A Handbook of Spectroscopic Data
CHEMISTRY (UV, JR, PMR, JJCNMR and Mass Spectroscopy)
B.D. Mistry B.K.M. Science College. Va/sad - (Gujarat)
Oxford Book Company Jaipur, India
ISBN: 978-81-89473-86-0 Edition 2009
Oxford Book Company 267, 10-B-Scheme. Opp. Narayan Niwas, Gopalpura By Pass Road, Jaipur-302018 Phone: 0141-2594705, Fax: 0141-2597527 e-mail:
[email protected] website: www.oxfordbookcompany.com
© Reserved
Typeset by: Shivangi Computers 267, lO-B-Scheme, Opp. Narayan Niwas. Gopalpura By Pass Road, Jaipur-302018
Printed at : . Mehra Offset Printers, Delhi.
All Rights are Reserved. No part of this publication may be reproduced. stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying. recording, scanning or otherwise, without the prior \HItten permission of the copyright owner. Responsibility for the facts stated. opinions expressed, conclusions reached and plagiarism, if any, in this volume is entirely that of the Author, according to whom the matter encompassed in this book has been originally created/edited and resemblance with any such publication may be incidental. The Publisher bears no responsibility for them, whatsoever.
Contents
1.
Ultraviolet Spectroscopy
2. Infrared Spectroscopy 3. Proton Magnetic Resonance Spectroscopy 4. Be NMR Spectroscopy 5.
Mass Spectrometry
6.
Structural Data Obtainable from Different Spectra
Index
1 26 64 99 128 237 240
"This page is Intentionally Left Blank"
1
Ultraviolet Spectroscopy
1.1
Calculating Absorption Maxima of Unsaturated Compounds Dienes and trienes : If the compound is suspected to be a conjugated
or substituted diene, its wavelength of maximum absorption can be predicted with the help of Table I. I. To be able to use this table, one must first learn to recognize different types of dienes, conjugations, double bonds, etc. These are as follows:
c=c< _ ) C=C< A linear conjugation; for example, 1,3,5 C-C hexatriene, isoprene,etc. ) C=C< A cross conjugation. ii) )C=C )C=C< i) )
iii)
iv)
o o
A cyclic diene; for example, cyclohexadiene,
cyclohepta 1,3- diene, etc. A semicyclic diene; one of the double bonds forms part of a ring and the other is exocyclic, or outside the ring. When only one of of the two Sp2 hybridized carbons of a double bond is a part of the ring under
2
Spectroscopic Data Chemistry consideration, such a double bond is called an exocycIic double bond. A homoannular diene is one in which the
v)
two double bonds are conjugated and are in a single ring. Note that both double bonds are exocycIic to ring B. vi)
A heteroannular diene is a conjugated system in which the two double bonds belong to two different rings. However, these double bonds are also exocycIic, one of them being exoto ring A and the other exo-to ring B.
Table 1.1: Woodward's and Fieser's rules for Diene absorption (ethanol solution) i)
Base value for an unsubstituted, conjugated, acyclic or heteroannular diene
ii)
214 nm
Base value for an unsubstituted, conjugated homoannular diene
253 nm
Increments for iii) Extra double bonds in conjugation (for each C=C)
+30 nm
iv) ExocycIic double bond (effect is two fold ifbond is exocylic to two rings) v)
+5nm
Substitutents on Sp2 hybridised carbon atom, per substituent a) O-acyl (-O-CO-R or -O-CO-Ar)
Onm
b) Simple alkyl (-R) or ring residue
+5nm
c) Halogen (-CI, -Br)
+5nm
d) O-alkyl (-OR)
+6nm
e) S-alkyl (-SR)
+30nm
f) N-alkyl, (-NRR ')
+ 60 nm
vi) Solvent correction
Onm
3
Ultraviolet Spectroscopy ,
The following points are to be noted: •
The cyclic homoannular base values refer to a six membered ring only. For other rings the values are: Five membered ring (C s)
228 nm
Seven membered ring (C 7 )
241 nm
•
Accuracy of prediction is ± 5 nm
•
If there is more than one possibility for calculating Amax, the highest Amax value usually agrees with the observed value.
Limitations •
Agreement is quite good for acyclic and six-membered ring polyenes but not so for other rings in some cases.
•
Steric strain can also affect the position (Amax) of the band, sometimes very greatly if the strain is high. A simple example of this is 1,2 dimethylene cyclohexane, which gives a strong UV band at Amax 220 nm (E 10,050) which is quite different from the calcualted value.
Polyenes : The above rules (Table 1.1) holds fairly well for unsaturated compounds containing up to four conjugated double bonds. However, for systems of extended conjugation, such as those found in carotenoid pigments, Fieser and Kuhn have suggested equations to calculate the basic Amax and Em.. ofUV absorption. Amax (in hexane) = 114 + 5M + n (48.0 - 1.7n) -I 6. 5Rendo - IOR exo E ma , (in hexane)
=
1.74 x 104n
Where n = number of conjugated double bonds M = number of alkyl or alkyl like substituents on the conjugated system. Rendo = number of rings with endocyclic double bonds in the conjugated system. Rexo =
1.2
number of rings with exocyclic double bonds. Calculating Absorption Maxima of Carbonyl Compounds The basic chromophore containing a >C=C< (--ene) conjugated with a
>c=o (-one), as in
4
Spectroscopic Data Chemistry P
a
> C = C- C = 0
. IS
called an enone. If a carbonyl group is conjugated
with two double bonds (-cliene), such as Ii y P a >C=C-C = C-C = 0 The compound is known as a dienone. In the case of cyclic compounds, the ethylenic double bonds conjugated with the carbonyl may be homoannular or heteroannular.
Table 1.2: Rules of Enone and Dienone absorption
P-
paZ
0
y
paZ
I
I
I
I
I
I
I
I
C = C - C = 0 and 0 - C = C - C = C - C = 0 Enone Dienone Z = C, enone, Z = H, aldehyde Z = OH, acid, Z = OR, ester
Parent enone (acyclic or rings larger than 5 members) 5-membered cyclic enone Aldehydes Acid and Esters Increments for Double bond extending conjugation (for eacb one) Homodiene component Exocyclic double bond (or any >C=C< endocyclic to 5- or 7member ring in a case of acid and ester) Alkyl group, ring residue a
p
215nm 205nm 210nm 195nm +30nm +39nm +5nm +IOnm +12nm
y Hydroxyl (-OH)
Alkoxyl (-OCH 3)
and higher
+ISnm
a
+35nm
p
+30nm
y a y
50nm +35nm +30nm + 17nm
o
31nm
p
5
Ultraviolet Spectroscopy Acetoxyl (-O-COCH 3 ) Dialkyl aniino (-NR) Chlorine (-CI)
a, ~ or <')
f
~ a
+ 15nm +12nm
+ 85nm + 25nm
Thioalkyl (-SR) Bromine (-Br)
6nm
+ 95nm
a
~ Solvent correction (see table below)
+30nm variable
Solvent Corrections (Enones) Solvent Ethanol Methanol Water Chloroform Dioxane Ether Hexane Cyclohexane
Correction
o o -8 nm + I nm +5 nm +7nm
+ 11 nm + II run
Accuracy of prediction ± 5 nm. 1.3
Calculating Absorption Maxima of Aromatic Molecules
There are two types of aromatic molecules: benzenoid and nonbenzenoid. Their spectra show considerable resemblance. In fact, the presence or absence of certain features in UV spectra, such as a low intensity band (known as a fine structure band) at or about 255 run, is often used to detect the aromatic character of an unknown substance. Benzene Chromophore The simplest aromatic compound is benzene. It has a ring current of 1t electrons, which shows strong 1t ~ 1t* absorptions at 184 run (Em" 60,000), and at 204 nm (Emax 7900). (This is called a primary band.) Benzene exhibits a low intensity band at 256 nm (Emax 200) (Known as a secondary or finestructure band), with a series offine-structue bands between 230 and 270 nm). Any substitution ~ the benzene ring, irrespective of its electronic character
6
Spectroscopic Data Chemistry
(electron-donating or electron-withdrawing character) shift the primary band
(204 nm) to longer wave lengths. With polar substituents, e.g. etc. which allow for the n
~ 1t
-N~,
-OH,
conjugation and -C = 0 and -N0 2 where
polarisability is of importance, absorption due to electron transfer transitions is apparent. These two types of transfer can be expressed as shown below:
Chromophore substitutents:
Auxochrome substituents:
Table 1.3: Scotts rules for calculation ofAmax ofthe ET (electron transfer) band of aromatic carbonyl compounds Ar-C-Z
II
o Parent chromophore : Ar=C6HS Z = Alkyl or ring residue, (e.g.; ArCOR) 246 run 250 run Z = H, (Ar CHO) Z = OH, OAlk, (ArCOOH and ArCOOR) 230 run Increment for each substitutent on Ar: - Alkyl or ring residue 0-, m+3 nm p+ 10 nm - OH, -OAlk +7 run 0-, m+25 run p-- 0- (oxyanion) • +Ilnm o+20 run m+ 78 run" p-
In heterocyclic chemistry model compounds are essential for the interpretation of most spectra. No rules are available for the predicition ofthe wavelength maxima ofaromatic compounds except in the case of aromatic carbonyl compounds where acetophenone is taken as the parent chromophore, and increments allotted on the usual basis (Table 1.3)
7
Ultraviolet Spectroscopy
--
CI
0--,
m-
+0 mn
p-
+ 10 nm
-
Br
0--,
m-
-
-
NH2 NHCOCH 3
t
2 nm
p-
+ 15 nm
o-,m-
+I3nm
p-
+ 58 nm
o-,m-
+20nm +45nm
-
NHCH 3
pp-
-
N(CH 3)2
o-,m-
+20nm
p-
+ 85 nm
+ 73 nm
"This value may be decreased markedly by steric hindrance to coplanarity. Let us now apply the rules in Table 1.1, 1.2, and 1.3 to a few known compounds and compare the resulting values of Amax with the values observed experimentally. I. Dienes (1) Abietic acid
Basic heteroannular diene
214nm
Exocyclic double bonds (1 x 5)
05nm
Substituents R (4
20nm
x
5)
Calculated Amax
239nm
Observed
241 nm
[Chromophore is shown by heavy lines; numbers indicate substituents.]
Spectroscopic Data Chemistry
8 (2) Ergosterol
HO 253 nm
Basic homoannular diene Exocyclic double bonds (2 x 5)
lOnm
Substituents R (4 x 5)
20nm
Calculated "'-max
283 nm
Observed
282 nm
3.3, j3-Acetoxyergosta-5,7,14,22-tetraene 4
In compounds containing both homoannular and heteroannular double bonds, the diene system which requires least energy for excitation (i.e. the one with the longer wavelength of absorption) is used as a base. 253 nm 15 nm 25nm 30nm
Basic homoannular diene Exocyclic double bonds (3 x 5) Substituents R (5 x 5) Extra double bond in conjugation
323 nm 319nm
Calculated "'-max Observed II. Polyenes (1) All trans j3-carotene
Me
Me Me Me
Me
Ultraviolet Spectroscopy
9
Basic Amax value
114 nm
M
= number of alkyl substituents, 5 x 10 add
50 nm
n = number of conjugated double bonds,
11
x
[48-(1.7
x
11)]
add
322.3 nm
Rendo = number of rings with endocyclic double bonds, 2 x 16.5, substract Rexo
= number of rings with exocyclic double bonds,
ox
Emax
33.0 nm
10, substract
00.0 nm
Calculated Amax
453.30 nm
Observed
452.00 nm
=
1.74 x 11 x 104
= I 9.1 x 104 (calculated) =
*
15.2 x 10 4 (observed*)
The equation for calculating
Emax
is semi-empirical, the value calculated
does not always correspond well with the observed value. (2) All trans Iycopene
114 nm
Basic Amax
M=5 x 8
add
40nm
n= 11 x 148-(1.7 xII)
add
322.3 nm
(Note: Double bonds at ends are not in conjugation with others)
E
max
= 1.74
substract
00.0 nm
substract
00.0 nm
Calculated Amax
476.30 nm
Observed
474.00 nm
x II x 104
= 19.1 x 104 (calculated)
= 18.6
x 104 (observed)
10
Spectroscopic Data Chemistry
III. Enones (1) Cholest--4-en-3-0ne
Parent base Subst::iJ:uents~, ~
(2 x 12) add Exocyclic = C< add
215 nm 24 nm 05nm
Calculated AEtOH max
244nm
Observed
241 nm
(2) Cholesta-2,4-dien-()....{)ne
Parent base Extended conjugation Homoannular component Substituents a. (l x 10) 8 (l x 18)
(3) 3,
215 nm add add add add
30nm 39nm
10 nm 18 nm
Calculated AEtOH max
312 nm
Observed
314 nm
~-Acetoxy-7-()xolanosta-5,18,11-triene
11
Ultraviolet Spectroscopy
215 nm
Parent base Extended conjugation
add
30 nm
Homoannular component
add
39 nm
Exocyclic double bond
add
5nm
Substituents a(l)( 10)
add
10nm
12)
add
12 nm
0(\ x 18)
add
18 nm
~ (\ x
Calculated A. EtOH max
329 nm
Observed
327 nm
(4) Cycloheptene-l--carboxylic acid a
0
II
ot~H IK. p Parent base Substituents a(l x lO)
add
IOnm
~(lxI2)
add
12 om
add
05 nm
C=C endocyclic to 7-member ring, Calculated A. EtOH max
195 nm
222 nm
(5) 3-MethyI-2-butenoic acid CH 3
H
I
I
CH 3-C = C-COOH
t
t
~
a
Parent base
195 nm
Substituents a (l x 10) ~(l x
10 nm
12)
12 nm
Calculated
217 nm
Observed value
216 nm
12
Spectroscopic Data Chemistry
Dicarbonyl compounds
Diosphenol 215 run
Parent base 2~
Substituents
(2 x 12)
24 run
a-OH (1 x 35) Calculated
35 run
AEtOH max
274 run
Observed AEtOH max
270nm
In cyclic a-diketones, the enolic form is generally more stable than the keto foml and therefore, the absorption is related to that of an a, 13-unsaturated carbonyl system. Six-membered cyclic a-diketone known generally as diosphenols, exist in solution largely in the enolised form. In strong alkaline solution the absorption shifts to about 50 nm to longer waves, due to the formation of the enolate ion, to enable diosphenol structures to be characterised. Acetyl acetone exists in the enolic form to the extent of about 90% in solution in non-polar solvents and the absorption directly depends on the concentration of the enol tautomer.
..' H ""
o
0
0
II
II
II
CH -C J
<
C·CH
'"
/
J
,
a~-diketone
Isoo ctane 272
,
274,
C.CH.
-'"
CH
Acetyl acetone
1
I
>CH.--C
CH 2
"'rna,,;
0
Ema~ 12,000 E
max
2050
-f"
'
Ultraviolet Spectroscopy
13
However, in the case of acetyl acetone agreement with the calculated wavelength (257 nm) is indifferent. This may be due to the fact that the strong internal hydrogen bond forces the carbonyl group and the double bond into a configuration different from that which is present in cyclic structures, e.g., diosphenol exists almost entirely in the enolic form. 1,3-cyclohexanedione, absorbs at 253 nm
(Emax
22,000) in ethanol
O~OH
O~O
V<-->~ -V 1,3-Cyclohexanedione
The formation of enolate ion in alkaline solution in these cases also shifts the strong absorption band. Quinones represent a-, or vinylogous adiketones. The spectrum of p-benzoquinone is thus found to be similar with that of a typical a, f)-unsaturated ketone with the strong K-band appearing at 242 nrn and a weak R-band near 434 nm. A.~:ne = 242 nrn (E 24,000)
6
(7t ~ 7t*
K-band)
281 nrn (E 400)} n ~ 7t * 434 run (E 20) R - band
o
The colour of the simpler members is due to the weak n ~ 7t* transition which is also present in a-diketones. The n ~ 7t* transitions of a-diketones in the diketo form gives rise to two bands one in the usual region near 290 nm (E
~
30) and a second (E 10 ~ 30) which stretches into the visible 340--440 nm
region to give yellow colour to some of these compounds.
IV. Aromatic carbonyl compounds
o II
1.
I -. . . :
HO"'-.cr
/ HO
~
C
Base value "-. CH
246nm
OHinm
07 nm
OH inp
25 nm
3
278 nrn
14
Spectroscopic Data Chemistry
0
2.
Base value
00
(CH,),NO H,NO
Brin m -CH 2 in 0
246nm 02nm 03 nm 251 nm
Br
3.
~
4.
I~
Base value
250nm
NMe 2 inp
85nm 335 nm
CHO Base value
230nm
NH2 in p
58nm 288nm
COOH
Another approach to predicting, the "-max of the primary band of substituted benzenes involves the use ofTable 1.5. This table has been successfully used with disubstituted compounds when the following rules are used: I. Para substitution:
a.
b.
Both groups are either electron donating or electron withdrawing: Only the effect of the group causing the larger shift is used. For example, the "-max ofp-nitrobenzoic acid would be expected to be the same as that of nitrobenzene, -(203.5 + 65.0) = -268.5 (in alcohol solvent). One group is electron donating and the other electron withdrawing: The shift in the primary band of such a disubstituted benzene is usually greater than the sum ofthe shifts caused individually by the two groups. Such large shifts in p-disubstituted benzens are attributed to interaction resonance, as illustrated below:
15
Ultraviolet Spectroscopy
2. Ortho and Meta substitution: The shift effects are additive. Table 1.4: Absorption characteristics of some polycyclic aromatic compounds Compound
Amax,
emax
nm
Amax, emax
nm
Amax, emax
nm
CD
184
47,000
203
7,400
255
230
ro
220
1,10,000
275
5,600
314
316
OGCJ
252
2,00,000
375
7,900
252
50,000
295
13,000
330
250
240
89,000
334
50,000
352
6(30
268
1,41,000
320
13,000
360
630
278
1,30,000
473
11,000
580
12,600
Benzene :::-..
/-
Napthalene :::-.. //Anthracene
~ I" /-
Phenanthrene
m ~ I/-
Pyrene
Chrysene
OXO :::-..
/-/-/-
Napthacene
:::-.. ~ /-/-/-/-
Pentacene
• These weak bands are usually submerged by strong adjacent bands .
16
Spectroscopic Data Chemistry ~
Table 1.5: Calculation of the Primary Band (1[ substituted Benzenes (CH 30H solvent) Base Value: 203. 5 nm
1[*Transition) of
Substitutent
Shift
Substituent
Shift
-C H3 -CN -CHO -COCH3 -COOH -Br -CI
3.0 20.5 46.0 42.0 25.5 6.5 6.0
-NH2 -NHCOCK -N02
26.5 38.5 65.0 7.0 31.5 13.5
J
-OH -0-OCH 3
Absorption Characteristics of Disubstituted Benzens: 1[ Compound
o-N0 2 Phenol m-N0 2 Phenol p-N0 2 Phenol o-N0 2 Aniline m-N0 2 Aniline p-NO? Aniline
~
1[*
Transition KBand Amax (nm) Emax 279 6,600 274 6,000 318 10,000 283 5,400 280 4,800 381 13,500
BBand Amax (nm) Emax 3,200 351 333 1.960 Submerged 412 4,500 358 1,450 Submerged
Table 1.6: Absorption characteristics of Aromatic systems and their substituted derivatives Compound
Solvent
Primary band 1[ ~ 1[* Transition KBand
Amax
E
rna,
(nm) Benzene Toluene o-Xylene
Hexane 204 Methanol(2%) 206.5 Methanol 210
1[
Secondary band 1[* n ~ 1[*
~
Transition BBand
Transition RBand
Amax
Amax
E
max
(nm) 7,900 7,000 8,300
256 261 263
(nm) 200 225 300
E max
17
Ultraviolet Spectroscopy Compound
Solvent
Primary band 1t ~ 1t*
Transition KBand Amax
Emax
(nm)
Secondary band n ~ 1t* Transition Transition RBand BBand 1t .~ 1[*
A
A
Emax
max
max
Emax
(nm)
(nm)
m-Xylene
Methanol
212
7,200
265
300
p-Xylene
Methanol
212
8,000
274
460
244
15,000
280
1500
328
20
Acetophenone Ethanol
240
13,000
278
1,100
319
50
Benzophenone Ethanol
252
20,000
325
180
Nitrobenzene
Hexane
252
10,000
280
1,000
330
125
Benzonitrile
Water
224
13,000
271
1,000
Alcohol
232
14,000
262 2,400
sylfone
Alcohol
217
6,700
Biphenyl
Alcohol
246
20,000
Benzaidehyde Ethanol
Diphenyl Sulfoxide Methyl phenyl
2,2'-Dimethyl
264
977 Submerged
222
270
800
methane Ethanol Styrene Hexane Phenylacetylene
500
244 236
12,000 12,500
262 282 278
Stilbene (cis)
Alcohol
283
12,300
Submerged
Stilbene (trans) Alcohol
295
25,000
Submerged
Cinnamic acid (cis)
268
10,700
(trans)
272
15,900
biphenyl Diphenyl-
-
1-Pheny I-I ,3butadiene (cis) Isooctane
268
18,500
(trans) Isooctane 1,3-Pentadiene
280
27,000
223 223.5
22,600
(cis) Alcohol (trans) Alcohol
23,000
450 650
18
Spectroscopic Data Chemistry
Compound
Solvent
Primary band
n
~
n*
Transition KBand Amax E max (nm)
Secondary band n* n ~ n* Transition Transition BBand RBand Amax E m.. Amax E rna< (nm) (nm)
n
~
Chlorobenzene Ethanol
210
7,600
265
240
Thiophenol
236
10,000
269
Methanol (2%) 217 Anisole 210.5 Phenol Water Phenolate anion Alkali (aq) 235 Water (P H3) 214 o-Catechol o-Catecho late Water (PHIl) 236.5
6,400 6,200
269 270
700 1,480
Hexane
9,400 6,300
1,450 287 2,600 276 2,300
6,800
292 3,500
8,600 7,500
280
1,430
254
160
anion Aniline Water AniliniumcationAcid (aq) Acetanilide Water
230 203 238
Diphenyl ether Cyclohexane
255 275 375 474
Naphthalene Anthracene Tetracene (Napthacene) Pentacene Pyridine
Ethanol Hexane
Quinoline
Cyclohexane
lsoquinoline
Cyclohexane Ethanol
Acridine
Ethanol Ethanol Ethanol
580 257 270 265
10,500 11,000
272 2,000
5,700 8,000 13,000
312
250
270
450
15,000 2,750 3,161
358
4,170 10,000 Band I 10,000
Furan
Cyclohexane
200
Pyrrole Thiophene Pyrazole
Hexane Hexane Ethanol
209 231 214
315 2,500 313
1,800 Band II
252
I"
6,730 240 7,100 269.5
300" 1.5"
3,160
These weak bands may be due to impurities rather than a forbidden transition (n
~
n*) ofa hetero aromatic molecule.
19
Ultraviolet Spectroscopy
Spectra of nonbenzenoid aromatic hydrocarbons show considerable resemblance to spectra ofbenzenoid compounds, Tropolone and its derivatives show absorption in the region 220 - 250 nm (
Emax
ca 30,000) and 340 - 375
nm (Emax ca 8,000); the latter absorption is characterized by the group of fine structure bands typical of aromatic systems.
Q HO
tropolone
0
Azulene and its derivatives have complicated spectra consisting of a number of relatively intense bands throughout most of the ultraviolet region (up to 360 nm) and a number of relatively weak bands throughout most ofthe visible region (500 - 700 nm). As a consequence of the latter, azulene and most of its derivatives are blue.
azulene
1.4: Approximate lower cutoff wavelengths* for commonly used solvents in UV-visible spectroscopy of organic substances Solvent
Cutoff
Solvent
wavelength, nm
Cutoff wavelength, nm
200-250
250-300
Acetonitrile
2\0
Benzene
280
n-Butanol
210
Carbon tetrachloride
265
Chloroform
245
N,N-Dimethylformamide
270
Cyclohexane
210
Methyl formate
260
Decahydronapthalene
200
Tetrach loroethy lene
290
1, I-Dichloroethane
235
Xylene
295
Dich loromethane
235
20
Spectroscopic Data Chemistry
Solvent
Cutoff
Solvent
wavelength, nm Dioxane
225
Dodecane
200
Ethanol
210
Ethyl ether Heptane
300-350 Acetone
330
210
Benzonitrile
300
210
Bromofon-n
335
Pyridine
305
Hexane
210
Methanol
215
Methylcyclohexane
210
isooctane
210
isopropanol
215
Water
210
*
Cutoff wavelength, nm
350-400
Nitromethane
380
Cutoff wavelengths: i.e. useful wavelength range is beyond the indicated wavelength.
Exercises and problems: (1) Explain the differences in the electron spectra of compounds (2) and (3) compared to compound (1) I.
(CH 3)2 N-Q-N = N-Q-N0 2 "-max = 475, E = 32,000
2.
= N~ ~ NO (CH.) , 2N-~N )=/ 2 CH 3 "-max = 438, E = 22,000
....
.).
(CH 3)2 N-p-N = N-o-N0 2 HC(CH 3)2 "-max = 420, E = 18,600
(2) Identify which one of the following two isomers has the electronic absorption band with "-max = 241 nm and Emax = 18000
21
Ultraviolet Spectroscopy
(1)
(3) Which structural features may produce a bathochromic or a hypsochromic effect in an organic compound. (4) Aniline absorbs at 230 nm (E8600), however, in acid solution the main absorption band is seen at 203 nm (E7500) and is comparable with benzene. Explain.
(5) o-Nitrophenol gives a UV band at t..max 350 nm when the spectrum is recorded in 0.1 N HCl solution, but the band is observed at t..max 415 nm in 0.1 N NaOH solution. Explain. (6) Optical whiteners are used to make white clothes appear brighter. Can you suggest an explanation for the brightening action? (7) Explain the substitution pattern on the following enone and calculate the position ofK band.
(8) The position of absorption of acetone shifts in different solvents: 279 nm (hexane); 272 nm (ethanol) and 264.5 (water). Explain. (9) At what wavelength the coloured compounds absorb? (10) Biphenyl shows the following UV absorption data. In its 2, 2' ~imethyl derivative however, the absorption pattern becomes almost similar to o-xylene. Explain.
Biphenyl K-Band, t..max ~ 252,
o-xylene
22
Spectroscopic Data Chemistry Emax
~
19,000
"-max 262,
planar conformation
emax 270
(II) How will you confirm the presence of a-diketone system in the following steroid?
(12) Why the Amax for the diene (I) is observed at lower run than (II)
0-0 (I)
(13) The following triene on partial hydrogenation gives three products. Which are separated by glc. How UV spectroscopy and application of Woodward-Fieser rules will help to identify the products.
GO
CO
co co
23
UltravIolet Spectroscopy
Answers to the problems ( I) In compound (I) the unshared electron pair of the nitrogen atom in the dimethylamino group is conjugated with the benzene ring (n
~ 7t*
conjugation). While in compound (2) this conjugation cannot be complete owing to the methyl group at the ortho position. When methyl at the ortho position is replaced by a more bulky group, namely, isopropyl, the peak wavelength is shifted still further (owing to full violation of conjugation) to shorter wavelengths (A = 420 nm), with an accopanying drop of the band intensity (e
=
18,600).
(2) For isomer 1 we find
A = 215 nm + 24 nm (2 x 12) 239nm For isomer 2 A = 215 nm + 12 nm (~-substituent) + 18 nm (8-substituent) + 30 nm (extra double bond in conjugation) + 05 nm (exocyclic double bond) 280nm Hence, the absorption spectrum hlJS been measured for isomer I. (3) A bathochromic shift (red shift) may occur by a change of medium or by the presence of an auxochrome. A hypsochromic shift (blue shift) may be caused by a change of the medium or by such structural changes like removal of conjugation.
(4)
~
)-N
H2
Hel)
~
~~
')--N
H 3 c\
')--NH3HSO;
Due to the removal of conjugation of the lone pair of electrons on the nitrogen atom of aniline with the 1t-bond system of the benzene ring on protonation, the main absorption band is seen at 203 nm (e7500) and is comparable with benzene.
Spectroscopic Data Chemistry
24
(5) In 0.1 N HCI solution o-Nitrophenol gives a UV band at Amax 350 nm due to n--1[ conjugation
Conversion of a phenol to the corresponding anion (i.e. in 0.1 N NaOH solution) results in a bathochromic shift of the E2 and B bands and an increase in Emax because the nonbonding electrons in the anion are available for interaction with the 1[ electron system of the ring. Therefore band is observed at 4 I 5 nm in 0.1 N NaOH soln.
(6) Singlet excited state of the brightening agent is converted into triplet state which emits radiation in the visible range. (7) One a-substituent, two (3-ring residues and one exocyclic double bond: 215 + 10 + 24 + 5 = 254 nm. (8) This is the expected shift of the n ~ 1[* transition of acetone to shorter wavelength (blue shift) by changing to solvents of increased polarity.
(9) Longer than 400 nm. (10) Although biphenyl is slightly twisted, the angle of twist is small, therefore, conjugation between the rings is not affected. Biphenyl thus shows a very intense absorption band at 252 nm (K-Band). Biphenyl derivatives with bulky substituents in the ortho positions are more stable in twisted conformations than in the planar conformation, which suffers serious non-bonded compressions from the juxtaposed substituents. The loss of conjugation in the twist conformation of2, 2-dimethylbiphenyl is reflected in its UV spectral data, which now structurally is like two moles of o-xylene. A H
® H
B
Planar conformation (A
=
CH 3 and B = CH)
2,2' --Dimethylbiphenyl
/CH 3
~
H Twist conformation
2,2' -dimethylbiphenyl B-Band "-max 270, Emax 800
25
Ultraviolet Spectroscopy
(II) It will largely exist in the enolic form as revealed by the observed "-max 281 nm ( Emax 9,700) which matches with the Cal. "-max (on enolisation the double bond becomes exocyclic to one ring). On acetylation the spectrum is restored to that calculated for the system now with OAC in the a-position. Further confirmation will come from the measurement of the spectrum of the enolised form in alkaline solution which will show ; ,
the expected bathochromic shift of some 50 nm, i.e., 281 run ~ 330 run.
o
HO&O ObS
max
calc " " max
= 281 nm (E max 9700) = 215 + 2
X
12 + 5 + 35 = 279 run ..
o
""
A C O O } (215+2 x I2+5+6(OAC) = 250 run
I
~ (12) In both the dienes, there are 4 ring residues as substituents. In diene (II), the two double bonds are exocyclic, thus in it "-max will be higher by 2 x 5 = 10 run. (13) The markedly differed values are expected from each of the structures.
1~
~ '\ 'C... 3 exoc
base value 253 run 3 alkyl substituents 3 x 5 15 nm exocyclic C=C 05 nm Calculated or expected 273 run "-max < 200 11m (not conj)
~k'3 ~
1)" "\ exoc
214 15 05 234
run nm
nrn nrn
CD
ClClCl
2 Infrared Spectroscopy
Symmetrical' Asymmetrical Stretching vibrations, U
+
Scissoring (cry Rocking (p) In-plane deformations
+
Wagging (m)
+
Twisting ('r) Out of plane deformations Bending Vibrations, 8
27
Infrarred Spectroscopy
Table 2.1a: Characteristic infrarred absorption frequencies of common classes of organic compounds Type
Vibration mode
1. Alkanes -C H3
C-H str., asym. C-H str., sym. C-H def., asym. C-H def., sym. C-H def. Skeletal
Frequency. cm- I 2975-2950
-C(CH 3)3
C-Hdef. Skeletal
-CH 2-
C-H str., asym.
2880-2860 1470-1435 1385-1370 1385-1365 1175-1140 840-790 1395-1365 1255-1200 750-720 2940-2915
C-H str., sym.
2870-2845
C-H, Scissoring C-H, twisting & wagging Skeletal, if
1480-1440 Ca. 1250
-C(CH3 )2
CH 3 -in cyclopropane -C-H
-(CH 2 )4 or more C-H str. Skeletal C-H str. C-H def
Wave length, Il 3.36-3.39
Relative intensity* m.
3.47-3.50 m. 6.80-6.97 s. 7.22-7.30 m., sh. s., d. 7.22-7.33 8.51-8.77 s., br. 11. 90.12.66 m. 7.17-7.33 s, d. ratio 1:2 s., br., d. 7.97-8.33 s., br. 13.33-13.89 3.40-3.45 m. strong if several 3.49-3.52 m.-CH 2present 6.76-6.94 m. Ca. 8.00 m.
750-720
13.33-13.89
s.
3080-3040 1020-1000 2900-2880 Ca. 1340
3.25-3.29 9.80-10.00 3.45-3.47 Ca. 7.45
v. m. w. w.
3310-3300
3.02-3.03
m.
600-650 2140-2100
16.7-15.4 4.67-4.76
s. w.
2260-2190
4.42-4.57
u.
2. Alkenes See Table 2.2a & 2.2b 3. Alkynes and allenes C-H str. Terminal/ monosubstituted C-H def. (RC=CH) C=C str.
Noo!"",'"'''
}
unsymmetrically disubstituted R1C=CR 2
C=C str.
28
Spectroscopic Data Chemistry
c=c type str.,
Allenes (C=C=Cj
antisym.
1970-1950
5.08-5.13
m.
1060
9.43
m.
O-H str.
3650-3590
2.74-2-79
V.,
compounds)
O-H str.
3550-3450
2.82-2.90
v., sh.
Polymeric
O-H str.
3400-3230
2.94-3.10
s., br.
compounds
O-H str.
3570-3450
2.80-2.90
V.,
sh.
chelate compounds
O-H str.
3200-2500
3.1-4.0
W.,
br.
Primary C-O-H
O-H def.
1350-1260
7.40-7.94
s.
C-O str.
1075-1000
9.30-10.00
s.
C-C type str., sym. 4. Aromatic hydrocarbons See Table 2.3 5. Alcohols and phenols Free-OH
sh.
Intermolecularly hydrogen bonded (Change on dilution) Dimeric (Single bridge
Intramolecularly hydrogen ,bonded (no change on dilution) single bridge
Secondary C-O-H Tertiary C-O-H Phenols
O-H def.
1350-1260
7.40-7.94
s.
C-O str.
1120-1030
8.93-9.71
s.
O-H def.
1410-1310
7.09-7.63
s.
C-O str.
1170-1100
8.55-9.09
s.
O-H def.
1410-1310
7.09-7.63
s.
C-O str.
1230-1140
8.13-8.77
s.
6. Ethers and epoxides Acyclic CHJ-O-CH J Aryl and aralkyl
Conjugated
R-O-R str.asym.
1150-1070
8.70-9.35
s.
C-H str.
2830-2815
3.54-3.55
m.
Ar-O-Ar asym.
1260-1200
7.98-8.33
v-s
= C-H str.
3150-3050
3.18-3.28
w.
C-O-C str.
1275-1200
7.84-8.33
\'
Ar-O-R str.,
29
lnfrarred Spectroscopy C
I
t-butyl
c-c-o str.
920-800
10.87-12.50
s,
I C
.
Cyclic
C-O str.
1140-1070.
8.77-9.35
s,
-O-CH 2-O
C-O str,
Ca, 940
Ca. 10-65
s. v.
C-H str.
Ca,2780
Ca,3.65
Epoxides
C-O str.
1260-1240
7,94-8.07
s.
trans
C-O str.
950-860
10 53-11.63
cis
C-O str.
865-785
11.56-12,74
v. m,
7. Carbonyl compounds For C=O stretching vibrations of acid chlorides, acid anhydrides, carboxylic acids, esters, aldehydes, ketones, ami des and salts, see tables 2.4 and 2,5, Vibrations other than C = 0 stretching vibrations
a) Anhydrides Cyclic
C-O str.
1310- 1210
7,63-8.26
s,
Acyclic
C-O str.
1175-1045
8.51-9,57
s,
Free OH
O-H str.
3550-3500
2.82-286
m,
Bonded OH
O-H str.
3333-2500
3.00-4,00
w" br.
fine structure bands2700-2500
3,70-4-00
w.
v,
b) Carboxylic acids
AIIOH
O-H def.
955-890
10 47-11.24
Solid fatty acids
CH 2 vib.
1350-1180
740-8.48
w.
characteristic pattern -COOH
C-O str. plus O-H def.
Carboxylate ion
1440-1395
6,94-7.17
w.
1320-1210
758-8.26
s, s m,
O=C-O str., asym, 1610-1550
6.21-6.45
O=C-O str., sym, 1420-1300
7,04-7,69
Fonnates
C-O str,
1200-1180
8,33-8.48
Acetates
C-O str,
1250-1230
8,00-8.13
s,
C-O str,
1200-1170
8 33-8,55
s,
c) Esters
Propionates and higher esters
30
Spectroscopic Data Chemistry Esters of aromatic C-O str.
1300-1250
7.69-8.00
s.
C-O str.
1220-1200
8.20-8.33
s.
Esters of a, 13 unsat. C-O str.
I310-1250
7.63-8.00
s.
2880-2650
3.47-3.77
w.-m., d.
975-780
10.26-12.82
w. s.
acids Vinylic and phenolic acetates aliphatic acids d) Aldehydes
C-H str., asym.
e) Ketones CH 3 -CO CH2 -CO-
t) Arnides primary, free NH
CH 3 def.
1360-1355
7.35-7.38
-CH 2 def.
1435-1405
6.97-7.12
s.
C=O str., overtone 3550-3200
2.82-3.13
w.
3540 - 3480
2.83-2.88
s.
3420-3380
2,92-2.96
s.
3360-3320
2.98-3.01
m.
3220-3180
3.11-3.15
m.
1650-1620
6.06- 6.17
s.
6.17-6.29
s.
2.91-2.93
s.
N-H str.
bonded NH
N-H str.
Free or bonded
N-H def. plus
NH
C-N str.
(amide II band) 1620-1590 (amide II band) Secondary, free NH bondedNH
N-H. cis str.
3440-3420
N-H, trans str.
3460-3430
2.89-2.92
s.
N-H, cis str.
3180-3140
3.15-3.19
m.
N-H, trans str.
3330-3270
3.00-3.06
m.
3100-3070
3.23-3.26
w.
Ca.700
Cal4.30
N-H, cis and trans. str. N-H def.
(amide V band) N -H def. plus C-N str. Acyclic compound
N-H def. plus C-N str.
1305-1200
conc. dependent
7.67-8.33
m.
6.37-6.60
s.
6.45-6.62
s.
(amide III band) 1570-1515 (amide II band) 1550-1510 (amide II band)
31
Infrarred Spectroscopy 770-620
1300-16.13
m.
15.87-18.87
s.
(amide IV band) 630-530 (amide VI band)
8. Amines, amino acids and their salts see table 2.6 9. Unsaturated nitrogen compounds a) Nitriles C=Nstr.
2260-2240
4.42-4.46
m.
C=Nstr.
2235-2215
4.47-4.51
S.,V.
Aryl
C=Nstr.
2240-2220
4.46-4.50
m.
Iso-
C=Nstr.
2185-2120
4.52-4.72
s.
1690-1640
5.92-6.10
v.
C=N str.
1665-1630
601-6.14
v.
C=N str.
1660-1480
6.02-6.67
v.
C=Nstr.
1580-1550
6.33-6.45
w.
=C-H str.
3070-3020
3.26-3.31
s. s.
saturated alkyl
a,
P unsaturated
alkyl
b) Oximes, pyridines, quinolines. purines, pyrimidies elc. Acyclic saturated, C=N sir. (alkyl compounds) Acyclic a,
P unsat.
compounds Cyclic a,
P unsat.
compound (such as thiazoles) Pyridines
Ring C-H def.
Ca. 1200
Ca. 8.33
1100-1000
9.09-10.00
s.
C=C str.
1650-1580
6.06-6.35
m.
Pyrimidines and
=C-H str.
3060-3010
3.27-3.32
s.
Purines
Ring C-H def.
1000-960
10.00-10.42
m.
825-775
12.12-12.90
m.
Pyrroles Oximes
C=N str.
1580-1520
6.33-6.58
m.
N-H sir.
3440-3400
2.91-2.94
m.
C=C sir.
1565-1500
6.39-6.67
v.. d.
C=N str.
1690-1620
5.92-6.17
v.
O-H Sir.
3650-3500
2.74-2.86
v v.
Azo compounds
-N=N sir.
1630-1575
6.14-6.35
Carbodiimides
-N=C=N str.
2155-2130
4.64-4.70
s.
Isocyanates
-N=C=O sir
2275-2240
4.40-4.46
s. -v.
Azides
-N=N=N sir
2170-2080
4.61-481
s.
32
Spectroscopic Data Chemistry
10. Compounds containing nitrogen-oxygen bond Nitrates (O-NOzl.
N0 2 str.. asym
1590-1500
nitramines.nitro N0 2. str.. sym. (compounds CC-N0 2) C-N vib.
1390-1250
720-8.00
920-830
1088-12.05
6.29-6.67
s. \\.
m .. -s
Nitroso compounds
(R-C-N=O)
alkyl, aromatic
N=O str.
1550-1500
6.45-6.67
s.
(a-halogeno. aliphatic N=O str.
1620-1560
6. I 7-6.47
s. v.• Os,
Nitrites (R-O-N=O) trans form
N=O str.
1680-1650
5.95-6.05
N-O str.
815-750
1227-13.33
625-565
16.00-17.70
1625-1610
6.16-6.21
O-N=O def. Cis form
Nitrosamines
N=Ostr.
s. s. V.,
s.
N-O str.
850-810
1I. 76- I 2.35
O-N=O def.
690-615
14.49- I 6.26
s.
overtone
3360-3220
2.98-3.11
m.
N=O str.
1500-1480
6.67-6.76
s.Vapor
1460-1440
6.85-6.94
s. solution
N-N str.
Ca. 1050
Ca. 9.52
s.
N-N = 0 def.
Ca. 660
Ca. 15.15
s.
N-O str.
1310-1250
7.63-8.00
moo-s.
SoH str.
2600-2550
3.85-3.92
W. W.
s.
phase (R-N-N=O)
phase
Azoxy compo (R-N-N-O) 11. Sulfur compounds
CoS str.
700-570
14.18-17.54
C= S str.
1675-1130
5.97-8.85
S.
Thioketone
C= S str.
1250-1020
8.0-9.8
s
Thioamide
C= S str.
1300-1I00
7.69-9.9
S.
Covalent sylfates
S=O str., sym ..
1440-1350
6.94-7.41
S.
(RO)z S02 Covalent sylfonates
S=O str., as)'m.
1230-1I50
8.13-8.70
S.
S=O str. sym.
1420- 1330
7.04-752
S.
(R,-O-S02-R2) Sulfonyl chlorides
S=O str.. asym.
1200-II45
8.33-8.73
S.
S=O str., sym.
1375-1340
7.27-7.46
S.
(R-SOzCI) Sylfonamides
S=O str.. asym.
I 190-II60
8.40-8.62
s.
S=O str.. sym.
1370-1300
7.30-7.69
S.
33
Inti-arred Spectroscopy (R-S02-N)
s=o str. asym.
1180-1140
8.48- 8.77
s.
Sulfones
S=O Str., Sym.
1350-1300
7.41-7.69
v.. -so
(R2S0 2)
S=O str.. asym
1160-1120
862-8.93
v., -so
Sylfonic acids
S=O str.. sym.
1260-1150
7.94-8.70
s.
(RS0 3 H)
S=O str.. asym.
1080-1010
9.26-9.90
s.
Sylfites (RO)2S0
S=O str.
1220-1170
8.20-8.55
s.
Sylfoxides (R-SO-R) S=O str.
1070-1030
9.35-9.71
s.
O-H str.
2700-2560
3.70-3.90
w.
P-H str.
2440-2350
4.10-4.26
m.
P-C def.
1450-1280
6.90-7.81
m.-s.
P=O str.
1350-1150
7.41-8.70
v.-s.
P-O str.
1240-900
8.07-10.10
v.
P-O str.
1000-870
s.
-700
w.
P-O-C (aJiph)
1050-970
s.
830-740
s. (may be absent)
P-O-C (arom)
1260-1160
s.
994-855
s.
12. Phosphorus compounds
P-OH
P-O-P
13. Halogen compounds
Polyfluorinated
C-F str.
1400-1100
7.14-9.10
v.
-S.,
mit.
v. -s .. d.
Difluorinated
C-F str.
1250-1050
8.00-9.50
Monofluorinated
C-F str.
1110-1000
9.01-10.00
s.
Polychlorinated
C-CI str.
800-700
12.50-14.30
v. -so
C-CI equatorial
C-CI str
780-750
12.80-13.33
s.
C-CI axial, other
C-CI str.
Ca. 650
Ca. 15.40
s.
monochlorinated C-Br equatorial
C-Br str.
750-700
13.33-14.29
s.
C-Br axial
C-Br str.
690-550
14.50-18.20
s.
Other monobromides
C-Br str.
650-560
15.40-17.85
s.
Iodides
C-I str.
Ca. 500
Ca. 20.00
s.
2220-1600
4.51-6.25
v.. mIt.
B-C def.
1460-1280
6.85-7.81
v.
Si-H str.
2280-2080
4.39-4.81
v.-s.
Si-H def.
800-950
12.5-10.53
14. Silicon and boron compounds
B-H str.
s.
34
Spectroscopic Data Chemistry
SIOH
str. *=stretching
O-H str.
3700-3200
2.7-3 12
s.
Si-O
830-11 10
12.05-9.01
s.
Si-F str.
800-1000
12.5-10.0
Si-C def.
Ca. 1260
Ca. 7.94
v. -so
Si-C str.
840-755
11.90-13.25
V.-s.
sym. =symmetric
s=strong absorption
w=weak absorption
def. = deformation asym.=asymmetric m.=medium absorption v.=variable intensity sh.=sharp peak
d.=doublet
br.=broad absorption
mlt.=multiplet·
Table 2.1b Correlations of infrared absorption and structure of organic compounds Frequency Wavelength Intensity Type and group range
Bond
range
4000-3001 3676-3584
2.72-2.79
V.,
3650-3496
2.74-2.86
v.
3595-3425
2.78-2.92
V.,
sh.
sh.
Alcohols, phenols, free OH
O-H str.
Oximes (R-C = NOH)
O-H str.
R-OH, Ar-OH, intramolecular hydrogen bonded
O-H str.
3550-3500
2.82-2.86
m.
3550-3450
2.82-2.90
Y.• sh.
R-OH, Ar-OH, dimeric
O-H str.
3550-3205
2.82-3.12
w.
Ketones, C=O overtone
C=O str. N-H str.
Carboxylic acids, free OH
3540-3380
2.83-2.96
s., d.
Primary amides, free NH
3500-3300
2.86-3.03
V., d.
Primary amines,
3460-3435
2.89-2.91
s.
3360-3220
2.98-3.11
m.
3440-3420
2.91-2.93
s.
O-H str.
free NH secondary amines
N-H str.
Sec. amides, free NH (trans)
N-H str.
Nitrites (R-O-N=O) overtones
N=O str.
Sec. ami des, free NH(cis)
N-H str.
3440-3400
2.91-2.94
m.
Pyrroles
N-H str.
3400-3300
2.94-3.03
v.
Imines
N-H str.
3400-3230
2.94-3.10
s., br.
R-OH, Ar-OI-{' polymeric
O-H str.
35
Infrarred Spectroscopy
3400-3200
2.94-3 13
m. d
Amino acid salts
3400-3095
2.94-3.23
m.
Amines. imines. associated
N-H str.
3390-3255
2.95-3.07
m.
Amido acids
N--H str.
3380-3150
2.96-3.18
m.. mit.
Charged amine
3360-3180 3330-3270
2.97-3.15 3.00-3.06
m.. d. m.
NH, str.
derivatives
NW 3 str.
Amides, bonded NH
N-H str.
(primary)
N-H str.
Sec. amides. bonded (trans)
N-H str.
3310-3300
3.02-3.03
m.
Alkynes (RC=CH)
C-H str.
3300-2500
3.00-4.00
W"
br.
R-COOH, bonded OH
O-H str.
3200-1700
3.13-5.88
w., br.
R-OH, Ar-OH. chelate
O-H str.
3175-3135
3.15-3.19
m.
Sec. ami des, bonded NH (cis)
3150-3050
3.18-3.28
w.
N-H str.
Ethers -CH=C-Oand C=CH-O-
C-H str.
3130-3030
3.20-3.30
m.
Amino acids, hydrochlorides
NH3+ str.
Ca. 3100
ca. 3.23
v.
Tropolones
O-H str.
3100-3070
3.23-3.26
w.
Amides, bon. NH (cis)
3095-3075
3.23-3.25
m.
Alkenes (CHR=CH z)
3085-3040
3.24-3.29
v.
N-H str. RC-H str.
Alkanes (-CH z-' cyclopropane)
3085-3030
3.24-3.30
w.-m, mit.
3075-3020
3.25-3.31
s.
3060-3010
3.27-3.32
s.
C-H str.
Aromatic homocyclic (=C-H)
C-H str.
Pyridines. quinolines (=C-H)
C-H str.
Pyrimidines. purines (=C-H)
3050-2995
3.28-3.34
w.
Ethers. epoxides
3040-3010
3.29-3 32
m
Alkenes (CHR=CH z' CHR 1=CHR z' cis
3030-2500
3.30-4.00
\v.•
mit.
or trans. CR1Rz=CH z) Amino acid hydrochlorides
C-H str. OC-H str.
C-H str.
Spectroscopic Data Chemistry
36
3000-2001 2975-2950
3.36-3.39
m.
Alkanes (-CH J )
C-H str.
2940-2915
3.40-3.43
m.
Alkanes (-CH z-)
C-H str.
2905-2875
3.44-3.48
w.
Alkanes (-CH-) .
C-H str.
2880-2860
3.47-3.50
m.
Alkanes (-CH J )
C-H str.
2880-2650
3.47-3.77
w.-m., d.
Aldehydes (-CHO)
C-H str.
2870-2845
3.49-3.52
m.
Alkanes (-CH 2-)
C-H str.
m.
Ethers (-O-CH l )
C-H str.
2835-2815
3.53-3.55
Ca. 2825
ca. 3.54
m.
Alkyl acetals
C-H str.
2825-2760
3.54-3.62
m.-s.
Amines (N-methyl)
C-H str.
2780-2400
3.60-4.17
v. v.
Deuterated R-OH, Ar-OH
O-D str.
Ethers (O-CH 2-O-)
C-H str.
ca. 2780
ca. 3.60
2760-2530
3.62-3.95
w.
Amino acids
ca. 2700
ca. 3.70
s.
Charged amine
NH2 + rck.
derivatives Organo-phosphorus
2700-2560
3.70-3.90
w., b.
2640-2360
3.79-4.24
w.
Amido acids,
2600-2400
3.85-4.15
v.
Deutcrated amines,
2590-2550
3.86-3.92
w.
Orga.no-sulfur compounds Charged amines
S-H str.
(C=NW)
NH+ str.
compounds
N-D str.
imines
2500-2325
4.00-4.30
s.
2280-2260
4.39-4.43
s.
2280-2080
4.39-4.81
v.
O-H str,
Diazonium salts (R-C=N=Nt Organo-silicon compounds
Si-H str. N=C=O str.
2275-2240
4.40-4.46
v.
isocyanates
2260-2240
4.43-4.46
w.-m.
Saturated nitrites
C=N str.
2240-2220
4.46-4.51
m.-s.
Aryl nitrites
C=N str.
2235-2215
4.47-4.52
s.
Acyclic u.
2220-1600
4.51-6.25
v.. mIt.
2200-1800
4.55-5.56
w.-m.
P unsat.
nitriles
C=N str.
Boron compounds
B-H str.
Charged amine derivatives
NWvib.
37
Infrarred Spectroscopy 2185-2120
4.58-4.72
s.
Isonitriles
2\60-2120
4.63-4.72
s.
Azides (-N=N=N)
2155-2150
4.64-4.69
s.
Carbodiimides
2140-2100
4.67-4.76 4.67-4.8\
Ca. 2100
ca. 4.76
w. w. w.
Alkynes (RC""CH)
2140-2080
Deuterated alkanes
ca. 2000
ca. 5.00
w.
Amino acid
1970-1950
5.08-5.13
m.
Allenes (C=C=C)
1945-1835
5.14-5.45
w.
Amido acids
1870-1830
5.35-5.46
s.
Acid anhydrides,
1850-18 \0
5.40-5.53
s.
Acid anhydrides, conj.
1850-\800
5.40-5.56
m.
Alkenes (CHR=CH 2)
Amino acids
C""N str --N=N;=N str. N=C=N str. C""C str. NH)' str. C-D str.
2000-1501 hydrochlorides
5 ring 5 ring
C""C type str.
C=O str. C=O str.
overtone
C-H str.
\840-1800
5.44-5.56
s.
Acid anhydride, acyclic
C=O str.
1820-18\0
5.50-5.53
s.
Acyl peroxides
C=O str.
1820-1780
5.50-5.62
s.
conj.acyclic acid
C=O str.
1815-1785
5.51-5.60
s.
Acid halides
\805-1780
5.54-5.62
s.
Aroyl peroxides esters. lactone
C=O str.
1800-1780
5.56-5.62
s.
(R-CO-O-)2
C=O str.
1800-1780
5.56-5.62
m
Alkenes (CR 1 R2 =CH 2), overtone
C-H str.
1800-1770
5.56-5.65
s.
Conj. acid halides
C=O str.
1800-1770
5.56-5.65
s.
Vinylic phenolic esters
C=O str.
1800--1760 5.56-5.68
s.
Acid anhydride, 5 ring
C=O str.
1795-1740
s.
Acid anhydrides, conj.
anhydrides
5.57-5.75
5 ring 1790-1720
5.59-5.81
s.
1785-1755
5.60-5-70
s.
1780-1770
5.62-5.65
s.
C=O str.
C=O str.
Ureas (-CO-NH-CO-), amide I
C=O str
(RCO-O-)2
C=O str.
Fused - ring p lactams, amide I
C=O str.
38
Spectroscopic Data Chemistry
1780-1760
5.62-5.68
s.
Ketones. 4 ring, sat. y lactone
C=O str.
1780-1740
5.62-5.75
s.
Acychc acid anhydrides
C=O str.
1760-1730
5.68-5.78
s.
Simple
Plactams
C=O str.
1760-1720
5.68-5.81
s.
Conj. acyclic anhydrides
C=O str.
1755-1740
5.70-5.75
s.
a keto esters, a diesters
C=Ostr.
1755-1730
5.70-5.78
s.
a-amino acid hydrochloride
C=O str.
1755-1720
5.70-5.81
s.
Dicarboxylic a-amino acids
C=O str.
1750-1740
5.71-5.75
s.
Ketones. 5 ring
C=O str.
1750- 1735
5.71-5.76
s.
y-keto esters, diesters,
i750-1735
5.71-5.76
s.
Sat. aliphatic esters, a-Iactones
C=O str.
1745-1725
5.73-5.80
CO-O-CH 2-C0-
C=O str.
1750-1700
5.71-5.88
s. s.
Fused ring y lactams
C=O str.
i740-1720
5.75-5-81
s.
