0 3 S a t o ,D . , 9 8 Sato,F.,'t19, 18O,26'7 s a r o ,K . , 7 6 , 1 0 1 , 1 2 1 , 1 8 83' 0 3 '3 5 9 S a t oM , ., 165,415 S a t o ,S . , 5 7 , 1 0 8 Sato,T., 123,417 S a t o ,Y . , 3 5 , 6 9 , 2 5 6 , 3 8 1 '4 4 3 Satoh,K.,307 Satoh,S., 342 satoh, T.,65, 106, 1?3, 220'283,286,289,292' 294 S a t o u ,Y . , 2 0 8 Sattar,A. K.,361 Saubem,S., 117 Sauer,J., 163
Saunier,J.-8.,254 S a u v a g eJ, . - P . , 3 2 3 S a u v e ,G . , 1 3 , 3 4 1 Savchenko,A. V.' 35 S a v i g n a cM , .,291 Savignac,P., 166 Savizky,R. M., 102 SavoiaD , .,274 Sawa,E., 27 Sawada,T., 108 Sawaguchi,M', 386 Sawamura,N., 339 S a w y e rJ, . S . , 3 1 3 S a y a k h o vM , .D.,279 S a y l i k ,D . , 3 8 8 S a y r e ,L . M . , 2 2 0 Scafato,P., I 16' 186 Scettri,A., 61,62,98' 102 Schafer,T.,99 Schiiffer,M., l3l D.,439 Schanzenbach, Scharfbillig,I.,99 Scharz,M., 129 W. C.' 323 Schattenmann, Scheffknecht, C., 300 S c h e i d tK , . A.,422 S c h e n eH , ., 18,225 Scherer,M , 279 S c h i a v oA , ., 102 S c h i a v o nC , ., l9l Schierle,K., 379 Schildknegt,K., 399 S c h i l l i n gC, . L . , 2 2 3 S c h i l l i n g ,M . B . , 1 0 2 S c h i l s ,R . , 3 l I Schimizu,K. D.,405 Schirmeister,H., 261 Schlama,T., 154' 360 Schlingloff, G., 276 S c h l o s sJ, . D . , 2 ' 7 9 Schlosser,M.,66' 126' 161 Schmalz,H.-G., 333' 335 S c h m i d ,P . , 5 7 schmidt, A., 149 Schmidtchen,F'P.'282 Schnider,P., 101 Schobert,R., 188 Schofield,C. J.' 400 Schofield,S. R.' 230 Schomer,W. W.' 197
Schotten,T.. Jt Schrader, T. H Schreiber, K-. I
Schreier, P.. li Schrciner. P. F Schrock, R. R Schriider, F.. l Schuber! F-. I
Schubert, H.. I Schultz, A. G. Schultz, E. K, Schultz, J. A-. Schulz,M.. ll Schumann,lL Schtirer, S. C. Schuster.M..
Schiitt, M.. 30 Schune,S.. lr Schwab, P.. l. Schwaebe.It Schwan, A. L Schwaflz. J.. I Schwarz, L. i Schwickardi. Sciano, G. TSclafani, J. A
Scott, A. 1.. I Scott,I. L.. l, Screen,T. E Scremein, MScrivanti. A-. Sealy,J. M.. Sechi,A..67 Seddon, K. I
S e e ,M . M . . . Seebach,D.. Seefeld, M. I Seguin,S.. lt Sehlai, L.. 3 S e i d ,M . . 5 9 Seidel,G..6 Seijas, J. ASeithel. D. R Seki, K., l}l Sekido, M.. Sekimoro. E Sekiya A..: S e k o ,S . , 3 1 Sekoguchi. I Sels,B. F.. I
Authorlndex
Schotten, T., 368 Schrader, T. H., 99 Schreiber, K.,69 Schreier, P.,279 Schreiner, P. R., 303 Schrock, R. R.,251 Schriider,F., 275 Schubert, F.,42 Schubert,H., 254 Schultz, A. G.,391 Schultz, E. K. V., 32,51 Schultz,J. A., 244 Schulz,M., 151,187,323,324 Schumann, H., 149,298 Schi.irer, S. C., 323 Schuster, M., 251 Schiitt,M., 301 Schutte, S., 149 Schwab, P.,323,324 Schwaebe, M. K.,,334 Schwan, A.L.,222 Schwartz,J.,284 Schwarz, L.,240,339 Schwickardi,R., 28 Sciano,G. T.,300 Sclafani, J. A,26i,276 Scott,A. I., 106 Scott,I. L., 141 Screen, T. E. O., 150 Scremein, M., 340 Scrivanti, A., l9l Sealy,J. M., 333 Sechi, A.,67,224 Seddon, K. R.,70 See,M. M.,21 Seebach, D.,99,101,103 Seefeld,M. A., 100 Seguin, S., l0 Sehkri,L., 3l I Seid,M.,59 Seidel,G.,6,425 Seijas,J. A., 218 Seithel,D. R.,279 Seki,K.,334 Sekido,M., 368 Sekimoto,8.,166 Sekiya, A.,313,361 Seko,S.,312 Sekoguchi, K.,78 Sels,B. F., 188
Selva,M., 150 Semenzin, D., 397 S e n ,S . E . , 7 2 , 2 0 5 Senanayake,C.H.,420 Senatore,A., 98 Senboku, H., 257 Seneci,P., 130 Sengupta,S.,282 Senning,A., 354 Sensui,H., ll9, 121 S e n a ,C . , 2 1 6 Seshadri,R., 323 Sestelo,J. P., 35 S e t t aT , .,414 Sewald,N.,426 Seyer,A.,245 Sforza, S., 399 Shaabani,A.,347 Shabangi,M.,333,334 Shah,A., 399 Shah,R. D., 359 Shakh, E., 149,298 Shamsuddin,K. M., 168 Shang,M., 108 Shao,B., 141 S h a o ,D . , 4 6 Shapiro,G., 382 Sharghi, H., 199, 240, 3O9 Sharifi, A., 351 S h a r m aG , .V.M.,432 Sharma, J., 167 Sharma,M.,338 Sharma,P., 334 Sharma,V., 307,308 Sharpless,K. 8., t03, 248, 276, 302, 317, 350 Shaughnessy, E. A., 340 Shaughnessy,K. H., 42, 299 Shaw, A. N., 130 S h a w ,H . , 5 7 Shaw, J. T., 132, 220 S h a y ,J . J . , l 0 l S h e a ,K . J . , 1 5 6 Shechter,H., 20 S h e e h a nS, . M . , 3 2 0 Sheihet,L., 143 Shekarriz, M., 75 Sheldon,R. A.,284 Shelhamer,D. F.,430 S h e n ,Q . , 2 0 8 S h e n ,W . . 2 9 8
495
496
Authorlndex
Y., 65,l'75,23O,415 Shen, Shen,Z.,46,102 Shen,Z.-X., 102 Sheng,X. C., 1l3 M. S.,101 Shepard, Y., 173 Shermolovich, D. C., 62, 102,2'16'382 Sherrington, Sherry,C. J., 17 L.-J.,426 Sheu, s h i ,D . ,3 1 3 , 3 8 1 shi,G.-Q.,368 shi, L., 205 shi,M., 368 s h i , N . 1, 1 3l,1 5 shi,Q.-2.,ll shi,Y., 102,r52,254,31s shi,2.,343 Shia,K.-S.,224 M.,313,361 Shibakami, M., 25,40,51,102'103'422 Shibasaki, I., 128,138,198,211,356'389'439 Shibata, K., 256,289 Shibata, T.,41,99 Shibata, A., 8 Shibato, K.,7 Shibutani, A., 358,368 Shibuya, 1.,l'1,'t85,342 Shibuya, S.,99,379 Shibuya, Shie,J.-J.,73 Shiina,I., 40,159,3'7'7 Shim,J.-G.,298,368 Shim,S.C'299,324 I., l5 Shimada, Y., l0l Shimada, M., 160 Shimano, T.,223 Shimanouchi, M., l8 Shimazaki, A., 191 Shimizu, Shimizu,H., 101 I, 123,150,252,368 Shimizu, M., t7, 186,212,256'274'342 Shimizu, T., 51,67,l2'7,137,148'185 Shimizu, Y., 18 Shimogaichi, H., 383 Shimokawa, Shin,C. J.,338 Shin,D., 323 Shin,J. K.,388 T., 117 Shinada, Shindo,M., 69,98,221 Shing,T. K. M.,340,414
Shinike,T., 337 H., 8, 64, 69,144,115, 176' 234' Shinokubo, 270,27s,3'79,395 N., 113 Shinomiya, Shioiri,T., 4'1,101,102,143,238'3O3'406 M., 15 Shiozawa, M.,350 Shipman, Y., 173 Shirahata, Shirai,M., 179 Shirai,R., 98,232 Shirai,Y., 34 Shiraishi,H., 327 T., 101 Shiraishi, 8., 29, l00, 256 Shirakawa, K.,242 Shirakawa, Shiriny,F., 75 Shiro,M.,320 K.,69 Shishido, Shiu,C.-L.,394 U., 17 Shivkumar, C.M.,269 Shoemaker, Shriver,J. A., 292 V. D.,436 Shteingarts, Shu,R., 192 Shu,T., 3 H.3,124 Shudoh, Shukla,M., 159 Shukla,S.,159 Shuto,S.,18 Shvo,Y., 283 sibi, M. P., 101,244 A. A., 311 Sidorov, J.,323 Siedlecki, Siegel,S.,333,335 A. C.,396 Siegmund, Siena,M. A., 127 M.,217 Si-Fodil, Sigman,M. S., 100 Silva,L. F.,371 Silveira,C. C.,65,396 Sim,K.-Y., l9'l,198 Sim,T. 8.,256 S i m a lF, . , 3 1 1 G., 149 Simchen, M. T.,337 Simcox, Simon,A., 1 J., 133 Simonet, D.,370 Simoni, N. S.,98,220'320,334 Simpkins, A. F., 102 Simpson,
Sindelar, R. D Singam, P. R-. Singaram. B.. Singer,R. A,. Singh,J., 338 S i n g h ,S . , 4 . I Singh,V. K.. Singleton. D. , Sings,H. L.. 3 Sinn, E., 2.1 S i n o u ,D . . 4 1 9 Sire,8., l0 Siro, J. G.. J-1 Sivanand. P. 5 Sivanandaiatr Skowronska- ,
Skramstad J,. Skrydsrup. T
Skulski,L.. I Slawin, A. MSloss,D. G.. i Smit, W. A.. i Smith, A. B,. Smith, A.B.. I Smith, III. MSmith, J. A.. : Smith, K..'16 Smith, K. A.. Smith, N. D,. Smith, P. M.. Smith, S. C. l Smith, T. J, ]i Smith, W. J.. Smitrovictr- J. Smrcina,M.. Snapper.M. I Snieckus. V..
Snorrason.}L Snyder, J. K-. Snyder,J. P.. S o a i ,K . , 4 l . l Sodeoka"M..
Sdderberg.B. Stidergren. M Soderquist-J. Soeder,R. \t
Sogi, M., lfi) Sohmiya.H.. S o h n ,H . . 1 3 S o h n .H . - Y . .
Authorlndex
i.:-: .
-5.
176,234,
l: i l.rti.303,406
^, llr).334
R. D., 214 Sindelar, P.R.,220 Singam, 8.,52,315 Singaram, Singer,R. A., 76 Singh,J.,338 Singh,S.,4,173 Singh,V. K.,120,214 D. A.,54 Singleton, Sings,H. L., 399 Sinn,8.,24 Sinou,D.,419 Sire,8.,10 Siro,J. G., 339 P. S.,23 Sivanand, K. M., 360 Sivanandaiah, A.,446 Skowronska, J.,415 Skamstad, T., 334 Skrydstrup, Skulski,L., 306 Slawin,A. M.2.,33'7 Sloss,D. G.,369 Smit,W. A., 379 Smith,A.8.,111,294 Smith,A.B., 100 Smith,III, M. R.,30 Smith,J. A., 302 Smith,K., 46,284,354,434 Smith,K. A., 284 Smith,N. D.,300 Smith,P. M., 350 Smith,S.C,3M Smith,T. J. N.,98 S m i t hW , . J . ,1 9 1 , 3 1 3 J. H., 175 Smitrovich, M.,38,352 Smrcina, M.L.,323,405 Snapper, Y.,275,303 Snieckus, H., 232 Snorrason, J. K.,402 Snyder, Snyder,J. P., 267 Soai,K.,41,99 M.,42, 103 Sodeoka, B. C. 111, 292 Siiderberg, M. J.,99,101,307 Sodergren, J. A., 53,368 Soderquist, R. W.,410 Soeder, Sogi,M., 100 H.,201 Sohmiya, Sohn,H., 13,18 Sohn,H.-Y.,18
4n
Solay,M.,335 M.,21 Soleiman, A., lO2 Solladie-Cavallo, B. N.,279 Solomonov, V. A., 103 Soloshonok, H., 173 Someya, T.,74,'75 Sommermann, Somoza,C.,22'7 Son,H.-J.,17,368 S o nJ, .S . , 3 1 5 C.8,276,315 S
498
Authorlndex
S r o g l ,J . , 4 1 9 Stabile,S., 162 Stafford, J. A'' 70 Stagliano,K. W.' 68 Stamm,A., 108 Stammen,B.,419 S t a m o sD , . P., 113 Stanchina,D'M..,267 Stanetty,P.,l'75'412 Stang,P. J., I 58, 305, 308' 430 Stankovic,S',248 Stanton,M. G.' 312 Starichenko, V' F., 259 S r a r k ,C . B . , 4 1 0 Stan, J. T., 57 Stauber,S., 106 Stavenger,R. A.' 360 Stawinski,J., 130 Steckhan, E-, 141'3'79 Steere,J. A.,426 Stefane,B., 349 Stefaniak, M. H.' 57 T.,232 Stefansson, Stegmann,V. R'' 99 Steinwascher' J., 343 Stengele,K.-P.' 261 Stenzel,W., 368 Stephan,M. S.' 294 Stephens,K. A.' 368 Sternbach,D. D.' 156 Stessman,C-C.'244 Stevens,C., 108 Stevens,K-L.,259 Stewart,J. D.' 18 Stewart,S. G.' 13 Stewart, S. K.' 200 Still, I. W. J.' 334 Stivanello,D.' 10 Stojanovic'A., 146 S t o l z e ,D . A . , 2 1 0 Stoner,E. J,283 StoodleY,R. J., 152, 163 Stork, G. A.' 424 Stragies,R.,251 S t r a h ,S . , 4 3 6 Stranix,B. R.' 141 Straub,T.,48 Strauss,S. H., 226 Strazzolini,P.,259 Strekowski, L', l l
Strelenko,Yu. A.' 4M Stringer,J. M.' 430 Stuart,A. M', 165 T., 236,256'2'74 Stiidemann, Studer,A.,394 Studley,J. R.' 54 Stiier,W., 323'324 Stumpf,A., 155 Sturino,C. F., 323 Stiirmer,R., 275 A' G', 13 Suarez, Suarez,E., 307 SubbaRao'Y. V.' 188 Subburaj,K.' 7 A., 16'99'439 Sudalai, M., 345 Sudharshan' Sudo,A., 102 T', 71 Sueda, M.,274 Sueishi, M., 121 Sugahara, Sugai,M.' 194 K., 116 Sugarnoto, K.,98 Sugasawa, P. M'' 3M SugathaPala, M.' 57 Sugawara, Sugi,K. D.' 101 Sugi,Y.,299 M.' 31 Sugihara, Sugihara,T.,141,245 Sugimoto,K., 100 S.,38 Sugimoto, Y., lOt' 337 Sugimoto, W.' 138 Sugimura, Sugino,A.' 334 Y.' 234 Suginohara, H.,200 Suginome, M.,410 Suginome, K',336'33'l Sugita, M.,42 Sugiura, E., 128 SugiYama, T',74 SugiYama, Suh,E. M'' 70 Suh,J.-M',3?5 Suk,J. Y., 320 Sulikowski,G. A'' 298 Suma,S.,153 Sumida,S.,376 Sumino,Y., 334,335,431 Sumithra,G., 16 T.,200 SumiYa,
Sun, A. It.. . S u n ,A . - M , . ' Sun, G.. l8t S u n ,H . . 3 3 S u n , J . .l 0 l . Sun, L., I lt S u n ,P . . 7 1 .
S u n ,S . . 2 0 . S u n ,W . - H . . Sun, X.. l9(
Sundarabab Sundarara.p Sung,J. \A'.
Sung,N.-D Sung,T. M. Sunghee.H Super, M. S
Superchi. S SureshBab Suto, M. JSuwa,T.. I SuzeneLF. Suzuki, A-. Suzuki. D.. Suzuki, H., Suzuki. K,
Suzuki. Il. Suzuki, lrSuzuki. T.. Suzuki.YSvatos, A-
SvenstruP Swager. T Swami. S. SwamY.!
Swann. E Swansoc Swarnalal Swamald Sweenel. Syamala Sydnes.L Sydnes.L Sygula- I Sykes, A. Sylvain I
Symonsb Szabo. K Szeto. P. Szollosl.
Author Index
Sun,A. M.,259 Sun,A.-M.,446 Sun,G., 188 Sun,H., 323 S u nJ, . ,1 0 1 , 3 1 2 Sun,L., 138 , 08,373 S u nP , .,711 Sun,S.,20,lz14 Sun,W.-H.,120,181 Sun,X., 196,436 Sundarababu, G., 99, 166 Sundararajan, G., 101 Sung,J. W.,446 Sung,N.-D.,21 Sung,T. M., 388 Sunghee, H., 155 Super,M. S., 165 Superchi, S., 102 SureshBabu,V. V., 360 Suto,M. J.,301 Suwa,T., 128 Suzenet, F., 175 Suzuki,A., 3, 124,299 Suzuki,D., 335 Suzuki,H., 45,59,261 Suzuki, K., 17,212,227,243,334,422,446 Suzuki,M., 375 Suzuki,N., 102,417,443 Suzuki,T., 2, 69,2OO, 297,352,380,413 Suzuki,Y., 149,170,227 Svatos, A.,234 Svenstrup, N., 185 Swager, T. M., 396 Swami,S.S.,437 Swamy,V. M.,31 Swann, E.,320 Swanson, B. J., 103 Swamalakshmi, S.,356 Swamalaksimi, S.,438 Sweeney, J. B., 368 Syamala, M., 130 Sydnes, L. K., 173 Sydnes, L.K.,403 Sygula,A., 377 Sykes,A. G., 373 Sylvain, C.,279,4O4 Symonsbergen, D. J.,369 Szabo,K. 1., 120,283 Szeto,P., 102 Szollosy, A., 101
499
Tabanella,S.,76 Tabcheh, M., 98 Tabira, H.,99 Tabuchi, N., 298,446 Tada, M.,408 Tagarelli, A,264 Tagliavini, E., 27 Tagliavini, G., l0 Taguchi,H.,383 Taguchi,T.,59, 100, l0l, 103, 197,20f, ,298, 358, 380, 384,442,446 Taguchi, Y., 17, 185 Taherirastgar,F., 66 Tajima, H., 188 Takabe,K., 173 Takacs,J. M., 1O3,223 Takada,I.,117 Takada, T., 305 T a k a g i ,A . , 4 1 4 Takagi, J., I 88 Takahashi,A., I l3 Takahashi,H., l'73, 4 44 Takahashi,M., 100, 150, l9l Takahashi,S., 276, 3 I 8 Takahashi,T., 43, 45. 46, 74, 120, I 35, I 8 l, 421,442,443 T a k a h a s h iT, . T . , 7 4 Takahata,H.,276 Takahata, K., 391 Takahisa,A., 109 Takahisa,E., 144, 203. 259, 3l I Takai, K., I 13, I 14, 234,377 Takai, T., 334 T a k a i ,Y . , 7 6 Takaki, K., 431 T a k a k u ,K . , 6 4 , 6 9 Takami, N., 326 Takamori, Y., l5 Takanami,T., 267 Takanashi,T., 35 Takano,K., 173 Takanohashi,Y., 127 Takao, K., 123 Takaoki, K., 299 Takase,T., 193 Takasumi,M.,379 Takata, T., 6 Takaya,H.,29, 100 Takaya,Y.,43 Takayama,A.,68
500
Author Index
Tang,Q.,72 Tang,S.,227 Tang,Y., 312,315 Tang,Y.-C.,315 Tani,K., 180 Takeda, Y., 397 T a n iN , .,312 Takehira,K.,431 Tani,S.,334,335,391 Takemoto,H., 102 T., 146 Taniguchi, Takemoto,Y., 75, 99, 368 Y., 163,431 Taniguchi, Takeo,M.,200 S.,99 Tanimori, Takeuchi,K.,232 Tanino,K., 67, 143,194,244 Takeuchi,R., 33, 36, 136 D., 128 Tanizawa, Takeuchi,S., 334 Tanner,D.,99, 100 Takeuchi,T, 261 G.1.,420 Tanoury, Takeya,T., 417 Tanyeli,C., 235 Takezaki,H.,299 Tao,B., 103,2'76,300 Takezawa,8., 137 Tao,C.,227 Takhi, M., 355 T a oF , . ,1 2 1 , 2 3 0 T a k i m i y a ,K . , 3 5 4 Tao,F.-G.,230 Takimoto, M., 35 Taran,F., 388 Takiyama,H.,98 Tardella,P. A.,76 T a k i z a w a ,S . , 1 9 7 , 2 0 1 ,4 O 3 , 4 2 8 Tardella,P.A.,162 T a k u m i ,H . , 3 0 3 S.,400 Targontsidis, T a k u w a ,A . , 1 9 8 V. A.,404 Tartakovsky, Takuwa, T., 197 D.,49 Tashiro, T a l l a r i c o I, . A . , 3 2 3 Tashiro,M., 108,254,436 Tatukdar,S., 377 Tate,E. W.,57,375 T a m ,W . , 2 8 1 1.,l19,123 Tateiwa, T a m a m i , 8 . , 1 0 4 ,1 9 9 S., l0l Tatematsu, T a m a m u r aH , .,368 Tatsugi,J.,59 Tamao, K., 28, 64, 180 A.,261 Tatsumi, Tamaru,Y., 28, 256, 2'l4, 42, M., 334 Tatsuzawa, Tamura, M., 208, 313, 361 S.J.,400,407 Tavener, T a m u r a ,N . , 1 3 8 150 Tayama,8., T a n ,J . , 3 1 0 Taylor,C. M., 100 Tan,Z' lO Taylor,P.C., 102,123,l3l Tanabe,G., 397 Taylor,P. L., 130 Tanabe,Y., 175 Taylor,R. J. K.,57,66,215,238'284'313' T a n a k aA, . , 4 1 5 , 4 3 8 3't5,440 T a n a k a ,H . , I 1 3 , l 6 l Taylor,S.D.,73,166 T a n a k aK, . , 2 4 , 1 0 1 , 3 0 3 T a n a k aM , . , i 5 , 9 8 , I 1 3 , 2 1 0 , 2 9 83, 4 1 ' 4 1 7 ' 4 1 9 Taylor,S. K.,253 S.,220 Tchertchian, Tanaka,N., 360 Tehrani,K. A., 108 Tanaka,S., 28, 163, 274, 421 Tejedor,D.,57 TanakaT , .,99, 103 Tejero,T., 173 Tanaka,Y., 186,339, 389 Teles,J. H., 249 Tando, K., 368 Temme,O., 101 T a n d o n ,M . , 2 1 5 '72, A.,20,100,158 Temperini, 176,234,2'10 Tang, J., TenBrink,G.-J.,284 Tang, M.-H., 25, 102,283 TenHave,R., 154,386 T a n g ,M . - W . , 3 1 5
Takayama,Y., 179 Takeda, A., 368 Takeda,K.,309 TakedaT , . , l l 8 , 1 2 0 ,1 8 7 , 3 8 3
Tenaglia. .r Tennant. C Terada.K. Terao. J.. I Terao.\'.. T e r m e .T . Terrier.C. Terstiege. Teshima. !
