Organophosphorus Chemistry Volume 19
A Specialist Periodical Report
Organophosphorus Chemistry Volume 19
A Review o...
21 downloads
1428 Views
19MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Organophosphorus Chemistry Volume 19
A Specialist Periodical Report
Organophosphorus Chemistry Volume 19
A Review of the Literature Published between July 1986 and June 1987 Senior Reporters
8. J. Walker, Department of Chemistry, David Keir Building, The Queen's University of Belfast J. B. Hobbs, The City University, London Reporters
C. W. Allen, University of Vermont, U . S . A . 0 . W. Allen, Sheffield City Polytechnic 0 . Dahl, University of Copenhagen, Denmark R. S . Edmundson, formerly of University of Bradford C . D. Hall, King's College, London J. C. Tebby, Noith Staffordshire Polytechnic, Stoke-on-Trent
SOCIETY OF CHEMISTRY
ISBN 0-85 186- 176-8 ISSN 0306-07 13
Copyright 0 1988 The Royal Society of Chemistry All Rights Reserved N o part of this book may be reproduced or transmitted in any form or by any means - graphic, electronic, including photocopying, recording, raping, or information srorage and retrieval systems - wirhour written permission from The Royal Society of Chemistry
Published by The Royal Society of Chemistry Burlington House, Piccadilly, London W l V OBN Printed in England by Staples Printers Rochester Limited, Love Lane, Rochester, Kent.
Introduction A major event of 1986 was the 10th International Conference on Phosphorus Chemistry held at the University of Bonn in West Germany. The proceedings. which cover a very wide range of biological, inorganic and organic aspects o f the subject, have been published in PhOSPhOrUS Sulfur. 1987. Volume 30. We l o o k forward to the 11th Conference at Tallinn, USSR in 1989. Activity in the areas o f quinquevalent phosphorus acid:; and tervalent phosphorus acids continues at a high level. The use of phosphoramidites, and particularly cyanoethyl phosphoramidites. for the solid-phase synthesis of oligodeoxyribonucleotides is now well established, and there have been extensive studies on the preparation, stability, and effective use of these reagents. However, the use of nucleoside H_-phosphonate intermediates for oligonucleotide synthesis is also gaining ground. and offers certain useful advantages, and very short cycle times f o r automated synthesis have been reported. Oligonucleotide analogues containing triester linkages or methylphosphonate linkages are arousing considerable interest for the potential they offer for binding to target sequences in RNA in order to prevent translation of specific gene products. Much effort is being expended to devise methods for attachment of reporter yr-oups and biospecific affinity ligands to oligonucleotides, largely a s a response to the burgeoning demand for highly Specific diagnostics in modern biotechnology. A concerted attack is being made to pin down the s ~ c u c t u r a lrequirements of the active site of the 'ribozyme', as derived from the intervening sequence in ribosomal RNA in Tetrahvmena. These studies have afforded completely new insights into the functions of RNA, and the number of enzymes found to be dependent upon RNA for their catalytic activity is increasing. Although many reports concerning pn-bonded phosphorus have appeared, interest in this area does seem to be passing its peak. There has also been a significant decline in the number o f publications dealing with hypervalent phosphorus chemistry, but the
Vi
Inrroducrion
structural and mechanistic principles established in this a r e a are now being applied to the chemistry o f a variety of other elements in Groups 14, 15 and 16. One of the more striking examples of this is to be found in a paper by Arduengo dealing with the synthesis, structure, and chemistry of 10-Pn-3 compounds (Pn = N, P , A S , sb). In addition. the debate on the importance of stereoelectronic effects on the mechanism of nucleophilic substitution at tetrahedral phosphorus has intensified with three papers €rom Gorenstein and his CO-WOCkeKS. defending their position and providing new evidence to support the concept. In spite of all the previous work, sLudies o f the mechanism of the Wittig rc?action continue to produce novel results. Perhaps the most significant of these is the report by Vedejs that in some cases (E)-alkene can be the kinetically-favoured product. In combination with studies of the effect on Wittig stereochemistry of varying ylide P-substituents this may provide even greater control of olefin stereochemistry. Maryanoff has shown that Wittig reactions o f equimolar mixtures of ylide and lithium salts can show ’fsalt-free” behaviour at low concentrations and a theoretical study comparing the reactions of phosphorus and sulphur ylides with carbonyl compounds identifies the factors which control the different reaction pathways observed for these ylides. There has been renewed interest in the applications o f arsonium ylides in synthesis. Interesting new chemistry continues to arise from decomposition (thermal O K photochemical) of phosphorus(II1) azides and there have been some developments in using monophosphazenes a s synthetic intermediates. In cyclophosphazene studies. the detection of threecoordinate intermediates in SN1(CB) reactions and the use of 2 - D
31P n.m.r. in unravelling complex mixtures are noteworthy. A wide range of alkyl O K aryl phosphazene polymc3rs are now available from thermolysis of phosphoranamines o r derivatives of alkyl phosphazene systems. Important contributions in the theoretical area include a@ initio MO calculations on phosphines, and the application o f molecular mechanics to phosphorus compounds. Several kinetic studies related to the stereochemistry of nucleophilic substitution have appeared, and similarities between reactions at phosphorus and silicon noted and interpreted using frontier orbitals. 31P N.m.r. spectroscopy has been applied to determine c+nantiomeric selectivity and purity by several groups, and unusually large effects on 31P chemical shifts in two-coordinate P = C
vii
Inrmducrion c o m p o u n d s . o n c h a n g i n g t h e n a t u r e of g r o u p s w h i c h a r e n o t d i r e c t l y bonded t o t h e p h o s p h o r u s d t o m . have b e e n n o t e d .
J.B.
Hobbs and B . J .
Walker
Contents CHAPTER 1
1
Phosphines and Phosphonium Salts By D.W.
Allen
Phosphines 1.1
Preparation 1.1.1 1.1.2
1.1.3 1.1.4
1.1.5 1.2
Nucleophilic Attack at Carbon Nucleophilic Attack at Halogen Nucleophilic Attack at Other Atoms Miscellaneous Reactions
Halogenophosphines 2.1 2.2
3
From Halogenophosphines and Organometallic Reagents From Metallated Phosphines By addition of P-H to Unsaturated Compounds By Reduction Miscellaneous Methods
React ions 1.2.1 1.2.2 1.2.3 1.2.4
2
1
Preparation Reactions
Phosphonium Salts 3.1 3.2
Preparation Reactions
1
1
1 6 7 9 9
9 10 12 13 16 16 19 20 20 24
4
pa-Bonded Phosphorus Compounds
25
5
Phosphirenes, Phospholes, and Phosphorins
34
References
36
CHAPTER 2 1
Pentaco-ordinated and Hexaco-ordinated Compounds By C.D. H a l l Introduction
47
Structure, Bonding, and Ligand Reorganization
47
Acyclic Phosphoranes
49
Ring Containing Phosphoranes
51
Organophosphorus Chemistry
X
4.1 4.2
5
CHAPTER 3
Monocyc 1 ic Phosphoranes Bicycl ic and Tricycl ic Phosphoranes
51 5Y
Hexaco-ordi ndte Phosphorus Compounds
65
References
68
Phosphine Oxides and Related Compounds Bg B , < ' . WaikcJr
1
Introduction
70
2
Preparation of Acyclic Phosphine Oxides
70
3
Preparation of Cyclic Phosphine Oxides
73
4
Structure and Physical Aspects
78
5
Reactions at Phosphorus
.7 8
6
Reactions at the Side-Chain
80
Phosphine Oxide Complexes and Extractants
83
References
85
7
CHAPTER 4
Tervalent Phosphorus Acids Bg' 0 . DakI
1
Introduction
a7
2
Nucleophilic Reactions
87
2.1 2.2 2.3
87
3
Attack on Saturated Carbon Attack on Unsaturated Carbon Attack on Nitrogen, Chalcogen, or Halogen
89 89
Electrophilic Reactions
92
3.1 3.2 3.3
92 98
3.4
Preparation Mechanistic Studies Use for Nucleotide, Sugar Phosphate, or Phosphoprotein Synthesis Miscellaneous
101 104
4
Reactions involving Two-co-ordinate Phosphorus
107
5
Miscellaneous Reactions
111
References
115
xi
Contents CHAPTER 5
Quinquevalent Phosphorus Acids By R . S .
Edmundson
1
Phosphoric Acids and their Derivatives 1.1 Synthesis 1.2 Reactions and Uses
121 121 126
2
Phosphonic and Phosphinic Acids and their Derivatives
140
2.1 2.2
Synthesis Reactions and uses
References
CHAPTER 6 1 2
140
157
178
Nucleotides and Nucleic Acids By J . R . Hobbs Introduction
184
Mononucleotides
184
2.1 2.2
184
Chemical Synthesis Cyclic Nucleotides
197
3
Nucleoside Polyphosphates
201
4
Oligo- and Poly-nucleotides
215
4.1 4.2
237
5
24 0
5.1 5.2
240 24 1 247 252 266
5.3
CHAPTER 7 1 2
215
Other Studies
5.4 5.5 6
Chemical Synthesis Enzymatic Synthesis Affinity Separation Affinity Labelling Post-Synthetic Modification Sequencing and Cleavage Studies Metal Complexes
Analytical Techniques and Physical Methods
271
References
274
Ylides and Related Compounds By B . J . W a l k e r Introduction
288
Methylenephosphoranes
288
2.1 2.2
Preparation and Structure Reactions
288 288
2.2.1 2.2.2 2.2.3
288 297 297
Aldehydes Ketones Miscellaneous Reactions
xii
Organophosphorus Chemistry 3
Reactions of Phosphonate Anions
308
4
Selected Applications in Synthesis
313
4.1 4.2 4.3 4.4
4.5
4.6
Carotenoids, Retinoids and Related Compounds Leukotrienes and Related Compounds Macrolides and Related Compounds Pheromones Prostaglandins Miscellaneous Reactions
References
CHAPTER 8
313 313 316 319 319 319 326
Phosphazenes By C . W .
Allen
1
Introduction
330
2
Acycl ic Phosphazenes
330
3
Cyclophosphazenes
336
4
Cyclophospha(thia)zenes
34 6
5
Miscellaneous Phosphazene-Containing Ring Systems
347
6
Poly(phosphatenes)
348
7
Molecular Structures of Phosphazenes
358
References
360
CHAPTER 9
1
Physical Methods By J . C . Tebby Theoretical Studies 1.1
1.2
2
Based on Molecular Orbital Theory Based on Molecular Mechanics Theory
373 373 376
Nuclear Magnetic Resonance
378
2.1 2.2
Biological Applications and References Chemical Shifts and Shielding Effects
378 379
2.2.1
379 380 381 383 383 383 384
2.2.2 2.2.3 2.2.4
PhosphoSus - 3 1 6pof n compounds 6pof n4 compounds 6p of n5 compounds Selenium - 7 7 and Oxygen - 17 Carbon - 1 3 Hydrogen - 1
2.3
Restricted Rotation and Pseudorotation
384
2.4
Studies of Equilibria, Configuration and Conformation
384
...
XI11
Contents 2.5
Spin-Spin Coup1 ings 2.5.1 2.5.2 2.5.3 2.5.4 2.5.5
2.6
J PSe) and J(PTe) J PP)
J PF) and J(PN) J PC) J(PH)
CIDNP and Nuclear Quadrupole Resonance
387
387 387 387 389 390 390
3
Electron Spin Resonance
391
4
Vibrational and Rotational Spectroscopy
392
4.1
Vibrational Spectroscopy 4.1.1 4.1.2 4.1.3
4.2 5
Rotational Spectroscopy
Electronic Spectroscopy 5.1 5.2 5.3
6
Absorption Spectroscopy Fluorescence Spectroscopy Photoelectron and Fluorescence Spectroscopy
Diffraction 6.1
394 395 395 395 395 396 396
n: n n: n
396 397 399 401
6.1.4 6.2
392 392 394
X-ray Diffraction 6.1.1 6.1.2 6.1.3
7
Group Frequencies and Assignments Bonding and Co-ordination Stereochemistry
392
Compounds Compounds Compo nds and 'n Compounds
Electron Diffraction
401
Dipole Moments, Kerr Effects, Cyclic Voltammetry and Polarography 401 7.1 7.2
Dipole Moments and Kerr Effect Cyclic Voltammetry and Polarography
401 402
8
Mass Spectrometry
402
9
Acidities, Basicities, and Thermochemistry
406
Chromatography
406
10.1 10.2
406 408
10
Gas-Liquid Chromatography Liquid Chromatography 10.2.1 10.2.2
11
High Performance Liquid Chromatography 4 0 8 Thin Layer Chromatography 408
Kinetics
409
References
412
AUTHOR INDEX
422
Abbreviations AI BN CIDNP CMX)
CP
DAD DBN DBU Dcc
DIOP DMF
DMSO
m EDTA
E.H.T. ENU FID g.1.c.-m.s. HMPT
h.p.1.c. i.r. L.F.E.R. MIND0
rn E.1D
PG< 1
MS-nt MS-tet NBS
n.q.r. p.e. PPA SCF
TBDMS TDAP
TFAA Tf23 THF Thf
ThP TIPS t.1.c. TPS-Cl TPS-nt TPS-tet TsOH U.V.
bisazoisobutyronitrile Chemically Induced Dynamic Nuclear Polarization Complete Neglect of Differential Overlap cyc lopentadienyl diethyl azodicarboxylate l15-diazabicyc lo !4.3.0 ]non-5-ene l15-diazabicyclo5 -4.0hndec-5-ene dicyclohexylcarbodi-imide [(2,2-dimethyl-l,3-dioxolan-4,5-diyl)bis-(methylene)1 bis(dipheny1phosphine) dimethylformamide dimethyl sulphoxide 4,4'-dimethoxytrityl ethylenediaminetetra-acetic acid M e n d e d Huckel Treatment N-ethyl-Wnitrosourea Free Induction Decay gas-liquid chromatography-mass spectrmtry hexmthylphosphortriamide
high-performance liquid chromatography infrared Linear Free-Energy Relationship W f i e d Intermediate Neglect of Differential Overlap 4-rronmthoxytrityl Wlecular Orbital mesitylenesulphonyl chloride mesitylenesulphonyl-3-nitro-l,2,4-triazole mesitylenesulphonyltetrazole Wbramsuccinimide nuclear quadrupole resonance photoelectron plyphosphoric acid Self-consistent Field t-butyldimethylsilyl tris(diethy1amino)phosphine
trifluoroacetic acid
trifluoremethanesulphonic anhydrick
tetrahydrofuran 2-tetrahydrofuranyl 2-tetrahydropyranyl tetraisopropyldisiloxanyl thin-layer chromatography tri-isopropylbenzenesulphonylchloride tri-isopropy1benzenesu1phony1-3-nitro-1,2,4-triazo1e tri-isoproply!xnzenesulphonyltetrazole to1uene-p-su1phonic acid ultraviolet
* Abbreviations used in Chapter 6 are detailed in Biochem. .1.,1970,120,449and 1978,171,l
I
Phosphines and Phosphonium Salts BY D. W. ALLEN
1 Phosphines 1.1 P r e p a r a t i o n 1.1.1 From H a l o g e n o p h o s p h i n e s a n d O r g a n o m e t a l l i c R e a g e n t s . -
The
G r i g n a r d p r o c e d u r e h a s been employed i n t h e s y n t h e s i s o f a r a n g e o f p h o s p h i n e s b e a r i n g 1-adamantyl and 1-adamantylmethyl ents.
substitu-
However, i t was n o t p o s s i b l e t o p r e p a r e t r i s - ( 1 - a d a m a n t y 1 ) -
p h o s p h i n e by t h i s r o u t e , pr e s um a bl y due t o t h e e f f e c t s o f s e v e r e
s t e r i c crowding.'
Treatment of t h e inexpensive fermentation
a l c o h o l (S)-(-)-2-methylbutan-l-ol
with phosphorus tribromide i n
pyridine r e a d i l y a f f o r d s t h e corresponding c h i r a l a l k y l halide; t h e r e l a t e d G r i g n a r d r e a g e n t h a s b e e n u s e d i n t h e p r e p a r a t i o n of t h e new c h i r a l p h o s p h i n e s ( 1 ) . 2 An u n u s u a l r e a r r a n g e m e n t o c c u r s i n t h e r e a c t i o n o f t h e G r i g n a r d r e a g e n t d e r i v e d from 2-bromobenzylt r i m e t h y l s i l a n e w i t h bis(dimthy1amino)chlorophosphine w h i c h , i n addition t o t h e expected product ( 2 1 ,
benzylic phosphine ( 3 ) prepared
.
a l s o g i v e s rise t o t h e
The 2 - b r o m o b e n z y l p h o s p h i n e s
(4)
have been
t h e u s e of t h e b e n z y l i c G r i g n a r d r e a g e n t d e r i v e d from
o-bromobenzyl bromide $ O r g a n o l i t hium r e a g e n t s a l s o c o n t i n u e t o b e u s e d i n t h e s y n t h e s i s o f new p h o s p h i n e s .
M e t a l l a t i o n o f ethyl(2-bromopheny1)thioether
w i t h b u t y l l i t h i u m f o l l o w e d by t r e a t m e n t w i t h c h l o r o d i p h e n y l p h o s p h i n e a f f o r d s the p o t e n t i a l l y bidentate ligand (5).5
A similar r o u t e h a s
been employed i n t h e s y n t h e s i s o f t h e p h o s p h i n o c a r b o r a n e s ( 6 1 6 and A very convenient, high y i e l d route t h e p h o s p h i n o s y d n o n e s (7).7
t o t h e p h e n a c y l p h o s p h i n e ( 8 ) is a f f o r d e d by t h e r e a c t i o n o f c h l o r o -
d i p h e n y l p h o s p h i n e w i t h p h e n a c y l l i t h i u m , w h i c h is g e n e r a t e d by t r e a t m e n t o f a c e t o p h e n o n e w i t h 1i t h i u m d i i s o p r o p y l a m i d e . 1 . 1 . 2 P r e p a r a t i o n o f P h o s p h i n e s f r o m Met a l l a t e d P h o s p h i n e s . I n t e r e s t c o n t i n u e s i n t h e p r e p a r a t i o n of complexes of metallop h o s p h i d e r e a g e n t s w h i c h are s t a b i l i s e d i n t h e p r e s e n c e o f c h e l a t i n g d i - or t r i - a m i n e
ligands.
T h i s approach h a s been u s e d i n
t h e case o f t h e l i t t l e s t u d i e d magnesium p h o s p h i d e s by t r e a t m e n t o f
p h e n y l p h o s p h i n e w i t h (n-butyl)(s-buty1)magnesium
1
i n t h e p r e s e n c e of
2
'"'1
Ph,P
Orpmophosphorus Chemistry
0'
HS , i Me
CH2C--- H
- tE'
P I NMe,), 3- n
( 2 )
(1 n:0-2
r
Ph2PC-
CCH,R
\
/
Blbl10
( L ) R = M e , B u t , or Ph
(5)
( 6 ) R = M e S or Et2N
n "Me2
MqN,
Ph,PCH,COPh
PhHP'.
(8)
Ph HPCH,PHPh
(12)
(11)
(10)
'PHPh
(9)
P h P C H2lnP Me P h
Ph,P (CH,),PPh,
.Mg
PMe2
(15)n:2 or 3
J-O JJ7f
/
CH,PAr2
CH2PAr2
(16) A r = m - t o l y l
Aiz P
PAr,
(17)Ar,P= 5 - d i benzophospholyl
or Ph
I : Phosphines and Phnsphonium Salts
3
TMEDA w h i c h r e s u l t s i n s e l e c t i v e m o n o m e t a l l a t i o n t o g i v e t h e complex ( 9 ) , '
a n d a l s o f o r t h e i s o l a t i o n o f c o m p l e x e s of l i t h i u m
E v i d e n c e h a s b e e n p r e s e n t e d for t h e p a r t i c i p a t i o n of an e l e c t r o n - t r a n s f e r mechanism i n t h e r e a c t i o n s d i p h e n y l p h o s p h i d e . lo
of lithium diphenylphosphide with optically-active halides,"
alkyl
a n d a f r e e r a d i c a l c h a i n m e c h a n i s m is i n v o l v e d i n t h e
p h o t o s t i m u l a t e d r e a c t i o n o f a crown e t h e r c o m p l e x of p o t a s s i u m d i p h e n y l p h o s p h i d e w i t h t - b u t y l m e r c u r y c h l o r i d e i n HMPA, w h i c h r e s u l t s i n t h e f o r m a t i o n o f t-butyldiphenylphosphine. l 2 r e l a t i v e r e a c t i v i t y o f 1-adamantyl and p - a n i s y l
The r a d i c a l s towards
t h e d i p h e n y l p h o s p h i d e i o n h a s been s t u d i e d , t h e 1-adamantyl r a d i c a l
.
s h o w i n g much g r e a t e r s e l e c t i v i t y l3
Numerous a p p l i c a t i o n s o f m e t a l l o p h o s p h i d e r e a g e n t s i n t h e
A s is u s u a l , l i t h i o s y n t h e s i s of phosphines have been r e p o r t e d . p h o s p h i d e r e a g e n t s h a v e f o u n d g r e a t e r a p p l i c a t i o n t h a n t h o s e of t h e more r e a c t i v e a l k a l i metals.
W h e r e a s l i t h i u m metal i n THF,
a s s i s t e d by u l t r a s o u n d , c a u s e s c l e a v a g e o f a p h e n y l g r o u p f r o m e a c h o f t h e d i p h e n y l p h o s p h i n o moieties o f t h e d i p h o s p h i n e s
(
10, g
=
1-5),
i r r e s p e c t i v e of t h e length of t h e bridging group and r e l a t i v e q u a n t i t y o f l i t h i u m , 1 4 t h e u s e o f sodium n a p h t h a l e n e , a g a i n w i t h u l t r a s o n i c a s s i s t a n c e , e n a b l e s t h e s e l e c t i v e c l e a v a g e of o n l y o n e p h e n y l g r o u p f r o m t h e d i p h o s p h i n e s ( 1 0 , n_ = 2 - 6 1 ,
thus providing a
r o u t e f o r t h e s y n t h e s i s o f t h e unsymmetrical diphosphines (11).
15
D i f u n c t i o n a l l i t h i o p h o s p h i d e r e a g e n t s h a v e been employed i n t h e s y n t h e s i s o f a w i d e r a n g e o f new s y s t e m s .
Metallation of t h e
d i p h o s p h i n e ( 1 2 ) ( p r e p a r e d i n a t h r e e stage p r o c e d u r e f r o m b i s -
(dich1orophosphino)methane) g i v e s a d i p h o s p h i d e w h i c h o n t r e a t m e n t
with a,w-dihaloalkanes cycl ic diphosphines
(
g i v e s rise t o f i v e - ,
1 3 ) 16.
s i x - a n d s e v e n membered
The 1i t h i u m - i n d u c e d
c l e a v a g e of p h e n y l
g r o u p s f r o m b i s ( diphenylphosphino)methane, n o t e d a b o v e , would s e e m
t o p r o v i d e a more d i r e c t r o u t e t o t h e s e s y s t e m s .
The d i p h o s p h i d e
r e a g e n t h n e r a t e d by l i t h i u m - c l e a v a g e o f 1,3-bis(diphenylphosphino)-
p r o p a n e h a s b e e n e m p l o y e d i n t h e s y n t h e s i s o f m a c r o c y c l e s , __ e.g., ( 1 4 ) , u n d e r h i g h d i l u t i o n c o n d i t i o n s t o minimise polymerformation. l7
D i f u n c t i o n a l l i t h i o p h o s p h i d e r e a g e n t s have a l s o been
u s e d i n t h e s y n t h e s i s of l i n e a r o l i g o p h o s p h i n e l i g a n d s , e.g., ( 1 5 ) . l8
The r e a c t i o n s o f l i t h i u m d i a r y l p h o s p h i d e s w i t h a l k y l
h a l i d e s , t o s y l a t e s and m e s y l a t e s c o n t i n u e t o b e w i d e l y employed i n t h e s y n t h e s i s o f new c h e l a t i n g l i g a n d s .
Among new d i p h o s p h i n e s
p r e p a r e d i n t h i s way a r e t h e t r a n s - s p a n n i n g l i g a n d (16) ( t h e m - t o l y l s u b s t i t u e n t s are s a i d t o improve t h e s o l u b i l i t y o f r e l a t e d
4
Organophosphorus Chemistry
c o m p l e x e s ) , l9 t h e p o l y m e r - b o u n d c h i r a l DIOP s y s t e m ( 1 7 ) ,20 a n d a r a n g e o f c h i r a l d i p h o s p h i n e s d e r i v e d f rom c a r b o h y d r a t e
s y s t e m s , 1-24 3 ,( 1 8 ) 2 1 a n d ( 1 9 ) 2 2 . L i g a n d s o f t h e l a t t e r t y p e are f l e x i b l e a n d c a p a b l e o f c i s o i d or t r a n s o i d c o o r d i n a t i o n t o a
metal.
The f o r m a t i o n o f t h e p h o s p h i n e - s e l e n i u m l i g a n d ( 2 0 ) i n t h e
r e a c t i o n o f l i t h i u m d i m e t h y l p h o s p h i d e w i t h methyl(2-bromopheny1)s e l e n i d e p r o v i d e s a f u r t h e r example of t h e d i s p l a c e m e n t of h a l o g e n a t t a c h e d t o a n aromatic s y s t e m b y p h o s p h i d e r e a g e n t s . 2 5
Both m o n o l i t h i o - and monosodio- d e r i v a t i v e s of p h o s p h i n e an d p r i m a r y
p h o s p h i n e s have been u s e d i n t h e p h o s p h i n y l a t i o n o f h a l o a l k y l pyridines
t o g i v e t h e P H - f u n c t i o n a l mixed-donor
which have been s u b s e q u e n t l y e l a b o r a t e d
ligands (21),
addition t o vinyl
p y r i d i n e s t o g i v e more c o m p l e x p o l y d e n t a t e s y s t e m s .26 The s o d i u m d i p h e n y l p h o s p h i d e - t o s y l a t e or - m e s y l a t e r o u t e h a s b e e n a p p l i e d t o t h e s y n t h e s i s o f c h i r a l phosphines based on carbohydrate
r e s i d u e s , 2 7 t h e c h i r a l d i p h o s p h i n e s ( 2 2 ) which are d e r i v e d from
tartaric a c i d , 2 8 and a range of c h i r a l unsymmetrical diphosphines, e.g., -
( 2 3 ) , i n w h i c h t h e d i c y c l o h e x y l p h o s p h i n o m o i e t y is f o r m e d
by c a t a l y t i c h y d r o g e n a t i o n o f t h e more e a s i l y i n t r o d u c e d d i p h e n y l A p r o c e d u r e h a s been d e v e l o p e d for t h e
phosphino
s y n t h e s i s of t h e c h i r a l phosphino-mercaptan l i g a n d ( 2 4 ) from t h e r e a c t i o n of e t h y l e n e s u l p h i d e a n d s o d i u m methyl(pheny1)phosphide.
31
P o t a s s i u m d i a r y l p h o s p h i d e r e a g e n t s h a v e been employed i n t h e
s y n t h e s i s of t h e t e t r a p h o s p h i n e ( 2 5 ) ,32 t h e heterocycloalkylmethylp h o s p h i n e ( 2 6 ) 3 3 a n d t h e DIOP a n a l o g u e Magnesium o r g a n o p h o s p h i d e r e a g e n t s a re p r o b a b l y i n v o l v e d a s intermediates i n t h e electroreduction of chlorophosphines at a s a c r i f i c i a l magnesium a n o d e i n t h e p r e s e n c e o f a l k y l h a l i d e s , which r e s u l t s i n t h e f o r m a t i o n of moderate t o good y i e l d s o f 35 t e r t i a r y phosphines
.
The use o f m e t a l l o p o l y p h o s p h i d e r e a g e n t s i n t h e s y n t h e s i s o f c y c l i c a n d a c y c l i c p o l y p h o s p h i n e s c o n t i n u e s , a n d s y s t e m s of every-increasing
c o m p l e x i t y a r e b e i n g d e v i s e d . 36-47
p r o g r e s s i n t h i s area h a s b e e n r e v i e w e d .
48
Recent
I n c r e a s i n g i n t e r e s t is b e i n g shown i n t h e u s e of r e a g e n t s
o b t a i n e d by m e t a l l a t i o n o f a n a t o m or g r o u p a d j a c e n t t o p h o s p h o r u s . A much i m p r o v e d r o u t e t o t h e m o n o x i d e ( 2 8 ) of b i s ( d i p h e n y 1 -
p h o s p h i n o ) m e t h a n e is o f f e r e d by m e t a l l a t i o n a t t h e m e t h y l g r o u p o f t h e commercially a v a i l a b l e methyldiphenylphosphine oxide, followed b y t r e a t m e n t w i t h c h l o r o d i p h e n y l p h o s p h i n e . 4 9 The r e a c t i o n s of
bis(dipheny1phosphino)methane
w i t h p a l l a d i u m - or p l a t i n u m -
I : Phosphines and Phosphonium Salts CH,PPh2
5
FHZPPh2
c H 3 0 ~ ~ . . 0 ~ 0 c H 3O
CH3O
P ScMc M q
'OCH,
I
I
OCH,
OCH,
(211n= 1 or 2 R = HI P r i ,
I201
( 19 1
B u t , o r Ph
PhMePCH,CH,SH Ph,P'
R
( 2 2 ) R ' PhCH2 ,CHO COR OT CH3
,
PPh;,
( 2 3 ) RzC02R or CONHPh
(26)
Li
II
PhzPCH2PPh,
Fe
(29)
(28)
O : P R 2 g
( 2 7 1 A r : m-to
&
0
(31) X
(24)
C I or Br
ONa (33)
(32)
R=NR;! , a l k y l ,or Ph
Rp(CH, I3P(M
1(CH l2PHMe
(31)
L0,L<
McN -0
i
Me
CH~CH,PR'R~ PhzP ( 3 6 ) (35) R = H or Ph 1
R2=Ph
6
Organophosphorus Chemistry bis(acety1acetonate) unexpectedly give
c o m p l e x e s of t h e b i s -
(dipheny1phosphino)methanide a n i o n .50 V a r i o u s a l k a l i metal b i s a n d t r i s - (diorganophosphino)methanide r e a g e n t s h a v e b e e n u s e d i n t h e s y n t h e s i s o f a wide r a n g e of complexes o f
l a n t h a n u m , 5 3 g e r m a n i u m , t i n a n d l e a d , 5 4 - 5 9 a n d a l s o m e r c u r y .60 The phosphino-Grignard r e a g e n t ( 2 9 ) h a s been s i m i l a r l y used t o p r e p a r e
intramolecularly-coordinated p h o s p h i n e - o r g a n o t i n c o m p l e x e s .6
Metallation of ferrocenyldiphenylphasphine
with butyllithium
r e s u l t s i n t h e f o r m a t i o n o f a m i x t u r e of isomeric d i l i t h i a t e d d e r i v a t i v e s ( 3 0 ) which h a v e been u s e d t o p r e p a r e v a r i o u s p o l y p h o s p h i n o f e r r o c e n e s a n d a l s o f e r r o c e n o p h a n e s b a s e d on b r i d g i n g p h o s p h o r u s o r s u l p h u r atoms .62
Treatment of the g-halophenyl-
p h o s p h i n i t e esters ( 3 1 ) with sodium i n dioxan r e s u l t s i n a r e a r r a n g e m e n t t o form t h e g - p h o s p h i n o p h e n o l a t e ( 3 2 ) which w i t h c h l o r o t r i m e t h y l s i l a n e y i e l d s t h e 2-t r i m e t h y l s i l o x y p h o s p h i n e s
( 33 )!
1 . 1 . 3 P r e p a r a t i o n o f P h o s p h i n e s by A d d i t i o n o f P-H t o U n s a t u r a t e d Compounds.-
A procedure h a s been r e p o r t e d for t h e a d d i t i o n of
primary and secondary phosphines t o t e r m i n a l a l k e n e s i n t h e absence of i n i t i a t o r s or c a t a l y s t . 6 4
The r a d i c a l - i n d u c e d
addition of
s e c o n d a r y p h o s p h i n e s t o e s t e r s o f v i n y l - or a l l y l m e t h y l - p h o s p h i n i c
a c i d is a key s t e p i n t h e s y n t h e s i s o f t h e p o l y d e n t a t e phosp h i n e s ( 3 4 ) which are t h e n a b l e t o u n d e r g o f u r t h e r a d d i t i o n
r e a c t i o n s t o g i v e o t h e r , more c o m p l e x , h y b r i d d o n o r l i g a n d ~ . The ~ ~ p h o s p h i n o a l k y l s i l o x a n e s ( 3 5 ) have been p r e p a r e d by a d d i t i o n of primary and secondary phosphines t o a v i n y l s i l o x a n e p r e c u r s o r .
(361, i s
A r a n g e o f new p o l y d e n t a t e p h o s p h i n e l i g a n d s , e.g.,
accessible
via
t h e base-catalysed
66
a d d i t i o n of primary and secondary
p h o s p h i n e s t o 1 ,1-bis(dipheny1phosphino)ethene . 6 7
Base-catalysed
a d d i t i o n o f d i p h e n y l p h o s p h i n e t o a c e t y l e n e i n t h e p r e s e n c e of a
phase-transfer c a t a l y s t has given very high y i e l d s of 1,2-bis(dip h e n y l p h o s p h i n o ) e t h a n e . 68
Addit i o n of s e c o n d a r y p h o s p h i n e s t o
u n s a t u r a t e d d i c a r b o n y l compounds p r o v i d e s a r o u t e t o carbofunctional phosphines.
Thus, e.g.,
addition of diphenylphosphine
t o maleic a n h y d r i d e , f o l l o w e d by h y d r o l y s i s o f t h e i n t e r m e d i a t e a d d u c t , h a s g i v e n t h e p h o s p h i n o d i c a r b o x y l i c a c i d ( 3 7 ) . 6 9 The a d d i t i o n o f p h e n y l p h o s p h i n e t o t h e 6-diethylaminoethylcyclopentenyl ketone (38) r e s u l t s i n t h e b i c y c l i c system (39).70
V a r i o u s isomeric
h y d r o x y p h o s p h o l a n e o x i d e s (40) a r e f o r m e d i n t h e a c i d - c a t a l y s e d
r e a c t i o n of p h e n y l p h o s p h i n e w i t h d i b e n z o y l e t h a n e . 7 1
The
(hydroxypolyfluoroalky1)phosphines ( 4 1 ) a r e f o r m e d i n t h e a d d i t i o n o f p h o s p h i n e t o v a r i o u s p o l y f l u o r o a l d e h y d e s . 72 A d d i t i o n t o t h e
I : Phosphines und Phosphoniurii Salts
7
CZN bond of p e r f l u o r o a l k y l n i t r i l e s h a s a l s o r e c e i v e d s t u d y .
Whereas t h e a d d i t i o n of d i p h e n y l p h o s p h i n e is r e l a t i v e l y s t r a i g h t f o r w a r d , g i v i n g t h e iminophosphines ( 4 2 ) as t h e p r i m a r y p r o d u c t , 73 t h a t o f p h e n y l p h o s p h i n e is much more c o m p l e x , r e s u l t i n g i n a w i d e range of products.74
T h e r e have a l s o been s e v e r a l r e p o r t s o f t h e
a d d i t i o n o f s e c o n d a r y p h o s p h i n e s t o a l k y l i s o t h i o c y a n a t e s , which have given a range of c h i r a l phosphines, e.g., 1.1.4
(43).75-77
P r e p a r a t i o n o f P h o s p h i n e s by R e d u c t i o n . - T r i c h l o r o s i l a n e
r e m a i n s t h e m o s t w i d e l y u s e d r e a g e n t f o r t h e r e d u c t i o n of p h o s p h i n e o x i d e s , h a v i n g b e e n e m p l o y e d i n t h e p a s t y e a r i n t h e p r e p a r a t i o n of 80 t h e b i d e n t a t e d i p h o s p h i n e l i g a n d s ( 4 4 ) , 7 8 ( 4 5 ) , 7 9 and ( 4 6 ) . I n c o m b i n a t i o n w i t h p y r i d i n e , it h a s also been u s e d f o r t h e r e d u c t i o n o f t h e benzo-7-phosphanorbornene
s y s t e m ( 4 7 ) which
p r o c e e d s w i t h r e t e n t i o n of c o n f i g u r a t i o n a t phosphorus t o g i v e t h e c o r r e s p o n d i n g b i c y c l i c p h o s p h i n e s , which are found t o have markedly d e s h i e l d e d 3 1 P n u c l e i i . 8 1
R e d u c t i o n o f t h e d i m e r ( 4 8 ) of
2-phenylisophosphindoline o x i d e w i t h t h e trichlorosilane-pyridine r e a g e n t p r o c e e d s w i t h c l e a v a g e of a carbon-carbon
s i n g l e bond t o
f o r m t h e d i p h o s p h i n e ( 4 9 ) or t h e r e l a t e d m o n o p h o s p h i n e m o n o x i d e ,
d e p e n d i n g on c o n d i t i o n s . 8 2
P h e n y l s i l a n e h a s been u s e d f o r t h e
s y n t h e s i s o f t h e d i p h o s p h i n e s (50) f r o m t h e r e l a t e d o x i d e s w h i c h
are o b t a i n e d from t h e r e a c t i o n o f t h e a p p r o p r i a t e d i f l u o r o b e n z e n e The 2 -
w i t h t h e s o d i u m s a l t o f d i p h e n y l p h o s p h i n e o x i d e i n DMF.83
p h o s p h a a d a m a n t a n e ( 5 1 ) h a s b e e n p r e p a r e d by r e d u c t i o n o f t h e corresponding phosphine o x i d e with l i t h i u m aluminium hydride.
84
T h i s r e a g e n t h a s a l s o b e e n u s e d f o r t h e r e d u c t i o n of t h e D i e l s A l d e r a d d u c t of d i e t h y l v i n y l p h o s p h o n a t e w i t h 1 , 3 - d i p h e n y l i s o benzofuran t o form t h e isomeric primary phosphines (521, which on f l a s h vacuum p y r o l y s i s u n d e r g o r e t r o - D i e l s A l d e r p r o c e s s e s t o f o r m t h e e l u s i v e vinylphosphine (53).
T h i s compound i s r e p o r t e d t o b e
s u r p r i s i n g l y s t a b l e , w i t h a h a l f - l i f e of e i g h t d a y s i n a n e u t r a l solvent. noted.85
N o t a u t o m e r i s m i n v o l v i n g t h e p h o s p h a - a l k e n e ( 5 4 ) was Conversion of phosphine o x i d e s and s u l p h i d e s , and a l s o
d i c h l o r o p h o s p h o r a n e s , i n t o t e r t i a r y p h o s p h i n e s can b e a c h i e v e d by h e a t i n g w i t h w h i t e m i n e r a l o i l i n t h e p r e s e n c e of a c t i v a t e d c a r b o n . 86 P r o c e d u r e s f o r t h e r e d u c t i o n o f p h o s p h i n e s u l p h i d e s u s i n g i r o n powder8'
( i n t h e f o r m a t i o n o f 1,2-bis(dirnethylphosphino)-
e t h a n e ) , and a l s o t r i e t h y l p h o s p h i t e , 8 8 have been r e p o r t e d .
Organophosphorus Chemistry
8
HOOC CHCH2COOH
I
Ph
PPh,
(37)
P
h
G
/
Ph
“o
(38)
o Ph H
(39)
P (CH ROH l 3 (L1)R=CF3,C,F, or (CF21,,H
(40)
- - dPP
Ph2P S‘
(43)
a+ R
Ph*rCH2CH2CH2r 4 Ph I
I
I
I
Ar
Ar
‘p4 0
( 4 6 ) A r = o - MeOC6H,
CHj=CHPH,
(521
O@
P’h
( 481
(531
CH,CH =PH
(54)
I: Phosphines and Phosphonium Salts
9
1.1.5 M i s c e l l a n e o u s Methods of P r e p a r i n g P h o s p h i n e s . - V a r i o u s
dialkyl(1-adamanty1)phosphines
of 1-adamantylphosphine
have been p r e p a r e d by a l k y l a t i o n
A s t e r e o s e l e c t i v e m o n o a l k y l a t i o n of
p h e n y l p h o s p h i n e c o o r d i n a t e d t o a metal h e l d i n a c h i r a l e n v i r o n ment h a s b e e n a c h i e v e d .
Phase-transfer
c a t a l y s i s h a s been
employed i n t h e development o f a p r o c e d u r e f o r t h e a l k y l a t i o n o f diphenylphosphine i n a t w o phase system.91 A r o u t e t o s u b s t i t u t e d e.g., aryldiphenylphosphines bearing a v a r i e t y of s u b s t i t u e n t s , COR, o r CN, i s p r o v i d e d by t h e r e a c t i o n s of t r i m e t h y l s i l y l or t r i m e t h y l s t annyl-diphenylphosphine w i t h t h e a p p r o p r i a t e
CO,Me,
s u b s t i t u t e d a r y l h a l i d e i n b e n z e n e i n t h e p r e s e n c e o f t h e complex (Ph,P),PdCl, as c a t a l y s t . Thus, e . g . , t h e r e a c t i o n of methyl o - i o d o b e n z o a t e g i v e s t h e p h o s p h i n e ( 5 5 1 , a n d t h a t of p - c h l o r o i o d o b e n z e n e g i v e s E-chlorophenyldiphenylphosphine.
Unfortunately, the
r e a c t i o n c o n d i t i o n s are n o t c o m p a t i b l e w i t h t h e p r e s e n c e o f s u b s t i t u e n t s s u c h as NO,,
CHO, NH, o r OH.92
The t h e r m a l d i s p r o -
p o r t i o n a t i o n o f d i a l k y l p h o s p h i n e o x i d e s promoted by t e t r a c h l o r o m e t h a n e a f f o r d s a c o n v e n i e n t s y n t h e s i s of d i a l k y l p h o s p h i n e s . 93
F u r t h e r examples of t h e aminomethylation of secondary phosphines
have appeared, providing routes t o heterocyclic systems, e.g., ( 5 6 ) , 9 4 and t h e c h i r a l diphosph.ines ( 5 7 ) .95
The c a r b o x y e t h y l -
58), e a s i l y a c c e s s i b l e t h e a l k a l i n e h y d r o l y s i s of t h e r e l a t e d e t h y l ester, h a s found a p p l i c a t i o n i n W i t t i g
phosphine
(
procedures, r e a d i l y forming t h e precursor quaternary salts. In Wittig r e a c t i o n s , t h e c a r b o x y l i c a c i d group not o n l y promotes an increase i n g-stereoselect i v i t y , but a l s o f a c i l i t a t e s t h e
r e m o v a l of t h e c o r r e s p o n d i n g p h o s p h i n e o x i d e . 96
An i m p r o v e d r o u t e
f o r t h e s u l p h o n a t i o n of t r i p h e n y l p h o s p h i n e h a s been d e s c r i b e d .
97
The h e t e r o c y c l i c s y s t e m (59) is f o r m e d i n t h e r e a c t i o n s o f Ox i d a t i v e
b i s p h o s p h i n o a c e t y l e n e s w i t h N , N' - d i m e t h y l t h i o u r e a .
a d d i t i o n o f w h i t e p h o s p h o r u s t o a bis(dialky1phosphido)zirconocene
c o m p l e x h a s r e s u l t e d i n t h e c o m p l e x (60) w h i c h c o n t a i n s a n u n u s u a l 99 hexaphosphine l i g a n d .