Sat. aliphatic aldehydes
C=O str.
1740-1715
5.75-5.83
s.
a-halogeno carboxylic acids
C=O str.
1735- 1700
5.76-5.88
s.
Urethanes
C=O str.
1730-1710
5.78-5.85
s.
-CO-CO-
C=O str.
1730-1700
5.78-5.88
s.
Amino acid hydrochlorides
C=O str.
1730-1715
5.78-5.83
s.
a,
1730-1700
5.78-5.88
s.
Dicarboxylic amino acids
C=O str.
1725-1705
5.80-5.87 5.80-5.88
s.
-CO-CH 2-CH 2-C0Sat. aliphatic acids,
C=O str.
nonenolic p-keto esters
1725-1700
s.
Punsat., aryl esters
C=O str.
C=O str.
dimer, acyclic, 1725-1695
5.80-5-90
s.
CH 2-CO-CH 2-ketones a-amido acids
C=Ostr. C=O str.
1720-1700
5.81-5.88
s.
Ketones, 6-ring
C=O str.
1715-1700
5.83-5.88
s.
Ketones. 7-ring
C=O str.
1715.1695
5.83-5.90
s.
Aryl aldehydes
C=O str.
1715-1680
5.83-5.95
s.
a, 13 unsat, acids
C=O str.
1710-1690
5.85-5.92
s.
Carbamates. amide I band
C=O str.
1710-1670
5.85-5.99
s.
-CO-NH-CO-, amide I band
C=O str.
1705-1685 ca. 1700
5.78-5.93 ca. 5.88
s. s.
a, 13 unsat. aldehydes Simple y lactams. amide
c=o str.
I band
C=O str
39
Infrarred Spe.ctroscopy 1700-1680
588-5.95
s.
Aryl carbo,ylic acids.
('=0 str.
1700-1665
5.88-6.01
s
dimer. aryl k.etones
('=0 str.
secondary' amide. amide I bind 1695-1660
5.90-6.02
s.
ex,
P unsat. acyclic
or 6 ring ketones ca. 1690
ca. 5.92
s.
C=O str.
Primary amides, amide I band
C=O str.
1690-1670
5.92-5.99
W.
5.92-5.99
s.
CR IR 2=CR 3R4 , a1kenes o-hydroxy (amino)
C=C str.
1690-1670
benzoates
C=O str.
1690-1655
5.92-6-04
s.
Quinones, 2 CO's in
1690-1635
5.92-6-01
v.
oximes, oxazines, oxazo1ines,
C=O str.
same ring oxazolones, azomethines, acyclic C=N
C=N str.
ca. 1680
ca. 5.95
s.
Large-ring cyclic lactams
C=O str.
1680-1660
5.95-6.02
s.
Conj. polyene aldehydes
C=O str.
1680-1650
5.95-6-06
s.
Intramolecular H-bonded carboxylic acids
C=O str.
Nitrites (R-O--N=O trans)
N=O str.
1680-1650
5.95-6.06
v.
1680-1630
5.95-6-14
s.
sec. amides, amide I band
C=O str.
1680-1620
5.95-6.17
v.
Nonconj. alkenes
C=C str.
1675-1665
5.97-6.00
v.
Alkenes, CR IR2=CHR 3
C=C str.
ca. 1675
ca. 5.97
s.
Thioesters
C=S str. C=O str.
1670-1660
5.99-6
s
Cross-conj. dienones
1670-1645
5.99-6.08
s.
Intramolecular OH
I H-bonded (-C=C-CHO type) aldehydes 1670-1630
5.99-6.14
s.
Tertiary amides. amIde
1665-1635
6.01-612
v.
Alkenes
I band
1665-1630
6.01-614
v.
C=O str. C=O str
(CHR,=CHR 2 -<:is)
C=C str..
Oximes. Oxazines. etc.
C=N str.
Spectroscopic Data Chemistry
40
ca. 1660
ca. 6.02
s.
Urcas (NH....CO ....NI-I). amide I band
c=o str
1660-1640
6.02-6. \0
v.
Alkenes (CR 1R2 =CH 2 )
C=C Str.
1660-16\0
6.02-6-21
w.
Amino acids containing NH2 group. amino acid I band
1660-1580
6.02-6.33
s.
NH3+ def.
Alkenes conj. with C=O orC=C
1660-1480
6.02-6.76
v.
C=C str.
Thiazoles (cyclic a.13 sat. C=N)
1655-1635
6.04-6.12
s.
C=N str.
Enolic l3-keto esters. chelated
C=O str.
1655-1635
6.04-6.12
s.
Quinones, 2 CO's in
1655-1610
6.04-6.21
s.
o--CO-C 6 H4--OH (or
1655-16\0
6.04-6.21
s.
ca. 1650
ca. 6.06
s.
Primary amides. amide
1650-1590
6.06-6.31
s.
Prim. amides. amide
2 rings
C=O str.
NH 2), H....bonded
C=O str.
Nitrates (RON0 2 ), asym. vibration
N0 2 str.
I band
c=o str.
II band, combination NH def. + CN str. NH def. + CN str. 1650-1620
6.06-6.17
s.
Amido acids, amide
1650-1580
6.06-6.33
m.
pyrimidines, quinolines
1650-1580
6.06-6.33
m.-s.
Prim. amines
NH def.
1650-1550
6.06.-6.45
w.
Sec. amines
NH def.
1645-1640
6.08-6.\0
v.
Alkenes (CHR=CH2)
C=C str.
1640-1605
6.10-6.23
s.
Alkyl nitroguanidines,
C=C + C =N str.
I band-
asym. N0 2 vibrations 1640-1535
6.\0-6.52
s .. d.
N0 2 str.
Ketones (....CO-CH 2....CO or ....CO-C=C--OH)
C=O str. N=N str.
1630-1575
6.14-6.35
v.
Azo compounds
ca. 1625
ca. 6.16
s.
Alkene~,
phenyl
conj. C=C
C=C str.
41
Infrarred Spectroscopy 1625-1610
6.16-6.21
v.
Nitrites (RON=O cis
1625-1575
6.16-6.35
v.
Aromatic homocyclic
N=Ostr.
form)
C=C i-p vib.
compo 1620-1600
6.17-6.25
S.
Tropolo!)es
1620-1600
6.17-6.25
S.
Amido acids. amide
C=O str.
I band 1620-1590
6.17-6.31
s.
Prim. ami des, amide
NH def. +
II band. combination
CNstr.
NH def. + CN str. 1620-1560
6.17-6.41
s.
Nitroso compounds,
1620-1560
6.17-6.41
m.-s.
u halogeno Charged amine derivatives
N=N str. NH 2+ def.
1610-1590
6.21-6.29
W.
Amino acid hydrochlorides
NH3+ def.
1610-1550
6.21-'6.45
s.
Carboxylate ion,
Ca. 1600
ca. 6.25
m.
asym. str. Charged amine derivatives
1600-1575
6.25-6.35
s.
u. u -dihalogenonitro
s.
compounds Amino acid salts,
V.
all amino acids with ionized carboxyl Aromatic homocyclic
1600-1560
1590-1575
6.15-6.41
6.29-636
compo C=C 1590-1575 1585-1530 1580-1570 1580-1550
6.29-6.36 6.31-6.54
S.
6.33-637
S.
6.33-6.45
S.
W.
NH3+ def. N0 2 str.
c=o str. i-p str.
Nitroureas Saturated nitramines u-halogenonitro
N0 2 str. N0 2 str.
compounds
N0 2 str.
Nitrogen heterocycles,' combination, C= C and C=N str.
1580-1520
1570-1515
6.33-6.58
6.37-6.60
m.
Pyrimidines and
S.
purines, combination, C=C and C=N str. Sec. acyclic amides,
C=C + C=N str..
C=C+C=N str.
amide II band, combination NH def. and CN str.
NH def. + CN str
42 1570-1500
Spectroscopic Data Chemistry
6.37-6.67
s.
All amido acids, amido II band
N-H def. C=C str.
ca. 1565
ca. 6.39
v.
Pyrroles
1565-1545
6.39-6.47
s.
Prim. and sec. nitro N02 str.
compounds ca. 1550
ca. 6.45
s.
Tertiary aliphatic nitroso compounds, N=O str.
vapor phase 1550-1510
6.45-6.62
s.
1550-1485
6.45-6.73
v.
Aromatic nitro compounds Amino acids cont. NHz group, amino acid II band
1550-1510
6.45-6.62
s.
Sec. acyclic ami des, ami des II band
1550-1485
6.45-6.73
v.
NH3+ def. NH def. + eN str.
Amino acid hydrochlorides
1545-1530
6.47-6.54
s.
Tert. nitro compounds
1530-1510
6.54-6.62
s.
a, l3-unsat. nitro compounds
1525-1475
6.56-6.78
v.
6.62-6.76
m.
N02 str.
aromatic homocyclic compo C=C
1510-1480
NH/ def. N0 2 str.
i-p vib.
Pyridines, qui no lines, combination C=C and C=N str.
C=C+C=N str.
ca. 1500
ca. 6.67
v.
Pyrroles
C=C str.
ca. 1500
ca. 6.67
S.
Aromatic nitroso compounds
N=O str.
ca. 6.67
S.
Amine saIts
NH def.
1500-1440
6.67-6.94
S.
Nitrosamines (RNN=O)
N=O str.
ca. 1500 1500-1001 1485-1445
6.74-6.92
m.
Alkanes (-CH 2-)
C-H def.
1470-1430
6.80-7.00
m.
Alkanes (-CH 3 )
C-H def.
ca. 1467
ca. 6.81
m.
Alkanes, CH 2 scissor
C-H def.
ca. 1460
ca. 6.85
m.
Alkanes. asym CH 3
C-H def.
1455 (ca.)
ca. 6.87
m.
Alkanes, alicyclic CH 2
ca. 1450
ca. 6.90
m.
scissor Aromatic multiple bond
C-H def. C=C str.
43
Infrarred Spectroscopy 1430-1400
7.0-7.14
v.
Ketones, esters, a-methylene C-H sCissor
1430-1350 1420-1410
7.00-7.41 7.04-7-09
s. s.
Sulfites Alkenes (RCH=CH 2
1420-1390
7.04-7.20
w.
or R,~C=CH2) Alcohols
1410-1310
7.10-7.60
s.
1400-1300 1400-1000 1395-1385
7.15-7.69 7.15-10.0 7.17-7.22
s. s. m.,d.
1390-1360
7.20-7.35
m.,d.
1380-1370 1380-1310
7.25-7.30 7.25-7.30
s. s.
1370-1340 1370-1300 ca. 1365 1360-1310 1350-1300 1350-1280
7.30-7.46 7.30-7.70 ca. 7.33 735-7.64 7.41-7.69 7.41-7.81
1350-1260 ca. 1340 1340-1250
7.41-7.94 ca. 7.46 7.46-8.00
s. s. s. s. s. s. s. w. s.
1340-1180 1335-1310 1310-1295
7.46-8.48 7.39-7.64 7.64-7.72
w.
v. m.
1300-1250 1275-1200
7.70-8.00 7.84-8.33
s. v.
ca. 1270 1260-1200 1257-1232
ca. 7.88 7.94-8.33 7.95-8.12
v. v. v.
Phenols, tert. alcohols Carboxylic acids, ionic Halogen comp., fluorides Alkane, tert. butyl 'Alkane, geminal dimethyl, isopropyl, tert. butyl sym. CH 3 bending Alkane,-C~
C-H def. S=O str. C-H def. O-H def. O-H def. C-F str. C-H def.
CH3 def. C-H def.
Aliphatic nitro compounds Sulfonyl chlorides Nomatic nitro compounds Alkane, tert. butyl Aromatic tert. amines Sulfones, sulfonamides Aromatic sec. amines Prim. and sec. alcohols Alkanes Aromatic prim. amines Azides Sulfur compounds Alkene (R,CH=CHR2) trans Nitrates Conj. ethers
N0 2 str. S=O str. N0 2 str. C-Hdef. C-N vib. S= 0 str. C-N vib. O-H def. C-H def. C-N vib. -N3 str. S=O str. C-H def. O-N0 2 vib. ROR str.
°
//
Aromatic esters Aromatic ethers Aliphatic esters, CH)COOR
-C...Q--R str. R-O-Ar str.
44
Spectroscopic Data Chemistry
1255-1200
7.97-833
S.,
1240-1190
8.06-8.40
>.
compo
P-O str.
1230-1150 1210-1150
8.13-8.70
S.
Sulfites
S=O str.
8.27-8.70
S.
8.20-9.80
\Y.
Sulfonic acids Aliphatic amines
S=O str.
1220-1020 ca. 1200
ca. 8.33
S.
Phenols
C-O str.
1200-1050
8.33-9.52
S.
Sulfur compounds
C=S str.
d.
Alkanes, tert. butyl
Skeletal str.
Aromatic phosphorus
C-N vib.
1200-1190
8.33-8.40
V.
Esters (RCOOR)
1185-1175 1185-1165 1l80-1140
8.44-8.51 8.44-8.59 8.48-8.77
V.
S.
Esters (H-COOR) Sulfonyl chlorides
S.
Sulfonamides
1l75-1l40
8.51-8.77
S.
1175-1l55
8.51-8.65
V.
Alkanes, geminal dimethyl skeletal vib. Methyl esters (R-COOCH 3 )
1175-1125
8.51-8.89
W.
S=O str. S=O str.
Substituted benzenes, 1, 3-disubstituted or tri-substituted benzens
1160-1140
8.62-8.77
S.
Sulfones
ca. 1150
ca. 8.70
S.
Tertiary alcohols
1150-1070 1120-1100
8.70-9.35
V.
8.93-9.09 9.35-9.71
S.
1070-1030
Aliphatic ethers Secondary alcohols Sulfoxides
ca. 1060 1060-1030
ca. 9.40 9.43-9.71
m.
1075-1010
9.30-9.90
1050-990 1000-501 995-985
S.
C-H def. S=O str. C-OH str. R-O-R str. C-OH str. S=O str.
S.
Allene (C=C=C) Sulfonic acids
S=O str.
V.
Primary alcohols
C-OH str.
9.52-10.1
V.
Phosphorus compounds
10.05-10.15
S.
Monosubstituted alkenes (RCH=CH z) Disubstituted alkenes (R 1CH=CHR2) trans
C-H def.
P-O str.
C-H def.
970-960
10.31-10.42
S.
915-905
10.93-11.05
S.
Monosubstituted alkenes (RCH=CH z)
C-H def.
900-860
11.11-11.63
m.
Tetra-or penta-substituted benzene containing I free H
C-H def.
895-885
11.l7-11.30
S.
Geminal disubstituted alkene
C-H def.
45
Infrarred Spectroscopy 885-870
11.30-11.50
1,2,4-trisubstituted benzene.
m.
C-H def.
another peak at 852-805 ca. 870
1 \.50 (Ca.)
m.
Pentasubstituted
870-800
1\.50-12.50
v.
Benzene ring
C-H def.
benzene containing two adjacent 840-790
II. 90-12.66
s.
810-750
12.34-13.34
v.
800-600
12.50-16.67
s.
770-735
12.98-13.61
V.,
H atoms
C-H def.
Trisubstitutated alkenes
C-·H def.
Benzene ring with three
s.
adjacent H atoms
C-H def.
Halides
C-Cl str.
Benzene ring with four adjacent free H C-H def.
atoms 770-730
12.98-13.70
V.,
s.
Benzene ring with five adjacent free H atoms, C-H def.
second peak at 710-690 ca. 690
ca. 14.50
s.
Disubstituted alkenes C-H def
(R 1CH=CHR2) cis ca. 650
ca. 15.40
s.
Sulfonic acids
ca. 630
ca. 15.90
s.
Alkynes
600-500
16.60-20.00
s.
Bromides
ca. 500
ca. 20.00
s.
Iodides
s=o str. C-H def. C-Br str. C-I str.
s=strong absorption
v.=variable intensity
vib.=vibrating
bon.=bonded
m.=medium absorption
sh.=sharp peak
d.=doublet
sat. =saturated
w.=weak absorption
br.=broad absorption
mlt.=multiplet
Table 2.2a: Infrarred absorption frequencies of alkenes Vibration mode
Alkene type
Frequency, cm- I
RCH=CH z (Vinyl) H
H
'R)C=C
Wave
Relative
length,11 intensity
C-H str. (CH z) C-H str. (CHR)
3095-3075
3.23-3.25
3040-3010
3.29-3.32
Overtone
1850-1800
5.40-5.56
m m m
C=C str.
1645-1640
6.08-6.10
v
46
Spectroscopic Data Chemistry CH 2 i-p def.
1430-1410
CH i-p def.
7.00-7.10
w
1300-1290
7.69-7.75
v
CH o-o-p def.
995-985
10.05-10.15
m
CH 2
-p def.
915-905
10.93-11.05
s
C-H str.
3040-3010
3.29-3.32
m
C=C str.
1665-1635
v
C-H i-pdef.
1430-1400
6.01-6.12 7.00-7.14
w
730-665
13.70-15.04
s
R,CH=CHRz(cis) H H )c=c< R, Rz
C-H -p def R,CH=CHRz (trans) R,) C=C
Rz
C-H str.
3040-3010
3.29-3.32
m
C=C str.
1675-1665
5.97-6.01
v
C-H i-pdef. C-H -p def.
1310-1290 7.63-7.75 980-960 10.20-10.42
w
3095-3075
m
s
R,R2C=CH2 (Vinylidine) R,)
~
C-H str.
1800-1780 1660-1640 1420-1410
3.23-3.25 5.56-5.62 6.02-6.10 7.04-7.09
m v w
895-885 11.17-11.30 3040-3010 3.29-3.32
m
C-H -p def.
1675-1665 5.97-6.01 840-790 11.90-12.66
v m
R,) C=C <~
C= C str.
1690-1670
5.92-5.99
w
~ R4 Ar-HC=CH 2 C=OorC=C
C=C str.
~1625
~.16
s
C=C str.
1660-1580
6.02-6.33
s
R,RzC=CH~
(Trisubstituted) R,) C=C
~
CHz o---o.-p def. C-H str. C=;C str.
s
~
R,RzC=C~R4
(Tetrasubstituted)
Conjugated with C=C
Abbreviations: str. = stretching, i-p def. = in-plane deformation, ()-{r-P def. = out of plane deformation, s = strong, m = medium, w = weak, v = variable.
47
Infrared Spectroscopy
Table 2.2b: C=C Stretching frequencies in cyclic and acyclic systems cm- 1
"'cH C/ -
Ring or Chain Chain cis Chain trans Three membered ring Four membered ring Five membered ring Six membered ring Seven membered ring Eight membered ring
1661 1676 1641 1566 1611 1649 1651 1653
)<:H, c;C~
1681
_
>~H' 1661 1780 1678 1657 1651
1672 1890 1685 1686 1685
1658 1678 1673
All rings have cis double bond:; Table 2.3: Absorotion frequencies typical of aromatic homocyclic compounds: Arormatic
Vibration
compound
mode
Frequency, em-I
Monsubstituted
=C-H sir. (Multiple bands)
3080-3030
3.24-3.33
(five adjacent hydrogen atoms)
C=C str. (rmg stretching)
1604 ± 3
6.25-6.22
v
1585 ± 3
6.31-6.30
1510~1480·
1452± 4
6.62 ~6.75 6.87-6.91
v v
1177 ± 6(2.5 vs 3,6)
8.45-8.54
w w
C-H i-p def.
C-H o-o-p def. I, 2-Disubstituted (four adjacent hydrogen atoms)
=C-H str (multiple bands) C=C slr. (nng stretching) C-H I-P def.
Wave-
Relative
length,l!
Intensity
1156 ± 5(3,5 vs 4)
8.61-8.69
1073 ± 4(2.6 vs 3,4,5) 1027 ± 3(2,3 vs 5,6)
9.28-9.36 9.71-977
751 ± 15
13.06-13.58
691 ± 1\
14 1-1458
w-m
v
w s
3080-3030
324-3.33
w-m
1607 ± 9 1577 ± 4
6.26-619 633-636
v v
1510~
1460 1447 ± 10
6.85-662
v
6.87-696
v
7.77-799
w
1269 ± 17 (all c1ock\llse)
48
Spectroscopic Data Chemistry 1160 ± 4(3,5 vs 4,6)
859-865
w
1125 ± 1"4(3,6 vs 4,5)
8 78-90
w
1033 ± 11(3,4 vs 5, 6)
958-978
w
751 ± 7
13 20-13 44
3080-3030
324-3.33
C-H o-o-p def. I 3 - Disubstltuted
=C-H str.
(three adJacent
(multiple bands)
hydrogen atoms)
C=Cstr (ring stretching)
1600~
1620
1586 ± 5
C-H i-p def
~
6.17
629-6.32
v v
1470
6.69
~
6 80
v
1465 ~ 1430 1278 ± 12 (all
6.83
~
6.99
v
1495
~
6 25
w-m
7.75-7.90
w
clockwise)
C'-H o-o-p def
1157 ± 5 (2, 5 vs 4, 6)
8.60-8.68
w
1096± 7 (4 vs 6)
9.07-9.\8
w
1076+7(2 vs s) 900 ~ 869 (I free H)
9.23-9.36
w
II 12-11.63
m
782 ± 10 (3 adj H Wag)
12.82-12.96
725
~
680 (3 adj. H wag) 13.79-14.71 3.24-3.33
m w-m
6.20-6.25
v
631-6.36
v v
1:4 Disubstltuted (two adjacent
=C-H str (multiple bands)
hydrogen atoms)
C=C str. (ring stretching)
1579± 6 1520~ 1480 1409± 8
658~6.76
7.05-715
v
C-H I-P def
1258 ± II (all clockwise)
7.88-802
1175 ± 6 (2, 5 vs 3,6) 1117 ± 7 (2, 6 vs 3,5)
w w
8.90-9.01
w
9.82-9.92 12.02-12.47
w
3080-3030 1606± 6
1013 ± 5 (2, 3 vs 5,6) C-H o-o-p def 1:2:3- Trisubstituted =C-H str. (multiple bands) C..l.H i-p def
817 ± 15 3080-3030 1175 1110
~ ~
1125 1070
1070 ~ 1000 C-H o-o-p def. 1:2.4-Trisubstltuted
=C-H str (multiple
847-8.56
3.24-3.33 8.51 9.01
~ ~
8.90 9.35
9.35 ~ 10.00 10.00 ~ 10.42
1000 ~ 960 800 ~ 770
12.50
~
12.99
720~
13 90
~
14.60
685
w-m w w w w m
3080-3030
324-333
w-m
C=C str (ring
1616± 8
stretching)
1577± 8 1510± 8
6 15-6.22 631-637
v v
660-6.66
v
686-688
v
bands)
14S6± I
49
Infrarred Spectroscopy C-H I-P def
816~851
1175~
1125
8.51
~889
w
~
1090
8 89
~
w
1125
1070 ~ 1000 C-H lH>-p def 1.3.5-Trisubstltuted
=C-H str
w
1225~1175
~
10 00
w
860
ILl I
~
\I 63
m
860 ~ 800
1163
~
12.50
900~
9 35
918
324-333
3080-3030
w-m
(multiple bands) C-H i-p def.
1l75~1125 1070~
C-H lH>-p def.
Tetrasubstltuted
(multiple bands) C-H lH>-p def
w w
1l1l~1163
m
~
11.56 ~ 12.30
865 =C-H str.
~
900 --l "CO 810
730 ~ 675 1:2:3 :4-
8.51~889
10.00
1000
9.35
13 70
3080-3030 860 ~ 800
1:2:3:5; I :2'4.5 and
=C-H sIr.
1:2:3:4:5
(multiple bands)
3080-3030
C-H lH>-p def
900~
~
14.82
324-333 II 63
~
w-m
1250
3.24-3.33
w-m
substituted
*
The symbol 151 0
~
860
ILl I
~
11.63
m
I
1480 indicates the range, in cm- • of absorption uf radiation. Usually
an electron donor substitutent causes absorption near 1510 cm- I , while an electron acceptor substitutent causes absorption near 148{) cm- I . Abbreviations: str. = stretchmg, i-p def. = in plane deformation, lH>-p def. = out of plane deformation, w = weak, m = medium,s = strong, v = variable, ad]. = adjacent. wag = wagging.
Table 2.4: C = 0 stretching frequencies of carbonyl compounds Type of carbonyl Compound
Typical examples (phase)
C=O st_ fre. cm- I
Value of absorption wavelength, ~
Acid anhydrides (RCOOCOR) a. Saturated, acyclic Acetic anhydride (CCI 4 )
1850-1800
5.41-5.56
1790-1740
5.59-5.75
1825 and 1754 5.48 and 5.70
b. Saturated, 5-
1870-1820
5.35-5.49
membered ring
1800-1750
5.56-5.71
Succinic anhydride(CHC1)
1820 and 1776 5.49 and 5.63
50 c. a,
Spectroscopic Data Chemistry
p- Unsaturated
and aryl, acyclic d. a,
1830-1780
5.47-5-62 1770-1720 5.65-5-81 Benzoic anhydride (CHCI) 1818 and 1740 5.50 and 5.75
p- Unsaturated,
1850-1800
5.41-5.56
1830-1780
5.47-5-62
-1850
-5.41
-1795
-5.57
1812
5.52
1792 -1810 1780-1750 1750-1720(m)
5.58 -5.53 5.61-5.72 5.72-5.82
c. Acyl bromides d. a, p- Unsaturated and aryl Benzoyl chloride (CCI 4 )
1739
5.75
e. COF 2 f. COCI 2
1928 1828
5.19 5.47
g. COBrz Carboxylic acids (RCOOH)dimers a. Saturated aliphatic
1828
5.47
1725-1700
5.80-5.88
1775 1760
5.63 5.68
1721
5.81
1724 1698
5.80 5.89 5.83-5.92
5 membered ring Acid halides (RCOX)
a. Acyl fluorides b'. Acyl chlorides
Acetyl chloride (CCI 4 ) Isovaleryl chloride (Film)
Butyric acid (monomer) (CCI 4 ) Acetic acid (CCI 4 ) Butyric acid (Film) a- chloropropionic acid (Film)
n- Hexanoic acid (Film) b. a,
p- unsaturated
1715-1690
aliphatic c. aryl Benzoic acid (KBrl Salicylic acid (KBr) Esters (RCOOR) a. Saturated, acyclic
1700-1680 1678 1665
5.88-5.95
1750-1735
5.71-5.76
5.96 6.01
51
Infrarred Spectroscopy Methyl acetate (CC 1~)
1750
5.71
Methyl propionate (CCI 4 )
1748
5.72
Ethyl propionate (CCI 4 )
1736
5.76
Propyl formate (CCI 4 )
1733
5.77
o-lactones (and larger rings)
1750-1735
5.71-5.76
y-lactones
1780-1760
5.62-5.68
~-lactones
-1820
-5.5
1800-1770
5.56-5.65
b. Saturated, cyclic
c. Unsaturated vinyl ester type Vinyl acetate (CCI4 ) a,
~-
unsaturated and aryl Ethyl cinnamate (CCI 4 )
a,
~-unsaturated
~-y-unsaturated
y-Iactone
y-lactone
d. a-keto esters e.
~-keto
esters (enolic)
f. Carbonates
1765
5.68
1730-1717
5.78-5.82
1710
5.85
1760-1740
5.68-5.75
-1800
-5.56
1755-1740
5.70-5.75
-1650
-6.06
1780-1740
5.62-5.75
Aldehydes (RCHO) a. Saturated, aliphatic
1740-1720
5.75-5.81
n-butanal (CCI 4 )
1736
5.76
Acetaldehyde (CCI4 )
1730
5.78
Valeraldehyde (CCI 4 )
1730
5.78
lsovaleraldehyde (Film) o-Chlorobenzaldehyde (Film)
1715
5.83
1695
5.90
b. a,
~-
Unsaturated, aliphatic
1705-1680
5;87-5.95
c. a,
~-
y- 0- Unsaturated, aliphatic
1680-1660
5.95-6.02
1715-1695
5.83-5.90
1690
5.92
1725-1705
5.80-5.87
d. Aryl
p-anisaldehyde (CCI 4 ) CCI 4
Ketones (RCOR) a. Saturated acyclic Butanone (CCI 4 )
1724
5.80
Acetone (CCI 4 )
1720
5.81
2-Pentanone (CCI 4 ) Methyl isopropyl ketone Film
1712
5.84
1709
5.85
52
Spectroscopic Data Chemistry
b. Saturated, cyclic 6-membered ring (and higher)
1725-1705
5.80-5.87
5-membered ring
1750-1740
5.71-5.75
4-membered ring
-1775
-5.63
1685-1665
5.94-6.01
1686
5.93
6-membered ring (and higher)
1685-1665
5.94-6.01
5-membered ring
1725-1708
5.80-5.85
e- a, ~, a I, ~ I ,-Unsaturated,
1670-1663
5.99-6.01
1700-1680
5.88-5.95
1686
5.93
1670-1660
5.99-6.02
1669
5.99
h. a- Diketones
1730-1710
5.78-5.85
i. ~-Diketones (enolic) j. 1, 4-Quinones
1640-1540
6.10-6.50
1690-1660
5.92-6.02
-2150
-4.65
-1650
-6.06
-1690
-5.92
c. a,
~-
d. a,
~-Unsaturated,
Unsaturated, acyclic Methyl vinyl ketone (CCI 4 ) cyclic
acyclic f. Aryl
propiophenone (CCI4 ) g. Diaryl Benzophenone (CHCI 3)
k. Ketenes Amides
a. Primary (RCONH 2 ) solid and concentrated solution dilute solution Acetamide (CHCI 3)
1670 and shoulder 5.97 and at 1716
5.83 (sh.)
1680-1630
5.95-6.14
1700-1670
5.88-5.99
b. Secondary (RCONHR) solid and concentrated solution dilute solution
N-methyl acetamide (CCI 4) 1675and shoulder 5.97and c. Tertiary, solid and all solutions N, N-dimethyI-{CCI 4 ) acetamide
at 1705
5.86 (sh.)
1670-1630
5.99-6.14
1660 and shoulder 6.02 and at 1710
5.85 (sh.)
53
Infrarred Spectroscopy d. Cyclic, o-Iactams, dilute solution
-1680
-5.95
e. Cyclic, y-Iactams, dilute solution
-1700
-5.88
1750-1700
5.71-5.88
1760-1730
5.68-5.78
1780-1770
5.62-5.65
i. Ureas, acyclic
-1660
-6.02
j. Ureas, cyclic, 6 membered ring
-1640
-6.10
k. Ureas, cyclic, 5-membered ring
-1720
-5.81
1740-1690
5.75-5.92
-1710
-5.85
-1700
-5.88
-1710
-5.85
f. Cyclic, y-Iactams, fused to another ring, dilute solution g. Cyclic,
~-Iactams,
dilute solution
h. Cyclic,
~-lactams,
fused to another ring,
dilute solution
1. Urethanes m. Imides, acyclic n. Imides, cyclic, 6-membered ring o. Imides, cyclic, ex,
~-
-1730
-5.78
6-membered ring
unsaturated,
-1670
-5.99
p. Imides, cyclic,
-1770
-5.65
5-membered ring q. Imides, cyclic, ex,
~-
unsaturated, 5-membered ring
-1700
-5.88
-1790
-5.59
-1710
-5.85
Table 2.5: Variation in frequency of vibrations of carbonyl stretching bands due to inter and intramolecular factors Add cm-I
Shift to higher frequency Basic value in CCI4
1720
Shift to lower frequency
Substract cm- I
Neat solid or liquid state
10
Solvent Hydrocarbon solvents
7
CHCI 3, CHBr3, CH 3 CN (partially polar)
Ring strain Angle decreases 6
15
Ring strain ~
5 ring
35
Angle increases 6 to 10 ring
~
7 10
54
Spectroscopic Data Chemistry
15
Bridged systems
Substitution on a-carbon
5
Substitution on'a-carbon
Each alkyl group
(Field and inductive effects)
Alkyl groups substituted by amine
Substituent cis oriented and Coplanar
20
-CI, -Br, -OR -OH, and -OAe Substituent trans and
5 -NHMe (monosubstituted amide) 30 -NMe2 (disubstituted amide) 55 -NH2 (amide)
Intramolecular hydrogen bonding Nil
Weak: a or
~-OH
ketone
nonplanar
Medium: o-OH arylketone
Alkyl group substituted by
Strong : ~-diketone
electronegative atoms or groups
Intermolecular hydrogen bonding
-H (aldehyde) -OR (ester) -OH (monomeric acid) -O-C=C (vinyl ester)
10 25 40 50
Weak: ROH ..... O=C< Strong: RCOOH dimer
10 40 100 15 45
conjugation (depends on stereochemistry)
-CI (acid chloride) -OCOR (anhydrides)
90 100
Second C=C
30 15
Third C=C
Nil
Benzene ring
20
FirstC=C
Vinylogous, -CO-C=C-X(X=HorO)
40
5'
Table 2.6: Vibration modes of amines and amino acids (frequency in em-I) Compound
N-H stretching asym
Primary amines
sym
N-H
C-N
C=O
C-O
: Other vibrations
deformation
stretching
stretching
stretching
and remarks
3550-3350
3450-3250
1650-1580
1220-1020 (ali)
Shoulder at 3200
(2.82-2.99f..l)
(2.90-3.08f..l)
(6.06-6.33f..l)
(8.2-9.8f..l)
(3. 12f..l), overtone of
1340-1250 (aro)
1610 (6.21f..l) band
(7.46-8.0f..l)
N-H wagging strong
=t>
.,.,
III
(1)
Q..
C/l
"0
.,...
(1)
(")
0
Vl (")
0 "0
'<
band at 850-750 (11.76-13.34f..l) Scondary amines
3550-3350
1650-1550
1350-1280 aro
N-H wagging strong
(2.82-2.99f..l)
(6.06-6.45f..l)
(7.4 1-7.8 1f..l)
band at 750-700 (13.34-! 4.29f..l) -N-H def. band often masked by aromatic band in aromatic compounds
Tertiary amines
1380-1260 aro
N-Me band in secon-
(7.24-7.94f..l)
dary and tertiary. amines, observed at 2820-2760 (3.543.62f..l)
Amine
About 3380,
About 1600
hydrochloride
(2.96f..l)
(6.25f..l) asym.
chloride
NH\ str.
VI VI
Compound Charged amine derivatives
Primary amino acids
N-H stretching asym sym
N-H deformation
About 3280, (3.05J.l) NW 3 str. 3350-3150, NH\ str. (2.99-3.17J.l) (l2.5J.l) NW 3 solid phase 3125-3030 (3.2-3.3J.l)
About 1300 (7.7J.l) sym. About 800 rock
CoN stretching
1660-1610 band I (6.02-6.2 I J.l) 1550-1485 band II (6.45-6.74J.l)
Dicarboxylic amino acids Amino acid hydrochlorides
Amino acid sodium salts
3130-3030 (3.2-3.3J.l)
3400-3200 (2.94-3.13J.l) Two bands
1610-1590 band I (6.21-6.29J.l) 1550-1480 band II (6.45-6.75J.!)
C=O stretching
C-O stretching
1600-1560 ionized (6.25-6.41J.l) carboxyl str.
Other vibrations
VI
0-
and remarks
Weak band at 27602530 (3.62-3.96J.l) Medium band at 1300 (7.69J.l)
1755-1720 (5.7-5.81J.l) unionised carboxyl str. 1755-1730 1230-1215 Series of bands (5.7-5.78J.l) (8.13-8.23J.l) between 3030 and Unionised 2500 (3.3 and 4.0J.l) carboxyl str. 1600-1560 (6.25-6.14J.l) ionised carboxyl
r/)
"0 0
..,.....
(')
0
til (')
0 tJ
n'
0
.....
I:Il I:Il
(1
::r 0
3 Vi' .....
~
Infrarred Spectroscopy
57
Table-2.7: Infrared Transmission characteristics of selected solvents and Mulling Oils (Transmission below 80% obtained with a 0-10 mm cell path is given in cm I) Solvent
Acetone
Absorption (em-I) 3480-3340,3180-2730,1890-1060,940-880, 805-790, 600-630
Acetonitrile
3260-2800, 2340-2180, 1600-1310, 11 001000,980-900,815-740,630-600
Benzene
3150-2960,2000-1935, 1860-1790, 1545, 1500,1445-1365,1190-1140,1070-980,865845, 600-750
Benzonitrile
3150-2960, 2280-2160, 2000-1890, 16401285, 1215-1165, 1100-1000, 960-915, 600820
Bis-2-(methyl ethyl) ether
3150-2580, 2000-1930, 1545-815, 600-635
Bromoform
3060-2960, 1190-1100, 600-800
Bromotrichloromethane
600-840
Butyl acetate
3150-2800, 1935-815, 780-755, 600-680
I-Butanol
3600-2500, 1600-600
Dibutyl ether
3040-2580, 1540-810, 775-740, 630-600
Carbondisulfide
2360-2100, 1625-1410,690-600
Carbon tetrachloride
1570-1520,840-720,690-600
Chloroform
3060-2960,1250-1180,945-935,830-600
Cyclohexane
3040-2580, 1510-1410, 1285-1250, 10601020, 910-860, 680-600
58
Spectroscopic Data Chemistry
Solvent
Absorption (em-I)
CycIopentane
3060-2730, 1520-1410, 1340-1310,925-870, 645-600
1,2-Dichloroethane
3150-2960, 1500-1435, 1370-1230, 10501070,975-875,765-600
Diethyl ether
3060-2600,2000-1965, 1525-1000, 960-895, 870-790, 635-600
1,4-Dioxane
3060-2650,2000-1965, 1460-1075,940-825, 690-600
Dodecane
3060-2650, 1460-1290,755-695,665-600
Hexane
3060-2650, 1525-1330, 900-885, 780-720, 635-600
Tetrachloro ethylene
1060-1035,960-885,830-745,680-600
1,1-Trichloro-trifluoroethane
1415-1345, 1270-780, 700-600
2,2,4-Trimethylpentane
3040-2550, 1520-1175, 1000-975,645-600
Water
3650-2930, 1750-1580, 930-600
Mulling Oils
Absorption (em-I)
Nujol®
3030-2860, 1460-1386, 720
Hexachlorobutadiene
1650-1500,1280-1200, 1020-760
Fluorolube®
1350-650
Problems: (I) The IR spectrum of an organic compound CgH7N shows the following bands: 3030(w); 2920(w); 2217(s); 1607(m); 1607(m); 1508(m); 817(s)
Infrarred Spectroscopy
59
What is its structure? CgH7N Index = 6* (Probably aromatic)
*
[For a molecule (CwHxNyOz, the total number of rings and double bonds is obtained by the formula R = 112 (2w -x + y ~ 2) Here M.F.
=
CgH7N = R = 1/2 (16 -7 + I + 2) = 6.
The presence of one benzene ring in the structure requires atleast four unsaturation sites (3 double bonds + I ring)] 3030 cm- I ; 1607 cm- I ; 1508 cm- I aromatic 2217 cm- I ; CN rather than C=C which gives a weak band CN, C7H7 Index 2 The band at 2920 cm- I is weak. Since alkyl groups give a strong band in this region, it may be concluded that such groups are absent or are very few in number. This is supported by the fact that CN accounts for an index value of2 and the remaining index (4) must be in the C7H7 unit. This, can be a heptatriene or a phenyl ring. But the presence of a band at 2920 cm- I , though weak, indicates the presence of atIeast one alkyl unit, hence heptatriene ring is absent and C7H7 is a toluyl unit. The very st~ong band at 817 cm- I may be ascribed to out of plane bending vibrations of two -ArH atoms and hence, the compound is a p-disubstituted benzene and the structure of the compound is
CH3~N p-toluonitrile (2) Identify the structure of the compound CgHgO whose spectrum contains the following absorption bands: 1680(s), 1600(m), 1580(m), 1450(m), 1430(s), 1360(s), 1265(s), 755(s), 690(s) cm- I . The empirical formula suggests the following structure for the compound:
~O C H--C 6
5
""
CH3
Spectroscopic Data Chemistry
60
The IR spectral bands agree with this structure. The monosubstituted benzene ring has the characteristic bands at 1600, 1580, 1450, 750 and 690 cm- I , the characteristic bands for the aromatic ketone are at 1680 and 1275 cm- I , and those for the methyl group are at 1430 and 1360 cm- I. (3) Deduce the structure: CsHIS IR bands (cm- I) 2960; 2860; 1460; 1395; 1385; 1375; 1365 Several bands in fmger print region, i.e., a branched alkane. The latter four bands are two doublets- indicating isopropyl and tert-butyl groups
Therefore, the compound is
2,2,4-trimethylpentane
(4) From the following examples, we can readily see the usefulness of Table 2.5 in predicting the values ofC=O absorption bands. The wavenumbers
for
c=o stretching vibrations for a number of compounds are calculated as
follows: a. Benzophenone in chloroform
Basic value for c=o absorption
1720 em-I
Shift due to benzene rings 2 x 20
-40 em-I
Shift due to solvent CHCI3
- 15 em-I
-------------------------------1665 em-I Calculated Observed
1669 em-I
61
Infrarred Spectroscopy b. Vinyl propionate in CCI 4
~o
-C""
CH3CH 2
OCH=CH2 Basic value for C=O absorption Vinyl ester (-O-C=C) shift Alkyl group on a carbon
1720 cm- 1 f- 50 cm- 1 - 5 cm- 1
-C~a~lc-u~la-t-ed~---------------1~7~6~5-c-m~1
Observed
1760 cm- 1
c. Acetic anhydride in CCl4
Basic value for c=o absorption 1720 cm- 1 Anhydride (-O-COR) + 100 cm- 1 ----------------------------~1 Calculated 1820 cmObserved 1825 cm- 1 d. Benzamide in CHC~
o \I
r5~ Basic value for C=O absorption 1720 cm- 1 - 5 cm- 1 Alkyl group substituted by NH2 Alkyl group substituted by benzene - 20 cm- 1 Solvent polarity effect .t - 15 cm- 1 Hydrogen bonding about - 15 cm- 1 ----------------------------~ Calculated 1665 cm- 1 Observed 1667 cm- 1
62
Spectroscopic Data Chemistry e. Caprolactam neat liquid CH -CH --NH
./'
2
CH 2 ~
2
I
CH 2-CH 2--C=0
Basic value for C=O absorption
1720 cm- I
Alkyl group substituted by NHMe
- 30 cm- I -5 cm- I
Alkyl group on a carbon seven member ring
-lOcm- 1
Neat liquid
-10 cm- I Calculated
1665 cm- I
Observed
1667 cm- I
(5) Suppose that you are investigating a compound with the molecular formula C4H60 2 • You find that it contains an ester carbonyl and -ene group. You determine this on the basis of the following bands in the IR spectrum ofa CCI 4 solution of the compound. 3030 cm- I (weak), 1765 cm- I (strong), 1649 cm- I (strong), 1225 cm- I (strong) and 1140 cm- I (strong). IdentifY these bands, write all the possible structures which include these two groups, and identifY the compound. Answer: Identification of the bands: 3030 cm- I C-H str. in terminal RHC=CH 2 (CHR group) 1765 cm- I C=O str. 1649 cm- I C=C str. (terminal) 1225 cm- I C-O-C str. (asym.) 1140 cm- I C-O-C str. (sym.) For a compound with the molecular formula C4H602' only two structures with an -ene and an ester carbonyl group can be written. -:::;:::0 methyl acrylate (an a, (a) CH 2 = CH-C --"0 - CH 3 unsatur~ted ester) (b) CH 3
-
-:::::-0 C--.. vinyl acetate O·CH =CH 2
~-
63
Infrarred Spectroscopy The two structures can be distinguished on the basis of their stretching frequencies. We ean calculate
c---o stretching frequency
co-o
in each
ease
a)
b)
Basic value
1720 em
OR (ester)
+ 25 em I
conjugation (C=C)
- 30 em I
Calculated
1715 cm
Basic value
1720 cm-l
-O-C=C (vinyl ester)
+ 50
Calculated
1770 em-I
I
since the observed value is 1765 em-I the compound is (b)
l
ClCHJ
3
Proton Magnetic Resonance Spectroscopy
Aliphatic alicyclic I I p-substituted aliphatic
I----l Alkyne
I
I
a-Monosubstituted aliphatic I I a-Disubstituted aliphatic Alkene Aromatic and heteroaromatic I I Aldehydic
I---i
IO
9
8
7
6
5
4
3
2
o
General regions of chemical shifts
0
Proton Magnetic Resonance Spectroscopy
65
3.1 Effect on shift positions of a single functional group Table 3.1: Chemical Shifts of Methyl, Methylene and Methine protons (a to the functional groups) in 0 CH~X
-CH~X
-CHX
H
0.23
0.90
1.25
CH 30rCH 2-
0.86
1.2
1.55
C=C-
1.6
2.1
C=C-
1.7
2.2
2.8
Ph
2.25
2.6
2.85
F
4.26
4.45
4.8
CI
3.05
3.5
4.05
Br
2.7
3.4
4.1
2.16
3.15
4.25
3.2
3.4
3.8
Functional group X
OH OR
3.2
3.4
3.6
OPh
3.82
4.05
4.55
OCOR
3.62
4.1
4.95
OCOPh
3.82
4.2
5.05
OTs*
3.7
3.9
4.65 .
CHO
2.2
2.39
2.5
COR
2.1
2.35
2.64
C-OPh
2.4
2.74
34
COOH
2.1
2.3
2.54
COOR
2.0
2.25
2.5
CONR2
2.0
2.26
2.4
C=N
2.15
2.45
2.85
NH2
2.52
2.7
3.04
NR2 NPhR
2.22
2.4
2.84
2.6
3.04
3.6
N"R.
2.95
3.04
3.6
NHCOR
2.95
3.34
3.8
.'
66
Spectroscopic Data Chemistry
Functional group X
-CHX
N02
4.08
4.15
4.4
N=C
2.92
3.3
4.9
N=C=O
3.3
O-C=N
4.6
N=C=S
3.4
3.7
4.0
S-C=N
2.72
3.0
3.3
O-N=O
4.8
SH
2.1
2.6
3.1
SR
2.1
2.6
3.12
SPh
2.52
SSR
2.4
2.72
SOR
2.6
3.1
S02 R
3.1 3.0
S03 R
2.4
P~
PTCI3
3.32
3.4
PO~
2.4
PSR z
2.8
o OTs is
-O-~
D'
r'
II~
°
H3
67
Proton Magnetic Resonance Spectroscopy
Table 3.2: Chemical shifts of Methyl, Methylene and Methine protons (~to the functional groups) in 0 Functional group X
CHJ-C-X -CH2-C-X -CH-C-X
CH 2-
0.86
1.2
1.55
C=C-
1.0
1.36
1.76
C=C-
1.2
1.5
1.8
Ph
1.16
1.55
1.8
F
1.55
1.85
2.15
Cl
1.55
1.8
1.95
Br
1.8
1.85
1.9
1.76
1.8
2.1
OH
1.2
1.5
1.76
OR
1.2
1.5
1.76
OPh
1.3
1.55
2.0
OCOR
1.3
1.6
1.8
OCOPh
1.65
1.75
1.95
OCOCF3
1.4
1.65
CHO
1.1
1.65
COR
1.05
1.55
1.95
COPh
1.16
1.56
1.9
COOR
1.16
1.7
1.9
CON~
1.1
1.5
1.8
C=N
1.25
1.65
2.0
N~
1.05
1.45
1.7
NPhR
1.1
1.5
1.8
NR,+ ,
1.4
1.75
2.05
NHCOR
1.1
1.5
1.9
N02
1.61
2.05
2.5
SH
1.3
1.6
1.66
SR
1.25
1.6
1.9
68
Spectroscopic Data Chemistry
3.2 Effect on chemical shifts of two or three functional groups: (Y-CHz-Z and Y-CH-Z)
I W Shoolery's rules permit calculation of a shift position of a methylene group attached to two functional groups by the additive effect ofthe shielding constants in Table 3.3. The sum of the constants is added to cS 0.23, the position for CH 4 •• cS = 0.23 + Lcri Thus, to calculate the shift for the -CHz- protons ofC 6HFH zBr
C6HS
1.85
Br
2.33 4.18 0.23 4.41
add CH 4
Table 3.3: Shielding constants Functional group YorZ
Shielding Constants cri
CH 3 C=C
0.47
C=C Ph CFz CF3
1.44 1.85 1.21
CI Br I OH OR OPh OCOR COR COPh COOR CONH z CONRz C=N
1.32
1.14 2.53 2.33
.1.82 2.56 2.36 3.23 3.13 1.70
1.84 1.55 1.53 1.59
1.70
69
Proton Magnetic Resonance Spectroscopy
Functional group
Shielding Constants cri
YorZ N~
1.57 4.44 2.90 1.70 2.27 1.97 1.64 3.13
N02
N=C=S C=C-Ar NHCOR
N3 SR
The shielding constants were used to prepare the following chart 3.3.1.
r. ."."
~ ~ ~ uo
,....
f
f rf
I
-ai, Lit 1.01 2.14 1.U -CoC
u.
Ul
UO
2.17 U. 140
-6C
1,.
....
-'"
J.n
-cP.
).So
~
f
.-"
i"
2.11
I .. '
~ ? 0.I ,...,
2.51 JAI lUI "10 '.2> J.OJ 2.51 SAo
.... ".!"..... ..."", U,
1 ..
;:;
cso ....s
Ut U2
-<:P,
. f ~ ... .... u. ..., . ,. 4." "u I
)"IS
Uf
111 J ..I2 1M 111
u.
~
u.
)." I.,. 1M ,.... ,ft ,,., u.
2.40 )
).lS
U, '.ft
... ......,, UI
c.,.
'.It
uo
...
'ol'
...0 U1 '.$1 4.t1 S.OI 1.$' UI S.1\ I."
'..,
.n
"~
p.u
~
J
l-
I~: uo .. U J.lO "w 12.
,...
1.lS
,,'.......22
"". 0
f q q
1:1, U1 Ut
I
....'At 1JI
U7 2." 2.41 J.)'
1.12 Ul Ul 11f
I;:;
1f1
.
I.n
"'1
.... '." ... I.n"'t
U. ...1 'At
•'I'
,;:
2.1
'.0' iu .... Lt. . " .... , ... '." ..... .... ....... ..., .... ..... ..os".11 ".Jf.." ... ......" "...."...... '.11 .... , .., ,.ft ..., -.. . .,. 'TO .... ".J) J.f)
U'
U1 J,n:
I."
1 ..
....$411.4)7 J.21
Ul
-Q
C.U 2.47
UI
•
I( f g ,
~I 13 I q If
',12
-,
'00
4.J. "11
s.Tt
SA.
J.11
5••,
S."
..., '.4'
,Us
-
...,.
ffg ".55
"OJ U,
....
SIl
-OPfo
U.
'.n
J.t2
.
..., ..., ..... .... •.4' c."
....., ...".IJU S ....
5.10
....
.
lA.
...." .....
..
'.20 ..... c... ".IS .... ... c..,
•.,U
5... J.J.
US 1.10
,.co
-CC-<)).
c...
4.U ".02
U,
J.oI
J.OI
..... ... .... ... .... 4." '.1' ..,! .... ,." ,to .... '.JO '"
•.s. ." L..
J.41
c.., , ,... "" U,
3M C" .. U UJ l.l .. J.1t ,.co 11S
Ul
-<10"",0.
.
I.OJ 11J
2... 1.0' 1" '.01 •.11
U,
,.11
' ...1
-c(-<>1oPI& u, -C(aO)OR
J.U US
'.11
SAl
U,
1.17
... c.,.
J . .,
).)1 1.• '
,.,
J.30
-C(=OlH--..
U1
4.10
1.12
l,Jl
-
U1
·.OJ
... ,." ,,,,
us ".os
,Jt
H'
..Tt
~ It. J.n
J.ll
'J1 ~~t=4.'7
,n
-NItC{-o. c" •.45 -H,
1"
....
..!!.!~
-..
~
70
Spectroscopic Data Chemistry This chart can be used to find the shift position of a methylene -roup
attached to two functional groups from the 8 values in the box at the intersection of the horizontal and diagonal groups ("mileage chart"). The upper number in each box is an experimental value; the lower number is calculated from shoolery's constants. Table 3.4 can be used to calculate chemical shifts of methyl (Y-CH 3), methylene (Y-CH 2-Z), or methine (Y-CH-Z) groups.
I W a
I
P I
Thus, the CH 2 chemical shifts in BrCH zCHpCHFH 2 Br can be calculated. CH 2 No.1 CH 2 (Table 3, 4, footnote a)
1.20
a-OR
2.35
p-Br
0.60 4.15
CH z No.2 CH 2
1.20
a-Br
2.18
P-OR
0.15 3.53
Determined: CH 2 No.1 at ~8 3.80; CH 2 No.2 at ~8 3.40 Table 3.4: Substitutent Effects on Chemical Shift C-C-H
I I
Pa Substituent
-c=C-
Type of Hydrogen" Alpha shift
Beta shift
0.78 0.75
0.10
71
Proton Magnetic Resonance Spectroscopy Type of Hydrogen" Alpha shift
Substituent
--C=C-C-R
CK
1.08
X (X=C orO)
CH 3
Aryl
CH 2
0
II
-I
Cl:i3 CH 2 CH
-OH
CK CH 2 CH CH 3 CH 2 CH
lAO IA5 1.33 2A3 2.30 2.55 1.80 2.18 2.68 1.28 1.95 2.75 2.50 2.30 2.20 2A3 2.35 2.00
CK CH 2 CH
2.88 2.98 3.43 (esters only)
CH CK CH 2 CH CH 3 CH 2 CH
-CI
0
-Br
0
-OR (R is saturated)
0
0
II
II
-O-C-R, -O-C-OR -OAr
0
Beta shift
0.35 0.53 0.63 0.53 0.03 0.83 0.60 0.25 1.23 0.58 0.00 0.33 0.13 0.33 0.15
0.38 0.43
0
II -CR, Where R is alkyl, aryl, OH, OR', H, CO, orN
1.23 CK CH 2 1.05 CH 1.05 -NRR' 1.30 CH} CH 2 1.33 CH 1.33 standard positions are CH 1, I) 0.87; CH 2 , 8 1.20; CR 8 1.55. 0
0.18 0.3\ 0.13 0.13
72
Spectroscopic Data Chemistry
3.3: Chemical Shifts in Alicyclic and Heterocyclic Rings Table 3.5: Chemical shifts in Alicyclic Rings
0.22
o !