Testafem. Teunissen Teunissen Texier-Bc Tey.C.. li Thach.L. l Thakker. I
Tham. F. ! Thangare
Thevenrn Thibault. ( Thibonna Thiebes. ( Thiel. $'
Thiemann Thiery. \'.
T h i j s .L . . . Thivet. AThom. N. Thomas. l Thomas. (
Thomas. J Thomas. I Thompso Thompscr Thorand Thorhaug Thorimbc Thorntoo. Thorpe. li Thottathrl Thurner. , Tian, Q,. Tian. Y.. Tiecco. ! Tien, F.{ Tiemel. J Tilloy. S. Tillyer. R TimberlC Tingoh. !
11
Author Index Tenaglia,A.,292 Tennant,G., 161 Terada,K., 373 Terao,J., 179, 181 Terao,Y.,212,292 T e r m e ,T . , 3 5 9 Terrier, C., 368 Terstiege,I., 391 Teshima,M., 397 Testaferri,L.,20, 100, 15g Teunissen,A. J. I. M., 294 T e u n i s s e nH, . T . , 4 1 7 T e x i e r - B o u l l e tF, . , 1 1 ,3 1 5 T e y ,C . , 1 7 3 T h a c h ,L . N . , 3 0 3 Thakker,P., 210 T h a m ,F . S . , 3 9 1 Thangavelanthum,R., 291 Thevenin,P., 288 Thibault, C., 100 Thibonnet,J., 267
I S-1.-r| -1.
T h i e b e sC , .,59 T h i e l ,W . R . , 2 4 8 Thiemann,T., 108 T h i e r y ,V . , 1 3 8 , 4 0 5 T h i j s ,L . , 3 7 5 Thivet, A., 298 Thom,N. J., 108 Thomas,A. W., 162 T h o m a sC , .L.,2l Thomas,J. A., 368 T h o m a s ,R . M . , 3 4 6 T h o m p s o nD , .F.,297 Thompson,S.,44 Thorand,S., 295 Thorhauge,J., l0l Thorimbert,S.,368 Thomton-Pett,M., 291 Thorpe,H. R., 350 Thouathil, J., 105 Thumer, A.,65 Tian, Q., 286 Tian, Y., 368 T i e c c o ,M . , 2 0 , 1 0 0 , I 5 8 T i e n ,F . - C . , 2 9 Tierney,J. P., 99 Tilloy, S., 299 Tillyer, R. D., 100, 184 Timberlake,J. W., i 5, 244 Tingoli, M., 20
Tinker,A. C.,221 Tinsley, A. S.,282 Tirado,L. M., 102 Tirado,R.,268 Tishkov, A. A.,404 Tius,M. A.,69,313 Tkachev, A. V., 345 Toader,D., 21,'78,396 Tobinaga, S.,417 Toblbr,H.,202 Toda,F.. 154,303 Toda,N.,419 Toda,T.,232 Tofani,D., 162 Togni,A.,41 Togo,H., 191,200,307 Tohma,H., 201,305,403 Toke,L.,65,101 Tokita,Y.,310 Tokiwano, T., 209 Tokoro,Y., 259 Tokuda, M.,2O0,257 Tokunaga, M., 98,99 Tokunaga, Y.,371 Tokunoh,R., 103 Tokutake, N.,98 Tokuyama, H., 15,188,275 Toledo, M. A.,59 Tomasi, A. L.,386 Tomioka, K.,98,100,l0l Tomita,A., l0l Tomiyama. H., 103 Tomizawa, G., 143 Tomkinson, N. C. O.. 156 Tomlinson, I. A., 205 T o m mS , .,259 Tomooka, C. S.,260 Tongco,E. C., 230,400 Tonks,L., 297 Topping, C.M.,24 Toratsu, C., I l3 Tordeux, M.,436 Torii,K., l8l ToriiS , . , 4 ,I 1 3 ,l 9 l Toriyama,K.,238 Toriyama, M.,98 Tormo,J., 192,394 Torreblanca, A.8., 315 Torregiani,8., 75 Torstensson, L., 102
501
502
AuthorIndex
Toru,T., 102,439 E., 334 Tosaka, R. A., 334 Toscano, K.,54,254 Toshima, F. D.,99,164 Toste, Toth,G., 1 F., 101 Touchard, Toupet,L., 379 Tour,J.M.,228 J.,230 Touster, Tovar,F.,403 Towers,T. D., 107 Toyooka,Y.,298 Tozawa,T., 100 B., 120 Trabach, G., 288 Trabesinger, D., 138 Trauner, H-,36,312 Trauthwein, Tregay,S.W., 103 Trehan,A.,403 Trehan,S.,44,403 Tremel,W., 323 B., 188 Trenbirth, Trifoni,M.,307 C.,'75'235 Trogolo, Trombini,C., 10 Tromfimov,B A.'22O Trost,B. M.,99,104,16/.,289,293,412 S.,57 Trotman, Trotter,B. W.' 10 Troupel,M.2O7'25'7 M'V.,42 Troutman, Trupp,R. J., 100 Truran,G. A., 157 A. M.' 204 Truscello, Tsai,Y., 144 Tsai,Y.-M.,394 D. A.,294 Tsarev, Tsay,H.,239 D. M., 100,114 Tschaen, M., 288 Tschoemer, Tseng,H.-R, 267 Tsiklauri,P. G.' 339 Tso,H.-H.,239 S.,212 Tsuboi, 399 Tsuchida,8., M., 373 Tsuchida, Tsuchimoto,T., 399 T., 185 TsuchiYa, Tsuda,T., 283
Tsuji,J.,292,39r Tsuji,S.,439 Tsuji,T., 69 Tsuji,Y., 137 T.,417 Tsujimoto, S.,379 Tsujiyama, N'368,422 Tsukada, Y., 173 Tsukamoto, Tsukazaki,M , 119,370 .Tsukinoki,T -, 254' 436 S.,210 Tsunoi, S., 173 Tsuruoka, Y., 118 Tsuruta, H, 50' 59 Tsutsui, Tsuzuki,Y., 264 Tu,C.,38 T u ,S . , 3 1 3 Tu, Y., 14,1O2,315 Tu,Y. Q., 14 P',220 Tuchinda, Tucker,L., 102 T u m a sW , .,62,419 Tundo,P., 150 M. J.' 1l I Turbeville, 101 D., C. Tumer, Tumer,D., 368 Turner,P. D.' 368 Turos,E., 6 Tussa,L., 197 E. V.' 109 Tveritinova, Tweddell,J.,98 H.L.'29 Twigger, Tyrell,E., l4l u, J. S.,141 Uang,B.-J.,99 M., 389 Uasuda, H., 120 UbaYama, llbeda,J. I.' 67 M.,36, 105,241'277 Ubukata, H., Ucar, 13 Uchida,M.' 420 Uchimaru,T., 375 Uchiro,H., 232'399 K., 130 UchiYama, M., 18'214 UchiYama, Uchiyama,N., 368 Uda,M.,45 K'' 51' 137 Udodaira, tJeda,A.,212
Ueda,M.. l. Uehira, S..6 Uemura- \l-. Uemura S-. Uenishi. J.. , Ueno, M.. l Ueno, Y.. l(
Ufret, L..61 Ufret, M. L Ukawaq. K. Ukita, T.. l,
Ullman.8.. Uma, G.. l! Umani-Rm Umbricht- ( UmekanaUmemoto. Umezaqa. Uozumi. Y
U r a ,Y . . 4 1 Urabe, H.. Uraguchi. I Urbano. li. Urch, C. J. Urgan. D.. Uriel, C.. I Urpi, D.. I
Urpi,F..6 Ushiki. Y, Ushiro, CUsmani. S Utimoto. I
Vadecard. Vahle, R-.
Vairarnan Valencta. Vallee. Y Valogncs Van de ll
Van &rp Van Dort Van Dykt Van Hea Van Hea Van Kon Van l-eu Van Oert
Vanajath Vance. S
Author Index
Ueda,M., l, 135,2O0,259 Uehira,S.,69 M.,38 Uemura, Uemura,S.,284 Uenishi,J.,391 IJeno,M.,27,432 Ueno,Y., 102,439 Ufret,L., 6l Ufret,M. L., 102 Ukawaq,K.,206 Ukita,T., 121 Ullman,B.,274 Uma,G., 355 A.,27 Umani-Ronchi, Umbricht,G., 102 Y.,445 Umekawa, T., 143 Umemoto, Umezawa,l.,2l2 Uozumi,Y.,29 Ura,Y.,443 Urabe,H., 179,180 D.,402,422 Uraguchi, N.,59 Urbano, Urch,C. J.,113,119,288,370'394 Urgan,D., 334 Uriel,C., 310 Urpi,D., 173 Urpi,F., 61 Ushiki,Y.,54 Ushiro,C., lfi) S.B.,259 Usmani, Utimoto,K, 31,32, 144,274, 334' 3'17' 419
I l--
J.,54 Vadecard, Vahle,R., 379 M., 373 Vairamani, G.,49 Valencia, Yallee,Y.,220 D.,416 Valognes, Van deWeghe,P., 335 K., 13 Van derpoorten, VanDort,P. C., 184 VanDykeTiers, G.,402 F. R.,368 VanHeerden, P.5.,26'1 VanHeerden, VanKoten,G., 176 A. M.. 154.386 Van[-eusen, Van Oeveren,A., 32 G., 315 Vanajatha, Vance,S.,27
C. P., 42O Vandenbosche, J.-C.,246 Vanherck, Vankar,Y. D., 1, 289 P.,359 Vannelle, Vanucci,C., 379 J.1.,173,339 Vaquero, N. R., 147 VaralakshmY, Yarea,T.,269 A., 157 Vargas-Berenguel, 30'1'315'340 Varma,n. S.,18,193,238,303, Vasapollo,G., 292 Vasse,J. L., 232 Vastra,J., 123 Vatele,J. M., 294 Vaultier,M.,214 Y azquez,J., 167 M. P.,218 Vazquez-Tato, E.,53,98 Vedejs, J.,246 Vederas, A. N.,279 Vedernikov, S.J.,57 Veenstra, V e i g aS, . , 2 1 8 L., 334 Velasco, A., 184 Velikanov, Velmathi,S.,356 D., 111 Velo-Rego, VeluS , .8.,67 Venier,O.,213 L.,24 Venkatraman, M. S., 146'326,344 Venkatraman, Vennall,G. P.,337,399 Ventura,M. R.,345 P.,66 Venturello, Yera,M.D.,232 X., l9l, 192'385 Verdaguer, Vergani,B.,4 T. R., 55,283 Verhoeven, J. G., 184,343 Verkade, H.D.,220 Verkruijsse, R.,437 Verlade-Ortiz, Verlhac,J.-8.,120 P. V.,399 Vertelezkij, Verzijl,G. K.M.,294 Vescovi,A., 307 Vetter,S., 372 Viallefont,P.,98 Vicario,J.L.,176 Vicart,N., 368 Vickerman,R. J., 345 Vidal.A.,403
Author Index
Vidal,J., 17,60 C.,6l Viladomat, Vilanasa,J., 61, 102,l'13,216 Villa deP.,A.L.,248 M.,67 Villacampa, Villalgordo,J. M., 158 Villani,F. J.,359 Villemin,D.,313 G. 8.,415 Villeneuve, Villieras,J., 100 Villiers,C.,426 Vincent,l.-M.,62 Virgili,8.,399 Visigalli,M., 153 Viswajanani,R., 348 vittal, J. J., 198 Vitulli, G., 124 K., 103 Vivekanandan, Vivian,R., 191 F.,75 Vocanson, Yogt,C.,426 Vogt,P.,386 Vojkovsky,T., 103 Volante,R. P., 101,267,292'312 Vollmiiller,F., 293 vonBerg,S.,268 A.,439 Vorasingha, Vorbriiggen,H., 301 Voronkov,M.,78, 184 Voronkov,M. V., 78 Vos,T. J.,276 Yu,P.,22'l Vukicevic,R. D., 1l Vulpetti,A., 103 Vyas,R.,57 Vyskocil,S.,38 w.-x.,316 Wada,M.,45,46 P. P., 184 Wadgaonkar, B.,281 Waegell, Wagaw,S.,38,420 Wagner,A'.,2'19,351,404 Wagner,R.,2 Wahlstrom,J. L., 199 P. G., 102,303 Wainwright, T., 336 Wakabayashi, K., 175 Wakasugi, Y.,4l Wakatsuki, Y.,399 Wakiyama,
C.,436 Wakselman, Wald,S. A.,420 Waldmann,H., 18,225,2'79 288 Waldvogel,8., Walker,J. K.,410 Walker,L. F.,406 Wallace,E. M.,200 Waller,F. J.,433 Waller,S. C., 134 C. D.,351 Wallett, Wallis,J.,57 T.,54,239 Walsgrove, T. C.,54 Walsgrove, Walsh,K. E., 197 Walter,M. W.,400 Walters,C., 223 Wan,H.,252 C., 102 Wandrey, Wang,B., 192 Wang,C.,206 Wang,D., 136,137,432 Wang,F., 206,410,413 Wang,G., 101,103 Wang,H., 58,111,254,340 Wang,H. C.,340 Wang,J.,65, 106,17O,256,268,288,334'37I' 380,381,394,426 Wang,J.-X., 170, 256' 268' 380,426 Wang,L., 196,197,239' 436 Wang,M.,432 Wang,Q.,230 Wang,Q. X., 131 Wang,R.-P.,117 Wang,S.,235,313 Wang,S.F.,235 Wang,W., 138 315 Wang,X., 58,1O5,24'7,310' Wang,X.-C.,247,315 Wang,X.-Y.,58 Wang,Y., 58,205,326' 334' 426' 433 Wang,Y.-L.,58 W ang,Z., 65,lO2,152,284,315'349,388 W ang,Z.-X., lO2,| 52' 315 Wanzl,G.,379 Ward,D.8.,98 Waring,M. J.,2'76 R., 157 Warrass, B. C., 149 Wassermann, H., 187,201' 403 Watanabe, K.,6, 100 Watanabe,
Watanah Watanah Watanah Watanab Watanab Watauni Watersq Watson. Watson. Waymor Weaver Webb.K Webb.S Weber.I Weck.! Wei.H.. Wei.H.Wei.L.. Wei.L.Wei.X,. Weinga Weinre Weintr. Weiss.! Welctr Wells./ Wells./ Welsh Welzcl Wendc Wen&r Wenke Wenrrr Wennc Wenlsr Wernct Wemik Weska Wess.l West F West.I West'l Westen Whela Whela Whitb; White. Whitc. Whilc. Whitin
AuthorIndex
) . :^' 188.334,371, :.
+16
|.:.: 1..::fl. -133 . : . <. l-19. 388
Watanabe, M.,8,383 Watanabe, N.,320 Watanabe, 5.,25, 102,121,298,307 ,379,422 Watanabe, T., 126,l8l Watanabe, Y., 137,380 Watatani, K.,259,311 Waterson,A. G., 225, 410 Watson,S.T., 107 Watson, W., 102,311 Waymouth,R. M., 299,443 Weavers, R. T., 60 Webb,K. S.,315 Webb,S.A.,225 Weber,W.,202 Weck,M., 323 Wei,H., 146,161,267 Wei,H.-X.,146,26'7 Wei,L.,38,198 Wei,L.-L., 198 W e i ,X . , 6 6 , 2 3 8 Weingarten, M. D.,260 Weinreb, S.M., 8,71,108 Weintraub, P. M.,283 Weiss, M. S.,157 Welch,J. T., 212 W e l l sA, . , 3 , 5 2 , 3 7 3 W e l l sA, . L , 5 2 , 3 7 3 Welsh,W.,27 Welzel,P.,60 Wendebom, S.,291 Wender,P. A., 39, 109 Wenkert,8.,320 Wennenberg, J.,434 Wenner,H., 129 Wentworth, P.,316 Wemer,H., 323,324 Wemik,S., 149 Weskamp,T., 323 Wessjohann, L., 113 West,F. G., l9l West,R., 13 West,T. R., 117 Westermann, E., 30 Whelan,B. A.,397 Whelan, H,M.,264 Whitby,R. 1.,r14,22'1 White,A. J. P., 100,251 White,J. D., 368 white,J. M., 108 WhitingA.,200
Whitley,P. E., 10,394 Whittingham, W. c., 335 Whoi,J.-K.,21 Wiaux-Zamar,C., 103 Widdowson, D. A., 399 Wiedbrauk,K., 147 Wiedemann, J.,400 Wiedenhoefer, R. A., l9l Wiener,H.,62 wisal;C. T., 157 wild, H., l 13 Wilhelm,D.,67 Wilkins,R. F.,354 Wille,A.,259 Willems,5.T.H.,24'l Williams, D. B. c.,368 Williams, D. J.,100,251 Williams, D. R.,60,99,175 Williams,J. M., 147 Williams, J.M.J.,29'l Williamson, D. S., 163 Williamson, J. S.,347 Williamson, N. M., 102 Willis,S., 146,267 Wills,M.,54,406 Wilson,A. M.,29,l4l Wilson,K.8., 354 Wilson,M.,59 Wilson,S.R.,433 Winsel,H., 179 Winssinger, N.. 368 Winter,S. B. D.,360 Winters, M. P.,I l7 Winum,J.-Y.,45 Wipi P., t00,444 Wirth,T.. 100 Wise,L. D., l9l Wishart.N.. I l7 Wistrand, L.-G.,405 Wiu.A.,283 Witt,O.,67 Woerpel,K. A., 132,l'75,220 Wojciechowski, K.,279 Woli J.,323,324 woll M. A.,200 Woll S.,426 Wolfe,C. N.,335 Wolfe,J. P.,35,42,76, 289,420 Wolfe,M. S.,22 Woftering, M. 1.,6'1
505
506
AuthorIndex
Wong,F. F.,349 Wong,H. N. C.,200 Wong,J.C.Y.,323 Wong,K.-T.,360 Wong,M.-K.,315 Wong,M.-W.,198 Wong,S.T.,436 Woo,H.-G.,25,192 Woo,K.,268 Wood,A., 179 Wood,S.A.,428 Woodrow,M. D., 138 Woodward, S.,24 Wonall,J. M.,352 Wright,A. S.,232 Wright,J.M.,359 Wright,S. W., 232 Wu,J.,25,99,335 Wu,J. H.,99 Wu,L. E., 102 Wu,M.-Y.,257 Wu,S.,l2l, 327,346 Wu, S.-H.,327 Wu,T.,225 Wu,W.-L.,65 Wu,X., I l, 299 Wu,X.-X.,l1 W u ,Y . , 3 3 5 Wu,2.,315 , 11 W u l f f , W . D . 1, 0 1 1 Wiillner,G.,42 Wustrow,D. J., 191 W u t sP , .G . M . , 2 1 , 3 5 4 Wyatt,P.B.,23 Wythes, M. J.,117 xi, c.,120,443 xi, Y.,380 xi,z., 120,443 Xia, L.-J.,25,76, 102,283 Xia,M., 193,305 X i a ,W . , 3 1 2 Xiang,J., 184,422 Xiang,T.,420 Xiao,D.,99,101 Xiao,W.-J.,292,368 Xiao,Z.,75,2M Xie, R., 102 Xu,C.,368 Xu,F.,99
Xu, J.,288,394 Xu, K.-C.,197,198 Xu,L.-H.,58,173,368 X u ,W . , 5 , ' 1 1 4 Xu,W.-C.,5 Xu, X.-H.,306,M6 Xu, Y.,40, 59,9, 115,208 Xu,2.,388 V.K.,62 Yachandra, Yachi,K., 144,379 Yadav,J. S., 16,197,216,221,339,340,343, 436,437 Yager,K. M., 100 Yagi,M.,341 Yagi,T., 376 Yakabe,5., 11,72, 206,236,238,348 A.,71 Yamada, Yamada, H., 135 K., 100,210 Yamada, Yamada,M.,223 Yamada, N.,65 Yamada,S.,98 T., l0l, 160 Yamada, Y.,5,25 Yamada, Y. M. A.,25 Yamada, Yamagata, S.,75 Yamagishi,T., 99 H.,6 Yamaguchi, M., 101,l4l, 169,170,245,317, Yamaguchi, 3'75 R.,342 Yamaguchi, S.,28, 180,284 Yamaguchi, Yamaguchi,T., 28, 29, 282,283,291,292 K.,51 Yamakoshi, A.,252,368 Yamamoto, 103, H.,5, 10,15,42,44,48,98, Yamamoto, 243,300 L,2 Yamamoto, Yamamoto,K., 43,399,421 M.,30,210 Yamamoto, N.,25 Yamamoto, T.,292 Yamamoto, "1, Y., 29,34,50,73, 100,104,180, Yamamoto, 289,298,368,389,407,421, 185, r97, 182, 422 H.,7,223 Yamamura, M.,402 Yamanaka, Yamane, S.,335 Yamano,8.,343
Yamanoi. S Yamanoi. T Yamanoi. \' Yamaoka- I Yamasaki.. Yamasakr. I YamashitaYamashitaYamauchr.I Yamauchr. I Yamauchr Yamaura- \' YamazaluYamazalu. I Yamazaltr. I
Yamazah. !