1.2 R e a c t i o n s o f P h o s p h i n e s 1.2.1 N u c l e o p h i l i c A t t a c k a t C a r b o n . K i n e t i c d a t a have been p r e s e n t e d w h i c h r e v e a l t h a t w-haloalkyldiphenylphosphines (61) undergo a n c h i m e r i c a l l y - a s s i s t e d i n t r a m o l e c u l a r c y c l isat ion t o form t h e c y c l i c s a l t s (62) w i t h ' r i n g - s i z e p r e f e r e n c e i n t h e o r d e r 5 > 6 > 3 > 4. Comparison w i t h t h e r e l a t e d c y c l i s a t i o n r e a c t i o n s o f w-haloalkylphenylsulphides i n d i c a t e t h a t t h e p h e n y l t h i o - a n d d i p h e n y 1p h o s p h i n o - g r o u p s h a v e si m i 1ar i n t ram l e c u l ar
10
Organophosphorus Chemistry
n u c l e o p h i l i c i t ies. loo
The r e a c t i o n o f t r i s - p - a n i s y l p h o s p h i o e
with
n e o p e n t y l i o d i d e a t 15OOC i n t h e a b s e n c e o f a s o l v e n t s u r p r i s i n g l y
l e a d s t o t h e f o r m a t i o n o f e i g h t phosphonium s a l t s ( 6 3 ) as a r e s u l t o f n u c l e o p h i l i c a t t a c k by u n r e a c t e d p h o s p h i n e o n t h e p-methoxy substituents present in the initially-formed triarylneopentylphosphonium s a l t . lo'
The h y d r o x y a l k y l p h o s p h o n i u m c a t i o n s ( 6 4 )
have been c h a r a c t e r i s e d as i n i t i a l p r o d u c t s i n t h e r e a c t i o n s of
tris(2,6-dimethoxyphenyl)phosphine
w i t h a r a n g e of t e r m i n a l
e p o x i d e s i n e t h a n o l a t room t e m p e r a t u r e . the presence
On h e a t i n g i n e t h a n o l i n
o f e t h o x i d e i o n , t h e above c a t i o n s undergo
c o n v e r s i o n s n o t i n v o l v i n g P-C
cleavage t o give a v a r i e t y of
p r o d u c t s , d e p e n d i n g on t h e s t r u c t u r e o f t h e o r i g i n a l e p o x i d e . l o 2 N u c l e o p h i l i c a t t a c k b y t r i p h e n y l p h o s p h i n e a t t h e B-carbon o f a,B-unsaturated
c a r b o n y l compounds l e a d s t o t h e f o r m a t i o n of
b e t a i n e s which can b e t r a p p e d i n t h e p r e s e n c e o f a s i l y l a t i n g a g e n t t o g i v e t h e r e l a t e d phosphonium s a l t s ,
%.,
(651, t h e
W i t t i g r e a c t i o n s of w h i c h e n a b l e 8 - f u n c t i o n a l i s a t i o n o f e n o n e s .
103
T r i p h e n y l p h o s p h i n e h a s b e e n shown t o i n i t i a t e t h e p o l y m e r i s a t i o n o f m a l e i m i d e s a n d o f maleic a n h y d r i d e
via
i n i t i a l a t t a c k at carbon
t o form z w i t t e r i o n i c e n t i t i e s ( 6 6 ) which u n d e r g o a n i o n i c p o l y m e r i -
s a t i o n i n DMF a t 60°C.104
The z w i t t e r i o n i c s y s t e m ( 6 7 ) i s f o r m e d
i n t h e react i o n o f t r i b u t y l p h o s p h i n e w i t h v i n y l a c e t y l e n e . l o 5 R a d i c a l c a t i o n s f o r m e d f r o m p o l y n u c l e a r aromatic h y d r o c a r b o n s by s i n g l e e l e c t r o n t r a n s f e r p r o c e s s e s c a n b e t r a p p e d by t r i p h e n y l p h o s p h i n e . lo6 R e v e r s i b l e pseudo f i r s t o r d e r k i n e t i c s have been observed i n t h e reactions of triethylphosphine and diethylphenylp h osphine w i t h c a r b o n d i s u l p h i d e , which g i v e rise t o t h e z w i t t e r i o n i c a d d u c t s ( 6 8 ) . l o 7 N u c l e o p h i l i c a t t a c k by t r i m e t h y l phosphine at t h e thiocarbonyl group o f coordinated x a n t h a t e s has
also been r e p o r t e d . 1.2.2 N u c l e o p h i l i c A t t a c k a t H a l o g e n . -
Tris(dimethylamin0)-
phosphine h a s been u s e d t o g e n e r a t e t h e d i c h l o r o m e t h y l e n e y l i d e ( 6 9 ) f r o m trichloromethyltriphenylphosphonium c h l o r i d e , w h i c h i s ,
o f c o u r s e , e a s i l y a c c e s s i b l e from t h e r e a c t i o n o f t r i p h e n y l p h o s p h i n e w i t h t e t r a c h l o r o m e t h a n e . l o g The s a l t ( 70), i n v o l v i n g a r e s o n a n c e - s t a b i l i s e d c a t i o n , is formed i n t h e r e a c t i o n o f
dimethylaminomethyldi(t-buty1)phosphine w i t h t e t r a c h l o r o m e t h a n e a t l o w t e m p e r a t u r e . 'lo The n a t u r e o f t h e p r o d u c t i s o l a t e d f r o m t h e r e a c t i o n of t r i p h e n y l p h o s p h i n e w i t h i o d i n e is d e p e n d e n t on t h e nature of solvent.
When t o l u e n e is u s e d , t h e s a l t [ P h , P I l I ,
is
i s o l a t e d i n l o w y i e l d , w h e r e a s w i t h d i c h l o r o m e t h a n e , t h e much more
I : Phosphinrs and Phosphonium Salts
II R’
COONa I ,CH2PPhz RCHN \ CH,PPh,
R’ 1
(561 R = H , E t , Pr’or Bu
(55)
2
(571
R = P h , a l k y l or CH,CO,E t
R
RP ,
(58)
Ph,P(CH,
S-C,
P-P’
I
P-PR,
‘NMe
+n
Ph2P
),CI
( 61 1 n = 2
Ap-YMeR,P -’ I
Cp Zr-P,
Ph, PCH,C H zCO, H
W
-5
(CH21n
I
CI163) R: Np or Me
[ 62)
OSi R,
( 6 6 ) X =0, NH or NPh
(651
1
S
,+
R R2P-C:-
Ph, P=CC I “S
(681 R’= E t or Ph R2=E t
( 69)
1
c
S R,’P
II
-C ( R2)=C
(73)
R’= But
=S
RZ: Mc,Pr, or P r ‘
( Me3Si
N PR
l7L) R : allyl, bcnzyl
or Ph
Mc,Si N=PR,Br (751
12
Organophosphorus Chemistry complex s a l t ( 7 1 ) is i s o l a t e d . 111
The react i o n b e t w e e n t r i p h e n y l phosph i n e and t e traiodome t hane h a s been u s e d f o r t h e i n - s i t u g e n e r a t i o n of t h e d i - i o d o m e t h y l e n e y l i d e ( 7 2 ) w h i c h i n t h e
p r e s e n c e of a l d e h y d e s l e a d s t o t h e f o r m a t i o n o f d i - i o d o a l k e n e s . '12 A d v a n t a g e s a r e c l a i m e d f o r t h e u s e o f 1,2-bis(diphenylphosphino) e t h a n e i n c o m b i n a t i o n w i t h bromine o r i o d i n e f o r t h e s y n t h e s i s o f a l k y l h a l i d e s from a l c o h o l s . between t h e d i p h o s p h i n e
,
Having c a r r i e d o u t t h e r e a c t i o n
halogen, and a l c o h o l i n dichloromethane
a s s o l v e n t , t h e u n w a n t e d p h o s p h i n e o x i d e i s p r e c i p i t a t e d by
a d d i t i o n of a p e n t a n e - e t h e r m i x t u r e , t h e d e s i r e d a l k y l h a l i d e b e i n g e a s i l y r e c o v e r e d from t h e s u p e r n a t a n t l i q u i d . l 1 3 n.m.r.
A
31p
s t u d y of t h e i n t r o d u c t i o n o f i o d i n e i n t o c a r b o h y d r a t e s
u s i n g t h e triphenylphosphine-iodine-imidazole s y s t e m i s c o n s i s t e n t w i t h t h e p r e v i o u s l y a s s u m e d m e c h a n i s m . '14
The m e c h a n i s t i c d e t a i l s
of t h e f o r m a t i o n o f 1 , 4 - o x a t h i a n e s by c y c l o d e h y d r a t i o n r e a c t i o n s p r o m o t e d by t h e t r i p h e n y l p h o s p h i n e - t e t r a c h l o r o m t h a n e c o m b i n a t i o n h a v e been i n v e s t i g a t e d u s i n g s p e c i f i c d e u t e r i u m l a b e l 1i n g i n c o m b i n a t i o n w i t h 'H a n d
13C
n.m.r.
studies.'15
Polymer-bound
triarylphosphine-halogen r e a g e n t s h a v e b e e n u s e d f o r t h e e s t e r i f i c a t i o n o f c a r b o x y l i c a c i d s u n d e r m i l d c o n d i t i o n s . '16 The s t a b l e t h i o p h o s p h o r y l a t e d t h i o k e t e n e s ( 7 3 ) have been i s o l a t e d from t h e r e a c t i o n s of alkyldi(t-buty1)phosphines
a n d c a r b o n d i s u l p h i d e . '17
with tetrachloromethane
Treatment of t h e b i s ( t r i m e t h y l s i l y 1 ) -
aminophosphines ( 7 4 ) w i t h bromine r e s u l t s i n t h e f o r m a t i o n o f t h e bromophosphazenes
(
.
7 5 ) l1
1.2.3 N u c l e o p h i l i c A t t a c k a t O t h e r Atoms.-
A s a consequence o f its
g r e a t e r n u c l e o p h i l i c i t y , a n d t h e a q u e o u s s o l u b i l i t y of i t s o x i d e , triethylphosphine o f f e r s s i g n i f i c a n t advantages over tr ibutylp h o s p h i n e a n d t r i p h e n y l p h o s p h i n e a s a c o m p o n e n t of some of t h e p h osphine- based combined r e a g e n t s which ha ve been d e v e l o p e d i n recent years. Applications i n peptide chemistry, i n reactions i n v o l v i n g t h e c l e a v a g e o f d i s u l p h i d e s , a n d i n t h e h y d r o l y s i s of The t r i b u t y l p h o s p h i n e -
o x i m e s h a v e now b e e n d e s c r i b e d . '19
d i p h e n y l d i s u l p h i d e c o m b i n a t i o n h a s b e e n u s e d as a " s e l f - d r y i n g " agent capable of reducing ketoximes and secondary a l i p h a t i c n i t r o compounds t o t h e c o r r e s p o n d i n g i m i n e s u n d e r s t r i c t l y a n h y d r o u s c o n d i t i o n s a t room t e m p e r a t u r e . F u l l d e t a i l s o f t h i s work h a v e now a p p e a r e d . 120 T r iphenylphosphine-dialkyl a z o d i c a r b o x y l a t e
c o m b i n a t i o n s h a v e b e e n u s e d i n t h e s y n t h e s i s o f g l y c o s y l esters.
12 1
Q u i n ' s group h a s explored t h e o x i d a t i o n r e a c t i o n s of t h e b i c y c l i c
1 : Phosphines and Phosphonium Salts
13
p h o s p h i n e s ( 7 6 1 , w h i c h a r e a c c e s s i b l e f r o m t h e r e a c t i o n s of d i l i t h i u m cyclooctatetraenide with dichlorophosphines.
When t h e
e x o c y c l i c s u b s t i t u e n t a t p h o s p h o r u s i s s t e r i c a l l y c r o w d e d , as i n t h e case o f ( 7 6 ;
R = 2,4,6-BuL3C6H2),t h e r e a c t i o n with t - b u t y l -
h y d r o p e r o x i d e i n c h l o r o f o r m a t room t e m p e r a t u r e g i v e s t h e r e l a t e d b i c y c l i c p h o s p h i n e o x i d e (77), w h i c h s l o w l y d e c o m p o s e s i n s o l u t i o n t o g i v e p r o d u c t s d e r i v e d f r o m t h e pT-bonded i n t e r m e d i a t e [R-P=Ol e.g.,
.1 2 2
However, f o r less b u l k y s u b s t i t u e n t s a t p h o s p h o r u s
,
But o r P h , t h e r e l a t e d o x i d a t i o n r e a c t i o n s c o n d u c t e d a t
-15OC p r o c e e d
via
a rearrangement p r o c e s s t o g i v e t h e phosphonin
o x i d e s ( 7 8 1 , h a v i n g a n e n d o c y c l i c t r a n s - d o u b l e bond as p r e d i c t e d by o r b i t a l symmetry c o n s i d e r a t i o n s .
A t room t e m p e r a t u r e s , t h e s e
undergo f u r t h e r rearrangement t o form t h e dihydrophosphindole o x i d e s ( 7 9 1 , w h i c h are a l s o o b t a i n e d o n o x i d a t i o n of t h e b i c y c l i c s y s t e m s ( 7 6 ) w i t h hydrogen p e r o x i d e i n methanol at 0°C. c o n t r a s t , o x i d a t i o n of ( 7 6 ;
In
R = BuL o r P h ) w i t h o x y g e n l e a d s t o
o t h e r p r o d u c t s , i n c l u d i n g (80). 123 The m i x e d p h o s p h i n y l - t h i o p h o s p h i n y l m e t h a n e s (81) h a v e b e e n p r e p a r e d b y t h e c a r e f u l
o x i d a t i o n o f p r e c u r s o r phosphino-thiophosphinylmethanes h y d r o g e n p e r o x i d e . 124
with
A k i n e t i c s t u d y o f t h e o x i d a t i o n of
p h o s p h i n e s c a t a l y s e d b y p l a t i n u m ( 0 )c o m p l e x e s d o e s n o t s u p p o r t t h e v i e w t h a t t r a c e s o f p r o t i c s u b s t a n c e s may p l a y a k e y r o l e i n t h e c a t a l y t i c co-oxygenation r e a c t i o n .
I t is shown t h a t m a r k e d
r e d u c t i o n s i n r a t e o c c u r when p h o s p h i n e s a r e o x i d i s e d i n t h e p r e s e n c e o f m o i s t u r e , a l c o h o l s , or s t r o n g e r p r o t i c a c i d s .
I t has
b e e n s u g g e s t e d t h a t a g e n e r a l mechanism, i n v o l v i n g i n t r a m o l e c u l a r n u c l e o p h i l i c a t t a c k by c o o r d i n a t e d “ p e r o x o ” o n two c o o r d i n a t e d p h o s p h i n e m o l e c u l e s , f o l l o w e d by r e d u c t i v e e l i m i n a t i o n f r o m t h e i n t e r m e d i a t e m e t a l l a c y c l e , may a p p l y t o many t r a n s i t i o n metal125
catalysed oxidation processes.
1.2.4 M i s c e l l a n e o u s React i o n s of P h o s p h i n e s
.-
Reviews have appeared
o f t h e c h e m i s t r y o f t h e 5,10-dihydrophenophosphazine (82)
system
t h e fluxional p r o p e r t i e s of n’-cyclopentadienyl-
p h o s p h i n e s , 127 a n d t h e s t e r e o c h e m i s t r y o f m a c r o c y c l i c p o l y A procedure f o r t h e
p h o s p h i n e s a n d t h e i r r e l a t e d c o m p l e x e s . 128
i n -situ
r e s o l u t i o n o f c h i r a l d i p h o s p h i n e s h a s been d e v e l o p e d which
i n v o l v e s t h e u s e o f a c h i r a l i r i d i u m complex which s e l e c t i v e l y
reacts w i t h o n e e n a n t i o m e r o f t h e d i p h o s p h i n e , l e a v i n g t h e o t h e r e n a n t iomer i n s o l u t i o n f o r s u b s e q u e n t c o n v e r s i o n t o a c a t a l y t i c a l l y The c o m p l e x e s (83) o f a c t i v e species as required.12’
Organophosphorus Chemistry
14 1,l-bis(dipheny1phosphino)ethane
h a v e b e e n p r e p a r e d by t h e
r e a c t i o n s o f r e l a t e d c o m p l e x e s of t h e b i s ( d i p h e n y l p h o s p h i n 0 ) methanide i o n w i t h c h l o r o m e t h y l m e t h y l e t h e r a t 8 0 ° C , and f u r t h e r e x a m p l e s of M i c h a e l a d d i t i o n s t o t h e v i n y l g r o u p o f t h e l i g a n d have been d e s c r i b e d . 130
The e s t e r ( 8 4 ) h a s b e e n p r e p a r e d f r o m
m-diphenylphosphinobenzoic a c i d , t h e d i s p o s i t i o n o f t h e p h o s p h i n o group promoting t h e rhodium-catalysed i n t r a m o l e c u l a r hydro-
f o r m y l a t i o n o f t h e e n d o c y c l i c d o u b l e bond i n a s p e c i f i c manner.131 F u r t h e r examples have been d e s c r i b e d of t h e c l e a v a g e o f phosphorus-carbon bonds of t e r t i a r y phosphines i n t h e presence of t r a n s i t i o n metals. 132-137
Of s p e c i a l n o t e is t h e p r e f e r e n t i a l
cleavage of the phosphorus-acetylenic
c a r b o n bond o f a l k y n y l d i -
p h e n y l p h o s p h i n e s , 136 a n d t h e c l e a v a g e o f a d i p h e n y l p h o s p h i n o g r o u p i n p l a t i n u m c o m p l e x e s o f bis(dipheny1phosphino)methane
w i t h s o d i u m h y d r o x i d e i n l i q u i d ammonia as s o l v e n t .
on treatment Coord i n a -
t i o n o f t h e p h o s p h o r u s a t o m o f t h e diphenylphosphinosilylmethane
( 8 5 ) t o a ruthenium acceptor suppresses t h e usual proton-induced
c a r b o n - s i l i c o n c l e a v a g e r e a c t i o n s undergone by t h i s m o l e c u l e , e n a b l i n g f u r t h e r e l a b o r a t i o n a t s i l i c o n t o b e c a r r i e d o u t . 138
Mystery s u r r o u n d s t h e mechanism o f t h e r e a r r a n g e m e n t o f t h e
p h o s p h i n e ( 8 6 ) t o t h e p h o s p h i n e o x i d e (871, w h i c h p r o c e e d s o n heating t h e former i n toluene.
I t h a s b e e n shown t h a t t h e
via
a c l a s s i c a l SN2 p r o c e s s i n v o l v i n g p h o s p h o r u s as a n u c l e o p h i l e , and t h e o p e r a t i o n o f a r a d i c a l c h a i n p r o c e s s h a s also been r u l e d o u t . That t h e r e l a t e d methyl e t h e r reaction does not proceed
o f ( 8 6 ) d o e s n o t u n d e r g o t h e r e a r r a n g e m e n t may p o i n t t o a p a t h w a y i n v o l v i n g o x i d a t i v e a d d i t i o n o f t h e hydroxy group t o phosphorus
t o g i v e a n i n t e r m e d i a t e p h o s p h o r a n e . 139
Polymer-bound t r i a r y l -
p h o s p h i n e s h a v e been u s e d t o r e d u c e o z o n i d e s o f a l k e n e s t o form c a r b o n y l c o m p o u n d s . 140 The r e a c t i o n s o f t r i p h e n y l p h o s p h i n e w i t h
(dialkoxyphosphory1)dichloroacetaldehydes l e a d t o t h e f o r m a t i o n Various p r o d u c t s
of t h e dichlorovinylphosphonates ( 8 8 ) . 14'
a r i s i n g f r o m P-P c l e a v a g e h a v e b e e n i s o l a t e d f r o m t h e r e a c t i o n s o f t e t r a a l k y l d i p h o s p h i n e s w i t h h e x a f l u o r o a c e t o n e . 142 The p h o s p h i n a t e s ( 8 9 ) a r e formed i n t h e r e a c t i o n s o f a l d e h y d e s or k e t o n e s w i t h Condensation r e a c t i o n s o f
b i s ( t r imethylsi1oxy)phosphine. 143
bis(hydroxymethy1)phenylphosphine c o n t i n u e t o b e e m p l o y e d i n t h e s y n t h e s i s o f h e t e r o c y c l i c s y s t e m s . 144-147 T h u s , e . g . , w i t h
-
t-butyldichlorophosphine , t h e d i o x a d i p h o s p h o r i n a n e ( 9 0 1 is formed,144 and t h e r e a c t i o n w i t h t r i e t h y l o r t h o f o r m a t e r e s u l t s i n
is
I : Phosphines und Phosphonium Salts
(76)
(771
Q O4
‘R
(79)
Ph,PCH,Si Me2H
(80) R
E\ N
N
R’
C(CI)=CHCI
o
( 8 1 ) n : l or 2
‘
Me H
(86)
(85)
0 II (RO),P-
Ph or But
R2
Ho\p>C,,
(88)
(90I
( 8 9 ) R’: a l k y l R2=H or a l k y l
r 9CHOEt
PhP
0’ (91)
fl
0
(92)
Me2PX Me
(93) X = S,Se or Te
16
Organophosphorus Chemistry
t h e d i o x a p h o s p h o r i n a n e ( 9 1 ) 147
The s t e r e o c h e m i s t r y o f t h e
r e d u c t i o n o f t h e k e t o group o f t h e phosphorinanone ( 9 2 ) h a s been shown t o d e p e n d o n t h e n a t u r e o f t h e r e d u c i n g a g e n t . 14 8 Q u a t e r n a r y ammonium s a l t s o f s u l p h o n a t e d t r i a r y l p h o s p h i n e s h a v e been proposed a s components o f p h a s e - t r a n s f e r s y s t e m s . The r e a c t i o n s o f p o l y p h o s p h i n e s c o n t i n u e t o b e s t u d i e d .
Tetra-
methyldiphosphine undergoes exchange r e a c t i o n s with dimethyldis u l p h i d e , - s e l e n i d e , and - t e l l u r i d e t o g i v e t h e dimethylphosphinite
e s t e r s ( 9 3 ) . 150 (94;
R = e.g.,
The d y n a m i c s t e r e o c h e m i s t r y o f t h e d i p h o s p h i n e s L-menthyl)
i n s o l u t i o n h a s been i n ~ e s t i g a t e d . ' ~ ~
The r e a c t i o n o f t h e p h o s p h i n o - c h l o r o b o r a n e
(95) w i t h d i - i s o p r o p y l -
boron d i c h l o r i d e r e s u l t s i n t h e format ion of t h e phosphino-borane
c l u s t e r ( 9 6 ) w h i c h may o f f e r p o s s i b i l i t i e s f o r t h e p r e p a r a t i o n o f more c o m p l e x p h o s p h o r u s - b o r o n c l u s t e r s . 152 2 Halogenophosphines 2.1 Preparation.-
A d e t a i l e d procedure h a s been d e s c r i b e d f o r t h e
p r e p a r a t i o n of 1,2-bis(dichlorophosphino)ethane f r o m t h e r e a c t i o n of white phosphorus, phosphorus t r i c h l o r i d e and e t h y l e n e i n an a u t o c l a v e a t 200°C.153
A series o f a l k y l - a n d a r y l -
dichloro-
p h o s p h i n e s h a s bee n p r e p a r e d by t h e r e a c t i o n s o f p r i m a r y p h o s p h i n e s
.
w i t h h e x a c h l o r o e t h a n e 154
R o u t e s t o d i a l k y l - and a l k y l a r y l -
c h l o r o p h o s p h i n e s a r e p r o v i d e d by e x c h a n g e r e a c t i o n s b e t w e e n c h l o r o d i p h e n y l p h o s p h i n e a n d t e t r a o r g a n o d i p h o s p h i n e s 155 F u r t h e r
.
procedures have been d e s c r i b e d f o r t h e formation of diphenylchlorophosphine and phenyldichlorophosphine by t h e deoxygenation of t h e r e l a t e d p h o s p h i n y l a n d p h o s p h o n y l h a l i d e s w i t h t e r v a l e n t p h o s p h o r u s c o m p o u n d s . 15' A v a r i a t i o n o f t h e w e l l - k n o w n s y n t h e s i s o f p h o s p h e t a n e o x i d e s h a s been d e s c r i b e d which i n v o l v e s t h e
-in-situ
generat ion of a r y l d i c h l o r o p h o s p h i n e s from t h e r e a c t i o n of
t h e aromatic h y d r o c a r b o n , p h o s p h o r u s t r i c h l o r i d e , a n d a l u m i n i u m c h l o r i d e , t h e r e s u l t i n g complex t h e n b e i n g t r e a t e d w i t h t h e a p p r o p r i a t e a l k e n e . 157
The d i r e c t a r y l a t i o n of p h o s p h o r u s
t r i c h l o r i d e w i t h a n aromatic h y d r o c a r b o n i n t h e p r e s e n c e of aluminium t r i c h l o r i d e h a s also been u s e d f o r t h e j o i n t p r o d u c t i o n 158
o f b o t h a r y l d i c h l o r o p h o s p h i n e s and d i a r y l c h l o r o p h o s p h i n e s .
Aryldichlorophosphines can a l s o be prepared by t h e reaction of
aryl(methy1)dichlorosilanes w i t h p h o s p h o r u s t r i c h l o r i d e a n d aluminium t r i c h l o r i d e . A c o n v e n i e n t r o u t e f o r t h e s y n t h e s i s of l-adamantyldichlorophosphine ( 9 7 ) i n v o l v e s t h e r e d u c t i o n . o f
l-adamantylthiophosphonyl d i c h l o r i d e u s i n g t r i p h e n y l p h o s p h i n e .
160
1: Phosphines and Phosphonium Salts
17 BR
R\
P-P,
’
R‘*N\
R
R’
P ( S i Me3I2
8-
RB
CI’
Ph
(94)
(951
4
PC I,
( 9 6 ) R = Pr’,N
+q+ PCI
R1x0siMe3 OR^
R‘
(100) R’= MqSi , CN 2 R = H or Me 3 R =Me,Si,Me
, or
Me
, or
Et
6 r 2 PCH,C(R)=C(R) CH28r (103) R = H or Me
C IC H2CH=C
M e C H2PCI
(106)
P h C E CPXz (109) X = CI or Br
Br,PCH=
C(R)C(R )=CH2 (1041
Br CH= CPh
‘PBr
Br CH
=CR/
(105)R=Me ,But,or Ph
CIoCH=CHPCL2
S
(1 07)
CI, PC(R F C H C I
(108) R = Ph or
But
X , P E CPX, (110)
(111) R = OMe or Me,N
Organophosphorus Chemistry
18 V a r i o u s c h l o r o p h o s p h i n e s b e a r i n g L-menthyl
s u b s t i t u e n t s h a v e been
p r e p a r e d by a l k y l a t i o n of d i c h l o r o p h o s p h i n e s w i t h G r i g n a r d reagent s
.
The p h o s p h o r u s e p i m e r s of ( - ) - m e n t h y l ( p h e n y 1 ) c h l o r o -
p h o s p h i n e h a v e b e e n c h a r a c t e r i s e d by 'P n . m . r . s p e c t r o s c o p y . 162 P a r t i a l a r y l a t ion of phosphorus t r i c h l o r i d e with m e s i t y l l i t h i u m
a t -78OC p r o v i d e s c o n v e n i e n t r o u t e s t o mesityldichlorophosphine ( 9 8 ) , 163 a n d dimesitylchlorophosphine (99). 164 A new a p p r o a c h t o f u n c t i o n a l i s e d a l k y l d i c h l o r o p h o s p h i n e s i s a f f o r d e d by t h e
r e a c t i o n s of s i l y l a t e d k e t e n e a c e t a l s ( 1 0 0 ) w i t h p h o s p h o r u s trichloride, giving, e . g . ,( 1 0 1 ) .
T r e a t m e n t of t h e l a t t e r w i t h a n
appropriate base generates functionalised phosphaalkenes, e.g.,
( 1 0 2 1 , w h i c h can b e t r a p p e d w i t h d i a z o a l k a n e s or d i e n e s t o g i v e
v a r i o u s h e t e r o c y c l i c compounds i n v o l v i n g t w o - c o o r d i n a t e p h o s 165 phorus
.
I n t e r e s t continues i n t h e synthesis of alkenylhalogenophosphines.
Dehydrobromination of t h e a l l y l i c dibromophosphines
1 0 3 1 h a s g i v e n t h e alkadienyldibromophosphines
( 1 0 4 1. 166 The (_E,g)-dialkenylbromophosphines ( 1 0 5 ) h a v e b e e n o b t a i n e d i n > 9 0 % y i e l d by t h e p h o t o i n i t i a t e d r e a c t i o n s o f ( g ) - a l k e n y l d i b r o m o (
phosphines with a 1 k ~ n e s . l ~ P h~o s p h i n e h a s b e e n u s e d t o r e d u c e t h e i o n i c a d d u c t formed between i s o p r e n e and p h o s p h o r u s p e n t a c h l o r i d e t o g i v e t h e a l l y 1ic d i c h l o r o p h o s p h i n e
(
1 0 6 ) . 16'
A similar
r e d u c t i o n of t h e p h o s p h o r u s p e n t a c h l o r i d e a d d u c t of 2 - c h l o r o - 5 v i n y l t h i o p h e n , u s i n g methyldichlorophosphite, h a s g i v e n t h e
s u b s t i t u t e d vinyldichlorophosphine
(
107 1.
The c h l o r o v i n y l d i -
c h l o r o p h o s p h i n e s ( 1 0 8 ) are formed i n t h e p h o t o i n i t i a t e d r e a c t i o n 170 of p h e n y l - a n d t - b u t y l - a c e t y l e n e w i t h p h o s p h o r u s t r i c h l o r i d e . I n c o n t r a s t , t h e t h e r m a l r e a c t i o n s o f p h e n y l a c e t y l e n e and phosphorus t r i h a l i d e s in an i n e r t solvent y i e l d t h e alkynyldihalogenophosphines
(
109 1. 17'
The r e a c t i o n s o f d i l i t h i u m - a c e t y l i d e
w i t h a r a n g e o f bis(dialky1amino)chlorophosphines h a v e g i v e n t h e
dialkylaminophosphinoacetylenes
(
110 ;
X = NR, 1 , w h i c h o n t r e a t m e n t
w i t h hydrogen c h l o r i d e a r e c o n v e r t e d i n t o t h e r e l a t e d b i s ( d i c h 1 o r o phosphine) (110;
The l a t t e r h a s b e e n shown t o u n d e r g o a n
X = Cl).
e x c h a n g e r e a c t i o n w i t h a r s e n i c t r i f l u o r i d e t o g i v e t h e corresp o n d i n g b i s ( d i f 1 u o r o p h o s p h i n e ) ( 1 1 0 ; X = F). 172 The 2 - s u b s t i t u t e d a r y l d i c h l o r o p h o s p h i n e s (111;
X = C1) also undergo exchange
r e a c t i o n s , ( i n t h e p r e s e n c e of s o d i u m f l u o r i d e i n a c e t o n i t r i l e containing a crown-ether)
(111, X = F ) .
,
to give the difluorophosphines
S u r p r i s i n g l y , 2-methoxyphenyldifluorophosphine
undergoes a spontaneous d i s p r o p o r t i o n a t i o n r e a c t i o n t o form t h e
I : Phosphines and Phosphonium Salts
19
r e l a t e d 2-methoxyphenyltetrafluorophosphorane a n d t e t r a k i s ( g 173
methoxyphenyllcyclotetraphosphine.
2.2 R e a c t i o n s o f Ha1ogenophosphines.-
O z o n a t i o n h a s b e e n shown t o
b e a n e f f i c i e n t method f o r t h e o x i d a t i o n o f h a l o g e n o p h o s p h i n e s ) p a r t i c u l a r l y f o r t h o s e i n v o l v i n g b u l k y o r g a n i c s u b s t i t u e n t s . 174 S t u d i e s o f t h e s t e r e o c h e m i s t r y of n u c l e o p h i l i c s u b s t i t u t i o n o f c h l o r i n e from t h e 7-phosphanorbornene
halogenophosphine system
( 1 1 2 ) h a s p r o v i d e d some i n t e r e s t i n g r e s u l t s . nucleophiles
With oxygen
s u b s t i t u t i o n p r o c e e d s w i t h c o m p l e t e r e t e n t i o n of
c o n f i g u r a t i o n a t p h o s p h o r u s , c o n s i s t e n t w i t h a mechanism i n v o l v i n g
a p h o s p h o r a n i d e i n t e r m e d i a t e , t h e d e c a y o f w h i c h is i n a c c o r d a n c e w i t h a pathway i n v o l v i n g a p i c a l e n t r y , p s e u d o r o t a t i o n , and a p i c a l d e p a r t u r e a s would b e t h e case f o r r e t e n t i o n o f c o n f i g u r a t i o n i n r e a c t i o n s i n v o l v i n g t r u e t r i g o n a l b i p y r a m i d a l i n t e r m e d i a t e s . 17' I n c o n t r a s t , t h e r e l a t e d r e a c t i o n s o f s e c o n d a r y amine n u c l e o p h i l e s o c c u r w i t h b o t h r e t e n t i o n and i n v e r s i o n a t p h o s p h o r u s , t h e d i f f e r e n t b e h a v i o u r of a m i n e s b e i n g a t t r i b u t e d t o t h e l o w e r a p i c o p h i l i c i t y of nitrogen in t h e t r i g o n a l bipyramidal i n t e r mediates t h a t develop from t h e i n i t ially-formed phosphoranide s p e c i e s . 176
The 1 - c h l o r o p h o s p h i r a n e s
(
113) do not undergo t h e
expected nucleophilic displacement reactions at phosphorus, leading i n s t e a d t o a s e r i e s o f r i n g - o p e n e d p r o d u c t s , e x c e p t i n t h e case o f one r e a c t i o n w i t h l i t h i u m aluminium h y d r i d e , which results i n t h e e x p e c t e d c y c l i c s e c o n d a r y p h o s p h i n e . 177 oxygen- and n i t r o g e n - n u c l e o p h i l e s
T h e r e a c t i o n s of
with halogenophosphines continue
t o b e u s e d t o p r e p a r e new, o f t e n c h i r a l , l i g a n d
e.g.,
(114)l8'
a n d (115).181
r e a c t i o n o f 2-butyne-1,4-diol
Contrary t o earlier r e p o r t s , t h e with chlorodiphenylphosphine l e a d s
bo t h e 2,3-bis(diphenylphosphinyl)-l,3-butadiene
( 1 1 6 ) . 182 Diisopropylaminodichlorophosphine h a s b e e n u s e d f o r t h e m o d i f i c a t i o n o f g u a n i n e b a s e s . 183 The r o l e o f d i c h l o r o p h o s p h i n e i n t e r mediates h a s been considered i n t h e r e a c t i o n s of phosphorus t r i c h l o r i d e w i t h a r y l h y d r a z o n e s which c a n l e a d t o t h e f o r m a t i o n o f b o t h d i a z a p h o s p h o l e s a n d i n d o l e s . 184 V a r i o u s h e t e r o c y c l i c systems, e . g . , ( 1 1 7 ) ) h a v e b e e n p r e p a r e d by t h e r e a c t i o n s o f bis(dich1orophosphino)methane w i t h h y d r a z i n e s . 185 The b i s ( d i f l u o r o p h o s p h i n o ) l i g a n d s ( 1 1 8 ) h a v e b e e n o b t a i n e d f r o m t h e react i o n s of bis(dif1uorophosphino)sulphide w i t h a p p r o p r i a t e d i o l s a n d d i t h i o l s . 186 The N-( dich1orophosphino)diamine ( 119 1, a c c e s s i b l e f r o m t h e r e a c t i o n s of r e l a t e d t r i m e t h y l s i l y l a r n i n o
20
Organophosphorus Chemistry
compounds w i t h p h o s p h o r u s t r i c h l o r i d e , i s f o u n d t o u n d e r g o a n intramolecular n u c l e o p h i l i c displacement p r o c e s s to form t h e s t a b l e 18 7 ( 120 1 .
phosphenium s a l t
The u s e o f chloromethyldichlorophosphine i n t h e s y n t h e s i s
’**
of a z a p h o s p h o l e s y s t e m s h a s b e e n r e v i e w e d . Various chloroalkylp h o s p h o n a t e s and - p h o s p h i n a t e s have been i s o l a t e d from t h e r e a c t i o n s o f t h e chloroalkyldichlorophosphines ( 1 2 1 ) w i t h t r i e t h y l
o r t h o f o r m a t e . 18’
A mixture of t h e phosphinyl chloride
(
122) and
methylphosphonic d i c h l o r i d e is formed i n t h e r e a c t i o n o f methyldichlorophosphine with paraformaldehyde.
The h e t e r o c y c l i c
s y s t e m ( 1 2 3 ) arises i n t h e r e a c t i o n of et hyl di c h lo ro p h o sp h in e with
1,”-dibutyl-2,3-butanediimine
i n t h e p r e s e n c e of water. l g l ’ l g 2
The c o r r e s p o n d i n g c y c l i c a m i n o p h o s p h i n e c a n b e o b t a i n e d o n
r e d u c t i o n w i t h t r i c h l o r o s i l a n e . l g 3 The r e a c t i o n
of diorgano-
c h l o r o p h o s p h i n e s w i t h dialkylphosphinoacetylenes h a s g i v e n t h e
h e t e r o c y c l i c s y s t e m ( 1 2 4 ) . lg4 Phospholanium s a l t s ( 1 2 5 ) are f o r m e d , t o g e t h e r w i t h o t h e r p r o d u c t s , i n t h e r e a c t i o n s of
d i a l k y l i o d o p h o s p h i n e s w i t h THF,Ig5 a n d t h e s a l t s ( 1 2 6 ) h a v e been i s o l a t e d from t h e r e a c t i o n s of alkyldiiodophosphines with t e r t i a r y a m i n e s . l g 6 An e l e c t r o c h e m i c a l p r o c e d u r e f o r t h e s y n t h e s i s of cyclopolyphosphines h a s been developed following an i n i t i a l s t u d y o f t h e e l e c t r o r e d u c t i o n o f a l k y l - a n d aryl-dichlorophosphines. l g 7 C a t h o d i c r e d u c t i o n o f halogenodiphenylphosphines i n d r y a c e t o -
nitrile
l e a d s t o t h e e x c l u s i v e f o r m a t i o n of t e t r a p h e n y l d i -
phosphine. The u s e o f isocyanatodiorganophosphines i n t h e s y n t h e s i s of
oxazaphospholine and oxazaphosphole d e r i v a t i v e s c o n t a i n i n g f o u r and f ive-coordinate
p h o s p h o r u s h a s been reviewed.
’’’
3 Phosphonium S a l t s
3 . 1 P r e p a r a t i o n . - The r e a c t i o n s o f t r i p h e n y l p h o s p h i n e h y d r o b r o m i d e w i t h c h l o r o a l k a n e s i n DMF g i v e much b e t t e r y i e l d s of t h e a l k y l t r i phenylphosphonium s a l t s t h a n a r e o b t a i n e d i n t h e d i r e c t r e a c t i o n s o f t h e c h l o r o a l k a n e s w i t h t r i p h e n y l p h o s p h i n e . 2oo A new r o u t e t o
a-alkoxyalkylphosphonium s a l t s is a f f o r d e d by t h e r e a c t i o n s of
acetals with triphenylphosphine,
trifluoride-etherate,
i n t h e p r e s e n c e of b o r o n
in toluene solution.201
Conventional
q u a t e r n i z a t i o n p r o c e d u r e s h a v e b e e n u s e d i n t h e s y n t h e s i s of t h e unsaturated macrocyclic tetraphosphonium salt (127)
(which can b e 202
c a t a l y t i c a l l y reduced t o t h e corresponding s a t u r a t e d system), t h e water-soluble
l u m i n e s c e n t d i p h o s p h o n i u m s a l t ( I28 1 ,203 t h e
1: Phosphines and Ph osphon iurn Salt J
Ph Me3Si
21
>6.<," CI
(1131 R = A r y l
19
PPh2
Ph, P
C H2 0 PPh 2
I
R'-
CH
(1111R'= Me, Pr' or 2
Ph
R = H or SR Me
N-N
0 (115)
(1161
I
CH~R'
Me
II
- NPPh,
/
Me
(117 1 Me
F2PX(CH, 1,XPF2 (118) X = 0 or S n = 2- 6
M e2NCH2CH,N( Me1 PCI, (119)
CIMe2 (1201
0 C In C H3-nP C I (121) n = l - 3
II ,Me
ClCH P
'CI (1221
1
+
R P( N R2,),
R'
R ' (1251
(126)
(124) R ' = a l k y l or a r y l
R 2 = E t or Bu
(1281
(129) R z a l k y l or Ph
21 -
22
Organnphospho rus Chemistry
o-isocyanobenzylphosphonium
salts
(
129 1 , 2 0 4 a n d a r a d i o l a b e l l e d
.
E - i o d o b e n z y l t r i p h e n y l p h o s p h o n ium s a l t 2 0 5
On d i s s o l u t i o n i n DMF, t h e s a l t ( 1 3 0 ) isomerises t o t h e a l l e n y l s y s t e m ( 1 3 1 1 , t h e r e a c t i o n b e i n g r e v e r s e d o n h e a t i n g . 206
quaternary
B o t h mono- a n d d i -
s a l t s h a v e b e e n o b t a i n e d f r o m t h e r e a c t i o n s of t h e
c y c l i c diphosphine
( 132) w i t h iodomethane. 207 Various r o u t e s t o t h e c h i r a l phosphonium s a l t ( 1 3 3 ) from a p r e c u r s o r c h i r a l a l c o h o l
h a v e b e e n d e v e l o p e d . 208
A d d i t i o n o f 1i t h i u m d i p h e n y l p h o s p h i d e
to 1-vinyl-2-carboranes,
f o l l o w e d by
quaternization of the
r e s u l t i n g phosphines with iodomethane, h a s l e d t o t h e s y n t h e s i s of a r a n g e of B-(g-carboranyl)ethylphosphonium
s a l t s . 209
Heteroarylmethylphosphonium s a l t s , e . g . , ( 1 3 4 ) , h a v e b e e n t r i p h e n y l p h o s p h o n i u m c h l o r i d e .210
p r e p a r e d from 3-chloro-2-oxopropyl
Heating 1-chloroanthraquinone with triphenylphosphine at 165-170°C g i v e s t h e a r y l p h o s p h o n i u m s a l t ( 1 3 5 ) .211
The f o r m a t i o n
of arylphosphonium salts from t h e n i c k e l ( I 1 ) - c a t a l y s e d
reactions
of various 2-substituted a r y l halides with t e r t i a r y phosphines i n r e f l u x i n g e t h a n o l h a s r e c e i v e d f u r t h e r a t t e n t i o n , and t h e structural features required in the ortho subst ituent in order t h a t h a l i d e r e p l a c e m e n t o c c u r s under t h e s e c o n d i t i o n s h a v e been established.212 (
The r e a c t i o n s o f t h e t e t r a t h i a n e d i i m i n i u m s a l t s
136 ) w i t h t r i p h e n y l p h o s p h i n e h a v e g i v e n t h e N , N _ - d i a l k y l t h i o -
carbamoylphosphonium s a l t s
( 1 3 7 ) . 213 The t r i m e t h y l s i l y l m e t h y l (dialky1amino)phosphonium s a l t s ( 1 3 8 ) h a v e b e e n p r e p a r e d b y t h e reaction o f t r i m e t h y l s i l y l chloride with t h e tris(dialky1amino)Phosphonium s a l t s i n v o l v i n g u n u s u a l p h o s p h o n i u m m e t h y l i d e . 214 c o u n t e r i o n s c o n t i n u e t o b e i n v e s t i g a t e d , some h a v i n g a p p l i c a t i o n
as n o v e l s y n t h e t i c r e a g e n t s .