D
1.96
000 1.51
1.78
1.65
1.44
1.54
G6
02
d
1.96
o
22 . -1.8
2.06
3.03
2.02
-1.8
~.30
U,~1.94
-1.52
-1.52
Table 3.6: Chemical Shifts in Heterocyclic Rings 2.54
V 1.62
V
HO.03
0 0
2.72
2.23
G· 0 0.59 0 85
3.75
4.73 H 2
151 3.52
1.50
.38
3.54
2.75 H 2.01
150 2.74
H 1.84
73
Proton Magnetic Resonance Spectroscopy
o
2.27
V
3.17
3.43
R 0J X°
H 4.75-4.90
1.68
0
1.93
0 S
2.82
3.9-4.1 3.9-4.1
4.70
3.80
2 . 0 8 n 4.38
2.31 yO
1.62 1.62(14.06 2.27
a
1°
(0
3.4: Chemical Shifts in Unsaturated and Aromatic Systems
R~ CIS
"""
/C=
R trans
Rgem
oH = 5.25 + ~zi i.e. 5.25 + Zgem + Zcis + Ztrans
For example, the chemical shifts of the alkene protons in
C6H~
/OC 2Hs
C Ha /
-c:.... -
"'-Hb
are calculated
74
Spectroscopic Data Chemistry
Ha
1.35 -1.28 0.07 l.l8 -0.10 1.08
Hb
5.25 0.07 0,5.32 5.25 1.08 06.33
Table 3.7: Substituent Constants (Z) for chemical shifts of substituted Ethylenes (in CCI4) Substituent R gem
Z cis
trans
-H -Alkyl -Alkyl ring" -CHp,-CH2 1 -CH 2 S -CHFI, -CH2Br -CH 2N -C=C -C=N -C=C -C=C conjb -C=O -C=O conjb -COOH -COOH con? -COOR -COORconjb
0 0.44 0.71 0.67 0.53 0.72 0.66 0.50 0.23 0.98 1.26 1.10 1.06 1.00 0.69 0.84 0.68
0 -0.26 -0.33 -0.02 -0.15 0.12 -0.05 0.35 0.78 -0.04 0.08 l.l3 1.01 1.35 0.97 U5 1.02
0 -0.29 -0.30 -0.07 -0.15 0.07 -0.23 0.10 0.58 -0.21 0.01 0.81 0.95 0.74 0.39 0.56 0.33
/H -C=O
1.03
0.97
1.21
/N -C=O
1.37
0.93
0.35
/CI -C=O
1.10
-OR, R: aliph
1.18
1.41 -1.06
0.99 -1.28
75
Proton Magnetic Resonance Spectroscopy -OR, R: Conjb
1.14
-0.65
-1.05
-OCOR
2.09
-0.40
-0.67
-Aromatic
1.35
0.37
-0.10
-CI
1.00
0.19
0.03
-Sr
1.04
0.40
0.55
R: aliph
0.69
-1.19
-1.31
R: Conjb
2.30
-0.73
-0.81
-SR
1.00
-0.24
-0.04
- S02
1.58
1.15
0.95
/R -N
\R jR -N
\R
Alkyl ring indicates that the double bond is part of the ring
b
The Z factor for the conjugated substitutent is used when either the substitutent or the double bond is further conjugated with other groups.
Table 3.8: Chemical Shifts of Miscellaneous Alkenes 5,70
RCH
650
502
= CR-CH = CH 2
6.01
608
716
CH 3 -CH = CH-CH
5.62
= CH-COOC 2 H5
Spectroscopic Data Chemistry
76
CH 3CH 2 COSiMe,
II
CH 2 3.92
~"7
~Ol2. 1.92
0
0 0 0
560 .
5.95
65 1.
5.8
2.15
2.90
h- 5.9
J:j2.00 3.58
~
6.40
2.66"11 6 . 10
a
CH 3
6.75
2 . 2 ° n 7.71
5.59
A
2.28
6 .42
0
1.96
57
9 a
2.13
6.88 5.93
77
Proton Magnetic Resonance Spectroscopy 2.66
5.78
2.,53'----'i 4.82
143~) 4.2~)
() _ I 14.6~
I
I
6.22 3.97
0
~I 6.37
,4,63
6.16
. US 6.94
3.34
r(jf)4.83
6.IS
~~6.8~
r---j-- 7.63 ,-----_._-
61\.
4.92
~2
7.
98
H3~~
0
H 4.53
<20
7.72 10
2.4° 1.41 ,
.~
11
o
Table 3.9: Chemical Shifts of Alkyne Protons HC=CR HC=C-COH HC=C-C=CR HC=CH HC=CAr HC=C-C=CR
1.73-1.88 2.23 1.95 1.80 2.71-3.37 2.60-3.10
Table 3.10: Chemical Shifts of Protons on Monosubstituted Benzene Rings Benzene CH 3 (omp) CH3 CH z (omp) (CH 3)FH (omp) (CH 3)3 C (0, m, p) C = CH z (omp) C=CH 0, (mp) Phenyl 0, m, p CF 3 (omp) CH, CI (omp) CHCl, (omp) CCL 0, (mp) J
7.25 7.16 7.16 7.16 7.32, 7.17, 7.04 7.25 7.44, 7.25 7.44,7.25,7.16 7.50 7.25 7.36 8.10,7.50
78
Spectroscopic Data Chemistry
CH 2 OH (omp) CH,OR (omp) CH; OCOCH3 (omp) CH 2 NH2 (omp) Fm,p,o Cl (omp) Br, 0, (pm) 1o, p, m OHm,p,o ORm, (op) OCOCH3 (mp), OTs· (mp), CHOo,p,m COCHp,(mp) COOHo,p, m COORo,p, m COClo, p, m C=N NH2, m,p,o N(CH3)2 m (op) NHCORo NH 3+0 N02 0,p, m SR (omp) N=C=O (omp) ·OTs = P - Toluenesulfonyloxy group
°
°
7.16 7.25 7.25 7.32 7.25, 7.04,6.95 7.25 7.51,7.25 7.71, 7.25, 7.04 7.04, 6.90, 6.75 7.36,7.00 7.25, 7.04 7.25, 7.04 7.95, 7.64, 7.50 7.90,7.55 7.90, 7.44, 7.36 8.16,7.55,7.44 8.10,7.55,7.44 7.55 7.16,6.84,6.50 7.16,6.70 7.50 7.64
8.23, 7.71, 7.55 7.25 7.04
Table 3.11: Chemical shifts of protons on fused aromatic rings 7.81 8.31 7.91
7.39
7.88 7.82 8.12
79
Proton Magnetic Resonance Spectroscopy
Table 3.12: Chemical "hifts of protons on Heteroaromatic Ring~ (,~ ~-.' I
'"
{5::8
6.30
\~
§
\
0
N H -g.O
./ 7.40
H
8.77
'0 0 6 99 . ¥8.50
Iii ~~ ·6.54
~S/ 7.30
7.50
I
fJ)634
{- -~7.10
~850
QI
~
9 24 .
!
~~
7.37
7.00
,) 9.26
6.67r,-----;- 7.32
II
7.78~
V
Ii .>--CHO 9.70
Q !I
6.3 0f1
6.63f--f1--~COOCH 3
7.17 7 . 2 4 V 7.83
6.98
--CHO 9.45 H-Il.l
6.57r~--COOCH3
6.lrIl 6.
6.76Y 7.44
6.92y-~ COCH3
H
CH33.92
7.22
77
r:-- ):,7.78 I.
i
7.78~
-
S
Table 3.13, Chem',a' Sh'fts .f "COO(},
GO I
9.92
"C~N, (al,.
RCH=O PhCH=O
9.70
RCH=CHCH=O
9.78
9.98
"+0 ) o
Proton'
80
Spectroscopic Data Chemistry
8.05 8.05
HCOOR HCONR2
RCB=NOH cis
5.00 7.25
RCB = NOH trans
6.65
RCH~N-NH~NO,
6.05
HC(OR)3
N02
3.5: Protons on Heteroatoms Table 3.14: Protons subject to Hydrogen. Bonding Effects (protons on Heteroatoms)" Proton
Class
OH
Carboxylic acids Sulfonic acids Phenols Phenols (intramolecular
-13.2--10.0 12.0-10.0 -7.5--4.0 12.5-5.5
H bond) Alcohols InDMSO Enols (cyclic ( l - diketones) Enols ( (3- diketones) Enols ( (3- ketoesters) Water (Bulk water
4.0--0.5 6.2-4.2 6.9-6.0 16.5-14.5 10.6--9.6 5.0-4.5
as suspended droplets or wall films) Dissolved (monomeric)
1.5
Water in acetone inDMSO Oximes
2.9-2.5 3.4--3.2 12.0-9.0
81
Proton Magnetic Resonance Spectroscopy
Proton
NH2 and NHR
Class
8
Alkyl and cyclic
3.0-0.5
amines Aryl amines Amides Urethanes Amines in tritluoroacetic acid SH
Aliphatic mercaptans Thiophenols
a
5.0-3.0 8.7-5.0 7.6-4.6 8.7-6.0 1.7-1.3 3.6-2.8
Solvent CDCI 3 • Chemical shifts within a range are a function of concentration (The upper limit represents neat liquids, the lower limit, dilute solutions or extrapolations to infinite dilution)
3.6: Proton Spin Coupling Constants Type
Jab (Hz)
Jab Typical
0-30
12-15
6-8
7
0-1
o
6-14 0-5 0-5
8-10
Geminal
Vicinal CH. - CHb (free rotation)
I I
CH - (-C-) -CH
•
n
b
Ha
ax-ax ax--eq eq--eq
2-3 2-3
Spectroscopic Data Chemistry
82
o::.H' ITHa
cis 5-10
Hb
(cis or trans)
trans 5-10 cis 4-12
Hb trans 2-10
(cis or trans)
L
cis 7-13 Hb
(cis or trans)
trans 4-9 4-10
5
1-3
2-3
5-8
6
12-18
17
)c=c<:
0-3
0-2
Ha>C=C
6-12
10
>C=C<
0-3
1-2
> C=C
4-10
7
CH.-OHb (no exchange) 0
II >CH.-CHb 0
II C=CHa-CHb Ha)c=e
CHa
CHb
83
Proton Magnetic Resonance Spectroscopy CHb
)C=C< Ha
C=CHa-CHb=C Ha, )1b C=C (ring)
HaC=CHb
0-3
1.5
0-3
2
9-13
10
3 member
0.5-2.0
4 member
2.5-4.0
5 member
5.1-7.0
6 member
8.8-11.0
7 member
9-13
8 member
10-13
9.5-9.8
9.1
CHa-C=CHb
2-3
-CHa-C=C-CHb
2-3
Ha
Hb~
6
Ha~Hb
4
a
Ha~ Ha
&Hb
Hb
2.5
J (ortho)
6-\0
9
J (meta)
1-3
3
J (para)
0-1
-0
J (2-3)
5
J (3-4)
5-6 7-9
J (2-4)
8
1-2
1.5
J (3-5)
1-2
1.5
J (2-5)
0-1
J (2--6)
0-\
-0
Spectroscopic Data Chemistry
84
40' :0: :0: 5
2
1.3-2.0
1.8
J (3-4)
3.1-3.8
J (2-4) J (2-5)
0-1 1-2
3.6 -0
J (2-3)
4.9-6.2
5.4
J (3-4)
3.4-5.0
4.0
J (2-4)
1.2-1.7
J (2-5)
3.2-3.7
1.5 3.4
J (1-2)
2-3 2-3 2-3
J (1-3) J (2-3) J (3-4) J (2-5)
3-4 1-2 1.5-2.5
J (4-5)
4-6
J (2-5)
1-2 0-1 2-3
J (2-4)
H
50 4
6::--"""
J (2-3)
J (2-4)
2
J (4-6) J (4-5)
:(Jt
J (2-5)
3-4 1-2
J (2-4)
-0
CH3 -CH 2 -X
6.5-7.5
CH3 > CH-X CH3
5.5-7.0
1.5
Proton Fluorine
>C
a
Fb
44-81
85
Proton Magnetic Resonance Spectroscopy
I >CHa-CFb
3-25
> CHa-C-CFb II
0--4
I
I 1 Ha
>C-C<
Ha
1-8 Fb
< >C=C
12-40
Fb
F
0--6-10
o-Ha
m-5-6 p-2
Proton Phosphorus 0
II 630-707
>PH (CH3)3 P
2.7
(CH 3)l=O
13.4
(CH3CH2)l
13.7 (HCCP)
0.5 (HCP)
(CH3C~)3
16.3 (HCCP)
11.9 (HCP)
P=O
0
II CHl(OR)2
10-13
0
I II
CH3C P(OR)2
15-20
CHPP(OR)2
10.5-12
I
P[N(CH3)2]3 o=p [N(CH3)2]3
8.8 9.5
86
Spectroscopic Data Chemistry
3.7: Chemical Shifts, Multiplicities, and Coupling Constants of Residual Protons in Commercially Available Deuterated Solvents Compound" Molecular Weight
0H (mult)
2
Acetic acid. d4
11.53(1)
64.078
2.03 (5)
Acetone - d6
2.04(5)
2.2
1.93 (5)
2.5
64.117 Acetonitrile - d3 44.071 Benzene - d6
7.15 (br)
84.152 Chloroform - d
7.24(1)
120.384 Cyclohexane - d l2
1.38 (br)
96.236 Deuterium oxide 20.028
4.63 (DSS)b 4.67 (TSP)b
1,2 - Dichloroethane-d4
3.72 (br)
102.985 Diethyl-d 1O ether
3.34 (m)
84.185
1.07 (m)
Diglyme -d 14
3.49 (br)
148.263
3.40 (br) 3.22 (5)
N, N -Dimethylformamide -d7 80.138 Dimethyl - d6 sulphoxide 84.170
1.5
8.01 (br) 2.91 (5)
2
2.74 (5)
2
2.49 (5)
1.7
87
Proton Magnetic Resonance Spectroscopy p-Dioxane - ds
3.53 (m)
96.156 Ethyl alcohol-d 6 (anh)
5.19 (I)
52.106
3.55 (br) 1.11 (m)
Glyme - d,o
3.40(m)
100.184
3.22(5)
Hexafluoroacetone
5.26 (1)
1.6
deuterate, 198.067 HMPT-d,s
2.53 (2 x 5)
2(9.5)
4.78(1 )36.067
3.30(5)
197.314 Methyl alcohol - d4 Methylene chloride -d 2
5.32(3)
86.945 Nitrobenzene -<-d 5
8.11 (br)
128.143
7.67 (br) 7.50 (br)
Nitromethane -do,
4.33 (5)
2
64.059 5.12(1)
Isopropyl alcohol -ds 68.146
3.89 (br)
Pyridine - d5
8.71 (br)
84.133
7.55 (br)
I. 10 (br)
7.19 (br) Tetrahydrofuran - ds 80.157
3.58 (br)
Toluene- ds
7.09 (m)
100.191
7.00 (br)
1.73 (br)
6.98 (m) 2.09(5) Trifluoroacetic acid -d 115.030
11.50(1 )
? ..,
_.,)
1.7
Spectroscopic Data Chemistry
88 2,2,2-Trifluoroethyl alcohol- d,,
3.88 (4
103.059 a b
5.02(1) x
3)
2(9)
Purity (Atom % D) up to 99.96% (" 100%") for several solvents. DSS is 3-(trimethylsilyl}-l-propane sulfonic acid, sodium salt (or sodium 2,2-dimethyl-2-silapentane-5-sulfonate). TSP is sodium -3trimethylpropionate -2, 2, 3, 3-d4 . Both are reference standards used in aqueous solutions.
NMR table showing correlations of chemical shifts of protons Type and group
't
8
10.00 9.78 8.92-9.12
0.22 1.08--0.88
2.
TMS -CH 2-Cyclopropane
3. 4.
CK-CN J CH 3-C-(sat.)
9.05-9.15
0.95--0.85
(8.7-9.3) 8.88-9.07
(1.3--0.7)
I.
5.
CK-C-CO-R J
6.
CH 3-C-N-CO-R
8.80
7.
-N-C-
8.52
1.20 1.48
8.
CH 2 -CH 2- (sat.) -CH 2- C-O-COR and
8.52-8.80
1.48-1.20
8.50
1.50
9.
\/
1.12--O.93
-CH 2-C-O-Ar 10.
RSH,
8.5-8.9"
1.5-1.1
11.
RNH2 (conc. less than
8.5-8.9"
1.5-1.1
I mole in inert solvent) 12.
-CH2-C-C=C-
8.40-8.82
1.60-1.18
13.
-CH 2-CN
8.38-8.80
1.62-1.20
14.
-C-H (sat.)
8.35-8.60
1.65-1.40
15.
8.22-8.40
1.78-1.60
16.
-CH2-C-Ar -CH 2-C-O-R
8.19-8.79
1.81-1.21
17.
CH,-C=NOH ,
8.19
1.81
18.
-CHz-C-1
8.14-8.35
1.86-1.65
89
Proton Magnetic Resonance Spectroscopy
8.10-8.40
1.91.4
CH 3-C=C
8.1-8.4
L9-1.4
CH -C=C3I
8.09-8.13
1.91-1.87
19.
-CHz-C-COR
20. 21.
O-CO-R
22.
-CH z-C=C -O-R
8.07
1.93
23.
-CH 2-C-CI
8.04-8.40
1.96-1.60
24.
CH -C=C3 I
7.97-8.06
2.03-1.94
COOR orCN
25.
-cH2-C-Br
7.97-8.32
2.03-1.68
26.
CH 3-C=C-C0-R
7.94-8.07
2.06-1.93
27.
-CH 2--C-N0 2
7.93
2.07
28.
-CH 2-C-SO z-R -C-O
7.84
2.16
7.71
2.29
29.
\/
CH
30.
-CH 2-C=C
7.69-8.17
2.31- 1.83
31.
CH 3-N-N-
7.67
2.33
32.
-CH 2-CO-R
33.
CH3-S0-R
34.
CH,-Ar ,
7.61-7.98
b
2.39-2.02
7.50
2.5
7.50-7.75
2.50--2.25
(7.5-7.9)
(2.5-2.1 )
35.
-CHz-S-R
7.47-7.61
2.53-2.39
36.
CH3-C0-SR -CH 2-C=N
7.46-7.67
2.54-2.33
37.
7.42
2.58
38.
CH 3-C=0
7.4-7.9
2.6--2.1
(7.4-8.1)
(2.6-1.9)
39. 40.
CH 3-S-C=N CH3-CO-C = C or
7.37
2.63
7.32-8.17
2.68-1.83
CH 3-C0-Ar
41.
CH,-CO-CI or Br ,
7.19-7.34
2.81-2.66
42.
CH,-S,
7.2-7.9
2.8--2.1
43.
CH,-N ,
7.0-7.9
3.0-2.1
44.
-C=C-C=C-H
7.13
2.87
Spectroscopic Data Chemistry
90 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67.
-CHz-SOz-R -C=C-H, nonconjugated -C=C-H, conjugated Ar-C=C-H -CH/C=C-)z -CHz-Ar -CH 2-1 -CHz-SOl Ar-CHz-N -CHz-N-Ar Ar-CHz-C=C-CHz-N+-CHz-CI -CHz-O-R CH 3-O-CHz-Br CH 3-O-SO-OR -CHz-N=C=S CH 3-SO z-CI Br-CHz-C=N -C=C-CHz-Br Ar-CHz-Ar Ar-NH az' Ar-NH-Ra, and Ar-NH-Ar"
68. 69. 70. 71. 72. 73. 74. 75.
CH 3-O-SO z-OR -C=C-CHz-O-R -C=C-CHz-C1 CI-CHz-C=N Hz-C=C-O-CHz-C=C ~C=C-CHz-CI
-C=C-CHz-OR -CHz-O-CO-R or -CH1-O-Ar
7.08 7.35-7.55 6.9-7.2 6.95 6.95-7.10 6.94-7.47 6.80-6.97 6.72 6.68 6.63-6.72 6.62-6.82 6.60 6.43-6.65 6.42-7.69 6.2-6.5 (6.0-6.7) 6.42-6.75 6.42 6.39 6.36 6.30 6.18 6.08-6.19 6.0-6.6 (5.7-6.7) 6.06 6.03-6.10 5.96-6.04 5.93 5.87-6.17 5.84-5.91 5.82 5.71-6.02
2.92 2.65-2.45 3.1-2.8 3,05 3.05-2.9 3.06-2.53 3.2-3.D3
3.28 3.32 3.37-3.28 3.38-3.18 3.40 3.57-3.35 3.58-2.31 3.8-3.5 (4.0-3.3) 3.58-3.25 3.58 3.61 3.64 3.70 3.82 3.92-3.81 4.0-3,4 (4.3-3.3) 3.94 3.97-3.90 4.04-3.96 4.07 4.13-3.83 4.16-4.09 4.18 4.29-3.98
91
Proton Magnetic Resonance Spectroscopy 76.
-CH 2-N01
5.62
4.38
77.
Ar--CH 2-Br
5.57-5,59
4.43-4.41
78.
Ar-CH 2-OR
5.51 -5.64
4.49-4.36
79.
Ar-CH 2-Cl
5.50
4.50
80.
--C=CH 2
5.37
4.63
81.
-C=CH-, acyclic,
4.3-4.9 (4.1-4.9)
5.7-5 ' (5.9-5 I)
4.3-4.8
5.7-5,2
nonconjugated 82.
--C=CH-, Cyclic, nonconjugated
83.
-C=CH 2
4.3-4.7
5.7-5.3
(3.7S-4.8)
(6.2S-5.2)
4.80-S.20
5.20-4.80
4.74
5.26
84.
--CH(OR)2
85.
Ar--CH 2-O-CO-R
86.
R-O-H (conc. less 4.8-7.0' than one mole in inert solvent)
87.
Ar-C=CH-
4.60-4.72
S.40-S.28
88.
-CH=C-O-R
4.45-S.46
5.S5-4.S4
89.
-CH=C-C=N
4.25
S.75
90.
--C=CH-CO-R
3.95-4.32
6.05-S.68
91.
R-CO-CH=C-CO--R
3.87-3.97
6.13-6.03
92.
Ar--CH=C-
3.72-3.77
6.28---6.23
93.
--C=C-H, conjugated
3.3-4.5 (2.2-4.7)
(7.8-S.3)
5.2-3.0'
6.7-S.S
94.
--C=C-H, acyclic, conjugated
3.S--4.0 (2.9-4.5)
6.S---6.0 (7.1-S.S)
95.
H--C = C-
3.60-3.70
6.40-6.30
-C=CH-O-R
3.55-3.78
6.45---6.22
97.
Br--CH=C-
3.00-3.38
7.00-6.62
98.
-CH=C-CO-R
2.96-4.S3
7.04-S.47
99.
-C=Ch-O-CO-CK,
2.7S
7.2S
I
I
H CO--R 96.
92
100.
101.
Spectroscopic Data Chemistry
(Jo{
2.6-2.7
7.4-7.3
N H R-CO-NH
2.3-3.9
7.7-6.1
(1.5-4.5)
(8.5-5.5)
2.28-2.62
7.72-7.38
2.0-3.4
8.0-6.6
(0.5-4.0)
(9.5~.0)
1.4-3.8
8.6-6.2
(1.0-6.0)
(9.0-4.0)
1.9-2.1
8.1-7.9
1.8-2.0
8.2-8.0
0.32-0.57
9.68-9.43
0.2-0.3
9.8-9.7
(0.2-0.5)
(9.8-9.5)
0.0-0.3
10.0-9.7
(-0.1 to 0.5)
(10.1 to 9.5)
-1.52 to -0.97
11.52to 10.97
-2.0 to -1.0
12.0 to 11.0
-2.18to-1.57
12.18 to 11.57
102.
Ar-CH-C-CO-R
103.
ArH, benzenoid
104.
ArH, nonbenzenoid
~p 105.
H-C", / N"",
~p 106.
H-C
107.
-C=C-CHO,
"'0-
aliphatic, a, 13 unsat. 108. 109.
R-CHO, aliphatic Ar-CHO
110.
R-COOH
III.
-SO,H
112.
-C=C-COOH
113.
R-COOH, dimer
-2.2 to -1.0
12.2 to 11.0
114.
AR-OH, intramolecularly
-2.5 to -0.5
12.5 to 10.5
bonded
(-5.5 to -0.5)
(15.5 to 10.5)
115.
AR-OH, polymeric
2.3 to 5.5"
7.7t04.sa
.'
association 116.
Enols
~.O
to -5.0
16.0 to 15.0
93
Proton Magnetic Resonance Spectroscopy
Normally protons resonate within the range shown. In cases in which protons resonate outside the range, the limits are shown by values in parentheses. a
The position of these protons depends on concentration, temperature, and the presence of other exchangeable protons. Values for amino protons depend on the basicity of the nitrogen atom.
b
In these compounds R=H, alkyl, aryl, OH, OR or NH 2.
Exercises and Problems: Problem 1. The compounds CHCI 2--CHCI2 (8=6 ppm) and CCI3-CHFI (8=3.9 ppm) produce single NMR signals owing to the factthat their hydrogen atoms are chemically equivalent. Explain the difference between the chemical shift for these compounds. Answer: Halogens shift the proton signal downfield and the shift is the larger, the larger the number of halogen atoms. Problem 2. Toluene, p--xylene and mesitylene have two peaks each in their NMR spectra. Assign the spectra shows in fig. shown below (l, 2 and 3) to these compounds. Alkyl Aromalic
3:5
HFf ')-cH3
3:2
94
Spectroscopic Data Chemistry
Answer: The signal with 8=2 ppm is produced by the protons of the methyl group and the signal at about 7 ppm by the aromatic protons. As the lines have approximately the same width, the ratios of the peak areas are 3:5, 3:2 and 3: I in the first, second and third spectra, respectively. Hence, the spectra can be assigned as follows: 1. Toluene, 2. (r-xylene, 3. mesitylene. Problem 3. Identify the structures of the compounds C3HFI5 (I) and C 3 H5CI 3 (2) with the following NMR spectra: (I) Triplet (8=4.52 ppm) and doublet (8=6.07 ppm) with the peak area ratio of 1:2 (2) Singlets (8=2.20 ppm and 8=4.02 ppm) with the peak area ratio of3:2 Answer: The triplet with 8=4.52 ppm and the doublet with 8=6.07 ppm indicate that the methine group (lH) has a neighbour with two protons (2H). Hence the compound (I) has the following structure: H
H
CI
I
I
I
I
I
I
H-C-C-C-CI
CI CI CI The singlets in the spectrum ofthe compound (2) indicate that two proton groups are separated by an aprotic group making spin-spin coupling impossible. Thus, the compound (2) has the following structure: H
CI H
I
I
I
I
I
I
H-C-C-C-H
CI CI H Problem 4. Fig. shown below gives two spectra for the compounds with the same empirical formula CgHto0' Determine the structure and explain the differences in the chemical shifts. Answer: I. C6H5-CH 2-O-CH3 2. C6H5-O-CH2-CH3 In the compound (I) the oxygen atom is linked to the groups CH 2 and CH 3 and therefore both peaks are shifted downfield (the chemical shifts are larger) and there is no spin-spin coupling between the protons of these groups. In the compound (2) the oxygen atom affects the group CH 2 (downfield shift of the peak) and the group C6HS- The aromatic protons become nonequivalent and the signal is split into a multiplet owing to their coupling.
95
Proton Magnetic Resonance Spectroscopy
2
10
8
2
4
6
N
o
Problem 5. Deduce the structure of the compound C 3 H 4 zS
J 7
8
Integration ration 1: 1:2
4
6
3
2
Answer: C,H4 N zS Index = 3 07.08 (1 H) J = 5Hz doublet 06.48 (1 H) J = 5Hz doublet very broad 05.61 (2H) ... The two non-equivalent protons, which are coupled to each other are in the aromatic region. With an index value of 3 and only 3C I atoms, only imidazole and thiazole are the possible aromatic compounds. But the former, imidazole - thiol has four non-equivalent protons as against three observed. So the compound is aminothiazole. The J value indicates vicinal positions for the aromatic and hence the compound is 2-aminothiazole.
~
~/
rfIllNj~
SH
N H Imidazothiol
H2N
V
~~ S
NH2
2-Aminothiazole SH
S 5-Aminothiazo Ie
~NON S 4-Aminothiazole
96
Spectroscopic Data Chemistry Problem 6. Why is an internal standard used in obtaining an nmr
spectrum? Why is TMS a good standard? In NMR spectroscopy, we are trying to determine the strength of magnetic field which is required to bring about the resonance of certain nuclei in a given compound. It is natural to expect, therefore, that a NMR spectrum would be a plot of signal strength versus magnetic field, in units of miIIigauss. Measuring a magnetic field is difficult. However, it is convenient to determine accurately the values of absorption frequencies (.: u = yHo/2n) of protons relative to those of a suitable standard. As only relative absorption values can be obtained, a suitable standard must be used. The most logical standard would be a "bare proton", having no shielding electrons, but experimentally this is not possible, and instead one uses as standards compounds having sharp resonance peaks. The chemical shift may then be expressed as the difference between the resonance frequency of the protons in the sample (u sampe I) and the resonance frequency of the protons in the standard
(ustandard)
(u sample -
U TMS )
TetramethylsiIane (TMS) is commonly used as an internal reference TMS is a good standard because (i) TMS is unreactive (except with con. H2 S04 with which it should not be used) and it does not associate with the sample. (ii) TMS is symmetrical, and thus gives a sharp peak of 12 equivalent protons. (iii) It is extremely volatile, and thus allows recovery of the pure sample. (iv) It is soluble in most organic solvents. Methyl protons ofTMS are strongly shielded and therefore absorbs at higher field than almost all organic protons. It also enables us to define a scale for the spectra by arbitrarily assigning a frequency value for TMS protons equal to zero. Problem 7. Which references and solvents are used to take NMR spectra of samples? Why? I,
Proton Magnetic Resonance Spectroscopy
97
To determine the resonance spectrum of the protons of an organic compound, one needs anywhere betweer. I and about 30 mg of the sample. The sample is normally used in the form of its dilute solution (about 2 to \0%) in a solvent which contains no hydrogen atoms of its own. For samples oflow polarity, carbon tetrachloride, deuterated chloroform, CDCl 3 and deuterated benzene C6D6 , are often used. On the other hand if the sample is soluble only in polar solvents, deuterium oxide (0 2°), acetone - 0 6 (CD 3COCD3), or dimethyl sulfoxide -- 0 6 [(CD3)2S0l are often employed. The internal standard used to locate the resonance frequency of most protons is tetramethyl silane (TMS) [(CH3)4 Sil, which one adds to the sample before recording the spectrum. TMS is commonly used as an internal reference because it is chemically inert, symmetrical, volatile and soluble in most organic solvents, it gives a single sharp absorption peak and absorbs at higher field than almost all organic protons. TMS cannot be used as an internal reference for substances dissolved in
DzO. For aqueous solutions, the standard used is often the sodium salt of
2,2-dimethyl-2-silapentane-5-sulfonic acid or DSS. (CH 3)3 SiCH2CH zCH zS03Na The methyl groups in this compound provide a suitable reference peak. Acetonitrile and dioxane are also used as references in aqueous solution. Problem 8. Explain the abnormally large shift of aldehydic proton in
nmr spectra. If molecules contain protons that are sterically oriented so that they are close to double or triple bonded groups, there will generally be a diamagnetic anisotropic effect of some kind. The magnetic fields induced by pi electrons are directional, i.e., unsymmetrical. A measurement which varies with the direction in which the measurement is taken is said to be anisotropic. Because the effects of molecular fields induced by 1t electrons are direction dependent, these are, therefore termed anisotropic effects. These effects are contrasted to inductive effects, which are symmetrical around the proton.
98
Spectroscopic Data Chemistry
-
/"7f-//I~::,j,
-- ''r\t:P
1/ , I ~ C;:=lO
I
,
r
/k.
~
\
Induced magnetic field
I
~ ~;i -- ~' "fr--
',H
Ho applied magnetic field Anisotropic effects occur in addition to the ever present molecular field, induced by sigma-bond electrons. Thus the downfield shift of aldehyde proton (8 9- I 0) is not only due to the deshielding effect of Sp2 carbon (Sp2 carbon has high s character and withdraws electrons, deshielding the hydrogen) but also due to anisotropy of the C=O. These two effects combined together deshield the attached hydrogens in these systems. Just like in benzene, in aldehyde, the induced magnetic field (by the 1t--electrons) in the region where protons are located is oriented in the same direction as the applied field. A smaller field is therefore, required for resonance resulting in their deshielding. "The highly deshielded position of aldehydes is attributed to a combination of a strong inductive effect and the diamagnetic anisotropy of the carbonyl group."
aaa
4
13e NMR Spectroscopy 4.1: The 13C chemical shifts of Linear and Branched Alkanes: Alkane groups unsubstituted by heteroatoms absorb downfield from TMS to about 60 ppm. (Methane absorbs at 2.5 ppm upfield from TMS.) Within this range we can predict the chemical shifts of individual 13C atoms in a straight chain or branched chain hydrocarbon from the data in Table 4.1 and the formula b = -2.5 + LnA. Where b = Predicted shift for a carbon atom. A = Additive shift parameter. n = number of carbon atoms for each shift parameter (-2.5 is the shift of the i3C of methane). The calculated (and observed) shifts for the carbon atoms of 3-methylpentane are
/+ 19.3 (18.6)
6
CH 3 I I
CH 3 -
I
+ 11.3 (+11.3)
2
3
CH 2 -
CH- CH 2 -
\
+29.5 (+29.3)
4
"
+ 36.2 (+ 36.7)
5
CH 3
100
Spectroscopic Data Chemistry For carbon atom I, we have la,
° =-2.5 + (9.1 1
x
I) + (9.4
x
I~-,
2y and 1&-carbon atoms.
I) + (-2.5
x
2) + (0.3
x
I)
=
+ 11.3
Carbon atom 2 has 2 a-, 2 ~-, and 1 y carbon atoms. Carbon atom 2 is a 2° carbon with a 3° carbon attached [2°(3°) = - 2.5]
° 2
=-2.5 + (9.1 x 2) + (9.4 x 2) + (-2.5 x 1) + (-2.5 x 1) = 29.5
Carbon atom 3 has 3 a- and 2 ~- carbon atoms, and it is a 3° atom with two 2° atoms attached [3° (2°) = -3.7]. Thus 03 = -2.5 + (9.1
+ (-3.7
x
x
3) + (9.4 x 2)
2) = + 36.2
Carbon atom 6 has, I a-, 2~-, and 2y carbon atoms, and it is a 1° atom with a3° atom attached [10 (3°) =-1.1]. Thus, +(-2.5x2)+(-1.l
x
°=-2.5 +(9.1 x 1)+(9.4 x 2) 6
1)=+19.3
The agreement for such calculations is very good. It is essential that the reference compounds used for such additivity culculations be structurally similar to thecompound of interest. Table 4.1: The \3C shift parameters in some linear and branched hydrocarbons 13C
Atoms
Shift (ppm) (A)
a
+9.1
p
+9.4
Y b
-2.5
E
+0.1
+0.3
1° (3?
-1.1
1° (4°)" 20 (3 o)a
-3.4
20 (4°)
-7.2
3° (2°)
-3.7
3° (3°)
-9.5
4° (10)
-1.5
4 ° (2°)
-8.4
-2.5
101
I3C NMR Spectroscopy a
The notations 1° (3°) and 1° (4°) denote a CH 3 group bound to a R2CH group and to a R3C group, respectively. The notation 2° (3°) denotes a RCH 2 group bound to a ~CH group, and so on.
Table 4.2 lists the shifts in some linear and branched alkanes. Table 4.2: The \3C Shifts for some Linear and Branched chian Alkanes (ppm from TMS). Compound
C-l
C-2
C-3
Methane
-2.3
Ethane
5.7
Propane
15.8
16.3
15.8
Butane
13.4
25.2
25.2
Pentane
13.9
22.8
Hexane
14.1
Heptane
C-4
C-5
34.7
22.8
13.9
23.1
32.2
32,2
23.1
14.1
23.2
32.6
29.7
32.6
Octane
14.2
23.2
32.6
29.9
29.9
Nonane
14.2
23.3
32.6
30.0
30.3
Decane
14.2
-23.2
32.6
31.1
30.5
Isobutane
24.5
25.4
Isopentane
22.2
31.1
32.0
11.7
lsohexane
22.7
28.0
42.0
20.9
Neopentane
31.7
28.1
2,2-Dimethylbutane
29.1
30.6
36.9
8.9
3-Methylpentane
11.5
29.5
36.9
(18.8,3CH)
2,3-Dimethylbutane
19.5
34.3
2,2,3-Trimethyl
27.4
33.1
38.3
16.1
7.0
25.3
36.3
(14.6,3-CH 3)
butane 2,3-Dimethylpentane
14.3
102
Spectroscopic Data Chemistry
Table 4.3: Incremental Substituent Effects (ppm) on Replacement ofH by Y in Alkanes. Y is Terminal or Internal" (+ downfield, -upfield) y
...
~y'" ~
Terminal Y
a
Internal ~
y
Terminal Internal Terminal Internal +9 +6 +10 +8 -2 CH3 CH=CH2 +20 +6 -0.5 +4.5 +5.5 -3.5 C=CH +2 COOH +21 +16 +3 -2 COO-2 +25 +20 +5 +3 +2 -2 COOR +20 +17 +3 +33 +28 +2 COCI +22 CONH2 -0.5 +2.5 +30 +24 +1 +1 -2 COR -2 CHO +31 0 Phenyl +23 +17 +9 +7 -2 +48 +41 +10 +8 -5 OH +58 +51 +8 +5 -4 OR +51 +45 +6 +5 -3 OCOR -5 +29 +24 +11 +10 NH2 -5 NH3+ +26 +24 +8 +6 +8 +6 -4 NHR +37 +31 +42 -3 N~ -7 +31 +5 NR/ +4 +4 N0 2 +63 +57 +3 -3 +4 +1 +3 CN +11 +11 +12 +11 -4 SH -3 +20 +7 SR -F +6 -4 +9 +68 +63 +31 +32 +11 +10 -4 CI + 11 +20 +10 -3 Br +25 -1 +4 +11 +12 I -6 a Add these increments to the shift values ofthe appropriate carbon atom in Table 4.2 or to the shift value calculated from Table 4.1. From Table 4.3, the approximate shifts for the carbon atoms of, for example, 3-pentanol, may be calculated from the values for pentane in Table 4.2; that
I1C NMR Spectroscopy
103
is, the increment for the functional group in Table 4.3 is added to the appropriate value in Table 4.2 as follows: y
f3
a
CH 3 -
CH 2 -
CH- CH 2 I
f3
y
CH 3
OH
Ca
CI3 Cy
Calculated
Found
34.7 + 41 = 75.8 22.8 + 8 = 30.8 13.9 - 5 = 8.9
73.8 30.0 10.1
The chemical shifts of the CH 2 groups in monocyclic alkanes are given in Table 4.4. Each ring skeleton has its own set of shfit parameters. Rough estimates for substituted rings can be made with the substitution increments in Table 4.3. Table 4.5 presents chemical shifts for several saturated heterocyclics.
Table 4.4: Chemical shifts of Cycloalkanes (ppm from TMS)
C3 H6 C4HS CsHIO C6 HI2 C7H I4 CgH I6 CgH 1S C 1oH20
-2.9 22.4 25.6 26.9 28.4 26.9 26.1 25.3
Table 4.5: Chemical shifts for saturated Heterocyclics (ppm from TMS, neat) Unsubstituted
0
U
D
29.7
H N
S
39 .5
27.5
6
18 .7
U
65
12
68.4
31.7
0 0 S
18 .2
S
22.9
0
0 N H
72.6
57 47.1
104
Spectroscopic Data Chemistry 24.9
26.6
0 o
0
27.7
/' 69.5
25.9
0
27.8 29.1
N H
S
Substituted
o
0
~CH3
47.3 /
\
47.6
27.8 47.9
24.4 567
N
CH3 48.0
18.1
4.2 Alkenes and Alkynes The Sp2 carbon atoms of alkenes substituted only by alkyl groups, absorb in the range of about 11 0-150 ppm downfield from TMS. The double bond has a rather small effect on the shift of the Sp3 carbon in the molecule. Calculation of approximate shifts can be made from the following parameters where (a, ~, and y represent substituents on the same end of the double bond as the alkene carbon of interest, and (a', W, and y' represent substituents on the far side. a +10.6 ~ +7.2 Y -1.5 a' -7.9 ~' ·-1.8 y' -1.5 Z (cis) correction -1.1 These parameters are added to 123.3 ppm, the shift for ethylene. We can calculate the values for cis-3-methyl-2-pentene as follows: a
CH3H
P a H3 C-CH 2 5
0C_3
4
I
I
a
C = C -CH3 3
2
I
= 123.3 + (2 x 10.6) + (l x 7.2) + (l x -7.9) - 1.1
= 142.7 ppm.
a'
CH3H W a' H,C-CH 2 Os
0C_2 =
4
123.3 + (I
-<
I
I
C =C 3
2
a
-cI H3
10.6) + (2 x -7.9) + (I x 1.8) -- l.l
=
115.2 ppm.
The measured values are C-3 = 137.2 and C-2 = 116.8. The agreement is fair. The allylic carbon of a (Z) alkene is usually at lower field from that of
IlC NMR Spectroscopy
lOS
an (E) alkene by about 4-6 ppm. Alkene carbon atoms in polyenes are treated as though they were alkane carbon substituents on one of the double bonds. Thus in calculating the shift ofC-2 in I A-pentadiene, C-4 is treated like a 13spJ carbon atom. Representative alkenes are presented in Table 4.6. There are no simple rules to handle polar substituents on an alkene carbon. Shifts for several substituted alkenes are presented in Table 4.7. The central carbon atom (=C=) of alkyl substituted allenes absorbs far downfield in the range of about 200-·215 ppm, whereas the terminal atoms (C=C=C) absorb upfield in the range of about 75-97 ppm.
Table 4.6: Alkene and Cycloalkene Chemical shifts (ppm from TMS) 111 ,
H2C=CH~
Iic/C~""'Gr~Ci:i2
I".'
I·HJ .1
,
11-11
H,C "cH(CI~"at~CH, "XI
, .?_~ 7
1175
t~C"
~rn 1112
~,
CH, -
Spectroscopic Data Chemistry
106
J 14 ~
I ~') .:;
HF, /GI~ ill "CH-CH 1 1.17 M
13-' 2
121\.l
127A 123 I
J .125
172
12 H
IIW.
H2C, /CH,,,,,- /C~ C CH: 1';·15 I CIt
.'
CH, I .
1129
H~C~I/GI"'-cI-~CH3 1.;49
107.1 CH2
/~.7
130.8
3 0 . 2 0 137.2
0-',-6 22.1
:-
0 I
6. 1
~
124.6
22.3
CH,=C=CH, 74 X
:: I ~ "
136 .2
~--./)2g.9 26.9
107
IlC NMR Spectroscopy
Table 4.7: Chemical Shifts of substituted Alkenes (ppm from TMS) 1220
I~C.-;7
12f1 I
or,
a-I,
I~C~
'Br
11<0
l:1
117 -I
141 7
136 -'
~rn" 1~70
H,C9' %
I.~X :\
~~O-I~o
OCCR
~
11101 '
l."th ()
11.)1 I
o I ~~"
H,C~aI" C':CH, H,C~ "COOH 11Y ~
II·
I.' i"
o 1077
f-l,~rn"CN 1~7K
144 I
117~
o A,133.8
L~165.1
1 he sp carbon atoms of alkynes substituted only by alkyl groups absorb in the range of approximately 65--90 ppm (Table 4.8). The triple bond shifts the Sp3 carbon atoms directly attached about 5-15 ppm upfield relative to the absorbs upfield from the internal corresponding alkane. The terminal", ",CR. Alkyne carbon atoms with a polar group directly attached absorb from about 20-95 ppm.
CH
108
Spectroscopic Data Chemistry
Table 4.8: Alkyne Chemical Shifts (ppm) Compound I-Butyne 2-Butyne I-Hexyne 2-Hexyne 3-Hexyne
C-I 67.0 67.4 1.7 14.4
C-2 84.7 73.6 82.8 73.7 12.0
23.2 894
C-3
C-4
C-5
C-6
17.4 76.9 79.9
29.9 19.6
21.2 21.6
12.9 12.1
280 88.4
HC=C-OCH 2CH 3
CH 3-C=C-OCH3
4.3: Aromatic Compounds Benzene carbon atoms absorb at 128.5 ppm, neat or as a solution in CDCI 3 or CCI4 • Substituents shift the attached aromatic carbon atom as much as ± 35 ppm. Fused ring absorptions are as follows: Naphthalene: C-I, 128.1; C-2, 125.9; C-4a, 133.7 Anthracene: C-I, 130.1; C-2, 125.4; C-4a, 132.2; C-9, 132.6 Phenanthrene: C-l, 128.3; C-2, 126.3; C-3, 126.3; C-4, 122.2; C-4a, 131.9*; C-9, 126.6; C-lOa, 130.1 *. Incremental shifts from benzene for the aromatic carbon atoms of representative monosubstituted benzene rings (and shifts from TMS of carbon containing substituents) are given in Table 5.9. *Assignment uncertain. Table 4.9: Incremental shifts ofthe Aromatic Carbon Atoms of Monosubstituted Benzenes (ppm from Benzene at 128.5 ppm, +downrreld, upfield). Carbon Atom of substituents in parts per million from TMS Substituent
H CH 3 CHFH3 CH(CH3)2 qCH 3)3 CH=CH 2 C=CH C6HS CHzOH
C-l (Attachment)
C-2
C-3
C-4
0.0 9.3 +15.6 +20.1 +22.2 +9.1 -5.8 +12.1 +13.3
0.0 +0.7 -{).5 -2.0 -3.4 -2.4 +6.9 -1.8 -{).8
0.0 -{).l 0.0 0.0 -0.4 +0.2 +0.1
0.0 -2.9 -2.6 -2.5 -3.1 -{).5 +0.4 -1.6 -{).4
-{).I -{).6
C 1 of substituents (ppm from TMS)
21.3 29.2(CH 2), 15.8(CH) 34.4(CH),24.1(CH 3) 34.5(C), 31.4(CH3). 137.1(CH), 113.2(CH2) 84.0(C),77.8(CH) 64.5
109
IJC NMR Spectroscopy
20.7(CH 3),66.I(CH). 170.5 (C=O)
+7.7
-0.0
-0.0
-0.0
OH OCH 3 OC6HS 0
+26.6 +31.4 +29.0
-12.7 -14.4 -9.4
+1.6 +1.0 +1.6
-7.3 -7.7 -5.3
54.1
OCCH 3 0
+22.4
-7.1
-0.4
-3.2
23.9(CH3 ), 169.7 (C=O)
CH 0
+8.2
+1.2
+0.6
+5.8
192.0
CCH 3 0
+7.8
-0.4
-0.4
+2.8
24.6(CH3), 19S.7 (C=O)
CC6HS 0
+9.1
+I.S
-0.2
+3.8
196.4 (C=O)
CCF3 0
-S.6
+1.8
+0.7
+6.7
COH 0
+2.9
+1.3
+0.4
+4.3
168.0
COCH 3 0
+2.0
+1.2
-0.1
+4.8
SI.0(CH), 166.8 (C=O)
CCI C=N NH2 N(CH 3)2 0
+4.6 -16.0 +19.2 +22.4
+2.9 +3.6 -12.4 -IS.7
+0.6 +0.6 +1.3 +0.8
+7.0 +4.3 -9.5 -11.8
NHCCH 3 N0 2 N=C=O
+11.1 +19.6 +S.7 +3S.1 +6.4 -S.4 -32.2 +2.6 +2.3 +10.2
-9.9 -S.3 -3.6 -14.3 +0.2 +3.4 +9.9 -3.1 +0.6 -1.8
+0.2 +0.9 +1.2 +0.9 +1.0 +2.2 +2.6 +0.4 +0.2 +0.4
-S.6 +6.0 -2.8 -4.5 -2.0 -1.0 -7.3 +3.4 -3.3 -3.6
CHPC-CH 3
II
0
II
II
II II II II
II
II
II
F CI Br 1 CF3 SH SCH3
168.S 119.5 40.3
129.S
15.9
110
Spectroscopic Data Chemistry
+15.3 +13.4
SO~NH2
Si(CH))
-2.9 +4.4
+-0.4 -1.1
+3.3 -1.1
Shifts from benzene for polysubstituted benzene ring carbon atoms can ,be approximated by applying the principle of substituent additivity. For example, the shift from benzene for C-2. of the disubstituted compound 4-chlorobenzonitrile is calculated by adding the effect for an ortho CN group (+3.6) to that for a meta CI group (+ 1.3):
CN
CN
II
6
~
I
2 3
is equivalent to
CI I
I
rAlr(Y 2
~3
+
II
CAtom Calculated Observed I -18.0 -16.6 2 +4.6 +5.1 +0.8 +1.3 3 4 +10.7 +10.8
CAtom Observed I -16.0 2 +3.6 +0,6 3 4 +4.3
CI III CAtom Observed -2.0 4 + 1.0 3 +0.2 2 +6.4 I
Table 4.10: Shift for Carbon Atoms ofHeteroaromatics (neat, ppm from TMS) C-3 C-4 C-5 109.6 106.2 110.9 141.2 121.7 112.9 148.5 117.9 II 1.9 146.4
C~
Compound Furan 2-Methyl furan Furan-2-Carboxaldehyde Methyl 2-furoate
C-2 142.7 152.2 1533 144.8
Pyrrole 2-Methyl pyrrole Pyrrole-2Carboxaldehyde Thiophene 2-Methylthiophene Thiophene-2Carboxaldehyde Thiazole Imidazole Pyrazole I-Methylpyrazole Pyridine Pyrimidine
118.4 108.0 127.2 105.9 108.1 116.7
12.4
134.0 123.0 112.0 129.0 124.4 126.2 139.0 124.7 126.4 122.6
14.8
143.3 136.4 128.1 134.6 142.4 118.5 152.2 136.2 122.3 122.3 134.3 105.2 139.2 105.7 128.7 150.2 123.9 135.9 157.4 122.1 157.4 159.5
Substituent 13.4 178.2 159.1 (C=O), 51.8 (CH)
182.8
38.1
I3C NMR Spectroscopy
111
Pyrazine 2-Methylpyrazine Pyridazine a Assignment not certain
145.6 154.0 141.8" 143.8" 144.701 152.8 127.6
21.6
4.4: Alcohols Substitution ofH in an alkane by an OH group causes down field shifts of35-52 ppm for C-I, 5-12 ppm for C-2, and upfield shift of about O-{) ppm for C-3. Shifts for several acyclic and alicyclic alcohols are given in Table 4.11.
Table 4.11: Chemical shifts of Alcohols (neat, ppm from TMS) ~.' h
H,C;~ /CI-~"'-
CHpH
CH 2
490
OH
25K
~5
I
H,C ......... ~CHJ . ~,~ CH 1
OH
OH
19 1
1\7 ()
29.7
1
OH
OH
1~.O
39 4
)0.)
H1C'c~CH~~,Cl\ 194·
72)1
OH
~9
.
112
Spectroscopic Data Chemistry
]1"1\)
(,1"
Hr"
9
/01'--.,
OH
iOKCR
I
CH, 2~j
..JJ "
HiC, ...--c~, ./OH GI CH,./ 00 ~ -
2HI
CHJ OH Ih I
72 0
1
H,C, / G I " J51 GI CHJ I
I~ 7
CH3
(-2
25.9
24.4
Q
3
35.5
5.0 .4
73.3 OH
69.5
OH
4.5 Ethers, Acetals, and Epoxides : Table 4.12 Chemical shifts of Ethers, Acetals. and Epoxidcs (ppm from Tms)
52"
H,C,
]jJ
o
2
..,.-/~
Cf~ ~q
!
i3C NMR Spectroscopy
113
406
l}'l
n
//C~ o 6~~)
0
I \
1
""erG
H2C
2h
i
(1"
9
CH ') / -
(1
151
o Y'!h /
H~C--
---
CH2---
CH~
.
CH
. I'IY"
" 0 --
CH hO 7
2--..... C'li r 3
4.6: Halides Table 4.13: Shift Positions for Alkyl Halides (neat, ppm from TMS) Compound C-l C-2 C-3 CH 4 -2.3 CHl 75.4 CH 3CI 24.9 CH,CI, 54.0 CHCI 377.5 CCll 96.5
114 CH3Br CH 2 Br2 CHBr) CBr4 CHJ > CH}2 CHI,> CI 4 CH)CHl CH)CH 2Cl CH)CH2Br CH)CH2I CH)CH 2CH 2Cl CH)CH 2CH2 Br CH)CH 2 CH 21
Spectroscopic Data Chemistry 10.0 21.4 12.1 -28.5 -20.7 -54.0 -139.9 -292.5 79.3 39.9 28.3 -0.2 46.7 35.7 10.0
14.6 18.7 20.3 21.6 26.5 26.8 27.6
11.5 13.2 16.2
4.7: Amines An NH, group attached to an alkyl chain causes a downfield shift of about 30 ppm at C-l, a down field shift of about I I ppm at C-2, and an upfield shift of about 4.0 ppm at C-3. The NH) + group shows a somewhat smaller effect. N-alkylation increases the downfield effect of the NH2 group at C-I. Shift positions for selected acyclic and alicyclic amines are given in Table 4.14A.
Table 4.14A: Shift positions of Acyclic and Alicyclic Amines (neat, ppm from TMS) Compound CH)NH2 CH)CH2NH2 CH)CH2CH 2NH 2 CH)CHFH 2CH 2NH 2 (CH))N CH)CH 2N(CH)2 Cyclohexylamine N-MethyIcycIohexylamine
C-I 26.9 35.9 44.9 42.3 47.5 58.2 504 58.6
C-2
C-3
C-4
17.7 27.3 36.7
11.2 20.4
14.0
13.8 36.7 33.3
25.7 25. I
25.1 26.3 (N-CH 3 33.5)
4.8: Thiols, Sulfides, and Disulfides Since the electronegativity of sulfur is considerably less than that of oxygen, sulfur causes a correspondingly smaller chemical shift. Examples of thiols, sulfides, and disulfides are given in Table 4. I 4 B
iJC NMR
S~ctroscopy
115
Table 4.148: Shift positions ofThiols, Sulfides, and Disulfides (ppm from TMS) Compounds C-l C-2 C-3 CH)SH 6.5 CH)CH 2SH 19.8 17.3 CH)CH 2CH 2SH 26.4 27.6 12.6 CH)CH 2CH 2CH 2SH 23.7 35.7 21.0 (CHJ)2S 19.3 (CH)CH2)2S 25.5 14.8 (CHFH2CH2)2S 34.3 23.2 13.7 (CH)CHFH2CH2)2S 34.1 31.4 22.0 CH)SSCH) 22.0 (CHFH 2SSCHFH) 32.8 14.5
4.9: Functional Groups Containing Carbon Carbon- 13 C NMR spectrometry permits direct observation of carbon containing functional groups. With the exception of CH=O, the presence of these groups could not be directly ascertained by 'H NMR. 4.9.1. Ketones and Aldehyde: Table 4.15 presents chemical shifts of the C=O group of some ketones aldehydes. Because of rather large solvent effects, there are differences of several parts per million from different literature sources. Table 4.15: Shift positions of the C=O Group and Other carbon Atoms of Ketones and Aldehydes (ppm from TMS) Y9
)SA
/C~ 79/,
H~C .