Yamazalu. Yan,M.. l0
Yanada.K. Yanada. R.. Yanagihara Yanagisas r Yanase. \ . Yang. B.. I Yang. B. H Y a n g .C . . I Y a n g .D . . I Yang. D. T Y a n g .D . - H Yang, D.-\l Y a n g .F . - \ l Y a n g .G . . I Yang. H,. J Yang. H. \l
Y a n g .J . . l f Y a n g .K . . 3 Yang. L. \l Y a n g .M . . I
Yang. R.-l' Y a n g .S . . 1 Y a n g .S . G Y a n g .X . . I Yang. Y.. , Yang,2.. 3 Y a o , J . .l l l Y a o , S . .{ l Yao.Z.-P Yasuda K Yasuda- \l Yasue.K .
{.uthor Index
: : . i . 1 9 .3 4 O , 3 4 3 ,
h :lR. -r48
I ^ " I 7 0 . 2 4 5 , 3 l ' 7,
;t '\l
'
1ql
)Q?
-18,98, 103, :. "r-1.
I
-:. t, 100,104,180, i-:nr..189,407,421,
Y a m a n o i ,5 . , 2 4 3 , 4 4 6 Yamanoi,T.,57 Yamanoi, Y., 102 Yamaoka,M., 334 Yamasaki,A.,408 Yamasaki,K.,256 Yamashira,M.,20, 120 Y a m a s h i t aT, . , 2 7 5 , 2 7 9 Yamauchi,M.,238, 4l'1 Yamauchi,S., 120 Yamauchi,T., 173 Yamaura,Y.,27 Yamazaki,A., 120 Yamazaki,H.,423 Yamazaki,O., l9l Yamazaki,S., 248,350 Yamazaki,T., 180 Yan,M., l0l Yanada,K.,326,337 YanadaR , .,326,337 Y a n a g i h a r aK, . , 2 1 2 Yanagisawa,A., 5, 10,42, 44, 98, 300,421 Y a n a s eN , ., 138 Y a n g ,B . , 2 1 , 7 3 , 3 9 7 Y a n g ,B . H . , 9 9 Y a n g ,C . , l l , 3 4 5 Yang, D., 247, 315, 350. 426 Y a n g ,D . T . C . , 3 - 5 0 , 4 2 6 Y a n g ,D . - H . , I I Y a n g ,D . - W . , I I Y a n g ,F . - M . , 2 6 2 Y a n g ,G . , I , 18 4 Yang, H., 205,286,439 Y a n g ,H . W . , 4 3 9 Y a n g ,J . , 1 8 4 Y a n g ,K . , 3 5 1 Y a n g ,L . M . , 1 4 Y a n g ,M . , 4 6 Y a n g ,R . - Y . , 4 3 6 Y a n g ,S . , 2 5 6 , 2 6 8 Y a n g ,S . G . , 1 8 8 Y a n g ,X . , 1 0 1 Y a n g ,Y . , 3 1 5 , 4 3 2 Yang,Z.,368 Y a o ,J . , | 2 1 , 1 7 5 , 2 2 2 , 2 8 9 Y a o ,S . , 4 1 Y a o , Z . - P . ,1 6 , 4 6 Y a s u d aK , .,389 Y a s u d aM , . , 1 l 0 ,1 3 8 ,1 9 8 ,3 5 6 , 3 7 3 , 4 3 9 Y a s u e ,K . , 5
Yasuhara,A.,254 Yatabe,K., 78 Yates,M. H., 371 Y a t o ,M . , 1 9 1 Yaval.,I.,412 Yazovtsev,I. A., 156 Ye, J., 122 Y e ,S . , 3 8 1 Ye, X.-S.,200 Ye,Z;276 Y e e ,J . G . K . , 1 1 9 Yeganeh,H., 104 Yeh,H.-C.,73 Yehia, N. A. M., 200 Y e l a m a g g a dC, . V . , 3 4 8 Y e n , K . - C . , 1 0 3 ,3 8 7 Y e o n ,S . H . , l 3 Yet, L., 20 Y e u n g ,C . , 4 3 Y i , x . - H . , 1 9 7, 2 3 4 Y i n , J . ,3 0 7 Yin,Y.,256,268 Yip,C.-w.,27 Yip,1.,224 Yip,Y.-C.,247,3t5 Y l i - K a u h a l u o m aJ,. T . , 3 1 6 Y o d a ,H . , 1 7 3 Y o k o e ,C . , 2 4 1 Y o k o m a t s uT, . , 9 9 . 3 ' / 9 Yokoshima.S., 27-5 Yokota, K., 20C) Y o k o t a .N . , l u Yokota. T., 284 Y o k o y a m a ,K . , 3 7 6 Yokoyama,M.. l9l, 200, 307 Yokoyama, N., 274 Y o k o y a m a ,S . , 1 2 9 , 3 0 7 Y o k o y a m a ,Y . , 1 2 6 , 3 5 3 Yokozawa,T.,43 Y o n e d a ,E . , 3 1 8 Yoneda,N., 386 Yonehara,H., I I Y o n e m i t s uO , .,391 Y o n e z a w aN, . , 3 1 0 Yong,Y.F.,244 Yoo, B. R., l3 Yoo, J., 394 Y o o n ,J . , 2 7 6 Yoon, J.-Y., 184 Yoon, N. M., 256
507
Author Index
Yoon,S.-K.,26,27,282,294,368 Yoon,T., 99 Yoon,U. C.,75 Yorimitsu,H' 1'76, 2'70, 395 Yoshida,A.,333,334 H.,29, 102 Yoshida, J.,57 Yoshida, Yoshida,K., 170 Yoshida,M., 130,334,335,386'439 Y.,375,379 Yoshida, Yoshii,E., 309 E., 182 Yoshikawa, M., 137 Yoshikawa, N., 25,99 Yoshikawa, A.,352 Yoshikoshi, H., 78 Yoshimoto, N., 2l I Yoshimura, T., 235 Yoshinaga, C.,73 Yoshinajshii, Y., 115 Yoshino, M.,334 Yoshioka, T., 20 Yoshioka, H., 138 Yoshizaki, K., 103,376 Yoshizane, Y o u nY , . S.,214 Young,B.,41 Young,D. J.,l0 Young,J. R.,,299 Young,R. N., 396 W. J.,21'7 Youngs, Y u ,B . , 4 3 6 Yu,C.-M.,26,27 Yu,D., I15,208 Y u ,H . ,3 1 5 Y u, J., 224,256,268,280 Yu,M.,7,326 Yu,S.,142,21'l Yu, W.-Y.,62,100 Yu,2.,343 Yudin,A. K., 11,248,302,31'l Yus,M., |Cf ,211,224 Zablocka,M.,446 R., 120 Zadmared, Zahler,R., 105 M., 53 Zaidlewicz, Zajac,N.,396 Zamboni,R. J.,396 F., 100 Zammattio, Zanchez,V.M.,212
A., 101 Zanotti-Gerosa, S. P., 340 7,anotto, Zap^ta,A. J.,410 Zapf, A.,291 Zard,S.2., 10,23, 116,14'7,193'254 Zargln,A.,225 Zavala,M.4.,57 Zavialov,l.4.,3 7efirov,N. S.,305,308,430 7.eng,P.,350 7nn|G.,65 M, 286,288 Znnrrcr,!. C. K.,320 Tnrcher, Znynizaded,8., 3'72, 383 Zhan,Z.,19'7,326,334 Zhang,A.,214 Zhang,C.,350,426, 440,443 2hang,C.J.,350,426 Zhang,C.-5.,443 Zhang,D.,122 Zhang,F.,27,359 Zhang,F.-2.,27 Zhang,G.,11,99,207 11,2O1 Zhang,G.-5., Zhang,H.,206,368 Zhang,J.,46,32O,436 Zhang,L.,59, 100,307,430 Zhang,L. C., 100 Zhang,L.H.,59 Zhang,P.,221 Zhang,R., 125,254 Zhang,R.-Y.,125 334 S.,57,108,122,318' Zhang, Zhang,S.-W.,318 Zhang,W., 212,230 Zhang,W.-C.,230 101,391 Zhang,X.,gg, Zhang,Y .,'1, 102,121,196,19'1,208,235' 326' 334,335,373,381,415,436 Zbang,Y.M.,334 Zhang,Y.-m.,335 Zhang,Y.-W.,102 Zhang,2., 65, 1'70, 1'13, 284'353 Zhang,Z.-H.,17O,353 Zhao,C.G.,99 152 Zhao,C.-G.,125, Zhao,G.,383 2hao,H.,301,337,3'79 Zhao,K., 138,3'79 Zhao,M., 55,114
Zhao.Z-. Zheng.A.. Zheng.8 Zheng.G. Zheng,NZheng.S. Zheng,\l Zheng.X. Zheng,Y Zhong.Y. Zhou.C.. Zhou.C.l Zhou,L.. Zhou,P.. Zhou.S.Zhou,Y.. Zhou.Y.Zhou.Z.. Zhu,C.. 3 Zhu,G..! Zhu,G.-I Zhu.H. l
AuthorIndex
):
::-l
l'- l{)8.235,326, li.
Zhao,Z.,383,385 Zheng,A.,I92 Zheng,B.,185,413 Zheng,G.Z.,334 Zheng,N.,26'1,292 Zheng,S.-L.,184 Zherg,W.-X.,M6 Zheng,X., 335 Zheng,Y.,377 Zhory,Y.-L.,340 Zhou,C.,230,385 Zhou,C.-E.,230 Zhou,L., 334,381 Zhou,P.,99 Zhou,S.-M.,283 Zhou,Y., 76, 102,415 Zhon,Y.-G.,'16,702 Zhou,Z.,335 Zhu,C.,304 Zhu,G.,99,l0l, 337 Zhu,G.-D.,337 Zhu,H.Y.H',425
Zhu,J., 102,103,224'262 Zh't,J.-L.,224 Zhu,L.-5.,259 Zhu,S.,21'7 Zhu,Y.,111,315 Zhu,2.,248 Zibuck,R.,410 Zim,D.,3l Zingarc,R.A., 146 Zinn, F. K.' 70 Zipp,G.G.,28 Zobairi,M. O., 168 Zolfigol,M. A., 114,l2l,206 Zondervan,C', 188 Zoretic,P.A',235 7,ou,H.,46 Zuber,D., 120 ZumpaF.L.,29 Zupan,M., 106 Zld,rcher,F.,4l 8., 247' 3'75 Zwanenburg,
SUBJECTINDEX 339' 380' 408 Acetalization' 59,1gg,204' 146 M Se-Acetals' esters' 43 O-n".o-ino-f -keto-4-alkenoic I Acetic anhYdride, 55 AcetoxYmethYlglYcosides' 291 acetate' 2{Aceioxymethyl)allyl 342 acids' cx-amino N-AcetYl I 3-Acetyl-2,3-dihydrobenzothiazoles' I Acetylacetonato(dicarbonyl)rhodium' IO-,n"",ytu.lno-2,2,6,6-tetramethylpiperidineI oxoammonium Perchlorate' 355' 443 Acetylation, l, 2, 339' 153' 1-AcetYlcYcloalkenes'378 2-AcetYlfurans, 338 1-AcetYlimidazole' 2 O-AcetYllactic acid, 329 Acrolein acetals,362 292'32O' 330' 385 O"Oii" "t,"tt' 85' 95' 113' 393 enones' 2-allYloxY AcYclic 223 Acyclic 2-hYdroxYketones' Acvl selenides,423 N-AcYl o-aminonitriles'350 226 4-AcYl- 1'3-diox an-2-ones' 2I0 N-Acyl-2'3-dihydro-4-pyridones' 4I 3 ru-,tcYt-Z-trYdroxYanilines' N-AcYlaminoacids,293 251 o-Acylurylmanganesetetracarbonyl'
;;;il;',
4tz o'22s'2e6' el rs, rzr,1"1
2-AcYlbenzofurans,348 N-AcYlbenzotriazoles' 21 I 75 N-AcYlbomane- 10,2-sultams' I -AcYlcYcloPentenes'140 AcYlgermanes,2 AcYlnitroso comPounds' 245 AcYIoin condensation' 343 10 N-AcYloxazolidin-2-ones' 3 208' 340' 3M N-Acytoxazolidinones' 8 1' o-AcYlPhenols,218 I I4 N-AcYlPYrrolidinones' 401 336' 112,242' AcYlsilanes, i,2-Additions' 30 1.4-Additions' 257 Alane,2
328'3'12' 427' 43I' Aldimines'22, 48,| 54' i25' 440 43'7 ' 432,435, s5' s, t4, 24' 2s' 26' 4t' 42' 48' *;;,;, 'Ard;i;;;;", 360' r7o, 1s'7'2o8,, rs'304' 336' 37\38'7 reactions'220 Aldol-Tishchenko 315'339 61,130, Aldoximes, 338 3,5-Alkadien-2-ones' 365 2.4-Alkadienals, 20 1,3-Alkadienes, Alkadienoicesters,129'41I esters'79' 200 2,3-Alkadienoic I 2.4-Alkadienols,4l 18 2 2,3-Alkanediones, 249 Alkenemetathesis' l6 Alkenoicthioesters, 140' 405 "-ii-oin"".ttloomane- l0'2-sultams' 108'174 ,V-arcnoyto*u"olidin-2-ones' AlkenYlaryl ketones'32 383 AltenYl ruifrd"t, 234'239'340' 426 2-AlkenYl-1,3-dioxolanes' 250 endo-5-Alkenyl-2-norbomenes' 242 B-AlkenYl-9-BBN' acids'3' 306 AlkenYlboronic I3 3-AlkenYlcYcloPentYlsilanes' AlkenYlcYcloProPanes' ^443 : AlkenYldihaloboranes' 287 AlkenYlfluorosilanes' 388'389 ,ttt"nYtr,*nun"s' 112'118' 4 AlkenYltitanocenes' 445 reagents' AlkenYlzirconium 193 4-AlkoxY-2-arYlquinolines' -yl)alkynes'222 1 i oin""t-l-O*zotriazolsalts'4 N-AlkoxYamidine 4 hYdrochlorides' N-AlkoxYamine 434 ethers' allYl AlkoxYbenzYl I7 ru-e,fto*V"*Uonyl-3-aryloxaziridines' 30O AlkoxYcarbonYlation' 159 N-AlkoxYcarbonYlation' 17I 1-AlkoxYcarbonYlPYrazoles' 437 AlkoxYcYcloProPanes' 14I AlkoxYmethYlation' 17I AlkoxYoxalYlPYrazoles'
512
Subjectlndex
t-Alkyl acetates,49 Alkyl arenesulfenates,103 Alkyl azides,434 r-Alkyl fluorides,401 3-Alkyl-2-hydroxymethyl-4-trimethylsilylmethylenecycloPentanols,392 2-Alkyl-5-aryloxazoles, 37 I 3-Alkyl-6-hydroxy-2-cyclohexenones, 404 t-Alkylarnines, 5 Alkylation, 5, 12, 14, 20, 21, 29, 32' 52, 63' 66, 70, 79, 80, 81, 108, 120, 149, 161, 162' 1't8' 180, 193,197,201, 213, 217, 218' 222' 242' 258. 270. 302, 309, 325, 326, 329' 331' 336' 344.34s.36'1,378,393, 401, 408' 4r3' 435' 438,439 B-Alkyl-8-aryl- 1,3,2-dioxoborolidines' 258 I -Alkylbenzotriazoles, 412, 438 N-Alkylbis(trimethylsilylmethyl)amines, 4 Alkylchloroboranes, 4 1-Alkylcyclobutenes, 180 Alkyldichloroboranes, 5 Alkylidenation, 376 3-Alkylidene- l -cyclopentenes,109 2-Alkylidene-3-cyclopenten-l-ones' 36 Alkylidenecyclohexadiene tricarbonyl, 268 4-Alkylidenecyclopentenones,245 AlkylidenecYcloProPanes,38, 109 Alkylideneisoindolin- I -ones, 295 Alkylidenemalononitriles, 195' 384 Alkylidenephthalides' 295 Alkylphosphonium salts, 229 3-AlkylPhthalides, 298 N-Alkylsaccharins, 307 Alkylzinc halides,255, 436 Alkylzirconocenes, 226 2-Alkynals, 152 l-Alkynes, 48,'12,84, 120, l2l' 195,2O2'281,
365,369'386,389'416'43r' 283,3s3,363, 445
2-Alkynoicacids,265 '145'411 Alkynoicesters, 2-Alkynoicesters,388 Alkynones,214,292 1-Alkynyldisulfides,354 Alkynyliodides,112,I 19 266 2-Alkynyl-1,3-dithiolanes, alcohols,239 1-Alkynyl-2,3-ePoxY 396 2-AlkynylbiarYls, 139 I -AlkynYlcYcloProPanols, 3 Alkvnvldihaloboranes,
Alkynylmagnesium,29T 2-Alkynyl-N-allyl-N-trifl uoroacetanilides,363 Alkynylsilanes, 118' 306, 3&' 369' 416' 431 1-Alkynylsilanols, 69 Alkynyltrimetfulsilanes' 422 Allenes. 4, 245, 266' 290' 324' 442 Allenic esters,32'7,388 Allenyl benzYl ketones, 240 Allenyl carbinols, 238 AllenylcycloProPanes, 109 AllenylmethYlsilanes, I 26 Allenyltributylstan rrane, 25 Allyl azide, 5 Allyl glycosides, 60, 323 C-Allyl glycosides' 135 Allyl N-acylcarbamates, 199 Allyl o-iodoaryl ethers, 269 Allyl silyl ethers, 34 Allyl sulfones,10,44 Allyl trimethYlsilYl ether' zl4l Allyl P-oxoalkanoates,362 Allyl(butyl)tin chlorides, 9 2-Allyl-1,2-dihydroquinoline carbamates,342 I -Allyl- 1-cYcloalkanols,32 N-Allyl-2,2-dihaloamides' 203 Allylaluminum reagents,5 Allylamines, 263, 288' 326 Allylanilines, 39 Allylation, 7, 9, 10, 25, 2'1,29, 34' 43, 44, 45' 79, 85, I 15, 123,129,169' 195' 196'20r' 335, 342, 356, 363, 373, 376, 37'1, 3'18' 420' 43'7 Allylbarium reagents' 5 N-Allylbenzotriazoles, 288 Allylboron reagents' 6 Allylchlorosilanes, 7 Allylchromium, 112 Allyldicarbonylcyclopentadienyliron, 6 Allyldiisopropyl(phenyl)silane' 440 AllyldimethyltritYlsilane, 8 Allyldi-t-butYlcarbinol' I 0 Allylgallium, 169 N-AllylhYdroxamic acids' 245 O-AllylhYdroxYlamines, I 07 Allylic PhenYlation,37 Allylic transPositions,28, 24'l Allylidenation, 1l 1 O-Allylimidates' 97 Allylindium reagents,6 Allylindiums R:InzIr, 6
3-Allylittd Allylisoxz Allylnngr Allylmagn Allylmang 2-Allylptr Allylsamr Allylsarnr Allylsilar: 169.lt 383.{ Allylstanc 365.3 Allyltitanit Allyltitar Allyltrihr Allyltrichl Allyltrirr Allylzir I AluminaAluminur Aluminur Aluminun Aluminul Amidatic Amidirs Amidinc Aminatio 380.{ 1,2-Amt 1,4-Anin anti-|.2A syn-l,2cis-1-Am 5-Amino N-(FAln Aminoan l-Amim Aminq Amincl l-Amim Aminogl Aminohl Aminqtt 1-Amim Aminon o-Amitx 2-(2-A'r
acala
Aminod
Subjectlndex Sl3 c...i63 t.-l:I
3-Allylindoles, 363 Allylisoxazolidines. 377 Allylmagnesium bromide, 175 Allylmagnesium halides, 273 Allylmanganese, 269 2-Allylphenols, tZ}, 131, 324 Allylsamarium bromjde,7 , 325 Allylsamarium halides, 7 Allylsilanes,7, 8, 13, 44, 50, 57,62,79,85, 169, 182,201,246,293, 327, 342,377.3"t8. 3 8 3 . 4 0 8 ,4 0 9 Allylstannanes, 9, 25, 27, lg8, 21 1, 269. 336. 3 6 5 . 3 7 3 .4 3 t , 4 4 0 Allyltitanium reagents, I 77 Allyltitanocenes, 394 Allyltributylstan nane,9, j 9, 149 Allyltrichlorosilane, g5 Allyltrimethylsil ane,8, 44, 286, 378, 403.4t 1 Allylzinc bromide, l0 Alumina, l1 Aluminum, ll, 12, 14, 70, 311 Aluminum chloride, 12. 70. 3ll Aluminum isopropoxide, l4 Aluminum tris(2,6-diphenylphenoxide), l4 Amidation,212 Amidines, 4, 329, 381, 399 Amidinosulfinic acid. 303 Amination, 53, 60, 81, 122, 127, 158, 255. 347.