The h y d r o g e n d i f l u o r i d e s a l t ( 1 3 9 )
h a s b e e n u s e d f o r t h e f l u o r i n a t i o n of o r g a n i c s u b s t r a t e s , 2 1 5 a n d t h e tetra-alkylphosphonium
i o d i d e - t r i o r g a n o t i n h a 1i d e a d d u c t s
( 1 4 0 ) are found t o c a t a l y s e t h e c y c l o a d d i t i o n o f c a r b o n d i o x i d e
t o o x i r a n e s , l e a d i n g t o t h e f o r m a t i o n of f ive-membered c y c l i c c a r b o n a t e s u n d e r n e u t r a l a n d m i l d c o n d i t i o n s . 216 The r e a c t i o n o f t e t r a p h e n y l p h o s p h o n i u m i o d i d e w i t h a n t i m n y t r i i o d i d e i n aceton i t r i l e r e s u l t s i n t h e f o r m a t i o n o f t h e s a l t ( 1 4 1 ) . 217 The s a l t
+
CH,PH,Cl-
h a s been i s o l a t e d from t h e r e a c t i o n of methyldichloro2 18
phosphine with ethylene glycol i n dichloromethane.
I : Phosphines und Phosphoniuni Salrs
+
CPh Br-
Ph,PCH,C=
23
Ph36CH=C =CHPh
A
Br-
,PBuf
But P,
N
mu But
(131 1
(130)
(132 1
;
Me
Ph 1-C H+z
\
(133)
0
(134)
s- s
(135)
S
II
+
** Cl0,-
Ph,P-CNR,
( Et2NI36CH,SiMc, C<
(138)
(1371
PI-
0
/ \
Me
Ph
/
(143 1
(1d2)
RCONHC= CHCl
0
-
+
I+
PPh,
X-
(1f.4) R = Me or Ph
+
fpPh3 CIO,
dPPh3 Se&N c'oL
(1451
(1461 (1L7)
Ph,;
- CR' R'COC, X-
( 1 4 8 ) R'
F,,
+,
, Rz=a l k y l , a l l y l or bentyl
S
II
Ph2P-CH
I
- 6Ph3 x-
CO Me (149)
+
C H 3 C E CPPh, (150)
Organophosphorus Chemistn
24
3 . 2 R e a c t i o n s of' P h o s p h o n i u m S a l t s . -
A study of t h e k i n e t i c
a c i d i t y o f a series of a l k y l t r i ( t-buty1)phosphonium s a l t s h a s r e v e a l e d t h a t t h e s e compounds a r e s l i g h t l y l e s s a c i d i c t h a n t h e corresponding nitroalkanes.
l9
Ring-opening o c c u r s on a l k a l i n e
h y d r o l y s i s of t h e s a l t ( 1 4 2 ) t o f o r m ( 1 4 3 ) . 220 V a r i o u s p r o d u c t s h a v e b e e n i s o l a t e d f r o m t h e a l k a l i n e h y d r o l y s i s of t e t r a arylphosphoniurn s a l t s b e a r i n g c a r b o n y l s u b s t i t u e n t s . 221 Nucleop h i l i c a d d i t i o n t o u n s a t u r a t e d phosphonium s a l t s c o n t i n u e s t o b e e x p l o i t e d i n t h e s y n t h e s i s of n e w s y s t e m s . subst ituted-vinylphosphonium salt
(
T r e a t m e n t of t h e
1 4 4 ) w i t h sodium hydrogen
s e l e n i d e , f o l l o w e d by a c i d , g i v e s t h e s e l e n a z o l y l p h o s p h o n i u m
salts
( 145). 222
A d d i t i o n of h y d r a z i n e s t o p r o p y a r g y l t r i p h e n y l -
phosphonium bromide h a s g i v e n phosphonium s a l t s o f v a l u e i n t h e s y n t h e s i s o f f u s e d p y r a z o h e t e r o c y c l e s . 223
Nucleophilic
a d d i t i o n s t o t h e cyclobutenylphosphonium s a l t ( 1 4 6 ) h a v e been u s e d t o g e n e r a t e y l i d e s of v a l u e f o r t h e s y n t h e s i s o f 1 , 2 - d i s u b s t i t u t e d cyclobutanes. 224
T h i s s a l t a l s o acts as a d i e n o p h i l e w i t h c y c l o -
p e n t a d i e n e t o g i v e t h e b r i d g e h e a d phosphonium s a l t ( 1 4 7 ) which undergoes a l k a l i n e h y d r o l y s i s very s l o w l y , w i t h l o s s of a phenyl group. 225
The B - k e t o p h o s p h o n i u m s a l t s ( 1 4 8 ) h a v e b e e n shown t o
u n d e r g o a n u n u s u a l a d d i t i o n - e l i m i n a t i o n r e a c t i o n on t r e a t m e n t w i t h c a r b o n n u c l e o p h i l e s t o g i v e n o v e l f l u o r o a l k e n e s . 226
Both
k e t o - a n d e n o l - f o r m s of t h e s a l t (149) h a v e b e e n o b s e r v e d i n s o l u t i o n . 227
The p o l a r o g r a p h i c r e d u c t i o n o f t h e v i n y l t r i p h e n y l -
phosphoniurn and t h e a l kynyl phos phoni um ( 1 5 0 ) c a t i o n s h a s r e c e i v e d d e t a i l e d study.228 I n t e r e s t c o n t i n u e s i n t h e u s e o f p h o s p h o n i u m s a l t s as p h a s e transfer catalysts.
Tetraphenylphosphonium bromide h a s been used t o e n h a n c e t h e r e a c t i v i t y of p o t a s s i u m f l u o r i d e i n n u c l e o p h i l i c
f l u o r i n e t r a n s f e r r e a c t i o n s , g i v i n g l a r g e rate a c c e l e r a t i o n s i n 229 A a p r o t i c s o l v e n t s such a s 1,2-dimethoxyethane.
non-dipolar
c o n s i d e r a t i o n of t h e s t a b i l i t y of q u a t e r n a r y ammonium a n d p h o s phonium s a l t s u n d e r p h a s e t r a n s f e r c o n d i t i o n s i n t h e p r e s e n c e o f a q u e o u s a l k a l i h a s r e v e a l e d t h e e x p e c t e d lower s t a b i l i t y o f t h e p h o s p h o n i u m s a l t s . The e x t e n t o f a l k a l i n e d e g r a d a t i o n c a n b e m i n i m i s e d b y t h e a d d i t i o n o f a molar e x c e s s of t h e r e l a t e d s o d i u m 2 30 s a l t , which s u p p r e s s e s t h e e x t r a c t a b i l i t y of t h e h y d r o x i d e i o n . The p h a s e t r a n s f e r p r o p e r t i e s o f p o l y m e r - b o u n d p h o s p h o n i u m s a l t s 231,232 have a l s o received study.
25
I : Phosphines and Phosphonium Salts QT-Bonded
P h o s p h o r u s Compounds
T h i s area c o n t i n u e s t o a t t r a c t c o n s i d e r a b l e i n t e r e s t .
A review
h a s a p p e a r e d w h i c h c o v e r s compounds i n w h i c h p h o s p h o r u s i s involved i n pT-bonding with a second phosphorus atom, or a r s e n i c , a n t i m o n y or s i l i c o n . 2 3 3
A t h e o r e t i c a l study of t h e species
HP=PH a n d H,P=P h a s b e e n r e p o r t e d . 2 3 4
The b i s - i m i d a z o l i n e
(151)
h a s b e e n u s e d f o r t h e r e d u c t i o n o f 2,4,6-tri-t-butylphenyldichlorophosphine t o g i v e t h e diphosphene (152;
t-butylphenyl).
R = 2,4,6-tri-
R e d u c t i o n of l e s s b u l k y d i h a l o g e n o p h o s p h i n e s
r e s u l t s i n t h e f o r m a t i o n of m i x t u r e s of c y c l o p o l y p h o s p h i n e s . 2 3 5 R o u t e s t o t h e new s t a b l e d i p h o s p h i n e s ( 1 5 3 ) a n d ( 1 5 4 ) , b e a r i n g
pentamethylcyclopentadienyl s u b s t i t u e n t s , h a v e b e e n d e v e l o p e d . 236 , 2 3 7
X-ray s t u d i e s r e v e a l t h a t t h e p e n t a m e t h y l -
c y c l o p e n t a d i e n y l s u b s t i t u e n t s a r e a-bonded t o p h o s p h o r u s , b u t n.m.r.
s t u d i e s are c o n s i s t e n t with f l u x i o n a l behaviour i n
solution.
T r e a t m e n t of t h e s e compounds w i t h c a r b o n - o r n i t r o g e n -
nucleophiles r e s u l t s in displacement of t h e pentamethylcyclopentadienyl substituent, enabling, for the f i r s t t i m e , s u b s t i t u t i o n a t t h e c a r b o n - p h o s p h o r u s b o n d of d i p h o s p h e n e s . 2 3 7 The p h o s p h i d e r e a g e n t ( 1 5 5 ) h a s b e e n u s e d t o p r e p a r e a r a n g e o f p -bonded s y s t e m s , i n c l u d i n g d i p h o s p h e n e s , p h o s p h a - a r s e n e s , phospha-stibines and o t h e r systems,
9i t s
a p p r o p r i a t e d i c h l o r o m e t a l l o compounds.
reactions with
When t r e a t e d w i t h b u l k y
dialkylaminodichlorophosphines, t h e dialkylamino-substituted diphosphenes (156) are
T h e s e compounds are u s e f u l
intermediates f o r t h e synthesis of other diphosphenes.
Treatment
w i t h c a r b o n , n i t r o g e n or s u l p h u r n u c l e o p h i l e s r e s u l t s i n d i s p l a c e ment of t h e d i a l k y l a m i n o g r o u p ,240 a n d t r e a t m e n t w i t h h y d r o g e n c h l o r i d e i n e t h e r a t -78OC l e a d s t o t h e c h l o r o - s u b s t i t u t e d d i p h o s p h e n e ( 1 5 7 ) f r o m w h i c h a r a n g e o f new d i s p h o s p h i n e s h a s 241 b e e n p r e p a r e d by r e a c t i o n s w i t h n u c l e o p h i l i c r e a g e n t s . Reagents similar t o (155) have a l s o been used t o prepare t h e X 3 - A 5 diphosphorus system (158) and o t h e r , r e l a t e d , phosphorusn i t r o g e n and phosphorus-sulphur systems. 242 I n t e r e s t c o n t i n u e s
i n t h e s y n t h e s i s a n d s t u d i e s o f t h e r e a c t i v i t y of d i p h o s p h e n e s which b e a r a complexed m e t a l l o - s u b s t i t u e n t a t one o f t h e phosphorus atoms.243-247 A f u l l survey of t h e r e a c t i v i t y of t h e diphosphenes (152;
R = 2,4,6-tri-t-butylphenyl
o r tris(trimethylsily1)methyl)
towards e l e c t r o p h i l i c and nucleophilic reagents has appeared.
248
F u l l d e t a i l s h a v e b e e n p u b l i s h e d o f t h e r e a c t i o n s of d i p h o s p h e n e s w i t h d i a z o a l k a n e s and c a r b e n e s , which p r o v i d e a g e n e r a l method f o r
26
Organophosphorus Chumistr!
Et
Et
R-P=P-R Et
Et
(1521
( 1 51)
Me
(1531
Me /
S i Me3
P
\
c , p = p & +
/R
ArP=P-OSiR3
\R
%
Li
Ar P
- PAr
\ C/
/ \
R
R
(159) R = H , A r or halogen
@p.; (1 60)
(1611
(162 )
I : Phosphines and Phosphonium Salts
27
t h e preparation of highly s u b s t i t u t e d diphosphiranes (159) .249 An e l e c t r o c h e m i c a l s t u d y o f d i p h o s p h e n e s h a s shown t h a t w h e r e a s i t is e a s y t o c h a r a c t e r i s e t h e r a d i c a l a n i o n r e d u c t i o n p r o d u c t s o f t h e s e s y s t e m s , i t is much more d i f f i c u l t t o d e t e r m i n e t h e n a t u r e of the products of electrochemical oxidation.
Some e v i d e n c e of
t h e f o r m a t i o n o f u n s t a b l e r a d i c a l c a t i o n s h a s been o b t a i n e d . 2 5 0 The c o o r d i n a t i o n c h e m i s t r y of d i p h o s p h e n e s h a s c o n t i n u e d t o
a t t r a c t i n t e r e s t .251-254 The d i r e c t u t i l i s a t i o n of u n h i n d e r e d p h o s p h a - a l k e n e s - a l k y n e s i n s y n t h e s i s may now b e p o s s i b l e ,
and
f o l l o w i n g a n improved
r o u t e f o r t h e i r p r e p a r a t i o n by t h e s t e p w i s e d e h y d r o h a l o g e n a t i o n o f a l k y l d i c h l o r o p h o s p h i n e s u n d e r f l a s h vacuum t h e r m o l y s i s c o n d i t i o n s , t h e e l i m i n a t e d h y d r o g e n c h l o r i d e b e i n g removed i n a gas-absorption t r a i n involving a heterocyclic base.
The p r o d u c t s a r e c o n d e n s e d f r o m t h e gas p h a s e a t -120OC. The s t a b i l i t i e s o f s u c h u n h i n d e r e d compounds a r e g r e a t e r t h a n e x p e c t e d ; t h u s , g., t h e p h o s p h a - a l k y n e MeCEP i s r e p o r t e d t o be s t a b l e f o r t h r e e d a y s i n s o l u t i o n a t room t e m p e r a t u r e . 2 5 5 Two g r o u p s h a v e r e p o r t e d t h e
f o r m a t i o n o f s t e r i c a l l y - c r o w d e d p h o s p h a - a l k e n e s by t h e c o n d e n s a t i o n of t h e p r i m a r y p h o s p h i n e ( 1 6 0 ) w i t h c a r b o n y l c o m p o u n d s , a d i r e c t analogy with S c h i f f ' s base condensation i n nitrogen chemistry.256 9257 A s noted above f o r r e l a t e d diphosphenes, t h e p r e s e n c e o f t h e pentamethylcyclopentadienyl s u b s t i t u e n t a t
phosphorus of t h e phospha-alkene (161) p r o v i d e s a very r e a c t i v e c a r b o n - p h o s p h o r u s b o n d . 258 A d e t a i l e d p r o c e d u r e f o r t h e s y n t h e s i s o f t h e c h l o r o p h o s p h a - a l k e n e ( 1 6 2 ) h a s b e e n d e s c r i b e d . 259
The
r e a c t i v i t y of t h e c h l o r o p h o s p h a - a l k e n e ( 1 6 3 ) c o n t i n u e s t o b e explored.
Access t o a v a r i e t y of new p h o s p h a - a l k e n e s
is a f f o r d e d
260,261
by n u c l e o p h i l i c d i s p l a c e m e n t of c h l o r i n e f r o m t h i s compound.
-
I t s r e a c t i o n w i t h t h e a n i o n BsHe l e a d s t o t h e s y n t h e s i s o f a nidomethylenephosphahexaborane. 2 6 2 T h e d i p h o s p h i r a n e ( 1 6 4 ) i s f o r m e d i n t h e r e a c t i o n of ( 1 6 3 ) w i t h t h e a n i o n [ H F e ( C 0 ) 1 , l r 2 6 3
The
Diels-Alder r e a c t i o n s of (163) with appropriate a c y c l i c dienes p r o v i d e a g e n e r a l r o u t e t o f u n c t i o n a l i s e d A ' - p h o s p h o r i n s , e.g., With ( 1 6 5 ) , f o l l o w i n g "aromat i s a t i o n " o f t h e i n i t i a l a d d u c t s 264 c y c l o p e n t a d i e n e , t h e p h o s p h a n o r b o r n e n e ( 1 6 6 ) is f o r m e d . 2 6 5 A p p e l ' s
.
group h a s e x p l o r e d v a r i o u s v a l e n c e i s o m e r i s a t i o n p r o c e s s e s of u n s a t u r a t e d p h o s p h o r u s compounds w h i c h l e a d t o new p h o s p h a - a l k e n e systems.
T h u s t h e b i s p h o s p h i n e ( 1 6 7 ) r e a r r a n g e s a t 40°C i n THF
s o l u t i o n t o g i v e t h e racemic b i s p h o s p h a - a l k e n e ( 1 6 8 ) w h i c h t h e n u n d e r g o e s a s l o w , i r r e v e r s i b l e c o n v e r s i o n i n t o t h e r e l a t e d meso-
28
OrganophosphoruJ Chmiisrn,
CIP-
( Me3Si),C=PC\
\/
PCHISiMe3l2
Me
'' Q
C0,Me
(165 1
(1631 Me3Si
SiMe3 ( 1 6L1
Me3Si ( 167 1 Ar = 2 ,4 ,6 But3CgH
-
(1661
Ar
P ''
I
/p\c
Ar
-*rpDph ArP
*CPh
(169) A r = 2 , d J 6 -Buf,C,H,
A r P=C=O
(172) A r = 2 , L J 6 But3C,H2
[ 168 1
+
Ph
(171) R = M e or Ph
(1701
-
Me3SiPR
I
Me3Si PR [ 173)R=Me3Si I Pr
', or
OSiMe3 ArPPPR
I
Ar P&PR OSiMe3
Ph
(174)
CQ
But P=CH6ut
Me,SiN( R )P=C(SMc)2 F
[ 175)
[ 176) R = But or Me,Si
/
C=PC,F, (177)
I : Phosphines and Phosphonium Salts
29
f o r m . 266 S i m i l a r l y , t h e b i s p h o s p h i n e ( 1 6 9 ) r e a r r a n g e s t o form t h e bis(phosphamethy1ene)cyclobutene s y s t e m ( 1 7 0 ) . 267 Cope r e a r r a n g e m e n t s of p h o s p h a - a l k e n e s b e a r i n g u n s a t u r a t e d s u b s t i t u e n t s
a t c a r b o n , e.g.,( 1 7 1 ) , h a v e a l s o b e e n r e p o r t e d . 2 6 8 The r e a c t i o n s o f t h e phosphaketene ( 1 7 2 ) w i t h t h e d i p h o s p h i n e s (173) g i v e t h e valence-stable
b i s ( p h o s p h a - a l k e n e s ) ( 1 7 4 ) . 269
s y n t h e s i s o f t h e new p h o s p h a - a l k e n e s been r e p o r t e d .
(
Routes f o r t h e 175)270 and ( 176)271 have
The p e r f l u o r o p h o s p h a - a l k e n e ( 1 7 7 ) h a s b e e n
p r e p a r e d by t h e t h e r m a l e l i m i n a t i o n o f t r i m e t h y l t i n f l u o r i d e f r o m
bis(pentafluoroethy1)trimethylstannylphosphine.
The P=C l i n k i n
t h i s m o l e c u l e is more p o l a r t h a n t h a t i n t h e r e l a t e d p h o s p h a -
a s i n d i c a t e d b y t h e r e a c t i v i t y of ( 1 7 7 ) t o w a r d s The r e a c t i v i t y o f t h e r e l a t e d arsaa l k e n e , CF3As=CF,, is greater s t i l l , t h i s compound u n d e r g o i n g
a l k e n e , CF,P=CF,,
p r o t i c a c i d s and d i e n e s . 272
c y c l o a d d i t i o n w i t h t h i o p h e n . 273
The s t r u c t u r e of CF,P=CF,, a n d 2 74
of its c y c l i c dimer, have been s t u d i e d i n t h e gas-phase.
P h o t o l y s i s o f t h e a-diazomethylenediphosphine
phosphino-subst i t u t e d phospha-alkene
(
(178) has given t h e
179) i n almost q u a n t i t a t i v e
y i e l d , v i a t h e r e a r r a n g e m e n t of a n i n t e r m e d i a t e d i p h o s p h i n o -
.
c a r b e n e-255
A t h e o r e t i c a l treatment of phosphinocarbenes has a l s o
b e e n p r e s e n t e d .276
The P H - f u n c t i o n a l
phospha-alkenes
been c o u p l e d t o form t h e b i s ( p h o s p h a - a l k e n e )
(
180 1 h a v e
s y s t e m ( 1 8 1 ) on
t r e a t m e n t w i t h m e r c u r y ( 11) b i s ( t r i m e t h y l s i l y l ) a m i d e .277
Strong
b a s e s s u c h a s DBU p r o m o t e t h e r e a r r a n g e m e n t o f ( 1 8 2 ) t o ( 1 8 3 ) . 2 7 8 I n t e r e s t c o n t i n u e s i n t h e s y n t h e s i s a n d s t u d y o f t h e r e a c t i v i t y of i n which a complexed t r a n s i t i o n m e t a l - s u b s t i t u e n t is p r e s e n t a t p h o s p h o r ~ s , ~a n~d ~a l- s~o ~i n~ t h e g e n e r a l c o -
phospha-alkenes
ordination chemistry of phospha-alkenes.
282
F u r t h e r e x a m p l e s o f p h o s p h a - a l l e n e s (184) h a v e b e e n p r e p a r e d b y W i t t i g r e a c t i o n s o f t h e p h o s p h a k e t e n e (172). 2 8 3 The f i r s t
r e s o l u t i o n of t h e d i s s y m m e t r i c d i p h o s p h a - a l l e n e
system
(
185) h a s
b e e n a c h i e v e d b y c h r o m a t o g r a p h y on a column h a v i n g a c h i r a l s t a t i o n a r y phase. T h i s compound u n d e r g o e s racemisat i o n on e x p o s u r e t o l i g h t . 2 8 4 P h o s p h a - a l l e n e s are a l s o p r o v i n g t o b e o f i n t e r e s t
as ligands.285*286
The f i r s t p h o s p h a c u m u l e n e ( 1 8 6 ) h a s b e e n
p r e p a r e d by t h e r e a c t i o n o f a l i t h i o a l l e n e r e a g e n t w i t h 2 , 4 , 6 - t r i t-butylphenyldichlorophosphine. 287 A 5 - P h o s p h a - a l l e n e s h a v e b e e n p r o p o s e d a s i n t e r m e d i a t e s i n t h e phospha-Cope r e a r r a n g e m e n t s of 288 some allyl(alkyny1)phenylphosphine o x i d e s .
R
The c h e m i s t r y o f p h o s p h a - a l k y n e s ,
e s p e c i a l l y t h a t of (187;
= B u t ) , c o n t i n u e s t o d e v e l o p , t h e s e compounds o f t e n b e i n g u s e d as
30
NZ
II
R,PC PR
( R2N1,C =PH
(178) R = Pr’*N
Ar P = C
ArP=C=CHR
( 1 8 d ) R = Ph or CO,Et A r : 2 , L , 6 -Buf,C,H2
RC=
(179 1
(180) R = Me or E t
=PAr
r P (Me2NI2P
A r = 2 , L, 6 - BU’$&
(1861R’=H 2 or Ph R = H , M t , o r Ph
( N Me,),
‘A (190 1
1R 2
( 1 8 5 ) A r = 2 , L , 6 - 6 ~ ? ~ C ~(1861 H ~ R’R2=Me3Si,or Ph
P
(107)
ArP=C=C=CR
0
\I
P=C-C--C=P R (191)
R
1 : Phosphines and Phosphonium Salts
31
i n t e r m e d i a t e s f o r t h e s y n t h e s i s of o t h e r p n - b o n d e d s y s t e m s . D i e l s - A l d e r r e a c t i o n s o f (187;
R
=
But) with c y c l i c dienes lead
t o a d d u c t s which decompose s p o n t a n e o u s l y t o g i v e X 3 - p h o s p h o r in s
( 1 8 8 ).289
The f i r s t t r i p h o s p h a b e n z e n e s y s t e m (189) is f o r m e d i n
t h e r e a c t i o n o f (187;
R = B u t ) w i t h t h e c y c l i c b i s - y l i d e (190)?90 T h e area o f g r e a t e s t a c t i v i t y h a s b e e n t h e r e a c t i o n s u n d e r g o n e by phospha-alkynes
i n t h e p r e s e n c e o f t r a n s i t i o n metals.
c o m p l e x e s of p h o s p h a - a l k y n e s
The f i r s t
i n which t h e p h o s p h o r u s l o n e p a i r is
c o o r d i n a t e d t o t h e metal h a v e b e e n i s o l a t e d f r o m ( 1 8 7 ;
R = a d a m a n t y l ) . 291 F u r t h e r c o m p l e x e s o f (187; R = B u t ) i n w h i c h t h e l i g a n d is b o u n d t o t h e metal i n a s i d e w a y s - o n manner h a v e a l s o b e e n i s o l a t e d . 2 9 2 C o o r d i n a t e d p h o s p h a - a l k y n e s h a v e b e e n shown t o undergo carbonylation at carbon i n t h e presence of carbon monoxide t o form new l i g a t e d s y s t e m s , e . g . ,
(191) .293s294 The
f o r m a t i o n o f n - c o m p l e x e s o f X3-l,3-diphosphacyclobutadienes b y
t h e metal-induced studied.295
d i m e r i s a t i o n of phospha-alkynes c o n t i n u e s t o be
The a b i l i t y o f s u c h c o o r d i n a t e d d i p h o s p h a c y c l o b u t a -
d i e n e s t o form f u r t h e r complexes
a l s o b e e n e x p l o r e d . 296
t h e phosphorus lone p a i r s has
T h e f i r s t monophosphacyclobutadiene
c o m p l e x (192) h a s b e e n o b t a i n e d f r o m t h e r e a c t i o n o f t h e p h o s p h a -
a l k y n e (187;
R = B u t ) w i t h bis(trimethylsily1)acetylene
in the
p r e s e n c e o f a b i s ( e t h e n e ) c y c l o p e n t a d i e n y l c o b a l t c o m p l e x .297
A c t i v i t y a l s o c o n t i n u e s i n t h e c h e m i s t r y o f compounds i n w h i c h
p h o s p h o r u s is i n v o l v e d i n pn-bonding w i t h a h e a v i e r g r o u p I V e l e m e n t , u s u a l l y s i l i c o n o r germanium, a nd o c c a s i o n a l l y t i n . T h i s area h a s b e e n r e v i e w e d . 2 9 8 F u l l d e t a i l s h a v e now a p p e a r e d o f t h e s y n t h e s i s and r e a c t i v i t y o f s t a b l e , s t e r i c a l l y - c r o w d e d phospha-
.
~ i l e n e s ~300 ~ ' a n d - g e r m e n e s 301
The g e r m a p h o s p h e n e ( 193 1 is i n d e f i n i t e l y s t a b l e a t t e m p e r a t u r e s up t o 100°C. I t also exhibits
t e m p e r a t u r e - d e p e n d e n t t h e r r n o c h r o m i s m . However, o n h e a t i n g a t 140°C i n b e n z e n e i n a s e a l e d t u b e , it is c o n v e r t e d i n t o t h e c o l o u r l e s s a n d v e r y s t a b l e g e r m a p h o s p h i n e (194) . 3 0 2
The p a s t y e a r h a s s e e n s i g n i f i c a n t p r o g r e s s t o w a r d s t h e s y n t h e s i s of p h o s p h o r u s - b o r o n p n - b o n d e d s y s t e m s . The c r o w d e d
p h o s p h i n o - b o r a n e . ( 1 9 5 ) h a s b e e n p r e p a r e d f r o m t h e r e a c t i o n of f l u o r o d i m e s i t y l b o r o n w i t h l i t h i u m d i p h e n y l p h o s p h i d e , and i s o l a t e d
as a yellow c r y s t a l l i n e s o l i d .
An X - r a y s t u d y r e v e a l s t h a t t h e r e
may b e some d o u b l e b o n d c h a r a c t e r a s a r e s u l t o f i n t r a m o l e c u l a r P + B c ~ o r d i n a t i o n . ~ ' T~ r e a t m e n t o f t h e r e l a t e d s e c o n d a r y p h o s p h i n e s (196) w i t h t - b u t y l l i t h i u m i n t h e p r e s e n c e o f c r o w n
e t h e r s h a s l e d t o t h e i s o l a t i o n o f a series of s o l v a t e d l i t h i o -
32
Organophosphorus Chemistry
B-
Ge=PAr
PPh,
But (193)Ar:2,L, 6 -But3C,HZ
(194) Ar = M e s i t y l
(195)
L
(196) R = Ph C,H,, , or M e s i t y l
(197) Ar= MesityL R = C,Hn or Mesityl
R,N
RP=M(CO),
Me
Ph
(2021
(203 1
Ph
Ph (205)
Ph
(1 9 8 )
-P
+
-X
II
Ph
(206)
AICI,
0
I207 1
-
I : Phosphines and Phosphonium Salts phosphide complexes.
An X - r a y
33 s t r u c t u r a l study of t h e complexes
( 1 9 7 ) r e v e a l s t h e p r e s e n c e of o n l y one s t e r e o c h e m i c a l l y a c t i v e lone p a i r a t phosphorus, implying t h e e x i s t e n c e of a phosphorusboron d o u b l e bond.304
More t r a d i t i o n a l a p p r o a c h e s t o t h e s y n t h e s i s of phosphaborenes have r e s u l t e d i n t h e i s o l a t i o n of t h e r e l a t e d d i m e r s ( 1 9 8 ) ,305s306 w h i c h , o n t h e e v i d e n c e of mass s p e c t r o m e t r y , a p p e a r t o g e n e r a t e t h e p h o s p h a b o r e n e s i n t h e gas p h a s e . 306 I n t e r e s t h a s a l s o continued in t h e s y n t h e s i s and c h a r a c t e r i s a t i o n o f t h e h 3 - t h i o x o p h o s p h e n e s y s t e m RP=S,307-309 a n d t h e r e l a t e d s e l e n i u m s y s t e m . 309 A k i n e t i c s t u d y o f t h e t h i a t i o n o f c a r b o n y l compounds b y L a w e s s o n ' s reagent h a s i n d i c a t e d t h e i n t e r m e d i a c y o f t h e t h r e e c o o r d i n a t e d i t h i o x o p h o s p h o r a n e (199).310
There has
a l s o b e e n c o n s i d e r a b l e e f f o r t d i r e c t e d t o w a r d s t h e s y n t h e s i s o f new
X3-RP=NR s y s t e m s , 3 1 1 - 3 1 5
and s t u d i e s o f t h e i r r e a c t i v i t y and
c o o r d i n a t i o n c h e m i s t r y . 316-318
of t r a n s i e n t As-phosphonitriles,
Further evidence for t h e formation R,P-N,
from t h e p y r o l y s i s of
a z i d o p h o s p h i n e s h a s b e e n a d d u c e d . 19-321 The d e v e l o p i n g area o f p h o s p h i n i d e n e c h e m i s t r y h a s b e e n
c o n s i d e r e d i n s e v e r a l r e v i e w s .322-324
Of p a r t i c u l a r i n t e r e s t are
t h e t e r m i n a l p h o s p h i n i d e n e c o m p l e x e s (200) w h i c h a r e e a s i l y accessible & v
t h e t h e r m a l d e c o m p o s i t i o n of r e l a t e d 7 - p h o s p h a n o r -
bornadiene complexes.
However, t h e f r e e p h o s p h i n i d e n e s , RP:, are
poorly characterised, i n s p i t e of t h e i r probable i n t r i n s i c l o w r e a c t i v i t y . 3 2 4 The r e a c t i v i t y o f t h e v a r i o u s t y p e s o f p h o s p h i n i d e n e complexes
h a s c o n t i n u e d t o r e c e i v e a t t e n t i o n .325-329
Similarly,
t h e c h e m i s t r y o f p h o s p h e n i u m i o n s , R,P+, c o n t i n u e s t o d e v e l o p .
T h e s e s p e c i e s h a v e b e e n shown t o b e f o r m e d i n t h e e l e c t r o c h e m i c a l o x i d a t i o n o f c y c l o t e t r a p h o s p h i n e s .330 A series o f new p h o s p h e n i u m
s a l t s (201) h a s b e e n p r e p a r e d b y t h e r e a c t i o n of ( 2 0 1 ; X = Cl) w i t h v a r i o u s t r i m e t h y l s i l y l d e r i v a t i v e s . 331 F u r t h e r examples o f
t h e r e a c t i o n s o f phosphenium i o n s w i t h c y c l i c d i e n e s have a p p e a r e d ,
a n d o f f e r a new a p p r o a c h t o t h e s y n t h e s i s o f p h o ~ p h e t a n e s'333 .~~~
E v i d e n c e for t h e f o r m a t i o n o f t h i o p h o s p h e n i u m c a t i o n s [ ArPSArI' b e e n p r e s e n t e d . 3 34
has
34
Organophosphorus Chemistry
5 P h o s p h i r e n e s , P h o s p h o l e s and P h o s p h o r i n s The m e t h y l t r i p h o s p h i r e n e s y s t e m ( 2 0 2 ) h a s b e e n p r e p a r e d i n t h e coordination sphere of a
A convenient route t o t h e
r i n g - u n s u b s t i t u t e d p h o s p h o l e ( 2 0 3 ) i s a f f o r d e d by t h e r e a c t i o n o f d i l i t h i o ( p h e n y 1 I p h o s p h i d e w i t h t h e r e a d i l y a v a i l a b l e 1,4-
d i c h l o r o b u t a - 1 , 3 - d i e n e . 336
The r e a c t i v i t y o f t h e c o o r d i n a t e d l i t h i o p h o s p h i d e ( 2 0 4 ) , o b t a i n e d from t h e r e a c t i o n o f 3,4-dimethyl-
p h o s p h o l y l l i t h i u m w i t h t u n g s t e n h e x a c a r b o n y l , h a s been e x p l o r e d ? 3 7 The e a s i l y - a c c e s s i b l e b i s ( p h o s p h o 1 e n e ) ( 2 0 5 ) h a s b e e n c o n v e r t e d i n t o t h e r e l a t e d b i s ( p h o s p h o 1 e ) ( 2 0 6 ) by s u c c e s s i v e b r o m i n a t i o n 338 Isophosphindoles, e g . , ( 20 7 ) , h a v e b e e n o b t a i n e d f r o m t h e r e a c t i o n s o f tris(trimethylsily1)phosphine
.
and dehydrobrornination.
with unsaturated d i ( a c i d c h l o r i d e s ) .
In the reaction with
p h t h a l o y l c h l o r i d e , t h e r e l a t e d i s o p h o s p h i n d o l e dimer is isolated.339
F u r t h e r r e p o r t s of t h e s y n t h e s i s o f h i g h l y -
s u b s t i t u t e d d i b e n z o p h o s p h o l e s y s t e m s h a v e a p p e a r e d . 340 '341
addition of t h e 1,4-dithiolium-4-olates
Cyclo-
( 2 0 8 ) w i t h t h e phospha-
a l k e n e ( 1 6 2 ) g i v e s a n i n i t i a l a d d u c t which t h e n u n d e r g o e s e l i m i n a t i o n t o form t h e 1 , 3 X 3 - t h i a p h o s p h o l e s ( 2 0 9 ) . 342 1,2,4-thiadiphosphole
The s t a b l e
( 2 1 0 ) h a s b e e n i s o l a t e d as a y e l l o w ,
d i s t i l l a b l e l i q u i d from t h e r e a c t i o n o f l i t h i u m b i s ( t r i m e t h y 1 s i l y l ) p h o s p h i d e , carbon d i s u l p h i d e and t r i m e t h y l s i l y l c h l o r i d e a t
-78°C.343
P h o s p h o l y l a n i o n s h a v e b e e n e m p l o y e d i n new s y n t h e t i c
a p p r o a c h e s t o m o n o p h o s p h a f e r r o c e n e s ,344 ' 345 , e.g.,
(211).344
The
c h e m i s t r y of s u c h s y s t e m s , a n d t h e r e l a t e d d i p h o s p h a f e r r o c e n e s , h a s c o n t i n u e d t o a t t r a c t i n t e r e s t , and s t u d i e s hav e b e en r e p o r t e d o f
t h e i r o x i d a t i o n , 3 4 6 p r o t o n a t i o n ,347-349 c o m p l e x f o r m a t i o n , 3 5 0 a n d electrophilic substitution
The p o l y p h o s p h a -
f e r r o c e n e (212) is r e p o r t e d t o be a i r - s t a b l e , d e c o m p o s i t i o n when h e a t e d t o 2
7
0
~
~
.
s u f f e r i n g only s l i g h t ~
~
~
The c h e m i s t r y o f a z a p h o s p h o l e s y s t e m s a l s o c o n t i n u e s t o d e v e l o p . F l a s h vacuum p y r o l y s i s o f t h e 1 , 3 - a z a p h o s p h o l i n e s ( 2 1 3 ) ( f o r which' s e v e r a l p r e p a r a t i v e r o u t e s a r e a v a i l a b l e )354 g i v e s r i s e t o t h e lH-l,3-azaphospholes ( 2 1 4 ) , a new h e t e r o a r o m a t i c s y s t e m . 355 An a l t e r n a t i v e approach t o 1,3-azaphospholes
is a f f o r d e d by t h e
r e a c t i o n s of o x a z o l i u m s a l t s (and r e l a t e d b e t a i n e s ) w i t h t r i s The a n a l o g o u s reactions o f ( t r i m e t h y l s i l y l I p h o s p h i n e . 356-358
o x a d i a z o l i u m s a l t s p r o v i d e a new r o u t e t o 1 , 2 , 4 - d i a z a p h o s p h o l e s ( 2 1 5 ) . 3 5 8 9 3 5 9 The r e a c t i o n s o f 1 , 2 , 4 - d i a z a p h o s p h o l e s ( 2 1 5 ;
R1 = H ) a n d r e l a t e d 1 , 2 , 3 - d i a z a p h o s p h o l e s w i t h b u t y l l i t h i u m h a v e
35
I : Phosphines and Phosphonium Sulrs
0R k $S A r (2091
(2081 R = Me, Ph or NR
-+
Fe
I
2M eN2H C@ )
(212 1
(2111
c
(2101
( 2 1 3 ) R' , R: H , a l k y l or Ph
phQph
N5 R H
RL
(214) R = H , a l k y l or Ph
Ph
( 2 1 5 ) R1=H or Me 2 R = M e or E t
6
Ar
mQ9 Ar
;i's
Ph
(219 1
( 217 1
CN ' AI
pdAr
(220)
Me
RN,p
Ph
S
Ar
(2161
R
APPh2
H R " Yp"/N O
NH,
( 2 2 1 ) R = H a l k y l or P h
Ph2 (222)
36
Organophosphorus Chemistry
been compared, the former undergoing ring-metallation at the 5-position and the latter undergoing addition to the P=C bond.360 Various cycloaddition reactions of 1,2,3-diazaphospholes have also been i n ~ e s t i g a t e d . ~ ~ l Further - ~ ~ ~ work has been reported on the chemistry of the 1 , 3 , 2 - d i a ~ a p h o s p h o l eand ~ ~ ~ lY2,4,3-triazaphosp h 0 1 e ~systems. ~~ Three new valence-isomers of the h3-phosphorin system have been characterised. 366 A study of the reactions of X3-phosphorins, e.g., (216), with diazoalkanes has shown that these compounds behave in a totally different way to other P=C systems in that they do not undergo cycloaddition reactions, but instead give rise to products (the nature of which depends on the solvent) which arise by attack at phosphorus.367 Thermal decomposition of certain bicyclic phosphins sulphides, e.g., (217), in toluene or benzene provides a route for the synthesis of the elusive phosphorin-1-sulphide system (218), which can be trapped with dienophiles to give phosphabarallene derivatives, and also react with nucleophiles at The first synthesis of 1,2-dihydro-1,2X3-azaphosphorins (219) has been achieved in the reactions of simple imines with dichlorophenylphosphine 370 A route to the triaryl-1,3X3-azaphosphorins (220) is provided by the reactions of 3-azapyrylium salts with tris(trimethylsily1)phosphine. On treatment with acetylenic esters, these compounds give a Diels-Alder adduct which eliminates a nitrile with the formation of a X3-phosphorin. 371 The reactions of the B-enaminophosphines (221) with ethyl azidoformate give intermediate phosphazenes which, on heating to 150°C, undergo cyclisation to form the first examples (222) of the 1,3,4-diaza-X5-phosphorin system. 372
.
References 1 2 3 4 5 6
7 8 9 10
M.Hackett and G.M.Whitesides, Organometallics, 1987, 6 , 403. H.Brunner and H-Leyerer, Bull. Soc. Chim. Belq., 1987, 96, 353. H.P.Abicht, H.Schmidt, and K.Issleib, Z.Chem., 1985, 25, 410. K.Jurkschat and H.P.Abicht, Z.Chem., 1985, 25, 338. A.Benefie1 and D.M.Roundhil1, Inorg. Chem., 1986, 2,4027. L.I.Zakharkin, A.V.Kazantsev, and M.G.Meiramov, Koord. Khim., 1985, fi,1084 (Chem. JLbstr., 1986, 105,42 929). T.Fuchigami,C.S.Chen, T.Nonaka, M.Y.Yeh, and H.J.Tien, Bull. Chem. Soc. 1986, 2, 483. S-E.Bouaoud, P.Braunstein, D.Grandjean, D.Matt, and D.Nobe1, Inorg. Chem., 1986, 25, 3765. E.Hey, L.M.Engelhardt, C.L.Raston, and A.H.White, Angew. Chem., Int. Ed. Engl., 1987, 2, 81. R . E . W v e y , K.Wade, D.R.Armstrong, G.T.Walker, R.Snaith, W.Cleqg and D.Reed, Polyhedron, 1987, 5 , 987.
s,
1 : Phosphines and Phosphnnium Salts 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5s 56
37
E.C.Ashby and T.N.Pham, Tetrahedron Lett., 1987, 28, 3183. G.A.Russel1 and R.K.Khanna, Phosphorus Sulfur, 1987, 29, 271. E.R.N. Bornancini, R.A.Alonso, and R.A.Rossi, J. Org. Chem., 1987, 52, 2166. P-Brooks, D.C.Craig, M.J.Gallagher, A.D.Bae, and A.Sarroff, J.0rganomet. Chem., 1987, 323, C1. T-S.Chou, C-H.Tsao, and S.C.Hung, J-Organomet.Chem., 1986, 312, 53. H.Schmidbaur and S-Schnatterer,Chem. Ber., 1986, 119,2832. L.Wei , A.Bel1, S.Warner, I.D.Williams, and S.J.Lippard, J.Am. Chem. SOC., 1986, 108,8302. S.Hietkamp and O.Stelzer, Chem. Ber., 1986, 119, 2921. P.N.Kapoor, J.Organomet.Chem., 1986, 315, 383. G.Parrinello, R.Deschenaux, and J.K.Stille, J. Org. Chem., 1986, 4189, V.Amrani, D.Lafont and D.Sinou, J.mL Catal., 1985, 2, 333. J.M. Brown, F.M.Dayrit, and D.Sinou, J.Chem. SOC., Perkin Trans. 2, 1987, 91. J.M.Brown, S-J-Cook,and A.G.Kent, Tetrahedron, 1986, 42, 5097. J.M.Brown, and S.J.Cook, Tetrahedron, 1986, 42, 5105. E.G.Hope, T.Kemmitt, and W.Levason, J.Chem. SOC., Perkin Trans. 2, 1987, 487. G.U.Spiege1 and O.Stelzer, Z.Naturforsch., B:Anorg. Chem., Org. Chem., 1987, 42, 579. S.Saito, Y-Nakamura, and Y-krita, Chem. Pharm. Bull., 1985, 33, 5284. U.Nage1, E.Kinze1, J.Andrade, and G.Prescher, Chem. Ber., 1986, 119,3326. H-Takahashi, M.Hattori, M.Chiba, T.t4~rimto,and K.Achiwa , Tetrahedron Lett., 1986, 2, 4477. T . m r i m t o , H.Takahashi, K.Fujii, M.Chiba, and K.Achiwa, Chem. Lett., 1986, 2061. P.H.Leung, J.W.L. Martin, and S.B.Wild, Inorg. Chem. , 1986, 1_5, 3396. M.M.Taqui Khan, and B.Swamy, Inorg. Chem., 1987, 26, 178. E.Lindner, A.Sickinger, and P.Wegner, J-Organomet. Chem., 1986, 312, C37. W.Zhong, R.Li, J.Zhang, L.Weng, Y.Shi and H.Feng, Tianjin Daxue Xuebao, 1985, 99 (Chem. Abstr., 1986, 105, 42 927). J.C.Folest, J.Y.Nedelec, and J.Perichon, Tetrahedron Lett., 1987, 28, 1885. M.Baudler and J.Simn, Chem. Ber., 1987, 120, 421. M.Baudler, D.DGster, and D.Ouzounis, Z.Anorg. Allg. Chem., 1987, 544, 87. M.Baudler, R. Becher, and J.Germeshausen, Chem. Ber., 1986, 119, 2510. M.Baudler, J.Hahn, V.Arndt, B.Koll, K.Kazmierczak and E.Darr,.Anorg. Allg. Chem., 1986, 538, 7. M.Baudler, B.Kol1, C.Adamek, and R.Gleiter, Angew. Chem., Int. Ed. Engl., 1987, 26, 347. M-Baudler and J.Germeshausen, Angew. Chem., Int. Ed. Engl., 1987, 26, 348. G.Fritz and K.Stol1, 2.Anorg. Allg. Chem., 1986, 539, 65. G.Fritz and K.Stol1, 2.Anorg. Allg. Chem., 1986, 538, 78. G.Fritz and K.Stol1, Z.Anorg. Allg. Chem., 1986, 538, 113. G.Fritz, K.Stol1, W.H&le, and H.G.von Schnering, 2.Anorg. Allg. Chem. , 1987, 544, 127. C.Mujica, D.Weber, and H.-G.von Schnering, Z.Naturforsch., B: Anorg. Chem., Org. Chem., 1986, 41,991. J.Ellerman, A.A.M.Demuth, and W.Bauer, Z.Naturforsch., B: Anorg. Chem., Org. Chem., 1986, 41,863. M.Baudler, Angew. Chem., Int. Ed. Engl., 1987, 26, 419. S.J. Higgins, R-Taylor, and B.L.Shaw, J.Organomet. Chem., 1987, 325, 285. H-Hashimto, Y-Nakamura, and S.Okeya, Inorg. Chim. A c t a , 1986, 120,L25. H.H.Karsch, and A.Appelt, J.Organomet. Chem., 1986, 314, C5. H.H.Karsch, A.Appelt, J.Riede, and G m Organometallics, 1987, 6, 316. H.H.Karsch, A.Appelt, and G.M&ler, Angew. Chem. , I n t . Ed. Engl. , 1986, 25, 823. H.H.Karsch, A-Appelt, and G.Hanika, J.Organomet. Chem. , 1986, 312, C1. H.H.Karsch, A.Appelt, and G.MGller, Organometal~ics,1986, 2, 1664. H.H.Karsch and A.Appelt, J-Organornet.Chem., 1986, 312, C6.
z,
-
Organophosphorus Chemistry
38 51 58 59
A.L.Balch and D.E.Oram, Organometallics, 1986, 2, 2159. A.L.Balch and D.E.Oram, Inorg. Chem., 1987, 26, 1906. A.M.Arif, A.H.Cowley, R.A. Jones and J.M.Power, J.Chem. Soc., Chem. Commun.,
60 61
M.Lusser and P.Peringer, J.Organomet. Chem., 1986, 312, C61. K.Jurkschat, H. -P.Abicht, A. Tzschach, and B .Mahieu, J.Organomet. Chem. ,
62 63
1.R.Butler and W.R.Cullen, Organometallics, 1986, J.Heinicke, E.Nietzschmann, and A.Tzschach,
1986,
1446.