~2111 'i
.,
o
.,
o
CH., ~
" /
H 2 C, ---CH 2 i
CH 3
"'lox"
:
I
- -C - -- --- CH 2 /
o
~7X
116
Spectroscopic Data Chemistry
o I'
:I I~H
12K2
12~/C,,' i'
0
11.l71
1.12Y~
"CH1
1~.N7
ClIO
263-
o 121\ 9
i2~CS ) 136~ CHO 1142'.~"''''
o
4.9.2. Carboxylic Acids, Ester, Chlorides Anhydrides, Amides and Nitriles: The C=O groups of carboxylic acids and derivatives are in the range of 150-185 ppm. Nitriles absorb in the range of 115-125 ppm.
"C NMR Spectroscopy
117
Table 4. t 6: Shift Positions for the C=O group and other carbon atoms of carboxylic acids, esters, Icatones, chlorides, anhydrides, amides, carhamates, and nitriles (ppm from TMS) CH3
12K0
~ 206
17RI
)-1 1
CH3---COOH a
CH~ IR R
IR-IR
CH--- - COOH
~C~
H2~
COOH
1.119
173 2
0 [ 1337~13!12 ~119-l
R9 1
1680
CCI 3 ----- COOH
1150
1630
F"C---- COOH -
a
17~()
;---COOH
a
12R-I
NH2
IRI 5
CH 3 - - COONa" b
51.5
I
CH
./"-
CH 3 17.2 -
172
"-
d
COOH 1761
118
Spectroscopic Data Chemistry
o
c
o 1I15X I 1153
M 7
/C"
CH,
"0/
F,C
~"'"
CH, IH'
o
0 ©t
/~IZ
133.1
II
CH 3 --C--C1
1353
J69.5
o
CI
1313
12R9
c
c
a
o
?<
~o
a
I3C NMR Spectroscopy
119
o "
o 2
a
a
o
Ii
HCNH} 1~5
5
c
c
o
I3
CH,CN • 117 7
a
10K
IOn
/
Cl-l-;/ .
CH
a
2""
110 ~
CN
IIX 7
6
~CN
I
!
i
'
1327!~132n 129 I
a
120
Spectroscopic Data Chemistry
a. In CHCI 3 (~50%) b. Saturated aqueous solution of CH) COON a c. Neat or saturated solution d. In H20 e. In DMSO f. In dioxane (~50%)
4.9.3 Oximes : The simple oximes absorb in the range of 145-165 ppm. For example
4.10: Spin Coupling The \3C_I3C coupling is usually not observed, except in compounds that have been deliberately enriched with I3C, because of the low probability of two adjacent I)C 1 atoms in a molecule. One bond I3C-H coupling CJCH ) ranges from about 110 to 320 Hz, increasing with increased s character of the I3C-H bond, with substitution on the carbon atom of electron withdrawing groups, and with angular distortion. Appreciable I3C-H coupling also extends over two or more (n) bonds (nJ CH ). Tabl~ 4.17 gives some representative CJ CH) values. Table 4.18 gives some representative JCH) values, which range from about -5 to 60 Hz.
e
Table 4.17: Some (IJ CH) Values Compound
J(Hz)
SP) CHJCH)
124.9
CH)~H2CH)
119.2 114.2
(CH))CH CH JNH 2 CHpH CH 3 CI CH 2CI 2 CHCI)
133.0 141.0 150.0 178.0 209.0
121
UC NMR Spectroscopy
C)-H
o-H QH [>-H
123.0
128.0
134.0
161.0
H
A
205.0
CH2=CH 2
156.2
CH3-~H=C(CH3)2
148.4
Sp2
CH3~H=O
172.4
NH~H=O
188.3
C6 H6 sp
159.0
CH=CH
249.0
C6 HsC=CH
251.0
HC=N
269.0
Table 4.18: Some eJCH) Values Compound
J(HZ)
Sp3 C.!:i3~H3 C.!:i3~CI3
-4.5 5.9
122
Spectroscopic Data Chemistry ~H/.'H~'O
26.7
Sp2
~H:=CH2
--2.4
(CtI)~=O
5.5
CH2=~HCH=O
26.9
CoHo sp
1.0
CH=iJI
49.3
C6HsO~=CH
61.0
Table 4.19: Coupling Constants for 31 p, IJ(HZ)
Compound
19F,
and D coupled to 2J(HZ)
13c.
3J(HZ)
271
Cl\CF3 CF2H 2
235
CF3CO zH
284
43.7
C 6 Hl
245
21.0
(CH 3CH)l
5.4
10.0
(CHFHz)l+Br-
49
4.3
(C 6 H s)l+CH 3I
88(CH3 52) 143
CH3CHl(OCH2CH3)2
II
0 CDCll
31.5
CDFCD 3
19.5
II
0
(CD)2S0
22.0 D
D
D 25.5 D
D D
10.9 7.1U cop 6.9)
Jccop
6-2
1JC NMR Spectroscopy
123
4.11: The 13C Chemical Shifts, Couplings, and Multiplicities of Common NMR Solvents o(ppm) JC-D(HZ) Multiplicity·
Structure
Name
CDCl J CDpD CD 3SOCD3
Chloroform-d, Methanol-d 4
77.0 49.0
32 21.5
Triplet Septet
DMSO-D 6
39.7
21
Septet
DMF-d 7
30.1
21
Septet
35.2
21
Septet
167.7
Triplet
0
II DCN(CD3)2
C6D6 D2C-CD2
I I0
92
D2~
Benzene-d6
128.0
30 24
THF-ds
25.2
20.5
67.4
22
Quintet Quintet
Dioxane-ds
66.5
22
Quintet
Pyridine-ds
123.5 (C-3,5)
25
Triplet
0
p\
D2C CO2
II
Triplet
D8FD2 0 D
D~¢(
°
D
135.5 (C-4)
24.5
Triplet
149.2 (C-2,6)
27.5
Triplet
29.8(methyl)
20 <1
Septet
0
II
CD 3CCD J
Acetone-d6
206.5 (carbonyl) CD3CN CDJNO:!
Acetonitrile-d3 N itromethan -d J
1.3(methyl)
Septetb
118.2(CN)
32
Septetb
60.5
23.5
Septet
Septet
124
Spectroscopic Data Chemistry
CD 3CDPD (CD 3CD2 )P
Ethanol-d 6 Ether-d 1o
[(CD3)2N]3 p=o HMPA-d ls Acetic acid-d 4 CD 3COP CD 2C1 2
15.8(C2)
19.5
Septet
55.4(C-J)
22
Quintet
13.4 (C-2)
19
Septet
64.3(C--I)
21
Quintet
35.8
21
Septet
20.0(C-2)
20
Septet
178.4(C-I)
<1
Septetb
29
Quintet
53.1 Dichloromethane-d2 (Methylene chloride-d2)
a
Triplet intensities = 1: 1: 1, quintet = 1:2:3:2: 1, septet = 1:3:6:7:6:3: 1.
b
Unresolved, long. range coupling.
4.12: The 13C Correlation Table for Chemical Classes R = H or alkyl substituents Y = Polar substituents Types and group
o(ppm)
Acyclic hydrocarbons -CH J
I
-CHz
I
iH I i-
8-30 14-55 24-59 30-40
Aticyc\ic hydrocarbons
C3H6
15-19
C4 HS to CIOHzo
21-29
Alkenes HzC =C-R HzC=C-Y C=C-C=C-R
102-121 (HF=) 109-150 (=C-R) 80-170 109-151
125
i3C NMR Spectroscopy Allenes
70-97(=C) 200-214 (=C=)
C=C=C Alkynes
63-73 (HC=) 71-89 (=C-R) 20-94
C=C-R C=C-y Aromatics Ar-R Ar-Y Heteroaromatics Alcohols C-OH Ethers C---O--C Acetals, Ketals O-C-O
120--150 94-158 100-166 44-86 54--86 8-12
Halides
C-F'_3 C-CI'-4 C-Brl-4 C-I,_4 Amines C-NR2 Nitro C-NO z Mercaptans, Sulfides C-S-R
72-134 20-98 -28.5-+33 -292.5-+42 20-70 60-78 5.5-46
Sulfoxides, Sulfones C-SO-R, C-S0 2-R Aldehydes, Sat. R-CHO Aldehydes, a,
13- unsat. R-C=C-CH=O
Ketones, Sat. R2C=O Ketones, a,
36-54 197-220 176-194 195-220
13 unsat.
R-C=C-C=O
182-212
Carboxylic acids, sat. R-COOH Salts RCOOCarboxylic acids a, l3-unsat.
166-186 174-194
126
Spectroscopic Data Chemistry R--C=C-COOH Esters, sat. R-COOR I Esters, a, ~- unsat. R-C=C-COORI
159--174 158-177 153-172 148-174 150-177 108-124 144-166
Anhydrides (RCO)P Amides RCONH 2 Nitriles RC=N Oximes RF=NOH Carbamates RzNCOOR ' Isocyanates R-N=C=O Cyanates R-O-C=N Isothiocyanates R-N=C=S Thiocyanates R-S-C=N 13C
151-160 111-134 104-120 116-141 98-118
NMR data for several natural products (0)
';(9r- '"
30.8
2" 1
.,,~ ..
~ ...... '011 12. ~
39.7
011
22 ~
2" "
2~.1
2~
17.4
17.~
I
)06
28.0
'2~3
2D n,·Citral no/eral, Citral Itl 2\.7
2'.1
222
2ft
21.2
\.1031001
Geraniol
1208
,"
III .' 124 "
1130 ,
131.2\
Myrcene
24.4
!7':
1".8
112.9
~
248
1ZO.7 Z~
'I
0' P"'"
30 9 2\ (,
44 (,
~OH
20 $
108 .• Lim.nene
206 a.Trrp,nrne
2" 7 27 1 () Tcrplncol
227 "'Jleaunc
IlC NMR Spectroscopy 127 20.0
19
~
387
~b
~
9
26.1
20.4
lU
)01
21.'
27.0 IO~.9
Norbomanc
/J-I'IOC",
a-Pinene
Camphor
n.5 \
42.4
22.'
121.1 ChoI..urol
lUOll ;. . .
1J.4.9 68 \}
·ill.6
.40
0 N
1'" \} N
no
..,. I
1.9.~·
CHI
40.3
41.4 CH.-N
K
:5.'
'1.5
'O,e".
I.)
.WI
H."
OC 110.S 1l1.0
~ HO
11;;0)7.1
6U
(,2.5
OH
HO
0
6504
~, 8
Nic;Olinc
1716
21
Ill.'
.• 11. OH OH 97.4
77.'
129 I .
COCAIM
IOO'9~~H
1.).ol,.~2 N 0
7
H
Ur¥il
000
5 Mass Spectrometry
A mass spectrum is a presentation of the masses ofthe positively charged fragments versus their relative concentrations. The commonest method of presentation is either a-bar graph or a percentage table. Mass spectra are routinely obtained at an electron beam energy of70e V. The simplest event that occurs is the removal of a single electron from the molecule in the gas phase by an electron of the electron beam to form the molecular ion, which is a radical cation (M:). The symbol: indicates that the molecule has lost an electron, it has unpaired electron and is positively charged. 70eV M-----4) M: + e Molecule Molecular ion If some of the molecular (parent) ions remain intact long enough to reach the detector, we see a molecular ion peak. It is important to recognize the molecular ion peak because this gives the molecular weight of the compound. The molecular ion peak is usually the peak of highest mass number except for the isotope peaks. The molecular ion in tum produces a series of fragment ions. The most intense peak in the spectrum called the base peak is assigned
129
Mass Spectrometry
a value of I 00%, and the intensities of the other peaks, including the molecular ion peak, are reported as percentage of the base peak. Of course, the molecular ion peak may sometimes be the base peak. The molecular ion in turn produces a series of fragment ions as shown for benzamide:
C6HsC=0 mle 105
l-eo
\lI
(0)mle77 Table 5.1: Exact Masses of Isotopes Mass
Element
Atomic Weight
Nuclide
Hydrogen
1.00794
IH
1.00783
12.01115
DeH) 12C
2.01410 13.00336
14.0067
\3C 14N ISN
15.0001
160
15.9949
17
0 180
16.9991
19F
18.9984
Carbon Nitrogen Oxygen
Fluorine
15.9994
18.9984
12.00000 (std) 14.0031
17.9992
Spectroscopic Data Chemistry
130
Silicon
28Si 29Si 30Si 3!p
28.0855
Phosphorus Sulfur
30.9738
79.9094
Iodine
126.9045
29.9738 30.9738 31.9721 32.9715 33.9679
35Cl 37Cl 79Br slBr 1271
35.4527
BroTnitfe
28.9765
32S 33S 34S
32.066
Chlorine
27.9769
34.9689 36.9659 78.9183 80.9163 126.9045
Table 5.2: Relative isotope Abundances of Common Elements Relative Relative Relative Elements Isotope Abundance Isotope Abundance Isotope Abundance
Carbon Hydrogen Nitrogen Oxygen Fluorine Silicon Phosphorus Sulfur Chlorine Bromine Iodine
12C
100
IH 14N 160
100
19p
100
2sSi
100
31p 32S 35CI 79Br 1271
100
100
i3C 2H 15N
100
!70
0.38 0.04
ISO
0.20
2
9Si
5.10
30Si
3.35
33S
0.78
34S
4.40
37CI slBr
32.5
100 100 100
1.11
0.016
98.0
100
Peaks attributable to isotopes can help identity the compound responsible for a mass spectrum. For example CH3CH2CH2CH2CH3
70 eV )[CH 3(CH 2hCH 3]t +eMolecular ion mlz= 72
131
Mass Spectrometry
Although the molecular ion of pentane have mlz value of 72, its mass spectrum shows a very small peak at m/z = 73. This is called an M+ I peak because the ion responsible for this peak is one unit heavier than the molecular ion. The M+ 1 peak occurs because there are two naturally occuring isotopes of carbon : 98.89% of natural carbon 12C' and 1.11% is l3C'. The M+I fragment results from molecular ions that contain one 13C' instead of a 12C'. Above table shows that the M+ 1 peak can be used to determine the number of carbon atoms in a compound because the contributions to the M+ 1 peak by isotopes of H,
° and the halogens.are very small.
Presence of an isotopic peak at (M+ + 2) indicates the presence of four elements 0, S, Br, Cl. The presence ofa large M+2 peak is evidence ofa compound containing either chlorine or bromine, because each of these elements has a high percentage of a naturally occuring isotope two unit heavier than the most abundant isotope. If the M+2 peak is one-third the height ofthe molecular ion peak, the compound contains a chlorine atom because the natural abundance of 37CI is one-third that of the 35Cl. If the M and M+2 peaks are of about the same height, the compound contains a bromine atom because the natural abundances of 79Br and slBr are of about the same.
Recognition of the Molecular ion Peak Many peaks can be ruled out as possible molecular ions simply on grounds of reasonable structure requirements. The nitrogen rule is often helpful. It states that a molecule of even-numbered molecular weight must contain either no nitrogen or an even number of nitrogen atoms; an odd-numbered
molecular weight requires an odd number of nitrogen atoms. (for the nitrogen rule to hold, only unit atomic masses i.e., integers are used in calculating the formula masses) This rule holds for all compounds containing carbon, hydrogen, oxygen, nitrogen, sulfur, and the halogens, as well as many ofthe less usual atoms such as phosphorus, boron, silicon, arsenic, and the alkaline earths.
132
Spectroscopic Data Chemistry The intensity of the molecular ion peak depends on the stability of the
molecular ion. The most stable molecular ions are those of purely aromatic systems. In general the following group ofcompounds will, in order of decreasing ability, give prominent molecular ion peaks: aromatic compounds> conjugated alkenes > cyclic compounds > organic sulfides > short, normal alkanes > mercaptans. Recognisable molecular ions are usually produced for these compounds in order of decreasing ability: ketones> amines > esters> ethers> carboxylic acids - aldehydes amides - halides. The molecular ion is frequently not detectable in aliphatic alcohols, nitrites, nitrates, nitro compounds, nitriles and in highly branched compounds. The presence of an M-15 peak (loss of CH3), or an M-18 peak (loss of HP), or an M-31 peak (loss ofOCH 3 from methyl esters) and so on, is taken as confirmation of a molecular ion peak. An M-l peak is common and occasionally and M-2 peak (loss ofH2 by either fragmentation or thermolysis) or even a rare M-3 peak (from alcohols) is reasonable. Peaks in the range of M-3 to M-14, however, indicate that contaminants may be present or that the presumed molecular ion peak is actually a fragment ion peak. Losses of fragments of masses 19-25 are also unlikely (except for loss ofF = 19 ofHF = 20 from fluorinated compounds) loss of 16(0), 17(OH), or 18(HP) are likely only if an oxygen atom is in the molecule.
Summary of Fragmentation Processes (1) Hydro carbons: (a) Alkanes:
*
Straight chain alkanes show low intensity molecular ion peaks. The intensities of these peaks decrease with increasing chain length.
*
Since straight chain alkanes rarely eliminate methyl groups (--CH 3)
133
Mass Spectrometry
peaks corresponding to (M-15) are absent, or are of low intensity, in the spectra of long chain paraffins.
*
Elimination of -C 2H s' -C 3 H7' from the molecular ion gives peaks at masses C n H2n+1 (m/e = 29, 43, 57, 71 and 85). These peaks are most intense in the C 2 to C s range. The peaks at 43 or 57 are usually the base peaks, due to the remarkable stabilities of the propyl ion (-C 3H/) and the butyl ion (-C4H9+)' The intensities of other peaks 14 mass units (-CH 2) apart (71,85, etc.) decrease with the increasing weight of the fragment. These peaks 14 units apart appear as clusters because each prominent peak is accompanied by a smaller peak one unit higher due to 13C and a few small peaks one and two units lower, due to the loss of hydrogen atoms.
*
In branched alkanes, there is a tendency for the bonds to rupture at the branches resulting in the formation of relatively stable secondary and tertiary carbonium ions.
*
Molecular ion peaks are more abundant in cycloparaffins than in straight chain paraffins containing the same number of carbon atoms, although the cyclic compounds tend to lose their side chains.
If the ring undergoes fragmentation, it loses two carbon atoms simultaneously, thus producing an abundance of+C 2H4 (m/e 28), +C2HS (m/e 29), and M-28, M-29 ions in the spectrum. Due to this tendency to lose ethylene C2H4 and other even-mass number fragments, the percentage of fragments having even mass number are usually higher in the spectra of cycloparaffins than in those of acyclic hydrocarbons. Mechanisms for fragmentations of different types of alkanes are believed to be as follows:
(i) Straight chain alkanes CH3CH2CH2CH2CH2CH3 alkane
""
. .. 100l~:tlon) CH 3CH; +CH 2CH 2CH 2CH 3 (Parent ion)
134
Spectroscopic Data Chemistry
<
+
CH 3CH; + CH] -CH2 -CH] -CH3 (radical) (ion)
mfe 29
+~
C H2
hemi - heterolysis followed by
mfe 57
CH 2
heterolysis -CH
mle 57
(ion)
+
2 ) CH 2 + C H 2 - CH 2 - CH 2 (m/e 14) mle 43
CH 2 - CH 3
-
(ii) Branched chain alkanes CH 3
CH 3
I
.
CH 3 -CH2 -C-CH3
I
CH 3 alkane
.
.
JC\
I
IOnIsation) CH - CR- + C - CH at the most 3 2 I 3 polar bond CH 3 Parent ion
<
hemi - heterolysis
(iii) Cycloalkanes
y ionisation
alkane
O~ Parent ion hemi-heterolysis
1
accompanied by
c.
radical ion
heterolysis of ~ . y bond
135
Mass Spectrometry (b) Alkenes
*
Alkenes readily produce molecular ions by losing a 1t-electron. As in alkanes, so in alkenes, the intensity of the M peak decreases with increasing molecular weight.
*
The most intense peak (usually the base peak) in the spectra of ole fins is due to the stable, charged species produced by allylic cleavage, that is, by the rupture of the C-C bond
~
to the double
bond. The fragment carrying the double bond is usually the charged species.
+
H 2 C- CH = CH 2 + R rnIe 41 The natural outcome of allylic cleavage is a series of fragments at masses 41,55,69, 83, etc., with the general formula CnH 2n _ t (allyl carbonium ions)
*
McLafferty rearrangements are also common in these ions. These rearrangments produce ions of the general formula CnH2n •
*
Cyclic alkenes usually show a distinct molecular ion peak. A unique mode of cleavage is the retro-Diels-Alder reaction shown by limonene:
•+ (i)
~
>
[~r II "
~
136
Spectroscopic Data Chemistry
CH?
(ii)
II CH 2
(c) Aromatic hydro carbons
*
An
a~omatic
ring in a molecule stabilises the molecular ion peak,
which is usually sufficiently large that accurate intensity measurements can be made on the M+I and M+2 peaks.
*
In alkyl benzenes the most probable cleavage is at the bond
~
to
the ring. This gives rise to a base peak at mle 91 due to the formation oftropyllium ion.
mle = 91 However, in compounds containing substituents on the a-carbon atom, the base peak may have masses higher than 91 by increments of 14, representing substituted tropyllium ions
mle 105
mle = 105 A strong peak at mle
=
92 is observed in the case of many compounds
containing a propyl or longer side chain. This peak is due to the +C 7Hg ion produced by the McLafferty rearrangement.
137
Mass Spectrometry CH,
II -
+
CH
R/ mle = 92 Fragmentation ofa tropyllium ion into a cyclopentyl cation, +CsHs' and a cyclopropenium ion +C3H3' results in significant peaks at mle = 65
mle = 39
mle = 91
mle = 65 Cyclopentylcation
Cyclopropenium ion
A characteristic cluster of ions resulting from an a cleavage and hydrogen migration in monoallcylbenzenes appears at mle 77 (C 6 H/), 78 (C 6 H/) and 79 (C 6 H7+).
(2) Hydroxy compounds (a) Alcohols:
*
In the spectra of alcohols, the molecular ion peak M is usually either very small or totally absent. It is somewhat more abundant in the spectra of secondary than in those of primary and tertiary alcohols.
The odd-electron molecular ion is produced initially by the removal of an n-electron from oxygen:
•
R-O-H_-_e_~) R-O-H The odd-electron molecular ion readily decomposes into stable products. One such decomposition involves energetically favoured a-cleavage. This cleavage leads to more stable, even-electron, oxonium ions.
138
Spectroscopic Data Chemistry
Methanol +
H +H 2 C = O-H
mle = 31 M-l
Ethanol
Although ethanol shows an M-l peak at mle = 45 by a-elimination of a hydrogen radical, the M-15 peak is more intense because a-elimination of a larger substituent is always favoured.
*
In the spectra of primary alcohols, in addition to the M-l peak, very low intensity M-2 and M-3 peaks are also observed. H
I
.;
R-C-O-H
I
H
)R-C
I
=O-H
H
(M-l)
. +
) R-C =0
I
H (M-2)
l-H" R-C=O
(M-3)
*
All primary alcohols (except methanol) and high molecular-weight secondary and tertiary alcohols display peaks at M-18 due to the loss of H20 through a cyclic mechanism.
139
Mass Spectrometry
•
+
(m-IS)
+Hp
*
In cyclic alcohols, the principal dehydration process involves loss of a hydroxyl group together with a hydrogen atom from either C 3 or C4 to produce bicyclo ions.
OH
~H l
+
)
H fromC 3
H
[0 r
-HP, H fi·om C4 when cyclohexanol is in the boat form
*
Butanol & longer-chain primary alcohols often suffer double elimination. That is, they lose one molecule of water and one of ethylene simultaneously through a six-numbered cyclic mechanism, thus displaying an M-46 peak
140
Spectroscopic Data Chemistry
H
"'..;
~'-.CHR HC 2
H,C,
/C"""
~
/ C-C
/ \
H
/\
HHHH
*
+/HR
-~
H
m=28
+
/C""" H
+ Hp
H
M-46
The most probable site of cleavage, resulting in a very intense peak, is the bond 13 to the oxygen atom in alcohols. This cleavage gives a strong peak at mle = 31 (CHPHt in the spectra of primary alcohols, while secondary and tertiary alcohols display analogous peaks at
mle = 45 (MeCHOHt and mle = 59 [(CH3)2COHt.
*
Unsaturated alcohols generally behave like their saturated analogs. However, the stability of the allyl system decreases the probability of cleavage adjacent to the double bond.
1:
-He
+
R-CH = CH4~ 0 H - - - + ) R-CH = CH = 0 H H
(M-l) very intense
(abundant)
R-CH=~~H---+R-CH=CH+CH2=OH I H
(less abundant)
(b) Phenols and other aromatic alcohols:
*
As in all aromatic compounds, the molecular-ion peak M in phenol and aromatic alcohols is strong. In phenols it forms the base peak.
*
The M-I peak due to the loss of hydrogen is small in phenol, but is very strong in cresols and benzyl alcohols. The production ofM-l ions is due to the random abstraction of hydrogen bonded to any of the carbon atoms to produce a resonance-stabilised. system such as hydroxy tropyllium ions.
7t
complex
141
Mass Spectrometry
OH
6
<E-<--
M-I
° [p-Cresol] +
*
° [Benzyl alcohol] +
Hydroxytropyllium ions
The most important fragmentation in phenols and benzyl alcohols is due to the loss of CO and CHO giving peaks corresponding to M-28 and M-29, respectively.
0
OH
I
Q
~(---~ )
0
[6~J mle =94 (M) 100%
[Phenol]"t
l-CO
[6J
_Ho
mle = 66 (M-28)
[Cyclopentyl cation] mle = 65 (M-29)
+
O
_HO
~
+
(M-I)
mle = 108
Random _H o
)
·0' · ·, ·
I, + ) .,._....
mle = 107 (M-I)
C=O
CH~C=I H H
I I
H
... 6< H
(+
\ .....,
OH
H
H
Spectroscopic Data Chemistry
142
+
,0 mle = 79
(M-29)
*
mle
=
77
(M-31)
Methyl-substituted phenols (Cresols), other hydroxybenzenes (catechol, resorcinol, hydroquinone) and methyl-substituted benzyl alcohols display M-18 peaks due to loss of water. The dehydration is more pronounced if the substituents are ortho to each other.
.
a::J
~L (M)
(M-18, 100%)
Ethers: A molecular ion of ether is formed by the removal of one of the nonbonded electrons on oxygen, and, just as with alcohols, the molecular ions of ethers are unstable and readily undergo a-cleavage. (cleavage of a bond 13 to oxygen).
-r'\ b(~
CH 3CH 2;
loss of + C H -O-CH2CH3 ----,.:---~) C H = O-CH 2CH 3 1 1 C2 Hs CH 3 CH 3 (m/e = 73)
This type of cleavage usually accounts for the base peak and some strong peaks at 45, 59, 73 etc.
*
In ethers, unlike the case of alcohols, cleavage of bonds a to oxygen can also occur.
Mass Spectrometry
143
R-O-R'
heterolysis) R-O +
R'
In such a cleavage, the alkyl portion carries the charge and accounts for hydrocarbon peaks at m/e = 29, 43, 57, 71 etc.
*
Homolytic fission of bonds a to oxygen may often be accompanied by rearrangement of one hydrogen atom to eliminate an olefin.
H-»f~H2 I
CH 3CH 2-C
~;
I
CH3
*
'\
H. I CH 2
/CH2~CH3CH2-C-OH+
,-
W
'/}
I
CH3
II
CH 2
+
Aromatic ethers display a somewhat stronger M peak, and show a fragmentation behaviour similar to that of aliphatic ethers.
(i) Cleavage of bonds a to oxygen can be homolytic or heterolytic.
.
.
(\ ;)-J-CH2CH3 _-O _ _C_H-=.2_CH---=-34)
(ii) Cleavage of bond a to oxygen with rearrangement of hydrogen to
eliminate an alkene.
Aldehydes and Ketones: Organic carbonyl compounds, like other oxygen containing compounds, undergo the loss of one of the lone-pair electrons of the oxygen atom.
144
Spectroscopic Data Chemistry
The molecular ion thus produced can undergo fragmentation either through the more favourable a-cleavage or, if a concerted migration of y hydrogen to oxygen is possible, through ~-cleavage.
R,..., _
°
,·'(c·4-0+ __a_·c_le_a_v_ag=-e-t) R I -C == +0+ R
O
R/ I
homolytic
oxonium ion
When a y hydrogen is available for migration, ~-cleavage results in the formation of an olefin and a charged enol through the McLafferty rearrangement. R2....... .....<1-1' ~ . . . . CH ~ '0 ~ _ cleavage R2CH I~ ,-..j I ----!----=-~)" /CH ~C-R involving a RICH RI CH 2 concerted electrocyclic rearrangement
(a) Aldehydes:
*
Aliphatic as well as aromatic aldehydes display molecular-ion peaks. The M peak is prominent in aromatic aldehydes, whereas the intensity ofthe M peak in aliphatic aldehydes decreases rapidly in compounds containing more than four carbon atoms.
*
In aldehydes, the M-I peak is usually as intense as the M peak. The peak results from the loss of hydrogen through homolytic acleavage. .f'+° + ° R-C = O~ R-C == O+H (M -I) H
tJ'
*
In lower aldehydes (C,-C 3), a-clea-vage results in the formation of + the stable formyl ion (H - C == 0), which forms the base peak. o
+
R-C =
I
H
O~
+
H-C==O+R mfe =29 basepeak
145
Mass Spectrometry
However, with straight chain aldehydes of higher molecular weight, this peak is approximately 40% of the base peak which may be displayed at M-29 due to ions produced through heterolytic cleavage as;
.
R-C
I
=O~
H
*
•
R+ + C=O (M-29) I H
The base peak in butyraldehyde and in many higher aliphatic aldehydes results from
~-cleavage.
In butyraldehyde this peak is at mle = 44, which must be a peak for a rearranged ion because it has an even mass number. In compounds containing C, H and 0', peaks resulting from simple cleavage always appear at odd mass number, but the peaks due to rearranged ion have an even mle ratio.
H",+
o I
C-H
II
CH 2
•
[n-butyraldehyde] +
mle =44
(b) Ketones:
*
The parent-ion peak M in ketones is of significant intensity being greater for the low-molecular weight (upto eight carbons) than for the high-molecular weight ketones.
*
a-cleavage in ketones can produce more stable R-C=O' ions.
mle = 43, 57, 71 etc.
146
Spectroscopic Data Chemistry
.
+
o
.
m/e = 105
Acetophenone +
j
heterolysis
,I
@
+CO
mle = 77
*
McLafferty rearrangements (l3-cleavage with migration of yhydrogen) are common in ketones containing a chain of three or more carbon atoms attached to the carbonyl group. However, complications arise due to the following facts:
(a) The mass of the ion produced by the migration ofa single hydrogen varies with the number of carbon atoms in the alkyl group (R) which is not involved in the rearrangement.
H,,,;
o I
+ C-R
II
CH 2
mle = 58, 72, 86 etc. (b) Ifboth the alkyl groups in the ketone contain three or more carbons, double rearrangement produces the enolic catiofl, which can again undergo l3-cleavage involving the y-hydrogen on the second alkyl group.
.
H~
. c .~ . .1' Ir--"
HC
Ht
2
(CH 2
CH
C;/ 2 CH 2 ~I ----~ I + II H2 C~CH2 rearrangement CH 3 CH 2 H mle = 58 '"
"-
sec ond
"'-,--:::
147
Mass Spectrometry
If the y-carbon in either of the alkyl groups is substituted, the order of migration of the y-hydrogen is found to be tertiary> secondary > primary, and the rearrangement preferentially involves the larger alkyl groups.
Carboxylic acids and esters
*
Aliphatic monocarboxylic acids and their esters generally display a weak but noticeable molecular-ion peak. Aromatic monocarboxylic acids and esters, like other aromatic compounds, display a strong M peak.
*
Like other oxy compounds, cleavage of the bond [3 to carbonyl ([3cleavage), together with the rearrangement of y-hydrogen (McLafferty rearrangement) is the most important mode of fragmentation of carboxylic acids. In monocarboxylic acids, this fragmentation produces ions (I) which exhibit a characteristic peak at mle = 60
A corresponding [3-cJeavage peak in methyl esters appears at mle
= 74 due to (II).
H 2C
=
+ /OH C .............. OCH 3
II
Analogous peaks in ethyl and butyl esters appear at 88 and 116, respectively.
148
Spectroscopic Data Chemistry
*
In acids and esters, a similar cleavage of a bond a to carbon)'1 can produce four kinds of ions.
+ + ~O -?-O . + R g C'-...... can gIve R or C ............. OR! OR! T ,J, 1 mle = 15,29,43, 57 mle = 45, 59, 73, 87 etc. (M-45, M-59 etc.) (M-I5, M-29, M-43 etc.) ~
+
-::;::::-0
R-C.............
can give
OR!
+
~O
+
mle= 17,31,45,5getc. (M-43, M-47 etc.)
*
R_C'l"
or
OR!
mle = 43,57, 71 etc. (M-17, M-31, M-45 etc.)
In aromatic acids containing a methyl group ortho to the carboxyl, elimination ofa stable molecule ofwater produces a peak at M-18. This elimination is so important that in o-toluic acid the M-18 peak is the base peak.
.
+
o
ace
"~
a
~H ~~:~e
CH 2 (M = 136)
.
+
C=O
C(H mle
2
= 118 (M-18)
149
Mass Spectrometry
*
Dibasic acids show a peak at M-90 due to the loss of both carboxyls through a-cleavage.
Amines In amines, as in oxygen containing compounds such as alcohols, ketones, aldehydes, etc., the initial ionisation process occurs through the loss of a non bonded electron on the hetero atom, nitrogen.
*
The molecular-ion peak M is weak to absent in high-molecular weight aliphatic open-chain amines, but strong in aromatic and cyclic amines.
*
In the case ofmonoamines, if the molecular-ion peak is present, it appears at an odd mass number in the spectrum. In the case of other nitrogen compounds also, it appears at odd mass number when the compound contains an odd number of nitrogen atoms (the nitrogen rule).
*
A moderate M-l peak is observed in many aromatic and lowmolecular-weight aliphatic amines due to the loss of a hydrogen radical. H
I
~/H
-H
H-tTN"H
+ ) H2C = N H2
H
*
M-1
In amines, as in alcohols, the most important fragmentation is that of the bond
p to
nitrogen. In many amines' this fragmentation is
responsible for the base peak.
I r;/
."
R+-~-N"", ~ R
+/ +/C = N"",
mle = 30, 44, 58, 72,86 etc.
150
Spectroscopic Data Chemistry
*
In cyclic and aromatic amines, both bonds ~ to nitrogen can rupture. CH 3 0
/N~ 1
"
~.~.r-...~ CH 2
-·CH 3
_
CH 2
+
N
I!~ H 2C
6 {oJ
CH 2
mle =42
o
+
-HeN
mle = 66
-H
<@ mle = 65
The loss ofHCN and H2CN from aniline is similar to the elimination of CO and CHO from phenol.
*
Like other side-chain aromatic compounds, alkyl anilines undergo ~-elimination
of the side chain and show a strong peak at mle =
106 to the aminotropyllium ion
> mle = 106 (M-I)
*
If the a-carbon carries substituents, a complicated fragmentation, involving bonds a and ~ to nitrogen and a migration of~-hydrogen, can take place in secondary and tertiary amines. For example,
lSI
Mass Spectrometry
CH,
H
""
/
C=C
""R
/
H
+
H
H
" NI =CH-CH,, + +
Amides The mass spectroscopic behaviour of amides is generally similar to that of corresponding carboxylic acids.
*
Amides usually display an easily distinguishable molecular-ion peak which, if only one amido group is present, manifests itself at odd mass number in the spectrum.
*
In amides, as in carboxylic acids, cleavage of a carbon-carbon bond
13 to the carbonyl CI3-c1eavage) is the most important fragmentation process. In amides which have y-hydrogen available for migration, the McLafferty rearrangement is equally common. In most primary amides, the resulting ion usually forms the base peak.
+
mle = 59
*
In the case oflong-chain primary amides cleavage of the bond y to carbonyl can also take place, giving minor peaksat mass 72 (without rearrangement) and 73 (with rearrangement).
152
Spectroscopic Data Chemistry
*
Strong peaks are also displayed at m/z
=
44 by primary amides
(containing upto four carbon atoms), due to rupture of the bond
~
to nitrogen (or a to carbonyl). This fragmentation is similar to that observed in amines.
I
Co· ~
O·
'"
~+.
Rt~
~C~+
NH2
•
NH2
Table 5.3: Masses and Isotopic Abundance Ratios for Various Combinations of Carbon, Hydrogen, Nitrogen and Oxygen8 FM 16 15.9949
C2H
12.0000
H2N CH 4
16.0187
26
13.0078
17
13 CH
25
0
12 C
FM
FM
14 N
14.0031
CH2
14.0157
15
16.0313
25.0078
CN
26.0031
C 2H2
26.0157
HO
17.0027
27
H3 N 18
17.0266
CHN
27.0109
C 2H 3
27.0235
Hp
18.0106
28
24.0000
N2 CO
HN
15.0109
24
CH 3
15.0235
C2
28.0062 27.9949
153
Mass Spectrometry FM
FM
CH 2N C2H4
28.0187
38
28.0313
C2N C3H2
HN2 CHO CH3N C2HS
29.0266
39
29.0027 29.0140
C2HN C3H3
29.0391
40
30
CN 2 29.9980 Cp 30.0218 C2H2N 30.0106 C3H4
29
NO H2N2 CHP CH4N C2H6 31
HNO H3 N2 CH,0 CHsN 32
°2 H2 NO H4N2 CHP
30.0344 30.0470
CHN2 C2HO 31.0058 C2H3N 31.0297 C3HS 31.0184
42
31.0422
N.>
CNO 31.9898 CH2N2 32.0136 C2 HP 32.0375 C2H4N 32.0262 C3H6
33
H02 H3 NO 34
HP2 36
C3
H2N3 38.0031 CO2 38.0157 CH 2NO CH4N2 39.0109 C2H4O 39.0235 C2H6N C3HS 40.0062
HNp 40.0187 H3N3 40.0313 CH02 CH 3NO 41.0140 CHsN2 41.0027 C2HP 41.0266 C2H7N 41.0391
32.9976
HN3 33.0215 CHNO CH3N2 34.0054 C2H,0 C2HSN 36.0000 C3H7 Np
43.9898 44.0136 44.0375 44.0262 44.0501 44.0626 45.0089 45.0328 44.9976 45.0215 45.0453 45.0340 45.0579
46
N0 2 H2N2O 41.9980 H4N3 42.0218 CHP2 42.0106 CH 4NO 42.0344 CH6N2 42.0470 C2HP 42.0093
45.9929 46.0167 46.0406 46.0054 46.0293 46.0532 46.0419
47
43.0422
HN02 H3 NP HsN3 CH,02 CHsNO
43.0548
48
44.0011
°3 H2N0 2
43.0171 43.0058 43.0297 43.0184
44 37.0078
44.0249
45
39.9949
43
37
C3H
41
FM
47.0007 47.0246 47.0484 47.0133 47.0371 47.9847 48.0085
154
Spectroscopic Data Chemistry FM
H4Np CHP2 C4
49 HO,, H3N0 2 C4H 50 H2 0 3 CN , C4H2 51 CHN , C4H3 52 C ZN 2
CO , C3H2N C4H4
53 C2HN z C3HO C3H3N C4 H 5 54 CN,, C2NO C2H2N2
FM
48.0324 48.0211
C2 HNO CZH3N2
55.0058
48.0000
C3 HP C)15N
55.0184
48.9925 49.0164 49.0078 50.0003 50.0031 50.0157 51.0109 51.0235 52.0062 51.9949 52.0187 52.0313 53.0140 53.0027 53.0266 53.0391
C3HP C3H4N C4H6
54.0093 53.9980 54.0218 54.0106 54.0344 54.0470
55 CHN,,
55.0171
FM C]H4NO C2H6N]
58.0293 58.0419
55.0422
C3H6O C3HgN
C4H7 56
55.0548
C4H to
58.0783
N4
56.0124
CNP
56.0011
55.0297
59 HN 30 H3N4 CHN02
58.0532 58.0657
59.0120 59.0359 59.0007
CH 2N3
56.0249
CZ0 2
55.9898
CH3NP
59.0246
CzHzNO CZH4N2 C3H4O
56.0136
CH5N3
59.0484
56.0375
CZH 30 Z
59.0133
56.0262
C2HSNO C2H7N2
59.0371
C3H6N C4Hg
56.0501 56.0626
57
C3HP C3H9N
59.0610 59.0497 59.0736
57.0579
60 N20 2 H2Np H4N4 C03 CH zN0 2 CH4NP CH6N3
57.0705
C2H 4OZ
60.0211 60.0449
KO .'