!r'. t..::
380,419 I,2-Amino alcohols,213, 266, 326 1,4-Amino alcohols,330 anti-l,2-Amino alcohols,3, g5 syn- I ,2-Amino alcohols, t 95, 22./ 266 , cis- I -Amino-2-indanols, 9l 5-Amino-2-silatetrahydrofuran, I 32 N-(B-Aminoacryloyl)imidazoles, 73 Aminoalkylations, 153, 407 I -Aminoatkylbe nzotrjazoles, 172 Aminocarbonyla non, 294 Aminocyclopropane, 74 l -Aminodihydroisoquinolines, 22 I Aminoglycosides, 33 Aminohydroxylations, 275 Aminomethylati on, 23, 354 I -Aminomethylbenzotriazoles, 435 Aminomethylsamarium, 329 o-Aminophenol, 85 2-(2-Aminophenyl)acetaldehydedimethvl a c e r a l , 1 5 .1 8 7 Aminophosphonic acids, 397
2-Aminoquinolines, 3gl 2-Aminosugars, 33, 260 Ammonia,11,53,343,435 Ammoniumacetate,15 Ammoniumformate,16, 290.361 Ammoniumnitrate,16 Anatoxin-a,294 1,2-Anhydropyranosides, 159 2-Anilinotetrahydrofu rans,441 2-p-Anisylmethoxymethyl-5,6_dihydro_ 1,4dithiin,64 N-(p-Anisylmethyl)amines, 137 Annulation, 9,384,416 Antimony,16 Antimony(V)chloride,16 2-Apoisopinocampheyldihaloboranes, I gg Arenecarboxylic acids,I l5 Arenediazonium o-benzenedisulfonimides, 240 Arenediazonium salts,19,291,297 4-Arenesilfi nyl-p-sultams, 396 Arenesulfi nylmethylenetriphenylphosphoranes, 3-Arenesulfonylacrylic esters,3g6 3-Arenesulfonyloxyalkyl iodides,393 AromaticClaisenrearrangement, I 64 lV-Aroylindoles, 234 Aryl azides,260,325 Aryl bromides, 36,3'/,42, 58,7./,123,2gt.2g5 Aryl cyanides,349 Aryl ethers, 37, 42,77, lU, 222 Aryl fluorides, 361 Aryl iodides,37,58, I t9, 2ffi, 295,361,366. 421 Aryl isothiocyanates, l3g Aryl kerones, 37, 43,55,l 89,290,283,37l. 376,384,405 Aryl mesylates,240 Aryl transfer,28. 135 Aryl(diphenyl)silanes, 77 Aryl(iodoaryl)iodonium triflates,430 l-Aryl- 1,2,3,4{etrahydroisoquinoline, 79 5-Aryl-1,2,4-oxa diazoles,299 7- Aryl-1,2,5,6dibenzocycloheptadien-7-ylium hexachloroantimonates, 3g7 2-Aryl-1,3-butadienes, 364 I -Aryl-2-(dimerhylaminomethyl)_2_propenI_ ones,301 2-Aryl-2,3-dihydro-4-pyridones, 432 3-Aryl-2-alkynols,27
Subject Index
Arylamines, 5, 19,22,35,36,76, ll7, 138,142, Azidonation,20l Azirenecarboxylic esters,204 150,253,260,312,346,349,419,434 Aziridine-2-carboxylic esters, 162, 346, 374 2-Arylarylicesters,37 Aziridines, 52, 76, | 03, 122, 134, 162, 266, 3 46, S-Arylation,290 3 7 4 , 3 8 5 ,4 3 2 Arylations,1, 3'1,42, 117,120,121,258,288, N-Aziridinylimine, 392 290,291,293,296, 419,421 2,2'-Azobis(isobutyronitrile, 162, 391, 415 Arylboronicacids,1, 17,28, 117,229,284, Azodicarboxylic esters, 128 295,299,363,364,366 Azomethine ylides, 209 Arylboronicacids,58, 135,218,229 I60 I -Arylcycloalkenes, 215 l -Arylcyclobutenes, Raeyer-Villigeroxidation, 18, 51, 107 esters,95 Baker-Venkataramanrearrangment,274 tans-2- Arylcyclopropanecarboxylic 328 Barbier-typereaction,16. 45,212, 372 2-Arylcyclopropanols, 422 Barium hydroxide, I 8 Arylethynylsilanes, esters,387 Barium perchlorate, I 8 2-Arylidenesuccinic I 38 1,2,3-dithiazoles, Barium permanganate,18 5-(N-Arylimino)-4-chloroBaylis-Hillman reaction,86, 128, 145,167, 185, 418 3-Arylindoles, 264,284,379 N-Arylindolines, 312 g-BBN, 52, 142,242, 295, 364 226 l -Arylisochroman-3-ones, Beckmann fragmentation, 142 l7 Arylleadtriacetates, Beckmann rearrangement,12, 58, 379 3-Arylmethyl-3-methyl-2,3-dihydrobenzofurans, Benzamides,61,'70,72, 105,263, 303 290 bromide, I 9 293 Benzeneselenenyl I -Arylnaphthalenes, chloride, l9 l7 Benzeneselenenyl 3-Aryloxaziridines, Benzeneselenenyltriflate, 20 3I 6 N-Aryloxazolidines, Benzeneseleninicanhydride, 20 393 3-Arylpropanols, Benzeneselenomethoxylation,I 9 2-Arylpropionicesters,30 271 Benzenesulfenyl trifl ate, 20 I -Arylpropynes, 20 l -Benzenesulfbnyl-4{rimethylsilyl-2-butene, l -Arylpyrazoles, 280 1,3-dioxolanes,I 29 4-Benzenesulfonylmethyl2-Arylpyridines,287 268 Benzenesulfonylmethyllithium, Arylpyruvicacids,351 vic-dibromides, 194 Benzenethiol, 20 Aryl-substituted B e n z i l s ,1 0 9 , 3 3 8 364 3-Arylsulfolenes, 42 Benzimidazoliumdichromate,2 I N-Arylsulfoximines, 386 Benzocycloalkenes, Asarinin, 318 405 Benzocyclobutenones,226 Asymmetricdipolarcycloadditions, 43, 70, 90 Benzofurans,295,406 Asymmetrichydrogenation, Benzophenanthridines,289 induction. 55 1.2-Asymmetric 339 Benzophenones, induction,135,325,43'7 1l,3-Asymmetric Benzopyran,140,324 induction,132 1,5-Asymmetric 42 2H-l-Benzopyrans,3T Asymmetricprotonation, reactions, 4l Benzoquinone, 293 AzaDiels-Alder p-Benzoquinone monoacetals,409 I I 0, 266,441 I -Aza-1,3-alkadienes, p-Benzoquinones,156,210 Aza-Wittigreaction,402 Benzothiophene,343 Azetidines,19,126,326 402 I H-Benzotriazol- I -yl mesylate, 2l l -blquinazolines, Azeto[2, 1I -(Benzotriazol-I -yl)-3-(diphenylphosphoryl)343 1,2-Azidoalcohols, ethoxy- I -propene, 64 343 c is-l,2-Azidohydroperoxides, Benzotriazol-1-ylmethylamines,329 126 3-Azido-1,2-diols, Benzotriazol- I -ylmethyl isocyanide, 22 402 N-(o-Azidobenzyl )azetidinones,
Benzotnazo tosr lhld Benzotriazo Benzotriazo phospho
Benzotriazo
Benzotnazo
1-(l-Benzo
395 Benzotriazd
Benzotnflr.n
1,2-Benzow
Benzovl hrd
N-Benzorl o
N-Benzor'l-{ chloride
O-Benzollh O-BenzrI rtr
183 Benzyl aceu
Benzyl ethcr Benzyl N-th
23 Benzyl rlen
O-BenzrlS-
N-Benzr'l-.1 pyridir. l -Benzr'l-Sr borohr rt Benzylamrr
Benzylaricn.
C-Benzrlauc N-BenzrIcrn
O-Benzrlhrd 4,6-Benzlhd Benzyliderrr
N-Benzl lorr, N-(Benzrlol 85 N-Benzr lquu
N-Benzylsul
Benzyltriethr
Beryllium ctr I,l'-Bi-2.1'-o complerc 1,1'-Bi-2.1' 1,1'-Bi-2.1' l,l1Bi-2.1'-
1,1' -Bi-l.t'-o
Subject Index
. . . . _. . l t ) - l \ . r.rcr\. 162,346,314 1 : tt. l-34,162,266,346, j ' -
:rle.162,391,415
i: lr-.
.:..
lS
u ' : r .18 .5 1 ,1 0 7 274 1- --.::rrn$ment,
ti: -
\ 6 . 1 2 81 , 6 7 1, 8 5 , , 4 51
r'
1: - .i. 16'+ r:-. :r.l-12 . 8 ,3 7 9 ! r ' . : r 11. 2 5 -: 05. 263,303 i tv .ic'.19 ;:
- .tc. l9
r"..',. l0 1 ' - . - : : r J c '2. 0 l r ' . . . r l r o nl .9 t : ' . . : - 'l l ) --.1 ::rrcthvlsilyl-2-butene, 20 r ' . ' : . I ' l . . l - d i o x o l a n e s1,2 9 . 68 c ' ' . : t h i u m2
l-
' ltatc.2l
D(- llh a . f:,r .
-.']
Benzotriazol- 1-ylmethyl ketone tosylhydrazones,63 Benzotriazol- 1-ylmethyl methyl sulfide, 63 Benzotriazol- I -yloxytri s(dimethylamino)-
1,1' -Bi-2,2' -naphthol monomethyl ether barium complex, 25 4.4'-Bi-3.3'-dibenzofur anol. 24 1,1'-Bi-8,81naphthol,87
phosphonium hexafluorophosphate,22 Benzotriazole, 2l, 63, 123, 296, 329, 412 Benzotriazolyl, 329, 395 1-( I -Benzotriazolyl)-2{rimethylsilylethylarenes,
Biaryl ethers, 309 Biaryls, 17, 28, 37, 257, 27O
395 Benzotriazolylmethyl, 329 Benzotrifluoride, 22 I .2-Benzoxazoles. 4 13 Benzoyl hydrazones,335 N-Benzoyl o,-arylglycines, I 7 N-Benzoyl-4-(dimethylamino)pyridinium chloride, 22 O-Benzoylhydroxamates, I 30 O -Benzyl (bismethanesulfonyl)formaldoxime, 183 Benzyl acetates,233 Benzyl ethers, l, 63, 224, 230, 280, 316 Benzyl N-(benzotriazol- I -ylmethyl)carbamate,
nenllt seteniaes, +oa O-Benzyl.!-propargyl dithiocarbonate,23 N-Benzyl-3-2-toluenesulfi nyl- 1,4-dihydropyridine,9l l -Benzyl-4-aza-l-azoniabicyclo[2 .2.2loctane borohydride, 22 Benzylamines, 3, 248, 263, 303 Benzylation,133, 241, 238, 398 C-Benzylation,238 N-Benzylcinchoniniumchloride,303 O-Benzylhydroxamides, 4I3 4,6-8enzylidenesugars,3l I Benzylideneimines,328 N-Benzyloxycarbonylphenylserine, 275
lu
N-(Benzyloxyiminoacetyl)-bornane- I 0,2-sultam, 85
. i -
N-Benzylquinidinium fluoride, 93 N-Benzylsulfonyl-1,2-dihydroisoquinolines, 254
I r. l{'
--ltals.2109 -.ll
li
-r r' t,r
r''L -
: . r l a t e .2 l .:rphenylphosphoryl)-l'-:
. , r r t i n e s3,2 9 :.rrcranide,22
Bicyclo[3.2.1]octene,409 Bicyclo[3.3.0]octan-3-ones, 205 '
B I N A P , 4 0 , 4 1 , 4 2 , 4 3 , 2 8 ' t, 4 1 9 B I N A P - A g O T fc o m p l e x . 4 .3 BINOLS. I I 2,2lBipyridinium chlorochromate, 107 2,2' -Bis(\,3,2-benzodioxaborole), 29 Bis( 1,5-cyclooctadiene)iridium(I) hexafluorophosphate,34 Bis( 1,5-cyclooctadiene)nickel(0),34 Bis( l ,5-cyclooctadiene)rhodiumsalts, 35 Bis(3,4,5-trifl uorophenyl)borinic acid, 47 Bis(acetonitrile)(1,5-cyclooctadiene)rhodium(I) tetrafluoroborate.28 Bis(acetonitrile)dichloropalladium(II), 28 2,3-Bis(acetoxymethyl)1,3-butadiene, 323 2,3-Bis(acetoxymethyl)bicyclo[2.2. I ]hepta-2,5diene,2l I 1,2-Bis(alkylthio)acetylenes,222 Bis(allyl)dichlorodipalladium, 29 o-Bis(allyldimethylsilyl)benzene, 7 1,8-Bis(allylstannyl)naphthalenes, 9 1,2-Bis(benzenesulfonyl)alkenes, 98 1,3-Bis(benzenesulfonyl )allene,29 Bis(benzonitrile)dichloropalladium(II), 30 Bis(benzotriazolI -yl) selenide,3 I Bis(benzotriazol-l -ylmethyl)amines,329
1.2-Bis(benzylthio)acetylenes, 200 Bis(benzyltriethylammonium) tetrathiomolybdate, 3I B i s(bromozincio)[organodimethylsilyllmethanes,
Benzyltriethylammonium tetrathiomolybdate, 23 Beryllium chloride, 23 1,1' -Bi-2,2' -naphthol - gallium-lithium complexes,24 l,l' -Bi-2,2' -naphthol - lanthanide complexes, 25 1,1' -Bi-2,2' -naphthol - titanium complexes, 25
B i s1bromozinciomethyl)zinc-tetrahydrofuran complex, 3l Bis(chlorodibutyl)tin oxide, I 34 Bis(dibenzylidene)palladium(0), 36 Bis(dicarbonylcyclopentadienyliron), 39 B i s(dihydroquinidine)iodine(I) tetrafluoroborate, 86 1,4-Bis(dihydroquininoxy)anthraquinone,275 Bis(diisopropoxyaluminum), I 50 I, l -Bis(dimethylamino)-2,2,2-tnfl uoroethane,
|,l' -Bi-2,2' -naphthol - zirconium complexes, 27 1,1' -Bi-2,2' -naphthol (BINOL), 24
1,2-Bis(dimethylsilyl)benzene, 40
39
516
Subject Index
4l 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl' zl4 1,2-Bis(diphenylphosphino)ethane, 292 1,4-Bis(ethoxycarbonyloxy)-2-butyne' ul4 Bis(fl uorosulfonYl)imide' Bis(iodozincio)methane, 4 I 8 Bis(methylenebutanedioic esters,292 32 Bis(N-t-butylsalicylaldimato)copper(II)' Bis(pentafluorophenyl)borinic acid' 47 48 Bis(pentafluorophenyl)tin dibromide' B is(pentamethylcyclopentadienyl)dimethyluranocene,48 49 Bis(pentamethylcyclopentadienyl)samarium' 1,3-Bis(phenylthio)-I -alkenes' 383 Bis(pinacolato)diboron, 29, 295, 369 -propene' 369 2,3-Bis(pinacolatoboryl)- 1 47 phosphorazidate' Bis(p-nitrophenyl) 49 uoroborate' tetrafl Bis(pyridine)iodine(I) Bis(sym-collidine)iodine(I) salts' 33 Bis(t-butyldimethylsilyl) telluride' 32 2,5-Bis(trialkylsilyl)thiophenes' 57 3,3-B is(tributylstannyl)allyl methoxymethyl ether, 287 3.3-Bis(tributylstannyl)propyt methoxymethyl ether.49 Bis(ributYltin) oxide, 50 Bis(trichlorostannyl)vinyl'375 375 2,2-Bis(trichlorostannyl)vinylation' esters' 376 Bis(trifl uoroethoxy)phosphonoacetic I ,2-Bis(trifluoromethyl)alkenes' I 2 I Bis(trifl uoromethyl)benzophenone'50 4,4'-Bis(trifl uoromethyl)benzophenoneoxlme O-mesYlate'50 I 88 2,2-Bis(trifl uoromethyl)oxazolidin-5-ones' Bis(triflYl)imide' 50 404 MN-Bis(trimethylsiloxy)enamines' Bis(trimethylsilyl) ketene acetals' I 85 Bis(trimethylsilyt) peroxide' 3O2' 31'7 Bis(trimethylsilyl) peroxide' 5 I 378 1.8-Bis(trimethylsilyl)-2,6-octadiene' 50 N, O-Bis(trimethylsilyl)acetamide, 3,4-Bis(trimethylsilyl)thiophene' 199 Bis(trimethYlsilYl)urea, 50 I 18 2,3-Bis(trimethylstannyl)-2-alkenoic esters' 375 Bis(trimethylstannyl)vinyl' Bis(triphenylphosphine) complex' 317 5I Bis(riphenylphosphine)ruthenium dichloride' 5I B is(triphenylphosphine)trichlorooxorhenium' Bis(triphenylstannyl) selenide' 5 I Bis(n-crotYl)nickel bromide, 34 32 Bislchloro( 1,5-cyclooctadiene)rhodiuml'
Bis[dicarbonylchlororhodium(I)]' 38 Bis-cinchona alkaloid, 275 BisalkoxYcarbonYlation,298 82 cis- 1,4-Bisbenzoyloxy-2-cycloalkenes' 297 1,2-Bismetallomethylenecycloalkanes' Bismuth, 44, 45' 46' 4'7' 398 Bismuth(Ill) bromide' 44 Bismuth(Ill) chloride, 45 Bismuth(Ill) mandelate' 46 Bisrquth(Ill) nitrate, 46 Bismuth(Ill) tifTate, 47 ,398 Bisoxazoline, 88' 89 Bissulfonamide' 79 gem-Bissulfones' 224 i,l'-(Bis-t-butylphosphino)ferrocene' vic-BisthioisocYanates,73
36
uoromethanesulfonyl)imide' 403
Bis(trifl Bis-r-allYlPalladium comPlex' 86 BnO,2'7 Boc carbamates'230
Bromohldnnr Bromornethdr Bromomethll I 2-Bromorrnhy l-Bromopopr N-(3-Bromopn o-Brommtilba N-Bromosuccu Bromotrichlcrr Bronsted rdr BSA,50
r-Bul-i-FIMP.r 1,3-Butadicr2,3-Butadiern 3-Buten-l -ylh
N-Boc hYdrazines,60 N-Boc PYrrolidinones' 145 N-Boc-arenesulfonamides,229 1lnonane,52 9-BorabicYclo[3.3. Borane,52, 53 Borane-amines'53 Borane-dimethYl sulfide, 53, 54 Borane-N-trimethylsilylmorpholine' Bomane-10,2-sultam,144
N-(o-Bromc: 1-Bromoadarnr 2-Bromoallern Bromoalkencs. 1-Bromoalketr o-Bromoa4l alJ 2-Bromobenzal Bromoethenfic Bromoform. 5t
53
Bomanesultam, TS, 80 345' Borohydride, 1l, 22, 12'1,256' 33"1'344' 346,3'16,438 Boron tribromide, 54 Boron trichloride, 54 Boron trifluoride etherate' 55 Brevetoxin,250 Bromamine-T,57 '12' 131' l5'7'3O2'347 ' Bromination,33, 57, 58, 400,438 Bromine,5T 2-Bromo- 1,(n-I) -dienes,442 4I5 3-Bromo- 1,1' 1-trifluoroacetone' 1-Bromo- I -alkenYlboranes'390 5-Bromo-2,4-Pentadienal,365 l-Bromo-2-alkoxYalkenes, I I I 2-Bromo-2-ProPenol,68 -propene' 195 3-Bromo-3,3-difluoro- I 165 1-Bromo-6,6-diphenyl-5-hexene' 275 N-Bromoacetamide, N-Bromoacetyl oxazolidinones' 329
3-Butenal.-11 3-Butenamr& 2-Butene-1.& 3-Butenethioe Butenolides. l
2-(3-Butenl| t 3-Butenylclcl t-ButoxYcart N-t-Butoxlcr N-(t-Butoxlt: oxazindrn N-(t-Butox)c: oxazindo N-t-Butoxlce sulfonarn N-t-Butoxlc. ,-Butoxyflud rButyl (o
t-Butyl 4.+br butenotc ,-Butyl esters r-Buryl hy&o r-Butyl h1&r
Butyl isocla FButyl rncth
Subject Index
N-(cr -Bromoacyl)oxazolidin-2-ones, 79 l-Bromoadamantane, 280, 302, 436 2-Bromoalkanols, 231 "!'\. 82 f-\ Lr-::lcr. 197
Bromoalkenes, 313 1-Bromoalkenes,72, 389 o-Bromoaryl alkynyl ketones, 350 2-Bromobenzaldehydeisoindolinones, 298 Bromoetherifi cation, 59 Bromoform,53 Bromohydrins,117 Bromomethacrylic acid, 234 Bromomethyl ketones, 1l I
F . . a : l e. , 3 6 Lit..:.. -103
2-Bromomethyldihydrobenzofuran, 13 I l-Bromopropadiene, 41 1 N-(3-Bromopropyl)imines, 392
(.