1986,
309, C47.
5,
2537.
C17. 64
W.E.Bay and K.E.Reineke, Eur. Pat. Appl. 194 716 (Chem. Abstr., 1987, 5231).
106,
66
S.Hietkamp, T.Lebbe, G.U.Spiege1, and 0.Stelzer. Z.Naturforsch., B: Anorg. Chem., Org. Chem., 1987, 42, 177. M.G.Voronkov, N.M.Kudyakov, V.I.Rakhlin, A.L.Kusnetsov, M.V.Sigalov, and R.G.Mirskov, Izv. Akad. Nauk SSSR, Ser. Khim., 1985, 2615 (Chem. Abstr.,
67
J.L.Bookham, W-McFarlane, and I.J.Colquhoun, J.Chem. Soc., Chem. Commun.,
68
R.A.Khachatryan, S.V.Sayadyan, N.Yu.Grigoryan, and M.G.Indzhikyan, Khim. Zh., 1986, 9, 258 (Chem. Abstr., 1987, 106, 84, 7451. J.A.Van b o r n , R.Lewin, and N.Meijboom, Eur. Pat. Appl. 184 872 (Chem. Abstr., 1986, 105,191 3 9 7 ) . R.N.Il'yasov, G.M.Akhmetova, B.M.Butin, and K.B.Erzhanov, Izv. Akad. Nauk Kaz. SSSR, Ser.Khim. , 1986 57 (Chem. Abstr., 1987, 106, 102 4 0 5 ) . V.I.Vysotskii, and M.F.Rostovskaya, Zh. Obshch. Khim., 1986, 6, 1046 (Chem. Abstr., 1987, 106, 84 7 3 1 ) . Yu.G.Shermlovich, E.A.Danchenko, A.V.Solov'ev, and L.N.Markovskii, Zh. Obshch. Khim., 1985, 55, 2218 (Chem. Abstr., 1986, 105,209 0 1 9 ) . K.J.L.Paciorek, J.H.Nakahara, and R.H.Kratzer, J-Fluorine Chem., 1985, 30,
65
69 70 71 72 73
1986,
105,191
1986,
1041.
233).
289.
74
K.J.L.Paciorek, J.H.Nakahara, and R.H.Kratzer, J.Fluorine Chem., 1985, 269.
75
76 77 78 79 80 81 82 83 84 85
30,
U-Kunze, H.Jawad, and R.Burghardt, Z-Naturforsch., B: Anorg. Chem., Org. Chem., 1986, 41 , 1142. U.Kunze and Ryittman, Z-Naturforsch., B: Anorg. Chem., Org. Chem., 1987, 42, 77. U.Kunze
and R.Burghardt, Phosphorus Sulfur, 1987, 29, 373. T.Minami, Y.Okada, R.Nomura, S.Hirota, Y.Nagahara, and K-Fukuyama, Chem. Lett. , 1986, 613. J.M.Brown and A.R.Lucy, J.Organomet. Chem. , 1986, 314, 241. C.R.Johnson and T.Imamto, J.Org. Chem., 1987, 52, 2170. L.D.Quin and F.C.Bernhardt, Magn. Reson. Chem., 1985, 23, 929. L.D.Quin and F.C.Bernhardt, J.Org. Chem., 1986, 3235. R.L.Wife, J.J.M.Sne1, and A.B.Van Oort, Eur. Pat. Appl. EP 183 290 (Chem. Abstr., 1986, 105,97 6 9 2 ) . V.N.Zemlyanoi, A.M.Aleksandrov, and V.P.Kukhar, Zh. Obshch. Khim., 1985, 2667 (Chem. Abstr., 1986, 105,226 7 6 0 ) . M-C.Lasne, J.-L.Ripol1, and A.Thuillier, J. Chem. Soc., Chem. Conrmun., 1986,
z,
z,
1428.
86 87 88 89
30 91 92 93
T.Dockner, Ger. Offen 3 523 320 (Chem. Abstr., 1987, 106, 102 5 6 1 ) . P.l&ding, Z.Chem., 1986, 408. G.A.Olah, A.Berrier, and L.Ohannesian, Nouv. J. Chim., 1986, E l 253. Yu.R.Yurchenko, E.E.Lavrova, and A.G.Yurchenko, Zh. Obshch. Khim., 1986, 56, 482 (Chem. Abstr., 1986, 105, 226 8 0 7 ) . G.T.Crisp, G. Salem, F. S. Stephens, and S.B.Wild, J .Chem. Soc. , Chem. COmmUn. ,
-
1987, 600.
R.A.Khachatryan, S.V.Sayadyan and M.G.Indzhikyan, Arm. Khim. W I . , 1985, 582 (Chem. Abstr., 1986, 105,226 7 5 7 ) . S.E.Tunney and J.K.Stille, J.Org. Chem., 1987, 748. P.Majewski, Synthesis, 1987, 554.
38,
I : Phosphines und Phosphonium Salts 94 95 96 97 98 99
34,
E.Leissring, and M.Riemer, Z.Chem., 1985, ;Is, 172. K.Kellner and W.Hanke, J.Organomet. Chem., 1987, 326, C9. H.Danie1 and M.Le Corre, Tetrahedron Lett., 1987, 28, 1165. C.Varre, M.Desbois, and J.Nouve1, Fr.Demande 2 561 650 (Chem. Abstr., 1986 105, 134 1 3 1 ) . G2eckmann, E.Fluck, and P.Kuhm, Z.Naturforsch., B: Anorg. Chem., Org. Chem., 1987, 42, 115. E.Hey, M.F.Lappert, J.L.Atwood, and S.G.Bott, J. Chem. Soc., Chem. Commun., 1987, 597.
100 10 1 102 103 104 105
N.Neamati-Mazraeh and S.P.McManus, Tetrahedron Lett., 1987, 28, 037. G.Singh, J.Org. Chem., 1987, 52, 1647. M.Wada and A-Tsuboi, J.Chem. SOC., Perkin Trans 1, 1987, 151. A.P.Kozikowski and S.H.Jung, J.Org. Chem., 1986, 3400. P.Hodge, E.Khoshde1, and A.A.Naim, Polymer Commun., 1986, 27, 322. G.Ts.Gasparyan, S.K.Barsegyan, M.Z.Ovakimyan, P.V.Petrovskii, and M.G.Indzhikyan, Zh. Obshch. Khim., 1986, 56, 1658 (Chem. Abstr., 1987, 106,
x,
119 9 6 1 ) .
106 107
H.L.Handoo and K.Gadru, Indian J. Chem., B:, 1985, 2, 995. T.Campino, J.G.Santos, . - a SOC., Perkin Trans 2, 1986, 1021.
108 109 110 111 112 113 114 115 116
s,
E.Carmona, A-Galindo, E.Gutierrez-Puebla, A.bbnge, and C.Puerta, Inorg. Chem., 1986, 3804. R.Appe1, Inorg. Synth., 1986, 4, 107. 0.I.Kolodyazhnyi and N.N.Kalibabchuk, Zh. Obshch. Khim., 1985, 2791 (Chem. Abstr., 1986, 105,191 2 4 2 ) . F.A.Cotton and P.A.Kibala, J.Am. Chem. SOC., 1987, 109, 3308. F.Gavina, S.V.Luis, P.Ferrer, A.M.Costero, and J.A.Marco, J.Chem. Res., ( S ) , 1986, 330; (M) 1986, 2843. S.P.Schmidt and D.W.Brooks, Tetrahedron Lett., 1987, 28, 767. P.J.Garegg, T.Regberg, J.Stawinski, and R.Strb'mberg, J.Chem. SOC., Perkin Trans 2, 1987, 271. W.T.Murray, J.W.Kelly, and S.A.Evans, J.Org. Chem., 1987, 52, 525. R.Caputo, E.Corrado, C.Ferreri, and G.Palumbo, Synth. Commun., 1986, '6,
z,
1081.
117 118
O.I.Kolodiazhnyi, Tetrahedron Lett., 1987, 8, 881. A.K.Roy, R.Hani, R.H.Neilson, and P.Wisian-Neilson, Organometallics, 1987, 6, -
378.
F.Urpf and J.Vilarrasa, Tetrahedron Lett., 1986, 27, 4623. D.H.R.Barton, W.B.Motherwel1, E.S.Simn, and S.Z.Zard, J-Chem. Soc., Perkin Trans. 1, 1986, 2243. 12 1 A.B. Smith, K.J. Hale, and R.A. Rivero, Tetrahedron Lett., 1986, 27, 5813. 1077. 122 L.D.Quin, En-Yun Yao, and J.Szewczyk, Tetrahedron Lett., 1987, 123 L.D.Quin, N.S.Rao, R.J.Topping, and A.T.McPhai1, J. Am. Chem. SOC., 1986,
119 120
124
108, 4519. S .O .Grim, S . A . Sangokoya , I.J.Colquhoun, W. McFarlane , and
z,
R.J .Khanna,
Inorg. Chem., 1986, 25, 2699. 125 G.Read and M.Urgelles, J.Chem. SOC. , Dalton Trans., 1986, 1383. 126 L.D.Freedmn and H.S.Freeman, Chem. Rev., 1987, E, 289. 127 P.Jutzi, Chem. Rev., 1986, 86, 983. 128 M.Ciampolini, Pure Appl. Chem., 1986, E, 1429. 129 N.W.Alcock, J.M.Brown, and P.J.Maddox, J. Chem. Soc., Chem. Commun., 1986, 1532. 207. 130 G.R.Cooper, D. M. McEwan , and B.L.Shaw , Inorg. Chim Acta, 1986, 131 S.D.Burke and J.E.Cobb, Tetrahedron Lett., 1986, 27, 4237. 132 M.Michman, S.Chocron, S.Nussbaum, H.Schumann, R-Mohtachemi,and G.Kannert, J.Organomet. Chem., 1986, 113. 133 M.B.Hursthouse, O.D.Sloan, P. Thornton, and N.P.C.Walker, Polyhedron, 1986, 5, 1475. 134 R.Mhtachemi, G.Kannert, H.Schumann, S.Chocron, and M.Michaan, J.0rganomet. Chem., 1986, 310, 107.
122,
315,
40 135 136 137 138
Organophosphorus Chemistry N.Lugan, G-Lavigne, and J-J.Bonnet, Inorg. Chem., 1987, 2, 585. F. Van Gastel, S.A.MacLaughlin, M-Lynch, A.J.Carty, E.Sappa, A.Tiripicchio, and M.T.Camellini, J.Organomet. Chem., 1987, 326, C65. N.W.Alcock, P.Bergamini, T.J.Kenrp and P.G.Pringle, J.Chem. SOC., Chem. Commun., 1987, 235. R.D.Brost, G.C.Bruce, and S.R.Stobart, J.Chem. SOC., Chem. Commun., 1986, 1580.
139 140
P.Beak and Dekai Loo, J.Am. Chem. SOC., 1986, 108,3835. P.Ferraboschi, C.Gambero, M.N.Azadani, and E.Santaniello, Synth. Commun., 1986,
141 142 143 144
145 146 147 148 149 150 151
16,667.
V.M.Ismailov, V.V.Wskva, F.I.Guseinova. and T.V.Zvkova. . Zh. Obshch. Khim.. 1986, 56, 227 (Chem. Abstr., 1986, 105, 226 7 8 0 ) . G-V. Rzchenthaler , U. Von Allwarderand R.Schmutzler, Polyhedron, 1986. 5, 1387. P.Majewski, Synthesis, 1987, 555. A.Tzschach, K-Jurkschat, A.Zschunke, C.Muegge,B.Altenbrunn, C-PiccinniLeopardi, G-Germain, J.P.Declercq, and M. Van Meerssche, J.Crystallogr. Spectrosc. Res., 1985, 423 (Chem Abstr., 1986, 105,42 9 4 0 ) . B.A.Arbuzov, O.A. Erastov, G.N.Nikonov, and A.A.Karasik, Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 1641 (Chem. Abstr., 1987, 106, 102 4 1 3 ) . B.A.Arbuzov, G.N.Nikonov, and O.A.Erastov, Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 643 (Chem. Abstr., 1987, 106, 138 5 2 7 ) . B.A.Arbuzov, O.A.Erastov, and A.S.Ionkin, Izv-Akad. Nauk SSSR, Ser. Khim., 1986, 418 (Chem. Abstr., 1987, 106, 1 8 6 9 5 ) . M.B.Butin, G.M.Isaeva, and K.B.Erzhanov, Zh. Obshch. Khim., 1986, 56, 1285 (Chem. Abstr. , 1987, 106, 33 193) . H.Bahrmann, B.Cornils, W.Lipps, P.Lappe, and H-Springer,Ger. Offen., 3 420 493 (Chem. Abstr., 1987, 106,33 308) A.J.Ashe 111 and E.G.Ludwig, J.Organomet. Chem., 1986, 308, 289. R.Appe1, B.Br&k, F.Knoch, and J.Hunerbein, Phosphorus Sulfur, 1986, 27,
-
.
55.
152 153
G.L.Wood, E.N.Duesler, C.K.Narula, R.T.Paine and H.NOth, J.Chem. SOC., Chem. Commun. , 1987, 496. R.A.Henderson, W.Hussain, G.J.Leigh, and F.B.Normanton, Inorg. Synth., 1985,
23,
141.
N.Weferling, Ger. Offen. 3 235 787 (Chem. Abstr., 1987, 106,67 4 8 5 ) . W.Wolfsberger, J.Organomet. Chem., 1986, 317, 167. H.J.Kleiner, Ger. Offen, 3 424 182 (Chem. Abstr., 1986, 105 , 134 1 3 8 ) . En-yun Yao, J-Szewczyk and L.D.Quin, Synthesis, 1987, 265. V.V.Kormachev, T.V.Vasil'eva, V.A.Gradov, and V.I.Paramnov, U S S R , 1 188 176 (Chem. Abstr., 1986, 105, 134 1 3 4 ) . 159 A.D.Raskina, V.T.Inshakova, C.V.Motsarev, and A.A.Ushakov, Z h . Obshch. Khim., 1985, 2262 (Chem. Abstr., 1986, 105 , 172 5 7 9 ) . 160 M.Gouygou, G.Etemad-hghadham, and M.Koenig, Synthesis, 1987, 508. 16 1 G.Hagele, W.KGckelhaus, G.Tossing, J-Seega, R.K .Harris, C.J.Creswel1, and P.T.Jageland, J. Chem. SOC., Dalton Trans., 1987, 795. 162 R.Boese, G .Haegele, W.Kkkelhaus , J. Seega, and G.Tossing, Chem. Ztg. ,
154 155 156 157 158
z,
1985,
163 164
1941.
165 166 167 168
109, 233.
T.Oshikawa, and K.Yamashita. Jpn. Kokai Tokkyo Koho 6 1 2 2 9 8 9 1 (Chern. Abstr., 1987, 106,156 6 6 9 ) . R.A.Bartlett, M.M.Olmstead, P.P.Power and G.A.Sige1, Inorg. Chem., 1987,
26,
P.Pellon and J.Hamelin, Tetrahedron Lett., 1986, 21, 5611. M.V.Sendyurev, A.V.Dogadina, B.I.Ionin, and A.A.Petrov, Zh. Obshch. Khim., 1985, 55, 2788 (Chem. Abstr., 1987, 106, 102 3 8 9 ) . M. V. Sendyurev, T .N .Belyaeva, A. V. Dogadina, B.I. Ionin , and A.A. Pt?trov, Zh. Obshch. Khim. , 1985, 55, 2789 (Chem. Abstr., 1986, 105, 1 9 1 2 4 1 ) . S.V.Fridland and M.N.Miftakhov, Zh. Obshch. Khim., 1 9 8 6 7 5 6 , 225 (Chem. Abstr., 1987, 106,33 1741.
1 : Phosphines and Phosphonium Salts
41
A.N.Pudovik, V.K.Khairullin, M.A.Vasyanina, I.K.Pokrovskaya, R.R.Shagidullin, and A.N.Chernov, Zh. Obshch. Khim., 1985, 55, 2194 (Chem. Abstr., 1986, 105,226 7 4 6 ) . 170 T.N.Belyaeva, M. N.Krivchun , M. V. Sendyurev, A.A. Dogadina, V. V. Sokolov , B.T.Ionin, and A.A.Petrov, Zh. Obshch. Khim., 1986, 56, 1184 (Chem. Abstr. 1987, 106,50 303). 171 G.Yu. Mikhailov, I.G.Trostyanskaya, M.A.Kazankova, and I.F.Lutsenko, USSR, 1 235 870 (Chem. Abstr., 1986, 105, 172 7 3 9 ) . 172 J. Svara, E.Fluck, J.J. Stezowski, and A. Maier , Z.Anorg. Allg. Chem. , 1987, 169
173 174 175 176 177 178 179
5 4 5 , 47. L.Heuer, M. Sell, R.Schmutzler
and D.Schomburg, Polyhedron, 1987, 5,1295. A-M.Caminade, F.El Khatib, A-Baceiredo, and M.Koenig, Phosphorus Sulfur, 1987,
2, 365.
1987,
326,
L.D.Quin and G.Keglevich, J. Chem. Soc., Perkin Trans 2, 1986, 1029. J-Szewczyk and L.D.Quin, J.Org. Chem., 1987, 52, 1190. G.M&kl, W.H6'lzl and 1.Trohtsch-Schaller, Tetrahedron Lett., 1987, 2, 2693. V.A.Al' fonsov, I. S. N i z m v , E. S .Batyeva, and A. N. Pudovik , Izv. Ad&. Nauk SSSR, Ser. Khim., 1985, 2619 (Chem. Abstr., 1986, 105, 191 2 3 4 ) . A.Bendayan, H.Masotti, G.Peiffer, C.Siv and R-Faure, J.Organomet. Chem., 289.
180 181 182 183 184 185 186 187
A.Karim, A.Mortreux and F.Petit, J.Organomet. Chem., 1986, 317, 93. H.Pracejus, G.Pracejus, and B.Costisella, J. Prakt. Chem., 1987, 329, 235. T. Pollok and H. Schmidbaur, Tetrahedron Lett. , 1987, g,1085. M. J.Damha and K.K. Olgivie, J . O r g . Chem. , 1986, 3559. C.Baccolini, R.Dalpozzo, and E.Errani, Tetrahedron, 1987, 43, 2755. D.J.Brauer, F.Gol, S-Hietkamp, and O.Stelzer, Chem. Ber., 1986, 119,2767. G.A.Bel1 and D.W.H.Rankin, J. Chem. SOC., Dalton Trans., 1986, 1689. G.Bettermann, D.Schomburg, and R.Schmutzler, Phosphorus Sulfur, 1986, 28,
188
K.Karaghiosoff, C.Cleve, and A.Schmidpeter, Phosphorus Sulfur, 1986,
327.
289.
28,
M.V.Livantsov, A.A.Prishchenko, and I.F.Lutsenko, Zh. Obshch. Khim., 1986, 56, 1420 (Chem. Abstr., 1987, 1 0 6 , 33 194) 190 A.V.Golovanov, 1.G.Maslennikov and A.N.Lavrent'ev, Zh. Obshch. Khim., 1986, 56, 1657 (Chem. Abstr. , 1987, 106, 102 4 1 5 ) . 191 A.M.Kibardin, Yu. B.Mikhailov, T.V.Gryaznova, and A.N.Pudovik, Izv. Akad. Nauk SSSR, Ser. Khim., 1985, 2655 (Chem. Abstr., 1986, 105, 172 5 8 4 ) . 192 A.M.Kibardin, Yu.B.Mikhailov, T.V.Gryaznova, and A.N.Pudovik, Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 1684 (Chem. Abstr., 1987, 106,102 4 1 4 ) . 193 A.M.Kibardin, Yu.B.Mikhailov, T.V.Gryaznova, and A.N.Pudovik, Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 960 (Chem. Abstr., 1987, 106,3 3 1 8 1 ) . 194 0. I .Artyushin, N. V. Lukashev, E. I .Lazhko, M.A.Kazankova, and I .F.Lutsenko , USSR 1 245 576 (Chem. Abstr., 1986, 1 0 5 , 227 007). 195 N.D.Gomelya, N.G.Feshchenk0, A.N.Chernega, M.Yu.Antipin, Yu.T.Struchkov, and I.E.Boldersku1, Zh. Obshch. Khim., 1985, 55, 1733 (Chem. Abstr., 1986, 189
.
I
-
196 197 198 199 200 201 202
105, 6562). E.A.Mel'nichuk, A.A.Kisilenko and N.G.Feshchenko, 55, 1006 (Chem. Abstr., 1986, 104,68 9 3 5 ) .
H.-P.Stritt, and H.P.Latscha, Z.Anorg. Allg. Chem., 1986, 542, 167. T.J.Hal1, and J.H.Hargis, J.Org. Chem., 1986, 4185. A.N.Pudovik, I.V.Konovalova, and L.A.Bwnaeva, Synthesis, 1986, 793. A.Hercouet and M.Le Corre, Phosphorus Sulfur, 1986, 29, 111. W.Tickmante1, K-Oshima and K.Utimto, Tetrahedron Lett., 1986, 27, 5617. M. Vincens , J.T.Grimaldo b r o n , R. Pasqualini, and M. Vidal , Tetrahedron Lett.
z,
1987, 28,
203
1259.
V.N.Listvan, Zh-Obshch. Khim., 1985, 209 0 2 6 ) .
204
Zh. Obshch. Khim., 1985,
E,
2629 (Chem. Abetr. , 1986,
R.A.Michelin, G.Facchin, D.Braga,and P-Sabatino,Organoetallics, 2265.
105, 1986, 5,
42 205 206 207 208
Organophosphorus Chemist? A.W.Wilson, R.F.DaMals, H.T.Ravert, H.D.Burns, and H.N.Wagner, J. Labelled Coaqd. Radiopharm., 1986, 2, 83. R.A.Khachatryan, G.A.Mkrtchyan, F.S.Kinoyan, and M.G.Indzhikyan, Zh. Obshch. Khim., 1986, 56, 231 (Chem. Abstr., 1986, 105, 191 2 4 8 ) . E.A. M m i n , M. M.Kabachnik, Z.S.Novikova , and I .F .Lutsenko, Zh. Obshch. Khim. , 1986, 56, 221 (Chem. Abstr., 1986, 105, 226 7 7 8 ) . S . Valverde, B.Herradon, R.M.Rabano1, and M. Martin-Lomas , Can. J. Chem. , 1987,
209 2 10
5, 332.
L.I. 7kkharkin, K.M.Uyzbaev, A. V.Kazantsev, and E.K .Gafurov, Izv. Akad Nauk SSSR, Ser. Khim., 1985, 2134 (Chem. Abstr., 1986, 105,133 9 7 2 ) . R.Houssin, J.L.Bernier, and J.P.Heinichart, J-Heterocycl. Chem., 1985, 22,
z,
1185.
211 212 213
2 14 215 216 217 . g r o h ;218r 219 220 221 222 223
D.A.Koshman, O.M.Bukachuk, and M.I.Shevchuk, Zh. Obshch. Khim., 1985, 1738 (Chem. Abstr., 1986, 105,6 5 6 3 ) . D.W.Allen, P.E.Cropper, P.G.Smithurst, P.R.Ashton and B.F.Taylor, J. Chem. SOC., Perkin Trans. 1, 1986, 1989. L.Yu.Ukhin, Z.S.Morkovnik, D.S.Yufit, and Yu.T.Struchkov, Zh. Obshch. Khim., 1985, 55, 2701 (Chem. Abstr., 1986, 105, 226 7 6 4 ) . H-Schmidbaur, R.Pich1 and G.Kller,Chem. Ber., 1987, 120, 789. S.J.Brown and J.H.Clark, J.Fluorine Chem., 1985, 30, 251. A.Baba, T.Nozaki and H.Matsuda, Bull. Chem. Soc. Jpn. , 1987, 60, 1552. S.Pohl, W.Saak, and D.Haase, An ew. Chem., Int. Ed. En I., 1987, 26, 467. eE-Fluck, l & m uJ.Svara, e N . B Allg. Chem., 1986,
536,
1986,
105, 209
129.
S.Alunni, J.Chem. Res. (S), 1986, 231. B.M.Butin, G.M.Isaeva, and K.B.Erzhanov, Zh. Obshch. Khim., 1986, 56, 720 (Chem. Abstr., 1986, 105,226 8 0 3 ) . 0-M-Bukachuk,M.G .Nikula, and V.N.Belenkov, Zh. Obshch. Khim., 1986, 56, 343 (Chem. Abstr., 1986, 105, 209 0 5 1 ) . V.S.BTovarets and B.S.Drach, Zh. Obshch. Khim., 1986, 56, 321 (Chem. Abstr. 047)
.
E.E.Schweizer, J.E.Hayes, A.Rheingold and Xu Wei, J.0rg. Chem., 1987, 1810.
224 225 226 227
T.Minami, N.Harui, and Y.Taniguchi, J.Org. Chem., 1986, 11,3572. T.Minami, T.Chikqo, and T-Hanamoto, J.Org. Chem., 1986, 2210. Y.Shen and W.Qiu. Tetrahedron Lett., 1987, 28, 449. I.M.Aladzheva, I.V.Leont'eva, P.V.Petrovskii, T.A.Mastryukova, and M.I.Kabachnik, Zh. Obshch. Khim., 1986, 2, 1220 (Chem. Abstr., 1987,
s,
84 7 4 7 ) .
228 229 230 23 1 232 233 234 235 236 23 7 238 239
52,
106,
A-Christodoulou,A.Anastropoulos, and D.Jannakoudakis, Can. J. Chem., 1986, 12, -
2279.
J.H.Clark and D.J.Macquarrie, Tetrahedron Lett., 1987, 28, 111. D.Landini, A.Maia, and A.Rampoldi, J.Org. Chem., 1986, 51, 3187. M.Tomoi, N.Kori, and H.Kakiuchi, Makromol. Chem. Macro. Chem. Phys., 1986,
187, -
2753.
-
S.Kobayashi, M.Suzuki, T.Sakaya, and T.Saegusa, Makromol. Chem. - Macroml. Chem. Phys., 1987, 188,457. A.H.Cowley and N.C.Norman, Prog. Inorg. Chem., 1986, 2, 1. T.L.Allen, A.C.Scheiner, Y.Yamaguchi, and H.F.Schaefer, J.Am. Chem. SOC., 1986,
108,7579.
1986,
2, 919.
H.Goldwhite, J.Karninski, G.Millhauser, J.Ortiz, M.Vargaz, L.Verta1, M.F.Lappert and S.J.Smith, J.Or anomet. Chem., 1986, 310, 21. P.Jutzi and U.Meyer, J.OrganomeZ. Chem., 198?, 326, C6P.Jutzi, U.Meyer, B.Krebs and M.DartmaM, Angaw. Chem., Int. Ed. Engl., V.D.Romanenko, ~.O.Klebanskii,and L.N.Markovskii, Zh. Obshch. BChim., 1985, 55, 2141 (Chem. Abstr., 1986, 105, 42 9 6 9 ) . L.N.Markovskii, V.D.Romanenko, E.O.Klebanskii, and S.V.Iksanova, Zh. Obshch. Khim., 1985, 55, 1867 (Chem. Abstr., 1986, 105, 24 3 5 5 ) .
I : Phosphines and Phosphonium Salts
240 241
43
V.D.Romanenko, E.O.Klebanskii, and L.N.Markowskii, Zh. Obshch. Khim., 1986, 2159 (Chem. Abstr., 1987, 106, 176 5 2 3 ) . L.N.Markowskii, V.D.Romanenko, M.I.Povolotskii, A.V.Ruban. and E.O.Klebanskii, Zh. Obshch. Khim., 1986, 56, 2157 (Chem. Abstr., 1987, 106,
56,
176 5 2 2 ) .
242 243 244 245
F-Zurmuhlen and M-Regitz, Angew. Chem., Int. Ed. Engl., 1987, 5 , 83. L.Weber, K.Reizig, D.Bungardt, and R.Boese, Organometallics, 1987, 6, 110. L.Weber and G.Meine, Chem. Ber., 1987, 120, 457. L.Weber, D.Bunqardt, K.Reizig, R. Boese and R.Benn, Chem. Ber., 1987, 120,
246
L.Weber, and G.Meine, Z.Naturforsch. B: Anorg. Chem., Org. Chem., 1987,
451.
774.
247 248 249 2 50 251 252 253 254 255 2 56 257
258 259 260 261 262 26 3 264 265 266 267 268 269 270 271
42,
L.Weber, K.Reizig, and R.Boese, Angew. Chem., Int. Ed. Engl., 1986, 25, 755. A.H.Cowley, J.E.Kilduff, N.C.Norman, and M.Pakulski, J.Chem. Soc., Dalton Trans. I 1986, 1801. G.Etemad-Eloghadham, J.Bellan, C.Tachon, and M.Koenig, Tetrahedron, 1987,
43, -
1793.
A.J.Bard, A.H.Cowley, J.E.Kilduff, J.K.Leland, N.C.Norman, M.Pakulski, and G.A.Heath, J.Chem. Soc., Dalton Trans., 1987, 249. M.Yoshifuji, K-Shibayama, T.Hashida, K.Toyota, T.Niitsu, I.Matsuda, T.Sato, and N.Inamoto, J.Organomet. Chem., 1986, 311,C63. H.Schafer and D.Binder, Z.Anorg. Allg. Chem., 1987, 5&, 55. H.Schafer, D-Binder,B.Deppisch, and G-Mattern, Z.Anorg. Allg. Chem., 1987, 546, 79. R.Mathieu,
A.-M-Caminade, J.-P.Majora1, S.Attali, and M.Sanchez, 1914. Organometallics, 1986, B.Pellerin, J.-M.Denis, J.Perrocheau, and R.Carrie, Tetrahedron Lett., 1986,
27, -
I,
5723.
K.Issleib, H.Schmidt, and E-Leissring, Z.Chem., 1986, 26, 406. V.D.Romanenko, A.V.Ruban, M.I.Povolotskii, L.K.Polyachenko, and L.N.Markovskii, Zh. Obshch. Khim., 1986, 56, 1186 (Chem. Abstr., 1987, 106, 50 3 0 5 ) . D.Gudat, E.Niecke, B.Krebs, and M.Dartmann, Chimia, 1985, 2, 277. R.Appe1, Inorg. Synth., 1986, 24, 110. D.Gudat, E.Niecke, W.Sachs, and P-Rademacher,Z.Anorg. Allg. Chem., 1987, 545, 7. R.Appe1, C.Casser,
and F.Knoch, Chem. Ber., 1986, 9, 2609. D.E.Coons and D.F.Gaines, Inorg. Chem., 1987, 26, 1985. A. -M.Caminade, J. -P.Majoral, R.Mathieu, and Y.Y.C.Yeung Lam KO, %em. SOC, Chem. Commun., 1987, 639. P.Pellon, Y.Y.C. Yeung Lam KO, P.Cosquer, J. Hamelin and R.Carrie), Tetrahedron Lett., 1986, 27, 4299. L.N.Markowskii, V.D.Romanenko, and L.S.Kachkovskaya, Zh. Obshch. Khim., 1985, 55, 2795 (Chem. Abstr. , 1987, 106,50 2941, R.Appe1, V.Winkhaus, and F.Knoch, Chem. Ber., 1987, 120, 125. R.Appe1, V.Winkhaus, and F.Knoch, Chem. Ber., 1987, 120, 243. R.Appe1, J.Kochta, and F.Knoch, Chem. Ber., 1987, 120, 131. R.Appe1, C.Porz and F.Knoch, Chem. Ber., 1986, 119, 2748. E.Niecke, and E.Symalla, Chimia, 1985, 3, 3 2 0 7 O.I.Kolodyazhnyi, I.V.Shevchenko, M.I.Powlotskii, I.E.Boldesku1, and V.P.Kukhar, Zh. Obshch. Khipl., 1985, 55, 2797 (Chem. Abstr., 1986, 105, 226 7 6 5 ) .
272 273 274 275 276
J.Grobe and J.Szameitat, Z.Naturforsch., B: Anorg. Chem., Org. Chem., 1986,
41. 974. J.Grobe and
D.Le Van, J.0rganomet. Chem. , 1986, 311, 37. B.Steger, H.Oberharmoer, J.Grobe, and D.Le Van, Inorg. Chem., 1986, g , 3177. A-Baceiredo,A.Igau, G.Bertrand, M.J.Menu, Y.Dartiguenave, and J.J.Bonnet, J , Am. Chem. Soc., 1986, 108,7868. M.T.Nguyen, M.A.McGinn, and A.F.Hegarty, Imrg. Chem., 1986, 25, 2185.
44 277 278 279 2 80 28 1 282 283 284 285 286
Organophosphorus Chem isin1 V.D.Romanenko, L.S.Kachkovskaya, and L.N.Markovskii, Zh. Obshch. Khim., 1985, E , 2140 (Chem. Abstr. , 1986, 105, 42 9 4 4 ) . O.I.Kolodyazhnyi, I.V.Shevchenko, and V.P.Kukhar, Zh. Obshch. Khim., 1985 55, 2214, (Chem. Abstr., 1987, 106, 102 3 8 7 ) . A.M.Arif, A.H.Cowley, and S-Quashie, J.Chem SOC., Chem. Commun. , 1986, 1437. L.Weber and D.Bungardt, J.Oryanomet. Chem., 1986, 311, 269. L.Weber, D.Bungardt, K.Reizig and R.Boese, Z.Natuforsch., B: Anorg. Chem., Org. Chem., 1986, 5, 1096. J.G.Kraaijkamp, G. Van Koten, Th.A.van der Knaap, F.Bickelhaupt, and C.H.Stam, Organometallics, 1986, 2, 2014. R.Appe1, V.Winkhaus, and F.Knoch, Chem. Ber., 1986, 119,2466. M.Yoshifuji, K.Toyota, T.Niitsu, N.Inamoto, Y.Okamto, and R.Aburatani, J.Chem. SOC., Chem. Commun., 1986, 1550. R.Appe1, W.Schuhn, and F.Knoch, J.Organomet. Chem., 1987, 2, 345. R. Mathieu, A. -M.Caminade , J. -P.Majoral , and J. -C .Daran , J.Am. Chem. SOC. , 1986,
287 288 2 89
108,8007.
G. G r k l , H. Sejpka, S.Diet1, B.Nuber, and M.L. Ziegler, Angew. Chem. , Int. Ed. Engl., 1986, 2, 1003. T.Kawashima, Y.Miki, and N.Inamoto, Chem. Lett., 1986, 1883. W.RGsch and M.Regitz, Z.Naturforsch. B: Anorg. Chem., Org. Chem., 1986, 41, 931.
290 291 292 293
E.Fluck, G.Becker, B.B.Neumuller, R.Kneb1, G.Heckmann and H.Riffel, Angew. Chem., Int. Ed. Engl., 1986, 25, 1002. P. B.Hitchcock, M. J.Maah, J.F .Nixon, J .A.Zora, G J.Leigh, and M.A .Bakar , Angew. Chem., Int. Ed. Engl., 1987, 6, 474. M.F.Meidine, J.F.Nixon, and R.Mathieu, J.Organomet. Chem., 1986, 314, 307. P.B.Hitchcock, M.J.Maah, and J.F.Nixon, J.Chem. Soc., Chem. Commun., 1987,
.
658.
294
S.I.Al-Resayes, P.B.Hitchcock, and J.F.Nixon, J.Chem. S o c . , Chem. Commun.,
295
R.Binger, W.Milczarek, R.Mynott, M.Regitz, and W.Rosch, Angew. Chem., Int. Ed. Engl., 1986, 25, 644. P.B.Hitchcock, M.J.Maah, J.F.Nixon, and C.Woodward, J.Chem. SOC., Chem. Commun., 1987, 844. P.Binger, R.Milczarek, R. Mynott , and M.Regitz, J.Organomet. Chem. , 1987,
1987, 928.
2 96 2 97 298
2 99 300 301 302 303 304 305 306 307
323, C35. J-Satge, J.Escudie,
C-Couret, H.Ranaivonjatovo, and M.Andrianarison, Phosphorus Sulfur, 1986, 27, 65. C.N.Smit and F-Bickelhaupt, Organometallics, 1987, 6 , 1156. V.D.Romanenko, A.V.Ruban, A.B.Drapailo, and L.N.Markovskii, Zh. Obshch. Khim., 1985, 55, 2793 (Chem. Abstr., 1986, 105, 191 2 4 3 ) . J-Escudie, C.Couret, M. Andrianarison, and J. Satge, J.Am. Chem. SOC., 1987,
109, -
386.
M.Andrianarison, C.Couret, J.-P-Derclercq, A.Duborg, J.Escudie, and J. Satge, J. Chem. Soc., Chem. Commun., 1987, 921. X.Feng, M.M.Olmstead, and P.P.Power, -Inorg. Chem., 1986, 4616. R.A.Bartlett, X.Feng, and P.P.Power, J.Am. Chem. Soc., 1986, 108,6817. P.Kolle, H.Nbth, and R.T.Paine, Chem. Ber., 1986, 119,2681. A.M.Arif, J.E.Boggs, A.H.Cowley, J.<.Lee, M.Pakulski and J.M.Power, J.Am. Chem. SOC., 1986, 108,6083. E.Lindner, K.Auch, G.A.Weiss, W-Hiller, and R.Fawzi, Chem. Ber., 1986, 119,
e,
3076.
R.Hussong, H.Heydt, and M.Regitz, Z.Naturforsch. B: Anorg. Chem. , Org. Chem., 1986, 41, 915. 309 R.Hussong, H.Heydt, and M.Regitz, Phosphorus Sulfur, 1985, 25, 201. 310 T.B.Rauchfuss and G.A.Zank, Tetrahedron Lett., 1986, 27, 3445. 31 1 V. D.Romanenko , A. B. Drapailo , A. V. Ruban, and L .N .Markovskii, Zh Obshch. Khim., 1986, 56, 714 (Chem. Abstr., 1986, 105, 226 8 0 0 ) . 312 D.Gudat, E - N i G k e , B.Krebs and M . D a r t m a n n , ~ g a n o m e t a l l i c s , 1986, 2, 2376 313 D.Gudat and E.Niecke, J.Chem. Soc., Chem. Commun., 1987, 10. 308
.