58.0042
C2H6NO C2HgN2
H2N4 CN0 2
58.0280
C3HgO C· 5
60.0575
CHzNp
58.0167 58.0406
57.0202
HN4 CHNP
57.0089
~H3N3
57.0328
C2 HO z CZH3NO CZH5N2
56.9976
C3HP C3H7N C4H9
57.0215 57.0453 57.0340
58
CH 4N 3 C2H20 2
57.9929
58.0054
61 HN 20 2 H3 NP
59.9960 60.0198 60.0437 59.9847 60.0085 60.0324 60.0563
60.0688 60.0000 61.0038 61.0277
155
Mass Spectrometry
H5 N4 CH0 3 CH3N0 2
61.0515
FM
FM
FM
68.0375
64.0187
C3H4N2 C4HP C4H6N
64.0313
C5Hg
68.0626
64.9874
69 CHN 4
69.0202
C2HNP
69.0089
C2H3N3 C3H02
69.0328
C3H3NO C3H5N2 C4H5O C4H7N C5H9 70
69.0215
64.0062
61.0164
C3N2 C40 C4H2N
CH5NP CH 7N3
61.0402
C5H4
61.0641
C2HP2 C2H7NO C5H 62 N0 3
61.0289
65 H0 4 H3N03
61.9878
C3HN2 C4HO C4H3N
H2NP2
62.0016
C5H5
H4Np H6N4
62.0355
CHP3
62.0003
65.9953 66.0093
CH4N0 2
62.0242
66 H20 4 C2N3 C3NO
CH6NP C2H60 2 C4N
62.0480
C3H2N2
66.0218
62.0368
C4HP
62.0031 62.0157
C4H4N C5H6 67
66.0106 66.0344 66.0470
62.9956
C2HN3 C3HNO C3H3N2
67.0171
C3HP2
70.0054
67.0058 67.0297
C3H4NO C3H6N2
70.0293 70.0532
C4 HP C4 H5N
67.0184
C4 HP C4HgN
70.0419
C5H7 68 CN 4
67.0548
C5H 1O 71
70.0783
68.0124
CHNP CH3N4 C2HN0 2 C2H3NP C2H5N3
71.0120 71.0359 71.0007
C5H2 63 HN03 H3NP2 H5NP CHP3 CH5N0 2 C4 HN C5H3 64 °4
H2N0 3 H4NP2 CH 4 0 3
60.9925
61.0528 61.0078
62.0594
63.0195 63.0433 63.0082 63.0320 63.0109 63.0235
63.9949
65.0113 65.0140 65.0027 65.0266 65.0391
65.9980
67.0422
63.9796 64.0034
C2NP
C2H2N3
68.0011 68.0249
64.0273
Cpz
67.9598
64.0160
C3H2NO
68.0136
CN.O , CH 2N4 C2N02 C2H2NP C2H4 N3
68.0262 68.0501
68.9976 69.0453 69.0340 69.0579 69.0705 70.0042 70.0280 69.9929 70.0167 70.0406
70.0657
71.0246 71.0484
Spectroscopic Data Chemistry
156 FM
C3HP2 CllsNO C3H7N2 C4HP C4H9N
71.0133 71.0371 71.0610 71.0497 71.0736
CsHII 72
71.0861
Np
72.0073 71.9960 72.0198
CNP2 CH2N3O CH4N4 C20 3 C2H2N0 2 C2H4NP C2H6N 3
72.0437 71.9847 72.0085 72.0324 72.0563
C3HP2 C3H6NO C3HgN2 C4HgO C4H ION
72.0211 72.0449
CSHI2 C6 73 HN 40
72.0939
CHNP2 CH3NP CHsN4 C2H0 3 C2H3N02 C2HsNp C2H7N3 C3Hs02
72.0688 72.0575 72.0814
FM
C3H7NO C3H9N2
73.0528
C4H9O C4H II N C6H 74
73.0653
73.0767 73.0892 73.0078 73.9991
FM
C2H9N3 C3HP2 C3H9 NO CsHN C6H3 76
75.0798 75.0446 75.0684 75.0109 75.0235 75.9909
74.0355
NP3 H2NP2 H4Np C04 CH2N0 3
CH6N4
74.0594
CH4NP2
76.0034 76.0273
C2HP3 C2H4N02 C2H6N P C2HgN 3 C3H60 2
74.0003 74.0242 74.0480 74.0719
CH6NP CHgN4 C2H40 3 C2H6N0 2 C2HgNp
76.0511 76.0750 76.0160 76.0399 76.0637
C3Hg02 C4N 2
76.0524
Cp
75.9949 76.0187
NP2 H2Np CN03 CH 2NP2 CH4NP
C3HgNO C3H ION2 C4H IOO
74.0229 73.9878 74.0116
74.0368 74.0606 74.0845 74.0732
76.0147 76.0386 75.9796
76.0062
74.0031
Cs~N
72.0000
CsN C6H2 75
74.0157
C6H4 77
76.0313
73.0151 73.0038 73.0277
HNP2 H3 N4O CHN03
75.0069
76.9987
73.0515
CH 3NP2 CHsNp CH7N4
HNP3 H3N30 2 HsN40 CH0 4 CH 3N0 3 CH sNP2 CH 7N,G
77.0351
72.9925 73.0164 73.0402 73.0641 73.0289
C2HP3 CzHsN0 2 C2H7NP
75.0308 74.9956 75.0195 75.0433 75.0672 75.0082 75.0320 75.0559
C2Hpj C2H7N0 2
77.0226 77.0464 76.9874 77.0113 77.0590 77.0238 77.0477
-
157
Mass Spectrometry
C4HN 2 CsHO CSH3N C6HS
CHP4 CH4N0 3 C2H60 3 CH6NP2 C3N3 C4NO C4H2N2 CsHp CSH4N C6H6
79 HN04 H3N20 3
H4NP3 CH 40 4
80.0222 80.0109
CSHgN C6 H IO
77.0266 77.0391
C2N4
80.0124
83
C3NP C3H2N 3
80.0011
C2HNP C2H3N4
83.0120
C3HN0 2 C3H3NP
83.0007
C3 HSN3 C4HP2 C4HsNO
83.0484
83.0610
81.0062
C4H7N2 CsHp CSH9N
81.0202
C6 HII
83.0861
C2HNP C3H3N 3 C4 H02 C4H3NO C4HSN2
81.0089
84 CN 40
84.0073
CsHsO CSH7N
81.0340
C6Hg
81.0705
77.9827 78.0065 78.0304 78.0542 77.9953 78.0191 78.0317 78.0429 78.0093 77.9980 78.0218 78.0106 78.0344 78.0740
CsHp CsHsN C6H7
78.9905 79.0144 79.0382 79.0031 79.0269 79.0171 79.0058 79.0297 79.0184 79.0422 79.0548
80 . H2N04
79.9983
HsNP2 CHP4 CHsN03 C3HN 3 C4HNO C4 H3N2
82.0657
77.0140 77.0027
78 N04 H2N20 3 H4N30 2 H6NP
FM
FM
FM
CP2 C4H2NO
80.0249 79.9898 80.0136
C4H4N2 CsHp CSH6N
80.0375
C6Hg
80.0626
81 H3N04 C2HN 4
80.0262 80.0501
81.0328 80.9976 81.0215 81.0453 81.0579
82 C2NP C2H2N4 C3N0 2
82.0042
C3H2NP C3H4N3
82.0167
C4HP2 C4 H4NO C4H6N2 CSH60
82.0054
82.0280 81.9929 82.0406 82.0293 82.0532 82.0419
82.0783
83.0359 83.0246 83.0133 83.0371 83.0497 83.0736
C2NP2 C2H2NP C2H4N4
83.9960
CP3 C3H2N0 2
83.9847
C3 H4NP C3 H6N 3 C4H40 2 C4H6NO C4HgN2
84.0198 84.0437 84.0085 84.0324 84.0563 84.0211 84.0449 84.0688
CSHgO CsHION
84.0575
C6HI2 C7
84.0939
85 CHN 40
84.0814 84.0000 85.0151
158
Spectroscopic Data Chemistry
FM
FM
FM C 3H ION 3 C4 Hg02
88.0876
87.0069
C 4 H IONO
88.0763
87.0308
C4H l2N 2
88.1001
86.9956
CSH1P
88.0888
87.0195
C 5N2
88.0662
87.0433
C 60
87.9949
C 2H 7N 4
87.0672
C 6 H2N
88.0187
C 3HP3 C3H5N02
87.0082
C 7H4
88.0313
87.0320
89
C 5HllN
C 3H7NP C 3H 9N 3
87.0559 87.0798
HNP2
85.0892
CHNP3
89.0100 88.9987
C6 H l3
85.1018
C4 H 70 2
87.0446
CH3NP2
89.0226
C 7H
85.0078
C 4H9NO
87.0684
CH5NP
89.0464
C 4H ll N 2
87.0923
C 2H0 4
88.9874
C 2HNP2 C 2H 3N P
85.0038
C 7H2
85.0277
87
C 2H 5N 4 C 3H0 3
85.0515 84.9925
CHNP2 CH 3N 4O
C 3H 3N0 2
85.0164
C 2HN0 3
C 3H 5N P C 3H7N 3
85.0402 85.0641
C 2H 3NP2 C 2H 5N P
C 4H 50 2
85.0289
C 4H 7NO
85.0528
C4H9N 2 C 5H 9O
85.0767 85.0653
86
86.0157
88.0524
CNP2 CH 2N 4O
85.9991
C 5H 11 O
87.0810
C 2H 3N0 3
89.0113
86.0229
87.1049
85.9878
C2H 5NP2 C 2H 7N 3O
89.0351
C 2N0 3
C 5Hl3 N C 6HN
C 2H 2NP2
86.0116
C 7H 3
87.0235
89.0829
C 2 H 4NP
86.0355
88
C 2H9N 4 C 3H 50 3
C 2H 6N 4 C 3H 20 3
86.0594
N 40 2
88.0022
C 3H 7N0 2
89.0477
86.0242
C3H 9N P C 3HllN3
89.0715
C 3H 4N0 2
CNP3 CH 2N 30 2
87.9909
C 3H6 N P C 3HgN3
86.0480
CH4N 4 O
88.0386
86.0719
CP4
87.9796
C4 H90 2 C 4H ll NO
89.0841
C 4H 60 2
86.0368
C 2H 2N0 3
88.0034
C SHN2
89.0140
C 4H sNO
86.0606
88.0273
C 6HO
89.0027
C 4 H 1ON z
86.0845
C 2H4NP2 C 2H 6N P
88.0511
86.0732
C 2H gN 4
88.0750
C 6 H 3N C 7H 5
89.0266
C 5H IOO C 5Hl2N
86.0970
88.0160
90
C 6Hl4 C 6N
86.1096
C 3HP3 C 3H 6N0 2
88.0399
N 30 3
89.9940
86.0031
C 3HSNP
88.0637
H 2N 40 2
90.0178
86.0003
87.0109
88.0147
89.0590 89.0238
89.0954 89.0603
89.0391
159
Mass Spectrometry
CN04
89.9827
C4HN 3
91.0171
C~NP3
90.0065
CH4NP2 CH6NP
90.0304
CsHNO CSH3N2
91.0058 91.0297 91.0184
C2HP4 C2H4N0 3
89.9953
C6HP C6HSN C7H7 92 NP4 H2N30 3 H4N40 2 CH2N04
91.9858 92.0096
90.0542 90.0191
C2H6NP2 C2HgNp C2H 1ON4
90.0429
C3H60 3 C3HgN02 C3H ION P C4H I00 2 C4N 3 C5NO
90.0317
C5~N2
C6HP C6H4N C7H6 91 HN30 3 H3NP2 CHN0 4 CH 3NP3 CH5NP2 CH7N4O
90.0668 90.0907 90.0555 90.0794 90.0681 90.0093 89.9980 90.0218 90.0106 90.0344 90.0470 91.0018 91.0257 90.9905 91.0144 91.0382 91.0621
C2HP4 C2H5N0 3
91.0031
C2H7NP2 C2H9NP
01.0508 91.0746
C3HP3 C3H9N0 2
91.0395 91.0634
91.0269
FM
FM
FM
CH4NP3 CH6N 30 2 CHgN40 C2HP4 C2H6N03 C2HgN20 2 C3Hg03 C3N4 C4NP C4H2N3 C50 2 C5H2NO C5H4N2 C6HP C6H6N C7 HS 93 HNP4 H3 N P3 H5N40 2 CH 3N04
91.0422 91.0548
92.0335 91.9983 92.0222 92.0460 92.0699 92.0109 92.0348 92.0586 92.0473 92.0124 92.0011 92.0249 91.9898 92.0136 92.0375 92.0262 92.0501 92.0626 92.9936 93.0175 93.0413 93.0062
CH sNP3 CH 7NP2 C2Hs0 4 ClI7N0 3 C3 HN4 C4HNP C4H3N3 CSH02 CSH3NO C5H5N2 C6H5O C6H7N C7H9 94 H2N20 4 H4N30 3 H6N40 2 CH 4N0 4 CH6NP3 CZH60 4 C3N3O C3H2N4 C4N0 2 C4H2NP C4H4N3 CSHP2 C5H4NO C5H6N2 C6 HP C6HSN C7H 1O 95 H3N2 0 4
93.0300 93.0539 93.0187 93.0426 93.0202 93.0089 93.0328 92.9976 93.0215 93.0453 93.0340 93.0579 93.0705 94.0014 94.0253 94.0491 94.0140 94.0379 94.0266 94.0042 94.0280 93.9929 94.0167 94.0406 94.0054 94.0293 94.0532 94.0419 94.0657 94.0783 95.0093
160
Spectroscopic Data Chemistry FM
HsN30 3 CHsN04 C3HNP C3H3N4 C4HN0 2 C4H3NP C4HSN3 CSHP2
95.0331 95.0218 95.0120 95.0359 95.0007 95.0246 95.0484
C~HsNO
95.0133 95.0371
CSH7N2 C6HP C6 H9N
95.0610 95.0497 95.0736
C7H ll 96 H4N20 4
95.0861 96.0171 96.0073
C2NP C 3NP2 C3H1N3O
95.9960
C3H4N4 C40 3 C4H2N01
96.0437 95.9847 96.0085
C4H4NP C4H6N3
96.0324
CSHPl CSH6NO CsHsN2 C6HsO
96.0198
96.0563 96.0211 96.0449 96.0688 96.0575 96.0814
C6HION C7H 1Z Cs 97
96.0939 96.0000
CzHNp
97.0151
FM
FM
C3HNP2 C3H3NP C3HSN4 C4H0 3 C4H3N0 2
97.0038 97.0277 97.0515 96.9925 97.0164
CgH2 99
98.0157
C2HNP2 Cif 3NP ClIN0 3 C3H3NP2
99.0069
C4HsNp C4H7N3
97.0402
CSHP2 CSH7NO CSH9N2
97.0289 97.0528 97.0767
C6HP C6HllN C7H 13
97.0653 97.0892
C4H7NP C4H9N3
97.1018
CgH 98
97.0078
C2NP2 C2H2NP C3N0 3 C3H2N20 2
97.9991
CSHP2 CSH9NO CSHllN2 C6 H ll O C6H 13 N C7H 1S C7HN CgH3
C3H4NP C3H6N4
97.0641
98.0229 97.9878 98.0116 98.0355 98.0594
C3HSNP C3H7N4 C4HP3 C4HsN02
99.0308 98.9956 99.0195 99.0433 99.0672 99.0082 99.0320 99.0559 99.0798 99.0446 99.0684 99.0923 99.0810 99.1049 99.1174 99.0109 99.0235
100
C4HP3 C4H4N02 C4H6NP C4HgN 3
98.0003
CNP2
100.0022
98.0242
C1NP3 C2H2NPl C2H4NP
100.0147 100.0386
CSH602 CsHsNO
98.0368
CP4 C3H2N03
100.0034
CSHIONl C6H 1OO
98.0845
C6HI1N C7H l4 C7N
98.0480 98.0719 98.0606 98.0732 98.0970 98.1096 98.0031
C3H4NPz C3H6NP C3HgN4 C4H40 3 C4 H6N02
99.9909
99.9796 100.0273 100.0511 100.0750 100.0160 100.0399
161
Mass Spectrometry
FM C4HgNp C4H1ON3
100.0637
CSHg02 CsHIONO
100.0524
CSHI2N2 C6 H1P C6 HI4N C6N2 C7H l6 C70
100.0876 100.0763 100.1001 100.0888 100.1127 100.0062 100.1253 99.9949
C7~N
100.0187
CgH4 101 CHN 40 2
100.0313
C2HNP3 C2H3NP2 C2HsN4O C3H04 C3H3N03 C3HSNP2
101.0100 100.9987 101.0226 101.0464 100.9874 101.0113 101.0351
C3H7NP C3H9 N4
101.0590
C4Hs03 C4H7N0 2 C4H9NP C4H II N3 CSH902
101.0238
CsHllNO CSHI3N2 C6 H 1P C6 HISN C6 HN2
101.0841
101.0829 101.0477 101.0715 101.0954 101.0603 101.1080 101.0967 101.1205 101.0140
FM
FM C7HO C7H3N
101.0027
C2HN0 4
102.9905
101.0266
103.0144
CgHs 102
101.0391
C2H3NP3 C2HsNP2 C2H7NP
CNP3 CH2N40 2 C2N04 C2H2NP3 C2H4NP2 C2H6N4O C3HP4 C3H4N0 3 C3H6NP2 C3HgNp C3H ION4 C4HP3 C4HgN0 2 C4H IONP C4H I2N3 CSH 1OO2 CSHI2NO CSHI4N2 CSN3 C6 H1P C6NO C6 H2N2 C7HP C7H4N CgH6 103 CHNP3 CH 3NP2
101.9940
103.0382 103.0621
C3HP4 C3HsN0 3
103.0031
C3H7NP2 C3H9NP
103.0508
C3HlIN4 C4HP3
103.0985
102.0542 101.9953
C4~N02
103.0634
102.0191
C4H lI NP C4 H13 N3 CSH lI02 CSHI3 NO CSHN 3 C6 HNO C6 H3N2
103.0872
102.0178 101.9827 102.0065 102.0304
102.0429 102.0668 102.0907 102.0317 102.0555 102.0794 102.1032 102.0681 102.0919 102.1158 102.0093
C7HP C7HsN CgH7 104
103.0269 103.0746 103.0395
103.1111 103.0759 103.0998 103.0171 103.0058 103.0297 103.0184 103.0422 103.0548
CNP4 CH2NP3
103.9858
CH4 NP2 C2H2N04
104.0335 104.0222
103.0018
C2H4NP3 C2H6N30 2 C2HgNp C3H40 4 C3H6N0 3
103.0257
C3HgNP1
102.1045 101.9980 102.0218 102.0106 102.0344 102.0470
104.0096 103.9983 104.0460 104.0699 104.0109 104.0348 104.0586
162
Spectroscopic Data Chemistry FM
FM
C3HIONP
104.0825
C6 H0 2
104.9976
C3HI2N4 C4Hg03 C4H ION0 2
104.1063 104.0473
Cil 3NO C6HSNl
C4H I2N2O
104.0950
CifsO C7H7N
C4N4
104.0124
CSH I2 02 CsNp C5H2N 3
104.0837
C60 2 C6H2NO
103.9898
C6H4N2 C7H4O
104.0375
C7H6N CgHg 105
104.0501
CHNP4 CH 3NP3 CHsN40 2
104.9936
C2H3N04 C2HsN20 3 C2H7NP2 C2H9N4O
104.0712
107.0218
105.0453
C2H7NP3
107.0457
105.0340
C2H9NP2 C3HP4 C3H9N0 3
107.0695
105.0579
104.0011
CH 2NP4
106.0014
104.0249
CH4NP3 CH6N40 2
106.0253
C2H4N0 4 C2H6NP3 C2HgNP2 C2H 1ON4O C3H60 4
106.0140
104.0626
105.0175 105.0413 105.0062 105.0300 105.0539 105.0777
C3HP4 C3H7N0 3 C3H9NP2 C3H 11 N 3O
105.0187
C4H90 3
105.0552
C4H 11 NO z C4HN 4
105.0790
CsHNp C SH3 N3
105.0215
105.0705
104.0262
105.0426 105.0664 105.0903
105.0202 105.0089 105.0328
C3HgN0 3 C3H ION20 2 C::4H IOO3 C4NP C4H2N4 CSN0 2 CSH2Np CSH4N3 C6 HP2 C6 H4NO C6 H6N2
107.0570
CH 7NP2 C2HsN04
CgH9 106
104.0136
FM
107.0344 107.0583
C4HNP C4H3N4 CSHN0 2
107.0120
CSH3NP C5HSN3
107.0246
C6HP2 C6H5NO
107.0133
C6H7N2 C7HP C7H9N
107.0610
CgH Ii 108
107.0861 108.0171
105.9929
CH4NP4 CH6NP3 CHgN40 2
108.0648
106.0167
C2H6N04
108.0297
106.0406
C2Hg NP3 C3HP4 C3N4O
108.0422
106.0491 106.0379 106.0617 106.0856 106.0266 106.0504 106.0743 106.0630 106.0042 106.0280
106.0054 106.0293 106.0532
C7H6O C7Hg N
106.0419
CgH 10 107
106.0783
CH3NP4 CH sN30 3
107.0093
106.0657
107.0331
107.0359 107.0007 107.0484 107.0371 107.0497 107.0736
108.0410
108.0535 108.0073
C4NP2 C4H2NP C4H4N 4
107.9960
CP3 CSH2NO z CSH4Np CS H6N3
107.9847
108.0198 108.0437 108.0085 108.0324 108.0563
163
Mass Spectrometry
C6 H40 2 C6H6NO C6HgN2 C7HgO
108.0211
C9H3 112
111.0235 112.0022
110.0480
C2NP2 C3NP3 C3H2N30 2
CSHgN3 C6 H60 2
110.0719
C3H4N4O
112.0386
110.0368
C6 HgNO
110.0606
C40 4 C4H2N0 3
112.0034
C6HJON 2 C7 H JOO
110.0845
110.0355
108.0449
C4H4NP C4H6N4
110.0594
108.0688
CSHP3
110.0003
108.0575
CSH4N 02 CSH6N P
110.0242
C7H JON CgH J2
108.0814
C9 109
108.0000
CHsNP4 CHgNP3 C2H7N0 4
109.0249
C 3HNP
C7H J2N C gH J4
110.0970
109.0151
C4HN ZOZ
109.0038
CgN
110.0031
C4H3NP C4HsN4 CSH0 3
109.0277
C9 H2 111
110.0157 111.0069
CSH3N02 CsHsNp CSH7N3
109,0164
C3HNP2 C3H3NP C4HN03
C6HsOz
109.0289
108.0939
109.0488 109.0375
109.0515 108.9925 109.0402 109.0641
C6~NO
109.0528
C6H9Nz C7H9O
109.0767
C7HJlN
109.0892
CgHJ3 C9H 110 CH6NP4 C3NP2 C3 H2N4O C4N0 3 C4H2NP2
109.0653
FM
FM
FM
110.0732 110.1096
111.0308 110.9956
C4H3NPz C4HsNp C4H7N4
111.0195
C SHP3 CsH sN0 2
111.0082
CSH7Np CSH9N 3 C6H70 2
111.0559
111.0433 111.0672 111.0320
111.9909 112.0147 111.9796
C4H4NP2 C4H6N P C4HgN4 CSH403
112.0273
CSH6N 02 CSHgNp CSH JON 3
112.0399
C6 Hg02 C6 HJONO C6 H J2N Z C7H J2 O C7H J4N C7N 2 CgH J6
112.0524
CgO CgH2N
112.0511 112.0750 112.0160 112.0637 112.0876 112.0763 112.1001 112.0888 112.1127 112.0062 112.1253 111.9949 112.0187 112.0313
111.0446
C9 H4 113
111.0684
C2 HNPz
113.0100
111.0923
110.0229
C7HJ3N
111.1049
109.9878
CgHJS CgHN
111.0109
C3HNP3 C3H3NP2 C3HSNP C4H0 4 C4 H3N0 3
112.9987
109.9991
C6H9NO C6H JJ N2 C7H JJ O
109.1018 109.0078 110.0328
110.0116
111.0798
111.0810 111.1174
113.0226 113.0464 112.9874 113.0113
Spectroscopic Data Chemistry
164
FM
114.1032
C6HI4N2 C6N3
114.1158
115.0171
115.0058
114.0093
C7HNO C7H3N2
C7H 1P C7H I6N C7NO C7H2N2 CgH lg
114.1045
CgHp
115.0184
114.1284
115.0422
113.9980
CgHSN C9H7
114.0218
116
114.1409
C2NP4
115.9858
114.0106 114.0470
C2H2N30 3 C2H4N40 2 C3H2N04
116.0096
113.0140
CgHp CgH4N C9H6
113.1331
115
C3H 4NP3 C3H6N P2
116.0222
C3HgN4O C4HP4 C4H6N03
116.0699
113.0351
C4H 7NP
113.0590
C4H9N4 CSHP3 CSH7N02
113.0829 113.0238
C SH 9N P
113.0715
CSHII N3 C6H90 2 C6H II NO C6H 13 N2 C7H I3 O C7H 1SN C7HN 2 CgH I7
113.0954
113.0477
113.0603 113.0841 113.1080 113.0967 113.1205
114.0681 114.0919
114.0344
113.0027
C2HNP3
115.0018
113.0266
C2H3N40 2 C3HN04 C3H3N20 3 C3HSN302 C3H7N4O
115.0257
113.0391
114 C2NP3
113.9940
C2H2N40 2 C3N0 4
114.0178 113.9827
C3H2NP3 C3H4NP2
114.0065
C3H6NP C4 H20 4 C4H4N0 3
114.0191
C4 H 6NP2
C4 HgNp C4H ION4 CSH60 3 CSHgN0 2 CsHIONP
CSHI2 N3 C6H 1OO2 C6H I2NO
C6HN 3 C7H 1P C7H17N
C4H sNP2
CgHO CgH3N C9 HS
FM
FM
114.9905 115.0144 115.0382 115.0621
115.1123 115.1362 115.0297
115.0548
116.0335 115.9983 116.0460 116.0109 116.0348
C4HgNP2 C4H ION3O C4H I2N4
116.0586
116.0473
116.0825 116.1063
C4HP4 C4H sN0 3
115.0031 115.0508
114.0542
C4H 7NP2 C4 H9N P
CSHg03 CSH 1ON0 2
115.0746
CSH I2Np
116.0950
113.9953
C4H II N4
115.0985
CSHI4N3
116.1189
CSN4
116.0124
114.0429
CSHP3 CSH 9N 02
115.0395 115.0634
C6H 1P2
116.0837
114.0668
CsHIINp
115.0872
114.0907
CSH 13N 3 C6H 11 0 2 C6H 13NO
115.llll
C6H I4NO C6HI6N2
116.1315
115.0759
C6NP
115.0998
C6 H,sN 2
115.1236
C6H2N3 C7H I6O
114.0304
114.0317 114.0555 114.0794
115.0269
116.0712
116.1076 116.0011 116.0249 116.1202
165
Mass Spectrometry
116.0136
CgH7N C9H9
116.0375
118
CgHp CgH6N
116.0262
CZH2NP4
118.0014
116.0501
C9 Hg
C2H4NP3 CZH6N4OZ C3H4N0 4
118.0253
116.0626
C3H6N20 3 C3HgNP2 C3H 1ON4O C4H60 4 C4HgN0 3 C4HION202 C4H I2N3O C4H I4N4 CSH 1OO3 CSH 11N0 2 CSH I4N2O
118.0379
Cpz C7HzNO C7H4N2
115.9898
117
C2HN 20 4 C2H3NP3 C2HsN 40 2 C3H3N0 4 C3HSNP3 C3H7N3°2
116.9936 117.0175 117.0413 117.0062 117.0300 117.0539
C3H9NP C4Hs04 C4H7N0 3
117.0777
C4H9NP2 C4HII N3O C4H I3N4
117.0664
117.0187 117.0426 117.0903 117.1142
CSH90 3 CSH II N0 2 CSH 13 N2O
117.0552
CSHISN3 CSHN4 C6 H I3 0 2
117.1267
117.0790 117.1029 117.0202 117.0916
C6 H 1SNO
117.1154
C6 HNP C6H3N3
117.0089
C7HOz C7H3NO C7HSN2
116.9976 117.0215 117.0453
CgHp
117.0340
117.0328
FM
FM
FM
CsNp CSH2N4 C6H I40 2 C6N0 2
117.0579 117.0705
118.0491 118.0140 118.0617 118.0856 118.0266 118.0504 118.0743 118.0981 118.1220 118.0630 118.0868 118.1107 118.0042 118.0280 118.0994 117.9929 118.0167
CzHsNP3 CZH7NP2 C3HSN04
119.0331
C3H7NP3 C3H9N30 2
119.0457
C3HIINP C4HP4 C4H9N03
119.0934
C4H II NP2 C4H I3 NP CSH II 0 3 CSH I3N0 2 CsHNp CSH3N4 C6HN01 C6H3NP C6HSN3 C7HP2 C7HsNO C7H7N2 CgHp CgH9N
119.0570 119.0218 119.0695 119.0344 119.0583 119.0821 119.1060 119.0708 119.0947 119.0120 119.0359 119.0007 119.0246 119.0484 119.0133
i 19.0371 119.0610 119.0497 119.0736 119.0861
118.0406
C9 HII 120
C7HP2 C7H4NO C7H6N z CgH6 0
118.0054
C 2H4NP4
120.0171
118.0293
CZH6NP3 C1HgN4OZ C3H6N04
120.0648
CgHgN C9H 1O
118.0657
C6 H2NP C6H4N3
118.0532 118.0419 118.0783
119
CZH3N 20 4
119.0093
120.0410 120.0297 120.0535
C3 HgNP3 C3HION 3OZ C3H I2N4 O
120.0774
C4Hg04
120.0422
120.1012
166
Spectroscopic Data Chemistry FM
FM
FM
C4H lON0 3 C4Hl2N202 C4N4O
120.0661
C6H3N0 2
121.0164
120.0899
C6 H 5N P
121.0402
120.0073
C6H7N3
121.0641
120.0786
C5NP2 C5 H zNp
119.9960
C7HP2 C7H7NO
121.0289
ClOH2 123
122.0157
C5H l2 0 3
121.0528
C 2H7NP4
123.0406
120.0198
Cll 14 C9N
122.1096 122.0031
C7H 9N z
121.0767
CZH 9NP3
123.0644
C5H4N4 C6 0 3
120.0437
CSH90
121.0653
C3H9N0 4
123.0532
119.9847
121.0892
CiINPz
123.0069
C6 H zN0 2
120.0085
CSHIIN C9H 13
121.1018
123.0308
C6 H4NP
120.0324
121.0078
122.9956
C6H6N 3 C7H40 2
120.0563
CIOH 122
C4H3N4O C5HN0 3 C5 H 3N Z02
123.0195
120.0211
CZH 6N z0 4
122.0328
123.0433
C7H6 NO
120.0449
122.0566
C7HsNz
120.0688
C2HsNP3 C2H lON4OZ
C5H5N30 C5H7N4
CsHsO
120.0575
CSHION
120.0814
C3HSN04 C3H lONz0 3
C9Hl2 C IO
120.0939
123.0672 123.0082
122.0453
C6 HP3 C6 H 5N OZ
122.0692
C6 H7NP
123.0559
C4H lOO4
122.0579
123.0798
120.0000
C4N 3OZ
121.9991 122.0229
C2H5N20 4
121.0249
C4H2NP C5N0 3
C6H9N3 C7H70 2 C7H9NO
121.9878
C7H 11 N2
123.0923
C ZH 7N 30 3
121.0488
C 5H 2NPz
122.0116
123.0810
C2H9NP2 C3H7N04
121.0726
C5 H4NP
122.0355
CSHIIO CSHl3 N
121.0375 121.0614
C3H ll N3OZ C4HP4 C4 H 11 N0 3
121.0852
C5H6N 4 C6HP3 C6H4N02
122.0594
C3 H 9N P3
122.0242
C9H l5 C9HN C 1oH3
121.0501
C 6 H 6N P
122.0480
124
121.0739
122.0719
124.0484
C4HN 4 O
121.0151
CzHsN20 4 C3NP2 C4N20 3 C4 H2N3OZ C4 H4NP C50 4
124.0386
121
122.0805
122.0003
C5HNP2
121.0038
C 5 H 3N P
121.0277
C6HSN3 C7H60Z C7HsNO C7H lONz
C5H5N 4 C6 H0 3
121.0515
CSHIOO
122.0732
120.9925
CSHl2N
122.0970
122.0368 122.0606 122.0845
123.0320
123.0446 123.0684
123.1049 123.1174 123.0109 123.0235
124.0022 123.9909 124.0147 123.9796
167
Mass Spectrometry
FM
FM
FM
CSH2N0 3
124.0034
C7H90 2
125.0603
CgNO
125.9980
CSH4Nz02 CSH6NP
124.0273
C7H II NO
125.0841
CgH2N2
126.0218
124.0511
C7H l3 N2
125.1080
C9H 1g
126.1409
124.0750
CgH I3 0
125.0967
C9HzO
126.0106
CgH1SN CgHN 2
125.1205
126.0344
125.0140
C9H4N ClO H6
125.1331
127
125.0027 125.0391
C3HNP3 C3H3N40 2 C4HN04
127.0018
124.0524
C9Hl7 C9 HO C9 H3N
C4H3Nz03 C4HsN 30 2
127.0144
125.9940
C4H7NP C5H30 4
127.0621
CSHgN4 C6H40 3
124.0160
C6H6N0 2
124.0399
C6 HgNzO
124.0637
C6HION3 C7Hg02 C7H lONO
124.0876 124.0763
CIOHS
C7Hl2Nz
124.1001
126
CgHlzO CgH l4N
124.0888
CgN2 C9 H l6
124.0062
C90
123.9949
C9 H2N C 1o H4
124.0187
124.1127 124.1253
124.0313
C3NP3 C3 H2N40 2 C4N04 C4H2N20 3
125.0266
126.0178 125.9827 126.0065
C4H4N,D2 C4H6NP
126.0304 125.9953
126.0542
C3HN 40 2
125.0100
C4 HN z0 3 C4H3N3 0 2 C4HsN4O
124.9987
CSHz04 CSH4N03 CSH6Nz02 CSHgN,D
125.0226 125.0464
C SHION4 C6H60 3
126.0907 126.0317
CSH04 CSH3N0 3
124.9874
126.0555
CsHsNz02 CSH7Np CSH9N4 C6 HP3 C6 H7NOZ C6 H9NzO C6 H JI N3
125.0351
C6HgN02 C6H lON 2O C 6Hl2N3
125
125.0113 125.0590
126.0191 126.0429 126.0668
126.0794 126.1032 126.0681
125.0829
C7H lOO2 C7H l2NO
125.0238
C7Hl4N 2
126.1158
125.0477
C7N3 CgH l4 0 CgH J6N
126.0093
125.0715 125.0954
126.0919
126.1045 126.1284
CsHsN0 3 C SH7N z02 CSH9NP
126.0470
127.0257 126.9905 127.0382 127.0031 127.0269 127.0508 127.0746
CSHIIN4 C6HP3 C6H9N0 2
127.0985
C6H II NzO C6Hl3N3 C7H l1 0 2 C7H l3 NO C 7H 1SN2
127.0872
C7HN 3 CgH1SO CgH l7N
127.0171
CgHNO CgH3N 2
127.0058
C9 H3O C9HSN
127.0395 127.0634 127.1111 127.0759 127.0998 127.1236 127.1123 127.1362 127.0297 127.0184 127.0422
168
Spectroscopic Data Chemistry FM
FM
C9H'9 CIO H7 128 C3NP4 C3H2NP3 C3H4N40 2 C4H2N04 C4H4N20 3 C4H6N30 2 C4HgN4O
127.1488 127.0548 127.9858 128.0096 128.0335 127.9983 128.0222 128.0460 128.0699
CSH404 CSH6N0 3
128.0109
CS HgN20 2
128.0586
128.0348
C9H6N C,oH9 129 C3HNP4 C3H3N P3 C3HSN402
128.0501 128.0626 128.9936 129.0175
FM
CIO H9 130
129.0705
C3H2NP4
130.0014
C3H4NP3 C3H6NP2
130.0491
130.0253
C4H3N04 C4HsNP3 C4H7NP2 C4H9N4O
129.0062
CSHP4 CSH7N0 3
129.0187 129.0426
C4H4N04 C4H6NP3 C4HgNP2 C4H ION4O CSH604 CSHgN0 3 CSH ION 202
CSH9N 202 CsHIlNp CSH 13 N 4 C6H90 3
129.0664
CSH'2NP
130.0981
129.0903
130.1220
129.0790
CSH'4N4 C6H,003 C6H,2N02 C6H'4NP
129.0413 129.0300 129.0539 129.0777
130.0140 130.0379 130.0617 130.0856 130.0266 130.0504 130.0743
CsHIONP
128.0825
CSHI2N4 C6Hg0 3 C6H ION02
128.1063
C6H'2 NP C6H'4N3 C6N4
128.0950
C7H'202 C7H,4NO C7H'6N2
128.0837
C6H II NO l C6H'3NP C6HISN3 C6HN4 C7H I3 0 2
128.1076
C7 H 1SNO
129.1154
128.1315
C7H'7N2 C7HNP C7H3N3
129.1393
C7H'402 C7H I6NO C7N0 2
129.0089
C7H,gN 2
130.1471
CgH1P CgH02 CgH'9N CgH3NO CsHsN2
129.1280
C7H2NP C7H4N 3
130.0167
128.9976
CSH,gO
130.1358
129.1519
130.0054
C9HP C9H7N
129.0340
CgHP2 CSH4NO CSH6N 2 C9H6O C9HSN
128.0473 128.0712 128.1189 128.0124
128.0011
C7NP C7H2N3
128.0249
CgH'60
128.1202
CP2 CgH,gN CgH2NO C gH4N 2 Cq H20 C9H4O
127.9898 128.1440 128.0136 128.0375 128.1566 128.0262
129.1142 129.0552 129.1029 J29.1267 129.0202 129.0916
129.0328
129.0215 129.0453 129.0579
C6H'6N3 C6NP C6H2N4
130.0603 130.0868 130.1107 130.1346 130.0042 130.0280 130.0994 130.1233 129.9929
130.0406
130.0293 130.0532 130.0419 130.0657
169
Mass Spectrometry
C,oH to
130.0783
131
FM
FM
FM
C3H7NP3 C3H9N40 2
133.0488
C4H7N0 4 C4H9NP3 C4HI\N 30 2
133.0375
133.1091
132.0422
C4H\3N 4O CSH904
C3H6N30 3
132.0410
C3HgN40 2
132.0648
133.0726
C3H3N20 4 C3HSNP3 C3H7N40 2 C4HsN0 4 C4H7NZ03
131.0093
C4H6N04
132.0297
131.0331
C4HgNP3 C4H toN 30 2
132.0535 132.1012
C4H9NP2
131.0695
132.0661
CSH Il N0 3
133.0739
C4H"NP CSHP4 CSH9N0 3
131.0934
C4H'2N40 CSHg04 CSH toN0 3
CSH\3N 20 2
133.0978
132.1138
CsH,sNP CSHN40
133.1216
CsH"N 2OZ CSH'3 N30
132.0786
C6 H\303 C6 H,sN0 2
133.0865
13l.l060
CSH'2N 202 C SH'4N30 CSH'6N4 CSN40
132.0899
131.0344
C6HNP2 C6H3NP
133.0038
C6HSN4 C7H0 3
133.0515
C7H3N0 2 C7HsNp C7H7N 3
133.0164
CgHS02 CgH7NO CgH9N 2
133.0289
C9H9O C9H I\N
133.0653 133.1018
131.0570 131.0218 131.0457
131.0583 131.0821
132.0774
132.1377 132.0073
CsH,sN4 C6HI\03 C6H13 N0 2
13l.l298 131.0947
C6H'203 C6 H,4N 02 C6H'6NP
C6H,sNP C6H'7N3 C6HN 3O C6H3N4
13l.l185
C6NP2
131.9960
13l.l424
C6H2NP
132.0198
C6H4N4 C7H'602 C70 3 C7H2N02
132.0437
C7H4NP C7H6N3
132.0324 132.02"11 132.0449
131.0708
131.0120 131.0359
132.1025 132.1264
132.1151 131.9847
C7H,s02 C7H,7NO C7HN0 2 C7H3NP C7HSN3
13l.l072 13 1.13 II
CgHP2 CgHSNO CgH7N2
131.0133
CgH402 CgH6NO
131.0371
CgHgN2
132.0688
131.0610
C9 HgO
132.0575
C'OH\3 CI\H
C9HP C9H9N
131.0497
134
131.0736
C9H,oN Cto H '2
132.0814 132.0939
C,oH II
131.0861
CII
132.0000
C3H6NP4 C3 HgN30 3 C3 H toN40 2 C4HgN0 4
131.0007 131.0246 131.0484
132
C3H4NP4
132.0085 132.0563
133
132.0171
C3HSN 204
133.0249
133.0614 133.0852 133.0501
133.0151 133.1103 133.0277 132.9925 133.0402 133.0641 133.0528 133.0767 133.0892 133.0078 134.0328 134.0566 134.0805 134.0453
Spectroscopic Data Chemistry
170 FM
FM
FM
CSHII04 CSHI3 N0 3
135.0657
C6 H2 N0 3
136.0034
135.0896
C6 H 2N zOz
136.0273
CsHNP2 CSH3N 4O
135.0069
136.0511
134.0817
ClIN0 3
134.9956
C6H6N P C6HgN4 C7H40 3
CSHI4NPz
134.1056
135.0195
CSN 30 Z
133.9991
C6 H3NPz C6HSNP
CSH2Np C6 H I4 0 3
134.0229
C6 H7N4 C7H30 3
135.0672
134.0943
C6N0 3
133.9878
C7 H sNO z
135.0320
C6 HzNPz
134.0116
C6H4NP C6H6N 4
134.0355
C7H7N P C7H9N3
C 7HZO}
134.0003
C4 HJON z0 3
134.0692
C~HI2NPz
134.0930
C 4H I4 N4O
134.1169
Cll JO O4 CSHIZ N0 3
134.0579
134.0594
135.0308
135.0433
ClIgNO Z C7HgN2O
136.0750 136.0160 136.0399 136.0637
C7H IO N3 CgHgOZ CgHIO NO
136.0876
135.0559
CgHIZN Z
136.1001
135.0798
C9 H 1ZO
136.0888
CgH70Z CgH9NO
135.0446
C9 Hl4N
136.1127
135.0684
CgHllN Z C9 H 1I O
C9N2 C lo H I6
136.0062
135.092.1 135.0810
CIOO
135.9949
135.1049
136.0187
135.1174
CIOHzN C I1 H4
135.0109
137
135.0235
C3H9N Z04
137.0563 137.0881
135.0082
136.0524 136.0763
136.1253
C7 H 4NO z
134.0242
C7H6 NP C7HgN3 C g H60 Z
134.0480 134.0368
CgHgNO
134.0606
C9 HI3 N CIOH IS CIO HN
CgHION Z C9 H IOO
134.0845
C 11 H3
134.0732
136
C9 HIZN C lo H I4
134.0970
C3 HgN Z0 4
136.0484
C3HIIN303 C4H II N04
134.1096
C3H ION30 3
136.0723
C4HN 4O Z
137.0100
CioN
134.0031
136.0961
CSHN Z0 3
136.9987
136.0610
CSH 3N 30Z
137.0226
CsHsNp C6H0 4
137.0464
134.0719
CllH z 135
134.0157
C3HIZN40Z C4H ION0 4
136.0848
C3 H7N Z04 C3H9N P3
135.0406
C4HI2Nz03 C4N 4O Z
135.0644
CSHIZ04
136.0735
C}HIIN 4 Oz C 4H9N0 4
135.0883
CSN Z0 3
135.9909
135.0532
C sH zN 30 Z
136.0147
C4HIINz03
135.0770
CSH4Np
C4HI3N30Z
135.1009
C60~
136.0022
C6H3N0 3 C6HsN zOz
136.0313
137.0688
136.9874 137.0113 137.0351 137.0590
136.0386
C6 H7NP C6 H 9 N 4
135.9796
ClI s0 3
137.0238
137.0829
171
Mass Spectrometry
C7H7N0 2 C7H9N P C7HJl N3 CgH90 2
137.0477 . CgH I4N 2 137.0715 CgN 3
138.1158
C9 HNO
139.0058
138.0093
C9 H3N 2 C 1o H l9
139.0297 139.0184
137.9980
C10HP C 1oH5N
139.0422
138.0218
C 11 H7
139.0548
138.1409
140
138.0106 138.0470
C4NP4 C4HzNP3 C4H4N40Z C5HzN04
137.0954
C9 H I4 O
138.1045
137.0603
C9H'6N C9NO
138.1284
CgHJlNO CgH 13 N Z
137.0841
C9H 13 O C9 Hl5N C9 HN Z
137.0967 137.0140
C9HzN z C10H Ig ClOHzO C 1oH4N
C 1oH l7
137.1331
C lI H6
ClOHO ClO H3N C 11 H5
137.0027
139
137.0266
C4HNP3 C4H3NPz C5HN0 4
139.0018
C5H3NP3 C5H5NPz
139.0144
137.1080 137.1205
137.0391
138
138.0641
138.0344
139.0257 138.9905
C3H1ONz04 C4NP3 C4HzN4OZ
138.0178
C5N04
137.9827
C5H7NP C6H30 4
139.0621
C5HzNP3 CSH4N30Z CSH6N4O
138.0065
C6HsN0 3
139.0269
138.0304
C6 H7N ZOZ C6H9N P
139.0508
C6Hz04 C6H4N0 3
137.9940
138.0542 137.9953 138.0191
C6 H6NPz C6HgNp C6H lON4
138.0429
C7HP3 C7HgNO Z C7H 1ON zO
138.0317
C7H1ZN 3 CgH100 Z CgH l2NO
138.1032 138.0681
138.0668 138.0907 138.0555 138.0794
138.0919
FM
FM
FM
139.0382 139.0031
139.1488
139.9858 140.0096 140.0335 139.9983
C5H4NZ03 C5H6N 30Z
140.0222
C5HgNp C6H40 4 C6H6N0 3
140.0699
C6 HgNPz C6 H lON30
140.0586 140.1063
140.0460 140.0109 140.0348 140.0825
C6 HlIN4
139.0746 139.0985
C7HP3 C7H9N OZ
139.0395
C6HIZN4 C7Hg03 C7H lONO z C7H1ZN zO C7H'4N 3
139.0634
C7N4
140.0124
C7H'IN zO C7Hl3 N3
139.0872
CgH l2 0 Z CgH l4NO
140.0837
CgH110 Z CgH l3 NO CgH 1S N2
139.0759
140.1315
139.1236
CgH l6N Z CgNp CgHZN3
CgHN 3 C9H l5 O C9 H'7N
139.0171 139.1123
C9 H l6 O
C90 Z
140.1202 139.9898
139.1362
C9 HlgN
140.1440
139.1111 139.0998
140.0473 140.0712 140.0950 140.1189
140.1076 140.0011 140.0249
Spectroscopic Data Chemistry
172
FM
FM
142.0054
14 l.l 644
C9HP2 C9H20N C9 H4NO
141.0340
C9H6Nz
142.0532
141.0579
C 1oH22
142.1722
141.0705
CIOHP CIOHgN
142.0419
C4H2NP4 C4H4N30 3
142.0014 142.0253
CllH IO 143
142.0783
C4H6NP2 CSH4N04
142.0491
C4H3NP4 C4HsNP3
143.0093
CSH6NP3 CSHgN30 2
142.0379
C4H7NP2 CsHsN04
143.0570
CSH ION4O C6 H60 4
142.0856
C6HsN0 3 C6H lON20 2 C6H l2N3O
142.0504
C6Hl4N4 C7H lOO3
142.1220
CSH7NP3 CSH9NP2 CSH Il N40 C6H70 4 C6H9N0 3 C6H Il N20 2
143.0457
142.0868
14 l.l 029
C7H l2N0 2 C7H l4NZO
141.1267
C9 H2NO
140.0136
C9H4N2 C lO H20
140.0375
C lO H4 O
140.0262
ClO H6N
140.0501
C9 H3NO C9 HsNz ClOH21 CIOHP C 1oH7N
C11HS 141
140.0626
C ll H9
C4HNP4 C4H3N30 3
140.9936 141.0175
C4HsN40 2 CSH3N04 CsHsNP3 CSH7N302
141.0413
140.1566
141.0062 141.0300 141.0539 141.0777
C6 HP4
141.0187
C6H7N0 3 C6H9N20 2 C6H ll N3O C6Hl3N 4 C7H90 3 C7H lI N0 2
141.0426
C7HN 4 C 7H l3 O Z CgH1SNO CgHl7N 2 CgHNp CSH3N3
141.0215 141.0453
142
CSH9N4O
C7H l3 N ZO C 7H1SN 3
FM
141.0664 141.0903 141.1142 141.0552 141.0790
141.0202 141.0916
142.0140 142.0617 142.0266 142.0743 142.0981
142.0293
142.0657
143.0331 143.0218 143.0695 143.0934 143.0344 143.0583 143.0821 143.1060 143.1298
142.1107
C6Hl3 NP C6HlSN4 C7H Il O3
C7H l6N3
142.1346
C7H 13NO Z
143.0947
C7NP C7H2N 4
142.0042
C7H 1SNP C7H l7N 3
143.1185
142.0630
142.0280
142.0406
CgHN0 2 CSHl9N2
143.0007
142.1358
CgH3Np
143.0246
142.1233
141.0089
CgN02
141.9929
141.0328
142.1471
C9H 1P
141.1280
C9 HOz
140.9976
C9 Hl9N
141.1519
C9H 1SO
143.1424 143.0120
141.1393
Cgl-llgN2 CgH2Np CgH4N3
143.0708
C7HNP C7H3N 4 CgH 1S0 2 CgH l7NO
142.0994
CSH l40Z CgH l6NO
141.1154
142.1597
142.0167
143.0359 143.1072 143.1311 143.1549
173
Mass Spectrometry
CgH5N 3 C9 HlP C9H30 2
143.0484
C9H2lN C9H5NO
143.1675
C9H7N2
143.0610
CloHP CIOH9N
143.0497
143.1436 143.0133 143.0371
143.0736
CllH ll 144
143.0861
C4H4NP4 C4H6NP3 C4HgN40 2 C5H6N04
144.0171
C5HgNP3 C5H ION30 2
144.0535
C5Hl2NP C6Hg04 C6HION0 3
144.1012
144.0410 144.0648 144.0297 144.0774
FM
FM
FM
C7H3NP C7H5N4
145.0277 145.1229
144.0324
CgHl7 0 2 CgH03
144.0563
CgH l9NO
145.1467
C9H20O C9H4 0 2
144.1515
145.0164
144.0211
CgH3N02 CgH5Np
C9H6NO C9HgN2 CIOHgO
144.0449
CgH7N3
145.0641
144.0688
C9 HPz C9 H7NO
145.0289
CIOHION C ll H l2
144.0814
C9H9N2 C IOH9O CIOHll N
145.0767 145.0653
C ll H13
145.1018
ClzH 146
145.0078
C4H6NP4 C4HgN30 3
146.0328
CgHlgNO CgH2N0 2
144.1389
CgH20N2 CgH4Np CgH6N3
144.1628
C lZ 145 C4H5NP4 C4H7NP3 C4H9N40 2
144.0085
144.0575 144.0939 144.0000 145.0249 145.0488 145.0726
145.0515 144.9925
145.0402
145.0528
145.0892
145.0375
144.0661
C5H7N04 CSH9NP3
C6HI2N202 C6HI4NP C6HI6N4
144.0899
CSH ll N30 2
145.0852
C4H lON40 2 CSHgN04
146.0453
144.1138
CSHI3N40
145.1091
CSH ION z0 3
146.0692
144.1377
146.0930
C6NP C7H l2 0 3
C6 HP4 C6H ll N0 3
145.0501 ' CSH l2NPz
144.0073
146.1169
144.0786
145.0978
C7H l4N02
144.1025
C6HI3NzOz C6H I5N3O
CSH l4N40 C6H lOO4 C6H I2N0 3
C7 H I6N2O
144.1264
C 7NPz
143.9960
C7H lgN 3
144.1502
C6HI7N4 C6HNP C7H I3 0 3
145.1455
C7HzNp C7H4N4 CgH l6 0 2
144.0198
Cg0 3
143.9847
144.0422
145.0614
145.0739 145.1216
146.0566 146.0805
146.0579 146.0817 146.1056
145.0151
C6HI4N202 C6HI6N P
145.0865
C6 NPz
145.9991
C6HlgN4 C6H2N4O
146.1533
C7H l4 0 3 C7H l6 NO z
146.0943
C7H lS NO z
145.1103
144.0437
C7Hl7NP
145.1342
144.1151
C7HNP2 C7H l9N3
145.0038 145.1580
146.1295
146.0229 146.1182
Spectroscopic Data Chemistry
174 FM
FM
C7N0 3
145.9878
C7H 1S 0 3
147.1021
C7H 1g N2 O
146.1420
C7H I7N0 2
147.1260
C7H 2NP2
146.0116
C7HN0 3
146.9956
C7H 4NP
146.0355
C7H6N4 CgH lg02
146.0594
C7H3NP2 C7 H sNp
C7H7N4 CgHP3 CgHSN0 2
CgHP3 CgH4N 02
146.1307 146.0003
FM
C6H4N4O C7H I6 0 3
148.0386 147.9796
147.0195
CP4 C7H2N0 3
147.0433
C7H4N20 2
148.0273
147.0672
C7 H6N P C7HgN4
148.0511
147.0082
148.1100 148,0034
148.0750
147.0320
CgH40 3
148.0160
147.0559
CgH6N 02 CgHgN 20
148.0399
146.0719
CgH7Np CgH9N3
C9 H60 2
146.0368
C9 H70 2
147.0446
148.0876
C9 HgNO C9H ION 2
146.0606
147.0684
148.0524
146.0845
C9 H9NO C9 HlIN2
CgH ION 3 C9 Hg02 C9 H 1ONO
CIOHIOO CIOH I2N
CIOH1P C 1OH 13N
147.0810
146.0970
147.1049
C9 HI2N2 C IOH I2O
148.0888
C lI H I4
146.1096
CIIH 1S
147.1174
CIO H I4N
148.1127
C11N C I2 H2
146.0031
C11HN C I2 H3
147.0109
148.0062
147.0235
ClON2 C II H 16
147.9949
146.0242
CgHgNp CgHgN3
146.0480
146.0732
146.0157
147.0798
147.0923
148
147 C4H7NP4 C4H9N30 3
147.0406
C4HgNP4
148.0484
C1P C II H2N
147.0644
C4HION303
148.0723
C I2 H4
C4H II N40 2
147.0883
CSH9N 04 CSHIIN203 CS H 13N 302
147.0532
C4HI2N402 CS H ION 04
148.0961 148.0610
147.0770
CSHI2N203
148.0848
149 C4H9N 20 4 C4H II N 30 3
147.1009
148.1087
CSH 1SN 4O C6 H II 0 4
147.1247
CSHI4N302 CSHI6N 40
C6H I3 N0 3 C6HISNz02 C6 HI7N3O
147.0896
CSNP2 C6H I2 0 4
C6HNPz C6H3NP
147.0657
147.0069
C6H I4N0 3 C6HI6N202 C6N 20 3
147.0308
C6 H2N 3OZ
147.1134 147.1373
148.0637
148.0763 148.1001
148.1253 148.0187 148.Q313 149.0563 149.0801 149.1040
148.1325
C4HI3N402 CSH 11 N04
148.0022
C5HI3N203
149.0927
148.0735 148.0974
CSHISN302 CS HN 40 Z C6 H I3 0 4
149.1165
148.1213 147.9909 148,0147
C6H I5N0 3 C6 HN 20 3
149.0688
149.0100 149.0814 149.1052 148.9987
175
Mass Spectrometry
C6H3N P2 C6H5N 4O C7H04
149.0226
C 7H3N0 3
149.0113
C7H5NPz C7H7NP C7H9N 4
149.0351
149.0464 148.9874
149.0590 149.0829
CgHP3 CgH7N 02
149.0238
CgH9Np
149.0715
CgHI\N 3 C9 H90 2
149.0954
C9HI\NO C9 HI3 N 2
149.0841
C IO H l3 O
149.0967
CIO H l5N CIO HN 2 CI\H I7 CI\HO CI\ H3N
149.0477
FM
FM
FM C6H4NP2 C6H6N P
150.0304
C6 H7N4O
151.0621
150.0542
C7HP4 C7H5N0 3
151.0269
C7HP4 C7H4N0 3
149.9953
C7H6NP2 C7HgNp C7H 1ON4
150.0429
C gH60 3 CgHgN0 2
150.0317
CgH'ONp CgH I2N 3
150.0794
150.0191 150.0668 150.0907 150.0555
151.0031
C7H7NP2 Cll 9NP C7H 11 N 4
151.0508
CgH70 3 CgH9N02
151.0395
CgH,1Np CgH\3N 3
151.0872
151.0746 151.0985 151.0634 151.1111
C9HI\02 C9H I3NO C9 HI5N2
151.0759
C9HN 3 C IOH l5 O C 1o H l7 N
151.0171
151.0058
149.9980
CIOHNO C 1oH3N 2
150.0218
C 11 H l9
151.1488
C 11 H I8
150.1409
C 11 H 3O
151.0184
150.0106
C 11 H5N C I2 H7 152
151.0422
150.0641
CI\Hp C 11 H4N C l2 H6
150.0879
151
152.0797
150.1118
C4HIIN204 C4H\3NP3 C5H I3 N0 4
C4Hl2N204 CSN20 4 CSH 2N 30 3
152.0335
151.0018
C5H4N40 2 C6 HzN04
151.0257
C6H4N 20 3
152.0222
150.9905
152.0460
151.0144
C6 H6N 30 2 C6 HSN 4O
151.0382
C7H40 4
152.0109
150.1032
C9H 1OO2 C9 H I2NO
150.0681 150.1158 150.0093
149.1205
C9HI4N2 C9N 3 C IO H I4 O
149.0140
C 1OH l6N
150.1284
149.1331 149.0027
CloNO CIO H2N2
149.0266
C l2 H5 150 C4H ION 20 4
149.0391
C4Hl2N303 C4HI4N402 C SH l2N0 4
150.0766
C5HI4Nz03
150.1005
C5NP3 C5H2NP2 C6H I4 0 4 C6N0 4
149.9940
C5HNP3
150.0178
C5H3N40 2
150.0892
C6H2NP3
150.0065
C6HN0 4 C6 H3N20 3 C6H5N 30 2
149.0603 149.1080
149.9827
150.0919
150.1045
150.0344 150.0470 151.0719 151.0958 151.0845
151.0998 151.1236 151.1123 151.1362 151.0297
151.0548
151.9858 152.0096 151.9983
152.0699
176
Spectroscopic Data Chemistry FM
FM
FM
C7H6 N03
152.0348
C 7 H7N0 3
153.0426
C7HgN0 3
154.0504
C7HgNPz C7H IO N3 O
152.0586
C7H9NPz
153.0664
154.0743
152.0825
153.0903
C7H 1ZN 4
152.1063 152.0473
153.0552
C7H I4N4 C gH IO O3
154.1220
CgHg0 3
C7H Il N3O C7H I3 N4 CgH90 3
C7H lO NzOz C7H 1ZNP
CgH1ONO Z
152.0712
153.0790
CgH I2NO Z
154.0868
CgH1ZNp C gH I4N 3 CgN 4
152.0950
153.1029
152.1189
CgHIlNO Z C9HI3 NP CgH I5 N3
153.1267
CgH I4Np CgH I6N3
154.1346
152.0124
CgHN4
C9H 1Z OZ
152.0837
C9H I3 OZ
153.0202 153J)916
CgNp CgHZN4
154.0042 154.0280
C9H I4 NO
152.1076
C9H I5 NO
153.1154
154.0994
C9H I6N z
152.1315
C9H I7N z
153.1393
C9 HI4 0 2 C9 H I6NO
C9N zO
152.0011
C9HNP
153.0089
C9NOz
154.1233 153.9929
C9HzN 3
152.0249
153.0328
C9HIgN2
154.1471
C IO H I6 O C IO O2 CIO H lg N
152.1202
C9H3N3 C IOH I7 O
153.1280
C9H2NP
154.0167
CloHO z C 1OH I9N CIOH3NO C IOH5N z C II H21
152.9976
C9H4N3 C1OHIgO
154.0406
C 1oH2O Z
154.0054 154.1597
152.0501
CIIHP C II H7N
153.0340
CIO H20N C 1OH4NO C 1oH6N2
153.0579
C 11 Hz2
154.1722
152.0626
C 1z H9
153.0705
C II H60
154.0419 154.0657
CIOHzNO CIOH4N2 C II H20
151.9898 152.1440 152.0136 152.0375 152.1566
153.1142
153.1519 >,
153.0215 153.0453 153.1644
CIIHP C II H6N C I2 Hg 153
152.0262
C5HN Z0 4
152.9936
C5H2NP4
154.0014
C5H3NP3
153.0175
154.0253
C5H5N 4OZ
153.0413
C6H3N04
153.0062
C6H5N P3 C6H 7NPz
153.0300
C5H4NP3 C5H6 N40 2 C6H4N0 4 C6H6N20 3 C6HgN3OZ
C6H9NP C7H50 4
153.0777
154
153.0539 153.0187
C6HIONP C7H60 4
C11HgN
154.0981 154.0630 154.1107
154.1358
154.0293 154.0532
C1zH 1O 155
154.0783
C5H 3N P4 C5H 5N P3
155.0093
154.0140 154.0379
C5H 7NPz
155.0570
154.0617
C6H5N04 C6 H7N20 3
155.0218
154.0856 154.0266
C6 H9N30Z
155.0695
154.0491
155.0331
155.0457
177
Mass Spectrometry FM C6 HlINP C7H70 4
155.0934
Cll9N0 3
155.0583
C7H lI NP2 C7H l3NP C7H 1S N4
155.0821
CgH 11 0 3 CgH l3N02
155.0708
CgH1SNp CgH17N3 CgHNp CgH3N4 C9H1S0 2 C9HI 7NO C9HN02 C9Hl9N2 C9H3N2O C9HSN3 C 1oH I9O C IO H30 2 C 1O H21 N
155.0344
155.1060 155.1298 155.0947 155.1185
156.0535
C l3
156.0774
157
C6H l2N4O C7Hg04 C7H lON0 3
156.1012
157.0249
156.0661
CsHsNP4 CSH7NP3 CSH9N402
156.0899
C6H7N04
157.0375
156.1138
C6H9NP3 C6HIIN302 C6 H l3 N4O C7H90 4 C7H lI N0 3 C7H 13N 20 2
157.0614
C7H 1S N3 O C7H l7N4 C7HN 4O
157.1216
C7Hl2N202 C7H l4NP C7Hl6N4
156.0422
156.1377 156.0073 156.0786
155.0120 155.0359
CgH l6Np
156.1264
155.1072
CgNP2 CgH 1gN3 CgH2Np CgH4N4 C9H l6 0 2
155.9960
155.1311 155.0007 155.1549 155.0246 155.0484 155.1436 155.0133 155.1675 155.0371
ClIHP C lI H9N C I2 H 11
155.0497
155.0610 155.1801 155.0736 155.0861
156
156.0171 156.0410 156.0648 156.0297
FM
C6HgNP3 C6 H lON30 2
C7NP CgH l2 0 3 CgH l4N0 2
155.1424
C1oHsNO CIO H7N2 C II H23
CSH4NP4 CSH6N P3 CSHgN40 2 C6 H6N0 4
FM
CP3 C9H 1gNO C9H2N0 2 C9H20N2 C9H4NP C9H6N 3 C IO H20O C IO H40 2 CIO H22N C 1O H6NO CIO HgN2 C 11 H24 CIIHgO ClIHION C 1z H I2
156.1025
156.1502 156.0198 156.0437 156.1151 155.9847 156.1389 156.0085 156.1628 156.0324 156.0563 156.1515 156.0211 156.1753 156.0449 156.0688 156.1879 156.0575 156.0814 156.0939
156.0000
157.0488 157.0726
157.0852 157.1091 157.0501 157.0739 157.0978 157.1455 157.0151
CgH 1P3 CgH1S N0 2 CgHl7Np
157.0865
CgHNP2 CgH19N3
157.0038
CgH3N~O CgHSN4 C9H I70 2 C9H03
C9 H I9NO C9H3N0 2
157.1103 157.1342 157.1580 157.0277 157.0515 157.1229 156.9925 157.1467 157.0164
C9H21N2 C9 HSNP C9H7N3 C IO H21 O
157.1706
CIOHsOz CIO H23 N
157.0289
157.0402 157.0641 157.1593 157.1832
178
Spectroscopic Data Chemistry
FM
FM
FM
C IO H7NO
157.0528
C9H4N0 2
158.0242
C 1O H9Nz
157.0767
C9 H 2ZN z
158.1784
C11HP
157.0653
158.0480
CIIH11N C 1z H I3 _
157.0892
158.0719
157.1018
C9H6N P C9HgN3 C lO Hz2 O
Cl"~3NP2 CgHZ1 N3 CgHSNp CgH7N 4
158.1671
C9H I90 2
159.1385
C I3 H
157.0078
C lO H6OZ
158.0368 158.0606
C9HP3 C9Hz1 NO
159.0082
158.0328
ClOHgNO ClO H lON2
158.0845
C9H sNO z
159.0320
158.0732
C9H7NP C9H9N3
159.0559
ClOHPz ClO H9 NO
159.0446 159.0684
158 CSH6N204 CSHgN30 3 CSH lON 4OZ
158.0566 158.0805
159.0195 159.1737 159.0433 159.0672
159.1624
C6HgN04 C6H lONz0 3
158.0453
CIIHlOO C II H l2 N C 1z H l4
158.0692
C l2N
158.0031
C6HJ2N302 C6H l4N4O C7H 1OO4
158.0930
C13 H2
158.0157
ClOHIIN z
159.0923
158.1169
159
159.0810
158.0579
159.0406
C7H JZ N03 C 7H J4NP2 C7Hl6N3O
158.0817
CSH7NP4 CSH9N30 3
CIIHIIO C 11 H13 N
159.0644
C I2 H 1S
159.1174 159.0109
158.1056
158.0970 158.1096
159.0883
158.1295
CSH lI N 402 C6H9N0 4 .