s-: h. rc.5-l
! : : - . - 1 . 1 .314, 5 ,
157.302,347,
r-.-:.i5 is
ri
: p . . . ^ r1 9 5 tl-:165 oc. r19
30 N-t-Butylamides, 132 4-r-Butylcalix [4]arene, 27 Butyldichlprotin diisopropylamide, 389 5-(/-Butyldimethylsiloxy)-2-cyclohexenone, 265 1-t-Butyldimethylsiloxyallene, 69 t-Butyldimethylsilyl chloride, 61 l -r-Butyldimethylsilylallenoxide, 69 Butyllithium, 62, 65, 66 s-Butyllithium, 67
N-Bromosuccinimide. 58, 4 I 2 Bromotrichloromethane, 59
t-Butyllithium, 68 Butyllithium * lithium
3-Butenal,372 3-Butenamides,T 2-Butene-I ,4-diyl glycosides,323 3-Butenethioamides,7 Butenolides. 74, 206, 219, 223 2-(3-Butenyl)ph enol, 324 3-Butenylcyclopropanes, 196 /-Butoxycarbonyl azide, 2M N-/-Butoxycarbonyl groups, 360 N-(t-Butoxycarbonyl)-3-(p-cyanophenyl)oxaziridine,60 N-(r-Butoxycarbonyl)-3-trichloromethyloxaziridine, 60
l:
t-Butyl N-diphenylmethyleneglycine, 302 l-Butyl nitrite,70 t-Butyl sulfinamides, 93 N-t-Butyl(o-iodobenzylidene)imines, 287 1-Butyl-3-methylimidazolium salts' 70 I -Butyl-3-methylimidazolium tetrafl uoroborate,
o-Bromostilbenes, 285
Bronsted acidity, 9 BSA,50 t-BuLi-HMPA,69 I ,3-Butadien-2-ylmagnesiumchloride, I 74 2,3-Butadienoates,89 3-Buten- 1-ylboron, 255
N-t-Butoxycarbonyl-N-(2-trimethylsilyl)ethylsulfonamide,413 N-FButoxycarbonyloxaziridines, 60 FButoxyfluorination, 62 t-Butyl (o-cyanobenzylidene)amino carbonate,
60 tButyl 4,4-bis(p-dimethylaminophenyl)-3butenoate,302 t-Butyl esters,232, 259, 3ll t-Butyl hydroperoxide, 61 r-Butyl hydroperoxide * metal salts,6l Butyl isocyanate- t-butyl isocyanide,62 t-Butyl methanesulfonyloxycarbamate,70
517
2-dimethylaminoethoxide, 65 Butyllithium - N,N,N"N"Nlpentamethyldipropylenetriamine, 65 Butyllithium - N,N,N?V'tetramethylethylenediamine,66 s-Butyllithium - N,N,N?g'-tetramethylethylenediamine.6T Butyllithium - MN,N?r''-rctramethylethylenediamine.(TMEDA),66 Butyllithium - potassium rbutoxide, 65 Butyllithium - sparteine,66 .s-Butyllithium - sParteine,67 I H)-one' I -(t-Butylperoxy)-I ,2-benziodoxol-3(
'to
l -ones,70 4-(rButylperoxy)-2,5-cyclohexadienButylstannonicacid, 7l r-Butylsulfinamides,107 r-Butylsulfinyl chloride,71 Butyrolactones,19, l'70,314,330' 331' 408 Calcium hypochlorite, 72 Camptothecin, 145 cAN.6,73,74 Carbamoyl chlorides, 415 Carbazides,204 Carbinarnines,7 Carboalumination, 443 Carbodiimides, 154, 33'7 Carbomethoxypropionyl cyanide, 72 Carbon monoxide, 36,'12, 283, 292' 293' 294' 298. 300, 366,425 Carbon tetrabromide, 72, 412
518
SubjectIndex
Carbonyl deprotection, 425 C-Carbonylation, 420 Carbonylative coupling, 366 1,1'-Carbonylbis(benzotriazole),73 1,1'-Carbonyldiimidazole, 73 Carbonyl-ene reaction, 336 o-Carborane,73 Carboxylic acids, 15, ll4, 313, 350, 362 Carboxyphosphonium salts, 22 3-Carboxypyridinium chlorochromata, 73 Carbozirconation,242 Catecholborane,86 Catechols,55, 93, 97, 419 Cerium(III) chloride, 173, 437 Cerium(III) chloride heptahydrate,75 Cerium(IV) ammonium nitrate, 73 Cerium(IV) oxide - ruthenium(Ill) chloride, 75 Cerium(IV) triflate,75 Cesium acetate,76 Cesium fluoride, 77 Cesium trifluoroacetate, 78 Cetyltrimethylammonium halides, 302 Cetyltrimethylammonium permanganate,78 Chalcogens,146 Chloral,27,60 Chloramine-T,81, 103, 122 Chlorination, 103, 123,350 Chlorine, 103 Chloro( 1,5-cyclooctadiene)cyclopentadienylruthenium(I), 104 Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium(I), I 04 l -Chloro-1,3-dien-5-ols,22 1 chloride, 2-Chloro-1,3-dimethylimidazolinium t05 I -Chloro-2-alkanols,404 4-Chloro-2-butenyl benzyl ether, I 95 I -Chloro-3-tributylstannyl- I -propene, 2 I I I -Chloro-4,5-epoxy -2- alkenes,221 3-Chloro-4-hydroxy-2-cyclopentenones (p,p-dichloroacryloyl)trimethylsilane, 309 l-Chloroalkynes,I l8 Chloroallylation, 146 Chloroaluminum borohydride, I M Chlorocyclohexane, 107 Chlorodifl uoromethyl ketones,36 1 Chlorodimethylsilane, 197 Chlorohydrins,85,404 Chloroiodomethane, 105 s-Chloroketones, 16, 439
Chloromethyl phenyl sulfoxide, 106 Chloromethyl(dimethyl)sulfonium trifl ate, 106 1-Chloromethyl-4-fl uoro- 1,4-diazabicyclo[2.2.2)octanebis(tetrafluoroborate), 106 2-Chloro-N,N-dibenzoylaniline, 105 N-Chloronicotinamide, 103 n-Chloroperoxybenzoic acid, 106 2-Chloropyridine, 108 3- Chloropyridines, 35 Chloropyrroles, 108 3-Chloropynoles,108 N-Chlorosuccinimide, 108 Chlorotris(triphenylphosphine)rhodium(I), 108 2H-Chromenes, 303 Chromium(Il) acetate, 109 Chromium(Il) chloride, 111, I l3 Chromium(Ill) nitrate, I 14 Chromium(IV) oxide, 1l4 Chromium-carbene complexes, I l0 Chromocene,115 Cinchona alkaloids, 94 Cinnamyl sulfides,3 l2 Cinnamylglycines,l7 Claisen rearrangement,97, 236, 264, 269 Co(II) porphyrin, I l6 Cobalt([) acetate,I l5 Cobalt(Il) acetylacetonate,I l5 Cobalt(II) bromide, 270 Cobalt(Il) chloride, I l5 Cobalt(Il) porphyrin, 1l6 Collidinium triflate, I l6 Conjugateadditions,| 4, 123, l'74,'197, 225,
2&,333,407 Conjugateddienes,158, 176,297 Conjugated isonitriles, 222 Conjugated trienes, I I I C o p p e r ,4 1 , 5 0 , l 1 6 , l l 7 , 1 1 8 , 1 2 0 ,1 2 1 ,1 2 2 , 206,266 Copper acetylides, 407 Copper(I) 2+hienylcarboxylate, 122 Copper(I) bromide, 118 Copper(I) chloride, I l8 Copper(I)cyanide, 120 Copper(I)iodide, 120, l2l Copper(Il) aceta,te,1l7 Copper(Il) acetylacetonate,1l7 Copper(Il) Copper(Il) Copper(Il) Copper(Il)
chloride, 120 fluoride, 295 nitrate, 121, 206 pivalate, l2l
Coppettr Coppertr Coppcrttr Corey-\r Coupling 287.2 CrossCal 15-Crou l8-Crosl Cumerrch Cumuler Cumylhy C-Cyana N-(a{1r l-Cyanoh 2-Cyalc, Cyanotrld 3-Cyanq 2-Cyancn Cyanuricr Cyanurk I Cyclizari Cycloalb 2-Cycloa Cycloalka Cycloalta Cycloalta Cycloalla Cycloalky Cyclohnr Cyclobutr Cyclobur Cyclobuu Cyclaart Cyclofinr Cyclohcpr I,zt-Cycld 1,3-Cycl Cycloheu 1,2-Cycl 1,3-Cycl 1,4-Cycld 2-Cyclohr Cyclohcra 2-Cyclohc Cyclohcxy Cycloison 1,5-Cyclo Cyclopcn Cyclopcrr
Subject Index
i l : , . r c .1 0 6 ' r r u m t r i f l a t e ,1 0 6 l\: Jrazabicyclor u-." . ,roborate),106 r l : _ . : : l c ' 1. 0 5
28'7,293,358,418,428 Cross Cannizzaro reactions, I 8 15-Crown-5,350 18-Crown-6,72,'16, 2l l, 215, 303
r .,- .:. 106
l
.
c*: : r.rhodium(l), 108
'
.., ir3 rt'. I l0
: .- 116.264,269
I
Copper(Il) sulfide, 121 Copper(Il) tosylate, 122 Copper(Il) tnflate,122 Corey-Nicolaou method, 106 Coupling reactions, 29, | 18, 1'76, 194, 27O, 283'
. 318,4l'7 Cyclopropanecarboxylic esters,3 l0 Cyclopropanolactone, 77 Cyclopropanols, 139, 140, 171, 2'73, 330
C-Cyanation, 123 N-(o-Cyanoalkyl)sulfonamides, 2 1 l -Cyanobenzotri azole, 123 2-Cyanoethyltriethoxysilane, 339
Cyclopropenes, 6 Cyclopropylamines, 178 Cyctopropylboronic esters,282 Cyclopropylcarbinols. 84. 445
Cyanohydrins, 44, 46 3-Cyanopyridine, 248 2-Cyanothiophene,285 Cyanuric chloride, 124 Cyanuric fluoride, 124
Cyclopropyliden ation, 219 Cyclopropylphosphine oxides, 125 Cyclopropylsilanols, 143 Cyclopropylstannanes,178
Cyclization-rearm Eement,244 Cycloalkanecarboxylic acids, 37 I 2-Cycloalkenamines, 5 I
Cycloalkenyldibromoboranes, 54 Cycloalkenyltributylstannanes,54
l' L . ' - .
t1/
lO1
-s.291
J.
--l
:
:
-
'.r. 120,121,122,
f a---' rrlate. 122
t.l
))\
l
1t'l
Cyclopentenes,28, 388 2-Cyclopentenone, 139, 154, 2'l 1, 3W, 441' 443 251, 383 Cyclopentenones, Cyclopentylsilanes, 440 Cyclopropanation,56, 95, 143,282, 301, 310'
Cumene hydroperoxide, 93 Cumulenes,24l Cumyl hydroperoxide, 78
Cycloalkenes, 109 Cycloalkenones,50,88 f:,:...15
Cyclopentannulation, 88 2-Cyclopenten- 1 -Yl benzoate, 94 Cyclopentenecarboxylic esters,89, 388
L-Cystine,92 DABCO. 128. 140,zffi,282 Dammarenediol-II, 242 DAST, 142 DBU. 47, 59, 85, 107, 129, 130, 149,223, 260, 26t. 302. 436
Cycloalkynes, 424 Cyclobutanols,l7l Cyclobutanones,110, l7l Cyclobutenes,180,265
DDQ, 137 Deacetalization,403 Deacylation,340 Dealkoxyc arbonylati on, 223 Deallylation, 136, | 44, 289
Cyclobutenetricarboxylic esters,4 I 2 Cyclocarbonylation, I 33 Cyclofunctional ization, 37 Cycloheptenes, 109 1,4-Cyclohexadiene,205, 384, 385 1,3-Cyclohexadienes,237, 282, 293
Deamination.zffi,361 Debenzotriazolylation, 2 I 2 Debenzylation, 58 Debrominative cyclization, 68 Decarbonylation,7 , 182, 27'l , 38'1' 39O Decarboxylative dimerization, 239
Cyclohexane,lU,254 1,2-Cyclohexanedione,290 1,3-Cyclohexanedione, 72 1,4-Cyclohexanedione,2 I 6 2-Cyclohexenols, 202 Cyclohexenones,3O5,345, 393 2-Cyclohexenones,23, 167, 219, 345, 408 Cyclohexyl chlorof ormate, 1'24 Cycloisomerization, 28 1,5-Cyclooctadienes,2O'1, 322
Decomplexation, 352, 358 Deesterification, 3 13 Defluorination, 1I Dehalogenation,32, 51, 390 1,4-Dehydration, Zl I ,2-Dehydro- I -aminophosphonates,379
Cyclopentadiene,89 Cyclopentaneaceticesters,333
Demetalloiodination, 179 Dendrimers,2ll
Dehydrobromination, 3 I 3 Dehydrogenation, 5'7, 59, 2M, 282, 324 2,3-Dehydroglycosyl hydroperoxides, 188 Dehydro-o-amino acids, 4l I
520
Subject Index
De-N-sulfonYlation, 304 De-O-acetylation,181 De-O-benzYlation,224 De-O-methylation, 227 Deoximation,1I, 114,234' 251 Deoxygenation,158, 171, 189,U0, 3ll, 372' 390, 414,442,445 2-Deoxyglycosyl trichloroacetim\dates,225 2-Deoxy-cr-glYcosides'54 Deprotection, 12,20"12,23O,3O4' 39'1, 401 Deracemization,79, 2l I DeselenenYlation,392 Desilylation, 154,215, 357' 422 Desilylative amination, 162 Dess-Martin Periodinane' 338 Destannylative acYlation,420 Destannylative alkYlation' 420 Desulfonylation,21' 229' 381 Desulfurative silYlation, 383 Desulfurization, &, 255, 342' 415 Dethioacetalization, 35 I Deuteration, 343 O,O'-Di(2-pyridyl) thiocarbonate, 159 1 , 1 - D i a c e t a t e1s7, 0 '3 3 6 gerr-Diacetates, I 1,4-DiacetoxY-2-alkenes'I 20 323 1,4-DiacetoxY-2-butYne, 26 MN-Diacetyl-2-trifl uoromethylaniline, 1 Diacetylarenes, 18 2,6-DiacetYlPYridine,I 8 332 cis-1,2-DiacYlcYclobutanes, N,N - DiacYlhYdrazines,57 N,N'-DiacYlhYdrazines,306 1l,4-Dialkadien-2-ones,322 322 1,2-DialkenYlcYclobutanes, Dialkyl 2-alkenylphosphonates,I 26 Dialkyl disulfides,325 Dialkyl PhosPhonates,I I Dialkyl selenides,337 1,I -DialkYlalkenes,340 Dialkylaluminum chtoride, 108' 126 I -(Dialkylaminomethyl)benzotria zoles' 12'7 N, N-DialkYlanilines, 53 2,3-DialkYlanthraquinones,359 g e n - D i a l k Y l a t i o n1. 8 0 . 1 9 6 N,N-DialkYlbenzamides,72 N,N'-Dialkylcarbodiimides, 284 N,N-DialkYlhYdrazones,56 Dialkylselenium dihalides' 127 Dialkyltin dichlorides' 127
N,NlDialkylureas, 154 MN-DiallYl-2-iodoaniline' 269 Diallylation, 297 Diallylcarbinamines, 7 Diallylcerium chloride' 14 Diallylsilane, 8 1,2-Diamines,133, 160' l'71, 325, 328' 3'17 syn-1,2-Diamines,328 2,3-Diaminoesters,90 29 1,4-Diamino-2-butenes, MN-DiaroYlhYdrazines, 30 I Diaryl ethers, 123 Diaryl ureas,434 1,2-Diaryl-l,2-diaminoethanes' 2 I 3 2,4-Diaryl-2,3-dihydro- 1,5-benzothiazepines'I 1-ol, 287 3,3-Diaryl-2-ProPen395 1.2-Diaryl-2-ProPenones. 21 1,3-Diarylacetones' 3,3-Diarylacrylamides' 38 1,1-Diarylalkanes'309 I , I -DiarYlallenes,27 I 78 1,3-Diarylallenes, vic-Diarylation,282 DiarylchloroPhosPhines,258 20 1,2-Diarylethanes, 285 9, 1O-Diarylidene-9,10-dihydroanthracenes' Diaryliodonium, 29, 236' 293' 366 Diaryliodonium salts, 29, | 13' 236' 293' 364' 366 Diaryliodonium triflates, 398' 430 Diarylmethanols'2l' I 13 Diaryltelluriums, 255 3,4-DiarylthioPhenes, I 99 1,4-Diazabicyclo[2.2.2)octane,128' 438 129' 301 1,8-Diazabicyclo[5.4.0lundec-7-ene, 2-Diazo' l,3 -cyclohexanediones,3 I 9 Diazoacetic ester, 5 1, 2'72' 31O,385 N-(cr-DiazoacYl)amides,3 I 9 Diazoalkanes, 94, 134, 323 2-Diazocyclohexane-I '3-diones, 3 19 DiazodicarboxYlateester, 8 I Diazotization,19,70 DIBAHL, 145,411 DibenzoYl Peroxide' 130 DibenzYlamino ketones, 22"1 cls- 1,2-Diborylalkanes, 29 vic-Dibromides,313 4,4-Dibromo-3-methylpyrazol-5-one' 13 1 2,6-Dibromo-4-methoxyaniline, 64 131 1.3-Dibromo-5,5-dimethylhydantoin'
1,3-Dbrt 6,6'-Dtrt gem-Dth
Dibmnn Dibrorxi Dibronn 1,1-Dibr 1,2-Dbr( Dibutl lb
Dibuqlf Dibutllu Dicarbcn iron t Dicarbsr Dicart
Dichlao 139 4,5-Dich 2,2-Dch
3-frr 2,3-Dic t-) |
Dichlqo Dichlao 136 Dichlan
4,5-Dich Dichlao Dicobah
9,lGDtc p-Dicyar
Dicyclol
N,N,.DX
2,6-D.e
Dieckrru Diels-.{ 90. I Diene/a Dienes 105 299 4ll. 1,3-Dic 1,4-Dic 441 1,6Drc 1,2,5.G o,o-Dr
SubjectIndex
377 t5. -128.