I : Phosphines and Phosphonium Salts
45
314 U.Dressler, E.Niecke, S.Poh1, W-Saak, W.W.Schoeller, and H.-G.Schafer, J.Chem. SOC., Chem. Comun. , 1986, 1086. 315 E.Niecke, D.Gudat, and E.Symalla, Angew. Chem., Int. Ed. Engl. , 1986, 25, 834. 316 P-B-Hitchcock,M.F.Lappert, A.K.Rai, and H.D.Williams, J.Chem. SOC., Chem. Commun., 1986, 1633. 317 P.B.Hitchcock, H.A.Jasim, M.F.Lappert and H.D.Williams, J.Chem. SOC., Chem. Comun., 1986, 1634. 318 O.J.Scherer, K.GObe1, and J.Kaub, Angew. Chem., Int. Ed. Engl., 1987, 26, 59* 319 J.-P.Majora1, G.Bertrand, A.Baceiredo, and E.O.Mavarez, Phosphorus S u l f u r , 1986, 2, 75. 320 J.Boske, E.Niecke, E.Ocando-Mavarez, J.-P-Majoral,and G-Bertrand, Inorg. Chem., 1986, 3, 2695. 321 J.P.Majora1, G.Bertrand, E.Ocando-Mavarez, and A-Baceiredo,Bull. SOC. Chim. Belg., 1986, 95, 945. 322 G.Huttner and K.Evertz, Acc. Chem. Res., 1986, 19,406. 323 G.Huttner, Pure Appl. Chem., 1986, 585. 324 F.Mathey, Angew. Chem., Int. Ed. Engl., 1987, 26, 275. 325 N.H.T.Huy and F.Mathey, Organometallics, 1987, 6 , 207. 326 N.H.T.Huy, J.Fischer, and F.Mathey, J.Am. Chem. SOC., 1987, 109, 3475. 327 A.M.Arif, A.H.Cowley, M.Pakulski, N.C.Norman and A.G.Orpen, Organometallics, 1987, 6 , 189. 328 A.M.Arif, A.H.Cowley, M.Pakulski, and G.J.Thomas, Polyhedron, 1986, 2, 1651. 329 G.Huttner, J.Organomet. Chem., 1986, 3 2 , C11. 330 H. -G;.Schafer , W. W.Schoeller, J-Niemann, W.Haug , T.Dabisch and E-Niecke, J.Am. Chem. Soc., 1986, 108,7481. 331 M.R.Mazieres, C.Roques, M.Sanchez, J.P.Majora1 and R-Wolf, Tetrahedron, 1987, 3, 2109. 332 S.A. Weissman, S.G .Baxter, A.M.Arif and A.H .Cowley, J .Chem. SOC - , Chem. Comun., 1986, 1081. 333 S.A.Weissman and S.G.Baxter, Tetrahedron Lett., 1987, 28, 603. 334 E.Lindner and G.A.Weiss, Chem. Ber., 1986, 119,3208. 335 G.Capozzi, L.Chiti, M.Di V d r a , M.Peruzzini, and P.Stoppioni, J.Chem. Soc., Chem. Comun., 1986, 1799. 336 A.J.Ashe 111, S.Mahmoud, C.Elschenbroich, and M.W&isch, Angew. Chem., Int. Ed. Engl., 1987, 26, 229. 337 S.Holand, F.Mathey, and J.Fischer, Polyhedron, 1986, 5 , 1413. 338 F.Mercier, S.Holand and F-Mathey, J.Organomet. Chem., 1986, 316, 271. 339 R.Appe1, C.Casser, F.Knoch and B.Niemann, Chem. Ber., 1986, 119,2915. 340 Sir J-Cornforth and A.D.Robertson, J.Chem. SOC., Perkin Trans 1, 1987, 867. 341 Sir J-Cornforth,L.M.Huguenin and J.R.H.Wilson, J.Chem. SOC., Perkin Trans. -1, 1987, 871. 342 G.Mkk1, E.Eck1, U.Jakobi, M.L.Ziegler, and B.Nuber, Tetrahedron Lett., 1987, 28, 2119. 343 R.Appe1 and R.MOors, Angew. Chem., Int. Ed. Engl., 1986, 25, 567. 344 R.M.G. Roberts and A.S.Wells, Inorg. Chim. Acta, 1986, 120. 53. 345 E.Roman, A.M.Leiva, M.A.Casasempere, C.Charrier, F.Mathey, M.T.Garland and J.Y. Le Marouille, J.Organomet. Chem., 1986, 309, 323. 346 R.M.G.Roberts, J.Silver and A.S.Wells, Inorg. Chim. Acta, 1987, 126. 61. 347 R.M.G.Roberts, J.Silver and A.S.Wells, Inorg. Chim. Acta, 1986, 118, 135. 348 R.M.G.Roberts, J-Silver and A.S.Wells, Imrg. Chim. Acta, 1986, 119, 1 . 349 R.M.G.Roberts, J.Silver and A.S.Wells, Inorg. Chim. Acta, 1986, 119, 171. 350 R.M.G.Roberts, J.Silver and A.S.Wells, Inorg. Chim. Acta, 1986, 119, 165. 351 R.M.G.Roberts, and A.S.Wells, I n Q K g . Chim. Acta, 1987, 126, 67. 352 R.M.G.Roberts, and A.S.Wells, Imrg. C h i m . Actr, 1987, *, 93. 353 0.J.Scherer and T.BrUck, Angew. Chem., X n t . Ed. Engl., 1987, 26, 59. 354 J.Heinicke and A.Tzschach, Z.Chem., 1986, 407. 355 J.Heinicke, Tetrahedron Lett. , 1986, 2, 56%. 356 G.Mbi-kl and G . I t r a h e d r o n Lett., 1986, 27, 4419.
z,
~~
46
Organophosphorus Chemistry
357 358 359 360
G.Mark1 and G.Dorfmeister, Tetrahedron Lett., 1987, 28, 1089. G.M&kl and S.Pflaum, Tetrahedron Lett., 1987, 28, 1511. G.&rkl and S.Pflaum, Tetrahedron Lett., 1986, 4415. S.Kersch1, B-Wrackmeyer,A.Willhalm, and A.Schmidpeter, J.Organomet. Chem.,
36 1
B.A.Arbuzov, E.N.Dianova, R.T.Galiaskarova, and A-Schmidpeter,Chem. Ber.,
362 36 3 364
El
1987,
319,
1987,
120, 597.
49.
B.A.Arbuzov, E.N.Dianova, R.T.Galiaskarova, and P.P.Chernov, Izv. Akad Nauk SSSR, Ser. Khirn. , 1986, 412 (Chem. Rbstr., 1986, 107,5 1 4 5 ) . B.A.Arbuzov, E.N.Dianova, and E.Ya Zabotina, Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 169 (Chem. Abstr., 1987, E l 67 3 8 7 ) . K.Karaghiosoff, W.S.Sheldrick, and A-Schmidpeter,Chem. Ber., 1986, 119, 3213.
-T. Boisdon, L .Lopez, C. Malavaud, J. Barr ans , A .Chabane , and R . Mathis, Can. J. Chem., 1986, 6 4 , 1725. UTJ.Vogelbacher, J. Fink, and M-Regitz, Angew. Chem. , 366 K.Blatter, W.R&ch, Int. Ed. Engl., 1987, 26, 85. 367 G.Mkkkl, H.J.Beckh, K.K.Mayer, M.L.Ziegler, and T.Zahn, Angew. Chem., Int. Ed. Engl. , 1987, 236. 368 H.Tanaka and S.MDtoki, Bull. Chem. SOC. Jpn., 1986, 2, 2047. 369 H.Tanaka and S.MDtoki, Bull. Chem. SOC. Jpn., 1987, 60, 1558. 370 C.Bordieu and A.Foucaud, Tetrahedron Lett., 1986, 27, 4725. and G-Dorfmeister,Tetrahedron Lett., 198% 7,, 1093. 37 1 G.&rkl 372 J.Barluenga, F.Lopez and F.Palacios, Tetrahedron Lett., 1987, 28, 2875.
365
M.
a,
Pentaco-ordinated and Hexaco-ordinated Compounds BY C . 1.
D. HALL
Introduction. - The year has elapsed with a significant decline
in the number of publications in the area of hypervalent phosphorus chemistry and with the emphasis still focussed on monocyclic and bicyclic phosphoranes containing small (four or five-membered) rings. The proceedings of the International Conference on Phosphorus Chemistry (Bonn, 1986) however, contain numerous articles dealing 1 with pentaco-ordinate and hexaco-ordinate phosphorus compounds which suggests that a healthy world-wide interest in the topic is being maintained. Furthermore, the principles established in hypervalent phosphorus chemistry continue to be applied to the chemistry of hyDervalent molecules of other elements with a notable contribution from Corriu on comparison of factors controlling nucleophilic substitutions at silicon and phosphorus2 and from Barton et al. on the utility of pentavalent organobismuth reagents. In the former paper Corriu concludes that retention or inversion during nucleophilic substitution at silicon is controlled b y a frontier orbital process and that the same conclusion can be extended to the mechanism of nucleophilic substitution at halogenophosphorus compounds. Thus the kinetic data show that the interaction between an incoming nucleophile and the leaving group is very deep when they are both apical (inversion) whereas the influence of the nucleophile is minimal when it effects a 9 0 " angle to the leaving group,
=.
gives rise to retention. This concept is used to rationalize the similarities in kinetics and stereochemistry of the displacement of halogen from phosphorus and silicon and leads to the suggestion that it is not possible to extend the Westheimer hypothesis o n the hydrolysis of phosphates and ~ h o s p h o n a t e s ~ to the general case of nucleophilic displacement at P-X bonds. 2. Structure, Bonding and Ligand Reorganization. - In a paper dealing with the synthesis and structure of new ring systems derived from elements of main groups I V (Si, Ge and Sn) and V (As and Sb) structures ranging between the ideal geometries of tbp and rp were
reported.
Thus a series of symmetrically substituted phenyl-
arsoranes (1-4) showed a structural displacement from tbp to rp in 47
48
Organophosphorus Chemistry
't
0
0
I /O Ph-As
I /O Ph-As
9
( 1 ) 18'/.RP
Sb
PhPh
(R,),PF, (9)
R,= C2F5,C,F,
t
0-35' C
ArLi
(R,l,ArPF,
H20
( RF)2ArP=0
(11 1
(10)
(12)
A r = P h , p- to1
+-
t -
( PhO ),PPC I,
( 13)
8,'
P,-22.6,
- 29.6
(PhO 1,P CI (1L) &3'P, - 2 2 . 7
49
2: Pentaco-ordinated and Hexaco-ordinated Compounds
line with reduced electron pair repulsions between the ring oxygen atoms, effected by delocalization of the lone pairs into the aromatic rings.6 In the case of compounds of antimony, recent work has shown that a rectangular pyramid devoid of lattice effects is
stabilized in the same way as other main group elements by forming a bicyclic system composed of two unsaturated rings containing like
donor atoms in any one ring. For example, X-ray analysis of stiborane (5) revealed a tbp structure whereas the bicyclic compound Thus the unique sp geometry of PhsSb may be (6) had r p geometry.' more firmly ascribed to lattice stabilization with antimony in general falling into the established pattern for Group V elements. The apicophilicity of the 2,2,3,3-tetrafluoropropoxy group has been shown to exceed that of the cyano group on the basis of variable temperature 1 3 C and I9F n.m.r. of the acyclic; phosphorane
(7).8 At low temperature the molecule has a tbp structure with the two cyano groups equatorial and two sets of non-equivalent fluoroalkoxy groups in the ratio of 2:l.
3. Acyclic Phosphoranes. - The structures of the chlorofluorophosphoranes, PClnF5-n - - (8)with 2 = 1-4 have been determined by electron diffraction in the gas phase.' Both P-F and P-C1 bonds were found to lengthen as 11 increased (k. with an increasing ratio of Cl/F substituents) and this effect was more pronounced for the apical bonds relative to the equatorial bonds (Table 1). Angular distortions from the tbp geometry were small (1-2") in all cases. Table 1 Bond lengths (prn) Bond PFeq. PFap. "leq. PCla
PF 5 153.4 157.7
-
-
C~PFI,
C12PF3
C13PF2
C14PF
Cl5P
153.5 158.1 200.0
153.8
-
-
-
159.6
159.7
-
-
159.3 200.2
-
200.6
-
201.1 210.7
202.3 212.7
Tris-(perfluoroalky1)-bis-difluorophosphoranes (9) have been found to react with aryl lithiums (10) to give (11) with displacement of a perfluoroalkyl group rather than the expected displacement of Hydrolysis of (11) with the calculated amount of water fluorine.'' gives the corresponding phosphine oxides (12). The reaction of PC15 with phenol has been re-examined using molar ratios from 1 : l to 5:l (PhOII : PC15). Under the former conditions
Organophosphorus Chemistry
50
( E t0l2PPh3
(171, S 3 ' p ,
(15)
- 38.2
(191
4
(EtO),PPh, (15)
+
+
Ph3POEt
Sc CH ),OH
(221
1 4 -1
2: Pentaco-ordinated and Hexaco-ordinated Compounds
51
tetraphenoxyphosphonium hexachlorophosphate (13) was formed whereas at 4:l and 5:l the product was exclusively the phosphonium chloride 11 (14). The cyclodehydration of diols by diethoxytriphenylphosphorane (15) has been extended to 1,2,4-triols (e.g. - 16) affording thermodynamitally stable monocyclic phosphoranes (e.g. 17 and 18) which thermolyse v i a extrusion of phosphine oxide to form a mixture of the epoxide (19, 81%) and 3-hydroxy-tetrahydrofuran (20, 19%). 12 The reactions of (15) with a range of mercaptoethanols (21) give mixtures of cyclic sulphides (23) and hydroxyalkyl ethyl sulphides ( 2 4 ) and the ratio of products is influenced substantially by temperature. l3 Low temperature (-25°C) favours cyclisation v i a the oxythiophosphoranes (22) as illustrated by Table 2.
Temp : - 2 5 ° C
Temp : ambient
n
%(23)
%( 24 )
n
%(23)
2
28
72 50 35
2
63 40 >99 35
3 4
50
5
65
63
37
3 4 5
w( 24) 37 trace >1 30
Finally in this section the mechanism of formation of acyclic phosphoranes (28) from the corresponding trico-ordinate phosphorus compounds (25) and sulphenate esters (26) has been reported in a preliminary form from which it is clear that oxythiophosphoranes (27) 14 are intermediates in the reaction. 4.
Ring Containing Phosphoranes
- The ability of trifluoromethyl groups to stabilise pentaco-ordinate structures emerges once again in the reactions of P-haloylides (29) with carbonyl compounds (30). The reactions are (2+2], non-concerted but stereoselective cycloadditions which lead t o the formation of 2-halo-1,2-A5-oxaphosphetanes On heating these compounds are converted to vinylphosphine oxides (33) v i u the chloroalkylphosphine oxides (32). A s the electron accepting power of,the substituents on the CI, atom decreases, the stabilities of (31) decrease and they are readily rearranged into (32). The hydrolysis of (31) gives 2-hydroxyalkylphosphine oxides (34) and the chlorine is readily replaced by
4 . 1 Monocyclic Phosphoranes.
Organophosphorus Chemistry
52
0
R1R211P
CR3=C(CF3)RL (331
o -C(CF, I
0
)R
>160°
------+
R’R2h-CHR3
I
II
R’R+-CH-C(CF,
I,
I
R”
CI
)RL
CI
(311
R’=But;
R2=Et,N
or But ; R3= H or Me ; RL=CF3 or Ar
(311
I
OR
;Ch?
R P-0
d R,P=CH R ’
k5
1-2
R
R
I351
+
R ,PO
(36)
+ R2CH=0 kg
(371
R = Ph or 6””; R’= Pr” ; R 2 = P h , Pen or But
R’ # R 2
t
R,PO
2: Pentaco-ordinuted und Hexaco-ordinared Conipounds
x=p/D3 To
( EtO ),P=X
0
(bOa,b)(a)X=O (bl X= S
2 OH-
*p-0
_____+
-0 1 '
ti'
- O 7
_____)
'0-
LOR
L
'P-0
I
OH
O 'R ILL)
(L3 1
Ph'
-0\/O
OH
54
Organophosphorus Chemistry
methoxy or phenoxy groups on reaction with methanol or phenol in the presence of triethylamine to form (35). The topic of oxaphosphetan chemistry is of course central t o t h e elegant work of Maryanoff et al. on the mechanism of the Wittig reaction. This continues with the observation of diastereomeric 1,2-oxaphosphetanes (36) and ( 3 7 ) by high field variable temperature n.m.r. and in a number of instances the reaction of non-stabilised phosphorus ylides with aldehydes showed a non-correspondence between the relative proportions of c i s - and trans-oxaphosphetanes at low temperature and the final proportion of 5 and Ealkenes resulting in an exaggerated production of _E-alkene by a phenomenon termed "stereochemical drift". l6 Hence there is a measure of thermodynamic control in these reactions. Analogous experiments designed to evaluate the reactions of semi-stabilised and stabilised ylides did not generate key information since the intermediates (oxaphosphetanes or betaines) could not be observed thus making it impossible to frame mechanistic conclusions. It follows that the determination of E/Z alkene ratios alone in the Wittig reaction cannot yield a sound mechanistic picture since one cannot tell unambiguously whether the reaction is under kinetic or thermodynamic control. The debate on the subject of stereoelectronic effects on the hydrolysis of phosphates, phosphonates and phosphinates is maintained with three papers from Gorenstein et al. in which pentaco-ordinate phosphorus compounds feature as intermediates. In the first ,17 the results of hydrolysis reactions suggest that the reactivity differences between the bicyclic phosphate (38a) and the phosphorothionate (38b) and their acyclic counterparts (39ab) can be accounted f o r by stereoelectronic (trans-antiperiplanar) effects in the intermediates (40ab) and the results of structural investigations are consistent with the stereospecificity observed in the hydrolysis of (40b). Subsequently, a reinvestigation of the product distribution during the hydrolysis of ethyl and methyl ethylene phosphates (42) confirmed earlier suggestions by Gorenstein that the stereoelectronic effect i s an important factor (uia 43) in the rate enhancements observed for these reactions.18 With (42a) the increase in the exocyclic cleavage product (MeOH) with increasing base strength was shown to be due to an artifactual side reaction involving the hydrolysis product (44) and a second molecule of (42). This appears t o invalidate the argument of Kluger and Thatcher" that the increasing amount of exocyclic cleavage with base strength is inconsistent with a stereoelectronic effect. More positive support for the contributions of stereoelectronic effects comes however, from a study of the
2: Pentaco-ordinated and Hexaco-ordinated Compounds
55
MeMMe 0
0
5T
________)
R'O (51a , b ) (diastereomeric mixture)
(52)
6 31 P I - 45.5 (CD3COCD3) 6 ' P , -43.0(CD3SOCD3)
T = thymidin -1-yl
R =t r i t y l R'= acetyl
a0-siMe3 R
NHSi Me3
t 551
H
H
(571
f
\
R = F , M e ,Ph or
1 - adamantyl
H (56)
Me
Me
I
- S'Me3 o=c \ /N
N-
I
Me
SiMc3
I591
I
+
N ~""33~~2
(58)
O=C(
>PBun3 N
I
Me
(60)
+
Me3SiF
56
Organophosphorus Chemistry
rates of base-catalysed hydrolysis of (45) and (46) relative to
their acyclic counterparts (47) and (48).20
The cyclic ester (45) hydrolyses 6.2 x l o 3 times faster than (47) corresponding to a free energy of activation difference ( 6 h G ' ) of 5.2 kcal mol-I) which provides a good estimate of ring strain in the cyclic esters. On the other hand, (46) hydrolyses 1.5 x l o 6 times faster than (48) corresponding to, 6AG' = 8.4 kcal mol-' (35.1 kJ mol-I). It is proposed that the latter value is derived from a ring strain effect (-5.2 kcal mol-') a n d a stereoelectronic effect (-3.2 kcal mol-')
which is available to (46) v i a (49) but not to ( 4 5 ) v i a (50). The synthesis of the first dinucleotide with pentaco-ordinated phosphorus as the internucleoside linkage (52) has been described21 and 3 1 P n.m.r. reveals that rapid stereomutation occurs through pseudorotation which requires the dioxaphospholene ring to become
diequatorial during the interchange. Monocyclic phosphoranes (53) do not show inhibition of pseudorotation even at -93°C. This shows that the steric effects of substituents on the benzene ring is not the only factor involved in the inhibition and it seems that the incorporation of a rigid ring system in the pentaoxyphosphorane structure (as in 54) is an important requisite to slow pseudorotation in these systems. 22 The synthetic utility of the N,c-bis-(trimethylsilyl) derivative of o-aminophenol (55) has been clearly demonstrated in the prepara-
tion of a number of monocyclic (e.g. 56) and bicyclic (57) phosphoranes. 23 The spirophosphoranes (57) also result from a spontaneous disproportionation of (56). The same paper also describes the reaction of tri-n-butyldifluorophosphorane (58) with -N,N-'-dimethyl-N,N_'-bis-trimethylsilyl urea (59) to form (60). The synthesis and chemistry of vinylphosphoranes has been thoroughly explored as reported in a comprehensive paper by Labaiudiniere and Burgada.24 On heating (usually at 160°C) aryloxy-
vinylphosphoranes (61) evolve into a mixture of spirophosphoranes (62ab), cyclic phosphate ester (63) and the novel vinyl phosphonate (64). The yield of the spirophosphoranes and the reaction time both decrease as the electron withdrawing capacity of Z increases and with highly electron withdrawing substituents (e.g. - p-NO2) the vinyl phosphonate (64) becomes the major product. Furthermore when the carboxylate group a to phosphorus is replaced by H or Ph, no spirophosphorane (62) is obtained. The hydrolysis of ( 6 2 ) is also reported and under mild conditions leads to (65) and eventually (66). The vinylphosphoranes are prepared by the reaction of cyclic
2: Pentaco-ordinated and Hexaco-ordinated Compounds
57
n
161)
(62a 1
+
Z
L
go;P-OMe
+
Mc02CC=CC02Me
0
(69)
ArOH
(61 1
(E
- form)
168)
(67)
(Et0)2PCIPh)=CHBr
-
+
2PhCOCN (70)
0 OC
____) Ph H
Ph (71) 6
31P,-11.4
58
Organophosphorus Chemistry
PhP(OMe12 ( 72 1
+
(68) L
CO, Me (75)
2: Pentuco-ordinated cind Hexaco-ordinutrd Compounds
59
phosphites (67) with dimethylacetylene dicarboxylate (68) in the presence of the appropriate phenol. Monocyclic vinylphosphoranes (71) may also be obtained through
the reaction of vinylphosphonites (69) with benzoyl cyanide (70). 2 5 There was no mention of c i s o r trans isomerism in the ring system and only one high field 3 1 P n.m.r. signal was reported. On the other hand, the reaction of dialkyl phosphonites (72) with
(68) in the absence of a proton source proceeded u i a (73) and (74) to f o r m (75).26 The pentaco-ordinate structure (74) was sufficiently stable at-70°C to enable its conversion to the 0x0-phosphole (76) by treatment with H B r . 4.2 Bicyclic and Tricyclic Phosphoranes. - The previously unknown tricyclic phosphoranes (80) have been prepared by the reaction of
phosphorodichloridites (77) with 2-hydroxyacetophenone (78). 27 The reactions proceed v i a the bis-(o-acetylpheny1)phosphites (79) which cyclise gradually into the tricyclic phosphoranes in the rate sequence, R = Ph > > Et2N EtO > PhO which is thought to indicate initial nucleophilic attack by trico-ordinate phosphorus on the carbonyl carbon of (79). The stability of spirophosphoranes with an exocyclic P-P bond (83) depends upon the electronic nature of the substituents, X , in the aromatic ring of the imino group.28
Electron donating substi-
tuents (e.g. - X = Me) promote rearrangement to the P-N compound (84) whereas for X = p - N O , , the P-P bond is stable for several months. A special case is found for X = rn-CF3 in which ( 8 3 ) rearranges into a mixture of (84) and (85). Spirophosphoranes (86) with a P-H bond react with ally1 or aryl isothiocyanates (87) to form a range of imidothiazolidines (91)
together with the phosphoramidate (92). The mechanism proposed for this reaction involves addition to the C=N bond of (87) to form (88) followed by rearrangement through ( 8 9 ) to (90) which subsequently fragments to (91) and (9~1.~' Phosphatranes as stabilising structures f o r hypervalent phosphorus compounds is an area which continues to attract attention. For example, 'H, 1 3 C and 3 1 P n.m.r, data reveal the existence of pentaco-ordinate phosphorus mono- and divalent cations, (93) and In a comprehensive paper dealing with the ( 9 4 ) respectively.30 synthesis, structure and chemistry of 10-Pn-3 systems (95a) - in equilibrium with (95b)
-
reactions with alcohols, a-dicarbonyl
compounds, halogens, transition metals, protic acids and acetylenes
Organophosphorus Chemistry
60
-+I
R2
I
I
R'
R'
R2
R + R 'Y'
(931 Y = O o r
&o
$/A*
I
N-Pn.
R
S
(94)Y = O ; R = H , E t Y 2 S ; R - H ,Me,Et 4
0.
f--
-Pn"
4@2 "N
R
(95a)
P n = Pnictogcn I P, A s , S b l ( 9 S b ) R = B u t , P h or 1 - a d a m a n t y l
% (95a) Pn=P R = But
i- CF,CSCCF, (96)
\ -78
*C
(y'
(98)
2: Pentaco-ordinared and Hexaco-ordinared Compounds
(a 1 X = NMe (blX=S
1103 1
(c)X=O
Me
L
OSi Me,But
+
T5CpM(CO$X (107) M=Fe, X = C l ,Br M:Ru,X: C I
(106)
61
THF RT
A
CI
+
l+
62
Organophosphorus Chemistry
are described. 31 In general the arsenic and antimony systems behavc-) similarly but offer different chemistry to that of the 10-P-3 systems. Among the unusual observations is an interesting C-C bond forming reaction with hexafluorobutyne (96) to form (98) Y ~ U(97)
with Pn = P. With Pn = Sb however, the reaction proceeds to give (99). Phosphorus compounds with co-ordination numbers from 2 to 6 were characterised and a trend for the 3 1 P - 1 5 N coupling constants
was observed ranging from 93.4 Hz for dico-ordination through c u . 10 Hz for pentaco-ordinate structures to <1 Hz for a s i x
co-ordinate system (100). Dibenz [c,f][1,5]azaphosphocine-12-oxides (10la-c) and (102) have been prepared and their reactions with SOC12 and ButMe2SiOTf have been examined by a combination of ' H and 3 1 P n.m.r.32 In the case of (101a) and (102) the n.m.r. data are consistent with the formation of bicyclic phosnhoranes (103-104) which contain a transannular hypervalent P-NMe bond. The bicyclic aminophosphorane (105) in its open chain form (106)
behaves both as a monodentate ligand towards n5-CpPe(CO),X (107) by disnlacement of X and as a P/N bidentate ligand by displacement of CO and X to yield the cationic derivatives (108) and (109) respectively.33 With M = Ru only the latter behaviour is observed leading to (109) with M = Ru. Both (108) and (109) could be converted to (110) which on abstraction of the N-borne proton by LiMe led to quantitative formation of the phosphoranide adducts (111).
The adduct (112) obtained from mercuric thiocyanate and hexafluoroacetone reacts withdiphenylphosphinous chloride (113) to form the bicyclic phosphorane ( 1 1 4 ) . ~ ~In the same paper the reaction of mercuric cyanide with hexafluoroacetone and (113) in the presence of triethylamine is found to give the bicyclic phosphorane (115). Both compounds were characterised by multinuclear n.m.r. and by &-ray structural analyses. The diazaphosphetidine ring system continues to attract atteQtion as exemplified by the reaction of dialkyl phosphoroisocyanatidites (116) with the trifluoroacetoacetic ester (117) which proceeds v i a the cyclic phosphinimine (118) to the dimeric diazaphosphetidine (119).35 In a related paper a range of dialkyl and diary1 phosphoroiso-
cyanatidites (120) have been shown to react with alkyl or aryl isocyanates (121) to give diazaphosphetidines (123) presumably v i a (122). 36 The compounds were characterised by analysis, mass spectra
and n.m.r. f o r which h 3 ' P values were in the region of -75 p.p.m.
2: Pentaco-ordinuted and Hexaco-ordinatud Compounds
63
Ph
i-iL
j
IllO),Y = PF6-, BPhL-
(RO1,PNCO
(116)
+
R * CHFZCF2 CH,
(lll),M=Fc,Ru
CF,COCH,CO,Et
(117)
xf (1191
\
I L
64
Organophosphorus Chemist-
2IRO),PNCO
+
2 R'NCO
(1201
I1211
0
RO OR (123 1
R z M e , E t , Ph
R'=CICH2 , BrCH, ,Me, Ph p- MeC6HL p- CIC6HL
CH2NEt2
I
Me0
(126)
CH2NEt2
(1241
6 3 ' P J- 4 0
/ 1
2
(125 1
2: Pentaco-ordinaredand Hexaco-ordinated Compounds
65
The first representative of x-phosphorylated aminals (126,
+128 p.p.m.) has been obtained in good yield ( 8 0 % ) through distillation of (124) which probably decomposes v i a rearrangement of in this section, the reaction of (127a or b ) with ( 1 2 5 1 . ~Finally ~ b3IP =
lithium-bis(trimethylsily1)amide (128) in ether at 25°C has been
shown to generate two new dispiro compounds (129ab).38 The mass spectra andX-ray analysis of these compounds are presented and discussed in considerable detail.
5. Hexaco-ordinate Phosphorus Compounds. - Ultraviolet irradiation of a mixture of o-chloranil (130), tetrachlorocatechol (131) and white phosphorus in boiling benzene gives the spirophosphorane (132)
which on treatment with triethylamine gives the corresponding phosphorate (133) in 76% yield.39 The reaction is general but the yields of phosphorate are strongly dependent upon the substituents in the quinone and catechol rings. Thus with 3,6-di-t-butyl-orthobenzoquinone and the corresponding catechol, the yield of the phosphorate
dropped to 10%. However, the synthesis of the whole range of phosphoranes (135) and phosphorates (136) was achieved by the use of
catechols (134) alone by boiling with white phosphorus in the presence of cupric chloride. The yields in this case varied from 43
t o 60%. The elegant work of Cave11 et al. has been amplified by the preparation of three neutral hexaco-ordinate phosphorus compounds 40 (139a-c) by reaction of (137a-c) with the silylcarbamate (138). The crystal and molecular structure of (139c, ft = 3 ) shows the sixcoordinate nature of the phosphorus atom and also that the unique fluorine atom lies in the plane containing F , C F 3 , the phosphorus centre and the planar carbamate ligand as illustrated in (140). Multinuclear n.m.r. was used to elucidate the structures of all three compounds and showed that they were fluxional in solution at ambient temperatures but static at moderately low temperatures. Further to this work, two series of hexaco-ordinate phosphorus compounds (141 and 142) involving the pentan-2,4-dionato (acac) ligand have been prepared and compared to the known F~,P(acac).~l A l l are stable, crystalline solids with six-coordinate geometry as demonstrated by 3 1 P and 1 9 F n.m.r. and substantiated by &ray analysis of (141, b and c). In contrast to the preceding paper, the crystal structure of (141c, 2 = 3) shows the unique fluorine atom occupies a position which is perpendicular to the central plane containing two C F 3 groups and the acac ligand. The latter is planar
66
Organophosphorus Chemistry
Me
I
F3p\/N\PF2X / N-
I
Me 1127) 1 a ) X = F
Me
I
( b l X = Me0
SiMe,
I
Me
I
+ I
Li N I S i Me3I2 (128
Me
1
I
SiMe, ( 129 a , b )
I132 1
I
Me
2: Pentaco-ordinated and Hexaco-ordinated Compounds
\ /
+ OH (13La-el ( ba )) R = 3,5-di-Bu' 3,6-di-But ( c ) R= tetra - C l
67
5
CUClz
(136)
( d ) R=G-(Phl,C-
(el R = phenylene
[
n
a
>
P
/ 2
o HO n R
'
n
-
+
5CuCl
+
5 HCI
( 1 351
(CF31,PF5-,
+
Me3SiOCNMe2
( 137a - c )
(138)
(a)n=l
(bln = 2 ( c In = 3
(1Lla-c) ( a ) n = l ; ( b I n ~ 2 ;( c I n = 3
0
II
FL-n(CF3lnPOCNMe2 (139a- c 1
Organophosphorus Chemistry
68
but folded about t h e 0-0 axis by approximately 2 7 " t.owards t h e unique fluorine.
References
1
2 3 4 5 6 7
Phosphorus Sulfur, 1987, 30, ( 1 - 4 ) . R.J.P.Corriu, Phosphorus S u Z f u r , 1986, 2 7 , 1 . D.H.R.Barton, N.Yadov-Bhatnagar, J.-P.Fzet, J.Khamsi, W.B.Motherwel1, and S.P.Stanforth, Tetrahedron, 1987, 43, 323. F.H.Westheimer, Ace. Chem. Res., 1968, 1,70. R.R.Holmes, R.O.Day, V.Chandrasekhar, S.Shafeizad, J.J.Harland, D.N.Rau, and J.M.Holmes, Phosphorus Sulfur, 1986, 2 8 , 91. R.R.Holmes, R.O.Day, and A.C.Sau, OrgZometaZlics, 1985, 714. R.R.Holmes, R.O.Day, V.Chandrasekhar and J.M.Holmes, Inorg. Chem., 1987, 6 ,
4,
157.
20 21
Yu.G.Shermolovich, N.P.Kolesnik, S.V.Iksanova, V.V.Trachevskii, and L.N.Markovskii, J . Gen. Chem. U.S.S.R. ( E n g l . t r a n s l . ) , 1986, 6, 1050. C.Macho, R.Minkwitz, J.Rohmann, B.Steger, V.Wb'lfe1, and H.Oberhammer, Inorg. Chem., 1986, 2,2828. N.V.Pavlenko, G.I.Matyushecheva, V.Ya.Semenii, and L.M.Yagupol'skii, J . Cen. Chem. U.S.S.R. (EngZ. t r a n s l . ) , 1987, 1, 99. J.Gloede and R.Waschke, Phosphoms SuzTur, 1986, 27, 341. J.W.Kelly and S.A.Evans, Jr., J . h e r . Chem. Soc.,I986, 108, 7681. P.L.Robinson, J.W.Kelly, and S.A.Evans, J r . , Phosphorus S m u r , 1987, 2,59. N.Lowther, P.E.Crook and C.D.Hal1, Phosphoms Sulfur, 1987, 3 0 , 405. O.I.Kolodyazhnyi, J . Gen. Chem. U.S.S.R., (Engl. t r a n s l . ) , 1-6, 6 , 246. B.E.Maryanoff, A.R.Reitz, M.S,Mutter, R.R.Inners, H.R.Almond Jr., R.R.Whittle, and R.A.Olofson, J. Amer. Chem. SOC., 1986, 108,7664. T.Fanni, K.Taira, D.G.Gorenstein, R.Vaidyanathaswamy, and J.G.Verkade, J . h e r . Chem. Soc., 1986, E 8 - , 631 1 . D.G.Gorenstein, A.Chang, and Ji-C.Yang, Tetrahedron, 1987, 4 3 , 469. a) R.Kluger and G.R.J.Thatcher, J . A m e r . Chem. SOC., 1985, m 7 , 6006. b) R.Kluger and G.R.J.Thatcher, J , &g. Chem., 1986, 2, 2 O r Ji-C.Yang and D.G.Gorenstein, Tetrahedron, 1987, 4 3 , 4 7 9 . L. H.Koole, H.M.Moody , and H.M. Buck, RecueiZ Trav.Chim. Pays-Bas. , 1986, 105,
22
W.M.Abdou, M.R.H.Mahran,
8 9 10
I 1 12 13 14 15 16
17 18 19
196.
R. Bartsch, J.-V.Weiss, 2 7 , 345.
23
53.
T.S.Hafez, and M.M.Sidky, Phosphorus Sulfur, 1986, and R.Schmutzler, 2. anorg. a l l g . Chem., 1986,
537,
L.Labaudiniere and R.Burgada, Tetrahedron, 1986, 42, 3521. Yu.G.Trishin, I.V.Konovalova, L.A.Burnaeva, A.F.Afanasov, V.N.Chistokletov, and A.N.Pudovik, J . Gen. Chem. U.S.S.R., (EngZ. transi!. ) , 1986, 56, 2471. 26 J.C.Caesar, D.V.Griffiths, and .J.C.Tebby, Phosphorus Sulfur, 1987, 2 9 , 123. (Engl. t r a n a . ) , 1986, 27. E.E.Korshin and F.S.Mukhametov, J . Gen. Chem. U.S.S.R.,
24
25
56, 846. S.K.Tupchienko,
T.N.Dudchenko, and A.D. Sinitsa, J . Gen. Chem. U.S.S.R. (EngL. t r a n s l . ) , 1986, 5 6 , 2228. 29 L I .Mizrakh , L YcPolonskaya , A. N Gvo zd ekskii , and A.M. Va s i 1 ' ev , J . Gen. Chem. U.S.S.R. ( E n g l . t r a n s l . ) , 1986, 56, 6 2 . 30 L.E.Carpenter 11, B.de Ruiter, D.van Aken, H.M.Buck, and J.G.Verkade, J . Amer. Chem. Soc., 1986, 4918. 31 A.J.Arduengo 111, C.A.Stewart, F.Davidson, D.A.Dixon, J.V.Becker, S.A.Culley, and M.B.Mizen, J . Amer. Chem. SOC., 1987, 109, 627. 32 Kin-ya Akiba, K.Okada, and K.Ohkata, T e t r a m r o n L e t t e r s , 1986, 2 7 , 5221. 3 3 P.Vierling, J.G.Riess, and A.Grand, Inorg. Chem., 1986, 2 5 , 4 1 4 4 7 34 H W Roesky , V W Pogat zki , K ,S Dha t ha thr eyan , A. Thie1 , H .KSchmid t , M. Dyrbu s ch , M.Noltemeyer, and G.M.Sheldrick, Chem. Ber., 1986, 119, 2687. 3 5 I. V Konovalova , L.A. Burnaeva , E G. Yarkova , N .M. K a s h z o v a , and A . N. Pudovik, J . Gen. Chem. U.S.S.R., (Engl. transl. ), 1986, 6, 1094.
28
.
.
.
5,
.. .
..
.
.
2: Pentaco-ordinared and Hexaco-ordinated Compounds 36
37 38 39 40 41
69
B.N.Kozhushko, E.B.Silina, V.V.Doroshenko, N.K.Mikhailyuchenko, and V.A.Shoko1, J. Gen. Chem. U.S.S.R., (Engl. t r m t s l . ) , 1986, 5 6 , 1555. S.A.Terent'eva, M.A.Pudovik, and A.N.Pudovik, J . Gen. Chem.T.S.S.R., (Engl. t r a n s l . ) , 1986, 56, 632. K.Utvary, K.Galle, A,Cowley, and A.Arif, Monatshefte fur Chemic., 1Y86, 117, 1245. M.I.Kabachnik, D.I.Lobanov, N.V.Matrosova, and P.V.Petrovskii, J . Gen. Chem. (Engl. t m s l . ) , 1986, 56, 1297. U.S.S.R., R.G.Cavel1 and L.V.Griend, Inorg. Chern., 1986, g,4 6 9 9 . N.Burford, D.Kennepoh1, M.Cowie, R.G.Bal1, and R.G.Cavel1, Inarg. Chem., 1987, 26, 650. -
Phosphine Oxides and Related Compounds BY B. J. WALKER 1
Introduction
In spite of the detailed studies by Warren and his co-workers, i t has not been possible to conveniently control the stereochemistry o f phosphine oxide-based olefination.
The beginnings of such control
may be forthcoming in the report31 that high stereoselectivity can be introduced in certain cases through modification o f the phosphorus substituents. 2
Preparation o f Acyclic Phosphine Oxides
Full details of reactions of Z - ( d i p h e n y l p h o s p h i n y l ) - 1 , 3 - b u t a d i e n e (2)
(generated by thermolysis of the butadiene (1)) with various
dienophiles have been rep0rted.l
The reactions provide a route to a
variety o f functionalized (1-cyclohexeny1)diphenylphosphine oxides ( 3 ) in moderate to good yields.
The ( 1 - c y c l o b u t e n y 1 ) d i p h e n y l -
phosphine oxide ( 1 ) also acts as a dienophile, forming Diels/Alder adducts (4) with cyclopentadiene (Scheme 1).
The phosphine oxide
(7). and the phosphine ( 8 ) and phosphine oxide ( 9 ) are formed
regiospecifically on basic hydrolysis o f the cyclic tetraphosphonium salts (5) and
(6).
respectively.’
The reaction of 2-butyne-1.4-diol
with chlorodiphenylphosphine. previously reported to give 2 , 3 - b i s ( d i p h e n y l p h o s p h i n y l ) - 1 , 3 - b u t a d i e n e , is now shown to give the
1.4-isomer
This is analogous to a similar reaction with
phenylsulphenyl chloride and presumably involves a double sigmatropic rearrangement (Scheme 2). disappointingly
The diene (10) is
unreactive in Diels/Alder reactions.
The mechanism
of thermal rearrangement o f phosphine (11) to the phosphine oxide 70
3: Phosphine Oxides and Related Compounds
71
iiii
eagents :
I,
Heat ; 1 1 ,
H
‘R2
Scheme 1
n
Ph2P+
+PPh2
W
( 5 ) X = CH=CH ( 6 ) X = CH2CH2
0
0
II
II
Ph2PCk$CHzPPh2
/
X = CH=C H
\
(7)
X = CH2CH2
Y
II
Y
II
PhZPCH,CH,CH2CH,PPh 2
( 8 ) Y = lone pair (9) Y = O
Organophosphorus Chemistry
72
foH
Reagene:
I ,
2 PhZPCL, p y r i d i n e , T H F , 0
OC
Scheme 2
3: Phosphine Oxides and Related Compounds
73
(13). which involves a formal nucleophilic substitution at
phosphorus, has been investigated.
Radical and intermolecular
mechanisms are ruled out by isotope studies and the authors conclude that reaction probably occurs via (12).
A
variety o f amino
acid-derived thiocarbamoylphosphine oxides (14) have been prepared by the reaction of diphenylphosphine oxide with the corresponding isothiocyanates.
The reactions of secondary phosphine oxides with
vinyl halides in the presence o f t e t r a ( t r i p h e n y 1 p h o s p h i n e ) p a l l a d i u m provide a new route to alkenylphosphine oxides. Chi.ral h.p.1.c. on bonded (R)-N-(3,5-dinitrobenzoyl)phenyl glycine has been used to separate enantiomers o f racemic tertiary phosphine oxides on a preparative (about 1 g) scale.’ (2)-(9-Methoxypheny1)phenylvinylphosphine oxide ( 1 5 ) has been
prepared from ( 5 ) - p - m e t h o x y p h e n y 1 ) m e t h y l p h e n y l p h o s p h i n e oxide (Scheme 3 ) and used in the synthesis of a number of novel, optically pure phosphine ligands (e.g. - 16, Scheme 4 ) . 8 3 A
Preparation of Cyclic Phosphine Oxides.
potentially useful new route to the phosphirane oxide (18) has
been reported.’
Reaction of the a-bromoalkylphosphine oxide (17)
with base gives ( 1 8 ) and the olefinic by-product (19).
The
of stereochemistry of (18) was deduced from the (Z)-stereochemistry -
(19) (which is presumably derived from allowed conrotatory
ring-opening of (18)) and from the product of a Pummerer reaction of (18).
Oxidation o f P-tertbutyl- and P-phenyl 9-phosphabicyclo-
[6.1.0]nona-2,4,6-trienes (20) with peroxide offers a route to
phosphonin oxides (22) . l o However, these last compounds undergo intramolecular cyclization at 2S0C to give trans-3a. 7a-dihydrophosphindoles (23).
Oxidation of (20. R=Ph) with oxygen provides
instead anti-9-phenyl-9-phosphabicyclo[4.2.l]nona-2,4,7-triene-9oxide ( 2 4 ) .
the structure of which is supported by an X-ray analysis
74
Organophosphorus Chemistry
i
+
PhIty-Mc
0 I , I I
Me-S-Ph
~
II
I
I
AT
Reagents :
I ,
1 1 ,
CuCl
;
I I I
,
xylene
I
reflux
Scheme 3
0 (15)
-b
It
(PhDy-CCH2CHZ),PPh I
AT Ph
4
AT
Reagents :
I ,
NMe
J
b’
LDA ;
II
8
Ar
OMe
=
II
P h m P -CCH2CH2-S-Ph
NMc
Ar
0
II
PhPHZ, KOH, R T , 5 h ;
II
I
H S I C L ~ ,R 3 N
Scheme C
, MeCN
Ill
75
3: Phosphine Oxides urid Related Compounds of a phosphine derivative.
Attempts to stabilize either the
phosphonin structure (22) o r the phosphirane structure (21) by steric effects have also been reported.” 2,4,6-tri(tertbutyl)phenyl
Oxidation of the
substituted triene (25) with tertbutyl
hydroperoxide gave the corresponding phosphonin oxide (26) which slowly decomposed to give cyclooctatetraene; possibly by retrocycloaddition through elimination of A r P = O .
Apart from
reporting only the second example o f a phosphirane oxide, this paper also contains useful and interesting 31P and l 8 O n.m.r. chemical shift data. Reactions of aryl and alkyl dialkylphosphinites with dimethyl acetylenedicarboxylate followed by treatment with hydrogen bromide give various amounts o f phosphole oxides (27).12
These last
compounds are difficult t o isolate from the reaction mixture. partly because they readily add water to give the phospholenes (28) (Scheme 5).
Various stereoisomers of hydroxyphospholane oxides
(29)
have
been obtained from the reaction of 1,4-diketones with phenylphosphine. l 3 The a n t i - 7 - p h o s p h a n o r b o r n e n e
phosphinite (30) is
converted stereospecifically to the corresponding syn-7phosphanorbornene oxide (32) by an Arbusov reaction with the appropriate alkyl halide.14
The phosphinite (30) and the
corresponding chloride ( 3 1 ) are both converted, by hydrolysis at
room temperature, to the secondary phosphine oxide
(33).
Phosphorin
sulphides (35). generated by thermolysis of the 1-phospha-2thiabicyclic compounds (34). can be trapped with dienophiles to give 36 1. l5 phosphine sulphides (3.
The hexaoxide ( 3 8 ) has been obtained from the remarkably air-stable hexa(tertbuty1)octaphosphine (37) by oxidation with peroxides o r peracids at room temperature.16
76
Organophosphorus Chemist?