159.0532
C1ZHN C13 H3
C7N 30 2
157.9991
C6HIINz03
159.0770
160
C7H 1gN4
158.1533
C7HzN 4O
158.0229
C6Hl3N302 C6H 1SN 4O
159.1009 159.1247
CSHgNP4 CSHION303
CgH l4 0 3
158.0943
C7H lI 0 4
159.0657
CgHJ6N 02 CgN0 3
158.1182
C7H l3 N0 3
159.0896
157.9878
159.1134 159.1373
159.0798
159.1049
158.0235 160.0484 160.0723 160.0961
CgH,gNp CgH2N2OZ
158.1420
C7HJSN202 C7HJ7N P
158.0116
C7HN 30 2
159.0069
CSHJZN40Z C6H lON04 C6HJ2N203 C6Hl4NP2 C6H J6NP
CgH20N3
158.1659
C7H I9N4
159.1611
C6N 4OZ
160.0022
CgH4Np ClI6 N4
158.0355
C 7H3NP CgH 1S 0 3
159.0308
C7H 1Z0 4
160.0735
158.0594
159.1021
C7H I4 N0 3
160.0974
CiIJgOz
158.1307
CgH I7N0 2
159.1260
C 9HP3
158.0003 158.1546
CgHN03
158.9956
C7HJ6 NP2 C7N 20 3
160.1213
CgH I9N ZO
159.1498
C7H 1gN 3 O
160.1451
C9H20NO
160.0610 160.0848 160.1087 160.1325
159.9909
179
Mass Spectrometry
160.0147
159.9796
C6H,sNPl C6H'7N40 C6HN 4OZ C7H 13 0 4 C7H,sN0 3
160.1338
C7H'7N ZOZ
160.0034
C7HNP3 C7H'9NP
C7H2NP2 C7H20N4
160.1690
C7H4NP
160.0386
CgH'603 Cg0 4 CgH,gNO Z CgHZN03
160.1100
CgHZONp CgH4NP2 CgH6Np CgHgN4
160.1577
C9H 20O Z
160.1464
C9H40 3 C9H6NOZ C9HgNp C9H lON3
160.0160
160.0273 160.0511 160.0750
160.0399 160.0637 160.0876
CIOHgOz CIOHIONO C lOH l2Nz
160.0524
CllH1ZO
160.0888
C ll H l4N C ll N2
160.0062
C 1zH l6
160.1253
C,p C l2 HzN C'3 H4
159.9949
160.0763 160.1001 160.1127
160.0187 160.0313
161
C7H3NPz C7H5N4O CgH l7 0 3 CgH04 CgH l9NOZ CgH3N0 3 CgHSNPz CgH7Np CgH9N4 C9H50 3 C9 H7NOZ C9 H9NP C9 HllN3 C 1oH9OZ
CIOHllNO C IO H'3N Z CllH1P CllH,sN CllHN Z
CSH9NP4 C5Hll N30 3
161.0563
C5Hl3N402 C6 H lI N04 C6 H'3 N 203
161.1 040
C'ZH I7 C1zHO C,zH3N C l3 H5
161.0688
162
161.0927
C5H,oN 20 4
161.0801
FM
FM
FM
161.1165 161.1404 161.0100 161.0814 161.1052 161.1291 160.9987 161.1529 161.0226 161.0464 161.1178 160.9874 161.1416 161.0113 161.0351 161.0590 161.0829 161.0238 161.0477 161.0715 161.0954 161.0603 161.0841 161.1080 161.0967 161.1205 161.0140 161.1331 161.0027 161.0266 161.0391 162.0641
CsH,zN 30 3 CSH'4N40Z
162.0879
C6 H,zN04
162.0766
C6 H'4N 203
162.1005
C6H'6N 30Z
162.1244
C6NP3 C6H,gN4O
161.9940
C6H 1NPz
162.0178
C7H'404 C7 H,6 N03 C7N04
162.0892
C7H,gN 2OZ
162.1369
C7H zN z0 3
162.0065
C7H4NPz
162.0304
C7H6N P CgH,g03
162.0542
CgHP4 Cg H4N0 3
161.9953
CgH6NPz CgHgNp CgH lON4 C9 H60 3 C9 HgNO Z
162.0429
C9 H,oNP C9 H'2 N3
162.0794
CIOHIOO Z C IO H,2NO C II H l4 0 C ll H'6N
162.0681
CIINO C II H2N2 C'2 H ,g
162.1118
162.1482
162.1131 161.9827
162.1256 162.0191 162.0668 162.0907 162.0317 162.0555 162.1032 162.0919 162.1045 162.1284 161.9980 1620218 162 1409
Spectroscopic Data Chemistry
180
FM C I2 HP C I2 H4N C13 H6
FM
FM
162.0106
C 11 H I7N
163.1362
C IOH I4NO
164.1076
162.0344
C11HNO C 11 H3N z C I2 H I9 C1zHP
163.0058
C IOH'6N2 CIONP C IO HzN 3
164.1315
162.0470
163 CSHIIN z0 4 CSH'3 N 303
163.0719
CsH,sN 4OZ C6H I3 N04
163.1196
163.0958 163.0845
C6 H,sN z0 3 C6 H'7 N 30Z C6HN30 3
163.1083
C6H3N40 2 C7 H 1S 0 4 C7H I7N03 C7HN04 C7H3N20 3 C7HsN30 2 C7H7NP CgH30 4 CgHSN0 3
163.0257
163.1322 163.0018 163.0970 163.1209 161.9905 163.0144 163.0382 163.0621 163.0031 163.0269
CgH7NP2 CgH9Np C gH II N4
163.0508
C9HP3 C9H9N0 2
163.0395
163.0746 163.0985 163.0634
C9H'I N20 C9HI3 N3 C IO H 11 0 2 C 1OH 13 NO
163.0872
CIOH1sN z CIO HN 3
163.1236
C II H I5 0
163.1123
163.1111 163.0759 163.0998 163.0171
C'zHsN C'3 H7 164
163.0297 163.1488 163.0184 i63.0422 163.0548
CsH,zN 20 4 CSH'4 N 303 CS H'6N402
164.0797
C6H,4N 04 C6HI6N203 C6NP4 C6 HzN 30 3 C6 H4N 4OZ C7H I6 0 4 C7H2N04 C7H4N20 3 C7H6N30 2 C7HgNp
164.0923
164.1036 164.1275 164.1162 163.9858 164.0096 164.0335 164.1049 163.9983 164.0222 164.0460 164.0699
Cg HP4 Cg H6N0 3
164.0109
CgHgNPZ CgH,oNp
164.0586
CgH'2N4 C9Hg0 3 C9 H IONO z
164.1063
C9HI2NP C9HI4N3 C9N4 C IO H 1Z 0 2
164.0950
164.0348 164.0825 164.0473 164.0712 164.1189 164.0124 164.0837
164.0011 164.0249
C II H I6 0 C II 0 2
164.1202
CIIH,gN C II H2NO C II H4N2 C'2 H20 C'2 H40 C'2 H6N CI3 Hg 165 CSH 13N204
164.1440
CsH,sN30 3 C6 H,sN0 4 C6HNP4 C6H3N30 3 C6 HSN402 C7H3N0 4 C7HsNP3 C7 H7N 30Z C7H9NP· CgHP4 CgH7N0 3 CgH9N 20 2 CgH II N30 CgH I3N4 C9H90 3 C9HII N02 C9 H I3 N2O
163.9898 164.0136 164.0375 164.1566 164.0262 164.0501 164.0626 165.0876 165.1114 165.1001 164.9936 165.0175 165.0413 165.0062 165.0300 165.0539 165.0777 165.0187 165.0426 165.0664 165.0903 165.1142 165.0552 165.0790 165.1029
181
Mass Spectrometry FM
FM
C9 HISN3
165.1267
C9 HN4 C IO H 1302
165.0202
CIOHlsNO
165.1154
CloHI7N2 CIOHNP CIO H3N 3
165.1393
C9H2N4 C IOH I4 0 2
165.0089
C IO H I6NO
165.0328
C ION0 2
C II H I70
165.1280
C 11 H0 2 C II H 19N
164.9976
CIO H 1SN 2 CIOH2NP CIO H4N3
C II H3NO
165.0215
C II HSN2 C I2 H21
165.0453
165.0916
165.1519
C9 HI4NP C9HI6N3 C9N 3O
166.1107 166.1346 166.0042 166.0280 166.0994
FM
C9 H1P3 C9HI3 N0 2 C9HISNP C9HI7N 3
167.0708 167.0947 167.1185 167.1424 167.0120
166.1233
C9HNP C9H3N4
165.9929
C IO H 1S0 2
167.1072
166.1471
C IO H I7NO
167.1311
166.0167
C IO HN0 2 CIO HI9N2
167.0007 167.0246
166.0406 166.1358
167.0359
167.1549
166.0054
165.1644
CIIH1SO C II H20 2 C II H20N
CIOH3NP CIO HSN 3
166.1597
C II H I9 0
167.1436
C I2 HP C I2 H7N
165.0340
C II H4NO
166.0293
C II H30 2
167.0133
165.0579
166.0532
C II H21 N
167.1675
C I3 H9 166
165.0705
C II H6N 2 C I2 H22 C I2 H6O
166.1722
167.0371
166.0419
CIIHsNO C II H7N2
CSHI4N204 C6H2N20 4
166.0954
166.0657
C I2 H23
167.1801
166.0783
166.0253
C I2 HP C I2 H9N
167.0497
C6H4NP3 C6H6N40 2 C7H4N04
C I2 HSN CI3 H IO 167
166.0491 166.0140
C6 H3N20 4 C6 HSNP3
167.0093 167.0331
CI3 HII 168
167.0861
166.0379
167.0570
C6H4NP4 C6H6NP3 C6HSN 402
168.0171
C7H6N20 3 C7HsNP2 C7H ION4O
166.0014
CSH604 CsHsN0 3
166.0266
C6H7N40 2 C7HsN0 4 C7H7NP3 C7H9N 30 2
166.0504
C7H •• N4O
CsH. oNP2 CSH. 2NP CSH.4N4 C9 H I00 3
166.0743 166.1220
C9 H. 2N0 2
166.0617 166.0856
167.0218 167.0451 167.0695
167.0484
167.0610
167.0736
168.0410 168.0648 168.0297
167.0934
C7H6N04 C7HsN 20 3
CSHP4 CSH9N0 3
167.0344
C7H. oN30 2
168.0774
167.0583
C7 H. 2N4O
168.1012
CsH •• N20 2 CsH I3 N P
167.0821 167.1060
CgHg04 CsH. oN0 3
168.0422
166.0630 166.0868
CSHISN4
167.1298
CSHI2N202
168.0899
166.0981
168.0535
168.0661
-,r
182
Spectroscopic Data Chemistry FM
168.1138
CSH'4NP CSH'6N4
168.1377
CsNp
168.0073
C9 H,z03 C9 H,4 N OZ
168.0786
C9 H'6 N ZO C9N zO z C9 H,sN 3 C9 HzN 3O C9H4N4 C IO H'60Z C lO O3
168.1025 168.1264 167.9960 168.1502 168.0198 168.0437 168.1151 167.9847
ClOH1SNO CIOHzNO z
168.1389
CIOHzoN z C lO H4N ZO ClO H6N3
168.1628
168.0085 168.0324 168.0563
FM
C7H9N Z03 C7H ll N 3O Z
169.0614
C'4 H
169.0852
170
169.1 091
C6H6NP4 C6HsN30 3
170.0328
C6H lO N 4O Z C7HgN04
170.0805
C7H,oN z0 3 C7H'2 N 30Z C7H'4N40 CSH IOO4 CsH,zN0 3 CSH'4NZOZ
170.0692
CSH'6N30 CsNPz C8HlSN4 C8HzN 4O
170.1295
C7H 13N P CSH904 C8H"N0 3 CgH 13 N Z0 2
169.0978
CsH,sNP
169.1216
CSH'7N4 CSHN40 C9H l3 0 3
169.1455
C 9H,sNO z C9 H'7 N ZO
169.1103
169.0501 169.0739
169.0151 169.0865 169.1342
C9 HNPz C9H'9N3 C9 H3NP C9HSN4
169.0038
C IO H'70Z C lO H0 3
169.1229
169.1580 169.0277 169.0515
CllHzoO C ll H40 Z
168.1515
C"HzzN C ll H6NO
C IOH,9NO C lO H3NO z
169.1467
168.1753 168.0449
C IO Hz,N2
169.1706
CllHgN Z
168.0688
C,zH Z4 C,zHgO
CIOHSNP ClOH7N3
169.0402
168.1879 168.0575
CllHzp
C,zHION C'3 H IZ
168.0814
C'4
168.0000
CllHsOz C ll Hz3 N C ll H7NO
169.0767
C6HSNP4 C6H7N 30 3 C6H9N40 2
169.0249
C ll H9N2 C'2 H2S
169.0726
C,zH 9O C'2 H ll N
169.0653
C7H7N0 4
169.0375
C'3 H 13
168.0211
168.0939
169
169.0488
FM
168.9925 169.0164
169.0078
170.0566 170.0453 170.0930 170.1169 170.0579 170.0817 170.1056 169.9991 170.1533 170.0229
C9 H'403 C9 H,6 N OZ C9N0 3
170.0943
C9H 1SN2O C9 H2NPz
170.1420
170. Il82 169.9878 170.0Il6 170.1659 170.0355
169.1593
C9H20N3 C9H4NP C9 H6N4
169.0289
CIOHlgO Z
170.1307
169.1832
CIOHzO, CIOHzoNO C,oH4N0 2
170.0003
170.1784
169.0892
ClOH2ZN2 ClO H6 N2O ClO H8N3
169.1018
C'I H220
170.1671
169.0641
169.0528 169.1957
170.0594
170.1546 170.0242 170.0480 170.0719
183
Mass Spectrometry FM
FM
C II H60 2
170.0368
171.0672
FM
172.0147
C 11 H24N
170.1910
C9H7N4 C IO H I9 0 2
171.1385
CgH2NP2 CgH20N4
C11HgNO
170.0606
C IO H30 3
171.0082
C gH4Np
172.0386
CIIHION2 C I2 H26
170.0845
C IOH21 NO
171.1624
C9H I6 0 3
172.1100
170.2036
171.0320
C90 4
171.9796
C1zH1OO C I2 H I2N C13 H I4 C I3 N
170.0732
CIO HSN 02 CIO H23N 2
171.1863
C9H 1gN0 2
172.1338
171.0559
C9H2N0 3
172.0034
170.1096
CIO H7NP CIO H9N 3
171.0798
172.1577
170.0031
C II H23 0
171.1750
C9H20NP C9H4N 20 2
C I4 H2
170.0157
C II H70 2
171.0446
172.1815
C II H25 N
171.1988
171.0406
C II H9NO
171.0684
C9H22N3 C9H6N P C9HgN4
170.0970
171
C6H7NP4 C6H9N 30 3
172.1690
172.0273 172.0511 172.0750
171.0644
C II H II N 2
171.0923
C6H II N 40 2 C7H9N0 4
171.0883
C I2 H II 0
171.0810
171.0532
C I2 HI3N
171.1049
C7HIIN203
171.0770
C 13 H I5
171.1174
C7HI3N30Z C7H I5N 4O CgH II 0 4
171.1009
CI3 HN
171.0109
171.1247
C I4 H3
171.0235
CIOH24N2 C IO HgN 2O
172.1941
171.0657
172
171.0896
172.0484
CgHISN202 CgH I7N3O
171.1134
C6HgN Z0 4 C6H ION30 3
CIO H ION3 C II H240
172.0876
CgHI3 N0 3
172.0723
C II Hg02
172.0524
C6HI2N402 C7H 1ON04
172.0961
172.0763
172.0610
CIINIONO C II H I2N2
172.1001
172.0848
C I2 H I2 O
172.0888
C I2 HI4N
172.1127
C I2N 2 C 13 H I6
172.0062
172.0022 172.0735
C I3 0
171.9949 172.0187
171.1373
CloH2002 C 1oH40 3 C IOH22NO C 1oH6N0 2
CgHNP2 CgHI9N4
171.0069 171.1611
C7HI2Nz03
CgH3Np C9H I5 0 3
171.0308 171.1021
C7HI4N302 C7HI6NP
C9H I7N0 2
171.1260
C9HN0 3
170.9956
C7NP2 CgH I2 0 4
C9H I9N zO C9H3N 20 2
171.1498
CgH I4N0 3
172.0974
C13 H2N C I4 H4
C9HzIN3 C9 H5N,0
171.1737
CgHl6NZOz CgN10 3
172.1213 171.9909
173
171.0433
CgH\gNp
172.1451
C6H9NZ04
171.0195
" 172.1087 172.1325
172.1464 172.0160 172.1702 172.0399 172.0637 172.1828
172.1253
172.0313 173.0563
184
Spectroscopic Data Chemistry FM
FM
C6HIIN303
173.0801
C 11 H13 N2
173.1080
C6Hl3N402 C7H ll N04
173.1040
173.0967
173.0688
C 12H'30 C'2 HlSN
C7Hl3N203
173.0927
C l2 HN 2
C7HlSN302 C7Hl7NP
173.1165
C7HNP2 CgH l3 0 4
FM 174.0429
173.1205
C9H6N20 2 C9HgNp C9H lON4
173.0140
C lO H22 0 2
174.1620
C l3 H l7
173.1331
C 1oH60 3
174.0317
173.1404
C13 HO
173.0027 173.0266
173.0814
C l3 H3N C l4HS
ClOHgN02 ClOH lON 2O
174.0555
173.0100
174.1032
CgH,sN0 3
173.1052
174
C IOH'2N3 C ll H lOO2
CgHl7NP2 CgHNP3 CgH'9NP
173.1291
C6H lON20 4 C6Hl2N303
174.0641
C6Hl4N402 C7Hl2N04
174.1118
C ll H,2NO C ll H 14N2 C ll N3
174.0919
172.9987
174.0766
C7HI4N203
174.1005
C 12H'40 C l2 H l6N
174.1045
173.1768 173.0464
C7Hl6N302 C7N30 3 C7H 1gN4O C7H2N40 2
174.1244
C'2NO C l2 H2N2 C I3 H,g
173.9980
CgH3NP2 CgH21 N4 CgHSN40 C9H l7 0 3
173.1529 173.0226
173.1178
C9H04 C9H l9N02 C9H3N03
173.1416
C9H21NP
173.1655
C9 HSNP2
172.9874
173.0391
174.0879
173.9940 174.1482 174.0178
174.0668 174.0907
174.0794 174.0681 174.1158 174.0093 174.1284 174.0218 174.1409 174.0106
174.0892 174.1131
C l4 H6
173.0351
C SH l404 CgH I6N..°3 CgN04
C l3 HP C13 H4N
173.9827
175
C9H23N 3
173.1894
CgHlgN202
174.1369
175.0719
C9 H7NP
173.0590
C9H9N4 CloH2102 C 1oHs0 3 C lO H23 NO
173.0829
175.1196
174.0304
C6HlSN402 C7H l3 N04
175.0845
174.1846
C7HlSN203
175.1083
173.1781
CgH2NP3 CSH20Np CgH4NP2 CgH22N4 CgH6N4O
C6H ll N20 4 C6Hl3N303
174.0542
175.1322
C lO H7N0 2
173.0477
C7Hl7N302 C7HN 30 3
C 1o H9NP ClOHllN3 C ll H90 2
173.0715
175.1560
CllHllNO
173.0841
C7H l9NP C7H3N40 2 CgH 1S 0 4 CgH l7N0 3
173.0113
173.1542 173.0238
173.0954 173.0603
C9H 1g0 3 C9HP4 C9H20N0 2 C9H4N0 3 C9H22N2O
174.0065 174.1608
174.1256 173.9953 174.1495 174.0191 174.1733
174.0344 174.0470
175.0958
175.0018 175.0257 175.0970 175.1209
185
Mass Spectrometry FM
FM
FM
C6HI6N402 C7HI4N0 4
176.1275
C I2 0 2
175.9898
176.0923
C I2 H 1g N
176.1440
175.0144
C7HI6N203
176.1162
C I2 H2NO
176.0136
CgH21 Np
175.1686
C7NP4
175.9858
C I2 H4N 2
176.0375
CgH5NP2 CgH7N40
175.0382
176.1400
C 13 H20
176.1566
175.0621
C7HIgN302 C7H2N30 3
176.0096
C I3 H4O
176.0262
C9H I9 0 3
175.1334
C7H20N 4O
176.1639
C I3 H6N
176.0501
C9HP4 C9H21 N0 2
175.0031
C7H4N40 2
176.0335
C I4 Hg
176.0626
175.1573
CgH I60 4
176.1049
177
C9H5N0 3
175.0269
CgH 1gN0 3
176.1287
C6HI3N204
177.0876
C9H7NP2 C9H9N P
175.0508
CgH2N0 4
175.9983
C6HI5N303
177.1114
175.0746
176.1526
175.0985
176.0222
C6HI7N402 C7H I5N04
177.1353
C9HIIN4 C IO H70 3
175.0395
CSH20N202 CgH2NP3 CSH6N302
176.0460
C7HI7N203
177.1240
C 1o H9N0 2
175.0634
CgHgN40
176.0699
C7HNP4
176.9936
CioHIIN20 CIO H 13 N3
175.0872
C9H200 3
176.1413
177.1478
175.1111
176.0109
C II HII 0 2
175.0759
C9HP4 C9H6N0 3
C7HI9N302 C7H3N30 3
176.0348
C7H5N40 2
177.0413
C II H I3 NO
175.0998
C9HgN 20 2
176.0586
CgH I7 0 4
177.1127
C II HI5N 2
175.1236
C9H ION30
176.0825
177.1365
C 11 HN 3
175.0171
176.1063
C I2 H I5 O
175.1123
C9HI2N4 C IO Hs0 3
CSH I9N0 3 CSH3N 04
C I2 H I7N
175.1362
C IO H ION0 2
176.0712
C I2 HNO
175.0058 175.0297
C IO H I2 N2O C to Hl4N3
176.0950
C I2 H3N2 C I3 H I9
175.1488
C 1oN4
C I3 H3O
175.0184
C II H I2 0 2
C13 H5N C I4 H7 176
175.0422 175.0548
CgHN04
174.9905
CgHI9 NP2 CgH3N20 3
175.1447
C6HI2N204 C6HI4 N)03
176.0473
CSH5N 20 3 CSH 7N 302
177.1001
177.0175
177.0062 177.0300 177.0539 177.0187
176.0124
CSH9N 4O C9HP4 C9H7N0 3
176.0837
C9H 9NPz
177.0664
C 11 N I4 NO
176.1076
C9H 11 N3O
177.0903
C9HI3 N4 C 1o H90 3
177.1142
176.0797
CIIHl6N2 C 11 N2O C II HzN3
176.1315
176.1036
C I2 H I6 O
176.1202
176.1189
176.0011 176.0249
CioHIIN02 C to HI3 N 2O
177.0777 177.0426
177.0552 177.0790 177.1029
186
Spectroscopic Data Chemistry
FM ClOH1SN J C 1O HN 4
177.1267
FM 178.0743
177.0202
C9HION202 C9 H I2N JO
178.0981
C 11 H I3 0 2 C 11 H I5 NO
177.0916
C9HI4N4
178.1220
CIIHI7N2
177.1393
CIOHIOO J C lO HI2N0 2
178.0630
C11HNP C 11 H3N J
177.0089
C lO HI4N 2O
178.1107
177.0328
C I2 H I7 O
177.1280
CloHI6N3 CIONJO
178.0042
C I2 H0 2 C I2 H I9N
176.9976
C I2 H3NO C I2 HSN2 C13 H21
177.1154
178.0868 1781346
FM CgH7N20J CgHgNP2 CgH 11 N 4O
179.0457 179.0695 179.0934
C9HP4 C9H9N0 3
179.0344
C9HIIN202 C9HI3 N P
179.0821 179.1298 179.0947
179.0583 179.1060
178.0280
177.1519
ClOH2N4 C II H I4 0 2
178.0994
C9HISN4 C toH II 0 3 C to H 13N0 2
177.0215
C 11 H I6NO
178.1233
C IO H1SN 2O
179.1185
177.0453
C II N0 2
177.9929
179.1424
177.1644
179.0120
179.0708
C II H 1gN 2
178.1471
CI3 HsO C I3 H7N
177.0340
C II H2N 2O
178.0167
CIO HI7N 3 CIOHNP C IOHJN 4
177.0579
C 11 H4N 3
178.0406
C II H 1S0 2
179.1072
C I4 H9
177.0705
C I2 H 1g O
178.1358
C II H I7NO
179.1311
C II HN0 2 C II H I9N 2 C II H3N 2O
179.0007
178
179.0359
CI2 H20 2
178.0054
C6HI4N204 C6HI6N303 C6HIgN402 C7HI6N0 4
178.0954 178.1193
CI21120N C I2 H4NO
178.1587
178.1431
C I2 H6N2 C I3 H22
178.0532 178.1722
C II HSN3 C I2 H I9 O
C7HIgN203 C7H2N 20 4
178.1318
178.0419
C I2 H30 2
179.0133
178.0014
C\3H6O C I3 H gN
178.0657
C I2 H21 N
179.1675
C7H4N30 3
178.0253
C I4 H lO
178.0783
C I2 HSNO
179.0371
C7H6N 40 2
178.0491
179
C I2 H7N 2
179.0610
CgH 1g04 CgH4N04
178.1205
C6HISN204
179.1032
C 13 H23
179.1801
178.0379
C I3 HP C I3 H9N
179.0497
CgH6N Z0 3
C6HI7N303 C7HI7N04
179.1271
179.0736
CgHgN30 2
178.0617
179.0861
178.0856
179.0093 179.0331
C I4 H II
CgHIONp C9H60 4
C 7H3NZ04 C7HsN 30 3
178.0266
C7H7N 40 2
179.0570
C9HgN0 3
178.0504
CgHSN0 4
179.0218
C6HI6N204 C7H4N 20 4
178.1080
178.0140
178.0293
179.1158
179.1549 179.0246 179.0484 179.1436
180 180.1111 180.0171
187
Mass Spectrometry FM
FM
18l.l593
180.0814
C 12 H2P C l2 Hs0 2
180.0939
C I2 H23N
18l.l832
180.0000
C I2 H7NO
181.0528 181.0767
C7HsN 20 4
181.0249
C I2 H9N l C I3 H1S
C 7H7NP3 C7H9N4Oz
181.0488
C7H6NP3
180.0410
C I3 HgO
180.0575
C7HgNP2 CgH6N 04
180.0648
CgHgNP3 CgH ION 30 2
180.0535 180.0774
CI3 H ION C I4 H I2 CIS 181
CgH I1N4O
180.1012
C9Hg04 C9H ION0 3
180.0422
180.0297
180.0661
FM
181.0289
181.1957 181.0653
181.0726
C I3 HP C I3 H II N
181.0892
C9HI1N1OZ
180.0899
C I4 H I3
181.1018
180.1138
CgH7N 04 CgH9N Z0 3
181.0375
C9H I4N 3O
181.0614
181.0078
C9HI6N 4 C9N 4O
180.1377
C SH II N 30 Z
181.0852
ClsH 182
180.0073
CSH I3 N 4O
181.1091
182.0328
C IO H IZ 0 3
180.0786
C9H90 4
181.0501
182.0566
C IO H I4NO z
180.1025
C9H II N0 3
181.0739
C7H6N Z04 C7HsNP3 C7H ION 4OZ
C IO HI6N zO
180.1264
181.0978
CgHgN04
182.0453
CION1O Z
179.9960
C9HI3NzOz C9H IS N3O
181.1216
CgH IONZ0 3
182.0692
CIOH IgN 3
180.1502
181.0151
CIO H4N4 C II H I6 0 Z
180.0437
C IO H I3 0 3
181.0863
180.1151
C II 0 3
179.9847 180.1389
CIOHlsNO z C IO H I7N zO C IOHN2OZ CloHI9N3 CIO H3N30
CgHIZN30Z CgH I4 N4O C9H IOO4 C9H I1N0 3
182.0930
180.0198
C9HI7N4 C9HN4O
18l.l455
C IO HzN 3O
CllHlsNO C II H2NO z
180.0085
C II HzoN 2
180.1628
C II H4NP C II H6N3
180.0324
181.1103 181.1342
182.0805
182.1169 182.0579 182.0817 182.1056
181.0038
C9HI4NzOz C9H I6N3O
182.1295
181.1580
C9N 3O Z
181.9991
181.0277
182.1533 182.0229
181.0515
180.0563
CIO HSN 4 C II H I7 0 Z
C9HISN4 C9 HzN4O
181.1229
CloHI403
182.0943
ClzHzoO C lz H40 Z
180.1515
C II H0 3
180.9925
182.1182
180.0211
C II H I9NO
181.1467
CIOHI6NOz C loN0 3
C IZ HZ2N
180.1753
C II H3NOz
181.0164
CJONlgNZO
182.1420
C IZ H6NO
180.0449
181.1706 181.0402
182.0116
180.0688
CIIH21Nz CllHsNzO C II H7N 3
CIOH2NzOz
CI1HgN Z C I3 Hz4
C JO HzoN3 C JO H4N3O
182.1659
180.1879
181.0641
181.9878
182.0355
Spectroscopic Data Chemistry
188 FM
C 1oH6N 4 CIIHIg02 C 11 H2OJ
182.0594
C 11 H20NO
182.1546
C 11 H4N0 2 C 11 H22N 2
182.1784
182.1307 182.0003 182.0242
FM
FM
C9HI9N4 C9HJNp
CIOH1SOJ C lO H I7N0 2
CgH ION04
184.0610
183.0308
CgHI2N20J
184.0848
183.1021
CgHI4NJ02 CgH l6Np
184.1087
183.1611
183.1260 182.9956
184.1325 184.0022
182.0480
CIOHNO J C lO H l9N 2O C lO HJN 20 2
182.0719
C IOH21 N J
183.1737
182.1671
CIOHSNJ O
183.0433 183.0672
182.1910
CIOH7N4 C ll H l90 2
182.0606
C 11 H30 3
183.0082
C l2 H ION 2
182.0845
C 11 H21 NO
183.1624
C9H20N4 C9H4N4O
C 13 H26
182.2036
C ll HsN02
183.0320
C IO H l6 0 3
184.1 100
183.1863
C IOO4
183.9796
183.0559
184.1338 184.0034
C 11 H6N P CllHgN J C l2 H22 O C I2 H60 2
182.0368
C l2 Hz4N C l2 HgNO
C 13 H 1OO
182.0732
C13 H I2N
182.0970
C l4 H I4
182.1096
C I4N C 1s H2
183.1498 183.0195
183.1385
CgNP2 C9 H l20 4 C9HI4NO J C9Hl6NP2 C9N 2OJ C9H,gNP C9H2N30 2
184.073~
184.0974 184.1213 184.9909 184.1451 184.0147 184.1690 184.0386
183.0798
CIOHIgN02 C IOH2N0 3
182.0031
CIIH23N2 C ll H7N2O C lI H9N 3 C 12 H23 O
183.1750
CloH20N20
184.1577
182.0157
C I2 H70 2
183.0446
CloH4N202
184.0273
C l2 H2SN
183.1988
184.1815
183
C7H7N 20 4
183.0406
C I2 H9NO
183.0684
CloH22N3 C 1oH6N3O
C 7H9NP3 .
183.0644
C I2 H ll N 2
183.0923
CIOHgN 4
184.0750
C7H ll N 40 2
183.0883
C I3 H27
183.2114
C Il H200 2
184.1464
CgH9N 04
183.0532
183.0810
C Il H40 3
184.0160
183.1049
C ll H22 NO
184.1702
184.0511
CgHIIN203
183.0770
C 13 H 1P C13 H I3 N
CgHl3NJ02 C gH 1SN 4O
183.1009
C l4 H 1S
183.1174
C 11 H6N0 2
184.0399
183.1247
C l4 HN
183.0109
C ll H24N 2
184.1941
C9 H l1 0 4
183.0657
C 1s H3
183.0235
C ll HgN 20
184.0637
C9H1J NO J
183.0896
184
C 11 H ION 3
184.0876
C9HISNz02 C9H I7N JO
183.1134
C7HgN 20 4
184.0484
C I2 H24 O
184.1828
183.1373
C7 H ION 3OJ
184.0723
C l2 Hg0 2
184.0524
C9 HNP2
183.0069
C7Hl2N40Z
184.0961
C1'2 H26N
184.2067
,.
189
Mass Spectrometry
FM
FM
FM CJOH0 4 C JO H23 N3
184.9874
C RH2N40 2
186.0178
185.1894
186.0892
CJOH 7Np C JO H9N 4
185.0590
C)1 J4 04 C9 H J6N0 3
185.0829
C9 N0 4
185.9827
185.1542 185.0238
C9 H JgNP2 C9H2N2OJ
186.1369
184.0062
CIIHzpz C JJ H50 3
184.1253
C JJ H23 NO
185.1781
C9 HzoNp
186.1608 186.0304
C J2 HJONO
184.0763
CJ2HJ2NZ C J3 H2g
184.1001
C J3 H JZ O
184.0888
CJ3H J4N C J3 N Z
184.1127
C J4 H J6
184.2192
186.1131
186.0065
C J4 0
183.9949
C JJ H7NO Z
185.0477
C9H4N30 2
C J4 HZN
184.0187
185.2019
C9 H zz N 4
186.1846
C J5 H4
184.0313
CJJHZ5NZ C JJ H9N ZO
185.0715
186.0542
185.0563
C JJ HIJN 3 C JZ HZ5 0
185.0954
C 7H 9N Z04
185.1906
C9 H6NP CJOHJgO J C JO HZ04
185.9953
C7HllN303 C7H J3 N4 OZ
185.0801
C JZ H90 Z
185.0603
C JO H1ON4
186.0907
185.1040
C 1z H z7N
185.2145
186.1495
CgHIJN04
185.0688
CJZHIJNO
185.0841
CJOHzoNO z C JO H4N0 3
CgHJ3NZ03
185.0927
CJOH2ZNZO
186.1733
CgHl5N302 CS H J7N40
185.1165
185.0967
CJOH6NZ02
186.0429
185.1404
CJZHJ3NZ CJ3H J3 O Ct3 HI5N
185.1080 185.1205
186.1972
CgHNP2 C9H2J N4
185.0100
C l3 HN Z
185.0140
C JOH24NJ C JO HgN3O
185.1768
C l4 H l7
185.1331
185.1529
C J4 HO
185.0027
185.0464
CJJH2Z0Z C JJ H60 3 C JJ HZ4 NO
186.1620
185.0391
CJJHgNO Z
186.0555
CJ1HZ6N2
186.2098
185
186.1256
186.0191
186.0668 186.0317
C9 H J9N30 C9 H5N4O C9H3N 30 2
185.0226
C l4 H3N C l5 H5
C9 H I3 0 4
185.0814
186
C9H l5 N0 3 C9 H l7NPz
185.1052
C7HJON z0 4
186.0641
CJJHJON20
186.0794
185.1291
C7Hl2N303
186.0879
186.1032
C9 HNP3
184.9987
186.1118
186.1985
CJOHJ9NOZ C JO H3N0 3
185.1416
C7Hl4N402 CgH JZ N0 4
CJJHJZN3 C JZ H260
186.0766
C J2 H JO O2
186.0681
185.0113
CgHJ4N203
186.1005
CJZHJZNO.
186.0919
CJOHZJNZO
185.1655 185.0351
185.9940
CJ2HJ4NZ C JZ N 3
186.1158
CJOH5N20Z
186.0093
CJUHJ703
185.1178
CgHl6N30Z CgNJO J CgH Jg N40
186.1244 186.1482
C 13 H J4 O
186.1045
185.0266
186.1859
190
Spectroscopic Data Chemistry
FM CI3 H I6N C1JNO C13 H2N2
186.0218
C I4 H 1g
186.1409
C I4 H2O
186.0106
C I4 H4N
186.0344
C l5 H6
186.0470
186.1284
FM
FM 187.2050
C9H I6 0 4
188.1049
187.0746
C9 H1gN0 3
188.1287
187.0985
C9 H2N0 4
187.9983
187.0872
188.1526
187.1111
C9H20NP2 C9H4N 20 3
CIIH2302 C 11 H70 3
187.1699
C9H22N 3O
188.1764
187.0395
C9 H6N 30 2
188.0460
C 11 H25NO
187.1937
C7HIIN204 C7H 13 N3OJ
187.0719
C 11 H9N0 2
187.0634
C9 H24N4 C9HgN 4O
188.2003
187.0958
C7HI5N40Z CgH 1JN0 4 CgHI5N203
187.1196 187.0845 187.1083
CI2HI102 C I2 H 13NO Cl2Hl5N2 C 1z HN 3
CgH I7NP2
187.1322
CgHNP3 CgH I9 N4O
187.0018 187.1560
CgH3N40 2 C9 H I5 0 4
185.9980
187
CIO H25 N3 C 1O H9N P CIO H 11 N 4 CIIHIIN20 CIJH I3 N3
187.0759 187.0998
C1OH200J CJOH 40 4
188.0222
188.0669 188.1413 188.0109 188.1651
187.0171
CloH22N02 C JO H6NO J
C I3 H I5 O
187.1123
CIOH24NzO
188.1890
C 1J H 17N
187.1362
CIOHgN202
188.0586
187.0058
C1oHJONJO
188.0825
187.0257 187.0970
CJ1HNO C13 H3N 2
187.0297
CloHI2N4
188.1063
C I4 H I9
187.1488
188.1777
C9H I7N0 3
187.1209
C l4 H3O
187.0184
CIIHz402 CIJHg0 3
C9HN0 4
186.9905
CIJHJON0 2
188.0712
C9H I9NPl C9H3N Z03
C I4 H5N CI5 H7
187.0422
187.1447
187.0548
C 1I H I2NP
188.0950
187.0144
188
188.1189
C9H21 N3O
187.1686
C7HllN104
188.0797
CIIHI4N3 C 11 N 4
C9H5N 30 2
187.0382
C7HI4N303
188.1036
C9H23 N4 COH7Np
187.1925
C7HI6N402 CgH I4N0 4
188.1275
C IO H I9 0 3
187.1334
CJOH 30 4
187.0031
CgHI6N203 CgN10 4
CloH21N02 C 1o H5N0 3
187.1573
187.1236
188.0348
188.0473
188.0124
ClzHI20Z C I2 H I4NO
188.0837 188.1315
188.1162
CI2HI6N2 C 11 N2O
187.9858
C I2 H2N 3
188.0249
C I3 H I6 O
188.1202
187.0269
CgHIgN30Z CgH2N3 0 3
188.1400 188.0096
C 13 0 2
187.9898
CloH23N20
187.1811
C gH20N2O
188.1639
C I3 H 1g N
188.1440
CJOH 7NP2
187.0508
CgH4N402
188.0335
C I3 H2NO
188.0136
187.0621
188.0923
188.1076 188.0011
191
Mass Spectrometry
C13 H4N2 C 14H20
188.0375
CIIHIINOz
189.0790
188.1566
CIIH13N20
189.1029
C 14H4O
188.0262
189.1267
C 14H6N
188.0501
CIIHlSN3 C ll HN 4
C1SHg
188.0626
C12H1302 C 12H 1S NO
189.0916 189.1393 189.0089
189
189.0202 189.1154
C7H!3N 20 4
189.0876
C7HlSN303
189.1114
C7H17N402 CgH 1S N0 4
189.1353
C12H17N2 C 12 HNP C 12H3N 3
189.1001
C 13 H 17O
189.1280
CgH17N203
189.1240
C 13 H02
188.9976
CgHNP4
188.9936
189.1519
CgH19N302
189.1478
C!3 H 19N C 13 H3NO
CgH3NP3 CgH21 N4O
189.0175
C 13 HSN2
189.0453
189.1717
C 14H21
189.1644
CgHSN 40 2
189.0413
C 14 HsO
189.0340
C9H 170 4
189.1127
C 14 H7N
189.0579
C9H 19N0 3
189.1365
C 1s H9
189.0705
C9H3N0 4 C9H21N202 C9 HSNP3 C9H23 N3O
189.0062
190.
189.1604
C7H14N204
190.0954
189.0300 189.1842
C7H16N303 C7HlgN402 CgH 16N0 4
190.1193 190.1431
189.0539
FM
FM
FM
189.0328
189.0215
190.1080
C9 Hz2 NP2 C9 H6N 20 3
190.1682
C9 HgN30 2 C9H 1ON 4O CloH2203 C 1o H60 4 C 1OHgN0 3
190.0617 190.0856
CloHION202 ClOH12NP CloH14N4 C ll H 1OO3 CIIHI2N02 C ll H 14NP C ll H 16N3 C11NP C 11 H2N4 C12H1402 C 12HI6NO C 12N0 2 C12HlgN2 C 12 H2NP C 12 H4N3 C 13 H 1gO C 13 H20 2
C9H7NP2 C9H9NP
189.0777
CgH 1gNP3
190.1318
C lO H21 0 3
189.1491
190.0014
C lO Hs04 C lO H23N0 2
189.0187 189.1730
CgH2NP4 CgH20N302 CgH4N30 3
C 1oH7N0 3
189.0426
CgH22N4O
190.1795
CloH9N202 C io H II N3O
189.0664
CgH6N 40 2
190.0491
C13 H20N C 13 H4NO C13 H6N 2 C I4 H22 C I4 H6 O C I4 HgN
189.0903
C9H 1g0 4
190.1205
C1sH 1O
CloHI3N4 C 11 H90 3
189.1142
C9H20N3 C9H4N04
190.1444
191
190.0140
C7HISNz04
189.0552
190.1557 190.0253
190.0379
190.1569 190.0266 190.0504 190.0743 190.0981 190.1220 190.0630 190.0868 190.1107 190.1346 190.0042 190.0280 190.0994 190.1233 189.9929 190.1471 190.0167 190.0406 190.1358 190.0054 190.1597 190.0293 190.0532 190.1722 190.0419 190.0657 190.0783 191.1032
Spectroscopic Data Chemistry
192
FM
FM
FM
C7Hl7N303
191.1271
C l3 H3 0 2
191.0133
C ll H lgN3
192.1502
C7Hl9N40Z CgH l7N0 4
19L1509
191.1675
C ll H2 N3O
192.0198
191.0371
C ll H4N 4
192.0437
CgHl9NZ03
191.l396
C13 HZl N C l3 HSNO C l3 H7Nz
191.0610
192.1151
CgH3NP4
191.0093
C l4 Hz3
191.1801
ClzHl60Z C l2 0 3
191.9847
CgHZlN302
191.1635
C l4 H7O
191.0497
ClZHlgNO
192.1389
CgHSNP3 CgH 7N40Z
191.0331
C l4 H9N
191.0736
ClzHzNO z
192.0085
191.0570
191.0861
191.1284 191.1522
192.1111
ClzHzoNz C 1ZH4N zO C lz H6N 3
192.1628
C9H I9 0 4 C9H2l N0 3
ClsH 11 192 C7H l6N Z04
C9HSN04 C9H7NP3 C9H9N 30Z
191.0218
C7HlgN303
192.1349
C 13 HZOO
192.1515
191.0457
C7H20NPz CgH 1gN0 4
192.1588
C 13 H4OZ
192.0211
192.1236
C l3 Hzz N C l3 H6NO
192.1753
192.1475 192.0171
C 13 HgN Z
192.0688
191.1158
191.0695
192.0324 192.0563
192.0449
C9 H ll N 4O
191.0934
C lO H70 4
191.0344
CgHZONZ03 CgH4N Z04
C lO H9N0 3
191.0583
CgH6N30 3
192.0410
C I4 Hz4
192.1879
C lO H ll N 2OZ 191.0821
CgHgN40 Z
192.0648
C l4 HgO
192.0575
C lO H l3 N3O
191.1060
C9Hzo 0 4
192.1362
C l4 H lON
192.0814
CIOHlSN4 C II H lI 0 3
19l.l298
C9 H6N04
192.0297
192.0939
191.0708
192.0535
C lI H I3NO z
191.0947
C9 HgNP3 C9 H lON3OZ
ClsH 1Z C I6
192.0774
193
CllHlSN20
191.1185
C9H lZN4O
192.1012
C7Hl7N204
193.1189
ClIHI7N3 C ll HN 30
19l.l424
C lO Hg04
192.0422
CioHlON03
192.0661
C 11 H3N4
191.0359
ClOHl2Nz02
192.0899
C7HI9N303 CgH l9N04 CgH SN Z0 4
193.1427
191.0120
ClzHISOZ C I2 H l7NO
19I.1072
CloHl4N30
192.1138
193.0488
191.1311
192.1377
C1zHNO z
191.0007
CloHl6N4 C lON 4O
CgH7NP3 CgH9N40 2
192.0073
C9H 7N0 4
193.0375
Cl2HI9Nz C 1Z H3N P
191.1549
192.0786
191.0484
192.1264
C9H9N 20 3 C9HIIN302 C9 H 13 N40
193.0614
C 12 HsN3 C 13 H I9 O
CllHl203 CllHl4N02 C ll H l6N zO
191.1436
C ll Nz0 2
191.9960
C9 H7N3O
193.0590
191.0246
192.1025
192.0000
193.1315 193.0249 193.0726
193.0852 193.1091
193
Mass Spectrometry
C 1oH90 4
193.0501
CioHIIN03
193.0739
CIOHI3N202 C IO H 1SN 3O
193.0978 193.1216
FM
FM
FM
194.0606
CgH6NP4 CgHgNP3
194.0328 194.0566
CI3 HgNO C13 H ION 2
CgHION402 C9HgN04
194.0805
C I4 H26
194.1036
194.0453
C I4 H 1OO
194.0732
C I4 H I2N
194.0970
194.0845
CloHI7N4
193.1455
C9H 1ONP3
194.0692
CIOHNP C II H I3 0 3
193.0151
C9HI2N302
194.0930
C 1s H I4
194.1096
193.0865
194.1169
193.1103
194.0579
ClsN C I6 H2
194.0031
CIIHISN02
C9HI4NP C IOH 1004
CIIHI7NzO
193.1342
C IO H 1ZN0 3
194.0817
195
CIIHNPz
193.0038
194.1056
193.1580
CgH7NP4 CgH9NP3
195.0406
CIIHI9N3 C II H3N P
CIOHI4NzOz C IO H I6N3O
193.0277
C ION3OZ
193.9991
C II HSN4
193.0515
CIO H1gN 4
194.1533
C9HIIN402 C9H9N04
195.0883
ClzHI70Z C 1z H0 3
193.1229
C IO HzN4O
194.0229
C9H II N z0 3
195.0770
192.9925
C II H I4 0 3
194.0943
193.1467
C II H I6NO z
194.1182
C 1Z H3NOz
193.0164
C II N0 3
193.9878
ClzHzlNz C I2 HsNp C I2 H7N 3
193.1706
CIIH1gNZO
194.1420
C9HI3N30Z C9H 1SN4O C IO H 1104 C IOH 13N0 3
195.1009
C 1Z H I9NO
193.0402
194.1659
CIOHISN20Z C IOH I7N3O
195.1134
193.0641
CIIHzNzO z C II HzoN3
194.0116
195.1373
C I3 H21 O
193.1593
C II H4N3O
194.0355
C IO HN 30 2
195.0069
C I3 Hs02 C I3 H23 N
193.0289
194.0594
193.0528
194.0003
CIO HI9N4 CIO H3N4 O C II H 1S 0 3
195.1611
C 13 H7NO
C II H6N 4 CIZHlgOZ C 1z Hz0 3
195.1021
C I3 H9N 2 C I4 Hzs
193.0767
C 1Z H20NO
194.1546
C II H I7NO z
195.1260
193.1957
C 1Z H4NOz
194.0242
C II HN0 3
194.9956
C I4 H9O
193.0653
194.1784
C II HI9N zO
195.1498
C I4 H 11 N
193.0892
ClzHz2N2 C I2 H6 N 2O C 1ZHgN3 C 13 H2Z O
194.0480
CIIH3NzOz
195.0195
194.1671
CIIHzIN3 C 11 HsN 3 O
195.1737
C I3 H6OZ
194.0368
C IlH7N4
195.0672
C I3 H24N
194.1910
CI2HI902
195.1385
193.1832
C 1sH I3
193.1018
C I6 H
193.0078
194
C7H 1gNP4
194.1267
194.1295
194.1307
194.0719
194.0157
195.0644 195.0532
195.1247 195.0657 195.0896
195.0308
195.0433
Spectroscopic Data Chemistry
194
C,zH 30 3 C'2 H2I NO
195.0082
C,zH sN0 2 C'2 HZ3 N2
195.0320
C,zH 7N zO C'2 H9N3
195.0559
C 13 H2P C'3 H70Z
195.1750
195.1624 195.1863 195.0798 195.0446 195.1988
C'3 Hzs N C13 H9NO C'3 H II N2
195.0684 195.0923 195.2114
C'4 HZ7 C'4 H IIO C'4 H '3N
195.0810
C,sH,s C,sHN C'6 H3
195.0109
195.1049 195.1174 195.0235
196
CgHgNZ0 4 CgH ION30 3
196.0484
CgH,zN 40 2 C9H ION04
196.0961
C9 H,zN z0
196.0848
3
196.0723 196.0610 196.1087
C9HI4N302 C9 H'6N40
196.1325
C9N 4OZ
196.0022
C IO H 1Z 0 4
196.0735
C IO H,4N03 C'OH'6N ZOZ
196.0974
C,oN Z0 3 C IO H,gN 3O
195.9909 196.1451
CIOHzNPz
196.1213
196.0147
FM
FM
FM
CIO HZON 4 C IO H4N4 O C II H'603 C II 0 4 CIIH,sNO z C II H1N0 3 CIlI-twNP C II H4NZ02 C"H zz N 3 C II H6N3O C II HgN4 C'2 H200Z C'2 H403 C'ZH22NO C,zH6NO z C'2 HZ4 N2 C'2 HgN ZO C,zH,oN 3 C'3 H240 C'3 HPZ C13 H26N C'3 H IONO C 13 H I2Nz C'4 H2g C I4 H,zO C'4 H I4 N C'4N 2 C 1s H'6 C,p C 1s H2N C'6 H4
196.1690 196.0386 196.1100 195.9796 196.1338 196.0034 196.1577 196.0273 196.1815 196.0511 196.0750 196.1464 196.0160 196.1702 196.0399 196.1941 196.0637 196.0876 196.1828 196.0524 196.2067 196.0763 196.1001 196.2192 196.0888 196.1127 196.0062 196.1253 195.9949 196.0187 196.0313
197
CgH9NP4
197.0563
CgH'I N303 CgH 13 N40 2 CqH Il N0 4 C9H13 NZ0 3
197.080 I
C9H,sN 3OZ C9H'7N40 C9HN 4OZ
197.1165 197.0100
C IO H 13 0 4
197.0814
C,oH 1SN0 3
197.1052
197.1040 197.0688 197.0927 197.1404
C'OH I7NzOz 197.1291 196.9987 C IO HNP3 C lO H l9 N3O 197.1529 C,oH 3N3OZ
197.0226
C,oH z,N 4 C,oH sN4 O
197.1768 197.0464
C II H'703 C II H0 4
197.1178 196.9874
C II H'9NOZ C"H 3N03 C lI H2,N2O ClI HSNz02
197.1416
C II H23 N3
197.1894
C II H7N3O C II H9N4
197.0590
C,zH 2 Pz C,zH 50 3
197.1542
C'ZH 23 NO C,zH 7NO z C'2 H2SN Z
197.1781
C,zH 9 N1 O C'2 H II N,
197.0715
C 13 H2S O
197.1906
197.0113 197.1655 197.0351
197.0829 197.0238 197.0477 197.2019 197.0954
195
Mass Spectrometry
CgH13 NP3 CgH,sN 4OZ C9H,3 N04
199.0958
C9H,sN z0 3 C9H'7N302
199.1083
CIIHgNp C II H ION4
C9HNP3 C9H'9N40
199.0018
198.0668 198.0907
C9H3NP2
199.0257
C'2H2202 C,zH 60 3 C'2HZ4NO
198.1620
199.0970
C'2HgN02 C'2 HZ6N2 C'2 H ,oN 2O C'2 H'2N3 C'3 H260
198.0555
C'OH'S04 C'OH'7N 03 C,oHN04 C IOH'9NPZ C,oH3N20 3 C,oH2,N 3O C IO HsN3OZ
199.0144
199.1925
C 13 H'OO2 C13 H2gN C'3 H '2NO C'3 H'4N 2 C'3N 3 C'4 H30 C'4 H '40 C'4 H'6N C'4NO C'4 H2NZ
198.0681
C'OH23N4 C,oH 7NP C"H'903 C II H30 4
199.1334 199.0031
C II H2,N02 C II HsN0 3 C II H23 N2O
199.0269
C'3 H902 C'3 H27N C'3 H II NO C'3 H '3 N2
197.0603
C II H20 4
197.9953
197.2145
198.1495
197.0841
C II H20N02 C II H4N0 3
198.0191
197.1080
C Il HzzN2 0
198.1733
C'4H29 C'4 H '30
197.2270
C"H6N 20 2 C II Hz4N3
198.0429
C'4H ,sN C'4 HN 2
197.1205
C'SH'7 C,sHO C,sH3N C'6 HS
197.1331
197.0967 197.0104 197.0027 197.0266 197.0391
198
CgH lON20 4 CgH'2N 303 CgH'4N402 C9H,2N04 C9 H'4N 203 C9H'6N30Z
198.0641
C9NP3 C9H,gN 4O C9H2N40 2
197.9940
C'OH'404 C IO H,6N03 C,oN0 4
198.0892
198.0879 198.1118 198.0766 198.1005 198.1244 198.1482 198.0178 198.1131 197.9827
C'OH,gN 20 2 198.1369 C,oH 2N20 3 198.0065 C,oHzoN3 O 198.1608 C,oH 4N3OZ 198.0304 198.1846 C,oH 2ZN4 198.0542 C,oH6N4O I 198.1256 C It H,g03
FM
FM
FM
198.1972
198.0317 198.1859 198.2098 198.0794 198.1032 198.1985 198.2223 198.0919 198.1158 198.0093 198.2349 198.1045 198.1284 197.9980 198.0218
C'SH,g C 15 H2O
198.1409
C,sH 4N C'6 H6
199.0845 199.1322 199.1560
199.1209 198.9905 199.1447 199.1686 199.0382 199.0621
199.1573 199.1811 199.0508 199.2050 199.0746 199.0985 199.1699 199.0395
198.0344
C'2 H703 C'2 H25 NO
198.0470
C,zH 9N0 2
199.0634 1992176
199.0719
C'ZH 27N2 C1ZHIINP
198.0106
199
CgH'I N204
C"H 7NP2 C IIH2SN3 C II H9N3O C II H II N4 C'2 H230Z
199.1196
199.1937
199.0872
196
Spectroscopic Data Chemistry FM
Cl2Hl3N3 C 13 H 2P C'3 H l102 C'3 H29N C I3 H 13 NO C13 H lSN2 C l3 HN 3 C'4 H lSO CI4H'7N C l4 HNO
199.1111
FM
FM
200.0460
C 1s H4 O
200.0262
200.2003
C,sH 6 N C l6 H8
200.0501
C'OH6N3O? ClOH24N4 CIO H8NP C ll H200 3
200.1413
201
199.0998
C ll H40 4
200.0109
C8H 13 N20 4
201.0876
199.1236
C ll H22 N02
200.1651
20l.l114
199.0171
C"H6N03 CIIH24N20 C Il H8N z0 2
200.0348