a
f r . : : . .l l 3 -{ -:':zothiazepines,I
:.t , i
i
h r : : , . r n t h r a c e n e2s8, 5 . : .i .166 : l-16.293,364, . :.. ll0 I
r ' - , r . 1 2 84, 3 8 --ene, 129,301 s:.rr. . : r'.319 r: : r.385
- . ' r e . 3. l 9
I
::> r:.- ,i-5-one,131 3 : : : 1 t .& 1 r r : . . : . i n t o i n1, 3 1
1,3-Dibromoadamantane,302 6,61Dibromo-BINOL, 27, 85 8elll-Dibromocyclopropanes, 229 Dibromodifl uoromethane,209 Dibromohydantoin,131,357 Dibromomethyllithium, I 11 1,1-Dibromomethylsilanes, 176 1,2-Dibromotetrafluoroethane,13 1 Dibutylboron triflate, 132 Dibutylphosphine oxide, 133 Dibutyltin oxide, 133 Dicarbonyl(cyclopentadienyl)(tetrahydrofuran) iron tetrafluoroborate, 134 Dicarbonylcyclopentadienylferrate salts, 134 Dicarbonylrhodium acetylacetonate,I 34 gem-Dichlorides,120,383, 436 vic-Dichlorides, 120, 4M Dichloro(.2,2,2-trifluoroethoxy)oxovanadium(V) 139 4,5-Dichloro-1,2,3-dithiazole,I 38 2,2-Dichloro-5-(2-phenylethyl)-4-trimethylsilyl3-furanone. I 38 2,3-Dichloro-5,6-dicyano1,4-benzoquinone, t3'7 Dichloroacetyl chloride, I 35 Dichlorobis(tri phenylphosphine)ruthenium(II), 136 Dichloroindium hydride, 138, 198 4,5-Dichlorophthalicanhydride,138 Dichlorotitanium TADDOLate. 89 Dicobalt octacarbonyl, I 39 9, l0-Dicyanoanthracene,| 41, 412 p-Dicyanoarene,l4l Dicyclohexylborane,52, l4l, 142 N,N'-Dicyclohexylcarbodiimide,187,214 2,6-Dideoxyglycosyl fl uorides,225 Dieckmann cyclization sequence,349 Diels-Alder reactions,3, 14, 26,27 , 45,81,89, 90, | 4-1,| 63, 205, 242, 24'7,319, 429, 433 Diene/aldehyde cyclization, 35 Dienes,3, 13, 18, 27, 28, 29, 34, 45, 8'7,90, 105, I 12, 126, 140, t4'7, 178,226, 275, 29'1, 2 9 9 , 3 1 9 , 3 2 1 , 3 2 2 , 3 3 6 3, 5 3 ,3 5 8 ,3 6 4 ,3 9 8 , 4 1l , 4 1 8 , 4 2 9 , 4 4 2 1,3-Dienes,28, 105,255, 283, 284,383, 389 I ,4-Dienes,6,34, 145, 169,256,258,269,287, 441.445 1 . 6 - D i e n e s . 2 81. 8 9 1,2,5,6-Diepoxyalkanes, 29 I O,O-Diethyl 1-aminoalkanephosphonates, 397
Diethyl azodicarboxylate, 413 Diethyl chlorophosphite, 142 Diethyl methylphosphonate,221 Diethyl phosphorocyanidate,143 Diethyl trichloromethylphosphonate, 143 Diethylaminosulfur trifl uoride, I 42 Diethylzinc, 84, 87, 94, | 43, 255, 273, 274 1, 1-Difluoro- 1,3-diiodoalkanes,203 2,2-Difl uoro- 1,4-diketones,400 1.1-Difluoro- I -iodoalkanes.203 1,1-Difl uoro-2-siloxyalkenes,400 1,2-Difluoroalkanes, 386 N,N1Difl uorobipyridinium salts, 143 Difluorobis(trimethylsilyl)methane, I 2 Difl uorodiiodomethane, 203 Difluorotitanium bisalkoxide. 84 Diformylation, 185 Dihaloboranes.3 1,4-Dihalobutadienes. 179 2,6-Dihalo-p-benzoquinones, 2I0 2,5-Dihydripynoles,388 2,3-Dihydro-I,4-oxathiins,234 2,3 -Dlhy dro-4 H-pyran-4-ones,239 Dihydrobenzofurans. 25 l. -124 2,3-Di hydrofurans, 284, 287 2,5-Dihydrofurans, I04, 406, 442 Dihydrofurans, 249, 321 2,3-Dihydroisox azoles,282 Dihydropyranones, 239 5,6-Dihydropyrans,398 Dihydropyranyl ethers,90 Dihydropynoles, 129 358 3,4-Dihydroquinazolin-2-ones, Dihydroquinidine, 8 I 1,2-Dihydroquinolines, 285 1,8-Dihydroxyanthraquinone, 382 cls-Dihydroxycyclohexene,I 06 Dihydroxylation,'78, 2'75 Dihydro-cr-pyridones, 38 I Diimines,431 200 1.2-Diiodoalkenes. Diiodomethane, 105, 143, 273 Diiron nonacarbonyl, 144 Diisobutylaluminum hydride, I 44 Diisobutylaluminum isopropoxide, 146 Diisobutylaluminum phenylselenide, 146 Diisopropoxyaluminum trifl uoro acetate,| 46 Diisopropyl azodicarboxylate,4 13 Diisopropyl phosphite, 147 Diisopropyl sulfite, 147
522
Subject Index 3,5-DimethYlPYrazole,114 MN-Dimethylsulfamic acid, 154 Dimethylsulfonium methylide' 154 Dimethylsulfoxonium methylide, I 55 2.4-Dinitrobenzenesulfonamide' I 56
DiisopropYlcarbodiimide' 336 Diisopropyplazodicarboxylate' 387 Diketones,9, 50 1,3-Diketones,2, 144, 291, 305' 409 1.4-Diketones, 268, 291, 439 1.5-Diketones,104' I l8 Dilauroyl Peroxide, 147 Dilithium 2,2'-methylenebis(4,6-di-t-butylohenoxide), 147 2,2-DimethoxYProPane,148 Dimethoxytrityl ethers,426 Dimethyl 1,3-dithian-2-ylphosphonate'I 52 Dimethyl carbonate' 150 S,S-DimethYl dithiocarbonate, 152 DimethYl sulfoxide, 154 Dimethyl o,o-alkanedicarboxylates, 3 I 6 3,3-Dimethyl- 1,2-bistrimethylsiloxycyclobutene' 54 4,4-Dimethyl- 1,3-cyclopentanediones'54 8I 2,2-DimethYl-1,3-dioxan-5-one, 2,7-Dimethyl- 1,8-biphenylenedioxybis(dialkylaluminum), 149 -propenylN,N-Dimethyl- I -bromo-2-methyl-l amine, 150 2,2-Dimethyl-4-pentenoic esters,52 N,N-DimethYlacetamide, 364 DimethYlaluminum chloride, I 48 DimethYlamine,148 Dimethylamine hydrochloride, 301' 405 4-Dimethylamino- 1-trifl uoroacetylpyridinium trifluoroacetate, 149 2-Dimethylamino-2'-diphenylphosphinobinaPhthYl' 36 Dimethylammonium chlorochromate' I I
1' l'-
N,N-DimethYlarylamines, | 52, 201 gern-DimethYlation, 177 1,3-Dimethylbenzimidazolium iodide' 149 2,2-DimethYlchromans,25 I DimethYldioxirane,150, 151 N,N-Dimethylformamide, | 52' | 53' 399 153 N,N-Dimethylformamide dimethyl acetal' N,N-DimethYlhYdrazine, 153, 205 DimethYlhYdrazones,2'72 243' 248' MN-Dimethylhydrazones' 120' 151' 2'72 DimethYlimidazolidinone, 7' 349 MN-DimethYliminium salts' 153 2,6-Dimethylphenoxy(dialkylaluminum)' 149 154 MN-Dimethylphosgeniminium chloride' 220 N,N'-DimethylproPYleneurea'
1 2.4-Dinitrobenzenesulfonyl chloride' 56 156 N.N'-Dinitroethylenediamine, Dinitrogen Pentoxide, 156 Dinitrogen tetroxide' ll4, 206 dnti-1,2-Diolmonobenzyl ethers,227 t,f -Oiot monoethers' 49 tans - \,2-Diol monoethers,24 meso-|,2-Diols, 59 1.2-Diols,223, 22'7,301' 347 1.3-Diols,6, 54, 154, 167' 27 1 1,5-Diols,352 1 , n - D i o l s1 , 33 a n t i - 1 , 3 - D i o l s5' 3 , 8 1 meso-1,2-Diols,98 vic-Diols,414 Diorganocadmiums' 156 325 Diorganochalcogenides. 372 Diorganodiselenides, 2,8-Dioxabicyclo[3.2'I ]oct-6-enes'406 85 1,3,2-Dioxaborolanes, 1,3-Dioxanes'154 Dioxiranes,8l' 94, 246, 3 13' 3 14 l, I -Dioxobenzo[b]thiophene-2-methoxycarbonYl chloride' 157 Dioxoborolidine, 276 I .3-Dioxolan-2-ylmethyltriphenylphosPhoniumsalts, 303 D i o x o l a n e s , 7 53, l 1 , 3 8 3 ' 4 1 5 1.3-Dioxolanes,383 Dipeptide cteavage' 259 cls- 1,2-Diperchtoratoalkanes,306 DiphenYl chloroPhosPhate,130 DiphenYldiselenide,157 DiphenYl PhosPhorazidate,I 58 DiphenYl sulfoxide, 159 DiphenylacetYl chloride, 157 cls-2,5-DiPhenYlborolane,52 DiphenYlcYcloProPenes,323 DiphenYldiazomethane,3l 5 DiphenYliodonium triflate' 158 DiphenYlmethYl esters' 315 Diphenylmethylcyclopentane' I 65 DiphenYtPhosPhineoxide, 158 DiphenYlPhosPhinicacids, 416 2-Diphenylphosphonoxy-l-alkenes' 416
1,3-Dipo N,N1Dip. 1,4-Disil N,N-Disn Di-t-bur)| Di-t-buql Di-t-buql dicattx Di-rbutl l Di-t-buql trans-l.l -l Di-t-bunl 2,6-Di-t4,6-Di-r2,6-Di-t1,3-Dthr 1,4-Dthi Dithiora Dithiomd Dithiocari Dithiocar 1,2-Dirh 1,3-Dith Dithiosck 2,6-Dvin Diynes.l( Di-p-chlo
r35 DMAP.7 l-Mcc.v Double V Duffrc-rt Electroph Eliminati Emmqrs16l. Enals. l{ Enamine Enamirs Enamim Enamino Ene rerr
Enecartr Enol estc Enol pho
Enol trifl Enolatc f Enolborir Enolizari
Subject Index
,.:-
<.i
(L'
1,,. .56 i6
B
!a.
r . - : . .l l 7
l. | ' -::e:.;106
I i
i.-l
r(
: Illethoxy-
f :-.:l\
i-
li
ltt6
t,r-
i.
: .' l:, r :. , ! <
lt--
1,6-Enynes,39, l4O, 189, 417 Epimerization, 148, 254, 386 Episulfones,215,315 E p o x i d a t i o n9, 4 , 1 0 6 ,1 1 5 ,1 1 6 , 1 5 1 ,1 8 7 ,1 8 8 , 235, 248, 277, 303, 313, 317, 351, 382
Di-t-butyl disulfide, 132 Di-t-butyl N-alkylhydrazine-N,N1 dicarboxylates, 436 Di{-butyl peroxide, 60, 158 Dirbutyl pyrocarbonate, 133 trans- 1,1-Di-t-butyl-2,3-dimethylsilirane, I 32
Epoxide opening.24. 163,326 Epoxy alcohols,126,385 Epoxy alkenes, 243 2,3-Epoxy amines, 230 crs-Epoxy ketones, 25 414 1,2-Epoxy-3-alkanols, 1,2-Epoxyalkylphosphonates,l5 1 2,3-Epoxysulfonyl chlorides, 247
Dit-butylchlorosilane, 66 2,6-Dit-butylphenol, 133, 29 1 4,6-Di-t-butylphenoxide, I 47
::
c
I,3-Dipolar cycloaddition, 405, 432 N,N'-Diprotected guanidines,399 178 1,4-Disilyl-2-alkenes, MN-Disuccinimidyl carbonate, 159 Di-t-butyl azodicarboxylate, I I 8, 436
lb5
b - \ ' ., rcnes,416
2,6-Di-r-butylpyridine,19, 70, 108 1,3-Dithianes, 93, 152, 205
Erythrina alkaloids, 253 Esterifi cation, 159, 2M, 207, 208, 213, 277, 339. 360. 397, 411, 412
1,4-Dithianes,75 Dithioacetals,l'11, 229, 383, 395 Dithioacids, 156 Dithiocarbonates, l0 Dithiocarboxylic esters,220 1,2-Dithiocyanatoalkanes,306
Ether cleavage, 16 Ethoxyamine, 160 4-Ethoxycarbonyl-2-phenyl-4,5-dihydrooxazol-5o n e ,l 7 Ethyl (diarylphosphono)acetate,161 Ethyl 1-hydroxy -lH-l ,2,3-ti'azole-
1,3-Dithiol-2+hiones,353 Dithioselenides,31 2,6-Divinylphenols,375 Diynes, 297, 299, 358, 36'7 Di-;r-chlorobi s(1,5-cyclooctadiene)diiridium(I), t35 D M A P , 7 8 , 1 3 3 ,1 5 9 ,1 6 ' 7 , 3 3 6 , 4 2 2 I -Dodecylamine,339 Double Mannich reaction, 301
4-carboxylate, l6l Ethyl diazoacetate,136, 3 I l, 317, 417, 432 Ethyl mandelate, 162 Ethyl methylthioacetate, | 62
Duff reaction, I 85
Ethynyltributylstannane, I 63 uoro-2,2Europium tris(6,6,7,7,8,8,8-heptafl dimethyloctane-3,S-dionate.Eu(fod), 164 Europium trisIdi (perfluoro-2-propoxypropionyl)lmethanate, 163 Evans asymmetric aziridination, 89 Evans N-acyloxazolidinones, 23
Electrophilic amination, 17 Elimination, 40, 65, 7'1, 145, 243, 378, 435 Emmons-Wadsworthreaction,51, 95,98, 126, 161,222,243,303,376 E n a l s ,1 4 , 9 5 , 1 3 4 Enamination,50 Enamines, 196 Enamino ketones, 204, 4O9 Enaminones,263 Ene reactions,41,274 Enecarbamates,145 Enol ester, 110 Enol phosphonates,416 Enol triflates, 108 Enolate formation, 5, 8, 304 Enolborination, 78 Enolization,78, 217
Ethyl p-nitrobenzenesulfonyloxycarbamate,I 62 Ethylaluminum dichloride, I 60 o-Ethylbenzenethiol, 343 Ethylenesulfate,l6l l-Ethylpiperidinium hypophosphite,162
'l Ferrier rearrangemenL 4 Ferrocene. 36. 83 Fischer carbene.54. 1I I Fluorination, 143, 358, 359 Fluorine, 165 2-Fluoro- 1-iodo- 1-alkenes,386 N-Fluoro-3,3-dichloro-2, I 0-bomanesultam,8 I 2-Fluoro-3,4-dihydroquinazoline, 358 Fluoroalkylsilyl chloride, 9 N-Fluorobenzenesulfonimide, 165 Fluorocycloalkanes, 430
524
Subjectlndex
Fluorodecarboxylation, 106 Fluoroform, 166 o-Fluoroketones, 165 Fluoromalonic esters, 165 2-Fluoro-N-mesylaniline, 166 Fluoropynoles, 106 Fluorosilanes, 41 1 Fluorous allylstannanes,9 Fluorousligands, 166
Guanidinium chloride, 184 Guanidinium nitrate. 181
Formaldehyde, 167 Formaldehyde dimethylhydrazone, I 67 Formamides, 132, 136, 35 1, 425
Haloalkyl propargylethers.l5 l-Haloalkynes, 180, 267 Halogen, 175, 186, 188,283, 308, 351, 359, 414 Halogenations, 1O'7,236, 351 Halogen-lithium exchanges,64, 68
Formanilides,372 Formic acid, 168,288 o-Formylation, 67 Fragmentation,2, 10, 126, 142, 194,332,342, 344,420 Friedel-Craftsacylation,12,47,70, I 10, 149, 110, 182, 433, 416,439 Friedel-Crafts alkylation, 19'7,251, 3O9,341,
378,403 Friedel-Crafts reactions, 12, 336, 398 Friedlhnder synthesis,67 Furan-3,4-diacetic esters,3 I 8 Furans,I 10,283,424 2-Furylacetic esters,300 Furylhydroperoxides, 93 Gadolinium(III) chloride, I 69 Gallium(III) halides,169 Gelsemine,42l Germanes, I I I Germanium,170 Germanium chloride, 170 G l y c a l s , 3 31, 8 8 , 2 6 0 C-Glycosides,9, lO, 159,329 Glycosyl bromides, 200 Glycosyl fluorides,401 Glycosyl phosphites,I 8 Glycosylation,18, 20, 55, 123, 225 C-Glycosylation,341 Glyoxylic acid,3,4'7 Graphite, 170 Grignardreaction,50, 152, l7O,171,172,174, 1'75, 1'16, 180, 266, 345 Grignardreagents,S,2'1,5 I, 63, 68, 87, 115, , 74 , 1 75 , 1 3 1 ,1 3 8 , t 4 3 , 1 7 0 , 1 ' lr , 1 7 2 ,1 ' 7 3 1 r'16, 177, 178, 180, 201, 206, 365, 426, 428 Grubbs catalyst, 249, 320, 323 Guanidines,181,238, 244, 348
Hafnium(IV) chloride. 182 Hafnium(IV) triflate, 182 Halide-carbonyl reactions, 330 1-Halo-1-alkynes,142 I -Halo-2-alkanols, 308 l-Haloalkenyl aryl sulfoxides,171
Haloketone.414 5-Haloketones, 255 Hantzsch 1,4-dihydropyridines, 46, 324 Heck reaction, 28, 30, 40, 281, 283, 284, 285, 286. 287, 289, 295, 361, 421 1,6-Heptadiynes,104 Heteroannulation, 283 I -(Heteroaryl)ethylamines, 2I 2 Heterocyclization, 199, 238, 3m, 324, 342 Hetero-Diels-Alder reaction, 90, 336, 4O3,432 Hexaalkylditin, 182 Hexabutylguanidinium chloride, I 84 Hexachloroacetone,4 I 4 Hexachlorodisilane, I 84 Hexafluoro-2-propanol, I 86 Hexahydro- 1,3,5-tf,azines, 3'74 Hexamethyldisilathiane, 1I 6 Hexamethyldisil azane, 184 Hexamethyldisil azide, 156, 298 I 85 Hexamethylenetetramine, Hexamethylphosphoric triamide , 21l , 221 5-Hexenoic acids, 107 High pressurereactions, 185 Hispidospermidin,385 Hofmann rearrangement,58, 306 Homoallylation, 255 Homoallylic acetals,44 H o m o a l l y l i ca l c o h o l s5, , 7 , 1 6 , 4 5 , 1 1 2 ,1 1 5 , 136,279,336,422 Homoallylic amines,6, 57,440 Homoallylic azides,4 Homoallylic sulfones, 9 Homoallyllithiums, 67 Homodimerization, 322 Homo-Michael reaction, 255 Homopropargylic sulfonamides, 199
Hunsdral Hydrazrrr Hydrazrrx Hydride u Hydridcr r 185 Hydrorll Hydroamr Hydrocart Hydrodch Hydrodecl Hydrodcft Hydrodch
39.r Hydrodcsl Hydroflrn Hydrofarr Hydrogen
Hydrogerx Hydroindo 3-Hydrrpc 5-Hydmpc Hydrophcl Hydroqurn
Hydrosilan l9l. l9 Hydrosikrr Hydrosilr ! Hydrosaru Hydroxam Hydroxl a a-Hydrorr
syn-3-H1d Hydroxr r ro l-Hydmrr. t92 2-(l-H1&u 5-Hydrorl -
4-Hydron2-(l-H1-&o 3-Hydrory -
3-Hydmrr. anti-3-H\& 2-(l-Hy&or 3-(l-Hyeor l-(2-Hy&or o-Hydrorlt
3-Hydrorr a o-Hydrorrt 2-Hydroryb
Subject Index
<:..159.414
j.