(201 R = P h , But
Ph
O4
(23)
(24)
( 2 5 ) X = \one pair
(26) X = 0
Reagents :
‘R
I,
M c O Z C C E CCOZMe ; ii , H Br ;
III
, H20
Scheme 5
77
3: Phosphine Oxides und Relared Compound.$
(291
-
X .Op
Ph \
p//o
R I
X = OMe
Me*Me
\'40
N Me
(301 X = OMe (31) X = CI
(32 1
78
Organophosphorus Chemistry
3 . Structure and Physical Aspects An ab initio study o f the tautomeric equilibrium (39) has been reported.17
Generally the results are somewhat different from those
expected by comparison with experimental observations; this is rationalised in terms o f solvent and substituent effects.
Ab initio
calculations have been carried out on F P = O (in the gas phase) and the report includes an investigation. by mass spectrometry and infrared, o f the same molecule isolated in an argon matrix.18 The conformation of 2-phosphorus-substituted-1.3-dithiane derivatives
(40)
has been studied using 1 3 C n.m. r . spectroscopy.”
The results indicate that the axial preference is Ph2P(S)>Ph2P(0) and are explained by a combination of the anomeric effect and the relative bulk and electronegativities of sulphur and oxygen.
Other
applications o f n.m.r. include investigations of the isomerisation
of 2-thioxo-(41) and 2 - s e l e n o - ( 4 2 ) - 2 - p h o s p h a b i c y c l o [ 4 . 4 . O l d e c a n 5-ones in the presence o f acid and base by 31P n.m.r.” and the nuclear shielding o f selenium in phosphole selenides by 77Se n.m. r . 21 Although previously reported as the arsin oxide structure (43).
X-ray structural and spectroscopic investigations now show that the compound actually exists as an arsorane-type s t ~ u c t u r ein the solid state and in dilute solution.22
The conformational equilibria of
various phosphine oxides has been investigated using calculated and experimental dipole moments. 23 5
Reactions at Phosphorus
Attempts to use silanes to reduce the dimer (44) of Z-phenylisophosphindole oxide to the corresponding phosphine (which is a potential precursor of the isophosphindole system) lead instead to carbon-carbon bond cleavage and formation of the diphosphine monoxide (45).24
An n.m.r. study of the interactions of
3: Phosphine Oxides and Related Compounds
R
79
\
( 3 7 ) X = lone p a i r
138) X - 0
H,P=X
H,P-X-H (391 X = O , CH2
X
pTPPh* y-S
X = O , S
phm Ph
II
(LO) Y = Me2C, S
NH
, CH,
H S I C ~ ~
PY 25
O C
x
80
Organophosphorus Chemistry
d i b e n z [ c , f l [ l , 5 1 a z a p h o s p h o c i n e 12-oxide derivatives ( 4 6 ) and ( 4 7 )
with thionyl chloride or dimethyltertbutylsiloxytriflate indicates that transannular species (e.g. - 4 8 , R=Me) are formed.Z5
Photo-
induced cleavage of acylphosphine oxides ( 4 9 ) has been shown by chemically induced dynamic electron polarisation to involve a Type I reaction.2 6 6
Reactions at the Side-Chain
The reaction of ketones with the lithio derivatives of allyl-(50) or (l-buten-3-~1)-(51) diphenylphosphine oxide provides a convenient synthesis o f 1.3-dienes with high (E)-stereoselectivity. 27 -
An
approach based on Whitham's method of interconverting alkene isomers
via their epoxides provides the first viable synthesis o f (E,E)-1,5-cyclooctadiene ( 5 4 ) (Scheme 6)
The diastereomeric
phosphine oxides (52) and ( 5 3 ) were separated and then identified by formation of their (-1-menthoxyacetic esters.
Fortunately only the
oxide ( 5 2 ) gives a volatile alkene on base treatment, hence separation of ( 5 2 ) and (53) is not required for the synthesis of (54).
The reactions of (a-1ithioalkyl)diphenylarsine oxides ( 5 5 )
with electrophiles have been investigated and provide routes to a variety of organoarsenic compounds. 29
Reduction of arsine oxides
and treatment with halogens leads t o A s - C bond cleavage and hence a synthesis of a variety of halogen compounds (Scheme 7).
The
reaction of ( 5 5 ) with certain carbonyl compounds is highly stereoselective. for example benzaldehyde gives almost exclusively the erythro-adducts (56).30
(a-Lithioalkyl )diphenylphosphine oxides
( 5 7 ) on the other hand generally show low stereoselectivity on
reaction with carbonyl compounds.
However, Kauffmann has now
shown31 that the introduction of an ortho-substituent in the phenyl groups of ( 5 7 ) greatly increases diastereoselectivity in these reactions, for example, reaction of ( 5 8 ) with benzaldehyde
3: Phosphine Oxides and Related Compounds
81
0
Cl
( 4 6 ) R = Me
( d 81
I
II
( 4 7 )R = Ph
Is
Ar, P C O A r
Scheme 6
82
Organophosphorus Chemistn
0
ll
Ph As
'PR'
0
0H
II,llI
/C--- H Ho \Ph
II
Ph2AsC(Li)HR' 4 (55)
Reagents : I , R2X ;
11,
PhCHO;
III
, H20
;
I V ,
L I A I H ~; v
-
Scheme 7
0 II
(58) Ar =
2
OMe
@,
0
PhCHO
Ar2PC(Li)R
(57)Ar: P h
,x2
R=Pr"
R'
R'
UMe
OMe
(60)
0
II
R ~ L I
t
(611 0
Ph2!
ph2pYsR
SR
R'
II
wSR
Ph2P
-
83
3: Phosphine Oxides and Related Compounds gives the ervthro-adduct (59) exclusively.
This has obvious
implications for the use of phosphine oxides in olefin synthesis as well as for the mechanism of the Wittig reaction.
Of further
interest is the increase in selectivity towards other aldehydes caused by changing lithium to chromium or titanium as the counter ion in (57). The carbanions
(60).
derived from a-methoxyallylphosphine
oxides. react with Si, S and P electrophiles to give the products (61) of y-attack highly regioselectively in almost all cases. 3 2 Full details have appeared of the generation o f the a-thioalkylphosphine oxide carbanions (63) via - nucleophilic addition to a-thiovinylphosphine oxides
( 6 2 ) . 33
The reactivity,
particularly the regiochemistry, of y-thioalkylphosphine oxide carbanions
(64)
has also been reported.
The enolate
(66)
formed o n
reaction of (E ) - b u t - 2 - e n y l d i p h e n y l p h o s p h i n e oxide carbanion
(65)
with 2-methylcyclopent-2-enone can be trapped by vinyl sulphones to give ( 6 7 ) highly stereoselectively and in excellent yield. 34 phosphine oxides (66)
(68)
The
and (70) (which are formed in a similar way to
from the reaction of cyclopenten-3-one with the carbanions of
(E)- and
(Z)-(but-2-eny1)diphenylphosphine
oxides, respectively) can
be cyclized stereospecifically to the bicycloheptanes
(69)
and (71)
or, in the case of (70). to the bicyclooctanol (72) (Scheme 7
Phosphine Oxide Complexes and Extractants
The structure of the stable complex (73) of triphenylphosphine oxide with 5-methyl-6-phenyl-l,2,3-oxathiazin-4(3H)-one 2.2-dioxide has been investigated by X-ray and n.m. 1:. spectroscopic methods.36 Trimethyl- and triphenylphosphine oxides have been used as probe molecules in studies o f adsorption sites on surfaces by 31P n.m.1. spectroscopy. 37 Diphenylphosphine oxide platinum(I1) complexes (75) are
Organophosphorus Chemistry
84
(701
(711
0
0
\IL @IPh2 \
v
'H H Me (72)
Reagents :
I
K O B u t , THF
pp"2
,
RT ;
/ \PtU2
cH2\ p /
Ph2
II
- 78
L D A ,THF
-
OC
0
II
Ph2P
NoOH
NH 3
:2
\ / \
/Pt\,/Pt\ Ph2McP
PMePh,
/
PPh2 H2
I/ 0
3: Phosphinr Orities arid Relutetl Conipounds
85
reported to be formed on reaction of the phosphine complex (74) with sodium hydroxide in
Uses
of phosphine oxides and
sulphides in the solvent extraction of metals include the use of tri(isobuty1)phosphine and triarylphosphine sulphides in the extraction of Pd( I I I 3 ’
and Hg( 1 1 ) ,40 respectively, from hydrochloric
acid. REFERENCES T. Hinami, T. Chikugo, and T. Hanamoto, J . Org. Chem., 1986, 1. 2210 2. H. Vincens, J.T.G. Moron, R. Pasqualini, and U. Vidal, Tetrahedron Lett., 1987, ;rS, 1259. T. Pollock and H. Schmidbaur, Tetrahedron Lett., 1987, 28, 1085. 3. 4. P . Beak and D. Loo, J. Am. Chem. SOC., 1986, 108,3834. 5. U. Kunze and R. Burghardt, Phosphorus Sulfur, 1987, 29, 373. Y. Xu. J. Xia, and H. Guo, Synthesis, 1986, 691. 6. 7. A. Tambute, P. Gareil, H. Caude, and R. Rosset, J. ChromatoKr., 1986, 363, 81. 8. C.R. Johnson and T. Imamoto, J . OrK. Chem., 1987, 52, 2170. 9. T. Oshikawa and H . Yamashita, Bull. Chem. SOC. Jpn., 1986, 59, 3293. 10. L.D. Quin, N.S. Rao, R.J. Topping, and A.T. UcPhail, J. Am. Chem. SOC., 1986, 108,4519. 11. L.D. Quin, E-Y. Yao. and J. Szewczyk, Tetrahedron Lett., 1987, 28, 1077. 12. J.C. Caesar, D.V. Griffiths, and J.C. Tebby, Phosphorus Sulfur, 1987, 29, 123. 13. V.I. Vysotskii and H.F. Rostovskaya, Zh. Obshch. Khim., 1986, 56, 1046 (Chem. Abstr., 1987, 106,84731). 14. L.D. Quin and G. Keglevich, J. Chem. Soc.. Perkin Trans.2, 1986, 1029. 15. H. Tanaka and H. Hotoki, Bull. Chem. SOC. Jpn., 1987, 60, 1558. 16. H. Baudler and J . Gemeshausen, Agnew. Chem., Int. Ed. Engl., 1987, 348. 17. H.T. Nguyen and A.F. Hegarty, J. Chem. SOC.. Perkin Trans.2, 1987, 47. 18. R. Ahlrichs, R. Becherer, H. Binnewies, H . Borrmann, H. Lakenbrink, S. Schunck, and H. Schnockel, J. Am. Chem. SOC., 1986, 108, 7905. 19. H. Hikolajczyk, P. Graczyk, and P . Balczewski, Tetrahedron Lett., 1987, 28, 573. 20. Yu. G. Bozyakov, G.P. Revenko, and A.P. Logunov, Zh. Obshch. Khim., 1986, 56, 1973 (Chem. Abstr., 1987, 107, 59107). 21. D.W. Allen and B.F. Taylor, J. Chem. Res., Synop., 1986, 392. 22. H.K. Bathla, S.S. P a m a r , H.K. Saluja, A.H.Z. Slawin, and D.J. Williams, J. Chem. SOC.. Chem. Cormnun., 1987, 685. 23. 1.1. Patsanovskii, E.A. Ishmaeva, E.N. Sundukova. A . N . Yarkevich, and E.N. Tsvetkov, Zh. Obshch. Khim., 1986, 5 6 , 567 (Chem. Abstr., 1987, 107, 84724). 24. L.D. Quin and F.C. Bernhardt, 3 . O r g . Chem., 1986, 3235. 25. K. Akiba, K. Okada, and K. Ohkata, Tetrahedron Lett., 1986, 21, 5221. 26. J . E . Baxter, R.S. Davidson, H.J. Hageman, K.A. Hclauchlan, and D.G. Stevens, J. Chem. Soc., Chem. Commun., 1987, 73. 27. Y. Ikeda, J. Ukai, N. Ikeda, and H . Yamamoto, Tetrahedron, 1987, 4 3 , 723. 28. D. Boeckh, R. Huisgen, and H. Noth, J. Am. Chem. S o c . , 1987, 109, 1248. 29. T. Kauffmann, R. Joussen, and A. Woltermann, Chem. Bet-.,1986, 119, 2135. 30. T. Kauffmann, G. Kieper, and N. Klas, Chem. Ber., 1986, 119, 2143. 31. T. Kauffmann and P. Schwartze, Chem. Ber., 1986, 119, 2150. 32. D.K. Devchand, A.W. Hurray, and E. Smeaton, Tetrahedron Lett., 1986, 1, 4635.
a,
a,
a,
86
Orgunophosphorus Chemistrv
33. J.I. Grayson, S. Warren, and A.T. Zaslona, J . Chem. SOC.. Perkin Trans.1, 34. 35. 36.
1987, 961.
J . Chem. SOC., Chem. Commun., 1987, 92. R.K. Haynes and A.G. Katsifis, J . Chem. S O C . , Chem. Comun., 1987, 340. M.C. Etter. R.D. Gillard, W.B. Gleason, J.K. Rasmussen, R.W. Duerst, and R.B. Johnson, J. Org. Chem., 1986, S l , 5405. 37. L. Beltusis, J . S . Frye, and G.E. Maciel, J. Am. Chem. S O C . , 1986, E,
38. 39. 40.
R.K. Haynes and S.C. Vonwiller,
7119. N.W. Alcock, P. Bergmini, T.J. Kemp, and P.G. Pringle, J. Chem. S O C . , Chem. Comun., 1987, 235. Y. Baba, H. Ohshima, and K. Inoue, Bull. Chem. S O C . J p n . , 1986, 59, 3829. Y . Baba, Y. Umezaki, T. Ueda, and K. Inoue, Bull. Chem. S O C . Jpn., 1986, 59, 3835.
4
Tervalent Phosphorus Acids BY 0 . DAHL
Introduction
Proceedings of the 10th International Conference on Phosphorus Chemistry, Bonn 1986, have been published. The conference covered all areas of phosphorus chemistry, including several papers on tervalent phosphorus acid chemistry. The same holds for the proceedings from a more specialised meeting, the 7th International Round Table on Nucleosides, Nucleotides and Their Biological Applications, Konstanz 1986.2 Reviews of interest f o r this chapter include one by Schmidpeter on preparative routes to two-co-ordinate azaphospholes and some of their characteristic one by Arduengo I11 on some 10-P-3 and similar pnictogen c o m p o ~ n d s ,and ~ two by Pudovik, one on reactions of tervalent phosphorus acids derivatives with 1-nitro-1-alkenes, the other on reactions of isocyanato- or alkylideneamino-phosphine derivatives with compounds containing multiple bonds.
reaction^,^
2 Nucleophilic Reactions
2.1 Attack on Saturated Carbon.- A kinetic study on the Arbuzov reaction in propylene carbonate, using a conductivity method, gave reliable kl and k2 values for several compounds (1).7 Triethyl trithiophosphite ( 2 ) reacts slowly with methyl iodide at room temperature to give the normal Arbuzov product.8 This is contrary to earlier results of high-temperature reactions where 87
88
x\ Y’
P-OMe
+
-
+ ,Me
X,
kl
Me1
P
Y’
( 1 ) X . Y =OMe.Et , P h
lk2 X
\ p 40
Y/
‘Me
0 PhP(OR),
t
6rCH2C=CH
II
--j
1-
‘Me
PhP-CH2CECH
I
+
R
Me1
+ PhP-CzCCH, I
+
4: Trrvalent Phosphorus Acids
89
ethylthio groups were substituted. An example of concomitant substitution and Arbuzov reaction is found for reactions of some 4 9 chlorobutyramides ( 3 ) with triethvl phosDhite. Dialkyl phenylphosphonites (4) with 3-bromopropyne gave mixtures of the normal Arbuzov product ( 5 ) , with the rearranged products (6), ( 7 ) , and (8).l0 Phosphinothricin ( 9 ) and the corresponding phosphonic acid (10) have been prepared by classical Arbuzov reactions. A phosphonate analogue (11) of a bacteria membrane component CMP-KDO has been prepared, the key reaction being 12 an Arbuzov reaction with a $-lactone (12). 2.2 Attack on Unsaturated Carbon.-Low-temperature addition of triethyl phosphite to ally1 ironcarbonyl complexes, e . g . (13), proceeds regio- and stereospecifically to phosphonium salts (14) which are easily converted to Z-alkenylphosphonates;l3 similar reactions occur with hexadienyl ironcarbonyl complexes. Tetraethyl acetylenediphosphonate (15) may conveniently be prepared from ( 16 ) , thereby avoiding dichloroacetylene.l4 Trialkyl phosphites and a-halogenoketones in alcoholic media give varying amounts of vinyl phosphates like (17) in aprotic media, but a-hydroxyphosphonates (18) are formed instead of 8-ketophosphonates. l5 A mild procedure to prepare bis( 1-hydroxyalky1)phosphinic acids (19) is from bis(trimethylsily1oxy)phosphine (20).l6 The intermediate (21) is converted in s l t u to the ter-
valent ester by trimethylsilyl chloride. The preparation of 1-aminoalkanephosphonic acids from protected ammonia, an aldehyde, and a phosphite is well known: a series of aminoarylmethanephosphonic and phosphinic acids have been similarly prepared, using thiophosphoric amides as the ammonia donor. l7 Phosphites and phosphonites containing g-acetyl or g-formy1 groups are unstable towards cyclisation, e.g. (22) gives
(24): the _o-acetyl analogue (23) , however gave ( 25). l8 Triethyl trithiophosphite reacts with benzaldehyde to give in part a 1:l addition product ( 26 ) .l9
2.3 Attack on Nitrogen, Chalcogen, or Halogen.- Tervalent phos-
phorus acid chlorides, e.g. (27) or (28), are difficult to oxidise with high yields: ozone has been reported to be an ideal reagent for this. 20Phosphoro fluoridates ( 29 ) are obtained pure in high yields by fluoridation of the silyl phosphites (30) with sulphuryl chloride fluoride.21
Orgunophosphorus Chemistry
90
HOOC
-!
0
NH2
-R
OH
( S ) R = M e (10)R=OH
HO
HO HO (11)
(13 1
(14)
zoo c NaHC03
4: Tervalent Phnsphoru.q .4cids
dRk0 (Me,SiO)zPH
OSiMe3
I
OSiMe3
I
MqS i CI
R1R2C-P(0)OSiMej
I
R1$C-P(OSiMe3)2
H
(20)
(24)
(21)
(25)
(22) R =H ( 2 3 ) R =Me
PhOPCl2
(28)
92
Organophosphorus Chemistp A detailed mechanistic study on the thermal reaction of triethyl phosphite with carbon tetrachloride concludes that the mechanism is nucleophilic attack on C1 (SN(C1)), and not a radical reaction ( SRNl) .22 Triethyl trithiophosphite ( 31 ) probably also reacts with carbon tetrachloride by an ionic mechanism, however sulphur seems to be the more halophilic center. When one ethylthio group is substituted with a diethylamino group, as in ( 32 ) , phosphorus has again the higher nucleophilicity.23
3 Electrophilic Reactions 3.1 Preparation.- A simple method €or the preparation of methyl phosphorodichloridite ( 33 ) has been described: 24 the best yield of (33), 55%, was obtained when trimethyl phosphite and phosphorus trichloride were mixed in a 1:l molar ratio. Tris(t-butyldimethylsilyl) phosphite (34) has been prepared and used f o r the preparation of alkyl phosphonates by Arbuzov reactions.25 The intermediate disilyl phosphonates derived from (34) are more hydrolytically stable and therefore easier to purify than those prepared from tris(trimethylsily1) phosphite. A convenient, high yield synthesis of aminomethanephosphonic acid (35) has been described from N-hydroxymethylbenzamide, trimethyl phosphite, and phosphorus trichloride.26 A series of tervalent phosphorus acid derivatives of substituted ethylenediamine ( 36 ) , 2-aminoethanol ( 37) and ( 38 ) , or l12-ethanediol (39 ) have been prepared, in order to study donor-acceptor interactions between the 2-substituent and p h o s p h ~ r u s .In ~ ~ one case a stable complex ( 4 0 ) was formed and characterised by X-ray crystallo-
graphy. Recent interest in myo-inositol 1,4,5-triphosphate (41) stems from the discovery that it is a secondary messenger f o r intracellular calcium release. The triphosphate and several analogues have been prepared via phosphites, using (42) followed by 3-hydroxypropionitrile,2 8 (43 1 , 29 or ( 441. 30 Some new acetylenebisphosphonous acid derivatives (45) and (46) have been prepared as shown, and an X-ray structure determination made on ( 45 ) , R2N = morpholinyl.31-The unstable tetrafluoro derivative (47) could not be prepared from (46) but was obtained from the tetrachloro analogue.31 Tervalent phosphorus acid iodides (48)react readily with aldehydes or ketones in the presence of triethylamine to give vinyl phosphites ( 49 ) 32 Similar s
4: Tervalent Phosphorus Acids
(RO)2P-OSiMe3
+
93
S0,CIF
( 3 0 ) R = Et ,CF3CH2,Pri.Ph
+
(EtS),P
CCI4
(31) EtSCI
4-
(31)
+
(EtS),P-NEt,
CCL,
-
-
(EtS)ZP-CCL3
(EtS),PCl EtS, P-CI Et,N
/
+
EtSCl
EtSSEt
+
EtSCCI,
Me
Me
(36)
+
[PhCONHCH2O-P(0-)2]
PhCONHCH20H t PC13 + ( M e 0 I 3 P
Me2NCHzCH2NSiMe3 4-
Me,SiCI
(29)
(32)
I
+
(R0)2P(0)F t SO,
I
PCl3
4
Me
[ M~NCH~CH~N-PCIZ]
J
I
[;,PCI N\
'
Me ' M e
CI-
94
Organriphosphorus Chemistry
Me I MeOCHz CH, NSiMe,
Me NCH CH,OS i Me,
MeOC H2C H, OSiMe
(38)
(37)
(39) CI
'
NCCHzCH20P'
(NCCH, CH20)2PCI
NPri2
(45) t
F\ PC W P , NF
AsF~
F2PCSCPFz
R t N' NR2 ( 4 6 ) R,N = E t , N , O ~
X2PI
+
r t
R'COCHRtR3
( 4 8 ) X = EtO,BuO,EtzN
Et3N
(47)
N
R' I
X2P-O-C=CRZR3
(49)
4: Tervuknt Phosphorus Acids
95
reactions of dialkyl phosphorochloridites with cx,p-unsaturated
ketones give butadienyl phosphites, e . g . (50).33 Two papers have appeared which describe the preparation and properties of some trialkyl 34 or triaryl 35 trimetaphosphites (1,3,5,2,4,6-trioxatriphosphorinanes) (51). The alkyl substituted compounds are easily hydrolysed in contrast to the hindered aryi compounds, and the crystal structures of (51), R1 = Me and But, have been determined.35 A series of benz-l,3,2-dioxaphospholens ( 52 ) have been prepared by standard methods. 36 More interesting are the results of hydrolysis of (521, X = C1 or NR2, where the normal secondary phosphite (53) is formed, with no 31P n.m.r. evidence for the presence of the earlier postulated tervalent tautomer ( 54 1. 36 Hydrolysis with less than one equivalent of water gave (55), and probably the 31P n.m.r. signal for this compound (120 ppm) was previously taken as evidence f o r the presence of (54). The secondary phosphite (53) is spontaneously hydrolysed by moist air to (56). The reaction of 2-butyne-1,4-diol with chlorodiphenylphosphine has been reinvestigated. The product is the 2,3-bis(diphenylphosphinoyl ) -l13-butadiene ( 57) instead of the 1,4-isomer.37 The proposed mechanism is a double [2,31-sigmatropic rearrangement of the bisphosphinous ester (58). Phosphitylation of carbaxamides (59) with dialkyl phosphorochloridites gave products of N- o r 0attack depending primarily on the R3 s u b ~ t i t u e n t .Both ~~ compounds rearrange to (60) upon heating, the enol phosphite being the least stable; the rearrangement is catalysed by amine hydrochlorides. Similar products are obtained as a result of N- or Sattack on thioamides.39 Tetrachloromethylenebisphosphine (61) with primary amines gave l12,4-azadiphosphetidines ( 62 ) 40 These polymerise on heating, but a thermally stable compound (64) was obtained via the very labile (63). Similar reactions of methylenebisphosphines (61) or ( 65 ) with hydrazine or 1,2-dimethylhydrazine gave l12,3,5-diazadiphospholans ( 66 ) - ( 69 ) ;41 with phthalohydrazide compounds analogous to (66) and (67) were also prepared. An X-ray structure analysis of (68), R = But was made and showed an all-trans configuration of the substituents.41 The phosphorus trichloride-aniline system is still being examined for new compounds, and (70)or (71) was the main product under slightly different conditions;4 2 the structure and Configuration ( a l l - e ) of (70)have been established by X-ray crystallography. Benzene-1,2,3-triamine (72) with tris(dimethy1amino)phos-
.
Organophosphorus Chemist?
96
OR
( 5 2 ) X=CI,OR.NR,
(53)
boH
+ H20
'H
(56)
2 Ph2PC\
+
b o \ P 0' - O H
p//o
H O '
(54)
HOCH2C=CCH20H
R2
I ( R10)tP-N-COR3
(R'O)2PCI
+
"=Y R2NHCOR3
0 R3 II I (~'0 P-C=NR~ )~
4: Tervalent Phosphorus Acids
97
R
Et2NH
(63)
-
H
R
\
But
I
II
Et2N-PflN\P-NEt2
/
Y-7
P
Me
\
H
" \R P
(68)
N-N
I
CI
/
/
CI-P
v
MeNHNHMe
/
CH3COCI
But
(64)
(61)
1
But
N\
v P-CI
(63)
Me Me NHN HMc
\
,pvp\ CI
''
' R
/
Cl
PCH2 P
\
MP I
____c
R
( 6 5 ) R = P r ' , But
,Me
N-N
McNHNHMe
\
% @ ,,
R
R
(69)
98
Orgunophosphorus Chemistry phine gave the first linear A3-tetraphosphazene (73), which has been characterised by X-ray crystal structure analysis of its tetrasulphide.43 The first examples of 1,2-dihydro-l,2-h3-azaphosphorines ( 74 )
have been prepared and characterised.4 4 2-Chloro-l,3,2-dioxaphospholan (75) has been recommended for preparation of N,N'-diarylureas as shown.45 The synthesis of pyrroles from N-alkylhydrazones, or indoles from N-arylhydrazones, using phosphorus trichloride, has been studied.4 6 In both cases 1,2,3-diazaphospholes (76) or (77)are intermediates.
3.2 Mechanistic Studies.- Two papers have appeared which address the stereochemistry of substitution reactions on phosphorus in anti-7-chloro-7-phosphanorbornene derivatives (78). Contrary to results for most other systems, the reactions of (78) with methanol, 2,2,2-trichloroethanol, methoxide or phenoxide ions, or water gave products with complete retention,47 like previously described reactions of (78) with Grignard reagents or bromide ions, but secondary amines gave mixtures of stereoisomers.4 8 The stereochemical assignments were based mainly on 3Jpp and 2Jcp coupling constants which are very sensitive to the phosphorus lone-pair orientation. An addition-elimination mechanism (Scheme 1) was proposed to explain the stereochemistry. By using the usual preference rules for Berry pseudorotations, i - e . a small ring prefers an apical-equatorial position, and a more apicophilic group lowers the energy of a phosphorane with this group at the apex, the retention for anion nucleophiles (lone-pair in place of H in Scheme 1) is explained, since a lone-pair has a very low apicophilicity, and therefore 'tCl should not occur. The difference in stereochemistry for alcohols and amines was explained by the low apicophilicity of NR2 which, contrary to O R , would allow phosphoranes with apical H to compete and thus give some inversion. This latter explanation seems less satisfactory since both OR and NR2 are less apicophilic than H. However, other reasonable mechanisms for the puzzling stereochemical results, e . g . exchange of substituents or thermal isomerisations, seem ex-
cluded by additional experiments. The rates of reaction of nucleoside phosphoramidites (79) with a protected nucleoside ( 8 0 ) , catalysed by tetrazole, have been measured to study the influence of different substituents at p h o s p h o r u ~ .The ~ ~ rates are as expected for the R1 substituents ( s e e diagram), but the variation with the amino substituents does
4: Tervulent Phosphorus Acids
MezN NH2
\
y e 2 P-
N-P
R
I
Ar NH2
_ . )
Me
(74)
I
(75)
NHAr I
co I
Ar NH2
COZ
OCONH Ar
c---
NHAr
R1\ /
C=NNHR~
+
PhCH2
Ph
+
(77)
PC13
Ph
Ph
Organophosphorus Chemisrry
2”?, 0”
Nu
+
HNu
+
‘NR
( 7 8 ) R = M e , Et
ROH , RO- 100% Rz NH 50 -70%
H
Nu
I
P’
CI
1-
* ”CI
CI
Nu
/’ \p H
.=
Nu
‘P’
tention
Scheme 1
4: Tewalent Phosphorus Acids
10 I
not follow the leaving group ability, as was found in earlier model experiments. Additional results, e - g . of inhibition by tetrazolide anions (81), were used as evidence for the proposed mechanism (Scheme 2), in which tetrazole is both an acidic and a nucleophilic catalyst.
3.3 Use for Nucleotide, Sugar Phosphate, o r Phosphoprotein Synthesis.- This year quite a number of new tervalent phosphorus reagents have been introduced for the preparation of modified oli-
gonucleotides, besides several new reagents for regular oligonucleotide synthesis. The same or similar reagents find increasing use for preparation of sugar phosphates or phosphoproteins; the three topics are therefore treated together in this chapter. Several dialkyl phosphoramidites have been prepared and used for phosphorylation purposes: these include ( 8 2 1 , 50r51 (83),50 (84),50 ( 8 5 ) , 5 2 (86),53 and (87),54 which all gave phosphoric acid monoesters after oxidation and deblocking. In case of ( 8 4 ) and (85) the presence of benzyl groups influenced the oxidation procedure: the usual agent, iodine/water/lutidine, gave low yields of phosphates, but peracids, e.g. MCPBA, were satisfactorY. 5 0 r 5 2 The reagents ( 8 2 ) , (83), ( 8 6 ) , and (87) have been used to 5'-phosphorylate protected oligonucleotides on a solid support, and (84) and (85) to phosphorylate hydroxy groups of amino acids or a peptide. Other dialkyl phosphoramidites used for 5'-phosphorylation of protected oligonucleotides on solid supports are ( 88), 55 (89) ,56 (go),57 and (91). 58 These on deblocking give 5'-phosphodiesters with a free functional group on the end of an alkyl chain: the functional group can be used to attach e.g. biotin or fluorescein to the oligonucleotide for marker purposes. The dialkyl phosphorochloridites ( 92 )59 and ( 93 ) 6o have been used to phosphorylate N-protected amino acids and nucleosides, respectively. The "salicylchlorophosphite" (94) introduced last year for preparation of nucleoside H-phosphonates is also very useful to prepare anomerically pure a-glycosyl phosphates,61 a( 16) glucosamine 'phosphodiesters,6 2 and nucleopeptides,63 v i a the corresponding H-phosphonates. Tyrosine H-phosphonate, however was better prepared using (95).63 The cyanoethyl phosphorodiamidite (96) finds increasing use in the preparation of nucleoside phosphoramidites. Two improved preparation procedures for (96) have appeared,50f 6 4 as well as a full paper on DNA synthesis using (96) and the in s i t u
Organophosphorus Chemistn
102
DM70v
OM T
HO
+
0
‘
P-NR
R’ 0’
0
C Y CN
-0
‘P
R’O’
0
\
2
(79)
SiBu‘ Ph2
O\
(80)
Me
I
R ’ = M e > CH2CH2CN > CHCH,CN > CCH2CN I >> Me
NR2,= NEt2 > N P r i 2 >
N’O
N
n
0 >
LJ
NMePh
H
\
P
- NR,,
N’O
\+/
+
a CI
Me
I
H
P
/ \
R’O
R’O
N’ 0
+
NR22
H
\
/N\N
/
N-N
R‘ 0
Scheme 2
SiBu‘Ph2
4 : Ter vulrnr Phosphorus A d s
(82)
1
CI
DMTOCH2 CH 2 SO2 CH 2 CH2 0
CH20
Ph 3 C SCH2 C H2 0
\
/
120
\
/
\
P- NP rI2
NC CH2 CH2 0
CF,CONH(CH,
(84) R = P r ' ( 8 5 ) R = Et
P-N
/
Me0
n 0
=
MMTNH(CH2)3 0
\
P-NPr ' 2
NCCHzCHz 0
/
P-NPr
'2
Me0
(88)
(89)
MeOCO(CH2)110
DMTO( CH2) 3 0
\
\
P-NPrI2
/
RO
(90) R=Me.CH2CH2CN
(RO)? PCI (92) R =Me.Et.Ph
/
Me0
(91)
P-NPr
l2
104
0r~anc~phosphoru.s Chemistry
approach,65 and two papers on its use for RNA The similar, but more sterically hindered, reagent (97) has been used to obtain 3',5'-deoxynucleotide dimers unprotected at the 3'-OH group, and for preparation of oligomers by phosphoramidite solution chemistry. 68 The methoxy analogue (98) has been applied in the synthesis of ribonucleoside phosphoramidites.69 Several alkyl phosphorodiamidites (99) have been prepared as shown and used without purification to prepare deoxynucleoside phosphoramidites.70 The ethyl phosphoramidochloridite ( 100) has been used to prepare deoxynucleoside ethyl phosphoramidites; these enabled the synthesis of dimers and a DNA-fragment which after deblocking contained a phosphotriester linkage.71 A new method to prepare oligonucleotides, employing thiophosphites, has been introduced.7 2 The new monomer units, nucleoside thiophosphites ( 101), are prepared from ( 102), and (101) activated for coupling by an excess of iodine in pyridine. Oxidation to (103) occurs on subsequent addition of water. The coupling rates are high, and the cyanoethyl thiophosphites ( 104 ) 7 3 gave coupling yields approaching those of phosphoramidites. The relatively new H-phosphonate method continues to be developed. Monomers (105) have been prepared using tris(l,2,4-triazolyl )phosphine ( 106), 74 or the previously described trisimidazolide (107),75r76 The method has been used for DNA74r75 as well as RNA76 synthesis, and some mechanistic studies have appeared concerning activation34 and adverse effects of premixing H-phosphonate and catalyst.77 The formation of (108) and (109) from H-phosphonates and their use to prepare phosphonate derivatives have been described.77 A solid support synthesis of a sugar phosphate tetramer, a teichoic acid, has been achieved using (110) as a building block. 78 Protected deoxyguanosine derivatives react with ( 111 ) , which is a likely impurity in standard reagents used to prepare phosphoramidites, to give ( 112). 79 Miscellaneous.- The photochemical and thermal behaviour of some new phosphorus azides ( 113) has been studied.8o The primary product of photolysis, the phosphanitrile (1141, is unstable towards oligomerisation or rearrangement, but may be trapped with trimethylsilyl chloride. The g-metallated aryl phosphorodiamidi81 tes (115) rearrange spontaneously to (116). 3.4
4: Tervalenl Phosphorus Acids
I05
Me
I
NCCHzCOP( NEt2)2
I
Me
(98)
(97)
EtOP
/
CI
'
NPri2
+ 0, R'O'
R30H
i) I 2 / P y
i i ) ti20
P-SR2
(101) R' = Me.R2 =Et ,Pr P r ' , Bu' (104) R' = NCCHzCH2 ,R = But
R' OP
'CI
'SR2
( 102 1
D"To , O
R'O
/p OR^
NP\
(103)
106
Organophosphorus Chemistry
( DMTov NIN?)~
N
(106)
DMTov DMTov 0
‘3rd
\P-0
-+ 0
0,
Me3Si 0
/
P-OR
0-
(109) R =Me3Si,S’-dT
(108)
0 I?
NC CHzCH2 0 ’ ( 110)
x\ Y’
P-N3
-
OSiMe2Bu‘ (112) R = M e . P r ‘ . P h
-
N SiMe 3
hV
Y’
‘CI
4: Tendent Phosphorus Acid5
in
107
New tervalent phosphorus acid derivatives for use as ligands asymmetric hydrogenation reactions are ( 117 ) ,82 ( 118 ) ,82
( 1 1 9 ) , and ~~ ( 1 2 0 ~ ~ ~ 4 Reactions involving Two-co-ordinate Phosphorus
Phosphoryl fluoride (121) has been generated in the gas phase and characterised by mass and matrix infrared spectroscopy.85 Chloromethyldichlorophosphine (122) is a useful starting material for the preparation of 1,3,4-diazaphospholes, e.g. (123): a 1,3,4thiazaphosphole (124) is similarly obtained from (122) and thiobenzamide. 86 A series of 4,6-diamino-l,3,5-triaza-2-phosphapentalenes (125) has been prepared and the X-ray crystal structure determined in one case.a7 The 1,2,3-diazaphospholes ( 126 ) and diphenyldiazomethane gave the bicyclic products (127), presumably v i a the [ 2+3] cycloaddition products shown: 88 methanol opened the three-membered ring to give (128). Aminoiminophosphines with bulky substituents can be very stable, e . g . (129) is not decomposed at its m.p., 203-205O C. There is a very slow H-exchange between the two nitrogen atoms, and an X-ray crystal structure study could not locate the proton.89 Some N-phosphino aminoiminophosphines (130), as well as (131), have been prepared, and their structures studied, including an Z-ray crystal structure determination in one case. The N , P-diamino iminophosphine (132) has been prepared as shown and its crystal structure determined.’l It has an unusual long P = N bond and adds readily carbon dioxide or carbon disulphide to give (133). An unusual reaction occurred when (134) was treated with N-haloamines; the t-butyl group was displaced to give the aminoiminophosphine (135).92 A study of the limitations of two preparative routes to iminophosphines and the chemical properties of iminophosphines has been p~blished.’~One route, substitution of a bis( trirnethylsily1)amino group of (136) with alkyl or aryl lithiums, gave iminophosphines (137) when R1 and R2 were both large ( e . g . R1 = Me3Si, R2 = 2,4,6-tri-t-butylphenyl), but addition products (138) otherwise. The other route, thermal elimination of trimethylsilyl chloride from (139), seems more general, but is limited by the availability of the starting material: thus (139) could not be prepared for R1 = R2 = 2,4,6-tri-t-butylphenyl. Chemical properties examined are addition reactions with methanol or dimethyl-
108
Organophosphorus Chemisrn
R'
Phz P-0,.
CHO-PPh2 R2/CHg;PPh2 I
cox,( I PPh, (117) X = OEt .OC2H&OEt NH Bu
.
(118) R' = H.Me R 2 = Me,Pr',BuS.Bu', PhCHz .Ph R3 = M e , E t
Me I
N- PPh2 - w I y O - P P h 2 0-PPh2
PPhz
(120)
(119)
P(0)Br2F
CICHZPCI, (122)
+
+
R + I H,N=C-NH,
-
1000 - 1250 K
2Ag
O=P-F (121)
H
CI-
-----)
CN;rR P-N
(123) R =Me,Ph
=ANYR P-NH
4: Tervalenr Phosphorus Acids
I 09
(126) R =Me,Ph MeCO, PhCO
(127)
+
MeOH
-
Me
Y-" " I
Ph kP,O PhM e
%
PBut2 P=N' R2N'
P=N
P8u'z
'
Organophosphorus Chemisrrv
110
But
/
+
P=N (134)
(Me 3
, P=N’ Si ) z N
a
-
R2 N
/
+
P=N
(135) RzN = (Me3Si)2N, But( Me 3s i 1N ,
R’
R Z PClz
R Z = Bu‘ , Ph , mesit yl
R’=
R2N-X
+
, SiMe, LiN ‘R’
-
CI
I
RZ-P-N-R’
SiMc3
1
( 1 39)
Bu‘X
4: Tervalent Phosphorus Acids
Ill
amine to give (1401, oxidation with chlorine to (141), and oxidation with chalcogens to (142). The molecular structure of (1371, R1 = t-butyl, R2 = 2,4,6-tri-t-butylphenylhas been determined by X-ray crystallography.93 In another study of the preparation of iminophosphines via (139) it was found that with smaller substituents than 2,4,6-tri-t-butylphenylon nitrogen, the iminophosphines (137) were unstable with regard to the cyclodimers ( 143 ) .94 The iminophosphine ( 144 ) has been prepared from dichloro( pentamethylcyclopentadienyl)phosphine and t-butylamine.95 One iminophosphine, two diphosphenes, and four sulphuranylidenephosphines (145) have been prepared as shown.96
The phosphenium ions (146) and norbornadiene (147) gave the cycloaddition products ( 148). 97 The stereochemical result of the reaction for R1 = Pri2N, R2 = C1, with the bulkier diisopropylamino group at the more substituted side of the phosphetane ring, is explained by puckering of the ring to place the larger group in a pseudo-equatorial position. Hydrolysis of ( 148) gave the inverted products ( 149 ) . With cyclo-octa-l15-diene,only the more reactive chlorophosphenium ion reacts to give the tricyclic the diisopropylamino group is again at the phosphetane ( 150); more substituted side, as shown by an X-ray crystal structure determination. A series of new, unsymmetric phosphenium ions (151) 99 and known symmetrical ions ( 152) have been prepared as shown. Several other ions (X = NCS, neopentyl-0) were unstable. A new, reasonable diphosphene, (153), has been prepared and its crystal structure determined.loo The bond between the pentamethylcyclopentadienyl group and phosphorus "walks" around the ring by [1,5]-sigmatropic shifts in solution even at -80° C, and the group is readily displaced by lithium amides or lithium alkyls to give (154) and (155). The reactions of two diphosphenes ( 1 5 5 ) , X = tris(trimethylsily1)methyl or 2,4,6-tri-t-butylphenyl, with some proton donors and lithium alkyls have been studied."' Diazoalkanes or halocarbenes gave diphosphirans (156) with the diphosphene shown, with some concomitant formation of phosphaalkenes ( 157 ) .
'*
5 Miscellaneous Reactions
Flash vacuum pyrolysis of some 2-aryloxy-1,3,2-dioxaphospholans ( 158) gave cyclic phosphonates, e. 9. ( 1591, presumably via aryl metaphosphates ( 160). lo3 The reactions of t-butoxy radicals with
112
Organophosphorus Chemistry
CI
I
R~P=NR’
I
R2 P
/ NHR’
HX
c-
P=N’
R2
‘X
( 1 4 0 ) X =OMe.NMe,
CI
R‘
(141)
’
(137)
R2 p 4NR’ +X
(142)
C l SiMe3 BU~-PI N-R’ I
-+
[gut,P=N/R’]
-
(139) R’ = Me3Si, Bu‘MezSi,
BU:,
,P-N, But
-
1 adamantyl. mesi t yl
P=N
’But
Me
Me
P
+NR’
/ \
Me
c\-x=o
__t
‘R’ (145)
R’
4: Tervalenf Phosphorus Acids
R’,
R2
113
- & r.!.
’
p + +
(1471
2
4
p, ‘\Rl
R
(149)
(148)
CI ‘P+ Pr’zN’
+
CI-
42) +‘ P
NPri2
(150)
CI ‘P+
R,N’
+
Me3SiX
X
__c
‘P+ R~N’ (1511
R = Pr‘, X = NMez,CN, N=P(NMez)3 R = E t , X = Nblez.CN
R2 N = EtzN, Pr’zN
(152)
Me
he (153)
I14
Organophosphorus Chemistr?/
(153)
LiX d
P=P X
/
CsMes
LiX __t
X
/
(154)
/
/
P=P
X
(155)
X = (Me,Si),N.6u~(Me3Si)N.(Me3Si),CH. ( M e 3 S i I 3 C
/
P=P
/
Ar
+
R'R~C:
Ar
-
Ar
\
Ar P-P'
X
#'
R' R 2
+
/
P=CR'R~
Ar
Ar =
Ar
= 1-
naphtyl
7 0 0 ' C , 0.001 m m Hg
-
(158) Ar = 1 - naphthyl , 2 biphenyl 2 -bcnryl phcnyl. 2 . 4 . 6 - Bu'jCgHz
ArO-P P=O \ OH
4O +O
4: Tervulent Phosphorus Acids
I15
a large number of phosphites have been studied in order to find good inhibitors for autoxidation of polymers:104 the best are acyclic triaryl phosphites, which consume the t-butoxy radicals by substitution and form stable aryloxy radicals. Photolysis of ally1 phosphites, e.g. (161), probably occurs via phosphoranyl l13-biradicals. A method to convert carboxylic acids to dithiophosphonates under mild conditions has been evaluated. The carboxylic acid is converted to a thiohydroxamic acid anhydride (162) which when stirred with triphenyl trithiophosphite gave (163) in 26-70% yield. The proposed radical mechanism is initiated by phenylthio radicals which attack (162) to liberate R' radicals which are trapped by the thiophosphite. References
1.