C8H,sN 30 3 C8H'7N402
201.1353
200.1890
C9H 1S N0 4
201.I001
200.0586
201.l240
C ll Hz6N 3 C ll H lON3O
200.2129
C9Hl7N203 C9HN Z0 4
200.0825
201.1478
201.0413
199.2063 199.0759 199.2301
199.1123 199.1362 199.0058
200.0699
200.0626
200.9936
C l4 H3Nz C 1s H l9
199.0297 199.1488
C ll H 1ZN 4
200.1063
C1sHP C1sHsN C'6H7
199.0184
200.1777
199.0422
Cl2Hz302 C l2 H80 3
200.0473
C9Hl9N30Z C9H3N30 3 C9Hz1 N 4O C9HsN 4O Z
199.0548
C 1z H26NO
200.2015
C lO H l70 4
201.1 127
C,lH IO N0 2
200.0712
201.1365
ClzHz8N2 CIIHIIN20 C'ZH'4 N 3
200.2254
C IO H l9N0 3 C 1oH3N0 4
201.1604
C l2 N4 C'3 H280 C 13 H 1Z0 2 C l3 H l4NO
200.0124
CIOH21N202 C lO HsN 20 3 C IO H23 N3O C lO H7 N 3OZ
200.1076
C,oH 2S N4 ClO H9 N4O
201.2081
200.1315
C Il H21 0 3
201.1491
200.0011
CIl HS04
201.0187
200.0249
201.1730
200.1202
C'IH13N~z C"H 7N0 3
200
C8H'2 N204 C8Hl4N303 C8H'6N402 C9H l4N0 4
200.0797
C9Hl6N203 C9N20 4
200.1162
C9Hl8N30Z C9 HzN 30 3
200.1400
C9Hzo Np C9H4N40 2
200.1639 200.0335
C13H'6N2 C l3 NP C l3 HzN 3
C'OH'604 C'OH I8 N03 C 1oH2N0 4
200.1049
C l4 H l6O
200.1287
C l4 0 Z
199.9898
199.9983
C'4 H I8 N
200.1440
C'4 H2NO C'4 H4 N2 C,sH zo
200.0136
200.1036 200.1275 200.0923 199.9858 200.0096
CIOH20N202 200.1526 C,oH 4N z0 3 200.0222 C,oH 2ZN 3O 200.1764
200.0950 200.1189 200.2141 200.0837
201.0175 201.1717
201.0062 201.0300 20 I.l 842 201.0539 201.0777
201.0426
CllHzsN10 C ll H9 N zO z
201.1968 201.2207
200.0375
CIIH27N3 C ll H Il N30
200.1566
C Il HJ3N 4
201.1142
201.0664 201.0903
197
Mass Spectrometry
FM
FM
FM
CI2H2S02 C I2 H90 3
201.1855
C IOH 1g0 4
202.1205
C I4 H20N
202.1597
201.0552
C IO H20N0 3
202.1444
C l4 H4NO
202.0293
C I2 H27NO
201.2094
C IO H4N0 4
202.0140
202.0532
C l2 H ll N0 2
201.0790
C I2 H I3 NP
201.1029
CloH22N202 202.1682 C IO H6N 20 3 202.0379
C I4 H6N 2 C 1s H22 C 1s H6O
202.0419
CI2HlSN3 C I2 HN4 C 13 H\302 C I3 H 1SNO
201.1267
202.0657
CI3Hl7N2 C l3 HNzD C I3 H3N3
202.1921
202.1722
202.2160
201.1154
CIO H26N4 C io H ION4O
C1SHgN C I6 H IO 203
202.0856
CgHlSN204
203.1032
201.1393
C ll H22 0 3
202.1569
CgHI7N303
203.1271
201.0089
C 11 H60 4
202.0266
203.1509
201.0328
C ll H24N02
202.1808
CgHI9N402 C9 H I7N04
C I4 H I7 O C I4 H0 2
201.1280
C ll HgN03
202.0504
CIIH26N20
202.2046
C I4 H I9N
201.1519
C9HI9N203 C9H3N 20 4 C9H21N302 C9HsN 30 3
203.1396
200.9976
201.0202 201.0916
CloH24N30 C IO HgN 30 2
202.0617
202.0783
203.1158 203.0093
C I4 H3NO
201.0215
CIIHION202 202.0743 C II H I2N3O 202.0981
C I4 HSN2 C 1s H21
201.0453
C II H I4N 4
202.0122
C9H23 N 4O
203.1873
201.1644
CI2H2602 C I2 H IOO 3
202.1934
C9H7N 40 2
203.0570
202.0630
CloHI904
203.1284
202.0868 202.1107
CloH21N03 CIO HSN 04
203.0218
202.1346 202.0042
CIOH23N202 203.1761 CloH7N203 203.0457
202.0280
C to H2SN 3O
203.1999
202.0994
203.0695
ClsHsO C 1S H7N C I6 H9
201.0340 201.0579 201.0705
202 CgHI4NP4 CgHI6NP3
202.0954
CgHIgN402 C9H I6N04
202.1431
202.1193
CI2HI2N02 C I2 H I4NP CI2HI6N3 C I2NP C I2 H2N 4
203.1635 203.0331
203.1522
C\3H I4 0 2 C I3 H I6NO
202.1233
CloH9N302 C IO H 11 N 4O
C9HIgN203
202.1318
C\3NO Z
201.9929
C II H23 0 J
203.1648
C9H2NP4 C9Hzo NP2
202.0014
CI3HIgN2 C I3 H2N 2O
202.1471
C II H70 4
203.0344
202.0167
CIIH2SN02 C 11 H9N0 3
203.1886
202.1080
202.1557 202.0253
202.0406
C9H4NP3 C9Hz2N 4O
202.1795
C\3H 4N 3 C I4 H 1gO
202.1358
C9H6N P2
202.0491
C I4 HP2
202.0054
203.0934
203.0583
C 11 HI\N 20 2 203.0821 CIIHI3N30 203.1060
198
Spectroscopic Data Chemistry FM
C lI H,sN 4
203.1298
C,zH lI 0 3 C,zH 13 N0 2 C'2 H ,sN 2O C'2 H '7N3
203.0708 203.0947 203.1185 203.1424
FM
C9HgN4OZ C IO Hzo 0 4 C'OH 22N0 3 C lO H6N04
204.0648 204.1362 204.1600 204.0297
C 13 H'502 C 13 H'7NO
203.1072
C 13 HN0 2
203.0007
C'OH 24 N zO z 204.1839 C IO HgN 20 3 204.0535 C IOH ION 30 2 204.0774 C IO H'2 N40 204.1012 204.1726 C lI H24 0 3 204.0422 ClI Hg04
C 13 H'9N 2 C13 H3N2O C13 HSN 3
203.1549
C 11 H lON0 3
204.0661
203.0246
C II H'2N 20Z C"H'4N30
204.0899
C'4H '90 C'4 H302 C'4 H2,N
203.1436
204.1377
203.0133
C lI H'6N 4 C lI N40
203.1675
C'2 H '203
204.0786
C I4 HSNO C I4 H 7N 2
203.0371 203.0610
204.1025 204.1264
C Is Hz3
203.1801
C 12 H,4N 02 C I2 H,gN 2O C I2N 20 2
C Is H70
203.0497
C,sH9N C I6 H lI
203.0736
C 12 HN,G C'2H 3N 4
203.0120 203.0359 203.1311
203.0484
FM
C'4 H6NO C'4 HgNZ C,sH Z4 C'5 HgO
204.0449 204.0688 204.1879 204.0575
C,sHION C'6 H ,Z
204.0814
C'7 205
204.0000
CgHI7N204 CgH'9 N303
205.1159
204.0939
205.1427
CgH2,N 40 2 C9H I9N04
205.1666
C9H2,N20 3 C9H5N 20 4
205.1553 205.1791 205.0726 205.1440
203.9960
C9Hz3N302 C9H7N 30 3 C9H9N40 2 C lOHzI 0 4 C IO Hz3 N03
204.1502
C lO H7N04
205.0375
204.0198
C lO H9N 20 3
205.0614
204.0437
204.1138 204.0073
205.1315 205.0249 205.0488
205.1679
203.0861
CI2HIgN3 C I2 HzN,G C I2 H4N4
204.1151
CgHI6N204
204.1111
CI3HI602 C I3 0 3
CloHlIN302 205.0852 C lO H I3 N4O 205.1091
203.9847
C lI H90 4
205.0501
CgHIgN303
204.1349
C 13 H 1gNO
204.1389
CIIHIIN03
205.0739
CgH20N40Z C9 H IgN04
204.1588
C'3 H2N 02 CI3H20N2 C I3 H4N 2O
204.0085
ClIHI3Nz02 205.0978 CIIHISN30 205.1216
204.0563
204.1713
C I3 H6N 3 C I4 Hzo O
204.0410 204.1952
204
C9H20N203 C9 H4 NP4
C9H2ZN302 C9H6N30 3 C9H I4N 4O
204.1236 204.1475 204.0171
204.1628
205.1455
204.1515
CIIHI7N4 C ll HN 40 ClzHI303
C I4 H4OZ
204.0211
CI2HISN02
205.1103
C I4 HzzN
204.1753
CI2HI7N20
205.1342
204.0324
205.0151 205.0865
199
Mass Spectrometry
FM
FM C I2 HN Z0 2
205.0038
CI2HI9N3 C 1ZH3N P
205.1580
CIOHION203 206.0692 CloHl2N302 206.0930
205.0277
C 1zHsN4
205.0515
CI3HI702 C I3 H0 3
FM 206.0970
C1sH1zN C I6 H I4
206.1096
CloHI4N40
206.1169
C I6N
206.0031
206.0579
C l7 H2
206.0157
205.1229
CI1H1OO4 C II H 1ZN0 3
206.0817
207
204.9925
CI1HI4NzOz
206.1056
CgHl9NZ04
207.1345
C I3 H I9NO
205.1467
CgH2,NP3 C9H21 N0 4
207.1584
205.0164
CIIHI6N30 C 11 N3OZ
206.1295
C I3 H3NO z C'3 H2IN Z C\3HSNp C'3 H7N 3
205.1706
C ll H 1gN 4
206.1533
207.0406
205.0402
C II H2N 4O
206.0229
C9H7NP4 C9H9N P3
C9H II N 4OZ 207.0883
C I4 Hz1 O
205.1593
206.1182
C 1oH9N04
C I4 HsOz C I4 Hz3 N
205.0289
C 12 H'403 CI2HI6NOz C I2N0 3
206.0943 205.9878
205.1832
C,zH1gNZO
206.1420
CIOHIINz03 207.0770 C 1oH'3 N 30Z 207.1009
C I4 H7NO
205.0528
ClzHzNzOz
206.0116
C I4 H9N 2 C 1s H2S
205.0767 205.1957
CI2HzoN3 C 1z H4N3O
206.1659
C 1s H9O
205.0653
C 1zH6N 4
C1sH11N C'6 H '3
205.0892
C'3 H lgOi C'3 H203
C I7 H
205.0078
205.0641
205.1018
206 CgH,gN 20 4
206.1267
CgH20N303
206.1506 206.1744
CgHZ2N402 C9H20N04 C9H2ZNP3 C9H6N Z04 C9HgNP3 C9H ION 4OZ CloH2204 C 1O HgN04
C\3H 20NO C I3 H4N0 2 C'3 H2ZN 2
205.9991
206.0355 206.0594 206.1307 206.0003 206.1546 206.0242 206.1784
CioHISN40 C II H 11 0 4
207.1471 207.0644 207.0532
207.1247 207.0657
207.0896 CIIHISN202 207.1134 C II H'7N30 207.1373 C II H I3 N0 3
C II HNP2 C II H'9N4
207.0069
C II H3N4O
207.0308 207.1021
C'ZH'S03 C'2 H'7N 02
207.1611
206.0719 206.1671
C I2 HN0 3
206.1393 206.1631
C\3 H6N P C\3H gN 3 C I4 H2Z O
CI2HI9N20
206.9956 207.1498
C I4 H6OZ
206.0368
ClzH3N20Z
207.0195
206.0328
C I4 H24N
206.1910
C'4HgNO C l4 H ION2
206.0606
ClzHzIN3 C I2 HsNp
207.1737 207.0433
C 1z H7N4
207.0672 207.1385 207.0082
206.0566 206.0805 206.1518 206.0453
C 1s Hz6 C1sHIoO
206.0480
206.0845 206.2036 206.0732
CI3HI902 C I3 H30 3
207.1260
Spectroscopic Data Chemistry
200 FM
C I3 Hz1 NO
207.1624
C I3 HsNO z
207.0320
CI3Hz3Nz C I3 H7NP C I3 H9N3
207.1863
C I4 Hz3 O
207.1750
C I4 H7OZ
FM
CIIHzoN4 C lI H4NP ClzHI603 C I2 0 4
208.1690 208.0386 208.1100
Cl2HISNOz C 1zHzN0 3
207.9796 208.1338 208.0034
207.0446
C I2 H20NP
208.1577
207.1988
CI2H4NzOz
C I4 H9NO
207.0684
CI4HIIN2 C 1sH27
207.0923
ClsHIIO C 1SH 13 N
20'1.0810
ClzH22N3 C 1zH6N3O C 1zHsN4 C 13 H20 0 2 C 13 H40 3
208.0273 209.1815 208.0511 208.0750
C I6H 1S
207.1174
C I6 HN
207.0109
C I7 H3
207.0235
C I4 H2S N
207.0559 207.0798
207.2114 207.1049
208
208.1424
CsHzoNz04 C9HsN z0 4
208.0484
C9H ION30 3
208.0723
C9HIZN40Z
208.0961
CioHION04
208.0610
CioHIZNz03
208.0848
CloHI4N30Z
208.1087
CloHI6N40 C 1oN 4OZ
208.1325 208.0022
C 13 H zz NO
C 13 H6 NOz C 13 H Z4 N z
C I3 HsNp C I3 H ION3 C I4H z4O C I4 HsOz C I4 Hz6N C I4 H IONO CI4HIZNz C1sH zs C1sHIzO C 1S HI4 N
C1sN z 208.0735 C I6 H I6 CIIHIZ04 208.0974 C I6 0 CIIHI4N03 CIIHI6NzOz 208.1213 C I6 HzN 207.99-09· C I7 H4 C II N20 3 CIIHISN30 208.1451 209 CIIHzN30Z 208.0147 C9H 9N Z04
208.1464 208.0160 208.1702 208.0399 208.1941 208.0637 208.0876 208.1828 208.0524 209.2067 208.0763 208.1001 208.2192 208.0888 208.1127 208.0062
FM
C9H 11 N,03 C9H13 N40 2
209.0801
C IO H II N0 4
209.0688
209.1040
CIOHI3N203 209.0927 CIOHISN30Z 209.1165 CloHI7N40 C IO HN4OZ
209.1404
C II H I3 0 4
209.0814
CIIHISN03
209.1052
209.0100
CIIHI7NzOz 209.1291 C II HN Z0 3 208.9987 C II H I9N3O CIIH3N30Z CIIHzIN4 C 11 HsN4O ClzHI703 C 1z H04
209.1529 209.0226 209.1768 209.0464 209.1178 208.9874
CIZHI9NOz C 1z H3N03
209.1416
ClzHzlNzO
209.1655
C1zHsNPz C 12HZ3 N3
209.0351
C 1zH 7N3O C 1zH9N 4
209.0590
CI3HzIOZ C I3 Hs0 3 C 13 HZ3 NO
209.1542
208.1253 207.9949 C I3 H7NO z 208.0187 CI3HzsN2 108.0313 ·C I3 H9NzO C13 H II N3 209.0563 C l4 Hzs O
209.0113
209.1894 209.0829 209.0238 209.1781 209.0477 209.2019 209.0715 209.0954 209.1906
201
Mass Spectrometry
FM
FM
FM C I4 H90 2
209.0603
C I2 HP4
209.9953
C9H\3N 30 3
211.0958
C I4 H27N
209.2145
210.1495 210.0191
C9HISN40Z C IOH\3N0 4
211.0845 211.1083
211.1196
C I4 H II NO
209.0841
CIZH20NOz C lz H4N0 3
CI4HI3Nz C Is Hz9
209.1080
ClzHnNp
210.1733
CioHISNz03
209.2270
C I2 H6NPz
210.0429
C 1S H\30
209.0967
210.1972
CISH1SN C IS HN 2
209.1205
ClzH24N3 C I2 HsN 3O
CIOHI7N302 211.1322 C 1OHN 30 3 211.0018
209.0140
210.0907
C I6H I7
209.1331
C iz H ION 4 C I3 Hzz 02
CloHI9N40 211.1560 C IO H3N 4O Z 211.0257
210.1620
C II H 1S0 4
C I6HO
209.0027
C\3H60 3 C\3H Z4NO C I3 HsNO z
210.0317
C II HI7N0 3
211.1209
210.1859
C II HN04
210.9905
210.0555
CIIHI9Nz02
211.1447
C\3H Z6N Z
210.2098
CIIH3Nz03
211.0144
C I3 H 1ONP
210.0794
C\3H 1ZN 3 C I4 Hz6O C I4 H IOOZ
210.1032 210.0681
CIIHzIN30 C II HsN 30 Z CIIHz3N4 C I1 H7N 4O
C I4 HzsN
210.2223
C I4H 1ZNO
210.0919
CI4HI4Nz C I4N 3
210.1158
C IO HzN 4O Z 210.0178 210.0892 C II H I40 4
C Is H30
C II H I6N0 3 C II N0 4
209.9827
CIIHISNzOz
210.1369
CIIHzN203 C II Hz3 N 3O
210.0065
C II H4N3OZ
210.0304
CIIHz2N4 C 11 H6N4 O
210.1846
CI2HIS03
C I6 H3N C I7 HS
209.0266 209.0391
210
C9H ION Z04
216.0641
C9HIZN303
210.0879
C9HI4N40Z C\(\HI1N04
210.1118 210.0766
210.0668
210.1985
211.0970
211.1686 211.0382 211.1925 211.0621
ClzHI903 C lz H30 4
211.1334 211.1573
210.0093
CIZH21NOz C 1z HsN0 3
210.2349
CIZHZ3NzO
211.1811
C 1s H I4 O
210.1045
ClzH7NzOl
211.0508
C 1S HI6N
210.1284
ClsNO
209.9980
ClzHzsN3 C lz H9 N3O
211.0746
ClsHzNz C I6 H 1S
210.0218
CizHIIN4
211.0985
210.1409
211.1699
C I6 HP C I6 H4N
210.0106
CI3Hz30Z C I3 H70 3
211.0395
210.0344
C I3 Hz5 NO
211.1937
210.0470
C\3H9NO Z
211.0634
210.0542
C I7 Ho 211 C9H II Nz0 4
211.0719
C\3H Z7N Z C I3 H II N zO
211.2176
210.1256
CIOHI4Nz03 210.1005 CIOHI6N30Z 210.1244 C lON 30 3
209.9940
C IO H 1SN 4O
210.1482
210.1131
210.1608
211.0031 211.0269
211.2050
211.0872
202
Spectroscopic Data Chemistry FM
FM
FM
CJI 13 N3 C I4 H27 O
211.1111
C 11 H22NP
212.1764
C 1SH2NO
211.2063
C 1sH4N 2
212.0375
211.0759
C II H6NP2 C II H24 N4
212.0460
C I4 H Il O2
C I4 H29N
211.2301
C 11 HsN4O
212.0699
C l6 H20 C l6 H4O
212.1566
C I4 H 13 NO
211.0998
212.1413
21 I. 1236
212.0109
C l6 H6N C l7HS
212.0501
CI4HISN2 C I4 HN 3
CI2H2003 C I2 H40 4
211.0171
213
C,sH3,
CI2H22N02 C'2 H6N 03
212.1651
211.2427
212.0348
213.0876
C1sH1SO C 1s H l7N
211.1123 211.1362
Cl2H24N20
212.1890 212.0586
C9H'3N 204 C9HlSN303
C,sHNO C 1s H3N2
211.0058
C16H'9 C'6 HP
211.1488
C'6 HSN C l7 H7
211.0297
ClzHsN202 ClzH26N3 C l2 H lON3O
212.2003
212.0136
212.0262 212.0626
213.1114
C9Hl7N402
213.1353
212.2129
CioHlSN04
213.1001
212.0825
CloHl7N203 213.1240 C lO HN Z0 4 212.9936
211.0422
C12H'2N4 C 13 H240 2 C l3 Hs0 3
212.0473
CloHl9N302 213.1478 ClOH3N P3 213.0175
211.0548
C 13 H26 NO
212.2015
C,oH2,N4O
213.1717
212.2254
C,oHsN40 2 C II H l7 0 4
2130413
C9Hl2N204
C'3 H ION 02 C'3 H2S N2
212.0712
212.0797
C9Hl4N303
212.1036
212.0950
C II H l9N03
213.1365
C9Hl6N402 C lO H l4N04
212.1275
C 13 H'2 N20 C13H'4N 3
212.1189
C ll H3N04
213.0062
212.0923
C l3N 4
212.0124
C l4 H2S O
212.2141
CIIH21N202 213.1604 CIIHsN203 213.0300
C'4 H '20Z C'4 H30N
212.0837
C Il Hz3 N3O
213.1842
212.2380
C Il H7N30 2
213.0539
C I4 H,4 NO
212.1076
C Il H2SN4
213.2081
CI4HI6N2 C I4N zO
212.1315
C ll H9N4O
213.0777
212.001 I
213.1491
C'4 HZN 3 C 1s H32
212.0249
C'2 HZI03 C'2 HS04
213.1730
C 1s H l6O
212.1202
CI2H23N02 C l2 H7N0 3
C 1S 0 2
211.9898 212.1440
211.0184
212
C IOH'6N 203 212. I 162 211.9858 C,oN Z0 4 C 1o H,sN 3OZ 212.1400 CloH2N303 212.0096 CloHzoN40 C lOH4N 4O Z
212.1639
C II H'604 C II H 1SN0 3
212.1049
C 11 H2N04
212.0335 212.1287
211.9983 212.1526 CllH20N202 CIIH4N203 212.0222
C1sH1SN
212.1063 212.1777
212.2505
213.1127
213.0187
Cl2H2SN20
213.0426 213.1968
CI2H9N202
213.0664
203
Mass Spectrometry FM
C13 H2N4 C I4H 30O
214.0280
CI4HI402 C I4 H I6NO
214.0994 214.1233
214.1795
C I4N0 2
213.9929 214.1471
CI2H27N3
213.2207
CizHIIN30
213.0903
ClzHI3N4
213.1l42
CI3H2502 C I3 H90 3
213.1855
CloHzoN30Z 214.1557 CloH4N303 214.0253
213.0552
CloH2ZN40
213.2094
CI3 HnNO C I3 H II NO z C13 HZ9N 2 C I3 H13 N ZO
FM
FM
CIOHIgN203 C IO HzN 20 4
214.1318 214.0014
214.2298
CloH6N402
214.0491
213.0790
CIIHIg04
214.1205
213.2332
CIIH20N03 C 11 H4N04
214.1444
CI4HIgN2 C I4 H2NP C I4 H4N3
214.0140
C I5 H 1g O
214.1358
214.1682
C I5 Hz02 C l5 H20N
214.0054
214.0379 214.1921
C l5 H4NO
214.0293
214.0617
214.0532 214.1722
214.0856
C l5 H6N 2 C J6 H22 C J6 H6O
214.1569
C l6 HgN
214.0657
214.0266
C l7 H IO
214.0783
214.1808
215
214.0504
C9HI5N204
215.1032
214.2046
C9Hl7N303
215.1271
C9Hl9N40Z C IO H17N04
215.1509
213.1029 213.1267
CI3HI5N3 C l3 HN 4 C l4 H29 O
213.2219
C I4 H 13 OZ
213.0916
C l4 H31 N C l4 HJ5 NO
213.2458
Cl4HI7N2 C l4 HNP C l4 H3N 3
213.1393 213.0328
C l5 H l7 O
213.1280
213.0202
213.1154 213.0089
CIIH22N202 C II H6N z0 3 CllH24N30 C II HgN 30 Z C1JH26N4 C II H ION 4O ClzHz203 C l2 H60 4 Cl2H24N02 C 1Z HgN0 3 ClzH26N20
214.2160
214.0167 214.0406
214.1597
214.0419
C l5 H0 2
212.9976
C l5 H l9N
213.1519
C l5 H3NO
213.0215
Cl2HION202 214.0743 214.2285 Cl2H2gN3
C l5 H5N 2 C l6 H21
213.0453
CJZH12N30
214.0981
CIOH19N203
215.1396
213.1644
Cl2HI4N4
214.1220
CJOH3NZ04
215.0093
C J6 HSO
213.0340 213.0579
214.0630
CIOHzIN302 C IO H5N 3O)
215.1635
C J6 H7N C J7 H9
Cl3Hz60Z C J3 H IO O3
214.1934
213.0705
C J3 H2g NO
214.2172
C IO H23 N 4O
215.1873
C'3 H ,zNO z
214.0859
C IO H7N 4OZ 215.0570
214.2411
214
215.1158
215.0331
C9HJ4NZ04 C9H'6N303
214.0954 214.1193
C13 H30N 2 C'3 HI4N ZO
C9HlgN402
214.1431
C'3 H16N 3
214.1345
C II H'904 C 11 Hz,N03 C II HsN04
C IO H,6N 04
214.1080
C'3 N P
214.0042
CIIHz3N202 215.1761
214.1107
215.1284 215.1522 215.0218
204
Spectroscopic Data Chemistry FM
C"H 7N 20 3 C II H2S N 3O
215.0457
C,sH 7N 2 C I6 H23
215.0610
C II H9N 30 2
215.0695
C II H27N4
215.2238
215.0497
215.0934
C'6 HP C I6 H9N C'7 H II
C II H II N 40 CI2Hz303 C I2 H70 4
215.1648
216
215.0344
C9HI6N204 C9H,sN 30 3
215.1999
CI2H2SNOz C lz H9N03
215.1886
CIZH27NzO
215.2125
215.0583
FM
FM
C9H20N402 C IO H jSN04
215.1801 215.0736
C'2 H '6N 4 C I2NP C 13 H2S 0 2
216.1377 216.0073 216,2090 216.0786
C 13 H'203 C 13 H I4N0 2
216.1025
C 13 H I6N zO
216.1264 215.9960
216.1588
C'3N Z02 CI3HISN3 C'3 HZN30
216.1236
215.0861 216.1111 216.1349
216.1502 216.0198
C13 H4N4
216.0437
ClzHIIN20Z 215.0821 215.2363 ClzH29N3
CIOHzoNz03 216.1475 CIO H4N Z04 216.0171
CI4HI60Z C I4 0 3
216.1151 215.9847
C lz H'3 N 30 C'2 H IS N4
215.1060
C I4 H 1SNO
216.1389
215.1298
CIOHz2N30Z 216.1713 CloH6N303 216.0410
C I4 H2N02
216.0085
C 13 HZ7 OZ
215.2012
C IO H24N 4O
216.1952
216.1628
C'3 H IP3 C'3 HZ9NO
215.0708
CIO HSN402 C II Hzo 0 4
216.0648
CI4H20Nz C I4 H4N 2O
216.0324
C II Hz2N0 3
216.1600
C I4 H6N 3 C 1s H20O
216.0563 216.1515
215.1185
CII H6N04
216.0297
C 1s H40 2
216.0211
215.1424
C I3 HNP C I3 H3N 4
CIIHZ4NzOz 216.1839 C'I HSN z03 216.0535
C IS H2ZN C IS H6NO
216.1753
215.0120 215.0359
C II H26N3O
216.0688
CI4HISOZ C'4 H I7NO
215.1072
C II H wN30 2 216.0774
C Is HsN2 C'6 H24
215.1311
C II Hzs N4
C I4 HNO Z
215.0007
C'I H ,zN4O
C I4 H"N z C'4 H3N20
215.1541
C I4 HSN3
215.0484
C'SH'90 C Is H30 Z
CI3HI3N02 C I3 H,sN 2O C 13 H'7N 3
C1sHz1N C,sHsNO
215.2250 215.0947
216.1362
216.2077
216.0449 216.1879 216.0575
216.2316 216.1012
C I6 HsO C I6 H ION
C'2 HZ403 C,zHS0 4
216.1726
216.0939
215.1436
ClzH26N02 C I2 H ION03
216.1965
C'7 H 12 CIS 217
216.0661
C9HI7Nz04
217.1189
215.0133
CI2H2SNzO
216.2203
C9HI9N303
217.1427
215.1675
CI2HI2N202 216.0899 CI2HI4N30 216.1138
C9H21N402 C lO H I9N0 4
217.1666
215.0246
215.0371
216.0422
216.0814 216.0000
217.1315
205
Mass Spectrometry FM
FM
CIOHzINz03 217.1553 CIO H5N Z04 217.0249
FM
C I4 H I9NO
217.1467
CIIHI4N40
218.1169
C I4 H3N0 2
217.0164
ClzH2603
218.1883
CI4HzIN2
217.1706
CI2HIOO4
218.0579
217.0402
CI2HI2N03
218.0817
217.2030
CI4H5NzO C I4 H7N 3
217.0641
C IO H9N4OZ
217.0726
C I5 H21 O
217.1593
CI2HI4N202 218.1056 C 12H'6N 30 218.1295
C\lH2I 0 4
217.l440
C I5 H50 2
217.0289
C I2N30 2
217.9991
CIIH23N03 C\lH7N04
217.1679 217.0375
C I5 Hz3N
217.1832 217.0528
C'ZH1SN. C I2HzNp
218.1533
C I5 H9N2 C I6 Hz5
217.0767
C\3H I40 3
217.1957
C I6 HP C'6 H II N
217.0653
C\3H I6N0 2 C I3N0 3
217.0892
C\3H 1gN ZO
C I7 H I3
217.1018
CI3H2N202
217.0078
CI3H20N3 C'3 H4N P
CloH23N30Z 217.1791 CloH7N303 217.0488 C IOH25 N4O
C\lHZ5N 20 4 217.1917 C\lH9N 20 3 217.0614 C II Hz7N3O 217.2156 CIIHIIN302 217.0852 C"H\3N 4O 217.1091
C I5 H7NO
C II HZgN 4
216.2316
CI2H2503 C I2 H90 4 CIZH27NOz
217.1804
C,sH 218
217.0501
C9HIgN204
218.1267
C9H20N303
218.1506 218.1744
217.2043 CI2HIIN03 217.0739 C 12H'3N 202 217.0978 C 12H'5N 30 217.1216 217.1455 CI2HI7N4 C 12HNP
217.0151 217.0865
CI3HI~03 C\3H I5NO Z 217.1103 C\3H'7N 20 217.1342 C'3 HN 20Z
217.0038
C13 H I9N3 C'3 H3N 30
217.1580 217.0277
C'3 H5N4
217.0515 217.1229
C'4 H'70Z C'4 H03
216.9925
C9H2ZN40Z
218.1393 218.1631 CIOH22N203 C,oH6N 20 4 218.0328 CloHz4N302 218.1870 CloHzoN04
CIOHgN303
218.0566
CloH26N40 218.2108 C IO H,oN40 2 218.0805 218.1518 C\lH 2Z 0 4
218.1757 218.0453 C'IHgN04 CIIHZ6NzOz 218.1996 C"H,oN20 3 218.0692 C II H'2 N 30Z 218.0930 C"H Z4N03
C I3 H6N4 C'4 H IS02 C I4H20 3
218.0229 218.0943 218.1182 217.9878 218.1420 218.0116 218.1659 218.0355 218.0594
C I4 H20NO
218.1307 218.0003 218.1546
C I4 H4N0 2
218.0242
C'4 H22N 2 C'4 H6N ZO C I4 HgN3 C I5 Hz2 O
218.1784 218.0480
C'5 H602 C'5 H24N
218.0368 218.1910
C'5 HgNO C'5 H ,oN 2 C'6 H26
218.0606 218.0845 218.2036 218.0732 218.0970
C'6 H ,OO C'6 H ,zN
218.0719 218.1671
206
Spectroscopic Data Chemistry
FM C'7 H '4 C'7N C'8 H2
218.1096 218.0031 218.0157
219
C9H'9N204 C9H2,N 30 3 C9H23N402 C IO H2,N04
219.1345 219.1584 219.1822
219.1471 C'OH23 N20 3 219.1710 C IO H7N20 4 219.0406 C,oH 2S N30 2 219.1948 C IO H9N30 3 219.0644
FM CI3 HsN P C13 H7N4 C'4 H '902 C'4RP3 C'4 H2,NO C'4 HSN 02 CI4H23N2 C'4 H7N P C I4 H9N3 C'SH23 O C,sH70 2
C IOH lI N 40 2 219.0883
C,sH 2SN C 1S H9NO
219.1597
C is H lI N2
219.1835 219.0532
C'6H27 C I6 H"O C'6H 13N C'7 H ,S
C"H 23 0 4 C lI H2SN0 3
C"H9N04 C'I H 'I N 203 219.0770 C,lI'3 N302 219.1009 219.1247 C 1,H,sN4o C I2 H II 0 4 219.0657 C'2 H'3 N 03 219.0896 C'2 H,sN20 2 219.1134 C'2 H'7N30 219.1373 C I2 HN 30 2 C'2 H9N4 C I2 H3N 4O
219.0069 219.16II 219.0308
C 13 H 1S 0 3
219.1021
C'3 HI7N 02 C I3 HN0 3
219.1260
CI3HI9NzO C 13 H3N 20 2 C13 H21 N3
218.9956 219.1498 219.0195 219.1737
219.0433
FM
219.0672
C II H'4N30Z 220.1087 C"H'6N40 220.1325
219.1385
C IIN 40 2
220.0022
219.0082
C'2 H '204 C'2 H'4N 03
220.0735'
219.1624 219.0320 219.1863
220.0974
C 12H'6N202 220.1213 C I2N20 3 219.9909
220.1451
219.1750
C'2 H ISN30 CI2H2N302 C'2 H20N4
219.0446 219.1988
C'2 H4N40 C'3 H '603
219.0684
C'304 C'2 H ,sN02 C 13 H2N0 3
220.0386 220.1100 219.9796
219.0559 219.0798
219.0923 219.2114 219.0810 219.1049 219.II74
C'3 H20N20 C'3 H4N P2
220.0147 220.1690
220.1338 220.0034 220.1577 220.0273 220.1815
219.0109 219.0235
C'3 H22N3 C I3 H6NP C13 HSN4
220.1464
C9H20N204
220.1424
C'4H2002 C I4 H40 3
C9HzzN303
220.1662
C I4 H2ZNO
220.1901 C'OH 22N04 220.1549 CloH24N203 220.1788 CloHsN204 220.0484 CIOHION303 220.0723
C I4 H6N02
220.1702 220.0399 -
C I7HN C 1s H3 220
C9H24N402
220.0511 220.0750 220.0160
CI4H24N2 C I4 HsNp CI4HION3 C 1s H24 O
220.1941 220.0637
CIOHI2N402 220.0961 C II H24 0 4 220.1675
C is Hs02 C 1S HZ6N
220.0524
220.0610 CIIHI2N203 220.0848
C1sHIoNO
CIIHION04
CIsHI2Nl
220.0876 220.1828 220.2067 220.0763 220.1001
Mass Spectrometry
207
FM
C'6 H2S C'6 H '20
220.2192 220.0888
C 13 H2,N 2O C'3 H5N202
221.1655 221.1894
C II H'6N302 222.1244 221.9940 C 1,N 30 3 C II H,sN 4O 222.1482
221.0590
C II H2N40 2
222.0178
221.0829
C'2 H '404 C'2 H '6N 03
222.0892
C'2N 04 C'2 H,sN20 2 C'2H 2N20 3 C'2 H20N30 C'2 H4N302
221.9827
221.0351
C,p
219.9949
C'3 H23 N3 C'3 H7N 30 C13 H9N4 C'4 H2,02
C'7 H2N C,sH 4 221
220.0187
C'4 H503
221.0238
220.0313
C'4 H23 NO C'4 H7N02 C'4 H25N2
221.1781
C'6 H '4N C'6N 2 C'7 H '6
C9H2,N 20 4 C9H23 NP3 C IO H23 N0 4 C IO H9N20 4
220.1127 220.0062 220.1253
221.1502 22l.l741 22l.l628 221.0563
CIOHII~303 C IO H13'N 40 2 221.1040 C II H II N04 221.0688 C II H13 N20 3 221.0927
221.0801
221.1542
221.0477 221.2019
C'4 H9N20 C'4 H II N3
221.0715
C'5 H250 C'5 H902 C'5 H27N C'5 H II NO
221.1906
221.0954 221.0603 221.2145 221.0841
CII H'7 N40 C II HN 40 2 C'2 H 1304
221.0100 221.0814
C'5 H '3 N2 C'6 H29 C'6 H13 0 C'6 H '5N C'6 HN 2
C'2 H '5N03
221.1052
C'7 H '7
221.1331
C'2 H'7N202 C'2HN203 C'2 H '9N30
221.1291
C'7 HO C'7 H3N
221.0027
C,sH5 222
221.0391
C II H'5N302 221.1165
C'2 H3NP2 C'2 H2,N 4 C'2 H5NP C'3 H '703 C'3 H04 C'3 H '9N02 C 13 H3N0 3
22l.l404
220.9987 221.1529 221.0226 22 l.l 768
221.1080 221.2270 221.0967 221.1205 221.0140
221.0266
222.0065 222.1608 222.0304 222.1846 222.0542 222.1256
C'3 H204 C 13 H20NO.2 C'3 H4N03
221.9953
C'3 H22N20 C'3 H6N202
222.1733
C'3 H24N3 C'3 HSN30 C'3 H ION4
222.1972
C'4 H2202 C'4 H603 C'4 H24NO C'4 HSN02
222.1495 222.0191 222.0429 222.0668 222.0907 222.1620 222.0317 222.1859 222.0555
222.0879 222.1118
C 1s H26 O
222.1985
222.0766
C I5 H,002 C'5 H2SN
222.068\
221.0113
C II H I4 N2O;
222.1005
220.9874
222.1369
222.0794
221.1416
221.1178
C'2 H22N4 C'2 H6N40 C'3 H 'S03
222.1131
C'4 H26N2 C'4 H ,oN 2O C'4 H '2N3
222.1580
C9H22N204 C IO H ION20 4 C IOH'2N303 C IO H'4 N402 C II H,2 N04
221.0464
FM
FM
222.0641
222.2098 222.1032
222.2223
208
Spectroscopic Data Chemistry
FM
FM
FM
C 1S HI2 NO
222.0919
C I3 H30 4
223.003 J
CIOHI4N30J
CIsHI4N2 C 1s N 3
222.1158
223.1573
222.0093
CI3HzIN02 C I3 HSNO J
ClOHI6N402 224.1275 CIIHI4N04 224.0923
C I6 H30
222.2349
CI3H23N20
223.1811
C I6 H I4 O
222.1045
CI3H7Nz02
223.0508
C I6 HI6 N
222.1284
223.2050
C I6 NO
221.9980
CI3H2SN3 C\3H 9N JO
223.0746
CIIHISN302 224.1400 C II H2N30 3 224.0096
C I6 HzN2
222.0218
CI3HIIN4
223.0985
C II H20N 4O
224.1639
C I7 H 1S
222.1409
223.1699
C II H4N40 2
224.0335
C I7 HP C I7 H4N
222.0106
CI4H2302 C I4 H70 3
223.0395
Cl2Hl604
224.1049
222.0470
C l4 H2S NO C l4 H9N02
223.1937
C 1sH6
CIZHlSNOJ C I2 H2N04
223.9983
223
CI4H27N2
223.2176
CIOHIIN204 223.0719 C IO H\3N 30 3 223.0958 CIOHISN402 223.1196
Cl4HIINzO C I4 H\3N 3 C 1s H27 O
223.0872
Cl2H20N202 224.1526 Cl2H4N203 224.D222
223.1111
CI2H22N30
224.1764
223.2063
Cl2H6N302
224.0460
ClsHIIO Z C 1s H29N
223.0759
CI2H24N4 C 1zHsN4O CI3H200J CJ3H 40 4
CIIHl3N04
222.0344
223.0845
CIIHl5N20J 223.1083 C II H l7NP2 223.1322 223.0018 C 11 HNP3
C1SH1JNO
223.0269
223.0634
223.2301
..
223.0998 223.1236
224.1036
CIIHI6N203 224.1162 223.9858 C 11 N z0 4
224.1287
224.2003 224.0699 224.1413 224.0109
223.0257
Cl5HI5N2 C1sHN J C I6 H31
223.0970
C I6 H I5 O
223.1123
223.1209
223.1362
222.9905
C l6 HI7N C l6 HNO
C\3H 22N0 2 C l3 H6N0 3 ,CIJH24N20 CJ3H gN 20 2
223.0058
CJ3H26N3
224.2129
CI2Hl9N202 223.1447 CI2H3N203 223.0144
C I6 H3N 2 C l7 H I9
223.0297
CJ3H ION JO
224.0825
223.1488
C\3H I2N4
224.1063
223.0184
CI4H2402 C I4 Hs0 3 C I4 Hz6NO
224.0473
C I4 H ION0 2
224.0712
CI4H2SN2
224.2254
CIIHI9N40 C ll H3N 40 2 CI2Hl504 Cl2Hl7NOJ C I2 HN0 4
223.1560
CI2HzIN30
223.1686
CI2H5N30Z
223.0382
CIZH2JN4 C 1z H7N 4O
223.1925
C\3H I9 0 3
223.1621 223.1334
C I7 HP C I7 H5N C 1s H7 224
223.0171 223.2427
223.0422 223.0548
CIOHIZNz04 224.0797
224.1651 224.0348 224.1890 224.0586
224.1777 224.2015
209
Mass Spectrometry
C14HI2N20
224.0950
C12H1704
225.1127
C14HI4N3 C 14N4
224.1189 224.0124
CI2H19N03 C I2 H3N04
C 1s H2S O
224.2141
ClsHI202 C 1s H30N
224.0837
C12H21N202 225.1604 C12HsN203 225.0300
C 1S HI4NO
224.1076
CIsHI6N2
224.1315
C1sNP C 1sH 2N 3
224.0249
224.2380
224.0011
C I6 0 2
224.2505 224.1202 223.9898
C I6H 1SN
224.1440
C I6H 2NO
224.0136
C I6 H32 C I6H I6O
C I6 H4N 2 C I7 H20
224.0375
C I7 H4O
224.1566 224.0262
C I7 H6N
224.0501
224.0626 C1sHs 225 C IO H 13N 20 4 225.0876 CIOHISN303 225.1114 CIOHI7N402 225.1353 CI\H 1SN0 4 225.1001 CIIHI7N203 225.1240 C 11 HN 20 4 224.9936
P
225.1365 225.0062
225.0328 225.2584
C I6 H 1P C I6 H02
225.1280
C I6 H 19N
225.1519
224.9976
225.1842
C 16H3NO
225.0215
225.0539
225.0453
CI2H2SN4 C 12H9N 4O
225.2081
C I6 HSN2 C I7 H21
225.0340
225.1491
C I7 HP C I7 H7N
225.0187
C 1s H9
225.0705
226
C I3 H7N0 3
225.1730 225.0426
CI3H2SN20 C 13 H9N 20 2
225.1968 225.0664
C13 H27N 3 C 13 H 11 N 3O
225.2207 225.0903
C I3 H 13 N 4
225.1142
CI4H2S02 C I4 H90 3
225.1855
CI3H2103 C13 H S04 C 13 H23 N02
C I4 H27NO C14HIIN02
225.0777
225.0552 225.2094 225.0790 225.2332 225.1029
CI4H29N2 C I4H 13N 2O CI4HISN3 C I4 HN4
225.0202
225.1267
C 1s H29O
225.2219
225.1478
C 1S H I3 0 2
225.0916
CllH3N303
225.0175 225.1717 225.0413 224.9936
C 1s H31 N C 1s H1SNO
CllHsN402 C 11 HN Z0 4
C 1s H3N3 C 16H33
C I2 H23 N CI2H7N302
C 11 HI9NP CllH21N40
FM
FM
FM
ClsHI7N2 C 1S HN2O
225.1644 225.0579
CIOHI4N204 226.0954 CIOHI6N303 226.1193 CloHISN402 226.1431 C 1I H I6N0 4 226.1080 C1IHISN203 C 1I H2N20 4
226.1318 226.0014
Cl1H20N302 226.1557 CIIH4N303 226.0253 C 1I H22N4 O C 1I H6N 40 2 CI2HIS04 CI2H20N03 C I2 H4N04
226.1795 226.0491 226.1205 226.1444 226.0140
CI2H22N202 226.1682 CI2H6N203 226.0379
225.2458
C12H24N30 C 12 HgNP2
226.1929 226.0617
225.1154 225.1393 225.0089
C12H26N4 C 12 H ION4O
226.2160 226.0856 226.1569
C13H2203
Spectroscopic Data Chemistry
210 FM
C'3 H604 C 13 H24 N02 C'3 HSN03 C 13 H26N 2O
C'4 HzsNO C'4 H'2 N OZ
FM
226.0419
227.2012
226.1808
C'7 H60 C'7 HSN
Cl4H2702 226.0657. C'4 H I,03
227.0708
226.0504
C,sH IO
226.0783
227
C'4 H29NO C'4 H I3 N02 C'4 H3,N2 C'4 H,sNzO
227.2250
226.2046
227.1424
226.0266
C 13 H ION20 2 226.0743 C'3 HZS N3 C 13 H,zN 3O C'3 H '4N4 C'4 HZ602 C'4H IOO3
FM
226.2285
C IOH,sN 20 4 227.1032 C IOH'7 N303 227.1271 227.1509
227.0947 227.2489 227.1185
C IO I-i'9N402 C II H,7N04 C II H'9N203 C II H3Nz0 4
227.1158 227.1396 227.0093
C'4 H '7N3 C l4 HNP C'4 H3N4 C,sH3,O
226.2172
C II Hz,N30 2
227.1635
C,sH,sOz
227.1072
226.0868
C'SH33N C'SH'7NO
227.2615
226.0981 226.1220 226.1934 226.0630
227.0120 227.0359 227.2376
C'4 H30N Z C'4N '4N 20
226.2411 226.1107
C"H sN 30 3 227.0331 C II Hz3N4O 227.1873 C II H7N4OZ 227.0570
226.1346
227.1284
C,sHNO z C'SH'9NZ
227.0007
C'4H '6N3 C'4N30 C'4 HZN 4
226.0042
227.1522
C,sH3NP
227.0246
227.0218
C,sH30O
226.2298
227.0484 227.1436
C'SH'402 C,sH 32N C'SH'6 NO
226.0994
C'ZH 23N 20 2 C'2 H;NP3 227.0457 C'2 H2S N30 227.1999 C'2 H9N302 227.0695
C,sHsN3 C'6 H '90 C'6 H30Z C'6H2,N C'6 HSNO
227.0133
C,sN02
225.9929
227.2238
226.1471
C,sH 2NP C,sH 4N 3 C'6 H34
226.0167
C'6H7N2 C'7 H23 C'7 HP
227.0610
C,sH,sN2
C'2 H27N4 C'2 H II N40 C'3 H2303 C'3 H704 C 13 H2S N02
227.0344
227.0736
227.1886
C'7 H9N C,sH II
C'6 H ,SO C'6 H202 C'6H 20N C'6 H4NO C'6 H6N2
226.1358
227.0583
228
227.2125
226.1597 226.0293
C'3 H9N03 C'3 H27N20 C 13 H II N20 2 C'3 H29N3
226.0532
C13 H 13 N30
227.1060
C lOH'6N 204 228.11 II C IO H,sN 30 3 228.1349 CIOH20N40Z 228.1588 C II H,sN04 228.1236
C'7 HZ2
226.1722
C 13 H,sN4
227.1298
CI,H20N203 228.1475
226.0280
226.2536 226.1233
226.0406 226.2662 226.0054
C'ZH'904 C 11 Hz,N03 C'2 HSN 04
227.1761
227.0934 227.1648
227.0821 227.2363
227.131 I 227.1549
227.1675 227.0371 227. I 801 227.0497 227.0861
211
Mass Spectrometry FM
C Il H4N20 4
228.0171
C Il H22NP2 228.1713 C Il H6N 30 3 228.0410 C Il H24N 4O
228.1952
CIl HSN402
228.0648
CI2H2004
228.1362
FM
C I4 H2N3O
228.0198
C I4 H4N 4
228.0437
C Is H320
228.2454
CIsHI602 C IS 0 3
227.9847
228.1151
FM
CI2H23N03 C I2 H7N0 4
229.1679 229.0375
C lz H2S NP2 229.1917 CI2H9N203 229.0614
228.0085
CI2H27N30 229.2156 C I2 H Il NP2 229.0852 229.2394 ClzH29N4
CIsH20N2 C IS H4NP C Is H6N 3
228.1628 228.0324
CI2HI3N40 C I3 H25 0 3
229.1091
228.0563
C I3 H90 4
229.0501
228.2077
C I6H20O
228.1515
C 13 H27N0 2
229.2043
CI2HION302 228.0774 228.2316 CI2H2SN4 CI2HI2N40 228.1012
C I6 H40 2
228.0211
CI3HIIN03
C I6 H22N
228.1753 228.0449
229.0739 229.2281
CI3H29NzO C 13 H13 N 2OZ 229.0978 229.2520 CI3H31N3 C 13 H ISN3O 229.1216
CI2HzzN03 228.1600 C I2 H6N04 228.0297 ClzH24Nz02 228.1839 CI2HsN203 228.0535 C I2 Hz6NP
C 13 H24 0 3
228.1726
C13 HS04 C 13 H26N0 2
228.0422
ClsHlsNO C Is HzN0 2
C I6 H6NO
228.1389
229.1804
C I6 HSN2 C I7 H24
228.0688
C I7 HsO
CI3H2SN20
228.1965 228.0661 228.2203
C Is H I2
228.0575 228.0314 228.0939
CI3HI2N202 C13 H30N 3
228.0899 228.2442
C I9
228.0000
229
CI4H2902 C I4 H I3 0 3 C I4 H31 NO
229.0865 229.2407
C 13 HI4N 3O
228.1138
C IO H17N 20 4 229.1189
CI4HISNOz
229.1103
C13 HI6N4 C I3 HP
228.1377 228.0073
CloHI9N303
229.1427
CI4HI7N20
CI4H2S02
229.1666 229.1315
C I4 HNPz
228.2090
CIOH21N40Z C Il H I9N04
229.1342 229.0038
CI4HI203 C I4 H30NO
228.0786 228.2329
CIlH21N203 C Il HsN 20 4
229.1553 229.0249
CI4HI4N02
228.1025 228.2567
CIIH23N302 229.1791 C Il H7N30 3 229.0488
228.1264 227.9960
CIIHzsN40 C Il H9N 4OZ ClzH2104
C 13 H ION0 3
CI4H3ZN2 CI4HI6N20 C I4N 20 2 CI4HISN3
228.1502
C I7 H ION
228.1879
C13 HI7N4 C I3 HN 4O
Cl4HI9N3 C I4 H3N3O C I4 HSN4
229.1455 229.0151 229.2168
229.1580 229.0277 229.0515 229.1229
229.2030 229.0726
CIsHI702 C Is H0 3 C IS H I9 NO C 1s H3N0 2
228.9925 229.1467
229.1440
CISH21Nz
229.1706
229.0164
212
Spectroscopic Data Chemistry
FM
FM 230.1883
ClsHsNzO C ls H7N3
229.0402 229.0641
Cl3Hz603 C 13 H lOO4
C l6Hzl O
229.1593
C I6 Hs02 C l6 Hz3 N
229.0289
C 13 HZSNO Z 230.2121 C 13 H1Z N0 3 230.0817
229.1832
C l6 H7NO
229.0528
C l6 H9Nz
229.0767
C13 H30NZO 230.2360 C l3 H l4NPz 230.1056 Cl3Hl6N30 230.1295
C I7Hzs C l7 H ll N
229.1957
C 13 N3OZ
229.9991
229.0892
CI3HlSN4 C 13 HZN4O
230.1533
Cl4H300Z Cl4Hl403 CI4HI6NOz C I4N0 3
230.2247 230.0943
C I7 H9O C lS H I3 C l9H 230
229.0653 229.1018 229.0078
ClOHlSNz04 230.1267 ClOHzoN303 230.1506 CIOHzzN40Z 230.1744 CIIHzoN04 230.1393 CIlHzzNz03 230.1631 C II H6Nz0 4
230.0328
CIIHz4N30Z 230.1870 C II HsN 30 3 230.0566 C II Hz6N4O
230.2108
CIIHION40Z 230.0805 230.1518 ClzHzz04 ClzHz4N03 230.1757 C lz HsN0 4 230.0453 CIZHZ6NzOz 230.1996 ClzHlONz03 230.0692 ClzHzsN30
230.2234
ClzHI2N30Z C lz H 30N 4
230.0930 230.2473 230.1169
ClzHI4N40
CI4HlSNzO CI4HzNzOz CI4HzoN3 C l4 H4N3O C I4 H6N4
230.0579
230.0229
230.1182 229.9878 230.1420 230.0116 230.1659 230.0355 230.0594
ClsHlsOz C ls Hz0 3
230.1307 230.0003
C1sHzoNO C 1SH4NO z
230.1546
ClsHzzNz C 1S H6NzO C 1sHsN3 C l6 Hzz O
230.1784 230.0480
230.0242
FM 230.0732
C l7 H lOO C l7 HlZN
230.0970
C ls H l4
230.1096
ClsN C I9 Hz
230.0031 230.0157
231
CloHl9Nz04 231.l345 CloHzlN303 231.l584 CloHz3N4OZ 231.1822 C ll Hzl N04 231.l471 CllHz3Nz03 231.17lO C ll H7NZ04 CllHzsN30Z C Il H9N30 3 C ll Hz7N4O
231.0406 231.l948 231.0644 231.2187
C Il H Il N40 Z 231.0883 231.1597 ClzHz304 ClzHzsN03 C lz H9N04
231.1835 231.0532
CIZHZ7NzOz 231.2074 C,zH II N z0 3 231.0770 ClzHz9N30 231.2312 ClZH13N30Z 231.l009 CizHISN40 231.1247
230.0719 230.1671
C I3 H270 3 C I3 H II 0 4 C I3 H29NO z
231.l961 231.0657 231.2199
C I6 H6OZ
230.0368
C I3 H 13 N03
231.0896
C I6 H24N C I6 HSNO
230.1910 230.0606
231.l134
C I6H lONz C I7 Hz6
230.0845 230.2036
CI3HISN202 CI3HI7N30 C I3 HNPz C13 H I9N4
231.1373 231.0069 231.1611
Mass Spectrometry
213
FM
FM
FM
C ll H24NP3 232.1788 C ll HgNZ0 4 232.0484
ClsH2002 C ls H4 0 3
232.1464
C ls H2ZNO
232.1702
230.9956
CllHz6N30Z 232.2026 C ll H lON30 3 232.0723
C ls H6 N0 2
232.0399
C l4 H l9NP
231.I498
CllHzsNp
232.2265
C l4 H3NP2 Cl4H2lN3 C l4 HsNp
231.1737
CllHl2N40Z 232.0961 232.1675 Cl2Hz404
ClsH24N2 C ls H,N 2O C is H lON 3
232.1941
231.0195
232.1914
C l6 H24O
232.1828
C I4H7N.