: l-l i: 'rl
' -
lR5
r + /
. 32 i : ^ 1 0 34
;\:
(
. lts
Hunsdiecker reaction. 58 Hydrazine hydrate, 185 Hydrazines,17, 52,254 Hydride transfer, 23 1 Hydrido(triphenylphosphine)copper hexamer, 185 Hydroacylation, lO9, 442 Hydroamination, 41 Hydrocarboxylation, 298 Hydrodebromination, 165, 170, 345, 431 Hydrodechlorination, 115, 254 Hydrodefl uorination, 435 Hydrodehalogenation, 46, 180, 188, 189,208, 394 Hydrodesulfuriz ation, 147 Hydrofluorination, 3 I 3 Hydroformylation, 32, 134, 141, 320 Hydrogen fluoride, 186, 386 Hydrogenolysis, 254, 280, 300 Hydroindolone, 253 3-Hydroperoxy-I ,2-dioxolanes,I 87 5-Hydroperoxycarbonylphthalimide, I 88 Hydrophenanthrenones,283 Hydroquinones,11, 139, 216 H y d r o s i l a n e s3,5 , 5 0 , 9 3 , 1 0 9 , 1 3 5 ,1 8 8 ,1 8 9 , t9t,197,421 Hydrosiloxanes,202 Hydrosilylations,109, 139, l9l Hydrostannylation, 299, 365, 388, 389, 394 Hydroxamic acids, 156, 193 Hydroxy enynes,22l o-Hydroxy phenones,406 syn-3-Hydroxy d-amino acids, 300 Hydroxy(tosyloxy)iodobenzene, I 93 I -Hydroxy- I ,2-benziodoxo-3( I lr-one I -oxide, t92 2-(l -Hy droxy-2,2,2{rifl uoroethyl) ketones,39 5-Hydroxy-2,3-alkadienoic esters,366 4-Hydroxy-2-cyclopentenones, 308 2-( I -Hydroxy-2-oxoalkyl)tetrahydropyrans, 374 3-Hydroxy-4-methylthiazole-2-th ione, | 92 3-Hydroxy-5-tributylstannylpentanoic acids, 209 anti-3 -Hy droxy alkyl carboxylates,444 2-( I -Hydroxyalkyl)-2,3-dihydrobenzofurans, 58 3-( I -Hydroxyalkyl)-2,3-dihydrobenzofurans, 58 I -(2-Hydroxyalkyl)benzotriazoles, 377 o-Hydroxyaryl phosphine oxides, 218 3-Hydroxyazetidines, 230 o-Hydroxybenzaldoximes, 4 I 3 2-Hydroxybiaryls, 283, 285, 293
o-Hydroxycinnamic acid, 192 4-Hydroxycycloheptanones, 33 I Hydroxyethoxy vinyl ether, 290 2-Hydroxyindanone, 193 1,3-Hydroxyl transposition, 261 N-(Hydroxymethyl)benzyl, 300 Hydroxymethylation, 165, 167 N-(2-Hydroxyphenyl)aldimines, 27 N-Hydroxyphthalimide, I 15, 193 N-Hydroxysuccinimide, 159 Hypofluorous acid, 193 Imidazole,22, 6l, ll7 , 194, 414 N-Imidazolium-N-methyl amides, I 7 1 S-Imination,385 Imine aldol reaction,231 Imine metathesis,25l Imino Diels-Alder reactions,197 Iminophosphoranes, 60, 133 Iminothiazolines,I I Indanols,257 Indans,68 I n d i u m ,6 , 1 9 4 , 1 9 5 , 1 9 6 ,1 9 8 , 4 8 7 I n d i u m , 1 9 4 ,1 9 7 , 1 9 8 Indium(III) chloride, 197 Indium(III) fl uoride, 198 Indium(III) iodide, 198 Indoles,127, 282,324 Indolines,225 Iodinations,33, 49, 199,305, 430 I o d i n e ,1 9 9 , 2 0 0 Iodine(I) bromide,200 Iodine(l) chloride.200 2-lodo I -sulfonamide,33 2-lodo- l -arylcyclohexenes, 286 4Jodo-2,3-dihydropyrroles,I 99 Iodoalkenylamines,37 Iodoalkenylcyclohexadienes, 40 Iodoalkoxylation,129 Iodoalkylphosphonates, 389 Iodoarenes,106, I I 5, 281, 430, 441 3-(o-Iodobenzylamino)acrylic esters,289 4-lodobutyl glycosides, 329 Iodocarbocyclization, 86 Iododeamination, 260 2-Iodoenaminones,49 Iodofluorination, 430 Iodohydrin esters,378 Iodohydrins,73, | 99, 223, 326, 330, 378 5-Iodoketones,255
525
526
Subject Index
Iodolactamization, 33 Iodolactonization, 33, 86 IodomethylcYcloProPanes,67 5-Iodomethylisoxazolidines, 9 o-IodophenYl methallYl ether, 290 Iodopyridinols, 33 Iodosylbenzene,201' 403 Iodotrifl uorome thane, 2O2 Iodotris(triphenylphosphine)rhodium(I)' 202 2-( l-Iodovinyl)-3-hydroxy ketones,440 Ipalbidine,319 Iridium, 41,90,203 Iron, 203, 2M, 205, 206' Z0'l Iron(II) chloride, 2M Iron(III) perchlorate, 207 Iron(III) 2-ethYlhexanoate,205 Iron(III) chloride,2M Iron(III) nitrate, 205, 206 Iron(III) oxide,206 Isochroman-3-ones,226 Isochroman-4-ones,110 3-Isochromanonesynthesis,3 17 I -(Isocyanomethoxy)benzotriazole,207 Isomerizations, 34, 124, 19'7,206' 258,288'
311,338,355,382,41r'43r Isonitrile-nitrile reanangement,333 Isoprene monoxide, 267 IsopropenYlation,408 Isoquinolines, 254, 289' 342 Isoquinolones, 357 Isoxazoles,2M,262 Isoxazolidine, 30 Isoxazolines,9,137 Johnson-Claisenrearrangement' 129 Ketene dithioacetals, 63, 220 K e t i m i n e s , 5 ,l 9 l , 3 3 5 keto amines, 17 Ketone homologation, 439 Ketone syntheses,170 Ketonitriles, 16'l' 178,331 Ketoximes,116, 183,2'79,315, 339' 3'79 Ketyls,330, 331'393 Knoevenagel condensations'216 Knoevenagel reaction, 1I Kulinkovich reaction' 178 Lactacystin, 232 Y-Lactams,134, 178' 380
Lanthanide triflates' 47 ' 432 Lanttranum(Ill) chloride, 208 Lanthanum(Ill) iodide' 208 Lanthanum(Ill) isoProPoxide,208 Lanthanum(Ill) trifluoromethanesulfonate, 209 Lanthanum(Ilf tris(hexamethyldisilazide)' 209 LDA, 14, 79, 106, I 11, 162,199,219'220,221' 222,242,388 Lead dioxide,210 LeadOD fluoride-sodium bromide, 210 Lead(II) iodide, 21 1 Lead(II) thiocYanate,307 Lead(IV) acetate,209 LHMDS,22r,222 Lipases,2'11,212 Liquid ammonia, 9, 213' 343, 3'71 Lithiation, 20, 52, 65, 6't, 68, 69, 123, 218' 219' 271,2'72,296,353 N-Lithio t-butyl tosyloxycarbamate,266 I -Lithio- I -alkoxY-1,3-dienes,66 I -Lithio- 1-chloro- I '3-butadienes,226 1-LithiomethYlbe nzotriazole, 63 Lithium, 24, 212' 213, 214, 215, 216, 21'7' 218' 220. 221, 222, 223, 224, 225, 226' 2n, 228' 236,32'7 Lithium (E! 1-alkenylthi olates,221 (LTMP)' Lithium 2.2,6,6+etramethylpiperidide 226 Lithium 2-aminoalkoxides, 98 Lithium 2-dimethylaminoethoxide' 65 Lithium 3-lithio-3+osylalkanoates' 223 Lithium 4,4'-di+-butylbiphenylide, 216 Lithium acetYlides'225 ' 428 Lithium aluminum hYdride, 213 Lithium amides, 78 4 Lithium bis(diisopropylamino)boracetylide' 2 I Lithium bis(s-phenethyl)amide,79 Lithium borohYdride' 214 Lithium bromide' 215 Lithium chloride , 215' 283 Lithium dialkYlcuPrates,87 Lithium dicYclohexYlamide,217 Lithium diethYlamide' 217 Lithium diisopropylamide, 2I8, 220' 221 Lithium hexamethyldisilazide, 221' 422 Lithium Lithium Lithium Lithium Lithium
hYdride' 222 hYdroxide hYdrare' 222 indium hYdride, 223 iodide,223 naphthalenide(LN), 224, 233
Lithiun Lithirm Lithirm I'E
Lithirm Lithnm Lithitm I.oisao L]'cor Macrq Macrq Magrr Magrr Magrr Magrr
Magrrc Magrr Mange Mange Mangr Mange Mange Mange Mannr Mannr
Mannr McIlu MCPB Meerr. l5( Meisca Mercu Mercrr Mercu Mercrr Mesr5" N-Mes'
O-Mcs 5-Meu Metath Methd Methar MeOrar Methor 3-Mcrt 6-Mern B-Mdl 2-MeO Methor
Subject Index
f,':-,t12 . 09 ar':-lJr. 209 "r)
q
)?l
Lithium perchlorate, 224 Lithium t-butoxide,I 18, 215 Lithium tetrakis[(phenylbistrifl uoromethyl)_ methoxylaluminate 2 ,2 5 Lithium triethylborohydride, 228 Lithium tri-n-butylborohydride, 227 Lithium tri-s-burylborohydride (L-Selectride). 227 Lossen rearrangement,70 Lycopodine,38l
t Macrocyclic ketolactones,423 Macrodiolides, 122, 235 Magnesium,229,23O,232. 233 Magnesium bromide, 230
'
I
r
llQ
:$
:r: ' . : . - .l l 8 , h
---
))R
L I l'\'IP),
e : . : J c .2 1 4
Magnesium iodide,232 Magnesium perchlorate, 233, 306 Magnesium sulfate, 232 Magnesium trifl imide, 233 Manganese,233, 234, 236, 237 Manganesedioxide, 237 Manganese(Il) bromide, 236 Manganese(Il) chloride, 175, 236 Manganese(III) acetate,234 Manganese(lII) acetylacetonate,236 Mannich bases,405 Mannich reactions,I 15, 398 Mannich-typecondensation,I 97 McMurry couplings,377,380 MCPBA, s' l ,7 t, 106, I 07, 308 Meerwein-Ponndorf-Verley reduction, 27, 150.4t5 Meisenheimer rearrangement,I 07 Mercury(II) acetate,238 Mercury(II) chloride, 238 Mercury(Il) oxide, 239 Mercury(II) perchlorate, 240 Mesitylboronic acid, 299 N-Mesylation,2l O-Mesyloximes,129 5-Metallated 2,3-dihydrofurans, 56 Metathetic ring closure, 320 Methallylation,6
r:-
Methanesulfonic acid. 24O Methanesulfonyl chloride, 240 Methoxy(tosylo xy)iodobenzene, 242 3-Methoxy- 1-phenylthio- I -propyne, 23g 6-Methoxy -2,2' -bipyridyl, 65 B-Methoxy-9-borabicyclo[3.3. 1]n onme, 6, 242 2-Methoxyalkanoic acids, 309 Methoxyalumin oxane, 445
527
4-Methoxybenzyl ethers, 241 O-p-Methoxybenzyl ethers,373 4-Methoxybenzyl ethers, 16, 230 4-Methoxybenzyl trifl uoroacetimidate, 24 l N- (4-Methox ybenzyl) - o -benzenedisulfonimide. 241 N-Methoxy-N-methyl amides, l2j, 244, 296 N-Methoxy-N-methyl chloroacetamide,313 N-Methoxy-N-methylcarbamoyl chloride, 4 I 5 N-(1-Methoxyptop-2-yl) I -l-butyldimethylsilyl)ethylidenei mine, 242 Methoxypyrid-2-yllithium, 65 Methyl 2,3-dibromofuran-5-carboxylate, 364 Methyl 3-tributylstannylpropynoate, 394 Methyl bis(2,4-difl uorophenyl)phosphonoacetate.243 Methyl chloroformate, 243, 32j Methyl o-(N-triphenylphosphoranyliminof cinnamate,358 Methyl oxalyl chloride, 182 Methyl(2,6-dimethyl-4-nitrophenoxy)aluminum trifluoroacetate. 244 Methyl(trifluoromethyl)dioxirane,246 Methyl (triphenylphosphine)gold, 249 2-Methyl- I -methylenecycloalka nes,M2 N-Methyl-2-chloropyridinium iodide. 244 N-Methyl-2+rimethylsilylacetaldimine, 4g 3-Methyl-3.4-epoxyesrers.444 l-Methyl-3-ethylimidazoliumchloride,70 Methylaluminoxane,242 Methyfaluminum,27 , 297 Methylaluminum bis(4-bromo-2,6-di-tbutylphenoxide),243 I -(N-Methylanilino)-2-alkanols, 3I6 Methylations,53, 148, 150, t93, 222, 434 Methylazines,396 2-Methylcyclopentylphenyl sulfide,391 6-Methyldihydro carvone, 424 Methylenation,3l 4-Methylene-1,3-dioxanes, I 35 2-Methylene-5-hexenoic acid, 234 Methylenecyclobutane, 89, I 26 Methylenecyclopropane, 28, 333, 378, 393. 421 Methylenedioxyarenes,76 4-Methylenepiperidines, 388 4-Methylenepyrrolidines, 378 Methylenetriphenylphosphorane, I 7 Methylenetris(dimethylamino)phosphorane,245 Methylgallium, 297 Methylidynetricobalt nonacarbonvl. 245
528
Subject Index
N-Methylmorpholine N-oxide, 245, 276, 37 1 N-Methylpseudoephedrine,94 2-(Methylselenomethyl)-2-propenyl methyl selenide,246 6-(Methylsulf,rnyl)hexanoic acid, 246 ar?/i-3-Methyl-syn-2,4-alkanediols,132 2-Methyltetrahydrofuran-3-one, 3 I 4 Methyltrioxorhenium, 247, 248 Michael additions, 1, ll, 25, 34, 160, 197 Michael reactions,45, 50, 67,75,87,88,124, 163, 205, 302, 31 1, 313, 329, 333, 339, 346, 349, 381, 389, 418, 423, 432 Misunobu reactions,44, 156,308, 413 Modhephene,392 Molybdenum carbenecomplexes, 249 Molybdenum hexacarbonyl, 25 1 Monobenzoylation,128 Mono-C-methylation, 150 Mono-formylation,185 Monofluorination, 165 Montmorillonite clays, 252 Mukaiyama aldol reactions,47,55, 197,243, 3 3 3 , 3 8 7 ,4 2 4 , 4 3 9 , 4 4 3 Mukaiyama reagent,244 Multicomponent condensation, l6 Nafion-H,253 Nakienone-A,271 N-Alkoxycarbonylimidazoles, 4 N-Anisylmethylisoxazolidines,I 37 l -Naphthaldehyde,43 I Naphthalenes,207,312 l-Naphthoic acid,l23 Naphthols,120 2-Naphthols,1l I 67, 359, 397 1,4-Naphthoquinone, Nazarovcyclization,338, 410 NBS, 58, 59, t5'7,357,400,412 NBS-collidine,59 NBS-DBU,58 N C S , 1 0 8 ,1 7 7 , 4 2 6 Negishi coupling, 365 Ni(acac)z-DIBALH,255 Ni(OAc)z-2,2-bipyridine, 255 Ni-Al alloy,254 Nicholas reaction, 140 Nickel, 253, 254, 255, 256, 258, 259 Nickel acetate,255 Nickel boride, 256 Nickel bromide, 256
Nickel chloride, 258 Nickel(II) acetylacetonate,255 N I S , 9 ,5 8 Nitration, 67, | 14, 206, 261, 335, 432 Nitrene transfer, 204 Nitric acid. 259 NitridoIN,N'-( 1,1,2,2-tetramethyl)ethylenebis(salicylideneaminato)lmanganese(V),260 Nitrile aldol reactions, 75 Nitriles. 61. 62. 130, 156,243,27'7,350,403 Nitroaldol reaction, 16'7,339, 426 Nitroalkanes,1 l, 62, 87, 3 I 5, 359, 37 l, 404, 405 Nitroalkenes. 259 Nitroarenes, 21, 39, 142, 253, 325, 346, 372 o-Nitrobenzenesulfonhydrazide, I 85 4-Nitrobenzenesulfonyl azide, 260 chloride, 185,316 o-Nitrobenzenesulfonyl Nitrodesilylation,I 56 Nitromethane, 1 l, 67, 335, 4O4 Nitrones. 30. 248, 268, 382, 432 o-Nitrophenyl selenocyanate,26 I 4-Nitrophenyl trifl ate, 261 2-(4-Nitrophenyl)ethylsulfonyl chloride, 261 N-Nitrosamides, 259 Nitrosations. | | 6, 259, 260 Nitrosoformates, 210 Nitrosonium tetrafluoroborate, 262 2-Nitrostyrenes, 292 Norbomadiene.282,319 5-Norbomene-endo-2- carbaldehyde, 59 Norbomenes,30,416 O x i d e s ,1 5 0 Nozaki-Hiyama-Kishi reaction, I l5 Nysted reagent, 3 I Olefinations,U, 268, 3O3,3 12,3 11, 436 Oppenaueroxidation,4T , 147, 150 Organocerium reagents,263 Organocopper re agents,264 Organocopper/z inc reagents, 267 Organolithium reagents,268 Organomanganesereagents,233, 269 1,3-dienes,364 2-OrganoselenenylOrganostannanes, 29, 121, 236, 365, 415 Organotin halides,402 Organozinc reagents,236, 2'70, 435 Orthocarbonates,341 Osmium tetroxide,78, 275, 216 Overman rearran gement, 129 1.3.4-O xadiazoles, 372
Oxalr I chl:r Oxahl-1.1 Oxamrde.. l Oxaspiroper 4-Oxathrarr Oxrraborob Oxazindrrxr Oxazoles.li OxazohdrnOxazolidrn.
Oxazolidrrr 1,3-Oxazol Oxazolidrrn Oxazolidrnq Oxazolin-l< Oxazolirr:.
Oxazolorr. I S-(l-Oxrdtr thiourun O x i m e s .l l . O x i n d o l e .l J Oxobenzodr O x o n e @-. 1 1 3-Oxotetrahr Oxyfunctrtxl Oxygen. l-.
Ozone.l-9 Ozonides.la Ozonoll srr I
Paeonilrrtu Palladiunnll r 29t. :ei PalladiunxIl r PalladiumrIl r Palladiunrrll r Palladiunrrll r Palladiumrll r Palladiunvcr Pantolactrxr. Paraformal& Pauson-Kheo 349. -lE,r Pentaanlcrcl Pentacarboor tungslerx Pentacarbony 2,3-Pentadrco Pentadienl lar 2,4-Pentadrcn
SubjectIndex
f( L
Oxalyl chloride, 152, 27j Oxalyl- l, 1'-bis(benzotiazole), 276 Oxamides,276 Oxaspiropentanes,17 I 4-Oxathiane-S,S-dioxide,3 13 Oxazaborolidine, 92 Oxaziridines,106 Oxazoles,153 Oxazolidin-4-ones,209 Oxazolidin-5-ones, 400 Oxazolidines.3 16. 329, 342 1,3-Oxazolidines,172 Oxazolidinone-N-acetic acid, g9 Oxazolidinones,213, 300, 342 Oxazolin-2-ones,157 Oxazolines,126, l5i ,246
lr
Oxazolone,l7 S-(I -Oxido-2-pyridinyl)-l, I 3,3-terramethyl_ thiouronium hexafl uorophosphate,277 Oximes, 12, t6, 183, tB5, 234, 248, 339,4t I O x i n d o l e 1, 3 3 .1 3 5 .3 t 3 ,4 2 . OxobenzodithiepinS,S'-dioxide,9g Oxone@,313,314,315 3-Oxotetrahydrofurans,304 Oxyfunctionalizations,I 50 Oxygen,277 Ozone,2'19 Ozonides,279 Ozonolysis,8 I Paeonilactone-8,333 Palladium(Il) acetate,28 l, 283, 284, 2g6, 28g, ?o, roz Palladium(II)bromide,293 Palladium(II)chloride, 293, 294, 295, 2g8 Palladium(II)hydroxide,299 Palladium(ll) iodide, 300 Palladium(II) trifl are, 300 Palladium/carbon, 280 Pantolactone,327 Paraformaldehyde,30 I Pauson-Khandreacrion,39, 140, 155, 245,251, 348,383, 417 Pentaarylcyclopentadienes,2gg Pentacarbonyl(l -methoxyalkylidene)_ tungsten(0),199 Pentacarbonyl(q2-cyclooctene)chromium(O), 30 I 2,3-Pentadienedioic esters,I 05 Pentadienylation, I 98 2,4-Pentadienyltributylstannane,I 9g
Pentafl uorobenz aldehy de, 27 Pentafluorobutanesulfonylfl uoride, 30 1 Pentafluorophenol,41 I Pentafluorophenyl trifl uoroacetate,30 I 1-Pentafluorophenylallenes,64 Pentalenene,392 O-4-Pentenyl oximes, 58 Per(silylethylation),l2 Peracetylation, 1 Perfluoroalkylation, I l6 Perhydro-N-tosyl-2-allyl- 1,3-oxazines, 174 Periodic acid,302 Penhenic acid,302 Phasetransfer catalyst, 284, 303 l,l0-Phenanthroline,I 16, 118, l g9, 292, 284 ,S-Phenylchlorothioformate, I g2 Phenyl(fl uoro)iodine trifl ate, 304, 30g 2-Phenyl-1,3-dioxanes, 3I I 4-Phenyl-1,3-dioxolane,304 I -Phenyl-I H-tetrazole-5-thiol,30g 2-Phenyl-212-pyridyl)imidazoline, 30g N-Phenyl-2,3-methylenesuccinimide, 79 Phenylboronic acid, 276, 303 N-phenylcarbamates,359 Phenyldichloroborane,304 Phenyldimethylsilyllirhium,304 Phenylethanediol, 304 2-( I'-Phenylerhoxy)-8-oxabicyclo[3.2. I ]oct_6_ en-3-one,409 Phenyliodine(III)bis(trifluoroacetate), 305 Phenyliodine(llI)diacerate,305, 307 Phenyliodine(III)dichloride,307 Phenylosazone,I 3-Phenylpropylbenzyl ether,2g0 a-Phenylselenoaldehydes,308 PhenylselenoI -alkenes,282 /r'-Phenylselenomorpholine,308 4-Phenylthio-I -naphthols,397 2-Phenylthioacrylic esters,89 N-Phenylthiocaprolactam,3 I 2 9-Phenylxanthen-9-yl chloride,309 Phosphanylation,8 I 4-Phosphato-2-alkynoicesters,327 Phosphazene,309 Phosphonoacetaticesters,264 Phosphorus(V) oxide, 309 Phosphoryt chloride, I 53 P h t h a l i m i d e sl ,5 2 , 4 l l Phthalonitriles, 4 19 Pictet-Spengler reaction,74, 336
530
Subject Index
Pinacol couPling, 194,233,325 '32'7 384' 426 Pinacol formation , 3n , 356,3'7'7' 373 14, ernent, rearrang Pinacol I4 Pinacol rcarrangement-reducdon' 32'7' 3'7'l 325' 233, 229, lg4, Pinacols,'1, Piperaztne,3TT Piperidines, 178' 409 PiperidinoxYlation, 370 PivaloYlchloride,3l0 78 N-Pivaloyl-4-r-butylthiazolidine-2-thione' N-PivaloYlimidazole, 310 Platinum(IV) chloride, 310 PMHS,311 Poly(amino acids),94 363 lolyiethylene glycol) iodobenzoates' 235 cYclization, Polyene Polyhomologation, 155 Poly-LJeucine, 94 Polymeric benzYl esters' 12