2.
3. 4.
Phosphorus Sulfur, 1987, 30, 3-850. Nucleosides Nucleotidcs, 1987, 6, 1-542. A. Schmidpeter, Phosphorus Sulfur, 1986, 2 8 , 71-89. A. J. Arduengo 111, C. A. Stewart, F. Davidson, D. A. Nixon,
J. Y. Becker, S. A. Culley, and M. B. Mizen, J. Am. Chem. SOC., 1987, 109, 627-647. 5. R. D. Gareev and A . N. Pudovik, J. Gen. Chem. USSR, 1986, 56, 211-220. 6. A. N. Pudovik, I. V. Konovalova, and L. A. Burnaeva, Synthesis, 1986, 793-804. 7. E. S. Lewis and €9. A. McCortney, Can. J. Chem., 1986, 64, 1156. 8. V. A. Al'fonsov, G. U. Zamaletdinova, E. S. Batyeva, and A . N. Pudovik, J. Gen. Chem. USSR, 1986, 56, 634. 9. P. A. Gurevich, V. V. Moskva, and G. Yu. Klimentova, J. Gen. Chem. USSR, 1986, 5 6 , 2148. 10. S. A. Abdulganeeva, K. B. Erzhanov, and T. S. Sadykov, J. Gen, Chem. USSR, 1986, 56, 1100. 11. E. W . Logusch, Tetrahedron Lett., 1986, 27, 5935. 12. D. W. Norbeck, J. B. Kramer, and P. A. Lartey, J. Org. Chem., 1987, 5 2 , 2174. 13. A. Hafner, W. von Philipsborn, and A. Salzer, Helv. Chim. Acta, 1986, 69, 1757. 14. R. M. Acheson, P. J. Ansell, and J. R. Murray, J. Chem. Res. (S), 1986, 378.
116
Organophosphorus Chemist?
15. G. Keglevich, I. Petnehazy, L. TUke, and H. R. Hudson, Phosphorus Sulfur, 1987, 29, 341. 16. P. Majewski, Synthesis, 1987, 555. 17. C . Yuan and Y. Qi, Synthesis, 1986, 821. 18. F. S. Mukhametov, E. E. Korshin, R. L. Korshunov, Ya. Ya. Efremov, and T. A. Zyablikova, J. Cen. Chem. USSR, 1986, 56, 1574. 19. V. A. Al'fonsov, I. S. Nizamov, E. S. Batyeva, and A . N. Pudovik, J. Gen. Chem. USSR, 1986, 5 6 , 630. 20. A.-M. Caminade, F. el Khatib, A. Baceiredo, and M. Koenig, Phosphorus Sulfur, 1987, 29, 365. 21. W. Dabkowski and J. Michalski, J. Chem. SOC., Chem. Commun., 1987, 755. 22. S. Bakkas, M. Julliard, and M. Chanon, Tetrahedron, 1987, 43, 501. 23. 0. G. Sinyashin, Sh. A. Karimullin, V. P. Kostin, E. S. Batyeva, and A. N. Pudovik, J. Gen. Chem. USSR, 1986, 56, 1505. 24. Z. Tashma, I. Ringel, J. Deutsch, S. Cohen, M. Weisz, and J. Katzhendler, Nucleosides Nucleotides, 1987, 6 , 589. 25. J.-L. Montero, J.-L. Clavel, and J.-L. Imbach, Tetrahedron Lett., 1987, 2 8 , 1163. 26. M. J. Pulwer and T. M. Balthazor, Synth. Commun., 1986, 16, 733. 27. G. Bettermann, D. Schomburg, and R. Schmutzler, Phosphorus Sulfur, 1986, 2 8 , 327. 28. A. M. Cooke, B. V. L. Potter, and R. Gigg, Tetrahedron Lett., 1987, 2 8 , 2305; M. R. Hamblin, B. V. L. Potter, and R. Gigg, J. Chem. SOC., Chem. Commun., 1987, 626. 29. C. E. Dreef, G. A. van der Marel, and J. H. van Boom, Recl. Trav. Chim. Pays-Bas, 1987, 106, 161. 30. C. B. Reese and J. G. Ward, Tetrahedron Lett., 1987, 28, 2309. 31. J. Svara, E. Fluck, J. J. Stezowski, and A. Maier, 2 . Anorg. Allgem. Chem., 1987, 545, 47. 32. M. M. Kabachnik, 2. S. Novikova, E. G. Neganova, and I. F. Lutsenko, J. Gen. Chem. USSR, 1986, 5 6 , 688. 33. D. M. Malenko and A. D. Sinitsa, J. Gen. Chem. USSR, 1986, 5 6 , 195. 34. P. J. Garegg, J. Stawinski, and R. Stremberg, J. Org. Chem., 1987, 5 2 , 284.
4: Tervalent Phosphorus Acids
117
35. D. W. Chasar, J. P .
Fackler, A. M. Mazany, R. A . Komoroski, and W. J. Kroenke, J. Am. Chem. SOC., 1986, 108, 5956. 36. E. E. Nifant'ev, T. S . Kukhareva, 1. A. Soldatova, and T. G. Chukbar, J. Gen. Chem. USSR, 1986, 56, 2199. 37. T. Pollok and H. Schmidbaur, Tetrahedron Lett., 1987, 28, 1085. 38. A . D. Sinitsa, D. M. Malenko, L. A. Repina, R.
A . Loktionova, and A. K. Shurubura, J. Gen. Chem. USSR, 1986, 56, 1113. 39. D. M. Malenko and A . D. Sinitsa, J. Gen. Chem. USSR, 1986, 56, 1467. 40. E. A. Monin, Z . S. Novikova, A. A. Borisenko, M. M. Kabachnik, 1. F. Lutsenko, A . N. Chernega, M. Yu. Antipin, and Yu. T. Struchkov, J. Gen. Chem. USSR, 1986, 56, 1753. 41. D. J. Brauer, F. Gol, S . Hietkamp, and 0. Stelzer, Chem.
Ber., 1986, 119, 2767.
L. Thompson, A . Tarassoli, R. C. Haltiwanger, and A . D. Norman, Inorg. Chem., 1987, 26, 684. 43. J. M. Barendt, R. C. Haltiwanger, and A. D. Norman, Inorg. Chem., 1986, 25, 4323. 44. C. Bourdieu and A. Foucaud, Tetrahedron Lett., 1986, 27, 42. M.
4725.
45. C. Chiriac, Rev. Roum. Chim., 1987, 32, 29.
46. G. Baccolini and C. Sandali, J. Chem. SOC., Chem. Commun., 1987, 788; G. Baccolini, R. Dalpozzo, and E. Errani, Tetrahedron, 1987, 43, 2755. 47. L. D. Quin and G. Keglevich, J. Chem. SOC., Perkin Trans. 11, 1986, 1029. 48. J. Szewczyk and L. 0. Quin, J. Org. Chem., 1987, 52, 1190. 49. B. H. Dahl, J. Nielsen, and 0. Dahl, Nucleic Acids Res., 1987, 15, 1729.
50. W. Bannwarth and A. Trzeciak, Helv. 175.
Chim. Acta, 1987, 70,
51. T. Horn and M. S. Urdea, DNA, 1986, 5, 421. 52. J. W. Perich and R. B. Johns, Tetrahedron Lett., 101. 53. T. Horn and M. S. Urdea, Tetrahedron Lett.,
1987, 28,
1986, 27, 4705.
54. B. A . Connolly, Tetrahedron Lett., 1987, 28, 463. 55. J. M. Coull, H. L. Weith, and R. Bischoff, Tetrahedron Lett., 1986, 27, 3991. 56. B. A . Connolly, Nucleic Acids Re$.,
1987, 15, 3131.
57. F. Seela and K. Kaiser, Nucleic Acids Res., 1987, 15, 3113.
118
Organophosphorus Chumistp
58. J. N. Kremsky, J. L. Wooters, J. P. Dougherty, R. E. Meyers, M. Collins, and E. L. Brown, Nucleic Acids Res., 1987, 15, 2891. 59. J. W. Perich, P. F. Alewood, and R. B. Johns, Synthesis, 1986, 572. 60. Y. Hayakawa, S. Wakabayashi, T. Nobori, and R. Noyori, Tetrahedron Lett., 1987, 28, 2259. 61. J. P. G. Hermans, E. de Vroom, C. J. J. Elie, G . A . van der Marel, and J. H. van Boom, Recl. Trav. Chim. Pays-Bas, 1986, 105, 510. 62. P. Westerduin, G. H. Veeneman, G . A. van der Marel, and J. H. van Boom, Tetrahedron Lett., 1986, 27, 6271. 63. E. Kuyl-Yeheskiely, C. M. Tromp, A. H. Schaeffer, G . A . van der Marel, and J. H. van Boom, Nucleic Acids Res., 1987, 15, 1807. 64. J. Nlelsen and 0. Dahl, Nucleic Acids Res., 1987, 15, 3626. 65. J. Nielsen, M. Taagaard, J. E. Marugg, J. H. van Boom, and 0 . Dahl, Nucleic Acids Res., 1986, 14, 7391. 66. R. Kierzek, M. H. Caruthers, C. E. Longfellow, D. Swinton, D. H. Turner, and S. M. Freier, Biochemistry, 1986, 25, 7840. 67. H. Tanimura, M. Sekine, an8 T. Hata, Chem. Lett., 1987, 1057. 68. J. E . Marugg, J. Nielsen, 0. Dahl, A . Burik, G. A. van der Marel, and J. H. van Boom, Recl. Trav. Chim. Pays-Bas, 1987, 106, 72. 69. T. Tanaka, K.-I. Fujino, S. Tamatsukuri, and M. Ikehara, Chem. Pharm. Bull. Tokyo, 1986, 34, 4126; T. Tanaka, S. Tamatsukuri, and M. Ikehara, Nucleic Acids Res., 1986, 14, 6265. 70. S. Hamamoto and H. Takaku, Chem. Lett., 1986, 1401. 71. K. A. Gallo, K.-L. Shao, L. R. Phillips, J. B. Regan, M. Koziolkiewicz, B. Uznanski, W. J. Stec, and G. Zon, Nucleic Acids Res., 1986, 14, 7405. 72. M. Fujii, H. Nagai, M. Sekine, and T. Hata, J. Am. Chem. SOC. 1986, 108, 3832. 73. M. Fujii, H. Nagal, M. Sekine, and T. Hata, Tetrahedron Lett., 1987, 1435. 74. B. C. Froehler, P. G. Ng, and M. D. Matteucci, Nucleic Acids Res., 1986, 14, 5399. 75. P. J. Garegg, I. Lindh, T. Regberg, J. Stawinski, and R. Strbmberg, Tetrahedron Lett., 1986, 27, 4051. 76. P. J. Garegg, I. Lindh, T. Regberg, J. Stawinski, and R. Strbnberg, Tetrahedron Lett., 1986, 27, 4055.
4: Tervalenf Phosphorus Acids
119
77. E. de Vroom, M. L. Spierenburg, C. E. Dreef, G. A. van d e r Marel, and J. H. van Boom, Recl. Trav. Chim. Pays-Bas, 1987, 106, 65. 78. P. Westerduin, G. H. Veeneman, Y. Pennings, G . A . van der Marel, and J. H. van Boom, Tetrahedron Lett., 1987, 28, 1557. 79. M. J. Damha and K. K. Ogilvie, J. Org. Chem., 1986, 51, 3559. 80. J. BUske, E. Niecke, E. Ocando-Mavarez, J.-P. Majoral, and G. Bertrand, Inorg. Chem., 1986, 25, 2695. Heinicke, E. Nietzschmann, and A. Tzschach, 3 . 81. J. Organometal. Chem., 1986, 310, C17. 82. A. Karim, A. Mortreux, and F. Petit, J. Organometal. Chem., 1986, 312, 375; A. Karim, A. Mortreux, F. Petit, G . Buono, G. Pfeiffer, and C. Siv, J. Organometal. Chem., 1986, 317, 93. 83. E. Cesartotti, A. Chiesa, L. Prati, and L. Colombo, Gazz. Chim. Ital., 1987, 117, 129. 84. H. Pracejus, G . Pracejus, and B. Costicella, J. Prakt. Chem., 1987, 329, 235. 85. R. Ahlrichs, R. Becherer, M. Binnewies, H. Borrmann, M. Lakenbrink, S. Schunck, and H. SchnUckel, J. Am. Chem. SOC., 1986, 108, 7905. 86. K. Karaghiosoff, C. Cleve, and A. Schmidpeter, Phosphorus Sulfur, 1986, 28, 289. 87. K. Karaghiosoff, W. S. Sheldrick, and A . Schmidpeter, Chem. Ber., 1986, 119, 3213. 88. B. A . Arbuzov, E. N. Dianova, R. T. Galiaskarova, and A . Schmidpeter, Chem. Ber., 1987, 120, 597. 89. P. B. Hitchcock, M. F. Lappert, A . K. Rai, and H. D. Williams, J. Chem. SOC., Chem. Commun., 1986, 1633. 90. L. N. Markovskii, V. D. Romanenko, E. 0. Klebanskii, M. I. Povolotskii, A. N. Chernega, M. Yu Antipin, and Yu. T. Struchkov, J. Gen. Chem. USSR, 1986, 56, 1524. 91. U. Dressler, E. Niecke, S . Pohl, W. Saak, W . W. Schoeller, and H.-G. Schafer, J. Chem. SOC., Chem. Commun., 1986, 1086. 92. V. D. Romanenko, A . B. Drapailo, A . V. Ruban, and L. N. Markovskii, J. Gen. Chem. USSR, 1986, 56, 2473. 93. L. N. Markovskii, V. D. Romanenko, A. 8. Drapailo, A. V. Ruban, A. N. Chernega, M. Yu. Antipin, and Yu. T. Struchkov, J. Gen. Chem. USSR, 1986, 56, 1969. 94. E. Niecke, M. Lysek, and E. Symalla, Chimia, 1986, 40, 202. 95. D. Cudat, E. Niecke, B. Krebs, and M. Dartmann, Organometallics, 1986, 5, 2376.
120
Organophosphorus Chemistry
96. F. Zurmiilen and M. 1987, 26, 83.
Regitz,
97. S. A. Weissman and S. C. 28, 603.
Fmgew. Chem.,
Int. Ed.
Engl.,
Baxter, Tetrahedron Lett.,
1987,
98. S . A. Weissman, S. G. Baxter, A. M. Arif, and A. H. Cowley, J. Chem. SOC., Chem. Commun., 1986, 1081. 99. M. R. Mazieres, C. Roques, M. Sanchez, J.-P. Majoral, and R.
Wolf, Tetrahedron, 1987, 43, 2109. 100.P. Jutzi, U. Meyer, B. Krebs, and M. Dartmann, Angew. Chem., Int. Ed. Engl., 1986, 25, 919.
101.A. H. Cowley, J. E. Kilduff, N. C. Norman, and M. Pakulski, J. Chem. SOC.,
102.G.
Dalton Trans., 1986, 1801.
Etemad-Moghadam,
J.
Bellan,
Tetrahedron, 1987, 43, 1793.
C.
Tachon,
and M.
103.5. I. G. Cadogan, A. H. Cowley, I. Gosney, M. S. Yaslek, J. Chem. SOC.,
104.K.
Schwetlick, T.
Chem.,
Kdnig,
1986, 26, 360.
Koenig,
Pakulski, and
Chem. Commun., 1986, 1685. C.
Rilger, and
J.
Pionteck, 2 .
105.W. G. Bentrude, S.-G. Lee, K. Akutagawa, W.-Z. Charbonnel, J. Am. Chem. SOC., 1987, 109, 1577. 106.D. H. R. Barton, D. Bridon, Lett., 1986, 27, 4309.
and
S.
Z.
Ye,
and Y.
Zard, Tetrahedron
5
Quinquevalent Phosphorus Acids BY R. S . EDMUNDSON
The relative activities in the areas of, on the one hand,phosphoric acid chemistry, and on the other, that of phosphonic and phosphinic acids, are much as they were during the period covered by the previous Keport. Two reviews, the first describing halogenophilic reactions of four- and f ive-coordinate phosphorus, and the second, describing the chemistry of phosphorylated isothiocyanates and derived compounds,2 cover aspects of the chemistry of all the groups of acids included in the present Chapter.
1. Phosphoric Acids and their Derivatives.
1.1 Synthesis of Phosphoric Acids and their Derivatives.-Several conventional reaccion systems based on perfluorinated alcohols have provided new fluorinated compounds, and it is noteworthy that the oxidation of the tervalent chlorides RfOPC12 by N204 is recorded as yielding the dimeric dianhydrides (1,3,2,4-dioxadiphosphetane 2,4-dioxides) ( 1 ) which presumably exist in the trans form. The compounds (2; R=OH or C 1 ) and ( 3;R=OH o r Cl 1 were 4 prepared conventionally from the diol. The electrochemical oxidation of mixtures of trialkyl phosphite (R1O)3P and dialkyl phosphate salt (R20)2P(0)OM yields the pyrophospha te ( R1O f 2 P ( 0)OP(01 ( O H 2 1 almost quantitatively . A procedure for the preparation of alkyl dihydrogen phosphates based on the generation of metaphosphate from a phosphonic acid is referred to later. Monoisoprenoid pyrophosphates have been prepared by the interaction of homoallylic tosylates and tris(tetrabuty1ammonium) pyrophosphate, as well as from the same phosphate reagent and allylic halides; derivatives of methanedi- and difluoroethanediphosphonic acids were similarly prepared. A reaction between mono(tetrabuty1ammonium) phosphate and allylic sulphonium salts catalyzed by C u ( 1 ) salts allows the preparation of monoisoprene dihydrogen phosphates without the involvement of lengthy purification procedures. 121
122
Orgunophosphorus Chemistry
phIo\ Me
Me
S
1
Ph
Me
Reagents
Me
S
Me
A"
OR NHzMe
I ,
R O - , R O H ; ii. H2'80.CF3COOH; 1 1 t . M e 3 S i l or
V,
R O H . CF-jCOOH
Scheme 1
NH3(l), N o , tv.L i"0H
5: Quinquevalent Phosphorus Acids
123
A newly described procedure for the synthesis of the mixed anhydrides (R'O) (R20)P(O)OSO2R3 involves the interaction of the sulphonyl chlorides R3SO2C1 and the stannyl esters (RIO)(R20)P(0)DSnMe3 at 20° in dichloromethane in the presence of 1-methylimidazole. Mixed phosphoric-carboxylic anhydrides are 8 a l s o preparable by this route. A useful synthesis of unsymmetrical dithiopyrophosphates has been explored in the 1,3,2-dioxaphosphorinane series;dialkyl (including cyclic) trimethylsilyl phosphites and dialkoxythiophosphoranesulphenyl chlorides react together with full stereospecificity to give good quality products in high yield^.^ -O,O,O-Triaryl _ thiophosphates have been prepared using phase-transfer techniques." Isotopically chiral [ l6O, (or I 7 O ) jthiophosphate monoesters of either (Elp o r ( S ) p absolute configuration have been synthesized by methods similar to those employed in previously published routes to isotopically chiral phosphate esters, but here described in f u l l because o f the experimental difficulties encountered (Scheme 1 ).I1 Reports have appeared on the synthesis of the 5-alkenyl phosphorothioates ( 4 ) by the phosphorylation of monothioketones,12 and of the [~3-arylamino-2-dialkoxyphosphinothioyl~thio]crotonic esters ( 5 ) from the appropriate chloroalkene and metal dithiophosphate salt . I 3 In the enolization of unsymmetrical ketones under kinetic conditions, i t is known that loss of proton occurs from the less substituted a - C to give the l e s s strongly branched enolate which, under thermodynamic conditions, then yields the more strongly branched enolate anion. The phosphorylation of phosphine enols ( and their sulphides) ( 6 ; n=O or 1 ; R=iPr) and phosphoric amides ( 6 ; n=O or 1 ; R =Et2N) and esters ( 6 ; n=O, R ZOEt) has been examined with a view to the synthesis of enol phosphates possessing a second phosphorus centre. It was found that the isomerization of the one enolate ( 7 ) into the other ( 8 ) depended on the electron-acceptor power and the valency of the original phosphorus centre. Thus, products of type ( 9 ) were obtained for ( 6 ; n=O, K=Et2N), type ( 1 0 ) from ( 6 ; n=O, R=OEt; n=l, R = i P r or 14 Et2N), and a mixture of types ( 9 ) and ( 1 0 ) from ( 6 ; n=O;R=iPr). Compounds of types (11),15(12),16and ( 1 3 ) and (14)'~ have been prepared from the appropriate silicon, germanium, or tellurium halide and a s a l c of a dithiophosphoric acid. The compounds were for the most part characterized spectroscopically, but the structures of ( 1 2 ; R 1=Me, R2=Ph, n=3), ( 1 3 ; X=Br,
124
Organophosphorus Chemistry
S
0
II ( R'O),PSCR2=CHCOR3
It
"kS
ArNH
( OR) COOEt
125
5: Quinquevalent Phosphorus Acids
S
S
Me
II
II
R' TeX2 [ SP(OR2)2]
R' 2Te[ SP(OR2)212 R1 = a r y l , R Z = a l k y l
x = C l ,Br
R' = aryl RZ = alkyl
(15)
(14)
(13)
0
ox
II
P
( TolNMe), P(OEt),,,
(18)
(16)
0
II
NH-
(Me3Si0)2P-NHf6-NH)
II
0
(19) n = o - 4
0 II
P(OSiMe3)2
n
0
OSiMe3 0
(Me,SiO),
0
(20) n = 0 - 4
126
Organophosphorus Chemisrp
R 1 =C6H40Me-4, R 2=Me) and (14; R l - p h , R2 Me) were determined by X-ray analysis. 5,5-Dimethyl-2,4-dioxo-l,3,2-oxazaphosphospholidines ( 1 5 ) are obtained when the acid chlorides R1P(0)Cl2 and the amide HOCMe CONHMe interact in the presence of AgBF4, and also for (15;R? =OPh) by the action of heat on the product from hexamethyldisilazane and the phosphoramidate ( PhO) (RNH)P(0)OCMe2COOEt.18' A l l four compounds (16; X , Y = 0 , O ; 0 , s ; S , O ; S , S ) have been identified as products from the reaction between Me2NP(S)C12 and salicylanilide. l 9 In a continuation of a study of the reactions which occur when aromatic amines are acted upon by phosphoryl chlorides, the compounds (17;n_=1)and ( 1 7 ; = = 1 and 2) have been obtained from the ortho and isomers, respectively, of N,N-dimethyltoluidine. Analogous compounds have also been obtained from the para isomer from which, additionally, the cyclic compound (18; X=O, Y=C1) is formed; the corresponding cyclic thiophosphoryl chloride was also isolated from a reaction using PSC13.20 Diastereoisomers of 6 - p h e n y l c y c l o p h o s p h a m i d e have been characterized.21 The reaction between hexamethyldisilazane and P4Ol0 yields a mixture of nitrogen-containing ( 1 9 ) and nitrogen-free (20) polyphosphorus compounds; the two groups can be separated and fractionated. A similar reaction using hexamethyldisilathiane yields the tris(trimethylsily1) esters (Me3Si0)3P(X) ( X = O or S ) .22
1.2 Reactions and uses of Phosphoric Acids and their Derivatives.Bis(5-nitro-2-pyridinyl) 2,2,2-trichloroethyl phosphate in acetonitrile has been employed as a reagent for the dehydration 23 of 6-amino acids to give 6-lactams. Diels-Alder reactions can be carried out using transi ( d i e t h o x y p h o s p h i n y l ) o x y ; - 1 , 3 - p e n t a d i e n e in the presence of Lewis acids.24 Whilst the phosphonate (22) tends to be formed preferentially by the reaction between triethyl phosphite and 9-dichloroatetone at high temperatures, the reaction at 100" furnishes 3-chloro-2-i (diethoxyphosphiny1)oxyj-1-propene (21); the use of this enol phosphate in a new 'one-pot' cyclopentenone annelation sequence has been described, and is exemplified in Scheme 2 . The reaction between the cyclohexanone (23;R=COOMe) and (21) yields the phosphate (24;R=COOMe), from which the phosphate group can be removed by acidolysis to give (25;R=COOMe),but
127
5: Quinquevalent Phosphorus Acids
0
R
II
R = COOMe
0
R = H
I,
(21)
II,III
(23)
(24)
ii, iii ,vi
R
R
I
Reagents
i,K H ,TH F,H MPA. l i , L I N P r 1 2 , T H F , IV,
5.1. KOH a q , h e a t ,
VI,
111.
(21). (Ph3PiPd,THF,
10'1. H C I . a c e t o n e , h e a t ,
VI,
E t O H , heat
10.L NaOH aq
Scheme 2
CN
0
J
iii
CN
Reagents: i . ( Et O ) zP( O)CN, Li CN; i i . BF3. E t Z O . i i i , O . S M HCI a q
Scheme 3
,
128
Organophosphorus Chemistry
under basic conditions cyclization occurs to give the cyclopentenone (26). The latter is also obtainable from (23) by the 'one-pot' procedure. 25 The rearrangement reactions of cyanophosphates have been further examined. The starting materials, (281, are conveniently obtained, sometimes in situ, by the reaction between an enone and diethyl phosphorocyanidate in the presence of LiCN. Under the influence of boron trifluoride etherate, rearrangement of the esters (28) occurs to give the isomeric phosphates (29;Scheme 3 1 , from which the phosphate group can be removed by mild acidolysis. In certain cases, other isomeric esters e.g. ( 3 0 ) appear as the normal products of the initial step, and compounds of type (29; -n=l) are obtainable from ( 2 7 ; ~ = 1 by ) modification of the experimental conditions.26 It has been possible to prepare dihydrofuranones from the products of the rearrangement of acyclic enone cyanophosphates; thus ( 3 1 ) gives (33;R=Me or Ph) via (32). It form of the is of interest that i t is specifically the cyanophosphate ( 3 2 ) which is formed, leading to the supposition that the rearrangement occurs as in S ~ h e m e 4 . ~ 'If benzene is added to the reaction mixture from (31;R=Me) the compounds (34; R1=CN, R2=Ph)(50%) and (34; R1=Ph, R2=CN)(5%) can be isolated each in the ( 2 ) form. In a behaviour reminiscent of that of fluorinated alcohols, pentafluorophenol generates pentafluorophenyl ethers, rather than esters, in its reactions with fluorinated benzylic phosphorodichloridates?Differences in reactivity at primary a n d secondary carbon centres when p-toluenesulphonic acid acts upon trialkyl phosphates in solution, allows the selective removal of a secondary 29 alkyl group in the presence of a primary alkyl group. Consideration has been given to the design of potential phosphorylating agent molecules, particularly compounds based on the heterosubstituted dihydrophosphole systems (35) where A= O(generally), B=C1 or OR, X=CH or CMe, D=H or C 1 , or XD is part of another (fused) hetero ring, and Y and Z are 0, S , or NMe, derived from enediols, a-hydroxy acids and a-mercaptoacids. 30 The (many) authors conclude that there is still scope for the development of new reagents. The rearrangement of phosphates under the influence of basic reagents to give compounds with P-C bonds has been further exemplified by the report that triaryl phosphates may thus be converted into tris( 2-hydroxyaryl Iphosphine oxides. 31 A study has
(z)
5: Quinquevalent Phosphorus Acids
129
OE t
OE t Scheme 4
L
RZ
(35)
(34)
OH
Me
Reagents: i , LiNPri2, toluene at
-
7 8 O C , i i . CF3COOH at
Scheme 5
-
78OC
130
Organophosphorus Chemistry
been carried out on the phosphate-phosphonate rearrangement which is illustrated in Scheme 5 . Enantiornerically pure ( s ) - ( t ) - and (S)-(-)-l-phenylethanol were converted into enantiomerically and ( S ) - ( - ) phosphates. When the ( H I - ( + ) pure ( & I - ( + ) stereoisomer ( 3 6 ) was subjected to the action of lithium diisopropylamide, the ( S ) isomer of the phosphonate (37) was obtained. The configuration of the product was ascertained by an X-ray analysis of the (El-1-phenylethylammoniurn salt of resolved PhMeC(OH)P(O)(OEt)OH, in turn prepared via its trimethylsilyl ester and its subsequent conversion into ( 3 7 ) with diazoethane. The rearrangement occurs with retention of configuration at carbon and with 95% e.e. 32 Bis (trimethylsilyl) peroxide oxidizes tervalent phosphorus compounds with retention of configuration at phosphorus, but oxidatively desulphurizes thiophosphoryl compounds with inversion of configuration.33 Interest continues unabated in the fine details of the mechanisms of nucleophilic displacements at phosphoryl centres in both acyclic and cyclic systems. A comparison of the molecular parameters of an 'average' phosphate triester with those of an 'average' phosphate monoester monoanion has revealed some interesting features; in particular, the P - 0 bond lengths and OPO bond angles in the monoanion are compatible with an early stage ( a 20-30% advancement was suggested) in the fragmentation of R O P ( O ) ( O H I O - into ROH and metaphosphate anion.34 Russian workers have carried out a theoretical study on the reactions between metaphosphate anion and nucleophiles. 3 5 Evidence €or the existence, however transitory, of the thiornetaphosphate anion, is now being sought. Solvolysis of 4-nitrophenyl ( R ) - [ l 6 O , l 8 0 ] thiophosphate dianion in ethanol at 0" gives ethyl [ l60,l80jthiophosphate, the enantiomeric content of which corresponded to thiophosphoryl transfer with 80% racemization and 20% inversion. The simplest interpretation of this result is that the reaction proceeds largely through a thiometaphosphate anion ( 38 1 . 36 Mention was made in last year's Report of a controversy which has developed around details of the mechantsm of hydrolysis of ethylene methyl phosphate 139) which, fundamentally, can occur either endocyclically to give ( 4 0 ) or exocyclically to give (41). The controversy is concerned essentially with the extent of methanol formation at higher concentrations of base or of (39)
5 : Quinquevalent Phosphorus Acids
0
11 HOCHtCHzOP-OMe
1 OH
16
180//
(38)
+
(
39)
U
II,OMe
HOCH2CH20P
‘0-
__t
0 11
0
0-
0-
11
HOCH,CH, OPOCH2CHz0POMe 1 1 (42)
Scheme 6
0
0
II
HOCH2 C H2 OP-OMe
I
0
II
II
HO__+
- McOH
HOCH2 CH20POCH2CH 20P-OMe 1
1
0-
OMe
-0
0
0
[:;&CH2CH2OP-OMeII1 0Scheme 7
132
Organophosphorus Chemistry
and s o with the relative extents of endo and exo-cyclic cleavage. Kluger et a1 (see Organophosphorus Chem., 18, 141) subscribe to the view that under such conditions the source of increased methanol formation stems from increased exocyclic fission. Gorenstein et a137have now repeated their earlier work and also Kluger's experiments. They showed that at higher alkali concentrations the formation of methanol can increase quite substantially, and they attribute this to a dimerization ( and oligomerization) reaction leading to (42). According to Kluger et a1 the formation of (42) occurs as indicated in Scheme 6 , but the process favoured by Gorenstein et a1 is that shown in Scheme 7. Gorenstein et a1 maintain that the stereoelectronic theory continues as a viable explanation for a 'significant' portion of the rate acceleration in five-membered cyclic phosphate esters (see also ref. 171 ) . The stereoelectronic factor has also been called upon to account, at least in part, for the rates of hydrolysis of the bicyclic esters (X)P(OCH2j3CMe (X=O or S ) ; the rate enhancements relative t o the triethyl esters are 5.2 x lo3 when X=O, and 8.1 x lo2 for X=S. The expected monocyclic 1,3,2-dioxaphosphorinane hydrolysis products were determined spectroscopically. For the bicyclic esters, the lowering of the activation energy on formation of the transition state cannot be ascribed totally to the release of ring strain. In the transition state (43) the two equatorial ring oxygens have lone electron pairs approximately antiperiplanar to the breaking apical P-0 bond, whereas such a configuration for the acyclic triethyl ester would require the 'freezing' of one conformation which, entropically, is not a favoured process. 38 Coming to the fore this year has been a comparison between the stereochemistries of nucleophilic substitutions at silicon and phosphorus, reviewed in two conference papers. 39 '40 The authors lay stressonthe fact that the concepts proposed by Westheimer concerning the formation of pentaco-ordinate intermediates, and their pseudorotation and degradation were derived from studies on the hydrolysis of cyclic phosphate (as well as phosphonate and ph0sphinate)esters , but have been applied to a much wider range of substitution reactions of both cyclic and acyclic compounds with the assumption that those concepts, (which originally dealt only with oxygen-bonded groups) still apply. The notion that all phosphorus compounds based on the
5: Quinquevalent Phosphorus Acids
133
five-membered ring react with nucleophiles faster than do similar compounds with six-membered rings, or acyclic compounds, has also been questioned. From a study of the behaviour of the cyclic phosphoryl chlorides (44;R = C 1 , nzl or 21, and also of diethyl phosphorochloridate, towards H 2 0 , EtOH, PhOH, and Et2NH, i t is evident that for the five-membered ring compound the reaction rates are essentially independent of the nature o f the nucleophile, and the large kinetic factor essential to the elaboration of Westheirner's concepts is not confirmed when the attacking nucleophile and the leaving group are different. A wide range of reaction rates was observed for both the six-membered ring compound, and the acyclic ester. F o r any given leaving group, the reactivity is related to the stereochemistry of the reaction, as i t is for silicon compounds. The conclusion reached was that the hydrolysis of cyclic phosphorus esters represents a special case in the overall picture of the nucleophilic mechanistics, and as such, they behave differently from other reactions and it is difficult to extend Ilestheimer's co?ceFts to these compounds. 41 The polymerization of monomeric cyclic esters of phosphoric acid has been discussed.42 The compound ( 1 5 ; R1=OPh, R 2=Me) reacts extremely rapidly with alcohols. Thus,with methanol initial exocyclic displacement of phenol is followed by ring opening by P-N bond fission and the formation of (45; R1=OMe, R2=Me). Reaction of the same substrate with diethylamine affords ( 1 5 ; R1=NEt2, R2=Me) but subsequent ring opening does not take place in the presence of an excess of the nucleophile, although ring opening does occur when the product is acted upon by methanol. 18 The reactions between the phosphorochloridate (46;R-Cl) and imidazole or benzimidazole yield single products of different stereochemistries, and arguments have been presented to suggest that the former reaction occurs with retention of configuration. Only the benzimidazole derivative isomerizes when recrystallized or melted. Not surpri-singly, both phosphoramidates undergo fast (in reality, almost instantaneous) acid-catalyzed methanolysis. but evidence could not be advanced for the participation of a phosphaacyclium cation in such reactions.43
Dibutyl ~-(1,5-dihydro-2,3-dimethyl-5-oxo-l-phenylpyrazol-4-y1)phosphoramidate has been prepared as a new extractant for Sc(II1) and H g ( I 1 ).44 Uialkyl phosphorohydrazidates react with
Organophosphorus Chemistry
134
Reagents.
I ,
NHtNH2 ; i i , ButOCL, ButOH
Scheme 8
0 II
0
II
F P-NE t - PF,
t Me3SiOMe
(47)
1
0 II
F, PNEt SiMe3
Mc3SiOMc
Me0 - P
II 0
1
- Me3SiF
NF
'NEt SiMe,
+
0
II F, POM e
1
Me3SiOMe -Mc3SiF
(
PF
II 0
5: Quinquevulenr Phosphorus Acids
-p-benzoquinone
13s
in cold dilute solution in non-polar solvents to give the quinone dihydrazide, not isolable, however, at room temperature, when the products include dialkyl hydrogen phosphonate and q ~ i n h y d r o n e . ~The ~ simple sequence given in Scheme 8, based on the formation and decomposition of a phosphorohydrazidate, allows stereoisomeric interconversion for the phosphorochloridate.46 The chemistry of phosphoric hydrazides has been reviewed.47 The fission o f P-N bonds in imidodiphosphoryl difluorities (47) by the action of alkoxysilanes has been observed.48 The reaction between carbamates and phosphoryl chlorides contrasts with that which occurs using phosphinic chlorides. The reaction between (48;R=Bu) and (49;M-H) can occur in the presence of Et3N, and gives (SO;R=Bu)whereas the use of the phosphoryl chloride (48;K-OBu) necessitates the involvement of the salt (49; M-Na) N-phosphorylated derivative (50;R-Bu) is formed; when only the under the same conditions, the phosphinic chloride yields a mixture of land 0 (51; R=Bu) d e r i v a t i ~ e s . ~ ~ Studies have continued on the migrations of groups possessing the thiophosphoryl bond. In the reaction between 1 (52; R - H ) and (53; R2=Et, X = Y - S ) the use of tlc and 31P n.m.r. spectroscopy has allowed the detection o f (54, 55, and 57; R2=Et, X = Y = S ) ; the compounds (57) were the only isolable ones. The compounds (54; R1=H) are unstable and rearrange by S to N thiophosphoryl migration to (55), also unstable, and to (571, presumably (56). Overall, this latter rearrangement is a 1 - 4 S-to-0 thiophosphoryl migration, a type reported for the first time. The marked instability o f the compounds (54) and (55) when R1=H and X = Y = S precluded a more detailed examination of the individual stages and products, and the possibility of reducing the number of rearrangement pathways was considered. Using the iminoethers (52; R1=Me) the only isolable products were of the type ( 5 5 ; R1=Me, X = Y = S ) formed through the participation of (541, detected spectroscopically. For (52; R1=Pr) reaction with (53; R 2=Pr, X = Y = S ) gave the compound (54) as a mixture of (E) and (&'I forms, and stable up to 120". For the reactants ( 5 2 ; R1=Me) and ( 5 3 ; R2=Et or Pr, X=S, Y = O ) , reaction occurs at sulphur (product (54) ) which readily isomerizes to (55;R1=Me,X=S, Y = O ) . Products from the reaction of PhCONHOPr and (R0)2P(0)H-CC14-Et3N have the structure (54; R1=Pr, X = Y = O ) and show no tendency to isomerize, even during distillation. The rearrangements of benzohydroximoyl phosphates and thiophosphates are irreversible
136
Organophosphorus Chemistry
0
0 II R2PCI
PhNMCOOMe
(48)
(49)
II
R, PNPhCOOMe ( 50)
0
II R z POC(OMe)=NPh (51)
+
Ph-C =NOR’ I CI
( R20),PXYNa
(53)
(52)
+ ( E ) - (54)
I
(R’O), P-N-CPh II I II Y
( ZI - ( 5 4 )
(56)
I
Y
OR’X
(55)
X
II II ( R2 0 )PONHC ~ Ph
(57)
5: Quinquevalent Phosphorus Acids
137
at 150-180°, and clearly depend on the nature of the groups X , Y , and R2.50 In spite of having a structure which suggests the capability of 1-3 S-to-N rearrangement, the tris(phosphinothioy1thio)-s-triazenes (58; X=S) do not tautomerize. Rather, when heated they ( __ e.g. R2=OR1, R1=iPr, X = S ) decompose to g,O-dialkyl p h o s p h o r i s o t h i o c y a n a t i d o t h i o a t e s ( 5 9 ) . The treatment of the triazines with hydrogen dithiophosphates affords trithiopyrophosphates. When X = O , the tautomeric S-to-N migration is observable by 31P n.m.r. spectroscopy, and proceeds in a stepwise manner to give, ultimately, the N,_N,_N-tris(thiophosphory1ated) compound ( 6 0 ) . The rearrangement appears to be intermolecular as judged from crossover experiments. The predominance of either 5 or derivative depends on R1 and the !-substituted compound predominates when R 1 is iPr. 5; Alkylation (RCH2C1-Et3N) of the amides (61) can potentially yield the Ij, 2, or P-alkylated compounds, ( 6 2 1 , (631, or ( 6 4 ) . I n practice, for those compounds with E = C , the products are of type (631 but have the structure (64) when E is PhP. 52 The facile rearrangement of the unstable compounds (661 into the isolable (thiolurea derivatives ( 6 7 ) has previously been recorded. An increase in the size of the group R2 reduces the extent of the isomerism; depending also on the nature of the group R 2 further reaction with the acid ( 6 5 ) may give a mixture of thiophosphate and thiopyrophosphate esters. Using compounds in the 4-methyl-1,3,2-dioxaphosphorinane system, the formation of (67; R2=Ph or PhCH2) from the cyclic acid was shown to be stereospecific. The stereochemistries of the products were assigned on the basis of CD spectra and chemical correlations with 0-methyl 2-1-naphthyl hydrogen anilides in the same series. Using phosphorothioate, i t was demonstrated that the S-to-N migration 53 proceeds with full retention of configuration at phosphorus. The reaction between aryl cyanides and 2,O-dialkyl hydrogen dithiophosphates yields ultimately the N-phosphorylated compounds ( 6 9 ) rather than the addition compounds (68) - a report that contradicts earlier literature. Methylation of the compounds ( 6 9 ) as their tetrabutylammonium salts gives the N-methyl rather than the 5- or P-methylated products. 54
Organophosphorus Chemistry
138
-
@'yNTs*
Heat
N+fN
S
II
.