231.0672
232.0610
ClsHl90Z C ls H30 3
231.1385
C l6 Hs02 C l6H 26N
232.2067
C l6 H lONO
232.0768
C l3 H3N4O
231.0308
C14HlS03
231.1021
Cl4Hl7NOz C l4 HN0 3
231.1260
231.0433
231.0082
ClzH2SNzOz 232.2152 ClzHl2Nz03 232.0848
232.0637 232.0876 232.0524
C l2 Hl4NPz C lz HI(jN4O
232.1087 232.1325
Cl6Hl2Nz C 17 H28
232.1001
231.0320 231.1863
C lzN 40 Z
232.0022
C l7 H lZ O
232.0888
231.0559
C 13 HZS 0 3
232.2039
C l7 Hl4N
232.1127
231.0798
C 13 H I2 0 4
232.0735
C l7N z
232.0062
291.1750
C I3 H14N03
232.0974
ClsH 11i
232.1253
C l6 H7O Z
231.0446
CISO
231.9949
C l6 Hzs N C l6H 9NO
231.1988
C I3 H"N zOz 232.1213 C 13 N20 3 231.9909
ClsHzN C l9 H4
232.0187
ClsHzlNO ClsHsNO z ClsHz3Nz C ls H 7NP C ls H9N3 C l6 Hz3 O
231.1624-
ClzHz6N03 C lz H lON04
232.0160
231.0684
C I6 H ll Nz C 17HZ7 C I7 H ll O
231.0923
C I7 H 13N
231.1049
CIsH 1S
231.1174
C1sHN C'9H 3
231.0235
231.2114 231.0810
231.0109
232 CIO H20N Z04 232.1424 CIOHz2N303 232.1662 ClOH24N402 232.1901 , C II H22N04 232.1549
Cl3HlSN30 CI3HzN30Z C13 HZON4 C 13 H4N4O CI4HI603 C I4 0 4 CI4HIXN02 C I4 HzN0 3 C'4 HZON 20 C'4 H4N20Z CI4H2ZN3 C I4 H6N 3O C I4 HSN4
232.1451 232.0147 232.1690 232.0386 232.1100 231.9796 232.1338 232.0034 232.1577 232.0273 232.1815 232.0511 232.0750
232.2192
232.0313
233 CloHzINz04 233.1502 ClOHz3N303 233.1741 CloHzsN40Z 233.1979 C ll Hz3 N0 4 233.1628 CllHzsNz03 C Il H9N z0 4
233..1866 233.0563
CllH27N30Z 233.2105 CIlHIIN303 233.0801 C ll H 13N 40 2 233.1040 233.1753 CI2H2S04 Cl2H27N03 233.1992
214
Spectroscopic Data Chemistry FM
C iz H Il N04
233.0688
FM
FM
C I6 H 11 NO
233.0841
C 13 H4N3 OZ 234.0304
ClzHI3Nz03 233.0927 C1zH1sNPz 233.1165
CI6HI3Nz C I7Hz9
233.1080
CI3HzzN4 C I3 H6NP
234.1846
ClzHI7N40 C 1ZHN 4OZ
233.1404
C I7 H I3 O
233.0967
234.1256
233.0100
C I7 H 1S N
233.1205
CI4HIS03 C I4 Hz04
C I3 H I3 0 4
233.0814
C I7HNZ
233.0140
234.1495
C 13 H1S N03
233.1052
C 1sH I7
233.1331
CI4HzoNOz C I4H4N0 3
234.0191
ClsHO C 1S H3N C I9 HS
233.0027
C I4 Hzz Np
234.1733
233.0266 233.0391
CI4H6N20Z
234.0429 234.1972
CI3HI7Nz02 233.1291 C 13 HNZ0 3 232.9987 CI3HI9N30 233.1529
233.2270
CI3H3N30Z
233.0226
234
CI3HzIN4 C I3 HsNp
233.1768
CIOHzzNz04 234.1580 CIOHz4N303 234.1819
CI4HI703 C I4 H04
233.1178
233.0464 232.9874
CIOH26N40Z 234.2057 C II Hz4N04 234.1706
Cl4HI9NOz C I4 H3N03
233.1416 233.0113
CIIHz6Nz03 234.1945 C II H ION z0 4 234.0641
CI4H21N20 CI4HsN202
233.1655 233.0351
CIIHI2N303 234.0879 CIIHI4N40Z 234.1118
CI4Hz3N3 C I4 H7N3O
233.1894
CI2Hz604
234.1832
233.0590
CizHIZN04
C I4 H9N4
233.0829
C1sHzpz C is Hs0 3
233.1542 233.0238
CI4H24N3 C I4 HsNp C I4H ION 4
234.0542 233.9953
234.0668 234.0907 234.1620
C1sHzzOz C 1s H60 3 C 1S HZ4NO
234.1859
C1sHsNO z
234.0555
CIsH26N2 C1SHIONzO
234.2098
234.0317
234.0794 234.1032
234.0766
CisHIZN3 C I6 Hz6 O C I6H IOOZ
234.0681
ClzHI4Nz03
234.1005
C I6 HzsN
234.2223
ClzHI6N30Z C I2N30 3
234.1244
C I6 H 1Z NO
234.0919
233.9940
CI6HI4Nz C I6N3
234.0093
234.1985
234.1158
C 1S HZ3 NO
233.1781
CilHISN40
234.1482
C 1S H7NO z
233.0477
ClzH1N40Z
234.0178
C I7H30
234.2349
ClsHzsNz C 1SH 9N P
233.2019
CI3HI404
234.0892
C I7 H I4O
234.1045
233.0715
233.9827
C I7 H I6N C I7NO
234.1284
233.0954
CI3HI6N03 C I3 N0 4
234.1131
C is H II N3 C I6 Hzs O
233.1906
C I6 H9OZ C I6 Hz7N
C I7 HzN z
233.0603
CI3HISNZOl 234.1369 C 13 H1N Z0 3 234.0065
233.9980 234.0218
C1sH 1S
234.1409
233.2145
C 13 HZON 3O
C1sHP
234.0106
234.1608
215
Mass Spectrometry
FM
FM
FM
C 1s H4N
234.0344
Cl4HIIN4
235.0985
Cl2H2N303
236.0096
C l9 H6
234.0470
ClsH2302 C 1s H70 3
235.1699
Cl2H20N40
236.1639
235.0395
236.0335
ClOH23N204 235.1659 C 1oH2SNP3 235.1897 C ll H2SN0 4 235.1784
C 1s H2SNO
235.1937
Cl2H4N402 C 13 H I6 0 4
C 1s H9N0 2
235.0634
ClsH27N2
235.2176
C ll H ll N 20 4 235.0719
CisHIIN20
235.0872
235
CIIH13N303
235.0958
CllHlSN402 C I2 H I3 N0 4
235.1196
ClsHl3N3 C l6H 27 O
235.2063
235.0845
C l6H l1 0 2
235.0759
C l6 H29N
235.2301
C l6H l3NO
235.0998 235.1236
Cl2HlSN203 235.1083 Cl2Hl7N302 235.1322
235.1111
Cl3HlSN03 C 13 H2N04
236.1049 236.1287 235.9983
CI3H20N202 236.1526 Cl3H4N203 236.0222 Cl3H22N30 C 13 H6N30 2
236.1764
Cl3H24N4 C13 HSN 40
236.2003
Cl4H2003 C l4 H40 4
236.1413
236.0460 236.0699
C l2 HN 30 3
235.0018
Cl2Hl9N40
235.1560
Cl6HlSN2 C l6HN 3
Cl2H3N402 C 13 H 1S0 4
235.0257
C l7 H31
235.2427
C l7 H 1SO
235.1123
Cl4H22N02 C l4 H6N0 3
236.1651
235.0970
Cl3Hl7N03 C 13 HN04
235.1209
C l7 Hl7N
235.1362
Cl4H24N20
236.1890
234.9905
C l7 HNO
235.0058
Cl4HsN202
236.0586
235.1447
C l7H 3N 2 C 1sH l9
235.0297
Cl4H26N3
236.2129
235.1488
Cl4HION30
236.0825
Cl4Hl2N4
236.1063
235.0422
235.1925
C1sHP C1sHsN Cl9 H7
235.0184
236.1777 236.0473
C I3 H7N 4O
235.0621
236
ClsH2402 C is Hs0 3 C 1s H26NO
236.2015
Cl4Hl903 C l4 H30 4
235.1334
CloH24N204 236.1737 CIIHl2N204 236.0797
C is H lON0 2
236.0712
235.0031
ClsH2SN2
236.2254
CllHl4N303 236.1036 CllHl6N402 236.1275
ClsHl2N20
236.0950
ClsHl4N3 C 1s N4
236.1189 236.0124
C l6 H2S O
236.2141
Cl6Hl202 C l6 H30N
236.0837
Cl3Hl9N202 C 13 H3N 20 3 C13 H21NP Cl3HsN302 C13 H23 N4
Cl4H21N02 C l4 HsN03
235.0144 235.1686 235.0382
235.1573 235.0269
Cl4H23N202 235.1811 Cl4H7N202 235.0508 Cl4H2SN3 CI4H9N~O
Cl2Hl4N04
235.0171
235.0548
236.0923
235.2050
ClzHl6N203 236.1162 C 12N 20 4 235.9858
235.0746
ClzHlSN302 236.1400
236.0109 236.0348
236.2380
Spectroscopic Data Chemistry
216
FM C I6 H I4 NO
236.1076
CI6HI6Nz C I6NP C I6 HzN 3
236.1315 236.0249
C I7 H3Z
236.2505
C I7 H I6O
236.0011
FM
FM
CI3HzsN4 C13 H9N4O
237.2081
C1sH z1
237.1644
237.0777
CI4HzI03 C I4 Hs04
ClsHsO C 1SH7N
237.0340
237.1491 237.0187
C I9 H9
237.0705
237.0579
237.1730
238
236.1202
CI4Hz3NOz C I4 H7N0 3
237.0426
C1Pz C I7 H1SN
235.9898
CI4HzsNzO
237.1968
C 11 H I4NP4 238.0954 C II H I6N 3O, 238.1193
236. t440
CI4H9NzOz
237.0664
C I7 HzNO C I7H4N z
236.0136 236.0375
Cl4H27N3 C I4 H II N3O
237.2207 237.09Q3
C11H1SNPz 238.1431 ClzHI6N04 238.1080 ClzHlSNz03 238.1318
C1gH ZO C 1g H4O
236.1566
CI4HI3N4
237.1142
ClzHzNz04
236.0262
237.1855
C 1g H6N C I9 Hg
236.0501
ClsHzsOz C 1s H90 3
236.0626
C 1S HZ7NO
237.2094
ClzHzoN30Z 238.1557 CI2H4N303 238.0253 ClzH2ZN40 238.1795
237
C1SHIINO z
237.0790
CIIHI3Nz04 237.0876 CIIHISN303 237.1114
CISHZ9Nz C 1S H 13 NZO
237.2332
CisHISN3 C 1S HN 4
237.1267 23.].0202
CIIHI7N40Z 237.1353 CizHISN04 237.1001
237.1029
C I6 Hz9O
237.2219
CI6HI30Z C I6 H31 N C I6H 1S NO
237.0916
CI6HI7Nz C I6 HNP C I6 H3N3
237.1393
C I7 H33 C I7 H I7 O
237.2584
CI3HzINzOz 237.1604 CI3HsNz03 237.0300
C I7 HO z
236.9976
C I7 H I9N
C 13 HZ3 N 3O
237.1842
C I7H 3NO
237.1519 237.0215
C 13 H7N,oz
237.0539
C l7 HsN z
237.0453
ClzHI7Nz03 C 1Z HNP4
237.1240
237.0552
236.9936
ClzHI9N30Z 237.1478 ClzH3N303 237.oI75 ClzHzIN40
237.1717
ClzHsN40Z C 13 H I7 0 4
237.0413
CI3HI9N03 C I3 H3N04
237.1127 237.1365 237.0062
237.2458 237.1154 237.0089 237.0328 237.1280
238.0014
238.0491
Cl2H6N40Z C 13 H 1S0 4
238.1205
C 13 HZON03 C I3 H4N04
238.1444 238.0140 .
CI3H2ZNzOz 238.1682 Cl3H6Nz03 238.0379 C13 HZ4N,o 238.1921 CI3HgN30Z 238.0617 CI3Hz6N4 C 13 H 1ON 4O CI4H2Z03 C I4 H60 4 CI4Hz4N02 C I4 HgN0 3 C I4 Hz6NP CI4HIONzOz CI4HZgN3 C I4 H1Z N,o
238.2160 238.0856 238.1569 238.0266 238.1808 238.0504 238.2046 238.0743 238.2285 238.0981
217
Mass Spectrometry FM
FM CI4HI4N4
238.1220
CI5H2602 C'5 H JOO3
238.1934
C 1S H2SNO
238.2172
CI5HI2N02 C J5 H30N 2
238.0868
C I5 HI4NP
238.2411
CI2H5N303 C 12H23N 4O
238.1107 238.1346
C I6 H30 O
238.2298
CI6HI402 C I6 H32N
238.0994
CI6HISN2 C I6 H2NP C I6 H4N3
238.0280
239.1072
239.0331 239.1873
C J6HJ7NO
239.1311
C 12 H,N40 2
239.0570
C I6 HN02
239.0007
CJ3H I90 4
239.1284
CI3H21N03 C I3 H5N04
C J6 H'9N 2 C I6 H3N P
239.1549
239.1522
C I6 H5N3 C I7 H35
239.0484
C I7H I9O
239.1436
239.1999 239.0695
C I7 H30 2
239.0133
C 17 H2I N
239.2238
239.1675 239.0371
239.0218
CJ3H23 N20 2 239.1761 CJ3H7N 20 3 239.0457
239.2615
239.0246 239.2740
239.0934
C I7H5NO C I7 H7N 2
239.0610
239.1648
C 1s H23
239.1801
C1sH,o C 1gH9N
239.0497
CI4H25N02 C I4 H9N0 3
239.0344 239.1886 239.0583
C I9 H II
239.2125
240
238.0167
C 17H20 2
238.0054 238.1597
CJgHgN C J9 H JO
239.2376
C'6 H3JO CI6HI502 C J6 H33N
239.1635
CI3H27N4 C 13 H II N4O CI4H2303 C I4 H70 4
238.1358
C Jg H60
239.0359
237.9929 238.1471
C I7 H 1gO
C I7 H6N 2 C 1s H22
239.0120
C 13 H25N3O
238.0406 238.2662
C I7 H4NO
C I5 HNP C'5 H3N 4
238.2536 238.1233
C I7 H34
C J7 H20N
239.1396 239.0093
238.0042
C I6N0 2
239.1158
C'2 H3N P4 CJ2H21N302
238.0630
CI5HI6N3 C I5NP C I5 H2N 4
C I6 H I6NO
CI2HI7N04 C'2 H19N 203
FM
238.0293 238.0532 238.1722 238.0419 238.0657 238.0783
C13~N302
CI4H27N20
CJ4HIIN202 239.0821 239.2363 CI4H29N3 C I4 H 13N3O CI4HI5N4 CJ5H2702 C J5 HI\03 C J5 H29NO
239.1060 239.1298
239.0736 239.0861
C'I H 16N 204 240.1111 CI\H 1gN30 3 240.1349 CI\H 20N 40 2 240.1588
239.0708
CJ2HJgN04 240.1236 C J2 H20NP3 240.1475 CJ2H4N204 240.0171
239.2012
239
C J5 H13 N02
239.2250 239.0947
CJ2H22N302 240.1713 CJ2H6N303 240.0410
CJIHI5N204 239.1032 C\lH I7N 30 3 239.1271 CJIHI9N402 239.1509
C J5 H3J N 2 C J5 H'5N 20
239.2489 239.1185
CJ2H24N40 CI2HgN402
C J5 HI7 N3
239.1424
CJ3H2004
240.1952 240.0648 240.1362
218
Spectroscopic Data Chemistry FM
FM
FM
C 13 HZZ N0 3
240.1600
C l6 H 1gNO
240,1389
C l3 H6N04
240.0297
C I6HzNOz
240.0085
CI3Hz4NzOz 240.1839 CI3HgN203 240.0535
CI6H20N2 C I6 H4NP
240.1628
C l3 Hz7NP 241.2156 Ci3 H II NPz 241.0852 241.2394 CI3Hz9N4
240.0324
C I3 H 13 N4O
241.1091
CI3Hz6N30 240.2077 C 13 H IONPz 240.0774 240.2316 CI3H2gN4
C I6 H6N3 C l7H36
240.0563
CI4Hzs03 C I4 H90 4
241.1804
240.2819
C l7 Hzo O
240.1515
C 13 H 1ZN 4O
240.1012
C I7 H4OZ
240.0211
CI4Hz403 C I4 Hg04
240.l726
C I7HzzN
240.1753
240.0422
C l7 H6NO
240.0449
CI4Hz6NOz
240.1965
CI4HION03 Cl4HZgNZO
240.0661
C I7H gN 2 C 1g HZ4
240.0688 240.1879
C1gHgO C1gHION
240.0575
C I9 H 1Z
240.2203
CI4HIZNzOz 240.0899 240.2442 C I4 H30N 3
CI4Hz7NOz C I4 H II N0 3 CI4Hz9NzO
241.0501 241.2043 241.0739 241.2281
CI4H13NZOZ 241.0978 241.2520 CI4H31N3 CI4H1SN30
241.1216 241.1455
240.0814
CI4HI7N4 C l4 HN4O
240.0939
CIsHz90Z
241.2168
240.0000
CIsHI303 C 1s H31 NO
241.0865
CisH1SNOz
241.1103
ClsH33Nz ClsHl7NzO C1SHNZO Z
241.2646
ClsHl9N3 C 1s H3N 3O
241.1580
C 1s HsN4
241.0515
C l6 H33 O
241.2533 241.1229
CI4HI4N30
240.1138
C zo
CI4Hl6N4 C l4N 4O
240.1377
241
240.0073
C II H I7N/?4
241.1189
C1SHZgOZ
240.2090
CllHl9N303
241.1427
ClsH1Z03 C 1sH30NO C1sH1,jNOz
240.0786
CllHzlN40Z
241.1666
240.2329
ClzHl9N04
241.1315
240.1015
241.1553
ClsH3ZNz
240.2567
ClzHzlNz03 ClzHsNz04
241.0249
241.0151
241.2407
241.1342 241.0038 241.0277
ClsHl6NzO
240.1264
C1sNzO z
239.9960
ClzHz3N30Z 241.1791 ClzH7N303 241.0488
C1SHlgN3 C 1s H2NP C 1s H4N 4
240.1502
ClzHzsN40
241.2030
240.0198
ClzH9N402 C 13 HZ1 0 4
241.0726
Cl6Hl70Z C l6 H0 3
241.1440
C l6 H3SN
241.2771
C l6 H3Z O
240.2454
241.1679
C l6 H l9NO
241.1467
Cl6Hl60Z C l60 3 C I6 H34N
240.1151
Cl3Hz3N03 C 13 H7N04
241.0375
C l6 H3NO z
241.0164
C13HZSNZOz 241.1917 C 13 H9N 20 3 241.0614
Cl6HzlNz C I6 HsNzO
24 l.l 706
240.0437
239.9847 240.2693
240.9925
241.0402
219
Mass Spectrometry
FM
FM
FM
C I6 H7N3
241.0641
CI4HIOO4
242.0579
C I7 HSNO
242.0606
C l7H21 O
241.1593
CI4H2SN02
242.2121
242.0845
C I7 HP2 C I7H23 N
241.0289
CI4HI2N03
242.0817
CI7HION2 C 1s H26
241.1832
CI4H30N20
242.2360
241.0528
CI4HI4N202
242.1056
C l7 H9N2 C 1sH2S
241.0767
CI4H32N3
242.2598
ClsHIOO C 1S HI2N C l9 H I4
242.0732
C I7 H7NO
241.1957
242.1295
C I9N
242.0031
C 1sH9O
241.0653
Cl4Hl6N30 C I4N30 2
241.9991
C 2oH2
242.0157
C lg H lI N
241.0892
243
C l9 H l3
241.1018
242.0229
ClIHI9N204
243.1345
C20 H
241.0078
CI4HISN4 C I4H2N4O CIsH3002
242.1533 242.2247
ClIH21N303
243.1584
242.0943
ClIH23N402 243.1822 Cl2H21N04 243.1471
242 ClIHISN204 242.1267 ClIH20N303 242.1506
CIsHI403 C 1S H32NO
242.2485 242.1182
242.2036 242.0970 242.1096
CI2H23N203 243.1710 CI2H7N204 243.0406
ClsHI6N02 C 1sN0 3
241.9878
CIsH34N2
242.2724
C1sH1sNP
242.1420
Cl2H2SN302 243.1948 Cl2H9N303 243.0644
ClsH2N202
242.0116
CI2H27N40
CIsH20N3 C 1S H4NP C 1s H6N4 C l6H34O
242.1659 242.0355
CI2HIIN402 243.0883 243.1597 CI3H2304
242.0594
C l3 HzsN03
242.2611
242.1757
Cl6H1S02 C l6 H20 3
242.1307 242.0003
C\3H9N04 243.0532 C\3H 27N 20 2 243.2074 C\3HI\N 20 3 243.0770
242.0453
C I6H20NO
242.1546
C\3H 29N 3O
Cl3H26N202 242.1996 CI3HION203 242.0692
C I6 H4N02
242.0242
CI6H22N2 C I6 H6N P
242.1784
C13H13N302 243.1009 243.2551 C\3H31 N 4 CI3HISN40 243.1247
CIIH22N402 242.1744 Cl2H20N04 242.1393 CI2H22N203 242.1631 Cl2H6Nz04 242.0328 Cl2H24N302 242.1870 Cl2HgN303 242.0566 Cl2H26N40
242.2108
CI2HION402 242.0805 242.1518 Cl3H2204 Cl3H24N03 C13 HgN 04
C I3 H2SNP
242.2234
242.0480
Cl3HI2N30Z 242.0930 242.2473 C I3 H30N4
C I6 HSN3 C I7 Hz2 O
242.0719
CI3HI4N40
242.1169
C I7 H6 0 2
242.0368
CI4H2603
242.1883
C I7 H24N
242.1910
242.1671
CI4H2703 C I4 H 1P4 CI4H29N02 C I4 H13N0 3
243.2187
243.1835
243.2312
243.1961 243.0657 243.2199 243.0896
220
Spectroscopic Data Chemistry
FM
FM
FM
CI4H31N20
243.2438
C I9 H I5
243.1174
CI4H2N302
244.0147
CI4HI5N202 C I4 H33N 3
243.1134
C I9 HN C2oH3
243.0109
243.2677
243.0235
244.0386
CI4HI7N30 C I4 HN 30 2
243.1373
244
CI4H20N4 C I4 H4N 4O CI5H3202
243.0069
CI4HI9N4 C I4 H3NP
CIIH20N204 244.1424 CIIH22N303 244.1662
CI5HI603 C I5 0 4
243.0308
CI5H3102
243.2325
CI5HI503 C I5 H33NO
243.2564
243.1611
243.1021
244.1690 244.2403 244.1100 243.9796 244.1338
CIIH24N402 244.1901 CI2H22N04 244.1549
CI5HISN02 C I5 H2N0 3
244.0034
CI2H24N203 244.1788 C I2 HSNz04 244.0484
CI5H20N20
244.1577
CI5H4N202
244.0273
CI5H22N3 C I5 H6N P
244.1815
CI5HI7N02 C I5 HN0 3
243.1260 242.9956
CI2H26N302 244.2026 CI2HION303 244.0723
CI5HI9N20
243.1498
CI2H2SN40
244.2265
C I5 HSN4
244.0750
CI5H3N202
243.0195
CI2HI2N402
244.0961
244.1464
CI5H21N3 C I5 H5N P
243.1737
CI3H2404
244.1675
CI6H2002 C I6 H40 3
244.0160
243.0433
C I6 H22NO
244.1702
243.0672
CI3H26N03 C 13 H ION04
244.1914
C I5 H7N 4
244.0610
C I6 H6N02
244.0399
CI6HI902 C I6 H30 3
243.1385
CI6H24N2 C I6 HsNzO
244.1941
243.0082
C13H2SN202 244.2152 C13HI2N203 244.0848
C I6 H21 NO
243.1624
CI3H30N30
244.2391
C I6H5N02
243.0320
244.1087
CI6H23N2 C I6 H7NzO C I6 H9N 3
243.1863
C13HI4N302 C13 H32N4
243.0559
C 13 H I6N4O
244.1325
C I7Hs02 C I7 H26N
244.2067
243.0798
C 13N 40 2
244.0022
C I7 H IONO
244.0763
C 17 H23 O
243.1750
CI4H2S03
244.2039
244.1001
C I7 H70 2
243.0446
C14HI204
244.0735
CI7H12N2 C 1sH2S
C I7 H25 N
243.1988
CI4H30N02
244.2278
C 1s H 12 O
244.0888
C 17 H9NO
243.0684
C14HI4N03
244.0974
C 1SHI4N
244.1127
C I7 H IIN 2
243.0923
CI4H32N20
244.2516
C 1s H27 C1sH11O C 1SH I3 N
243.0810
CI4HI6N202 244.1213 C I4 N20 3 243.9909
C1sN z C I9 H I6 C I9 0
244.0062
243.2114 243.1049
CI4HISN30
C I9 H2N
244.0187
244.2629
244.1451
CI6HION3 C I7 H24O
244.0511
244.0637 244.0876 244.1828 244.0524
244.2192
244.1253 243.9949
221
Mass Spectrometry
FM
FM
FM C 1s H04
244.9874
CI2H24N04
C\lH 2I N 20 4 245.1502 C\lH23 N30 3 245.1741
CIsHI9N02 C 1s H3N0 3 C 1S H21 NP
245.1416
CI2H26N203 246.1945 CI2HtoN204 246.0641
C\lH2SN 40 2 245.1979 CI2H23N04 245.1628
CIsHsN202 C 1s Hz3 N 3
245.0351
CI2H2SN302 246.2183 / C I2 H I2N:P3 246.0879
245.1894
CI2H30N40
246.2422
CI2H2SN203 245.1866 CI2~NP4 245.0653
C 1s H7N3O
245.0590
246.1118
C 1s H9N4
245.0829
CI2HI4N402 C\3H260 4
246.1832
C12H27N302 245.2105 C I2 H\lN30 3 245.0801 CI2H29N40 245.2343
CI6H2102 C I6 Hs0 3
245.1542
CI3H2SN03
246.2070
245.0238
CI3HI2N04
246.0766
C I6 H23NO
245.1781
C I2 H\3N 40 2 245.1040 245.1753 C\3HzP4
C I6H7N0 2
245.0477
CI6H2SN2 C I6H9N P
245.2019
CI3H30N202 246.2309 C\3H I4N 20 3 246.1005 CI3HI6N302 246.1244
245.0715
C 13 N30 3
245.9940
C I6H\lN 3 C I7 H2S O
245.0954
CI3HISN40
246.1482
245.1906
CI3H2N402
246.0178
CI4H3003
246.2196
C I7H27N
245.0603 245.2145
CI4HI404
C I7 H 11 NO
245.0841
CI7HI3N2 C 1s H29 CisNIP C1SH1SN C 1SHN2
245.1080 245.2270 245.0967 245.1205
CI4HI6N03 C I4N04
246.0892 246.1131
245.1331 245.0027
C 2o H4
244.0313
245
CI3H27N03 C I3 H\lN0 4
245.1992 245.0688
CI3H29N202 245.2230 C I3 H\3N 20 3 245.0927 CI3H31N30 245.2469 C\3H 1SN30 2 245.1165 CI3HI7N40 245.1404 C I3 HN 40 2
C I7 H90 2
CI4H2903 C 14H\304
245.0100 245.2117 245.0814
CI4H31N02
245.2356
CI4HISN03
245.1052 245.1291
C I9H I7
244.9987
C I9H3N C 20HS
CI4HI7N202 C I4HN 20 3 CI4HI9N30 CI4H3N302 CI4H21N4 C I4HsN 4O CIsHI703
245.1529 245.0226 245.1768 245.0464 245.1178
C I9HO
245.0113 245.1655
245.0140
245.0266 245.0391
246
C\lH 22N 20 4 246.1580 C\lH24N30 3 246.1819 C\lH26N40 2 246.2057
246.1706
245.9827 CI4HISN202 246.1369 CI4H2N203 246.0065 CI4H20N30 246.1608 CI4H4N302 246.0304 246.1846 CI4H22N4 C I4 H6N 4O 246.0542 CIsHIS03 C 1s H20 4
246.1256
CIsH20N02 C 1s H4N03
246.1495 246.0191 246.1733 246.0429
CIsH22N20 CIsH6N202
245.9953
Spectroscopic Data Chemistry
222
Cl5Hz4N3 C l5 HgNp C'5 H ION4
246.1972
C'6 HZZ02 C'6 H603 C'6 HZ4NO C'6 HgNOZ
246.1620
246.0668 246.0907 246.0317 246.1859
FM
FM
FM
ClzHz9N30Z C 1zH'3 N303 C'ZH'5 N40Z C I3 H27 0 4 C I3 H29N0 3 C'3 H '3N04 C 13 H'5 N203 C'3 H'7N302 C l3 HN30 3
247.2261
C l6 H9NOz
247.0634
247.0958
C'6 HZ7N2 C'6 H ll N ZO C'6 H I3 N,
247.2176
247.\196 247.1910 247.2148 247.0845
C'7H270 C'7H llOZ
247.0872 247.llll 247.2063 247.0759 247.2301
247.2427 247.1123
247.1560
246.1985
Cl3H19N40 C'3 H3N402
C'7H29N C I7H 13 NO C'7 H'5N2 C l7 HN3
247.0257
C 1gH31
C'7H IOO2 C'7 H28N
246.0681 246.2223
Cl4Hl504 C'4H I7N03
247.0970 247.1209
C 1gH l5 O C I8 H'7N
247.1362
C l7 H l2NO
246.0919 246.1158
C l4 HN04
246.9905 C 14H'9N202 247.1447 C'4 H3N203 247.0144 Cl4H21N30 247.1686 Cl4H5N302 247.0382 247.1925 Cl4H23N4
C l8 HNO C l8 H3N2
247.0058 247.0297
C l9 H l9
247.1488 247.0184 247.0422 247.0548
Cl6H26N2 C l6H lON2O C16Hl2N3 C'7 H260
246.0555 246.2098 246.0794 246.1032
Cl7Hl4N2 C l7N3 C l8 H30 C l8 H l4O C l8 H l6N C l8NO
246.0093 246.2349 246.1045 246.1284
C l8 H2N2
246.0218
C l9 H l8
246.1409 246.0106
C l9 HP C l9H4N C2oH6 247
245.9980
246.0344 246.0470
247.1083 247.1322 247.0018
C l9 H3O C l9 H5N C2oH7
247.0998 247.1236 247.0171
C'4 H7N40 Cl5Hl903 C l5 H30 4 C'5 H21 N02
247.0621
248
247.1334 247.0031 247.1573
CllH24N204 248.1737 CllH26N303 248.1976 Cl,H28N402 248.2214
C'5 HSN 03 C'5 H23N P
247.0269
Cl2H26N04
247.1811
Cl5H7N202
247.0508 247.2050
247.1699
Cl2H28N203 248.2101 C 12H'2N 204 248.0797 C 12H'4N303 248.1036 ClzHI6N40Z 248.1275 248.1988 Cl3H2804 C'3 H I4N04 248.0923
247.0395 247.1937
C'3 H'6N203 C l3Nz0 4
CllHz3N204 247.1659 CllH25N303 247.1897 C ll H27N4OZ 247.2136 ClzH25N04 247.1784
Cl5Hz5N3 C l5 H9N3O C'5 H II N4 C'6 H2302
C,zH Z7N z0 3 247.2023 Cl2HllNz04 247.0719
C l6HP3 C l6Hz5NO
247.0746 247.0985
248.1863
248.1162 247.9858
223
Mass Spectrometry
C I3 H,sN 3OZ 248.1400 C I3 H2N30 3 248.0096 C 13 H20N4O 248.1639
C'7 H30N C'7 H'4NO C'7 H'6N2
248.2380
C 13 H4N40 2 C'4 H1604
248.0335
248.0011
C I4 H,sN03 C I4 H2N04 C'4 H20N20Z C'4H4N203 C'4 H2ZN30
248.1287
CI4H6N302 Cl4Hz4N4 C'4 HSNP
248.0460
C'7NP C'7 H2N3 C 1sH32 C 1sH'60 C,sOz C,sH,sN C,sHzNO C,gH4N2 C I9Hzo
CIsH2003 C,sH40 4
248.1413
CISH22NOz C,sH6N0 3 C,sH Z4NzO C,sHsNzOz
248.0586
CIsH26N3 C,sH ION3O
248.2129
C,sH,zN4 CI6Hz40Z C'6Hg03 C'6 HZ6NO C I6 H ION02 C'6 H2SN Z C'6 H '2N ZO C'6H '4N3 C'6N4 C'7 HZSO C'7 H '202
248.1063
248.1049 247.9983 248.1526 248.0222 248.1764 248.2003
248.1076 248.1315 248.0249 248.2505 248.1202 247.9898 248.1440 248.0136 248.0375 248.1566
C I9HP C'9 H6N
248.0262
248.0109
CZOHg
248.0626
248.1651
249-
248.0348
CIIHzsNz04 249.1815 CIIHz7N303 249.2054 C,zH Z7N04 249.1941
248.0699
248.1890
248.0825 248.1777 248.0473 248.2015 248.0712 248.2254 248.0950 248.1189 248.0124 248.2141 248.0837
FM
FM
FM
C'ZH\3N Z0 4 C'2 H ,sN 30 3 C'ZH I7N4OZ C\3H1SN04 C'3 H'7N Z03
248.0501
249.0876 249.1114 249.1353 249.1001 249.1240
C\3HN Z0 4 248.9936 C'3 H '9N 30Z 249.1478 C 13 H3N30 3 249.0175 C\3H Z,N4O C13 HSN402 C'4 H '704 C I4 H,9N03 C'4 H3N04
249.1717 249.0413 249.1127 249.1365 249.0062
C'4 H Z,N zO z 249.1604 C'4 HSN203 249.0300 C'4 H23N30 249.1842 C'4 H7N302 C'4 HZSN4
249.0539
C'4 H9N40 C,sH2,03 C is Hs04
249.0777
ClsH23N02 C,sH 7N0 3 C,sH2S N2O C,sH9N 2OZ
249.1730
CIsHz7N3 C,sH II N3O C'SH'3 N4 C'6 HZSOZ C'6 H903 C'6 HZ7 NO C'6 H IINOZ C'6 HZ9N2 C'6 H I3N ZO C'6 H ,sN3 C'6 HN 4 C'7 HZ90 C'7 H'30Z C'7 H3I N C'7 H ,sNO
249.2200
249.2081 249.1491 249.0187 249.0426 249.1968 249.0664 249.0903 249.1142 249.1855 249.0552 249.2094 249.0790 249.2332 249.1029 249.1267 249.0202 249.2219 249.0916 249.2458 249.1154
CI7Hl7Nz C'7 HN ZO C 17 H3N3
249.1393
C'SH 33 C'SH'70
249.2584
249.0089 249.0328 249.1290
224
Spectroscopic Data Chemistry FM
C 1SH I9N
248.9976 249.1519
C 1S H3NO
249.0215
C 1s HsN2 C 19H21
249.0453
C I9 HP CI9 H7N
249.0340
C 1s H0 2
C 2oH9 250
249.1644 249.0579 249.0705
CIlH26N204 250.1894 C12HI4N204 250.0954 CI2HI6N303 250.1193 Cl2HISN402 250.1431
250.1080 C13HI8N203 250.1318 CI3H2N204 250.0014 CI3H20N302 250.1557 CI3H4N303 250.0253 C 13H 22N 4O 250.1795 C 13 H6N 40 2 250.0491 250.1205 CI4HIS04 CI3HI6N04
C14H20N03 C I4 H4N04
250.1444 250.0140
CI4H22N202 250.1682 CI4H6N203 250.0379 CI4H24N30
250.1921
CI4HsN302
CIsH2203 C 1s H60 4
250.0617 250.2160 250.0856 250.1569 250.0266
CIsH24N02
250.1808
CI4H26N4 CI4HION40
FM
250.0504 250.2046 ClsHION20~ 250.0743 2502285 CIsH2SN3 CIsHI2N30 250.0981 250.1220 CIsHI4N4 256.1934 CI6H2602 250.0630 CI6HIOO3 C I6 H2S NO 2502172 CI6HI2N02 250.0868 2502411 C I6H30N 2 CI6HI4N20 250.1107 250.1346 CI6HI6N3 250.0042 C 16N,G C I6 H2N4 250.0280 C I7 H30O 250.2298 250.0994 CI7HI402 H N 250.2536 C I7 32 250.1233 C I7 H I6NO 249.9929 C I7N0 2 250.1471 CI7H1SN2 250.0167 C I7H2NP 250.0406 C I7 H4N3 C 1s H34 250.2662 C 1s H I8 O 250.1358 C 1sH20 2 250.0054 C 1S H20N 250.1597 250.0293 C I8 H4NO 250.0532 C 1s H6N 2 250.1722 C I9 H22 C I9 H6O 250.0419 250.0657 C I9 HSN 250.0783 C 2o H 1O C1SHgNO) C 1S H26N]O
FM
225
Mass Spectrometry
(a) If only C, H, N, 0, F, P, I are present, the approximate expected % (M + I) and % (M + 2) intensities can be calculated by use of the following formulas: %(M + I) :: 1.1
x
=
100[(M+l)] (M)
number ofC atoms + 0.36
% (M +2) = 100
x
number ofN atoms.
[(~~2) J
_ (1.1 x number ofC atoms) 2 200 + 0.20 x number of atoms.
°
Table 5.4 COMMON FRAGMENT IONS
All fragments listed bear + 1 charges. To be used in conjunction with Table 5.5. Not all members of homologous and isomeric series are given. The list is meant to be suggestive rather than exhaustive. Structural inferences are listed in parentheses. m/z
(Structural Inference)
Ions*
14 IS 16 17 18 19 26 27 28 29 30 31 32 33
CH2 CH3 0 OH ~O,NH4
F,HP C=N, C2H2 C2H3 C2H4, CO, N2 (air), CH=NH C2Hs' CHO CH2NH2(RCH2NH2), NO CHPH(RC~OH), OCH 3 °2(air) SH,CHl
226 34
Spectroscopic Data Chemistry
36
HzS CI 7CI at 37) HCI (H37CI at 38)
39
C3H3
40
CHF = N, Ar (air) C3Hs' CHF = N + Ha, C 2H2NH
35
41
42 43
e
C3H6 , CzHp C3H7, CH3C = 0, CH3C = OG, (G = R, Ar, NHz, OR, OH), CzHsN H
44
I
°
CHzC = + H (Aldehydes, McLafferty Rearrangement), CH3CHNH2, CO2, NHF = (RC = ONHz), (CH3)2N
°
CK I ~ 45
gHOH, CHzCHpH, CHPCH3 (RCHPCH3),
II
49
C-OH,CH3CH-O+H(CH3CHOHR) N02 CHzSH (RCH2SH), CH3S CH3S+H CHFI(CHz 37CI at 51)
46 47 48
51
CHFz' C4H3
53
C4 HS
54 55
CH 2CHF=N C4 H7, CHz=CHC=O
56
C4 HS
57
C4 H9 , CzHsC =
58
CH3-C, + H, C2HsCHNHz' (CH3)2NCH2' CzHsNHCHz, CZH2S CH 2
59
(CH3)2COH, CHPC2Hs' C-OCH3 (RC02CH3)· NHzC =0+ H,
°
,/0
°II
i
CHz CHPCHCH3, CH3CHCHPH, CzHsCHOH
227
Mass Spectrometry
~O 60
CH 2C", +H, CHPNO OH
o 61
65
66
II
CH3C-O + 2H, CH 2CH 2SH, CH 2SCH3
o CsHs
=C,H"H,S, (RSSR)
67
CSH7
68
CH2CH 2CH 2C=N
69
C SH9 , CF3, CH 3CH=CHC=O, CH 2=C(CH3)C=O
70
CSHIO
71
CSHll' C 3HF=O
72
ijO C 2H sC" + H, C3H7CHNH2, (CH 3)2 N=C=O, CH2 C 2HsNHCHCH 3 and isomers
73
Homologs of 59, (CH 3)3 Si
°II 74
CH 2-C-OCH3 + H
o II
°II
75
C-OCzH s + 2H, C2HsCO + 2H, CH 2 SC 2H s' (CH3)2CSH, (CHP)2 CH, (CH3)2SiOH
76
C6HiC6HSX, C 6H4XY)
77
C6HS (C6HSX)
78
C6HS + H
79
C6HS + 2H, Sr (81 Br at 81)
228
Spectroscopic Data Chemistry
Q - C H2,
80 CRSS , + H, HBr (H SIBr at 82)
I H
81
eLH,.
C.H,.
6
82
CHFH 2CH2CHF=N, CCliC 3sCI37CI at 84, C 37Clz at 86), C 6H IO
83
C 6HII' CHCI 2 (CH3SCI 37CI at 85, CH37CI 2 at 87),
85
86
°II 87
C3H 7CO, homologs of73, CH2CH2COCH3
II
88
°II
CH2-C-OC 2Hs + H
°
lIJ-
229
Mass Spectrometry
91
lfH2(C6HSCH2Br)'lfH + H, ~ + 2H,
(CH 2)4 Cl[(CH 2)4 37Cl at 93]
92
93
([)c I /.
H2,
g-CH,
~
+ H,
CH2Br(CH2 slBr at 95, RCH 2Br), C 7H9 ,
lJ=c=o,rQr-° C,H,(t..-penes) 94
0-0 I /.
+H,
~~o H
95
o-c~o
96
CH2CH2CH2CH2CH2CEN
97
C,H",
98
o-CH,O+H
99
C,H", C,H"O,
100
C 4 H9 C -..
0-
CH,
00
~O :/'"
+ H, C SH Il CHNH2 CH 2
230
Spectroscopic Data Chemistry
o 101
II
C-OC 4 H 9
o 102
II CH 2 C-OC3H7 + H
o 103
II
C-OC 4 H 9 +2H,C 5 H lI S,CH(OCH 2 CH 3 h
104
C2H5CHON0 2
105
©JC=O [C 6H5(C = O)G, G = OH, OR, OAr, halogen, NH 2],
~H,CH" ~HCH, 106
107
c&H'
~H,o,~ OH C2H4Br(C2H4 sIBr at 109)
108
109
©-CHP+H
c6fOH
231
Mass Spectrometry
III
O-C=O S
CH 3
CH 3 CH
C= 0
©- C-CH,. ©-CH,.©-CH I
I
120
C=O
121
©t-
OH
•
o 122
II
C6HS C-O+ H,(C 6 H sC0 2 R)
123 125
127 128
HI
I
3
232
Spectroscopic Data Chemistry
130
o .
II
131
C3FS' ©-CH=CH-C
135
(CHZ)4Br[(CHz)4 SIBr at 137]
138
C=O
139
141 147
6-
C1
CH2 I (RCHzI) (CH 3)zSi = 0 - Si (CH 3)3
o II
149
©:~)+H II
o 154
Ions indicated as a fragments + nH(n = 1,2,3---) are ions that arise via rearrangement involving hydrogen transfer.
233
Mass Spectrometry Table 5.5 Common Fragments Lost
This list is suggestive rather than comprehensive. It should be used in conjunction with Table 5.4. All of these fragments are lost as neutral species. Molecular Ion Minus Fragment Lost
Inference Structure
I
H·
2
2H·
15
CH 3•
16
O(ArN0 2, amine oxides, sulfoxides); NH2 (carboxamides, sulfonamides)
17
HO·
18
Hp (alcohols, aldehydes, ketones)
19
F·
20
HF
26
CH=CH:CH=N
27
CH 2= CH", HC=N (aromatic nitrites, nitrogen heterocycles)
28
CH 2 = CH 2, CO, (quinones) (HCN + H)
29 30
CH3CH2·, (ethyl ketones, ArCH 2CH 2CH3), ·CHO NH 2CH 2·, CHP(ArOCH3), NO(ArN02), C 2H6
31
·OCH3(methyl esters), ·CHpH, CH3NH2
32
CHPH,S
33
HS· (thiols), (·CH3 and H20)
34
H2S (thiols)
35
CI·
36
HCI,2H20
37
H2CI (or HCI + H)
38
C3 H2, C2N,
39
C3H3, HC 2N
40
CH 3C=CH
41
CH 2=CHCH 2•
F2
234
Spectroscopic Data Chemistry
H)
C-
/"-.
42
CH 2=CHCH 3, CH 2=C=0, H 2G-CH?, NCO, NCNH 2
43
C3H 7' (propyl ketones, ArCH2---C3H 7), CH 3---C° (methyl ketones, CH3CG,
°II where G
=
various functional groups), CH 2=CH-O', (CH 3' and
CH 2=CH2), HCNO
44 45
CH2=CHOH, CO 2 (esters, anhydrides), NP, CONH 2, NHCH2CH 3 CH 3CHOH, CH 3CHP' (ethyl esters), C0 2H, CH 3CH 2NH 2
47
(HP and CH 2=CH 2), CH 3CHPH, 'N0 2 (ArN0 2) CH 3S'
48
CH3SH, SO(sulfoxides), 03
49 51
'CHFI
52
C 4H4, C 2N 2
53
C4HS
54
CH 2=CH-CH=CH 2
55
CH 2=CHCHCH 3
56
CH 2=CHCH 2CH 3, CH 3CH=CHCH3 , 2CO
57
C 4H9' (butyl ketones), C 2H sCO (ethyl ketones, EtC = OG, G = various structural units)
58
'NCS, (NO + CO), CH 3COCH 3, C4H IO
46
59
'CHF2
°II
°II
H
L
I
CHPC", CH 3-C-NH2' 60
°II
C 3 HPH, CH 2=C(OH)2 (acetate esters)"
H 61
6
62
(H 2S and CH 2=CH 2)
63
·CH 2CH 2Cl
s·I
235
Mass Spectrometry
CH 3
I
68
CH 2=C-CH=CH 2
69
CF3"' CSH9"
71
CsH\I"
o II 73
CH3CHPC"
74
C4H9 0H
75 76 77
C6H3 C6H4, CS 2 C6Hs' CS 2H
78
C6H6, CS 2H 2, CSH4N
79
Br", CsHsN
80
HBr
85
"CCIF2
100
CF 2=CF 2
119
CF3-CF 2"
122
C6 HsCOOH
127
I"
128
HI
"Mclafferty Rearrangement
Problems: (I)
List the possible formulas of molecules with M+ = 100. Assume that C, Hand 0 may be present.
Strategy: A good approach to this kind of problem is to begin by calculating the possible hydrocarbon formulas. First divide the molecular weight by 12 to find the maximum number of carbons possible. Each carbon is equal in mass to 12 hydrogens, so the next step is to replace 1 C by 12H, giving another possible formula.
236
Spectroscopic Data Chemistry Oxygen contain:ing fonnu[as can be calcu[ated by realising that one
oxygen is equal in mass to CH 4.
ADs.: Dividing M+ by [2 gives [00/[ 2 = 8 (remainder 4), so a possible hydrocarbon forrmu[a is CSH4. Rep[acing [ C by [2H gives the second possible hydrocarbon formula C 7H 16 .
°
Starting with the hydrocarbon fonnu[a CSH4 and replacing CH 4 by gives Cp aSrPossib[e (but unlike[y) formula. Doing the same with C 7H l6 gives C6HIP. Again rep [acing CH4 by
° gives CSHS02' and repeating the process a
third time gives C4H40r Thus, there are five Iike[y formulas for a substance with MW = 100. (2)
Write as many molecular formulas as you can for compounds that have the following molecular ions in their mass spectra. Assume that all the compounds contain C 1 and H, and that mayor may
°
not be present. (a) M+= 86,
ADS.
(b) M+ = 128,
(c) M+ = 156
(a) C6H 14, CSH100, C4 H60 2, C 3 H20 3 (b) C9H zo' C 9 HP, CIOHs' CSH I60, C7H 1P2' C6Hs0 3 • CSHP4 (c) C 11 H24, C 12H 12, CllHsO, C IOH200, C IO H40 2, C 9H 160 2, CSH I20 3, C 7H s04' C6H40 S
(3)
What are the masses of the charged fragments produced in the following cleavage pathways? (a) A[pha cleavage of2-pentanone (CH 3COCH 2CH 2CH 3)
ADS.
43,71 (b) Dehydration of cyc[ohexano[ (hydroxycyclohexane)
ADS.
82 (c) McLafferty rearrangement of 4-methy[-2-pentanone [CH 3COCHFH(CH 3)2]
ADS.
58 (d) Aplha cleavage oftriethy[amine [(CH3CH2)3N]
ADS.
86
Mass Spectrometry
237
STRUCTURAL DATA OBTAINABLE FROM DIFFERENT SPECTRA
Characteristic and readily obtainable structural data from each type of spectrum are collected below: UV
Conjugation, substituents on Sp2 C atoms.
IR
Functional groups.
NMR
Carbon chain.
MS
Molecular formula, functional groups, carbon skeleton.
Details UV
The following data can be obtained from a UV spectrum.
1.
The nature of conjugated system and substituents, from the empirical rules for calculation of Amax of (a) polyenes, (b) enones and (c) aromatic carbonyl compounds.
2.
The presence of aromatic units from the Amax 200 nm and Amax 260 nm (benzenoid) bands.
"
By comparing the shape of the spectrum of the unknown with
oJ.
spectra of known compounds it is possible to identify the nature of the chromophoric units (cf. model compounds).
4.
Weakly absorbing chomophores (i.e., simple ketones, sulphides etc., or n --+ cr' or n --+ 1t' transitions) are indicated by weak bands in the absence of strong chromophores.
IR
The IR spectrum is extremely useful for the identitication of functional groups in the unknown. 'The tables given in the chapter on IR spectroscopy should be consulted. Briefly IR is helpful in identifying the following:
1.
-OH; -COOH;
2.
-NH 2 ; -NH; -CONH 2; -CONH:
3.
C=C; HC=C; -CN; C=C=C;
4.
Aromatic rings, nature of substitution in the ring.
5.
Carbonyl functions.
6.
Enes and their cis-trans stereochemistry.
238 7.
Spectroscopic Data Chemistry Alkyl units -CH(CH3)2; CH(CH 3)3 Note that absence of bands is also informative because if the functional group is present it must give its IR bands. The vibrations never stop.
NMR
The NMR spectrum gives valuable data about the carbon chain.
PMR
(Proton Magnetic Resonance) or lHNMR. The following information can be obtained.
1.
The number of groups of equivalent protons and hence of the nature of C atoms (5 values) in the chain (whether CH 3, CH 2 • CH, etc.). The integration gives the number of protons in each group of equivalent protons.
2.
The adjacent groups of protons (1, splitting patterns).
3.
Decoupling experiments identifY the neighbouring groups of protons.
4.
NOE and J values indicate stereochemistry.
5.
Paramagnetic shift reagents simplifY complex spectra.
13C-NMR
The following information can be obtained:
I.
The number of equivalent groups of C atoms.
2.
The number of H atoms attached to each C atom (off-resonance decoupling).
3.
Calculation of the chemical shifts of C atoms in the proposed structure and comparison with the observed values, for confirmation.
4.
Carbonyl functional groups. The NMR spectrum is the most useful spectrum because it can give almost the complete structure of the unknown compound which may need only marginal information for confirmation.
MS
The mass spectrum provides data, some of which cannot be obtained from other spectra.
1.
Accurate molecular weight and molecular fromula MtO. This will be very valuable in those cases where only a small amount
239
Mass Spectrometry
of the unknown compound is available. Ion formulae can also be obtained from high resolution MS. 2.
The class of compounds to which the unknown belongs can be deduced from M + I abundance and the general appearance of the spectrum.
3..
Functional groups from high m/z peaks and characteristic ion series.
4.
Information about the C-skeleton from fragment peaks.
Reference Books used: 1.
Spectrometric Identification of Organic Compounds by Silverstein, Bassler, Morrill, 5/e (John Wiley & Sons. Inc.).
2.
Absorption Spectroscopy ofOrganic Molecules by Y.M. Parikh (Addison Wesley Publishing Company, California).
3.
Application ofAbsorption Spectroscopy ofOrganic Compounds by John R. Dyer (Prentice Hall of India Private Limited, New Delhi, 1991).
4.
Organic Spectroscopy by V.R. Dani. (Tata McGraw - Hill Publishing Company Limited, New Delhi, 1995).
ClClCl
Index
Abietic acid, 7 Absorption frequencies of: alkenes, 45-46 aromatic homocyclic compounds, 47-49 common organic compounds,
27-34 Alcohols: 13C chemical shifts,
111-12 Alkenes and alkynes: 13C chemical shifts, 104-08 Amines: 13C chemical shifts, 114 Aromatic compounds: 13C chemical shifts, 108-11 Aromatic molecules: carbonyl compounds, 13-20 dienes, 7-8 enones, 10-13 polyenes, 8-9 Aromatic systems and derivatives: absorption characteristics, 16-18 Auxochrome substituents, 6
Benzene chromophore, 5-6 Branched chain alkanes, 134 Calculating absorption maxima of: aromatic molecules, 5-13 carbonyl compounds, 3-5 unsaturated compounds, 1-3 Carbonyl compounds, 3-4 Carboxylic acids, ester, chlorides, anhydreds, amides and nitriles: 13C chemical shits, 116-20 Chemical shifts, multiplicities and coupling constants, 86-88 Chemical shifts: alicyclic rings, 72 alkyne protons, 77 fused aromatic rings, 78 heteroaromatic rings, 79 heterocyclic rings, 72-73 methyl, methylene and methane protons, 65-67
241
Index miscellanceous alkenes,
75-77 monosubstituted benzene rings proton, 77-78 substituent effects, 70-71 two/three functional groups,
68-70 unsaturated and aromatic systems, 73-75 Chromophore substituents, 6 Common fragmentation ions,
225-32 Common fragmentation lost,
233-35 Coupling constants, 122 Cross conjugation, 1 Cutoff wavelength, 19-20 Cyclic diene, 1
Ethers, acetols and epoxides: 13C chemical shifts, 112-13 Exact masses of isotopes,
129-30 Fragmentation process: alcohols, 137-40 aldehydes, 144-45 alkanes, 132-34 alkenes, 135-36 amides, 151-52 amines, 149-51 aromatic hydrocarbons,
136-37 carboxylic acids and esters,
147-49
Dicarbonyl compounds, 12 Diene absorption: Woodword's and Fieser's rules, 2 Diens and triens: kinds of, 1-2 Different spectra: structural data obtainable, 237-39 Effects of chemical shifts on: alicyclic and heterocyclic rings, 73-80 protons on heteroatoms,
ethens, 142-43 ketones, 145-47 phenols and other aromatic alcohols, 140-42 Halides: 13C chemical shifts,
113-14 Heteroannular diene, 2 Heteroatoms, 80-81 Homoannular diene, 2 Incremental shits of aromatic carbon atoms of monosaturat.::d benzenes,
80-81
108-10
single functional groups,
Incremental substituents effects,
65-67 two/three functional groups,
68-71 Enone and dienone absorption rules, 4-5 Enone: solvent correlations, 5 Ergosterol, 8
102 Infrared absorption and structure of organic compounds: correlations, 34-35 Ketones and aldehydes: 13C chemical shifts, 115-16
242 Linear and branched alkanes: 13C chemical shifts, 94-104 Linear conjugation, 1 Mass spectroscopy, 128-235 Mass spectrum, 128 McLafferty rearrangements, 135, 136,144,147 Molecular ion, 128-29 Mulling oils, 58 Multiplicities, 13C chemical shifts and couplings of common NMR solvents, 123-24 NMR spectroscopy, 90-127 NMR table of correlations of chemical shifts of protons, 88-93 Ortho and meta substitution, 15 Oximes: 13C chemical shifts, 120 Para substitution, 14 Parameters of 13C chemical shifts, 100 Polycyclic aromatic compounds: absorption characteristics, 15 Polyenes,3 Proton magnetic resonance spectroscopy, 64-93 Proton spin coupling constants, 81-85 Protons on heteroatoms, 80-81
Index Recognition of molecular ion peak, 131-32 Relative isotopic abundance of common elements, 130 Retro-Diels-Alder reaction, 135 Scott's rule for "-max of ET band,
6-7 Semicyclic diene, 1-2 Shielding constants, 68-69 Solvents and mulling oils: infrared transmission characteristics, 57-58 Some CJ CH ) values, 120-21 Some eJCH) values, 121-22 Spin coupling, 120-22 Stretching frequencies of: carbonyl compounds, 49-53 cyclic and acyclic systems, 47 Substituent constants, 74-75 Substituent effects on chemical shifts, 70-71 Table of 13C correlation for chemical classes, 124-27 Thiols, sulfides and disulfides: 13Cchemicalshifts, 114-15 Trans f3-carotene, 8-9 Translycopene, 9 Ultraviolet spectroscopy, 1-20 Variations of carbonyl stretching band,53-54 Vibration modes of amines and amino acids, 55-56