193 Polymeric O-benzylhydroxylamines' I 1' 385 3 t 90' Polymethylhydrosiloxane, PolypePtide esters,359 Potassiumfluoride, 313 Potassiumhexamethyldisilazide' 5 PotassiumhYdrogenfluoride' 313 PotassiummonoPeroxYsulfate'3 13 PotassiumPermanganate'315 PotassiumPersulfate' 3 16 Potassium suPeroxide,316 Potassiumt-butoxide, 31 I Potassiumvinyltrifluoroborate' 287 Prins reaction, 355 ProPargYlbromide, 23' 41 r ProPargYlether,31, I75, 31 l' 333 ProPargYlsulfones, 349 PropargYl xanthates' 116 l' 23'l' 24 I' e.opurgytic alcohols'185, I 93' 21 260,265,366 ProPargYlicbromides, 418 ProPargYliccarbonates,69 ProPargYlicmercaPtan'213 ProPargYlicsilanes, 11I ProPargYlsulfoniumYlide' 76 Propargyltributylstannanes, 25 ProPellane,392 ProtodesilYlation,405 Pseudolaric acid-A, 185 Pummerer reaction' 396, 39'l '398 Pummerer rearrangement, 4 10 2f/-PYrans, 336
Pyrazole,I 238 Pvrazolines' PvridineN-oxides.240'248' 302 Pvridine-DABCO,360 Pyridinium dichromate,316 Pyridiniumtriflates,2 91 2,5-PYridinoPhane, 292 2-Pyrimidyldiphenylphosphine' 386 380' 326, ll0, 22, Pvrroles, PynolidineN-oxides,268 Pytrolidines,4 Pyrrolidinones,392, 406 108 1-Pyrrolines, Pynolinones,238 Pyrrolizidine,86 Quinolines,438 145 Quinoliniumcamphorsulfonate' p-Quinols,156 409 Quinonemono-O,S-acetals' 218'41'l 258, 210, I I ' Quinones, o-Quinones,278
Rine<rpr Robrnirr Rosei-un Rubidru Ru-BI\, Ru-carh Rutlrnn Ruthenn Ruthenr
Salicl le Samanu Samanu Samanu SAMP. SAMPN
SAMP.I Scandru Scandru Scandru Scandru Schror{ L-Selc
423 Radicalcyclization,2' I 5' 162'235' 348' 203 175' generation, Radical reaction'215' 312 Ramberg-Backlund
Selenrd Selenru Selenru
RAMP.52,8I es,52,81' 254'263 RAMP hYdrazon
Seleno Selenq Semifu 2 - S i l a -l
RaneYnickel,254'336 11,12' 32, 52,92' 93' 124'l2'l' 138' n"O*rion, 145,146,153,178,190'203,205'224'229' 385' 2fi:, 343,144,345'346,350,361'381' 412,4l't , 431' 437 435 Reductivecoupling,222,269'304'42'7' 178'189 cYclizations' Reductive reactions,I I 1' 336' 436 Reformatsky ReformatskYreagents,329' 401 reactions'46 ReformatskY-tYPe RhGI)(S)-N-(p-dodecylphenyl)sulfonylprolinate,98 Rh-DuPHOS'90 Rhenium(Vll)oxide,317 RhenYltrichloride, 317 317'318 Rhodium,43, RhodiumcarbonYlclusters'317 318 RhodiumcarboxYlates, RhodiumcomPlexes,43 RiekecoPPer,116 RiekeMn,233 219,330'390'406 Ring exPansion,
Silaclc Sila-tAt Silica g
Silicoo Silicsr l -Silor
2-Silor Siloxlr Silvet r Silver r
Siller 1 Silver t
Silvcn Silll a I tl
Itr Sill l c
33
Silllh
33
SubjectIndex Ring-opening cross metathesis,322 Robinson annulations, 14, 2O8,283 Rosefuran, 223 Rubidium prolinate, 87 Ru-BINAP,70,90 Ru-carbene,249 Ruthenium,43,320,324 Ruthenium(III) chloride, 324
:.:el It
Ruthenium(III) trifl uoroacetate,6 1 Salicylaldehyde,146 Samarium, 325, 326, 327, 335 Samarium(Il) iodide, 326, 327 Samarium(III) nitrate, 335 SAMP, 52, 78, 81, 254, 263 SAMP/RAMP hydrazones, 81. 254. 263
r. .15 F 1.-
| -ri
llR 4?1
l-i .rl2 r :6.r ! i l l " + .1 2 7 , 1 3 8 ' 1 : . l r ) 5 .2 2 4 , 2 2 9 , ! if'1.381,385, , :,..i..127,435 t,:6. -1.16
ck r. .:lionyl-
SAMP-hydrazones, 78 Scandium trisdodecylsulfate, 336 Scandium(III)hexamethyldisilazide. 335 Scandium(III) perfluorooctanesulfonate.336 Scandium(III) triflate, 335 Schrock catalysts, 249 L-Selectride,227 Selenides,20, I 86, 258, 261, 325, 329, 408 S e l e n i u m3, 3 7 Seleniumdioxide, 337 Selenoamides, 337 Selenoetherification, I 23 Semifullerene,377 2-Sila-I ,3-dioxanes,66 Silacyclopropane,132 Sila-Wittig rearangement, 62 S i l i c ag e l , 3 3 8 ,3 3 9 Silicon tetrafluoride,313 Silicon/boron exchange,55 I -Siloxy-2-alkanones, 92 2-Siloxyalkanols,66 Siloxycycloprop anes,427 Silver carbonate,340 Silver nitrate,340 Silver perchlorate, 341 Silver trifluoromethanesulfonate,342 Silver(I) oxide, 341 S i l y l e n o l e t h e r s 3, 4 , 3 9 , 4 1 , 4 2 , 5 1 , 8 1 , 9 5 , 9 6 , 118, 123, 132, 136, 139, 143,201,248,282,
fl. .:r ro
289,300,304,307 ,387, 401,407 ,42s,432 Silylethers, 34,45,48,75,77 , 199,233,280, 356,4r4,422,442 Silylketene acetals, 96,149,225,233,295, 333,336,39s, 440
1-Silyl- 1,4-diene,182 3-Silyl- 1,5-dienes,27 1 4-Silyl-2-alkenoicacids,65 3-Silyl-2-propene1,1-anions,62 anll-3-Silylalk-I -en-4-ols,85 l - S i l y l a l k y n e s I, 1 8 4-Silylated l-aza-1,3-dienes,35 Silylation, 40, 156, 165, 178, 180, 189, 190, 22t,229,4M,411,431 Silylcarbonylation,423 N-Silylimines,6 2-Silylmethylpenc4-en-I -yl, 8 O-Silylnitronates,405 O-silyl-S-(2-pyridyl)keteneO,S-acetals, 439 Simmons-Smithreaction,95, 105, 143 Sodamide,342 Sodium. 42. 342, 343, 344, 346, 34'7,348, 349, 350. 35 l, 352. 353, 414 Sodium (cyclopentadienyl)tricarbonylmolybdate,348 Sodium 2-ethylhexanoate, 349 Sodium alkoxides,42 S o d i u ma m a l g a m . 3 4 3 Sodium azide.343 Sodium bismuthate.344 Sodium borohydride, 3214,346, 347 Sodium oromate.347 Sodium chlorite. 348 Sodium cvanoborohydride.348 Sodium hexamethyldisilazide. 308, 349 Sodium hexanrtrocobaltate( III). 349 Sodium hvdride. 349 Sodium hydrogentelluride,350 Sodium hypochlorite.350 Sodium nitrite. 350 Sodium perborate. 35 I Sodium phenylselenoate, 352 sodium t-amylate,255 Sodium telluride,352 Sodium tetracarbonylhydridoferrate,352 Sodium triacetoxyborohydride, 352 Sodium triethylgermanate, 353 Solid phasesynthesis,193,279 Sonogashiracoupling, 281, 369 Sparteine,66, 78 Spirocyclicdiols, 14 Squaric acid, 268 4-Stannyl-2-alkenylboranes,4 18 C-Stannylation, 241, 386 Stannylcupration, 265
5!2
SubiectIndex
Staudinger reactions,44 Stille coupling, 28, 122, 165, l'76,236' 255' 280, 295, 296, 358, 3U, 36s, 375, 389, 418 Stobbe condensation,90 Strecker adducts,432 Strecker reaction, 85 Styreneoxid,75, 138, 308 Styrenes,5, 30, 36, 56, 218, 28'7,350' 365' 375 cine-Substitution, 33 1 ipso-Substitution, 58 Sulfamic acid, 353 Sulfenylation, 128, 3 12, 409 Sulfimides, 150 Sulfines,107 Sulfinimines,93 Sulfonamides,20,21, 107, lM' 156' 3M,328' 361,396 Sulfones, 5'7, 302, 308, 435 Sulfonic acids, 354 Sulfonimines,196 94 2-Sulfonyl-1,3-dienes, Sulfonylation, 221 N-Sulfonylation,414 Sulfonylhydrazines, 288 N-sulfonyloxazaborolidinones, 97 Sulfoxides,45, 5'7,72, 131, 193,248 Sulfoximines,150, 362, 385 Sulfur, 31, 353, 354, 372 Sulfur dioxide, 354 Sulfur transfer, 3l Sulfur trioxide, 354 Suzuki coupling,6,55, 199, 258, 280'281,
286,287,290,363,3&, 418,42r oxidation ,399 Swern ,241,246,27'7 Tabersonine,249 Tantalum(V) chloride, 355 Taxol,226 Tellurium, 312,355 Tellurochromones, 350 Tetrahydropyranation, 355 Tetraallylstannane,9 2,4,4,6-T etrabromo-2,5-cyclohexadienone,4 I 4, 438 Tetrabutylammonium borohydride, 356 Tetrabutylammonium bromide' 356 Tetrabutylammonium chloride, 356 Tetrabutylammonium dihydrogen trifluoride' 357 Tetrabutylammonium fl uoride, 357
Tetrabutylammonium hydrogen difluoride, 359 Tetrabutylammonium hydroperoxide, 78 Tetrabutylammonium hydroxide, 359 Tetrabutylammonium nitrite, 359 Tetrabutylammonium peroxydisulfate, 187 Tetrabutylammonium tetrabutylborate,356 Tetrachlorosilane, 360 Tetracyanoethylene,360 Tetradecyltrimethylammonium permangante' ,4M Tetraethylammonium hydrogen carbonate' 360 Tetraethylammonium trichloride, 360 Tetrafluorosilane, 361 1,2,3,4-Tetrahydroisoquinolin-1-ones, 147 Tetrahydroisoquinolin-1-ones' 310' 414 3-Tetrahydropyranylpropynols,55 TetrahydroPYridine, 249 Tetrahydropyridines, 129 1,2,3,4-Tetrahydro-p-carboline'74 Tetrakis(dimethylamino)ethylene, 36 I Tetrakis(triphenoxyphosphine)nickel(0)' 36 I Tetrakis(triphenylphosphine)palladium(0)' 362' 369 Tetrakis(triphenylphosphine)platinum(0)' 369 2,2,6,6-Tetramethyl-4-methoxy-1-oxopiperidinium chloride, 370 Tetramethylfluoroformamidinium hexafluoroPhosPhate,3 I 3 N,N,N1N'-TetramethYlguanidine,370 2,2,6,6-T etramethylpiperidine-I -oxyl (TEMPO), 350,390 Tetrapropylammonium pemrthenate,370, 37 1 Tetrazoles, 387 Thallium(III) acetate,3'l 1 Thallium(III) nitrate, 37 1 155 3-Thiabicyclo[3,3,0]oct-5-en-7-ones, 7,3,4-T1liadiazoles,372 1,2,5-Thiadiazolidine1,I -dioxides,338 Thioallylation, 146 Thioamides,156,353 Thioformylsilanes, I l6 Tthioglycosides, 20, 398 Thiol carboxylic acids, 301 Thiol esters,395 Thiols, 11, 25, 28,'t3, 121, 2O5,222, 234' 290'
366,369,3'7r Thionocarbonates,423 Thionoesters,4 15 Thionyl chloride, 147, 153' 188 Thiophene oxides, 107
Thios Thior Thian Th).o Tin.4 Tinrll Tin(ll Tintll
TinrI\ Tishct Tiranr Titanrr Titann Tiunrr Titanrr Titann
Titarur Titano Titano Titarb Titarlo
TMED N-tpT p-Tolu p-Tolu p-Tolr-
TOS\t N-Tos; N-Tocr ,18 N-Tosr
N-Tcr y'y'-Tos
N-Tor1 TraLscl Trans-s Triallr I l,3.5-T Tna4ll Trian k Triaz.rd
1,2.+T Tribcru Tribury Tribur! 3-Tnhr
trq
2-Trih! N-Tnbu nrcd
SubjectIndex d.'..i59 I
l:"
rc .i60
. ih I
t, 162,
Thiosulfonic S-esters,305, 435 Thiourea,11, 244, 348, 37 l, 3'12 Thiourea dioxide. 372 Thyroxine, l17 Tin, 44, 64, 356, 372, 373, 374, 3i 5, 376 Tin(II) chloride. 373 Tin(II) hexamethyldisilazide, 375 Tin(II) rriflate. 376 Tin(IV) chloride, 3'73, 3't4. 375 Tishchenko reacrion, 209,335, 444 Titanium tetraisopropoxide, 38 1 Titanium trichloride triflate. 382 Titanium(II) chloride. 376 Titanium(Ill) borohydride, 376 Titanium(Ill) chloride. 377 Titanium(IV) chloride,8, 325, 37'/,380, 38 I Titanium(IV) isopropoxide, 347 T i t a n o c e n e1, 9 0 ,l 9 l , 2 8 8 , 3 2 5 .3 8 3 . 3 8 4 Titanocenebis(triethylphosphite),3g3 Titanocene dicarbonyl, 384 Titanocenedichloride,288, 325, 393, 394 TMEDA, 24, 65, 66, 68, 225, 265. 275. 382 N-(p-Toluenesulfi nyl)bomane- 10,2-sultam, 9g p-Toluenesulfonylimino iodosobenzene, 3g5 p-Toluenesulfonylmethylisocyanide,3g6 p-Tolyliodine(III) difl uoride,386 TOSMIC,386
J
:9().
N-Tosyl-allylamine,7, 199 N-Tosyl-2,5-dihydropynole-3-carboxylic esters 388 N-Tosyl-2-alkynylaziridines,76 N-Tosyl-2-iodomethylaziridine, I 99 N-Tosylaziridine s, 57, 229, 304 N-Tosyl-cr-allylglycineesters,4 I Transesterificarion, T |, l4i , 198,229,360. 3g I Trans-stilbeneoxide. 109 Triallylborane, 6, 86, 386 1,3,5-Triarylbenzenes,32j, 382 Triarylbismuthine bistrifluoroacetates,395 Triarylcarbenium hexachloroantimonates,3g7 Triazidochlorosilane, 387 1,2,4-Triazinone. 434 Tribenzylidenemethanedianion, 66 Tributylphosphine, 387 Tributylstannyl nitrite, I 83 3-Tributylstannyl-2-(trimethylsilyl)methylpropene, 388 2-Tributylstannyl-cyclopropylcarbinols, 2 1I N-Tributylstannylmethyl-2methoxymethylpynolidine, 64
533
3-Tributylstannylprop-2-ynyl tetrahydropyranyl ethers.55 3-Tributylstannylsulfolene, 364 Tributyltin chloride, 348, 388 Tributyltin diisopropylamide, 389 Tributyltin hydride,389, 391, 394, 395 Tributyltin perchlorate, 395 Tricarbonyl(q"-5-oxocyclohexadienyl)iron, 26g Tricarbonylchromfum, 229, 33 l, 366 N-Trichloroacetyl enamides, 253 2,2,2-Tnchloroethyl esters,352 Tridehydroindolizidines, 38 I 1,2,3-Trienes. 241 I,2.4-Trienes.36 Triethylamine,29, 62, 199,240,297.3 I 0. 386 Triethylborane, 394, 395 T r i f l i ca c i d ,1 6 5 ,1 8 2 , 3 7 1 , 3 9 5 . 3 9 8 I , I , I -Trifluoro-3-alken-2-ols.4 I 5 Trifl uoroacetic anhydride, TTFA, 396 Trifluoroacetone,186,315 Trifl uoroacetonylazines.396 l -Trifl uoroacetylbenzotriazole,397 2,2,2-Ti,fluorodiazoethane, 397 Trifl uoroethyl sulfates,397 Trifl uoroethylidene ketones, 39 Trifl uoromethanesulfonicacid (trifl ic acid). 39g Trifluoromethanesulfonic anhydride, 159, 399 Trifl uoromethanesulfonylguanidines, N?V,-diprotected,399 Trifl uoromethanethiolate.407 Trifluoromethyl ketones,149,314, 353, 400 Trifl uoromethyl trimethytsilyl sulfi de, 407 Trifl uoromethylamines, 357 Trifl uoromethylation, 353 o-Trifluoromethylbenzyl bromide, 400 Trifl uoromethylcarbinols, I 66 Trifluoromethylzinc bromide, 401 Trifluoropyruvamides, 396 Trifl yloxymethylene(dimethyl)iminium trifl ate, 399 Triisopopylsilyl rrifl ate, 40 I Triisopropylsilylalkynes, I 82 Triisopropylsilylalkynyl trifl one, I 82 Trimethyl phosphate,402 Trimethylaluminum, 148, 242, 384, 401 Ttrimethylamine oxide, 371 Trimethylammonium pem:thenate, 37 1 Trimethylenemethane,293 2,4,6-Trimethylphenylation, 159 Trimethylphosphine, 402
534
Subject Index
Trimethylsilyl Trimethylsilyl Trimethylsilyl Trimethylsilyl Trimethylsilyl Trimethylsilyl Trimethylsilyl Trimethylsilyl
azide, 201, 4O3 bis(fl uorosulfonyl)imide, 403 bromide, 404 chloride, 348, 380, 404 cyanide, 405 iodide, 407 isothiocyanate,407 phenyl selenide,408 Trimethylsilyl trifl uoromethanesulfonate,408 2(Trimethylsilyl)allylation, 388 2-Trimethylsilyl- 1,3-propanediol,408 2-Trimethylsilyl- 1-alkenes,408 2-Trimethylsilyl-2-alkenols, 350 1-Trimethylsilyl-2-propanone, 408 3-Trimethylsilyl-3-buten-2-yl hydroperoxide, 211 Trimethylsilylation, 184 Trimethylsilyldi(ethyl)amine, 407 Trimethylsilyldiazomethane, 405, 406 I -Trimethylsilylethylbenzotriazoles, 77 N-Trimethylsilylimines, 2 | 2, 225 Trimethylsilylmethyl isocyanate,2 I 9 2-Trimethylsilylmethyl-2-propen- l -yl acetate, l'17 6-Trimethylsilylmethyloxazin-2-ones, 378 N-Trimethylsilylmethyltryptamine, 74 Trimethyltin fluoride, 4l I 1.2.3-Triols.414 I,5,7-Triols,352 3-Triorganogermyltetrahydrofurans,374 Triorganosilyl(dizincio)methanes, 27 I N-Triorganosilylpyridinium triflate, 4l I Triorganostannylmethyl sulfi des, 65 2,6,7-Trioxabicyclo[2.2.2]octanes,Ql{ 1.3.5-Trioxanes. 247 1,3,5-Trioxepanes, 155 Triphenylphosphine,44, 119, 190, 192,293, 2 9 8 ,3 9 1 ,4 t t , 4 1 2 ,4 1 3 ,4 1 4 ,4 t 5 , 4 3 8 N-(Triphenylphosphonio)amines,4 l5 Triphenylstannane,4l 5 T r i p h o s g e n e1, 5 9 , 4 1 5 Triruthenium dodecacarbonyl,4 I 6 Tris(4-bromophenyl)aminium hexachloroantimonate,4 17 Tris(acetylacetonato)ruthenium,4l 7 Tris(dibenzylideneacetone)dipalladium,4 I 7, 420 Tris(dimethylamino)sulfur trimethylsilyldifl uoride (TAS-F), 422 Tris(pentafluorophenyl)borane, 422
Tris(trimethylsilyl)chlorosilane, 422 Tris(trimethylsilyl)episulfone, 2 19 Tri s(trimethyI siI y l) methane,422
9-Xanthen Xenon(II) Xenon([I)
Tris(trimethylsilyl)silane, 423 Tris(trimethylsilyl)silyl chloride, 423
D-Xylose.
Tris [3-(N,N-dimethylguanidino)phenyl ]phosphine,281
Ynolate fo Ytterbium. Ytterbiumt
Trisisopropylsilylethynyl tiflone, 422 Tri-t-butoxy(t-butylalkynidene)tungsten, 424
Tungsten carbyne,424
Ytterbium( Ytterbium( imidel. Yttrium ril phospb
Tungsten hexacarbonyl, l4l, 425
Y-zeolite.I
Trityl ierchlorate, 424 Tritylation, l3T Tulipalin-B, 128
Tungsten(Vl) chloride, 425 Ullmann coupling, 122,253, 286 Ullmann reactions,270 Ullmann synthesis,309 Ultrasound,426 Uranium(IV) chloride,426 U r e a s , 7 3 ,1 3 6 , 4 2 5 Vanadium, 180 Vanadocenedichloride,427 Vanadyl acetylaceton te, 427 Vanadyl alkoxychlorides, 428 Vanadyl nitrate,428 Vancomycin, 260 VAPOL,89 Vilsmeier reaction,153 Vinyl ethers, 301, 320, 382 Vinyl halides,395 o-Vinylation, 375 Vinylcyclopropanes,38, 109 Vinyl-epoxides,2l I Vinyloxiranes, 146,362 Vinylstannanes,28, l l 1, 42O Vinyltributylstan nane, 293 Wacker oxidation, 294 Water, supercritical, 429 Weinreb amides,148,263,313 Wilkinson catalyst,166 Willgerodt-Kindler reaction, 353 Wittig reaction,5, 129, 143, 237, 312 Wittig reagents,17, 18, 174, 229, 244 Wolff rearrange rnent, 406, 426 Wurtz coupling, ll2, 194,234,333
Zeolites.{3 Z i n c , 2 7 3 .I Zinc azi&.
SubjectIndex
9-Xanthenylamines, 396 Xenon(II) fluoride, 430 Xenon(II) fluoride triflate, 430 D-Xylose, 1
ll
r -:. -:13 b: :.henYl]-
r . ' ' . - n q s t e n4,2 4
Ynolate formation, 68 Ytterbium, 431, 433 Ytterbium(II) iodide, 43 I Ytterbium(III) trifl ate, 43 I Ytterbium(III) tris [(perfluorobutanesulfonyl)imidel,433 Yttrium tri[(R)- l, 1'-binaphth-2,2'-diyl]phosphonate,90 Y-zeolite,438
t - -
|
-
Zeolites,434 Z i n c , 2 7 3 , 2 7 9 , 4 3 5 ,4 3 6 ,4 3 7. 4 3 8 . 4 3 9
r'
Zinc azide,438
T
.rtl
iil
Zinc borohydride, 438 Zinc bromide,438 Zinc chloride,439 Zinc iodide,407 Zinc triflate, 70 Zinc, activated,436 Zinc, amalgamated,43T 2-Zincio- 1,3- dithianes, 27 I Zirconacycles, | 19, 226 Zirconi4 439 Zirconium, 180, 445, 487 Zirconium(IV) chloride, 439 Zirconium(IV) triflate, 440 Zirconocene, 441, 442, 443, 444, 445 Zirconocene bis(trifl ate), 443 Zirconocene dichloride, 288, 443, 444 Zirconocene hy dide, 444 Zirconocene hydrochloride, 445
535