(PriOI2PSPr'
+
(59)
c-)
@ I
VNYS @fNYNh3 S
x
II
s II
$z P-NHE R' (61)
S II (PriO),PNCS
R~~P-N-ER' I CHzR (62) SCH2R
X
II I + F$2P-N=ER' (63 1
(60) XCHzR
RzZd=NER1
5: Quinquevalent Phosphorus Acids
Y
II
X
( R'O), P-NR2-C
+
S
II ( R ' 0l2PSH
+
R2 CN
[(R' O)P(=O)z]2
-
+
S
II
[(R'O)z P S C R h H ]
II
- NHR'
RZNHCSNHR2
-
s
II
s I1
( R'O)z PNHCR'
140
Organophosphorus Chemistry
2. Phosphonic and Phosphinic Acids and their Derivatives. 2.1.Synthesis of Phosphonic and Phosphinic Acids and their Derivatives.-The chemistry of the d i h y d r o p h e n o p h o s p h a z i n e s has been reviewed,55 and an account of arylphosphonic and arylphosphonothioic acids and their derivatives has been published. 56 Conventional Arbuzov reactions have been employed in the synthesis of E-phosphinothricin; 5 7 (aminoalkyl)phosphonic acids ( including alafosfalin) ; 58 a-phosphonylated derivatives of aryloxyacetic acids; 59 and 2-t-butyl 4-(diethoxyphosphiny1)-3oxobutanethioate, useful as a reagent in the synthesis of (E)-4-alkenyl-3-oxo esters and macrolides .60 Mixtures of esters of the three phosphonic acids (70-72), separable by chromatographic methods but not by distillation, are the products from reactions between dialkyl phenylphosphonites and propargyl bromide. 61 Keactions between tervalent phosphorus-containing formals and chloroformic esters lead L O the novel phosphinic esters (731, ana the bis(forma1)phosphinic esters (74) were obtained in a similar way.62 Interaction of dialkyl (trichloromethyl )phosphonates and trialkyl phosphites at 80-160" yields tetraalkyf esters of d i c h l o r o m e t h y l e n e d i p h o s p h o n i c acid, but the presence of an alcohol
in the reaction mixture results in the formation of trialkyl phosphate and dialkyl (dichloromethyl )phosphonate.6 3 The alkylation of diethyl phosphonate with allylic halides has been performed using phase transfer systems; possible isomerism to propenylphosphonic diesters is controlled by the nature of the base component. 64 lnternal arylat ion in the phosphinates ( 7 5) i s catalyzed by P d ( 0 ) and yields the cyclic phosphinates (76; ~ = 0 , 1or 2 ; R-lower alkyl or Ph).65 Ally1 acetates and carbonates react with dialkyl phosphonates in the presence of Ni(0) catalyst and _ N,O-bis( _ trimethylsilyl Iacetamide to give the phosphonates (77)." P d ( L 1 ) catalysts in combination wirh Ar3P and Et3N also assist in the C-arylation and C-vinylation of ethenylphosphonates on the B-carbon.67 The most novel observation in this area concerns the direct displacement of the trifluoromethoxy group on treatment of aryl trifluoromethyl ethers with Pd(PPh3I4-dialkyl phosphonate 68 l~-iiiechylrnor~l~oline to form d i a l k y l arylphosphonates. together with Experirnencal modifications to the synthesis of dialkyl phosphonates by the aFrect 5-phosphorylation of active methylene compounds have been ~uggested.'~A new procedure for the
C-
5: Quinquevalent Phosphorus Acids
0 I1
14 1
I
(72) A=C=CMe
OR
R’O, / Me3SiO
( 7 1 ) A = CH=C=CHz
(70) A = C H Z C S C H
Ph-P-A
PCH(OR’),
t
CICOORZ
4
II/
CH(OR’),
R ’ O P\ COOR‘
t
Me3SiCI
(73) (R10)2PCH(OR2)z
+
0 II
CICH(OR2),
R’OP[CH(OR2)2]2
4-
R’CI
(74)
0 II
+ (Et0)2P(0)H ph-YoCX Ph
0
R 1 IIC C H R 2 B r
Reagents:
-
OLi
Li
f?’C=C, I
i. ( M e 3 S i ) , N L i , then But
’
R2
Li
ti
; ii , ( R 3 0 ) 2 P ( 0 )C I
Scheme 9
0
II
ph-Yp(oE t)2 Ph (77)
0 II
(R30),PCHR2COR’
at
-
110’
I42
Organophosphorus Chemist q1
pnosphorylation of ketones commences with a-bromoketones which are treated so as to remove ( i n order) a proton and the halogen to furnish a diliihio enolate. The method (Scheme 91 complements the Arbuzov reaction since i t allows the use of secondary halogenoketones and phosphoryl halides with highly electronegative groups, both of which are features which tend to render application of the Arbuzov procedure unsuccessful. 7 0 ‘The conversion of alkenes into phosphonic dichlorides by treatment with PC15 followed by S O 2 has been extended to include enarnines.71 The sulphoxides ( 78 1 afford the alkenephosphonic aichlorides ,79).72 Acetic acid esters react with PC15 by attack at the carbonyl oxygen to give ( 8 0 ) and ( 8 1 1 , and also phosphoro(di)chloridates by attack at the ester oxygen.73 G-Acetyl-N1,N2 dimerhylisourea gives the compound (82) when treated with PCls f ol lowed by SO2. 74 Attempts to chlorophosphonylate acetylenes can result in the fission of C-C bonds. t-Butylphosphonic dichloride can be the main product when compounds of ‘Iype ( 8 3 ) are treated with PC13-02, and i t is the only product from 5,5-dimethyl-1,3-hexadiene. The 75 extent of C-C bond fission is much less for methylacetylenes. (Trichloromethy1)phosphonic dichloride adds to the 1,4-positions of 1,3-butadienes to give the phosphonic dichlorides (84).7 6 With the exception of trimethylphosphate, which suffers demethylation, trialkyl phosphates can be converted into dialkyl alkylphosphonates by the action of lithiumalkyls.7 7 When treated with C02, the anions from alkylphosphonic diesters afford a-[dialkoxyphosphinyl)carboxylic acids, from which the (2-oxoalky1)phosphonic diesters are obtainable.7 8 Lithiated phosphonates may be used to prepare (1-formylalky1)phosphonic diesters by the action of ethyl formate, also obtainable by a carbocationic route through ( 2,2-dialkyloxiranyl )phospnonic diesters. 7 9 Lithium diisopropylamide seems to be the current reagent of choice for the preparation of phosphonate carbanion reagents. The anions so generated have been used in the synthesis of (2-oxoalkyliphosphonic diesters,80 and in the preparation of a variety of a-mono- and aa-di-silylated alkylphosphonic diesters.81 ’ 82 ( a - S i l y l a l k y l i p h o s p h o n i c diesters can be alicylated their anions) but the ease of removal of the silyl group by ethanolic ethoxide is an interesting feature of their chemistry and suggests the possible use of the silyl group for protection purposes. Their use in the synthesis of vinylphosphonic esters has a l s o been
(e
5: Quinquevalent Phosphorus Acids
R'SCHR2Me
II 0
3pc'5,
143
t so2 ( R ' S ) R ~ C = C H P C I ~ P C I ~ __t
(78)
R' CH=CR2CR3=CHR4
0 II
+ CuCl
1
McCN
0 II
R ' C H C I C R 2 = C R 3 C H R 4 C C l t P C I2
(84)
0
>C H IPI C
R'S R2
12
144
Organophosphorus Chemistry
explored (Scheme 10). 8 2 (See also ref.. 153 for a discussion on the properties of phosphonate carbanions). 4-(Diethoxyphosphinyl)-l-penten-3-0ne (85) has been prepared and used as a kinetic ethyl vinyl ketone equivalent in the Robinson annelation reaction, but the ester has the unfortunate property of very rapid polymeritabi l i ty . 83 The treatment of trialkyl esters of 4 - c h l o r o - 2 - p h o s p h o n o b u t a n o i c acid with potassium affords esters of 1-phosphonocyclopropane-1-carboxylic acid.84 The Grignard reagent from diethyl (chloromethylIphosphonate has been obtained from diethyl (iodomethy1)phosphonate and isopropylmagnesium chloride in THF at - 7 O O and its reactions with halogens and PhSeHal studied. The reaction between dimethyl (1-1ithioethyl)phosphonate and (?)-(-)-menthy1 p t o l y l sulphinate leads to &he sulphinylated phosphonate with appreciable asymmetric inductive formacion of the (S),(S)sdiastereoisomer (86). 8 6 Several a-fluorinated methylphosphonic diesters have been prepared using chloro(di)fluoromethane. A useful synthesis of diethyl (f1uoromethyl)phosphonate involves direct fluorination of diethyl (1ithiomethyl)phosphonate with perchloryl fluoride at low temperatures. 87 Tetraalkyl ( fluoromethylene )diphosphonates have been employed in the synthesis of 1-fluoro-1-phosphonoalkenes and (1-fluoroalkyl)phosphonic acids (Scheme 11 1 . 8 8 Yet another procedure utilizes the ability of organocuprate reagents to cleave the enol phosphate moiety in the fluorinated l-[(diethoxyphosphinyl)oxyj-l-alkene-l-phosphonates ( 8 7 ) .89
Anodic methoxylation of (dialkoxyphosphiny1)methyl alkyl sulphides (88; X = S ) yields 0,S-acetals of (dialkoxyphosphiny1)formaldehyde (89; X=S) and the process may be taken a stage further t o give the ortho esters ( 9 0 ) of (dialkoxyphosphinyl)formic acid.90 The Grignard reagents derived from dialkyl 2-bromophenyl phosphates rearrange to yield the brornomagnesio derivatives of dialkyl (2-hydroxypheny1)phosphonates; a 2,4-dibromophenyl ester rearranged specifically to the 2-p0sition,~l The related migration of phosphorus from oxygen to carbon in enol phosphates can be achieved by che action of lithium diisopropylamide; an intermediate enol phosphate (91) i s known to be formed. 9 2 Allylic phosphites and related tervalent phosphorus compounds (92) undergo rearrangement in the presence of NiC12 to yield allyl93 phosphonates or -phosphinates together with fission products. New data on the addition of hydrophosphoryl compounds to multiple bonds have been reviewed.94 The addition of dialkyl
5: Quinquevalent Phosphorus Acids
0
II
( R’O), PCH, R 2
.1.11..
0
0 R2 II I
II
(R’ O),P-C-SiR3,
(R’0)2PCHR2SiR33
0
II (R’ 0),PCMeR2SiR33
0
~ 2 H=
1
i ,ii
vi
0 II
(R’ 0)2PCHMeR2
Reagents.
I,
LrNPr12,
VI,
11.
R3SiCI;
EtONa,EtOH
111,
H30+.
IV.
M c C H O . THF
at
-80’- v , M e 1 ,
Scheme 10
A! ---
Me
I
146
Organophosphorus Chemistry
0
! [ ( ~ ro)ZP],CHF i
II
R'
F
-%
0
II
( PriO)zPCHFCHR' R 2
1
R2
1
iv
IV
0 II
0 II
pH::
(HO), PCHFCHR'R2
F Reagents' i , BuLi ; ii, R1COR2 ; iii , H 2
- Pd ;
i v , MejSiBr , then McOH
Scheme 11
0 II (EtO)zPCHzXMe
MeOH
OMc Ze
XMe
II (EtO)zPCHz
\
OMe
McOH OMc
0
II
OMe
I
(Et0)2P-CH-XMe
I
OMe
0
5: Quinquevalent Phosphorus Acids
147
phosphonates to 1,l-diethoxy and 1,l-diethylthio-ethene, and t o enamines, has been studied from the point of view of the nature of the phosphonate. Such compounds based on the 1,3,2-dioxaphospholane ring react exothermically in non-polar solvents,and they are thus more reactive than diphenyl phosphonate and hydrogen phosphonates possessing six and seven-membered phosphoruscontaining rings. 9 5 (1-Hydroxyalky1)phosphonic diesters have been prepared in dry heterogeneous systems by the action of dialkyl phosphonates on aldehydes or ketones in the presence of y-A1203-KF. The same system converts a-chloroketones into epoxyphosphonates. 9 6 'he nature of the reaction product from dialkyl phosphonates and fluorinated carboxylic anhydrides appears to depend on the starting materials. Thus, whereas the reaction between lower dialkyl phosphonates and heavily fluorinated carboxylic anhydrides appears to give (93; R 2-CORf, R3=Rf),97 the use of bis(2,2,3,3-tetrafluoropropyl) phosphonate and trif luoroacet ic anhydride is thought to yield (93; R1=CHF2CF2CH2, R2=H, R 3 - C F 3 ) on che basis of the absence of characteristic ir carbonyl absorption. 98
Interesting phosphonic esters have been obtained from acetald01~~ and derivatives of D-erythrose and D-threose''' on reaction with dimethyl phosphonate. In the former case, the products are mixtures of the diastereoisomeric phosphonates (1%,3E)-(94; K1=OH, R2=H) and (lRS,3%)-(94; R1=H, R2=OH). These, in the presence of Et 3 N undergo intramolecular transesterification to give dfastereoisomeric 3-hydroxy-2-methoxy5-methyl-2-oxo-1,2-oxaphospholanes (95) studied spectroscopically; the same compounds are a l s o formed if, in the initial step, NaOMe is employed as catalyst. The benzylidene derivatives of 1 9 4 ) ~ 4 - d i e t h o x y p h o s p h i n y l - 6 - m e t h y l - 2 - p h e n y l - l , 3 - d i o x a n e ~ were studied for configuration assignment purposes. In the second study, the Et3N-catalyzed addition of dimethyl. phosphonate to ( 9 6 ) gave a 1 1 mixture of (15)and (15)-2,4-2-benzylidene-lC-(dimethoxyphosphiny1)-e-erythritols (97) and (98). Using D-threose, the same sequence gave a product with diastereoisomeric ratio 1:9, a difference in behaviour which was correlated with the accessibility of the carbohydrate carbonyl group to the dimethyl phosphonate nucleophile. The acid-catalyzed cyclization of (15)and ( l R ) - l - C - ( d i m e t h o x y p h o s p h i n y l ) - _ D - e r y t h r i t o l gave 101 the P-epimers of ( 9 9 ) .
I48
Organophosphorus Chemistry
-
(92)
+
(R’O)ZP(O)H
(RfCO)20
0 R2 II I
0 II
(R’O)2P-C-OP(OR1
1
R3
(93)
R‘
OH
O=P(OMe)2
1OR’
k:x” 0
(97) OH
h0ch2
0 =P(OMe), O
H
R2
HO OH
(99)
(98) OH
OH
&JCH0 H OR
(100) EtOH
- H20
l2
5 : Quinquevalent Phosphorus Acids
149
The behaviour of salicylnldehyde in the Abrarnov r e a c t . i o r i
i s , as might be expected, a lirtle unusual; when acted upon by
dialkyl phosphonates the ultimat-e products are [a-hydroxy-a(2-hydroxyphenyl )methyl Iphosphonic monoalkyl esters, (1Cl)thouqht t o b e formed through cyclic intermediates. I f the reaction is carried out in the presence of a trace of Et3N or CF3C@OH the intermediate diesters ( 1 0 0 ) can be isolated. The latter can also be obtained (100; RZEt) as its b i s ( t r i r n e t h y l s i l y l ) e t h e r , hydrolysable to (100; RZEt), i n a reaction between salicylaldehytie trimethylsilyl ether and diethyl trimethylsilyl phosphite; alternatively, the bis(trirnethylsily1) ether bis(trimethylsily1) ester can be prepared using tris( trirnethylsilyl) phosphite.lo2 Bis(1-hydroxyalky1)phosphinic acids have been prepared by the method outlined in Scheme 12. Following the predictable initial reaccion between an aromatic aldehyde and the diene phosphinic acid (102) cyclization occurs subsequently to give the dihydro-1 ,2-oxaphosphole ( 1 0 3 1 .Io4 Using NaOBr, NaOCl , and perchloryl fluoride , and reductions with SnC12, a series of halogenated derivatives of triethyl phosphonoacetate (104;X,Y=HF, HBr, HCL, F2, C 1 2 , f3r 2' FC1, FRr, o r ClBr) have been prepared.lo5 Phosphonic acid monoesters are obtainable by initial treatment of a phosphonous acid with an alcohol in the presence of DCC and d i r n e t h y l a r n i n o p y r i d i n e , followed by oxidation of the phosphonous acid monoester with NaI04.'06 Mono and diethyl esters of (a-aminobenzy1)phosphonic acids (105; R2,H or Et) have been prepared from the aldehyde R3C6H4CH0, the amine K2NH2 , and diethyl phosphonate;!07 the corresponding diphenyl esters were prepared from the aldehyde, diethyl phosphoramidate, and triphenyl phosphite in the presence of BF3.Et20, followed by acid hydrolysis of the intermediates Variations to this last procedure (106; R1=Et, X--@, R2-OPh). include the use of diethyl phosphoramidothioate, and of diphenyl phenylphosphonite a s a route to phenyl (a-arninobenzyl)phenylphosphinates via (106; X=S, R1=Et, K2=@Ph o r Ph) .lo9 A useful synthesis of [a-( (Ij-benzyloxycarbony1)amino)alkyllphosphosphonic monoesters consists of the treacrnent of the corresponding free acids with a primary or secondary alcohol in DMF with a slight excess of S0Cl2 at around Oo.llo Alkylation of the anion from the Schiff base (107;K-H) (from (+)-camphor and diethyl (aminomethy1)phosphonate) with
150
OrKantiphosphcirus Chemistn
(Me3Si0I2PH
-
ii
I
_c
R’ I
Me3SiOC
No
7 7
A2\
L
P
-!L( H O C R ‘ R ~ ) ~ P ( O ) O H
‘OSiMe,
Me3Si OC
1
R2 Reagents
i , RIRZCO;
11,
M c 3 S i C I . E t 3 N , iii. E t O H , h e o t
Scheme 12
Mc,C=C=C
> /
0’
-
-
H P’ ‘H
ArCHO
OH
fH+
MezC =C =C
/H
0-
I
OH
/H \
Me 2 C =C =C
0
“#“,o-
Me,C+
O4
’OH
‘CH(0H)Ar
P ‘CHAr
I
OH
1 1
IS1
5: Quinquevulerit Phosphorus Acids
0
+
II H3NCHRCOCHz P-OH
I 0-
(109)
Me, C=C=CR-P
0 II O ,H ‘H
__L CHC13 HCI or McNOZ
M & ;=y Me (111 1
152
OrRanophosphorus Chemistry
a n alkyl halide RX yields the derivatives (107;R-Me,Et, iPr,
allyl, PhCH2, G . 1 having an excess of that diastereoisomer with the ( 5 ) configuration at the phosphonate carbon. Acidolysis of the products affords (a-aminoalky1)phosphonic acids with 11-77X e.e."' Optically active 4-diethoxyphosphinyl -3-(l-hydroxyethyl ) 2-azetidinone (108) has been synthesized as a potential precursor to (1-aminoa1kyl)phosphonic acid derivatives; the starting materials were (2~,3R)-2-bromo-3-hydroxybutanoic acid and (effectively) diechyl [ ( ( 4 - m e t h o x y p h e n y l ) a m i n o ) m e t h y l j p h o s p h o n a t e or the corresponding 4-methoxybenzyl compound. 1-Aminoalkyl(chloromethy1)phosphinic acids ( 1 0 9 ) are obtainable from PhCH20CONH2, RCHO, and C1CH2PC12, followed by deprotection.'13 An efficienc synthesis of (3-amino-2-0xoalkyl)phosphonic diesters and acids ( 1 1 0 ) involves the interaction of dialkyl methylphosphonate carbanion with PJ-BOC-a-aminocarboxylic esters and subsequent deprotection with Me 3SiBr (phosphorus ester groups) and MeOH ( R O C 1 .'I4 The synthesis of heterocyclic phosphorus ( and sulphur) compounds with P-C bonds ( with 29 references on phosphorus compounds 1 has been briefly reviewed .'I5 Recent descriptions include those of the synthesis of the hydrogen phosphonate (1111 ,I1' and the cyclization of the functionalized 1,b-dienes (112) to give (113), o r (114) and ( 1 1 5 ) (see 'Organophosphorus The cyclization of 1,5-diketones by Chemistry', 17, 153) .'I7 their reaction with hydrophosphoryl compounds to give the phosphorinanes ( 1 1 6 ) has been further exemplified, a s has that of the 1,b-dienes ( 1 1 7 ) with ROP(0)H2 to give the related compounds (118) 2,6-Dipheny1-4-oxo-4-hydroxy-1,4-thiaphosphorine (119) has been prepared as indicated and converted into several 119 conventional derivatives. D i h y d r o b e n z o x a p h o s p h o l e s have been obtained from aromatic 2-carbonyl-containing phosphites (Scheme 1 3 ) . The presumed intermediate ( 1 2 0 ) from diethyl phosphorochloridite and salicylaldehyde could not be detected spectroscopically, but was evidently converted rapidly into the dihydrooxaphosphole (121) as a 2:l diastereoisomeric mixture. On the other hand, spectroscopic observations did seem to suggest an intermediate of structure (122; R1=OEt, R2=Et) to be formed from 2-hydroxyacetophenone, but above room temperature this also rapidly disappeared to give
s.
5: Quinquevalent Phosphorus Acids
153
R’ + R 2 = (CH2 14 or R ’ = P h R 2 = H,Me,Bu,PhCHz
etc.
0 II
(PhCCl =CH),POMe
t.Na2S.EtOH ti,
H~O+
Oe
‘OH
(119)
I54
Orguntphvsphorus Chemistn
the diphosphorus compounds 1124; R1 alkoxy or Ph, R 2 a l k y l ) possibly & y ( 1 2 3 ). I 2 ' Miscellaneous syntheses include those of diethyl (3-cournarinyl )phosphonates;121 a l k y l 2-( (alkoxymethylphosphinyl 1 oxy iacrylates ( 1 25) hexyl arvl (4-penten-1-yl Jphosphinates bv phospha-Cope rearrangements i n the presence of hexanol;123 diethyl 1 j (2-tetrahydropyranvl 1oxy:methyl ,phosphorlate;124 dialkyl [ 3-(dialkoxyphosphinyl )-Z-alkenejphosphonates I 1261 (perfluoroalkyllphosphonic and bis(perfluoroalkyl1phosphinic acids;126 e t h e n y l i d e n e b i s ( p h o s p h 0 n i c acid) and i t s tetraalkyl esters ; 2- ( d ia lkoxyphosph i ny 1 1 - 2-d i azoace tami de s ; 1 2 8 u , w - d i h y d r o x y a l k y l - a , a - d i p h o s p h o n i c acids (127) and their e.g. (127;R--Ph, 2 - 1 ) to i 1 2 8 ) cyclization to dihydrooxaphospholes, __ and subsequent hydrolysis to the unsaturated bis(phosphonic acid) (129);''' and the [ (diacyl )methyl lphosphonates ( 1 30) .'") (I-Hyaroxyethyl )phosphinic acid has been resolved wi th 1- ( 1 -naphthyll ethy lamine.13' B i s ( p e r f l u o r o a l k y 1 ) p h o s p h i n i c amides may be p r e p a r e d by the action of an arnine on the appropriate phosphinic chloridc, but subsequent displacement of one perfluoroalkyl group by excess amine appears to be possible. Interaction of a phosphinic chloride and phosphinic arnide in the presence of Et3N or pyridine affords the stable salts 1 1 3 2 ) which lose base only on distillation over H2S04 to give the free imide (133).132 Diphenylantimony(I11) diphenylphosphinate (134;X:O) and the corresponding phosphinothioate t134;X-S) have been prepared and their structures determined by &-ray analysis.133 The bis(trimethylsily1) esters of alkylphosphonotrichioic acids (136) b¶ = E i , have been obtained & y their disodium salts from 1,3,2,4-dithiadiphosphetane 2,4-disulphides (135); the silyl esters may also be prepared from the tervalent compound (137) by stepwise sulphurization. Some possibility appears to exist f o r the novel diad tautomeric shift between (138) and (139). A reaction between the compounds ( 1 3 6 ; M = S i ) and MegSnCl affords the corresponding tin cornpounds (136; M=Sn) also obtainable from (135) and iMe3Sn)2S.134 The remarkable ring compounds (140) have been obtained through reactions between (136; M-Si or Sn, R=Me or tBu) and the sulphur dichlorides SxC12 (x-3-51. 'The sulphur heterocycles are fairly stable in Fhe crystalline state but disproportionate in solution. 1 3 5 The compound (135; R - M e ) 136 also reacts with a,~-alkanediolsto give the acids (141;q-2-4).
I55
5: Quinquevalent Phosphorus Acids
R=COCH3
Reagents
1 ii
I.
(EtO),P(O)CL,Et3N,
11, (
R20)R'PCI.Et3N
Scheme 13
0 It
90
R20,
NP,
Me
OC=CHz
R3 I
I
COOR' (125)
0
II
(R'O),PCH,C=CHOP(ORZ)~
(126)
156
Organophosphorus Chemistry
(C3 F7)2P(O)CI
t
RNHz
(131 1
X
II
S
5
II
RP(SMMe 3)2
PhzSb.OPPh2 ( 134)
5
(136)
( 1 35)
s
SiMe3
II/
RP
\
SSiMe3 / 1 . RP \
SiMe3
(139)
(138)
R'
R2CSSH
51me3
5: Quinquevalent Phosphorus Acids
Lawesson's reagent (135; K-4-heOC6H4) converts the ketones KZCOCH=CK1NH2 into the 1,3,2-thiazaphosphorines (142;X=S1 together wich, in some cases, traces of the corresponding 1 , 3 , 2 oxazaphosphorine. The crystal structure of the thiaza compound ( 142; X-S, R1 - C F 3 , R2-Ne ) was determined. 37 Stereoisomeric forms of alkyl-1-menthylphosphinothioic chlorides have been prepared and studied in detail by spectroscopic and crystallographic methods The reaction between dithiocarboxylic acids and dialkyl phosphorochloridites takes a fairly involved course, but the outcome is the formation of the monothio phosphonic 2,S-diesters (145). Spectroscopic techniques indicated the formation of the tervalent esters (143) and their conversion into (145) v i a (144) consistent with the results of earlier work.139 2 . 2 . Reactions and uses of Phosphonic and Phosphinic Acids and their Derivatives.-The ester (146; R1-Et, X=Cl) i s thought to react with arylthiolate anions as indicated in (147) to give ( 146;K1=Et, X-SAr 1 . Diethyl (p-toluenesulphonylethynyl )phosphonaLe (146; K1=Et, X=SO2C6H4 Me-p) reacts with pyridinium 1,l-dicyanomethylides to give indolizines, and with anthracene in a IlielsAlder rea~ti0n.l~'The ester (146; R1=Et, X=C1) is also reported to reacc with alkoxides, but with fission of the P-C bond; EtO-
gives triethyl phosphate, chloroacetylene, and 20% of the ester ( 148;K2-OEt). This behaviour contrasts with that in the attack by the less nucleophilic phenoxide anion when (146;X=OPh)and the (148;K2=Ph) are obtained. According to this account products from (146; X=C1) and thioalkoxides R2S- are ( 146;X=SR2), the thio analogues of ( 1 4 8 1 , and (149). No reactions occur under normal conditions with the weakly basic nucleophiles such as AcO-, I - , or NCS-. Photolysis o f nitrobenzylphosphonate dianions results in fission of the P-C bond, the reaction being most pronounced for the para isomer. 142 Evidence for the generation of metaphosphate anion in this process rests on the formation of alkyl phosphate dianions, sometimes in high yields, when the homolysis is performed in the presence of a large amount of an alcohol.143 In some ways the most interesting case of P-C bond fission reported this year is that in the biodegradation of alkylpho'sphonic acids t o alkanes and alkenes by E.coli. I t is noteworthy that acids with bulkier carbon groups such as iPr or tBu, are not
158
Organophosphorus Chemistry
0 ( I?'0
II P C( S R )=CHSR2
M e 2 NC [P(O)( OE t
I2l3
( 150)
( 149)
+
Me NC H[WOM OE t I,],
I-
(152) R C HO - T i C14 7
McN-0
0 II
W
( E t 0)ZPCHz COO€t
RC HO - C I T i ( OPr 13 Na H
0 II
-
R# H
Scheme 14
0 II
(EtO)2PCH20CH2CH2SiMe3
lii
-
0 II
( E 101, PCHOC H, C H, S i Me
I
S iMe3 Reagents : i , BusLi, ii,
0
i,ii
m3sic1;
iii , ~
1
~
Scheme 15
0
~
2
#p(oEt)2 R. 'COOEt
p(oE )2 COOPri
5: Quinquevalent Phosphorus Acids
159
degraded, nor are mono or diesters when the parent acid i s , for example, ethylphosphonic acid. Phenylphosphonic acid is degraded to benzene. 144 Phosphorus-carbon bonds are a1 so broken during the insertion of the methylene moiecy into the P-C bond of (acyloxyimino)phosphonates by diazomethane.145 The treatment of (150) with H C I or Me3SiBr gives ( 1 5 1 ; R = H or Me3Si but rather unexpected i s the action of Me1 on ( 1 5 0 ) which yields ( 1 5 2 ) ; i t i s therefore interesting to note that with dimethyl sulphate or methyl -toluenesulphonate, ( 1 5 0 ) yields the expected quaternary salts.'" C - C ( N ) bond fission and dephosphonylation can each occur on the addition of piperidine or morpholine to 2-aryl-1,l-dicyano2 - ( d i i s o p r o p o x y p h o s p h i n y l )ethenes ( 1 5 3 ) .I4' Depending on the nature of the catalytic titanium compound, triethyl phosphonoacetate can react with aldehydes to In give products having different geometries (Scheme 1 4 ) another synthesis of alkenephosphonates, activation of an otherwise unreactive phosphonate ester in Knoevenagel reactions can be achieved through inicial silylation. (Scheme 1 5 ) .149 An X-ray analysis of (155; R=p-tolyl) has confirmed the previously described transformation of ( 1 5 4 ) into (155).I5' An intramolecular Diels-Alder reaction occurs when the allenephosphonic ester (156; R=H, Ar-1-naphthyl) is heated; the product is che 1,2-oxaphosphole 2-oxide ( 1 5 7 ) of which only one stereoisomer was isolated. This process does not occur when either Ar=Ph or RzMe.I5l Dineopentyl phosphonate anion is methylated to dineopentyl rnethylphosphonate by Me1 or even trimethyl phosphate. The treatmenc of dimethyl phosphonate with NaH in THF or benzene at room temperature results in demethylation to monomethyl hydrogen phosphonate anion and concomitant formation of dimethyl methylphosphonate. Such side reactions are less important for diethyl phosphonate, and do not appear t o take place for dineopentyl phosphonate, nor do they occur when the base is BuLi, or if 152 the NaH reaction i s performed a t -78". The dependence of the stability and basicity of phosphonate carbanions on their structure has been examined. Most a-phosphonyl carbanions appear to form stable 'dimers' ( 1 5 9 ) ar low temperatures in a self-condensation determined largely by steric interactions ( of K 1 I or electronic effects (of K ~ ) .Some phosphonic carbanions e.g. (158; R1=Et, R2=Cl 1 degrade readily
Organophosphorus Chemistry
I60
R2NH(
(153 1
R+c
C12P II
0
(154)
heat
0 (155) OAr
5: Quinquevalent Phosphorus Acids
161
without dimerization; others e.g. (158; R1=iPr, R 2 = H ) are stable at O* for several hours, and yet others e.g. (158; R1=Me, Et, or iPr, R2=Ph or Me3Si) are described as'stable' Carbanions (fluoromethyllphosphonic diesters are conveniently from generated using lithium diisopropylamide at low temperatures, and although they are relatively stable at - 7 0 " they tend n o t to survive temperatures as high as 0 " ; their relative stabilities decrease in the order PhCHF- > PCF2- > PCClF- . 8 7 Allylphosphonic carbanions, generated using BuLi. react normally with electrophiles at the a-carbon to give (160). The behaviour of the ( a c e t y l o x y a l l y 1 ) p h o s p h o n i c diesters (162) towards nucleophiles has been examined. With the knowledge that the acetate anion is a good leaving group i t was predicted that its loss from (162) would thus assist in the formation of an allylphosphnnic carbocation which would be stabilized by Pd(0) and which would react with nucleophiles at the y-carbon to give (16l)(assisted umpolung). These predictions were borne out and the compounds ( 1 6 1 ) were indeed prepared in this way.154 The t e t r a h y d r o p h o s p h o n o f u r a n o n e (1631, synthesized as indicated, is a versatile reagent f o r the preparation of a , B-difunctionalized-y-lactones The alkylation, acylation, and silylation reactions of dialkyl ( f l u o r o m e t h y 1 ) p h o s p h o n a t e s have been s t u d ~ e d . ' ~In ~ the alkylation of the carbanions from tecraalkyl ( c h l o r o m e t h y l e n e ) d i p h o s p h o n a t e s , fission o f the P-C bond occurs on lichiation with BuLi, but the extent of the degradation can be reduced if ( a ) tetraisopropyl esters arc used, ana ( b ) either t-butyllithium is employed as base, or even the thallium salts are used. 157 (1-Hydroxycycloalky1)phosphonic diesters suffer both dehydration and ensuing chlorination when treated with either Pc1 or sO2cl2. 158 ?he P-C bond in (1-oxoalkyliphosphonic derivatives is well known to be susceptible to fission by the-action of amines and, particularly under basic conditions, by alcohols. However, thiols have been shown to add to dialkyl acetylphosphonates in the predicted manner. On the other hand. the treatment of diethyl acetylphosphonate with triethylamine has been reported to give the phosphonate (164) According to other workers, analogues of diethyl acetylphosphonate %.(165), rearrange under the influence of triethylamine, in this case to (166).160 (See a l s o references 97 and 98 for structural analogues).
Organophosphorus Chemistry
162
0
0
II I1 ,OR1 (R~O)~PCHR~P, CH* R’
E
(160)
T
0
i Pd(PPhg)h
,~Tms
OAc ( 162)
CH3C
* NTms
ii NuH
5: Quinquevalent Phosphorus Acids
NaH
163
i
PhStBr
0
R (165)
OH
0
164
Organophosphorus Chemistry
A r o y l cnloi-ides (with certain exceptions) and trialkyl phosphices react together t o give dialkyl aroylphosphonates (167) in an initial Arbuzov reaction, but this is merely the first step in a rather complex sequence (Scheme 16). Further interaction of dimethyl aroylphosphonate (167;R':Mei with an excess of trimethyl phosphite yields che diphosphorus tetrrnalkyl esters (170) and the benzylphosphonic ester (169; K 1 :Me, X=OCOPh) possibly reached through the inreroiediate (168; R1 = K 2 Me). I n the absence of acidea HX, the intermediate (168) decomposes at higher temperatures by l o s s of trialkyl phosphate to yield a novel ylide (172) formed from the carbene (171) and trimethyl phosphite. This interpretation of events has received some support from the finding that the interaction o f trimethyl phosphite and dimethyl (2-ethylbenzoy1)phosphonate at 100" affords both (172;R1=R2-Me, Ar-2-EtC 6H 41 and 1-(dimethoxyphosphinyl )indane (173) which could only have arisen through an intermediate species such a s (171). The reluctance of some aroyl chlorides to react normally with trialkyl phosphites may be due, at least partly, to the stability of the respective species ( 1 6 8 ) . I n the absence of an excess of aroyl chloride, further reaction with ( 1 6 8 ) is (sometimes) possible and leads, once again, to the diphosphorus tetraalkyl esters ( 1 7 4 ) .161 The treatment of dialkyl (3-chloroalkenyl)phosphonates with nucleophiles (RO-, R21UH, K 3 N ) results in prototropic isornerization to the (3-chloro-2-alkeny1)phosphonate diester rather than replacement of halogen.'" The same phenomenon occurs when allylphosphonic dichlorides are treated with Et3N. The Wolff rearrangement of (1-0x0-2-diazoalky1)phosphonic diesters e.g. ( 1 7 5 ) under photochemical o r thermal conditions has been observed The blue, oily l-methylcarbamoyl-l-nitroso(diethoxyphosphinyl )ethane (176) forms a colourless dimer in the solid state; migration of the nitroso group occurs when the compound is treated with HCl. lh5 It is possible to arylate the intermediates thought to be formed during the Pummerer rearrangement of phosphonylmethyl166 sulphoxides; the products are esters of the type (177). 2 The esters' (177;K =Me) have also been obtained in Friedel-Crafts reactions between diethyl [ c h l o r o ( m e t h y l t h i o ) m e t h y l : p h o s p h o s p h o n a t e (178;X-Cl) with benzene in the presence of TiC14, or better, SnC14. The ester (178;X:OCOCF3) reacts with terminal alkenes in the presence of CF3COOH to give dialkyl (3-alkeny1)-
5: Quinquevalent Phosphorus Acids
165
0
0
II
( R20)2POCHArP(OR’)*
(167)
O-i(OR2 I
-C - P ( 0 R ’ [Ar
II
0 (168)
0 II
II
( R 10)2 P COA r
(170)
:j
1
ii
1
- RZCl
(174)
Reagents : i . ( $ 0 ) 3 P ; i i , A r C O C l
Scheme 16
Organophosphorus Chemistrj*
166
0 II
( RO 12 P COC Nz COOMe
(1 75)
lhv 1
COOMe
]
0 II
0 II
( RO)2 P CH2COOMe
( RO)2PCH(COOMe)2
0 NO
II
I
(Et0)z P-CCONHMe
I
Me (176 1
0
II ( R10 ) 2P C HA r SR (177)
HCl
0 II (EtOI2 PCHMcCON(N0)Me
5: Quinquevulenr Phosphorus Acids
167
phosphonates. 167 Various combinations of reactants allow the synthesis of the phosphinic chlorides ( 1 7 9 ; Scheme 171 convertible, as indicated,inro the (1-hydroxyalkvllphosphinic acids ( 1 8 1 ) . However, the replacement of the ketone reactant by an aromatic aldehyde or ketone leads to the (chlorobenzyliphosphinic acids (182). ?'he isolation of the ester ( 1 6 3 ) after addition of methanol to the reaction mixture from propionic acid, dichlorophenylphosphine, and p-methoxybenzaldehyde, has been advanced a s evidence for the pathway (180j'(182)\(181j.168 Scheme 18 shows the mode of addition of two unsaturated and the alcohols to (1-vinylalleny1)phosphonic diesters subsequent Claisen rearrangement of the two adducts,(1841 and ( 1 8 5 1 , 169 each of which was obtained as a i (E l mixture. 'The hydrolysis of phosphonic and phosphinic esters and other derivatives is a topic which h a s received comparatively little attention during the year. One important study has been that on 2-phenyl-1,Z-oxaphospholane 2-oxide (186) and 2-phenyl1,3,2-dioxaphospholane 2-oxide ( 1 8 7 ) . The former hydrolyses 6.2 x l o 3 times faster than ethyl ethylphenylphosphinate, but the 1,3-dioxa compound hydrolyses 1 . 5 x l o 6 times faster than diethyl ethylphosphonate. The difference in free energy of actfvacion for the phosphinate esters (s. 5.2 Kcal. mol.-') is taken as representing the ring strain energy, and the larger -1 difference for the phosphonate esters (s. 8.4 Kcal. mol. ) i s thought to be made up of the ring strain energy together with E. 3.2 Kcal. mol.-l, . I 7 ' the stereoel.ectronic effect In the alkaline hydrolysis of the diarylphosphinic esters (XC6H4j2P(OjOC6H4Y ( X , Y - H , N O 2 , Me, o r Br) the influence of the substituents X and Y of the 'acid' and 'alcohol' parts is additive.17' The influence of structural factors in the esters K12P(X)YMe where X , Y - 0 , O ; S,O; 0 , s ; o r S,S, on the alkaline hydrolysis rate has been examined; the thiophosphoryl esters are only slightly ( ~ O O X . " ~ 0-Ethyl d i p h e n y l p h o s p h i n o t h i o a t e is oxidatively desulphurized by COCL2, in contrast to g,g,g-triethyl phosphorothioate and 9,O-diethyl phenylphosphonothioate, which show a 173 distinct lack of reactivity.
(z)
168
Organophosphorus Chemistry
0 II R’-P-CI
I
R2-C -OH
I
R’ PClz
’/
\L
R3
P
( 179)
0 II O ,H R’P
R’-P
(160)
II
R2-C R3= A r
I I
-OH -OH
R3 (181)
0
II
H ‘
R~-P-
OH
R2- C -
Cl
I
I
1OO’C
0 II P h - P - OMe
I
H-C-OH
Ar
I 4- CH3CsH4
(1 62)
(183) Reagents : i, MeCOOH , or H 2 0 , or RP(O)H(OH) ; i i , MeCOCl ; iii , &OR3;
2
iv , H20
Scheme 17
i or ii 4
OR
iii 4 (184)
1
iii
(1851
0 Reagents:
1,
HC=CCH2OH ; ii , l-$C=CHCH20H
; iii, H e a t , 150’
Scheme 18
-c-
w0
5: Quinquevalent Phosphorus Acids
169
Ph \
P-P
/
Ph
(190)
(186) X = C H 2 (189)
(187) X = 0
S II ,SSPh AnP, CI
11
AnP:
S
,
II SNa
AnP,
i , PhSCl
OR
(188 1
S
Reagents:
SSPh
at
OR
50' ; i i , R O -
Scheme 19
170
Organophosphorus Chemistrv
Lawesson's reagent i s acted upon by PhSCl to give intermediate chlorides convertible into the 9-alkyl SS-phenyl phosphorodithioate esters (188) obtainable by an alternative route (Scheme 1 9 ) An examination of metal complexes of substances resembling 1.awesson's reagent has suggested that i t is itself not an active sulphurization agent for benzophenone. However. (189) does convert benzophenone into the thioketone. 3 1 P n.nl.r. evidence suggests that Lawesson's reagent is in rapid equilibrium with the dithioxophosphorane monomer (190) which i s the active agent A reaction between the tetrathiobisphosphonic acids (141) and cyanides yields ultimately thioamides and the r i n g compounds ( 1 9 1 ; ~ = 2 or 3).176 Reactions of bis(trimethylsily1 1 and bis(trimethylstanny1) esters of phosphonotrithioic acids 1136) have been reported. 1 3 4 The full results have been published of a detailed 31P n.m.r. and stereochemical study of the chlorinolysis of S-methyl t-butylphenylphosphinothioate.'77 rhis involves fission of the P-S bond with the favoured stereochemistry being that of retention of configuration at phosphorus. Intermediates, thought to be (192-194) were detected, the last two being confirmed by independent synthesis from a PI1I-0-P1" anhydride and MeSCl or C 1 2 . In a manner reminiscent of the behaviour of the tervalent esters ( 1 4 3 1 , che tervalent esters (1951 are converted into the thiophosphonic amides (196) when heated, and are formed along with the latter in the reaction illustrated.178 The mechanism of the rearrangement of an a-thiophosphoryl trifluoroacetate (197) has been investigated using 170 and l80labelling techniques.179 The main product from the treatment of the ester ( 1 9 7 1 , labelled a s indicated, with acetic acid is the 5-trifluoroacetate (200;R=COCF3) (Scheme 20) which is labelled in the phosphoryl group ( 8 0 % ) and in the carbonyl group (20%). Compound (200; R = H ) is a minor, though still substantia1,by-product. It was suggested that (199) is the key intermediate which is not produced by any concerted process but rather through the participation of ion-pairs (198). The reaction between the allenephosphonic diesters (201) and hydrogen dithiophosphates can occur along two pathways (Scheme 21). When R1-Et and R2=Me, the addition step is not important, and the main process is one of dealkylation. Only the introduction of two Me groups at the phosphonic ester y-carbon
5: Quinyuevalmr Phosphorus Acids
171
s s-s R-P
II/
's-s/
\
P-R
11
+
Me3MX
S
M = Si or Sn
[But PhP(SMe)OP(O)PhBu']+Cl-
[But PhP(0)SCI Me]+ CI-
(192)
(193)
[Bu
P h P ( C I 10P (0 PhM c ] + C I -
(194)
(Et2N),PCI
+
S II
MeNHCPh
(Et,N), PSCPh=NMe
(195)
+
S II (Et 2 Nl2 PCPh=NMe (196)
172
Organophosphorus Chemistry
= 170or 180
--& : 1 SR
Me Scheme 20
0
(OEt
2
(200)
0 II
(R2 O), P-C-CH=CR32
I1
CHCH2SP(S)(OR1 12
(205)
S
t
0
II (R20)2PCH=C=CR32
(201)
II (R’ 012 P SR2
+
( R ’ O),P(S)SH
0
R2 0, II PCH=C=CH2 HO’
1
R 3 = Me
S
(202)
+
R3= H
(203) Scheme 21
5: Quinquevalent Phosphorus Acids
173
activates the addition process but even then only to a relatively small extent, the yields of ( 2 0 2 ) being E. 25%. The yields of the ester (203) and of the dihydro-1,2-oxaphosphole (204) are 5-7%. With the introduction of a vinyl group at the allene a-carbon addition to the vinyl group becomes the main reaction (giving (205)1 with the dealkylation process of secondary importance. 180 The treatment of arylmagnesium bromides with diphenyl phosphorazidate yields labile products which, in the presence of PreOH-HC1, or MeOH-KOH, or better, lithium aluminium hydride or NaA1H2 (OC2h40Me 1 2 , affords arylamines.18’ The prochiral d i p h e n y l p h o s p h i n y l a m i n e s are asymmetrically reduced by chiral hydride reagents to give chiral diphenylphosphinic amides with high e.e.18’ Diels-Alder reactions, including the dimerization, of 1-aminophosphole 1-oxides (207) have been observed. The dimers (208), and the products from Pj-phenylmaleimide, (209), undergo oxygen insertion when treated with MCPBA to give 5,6-oxaphosphabicyclo[2,2,2;octanes e.g. (210). The crystal structures of the monohydrate of (208;R=Me)and (210;K=Me)were determined. In boiling toluene compounds of type (210) lose the bridging phosphorus, although this is not released immediately as a separate entity. The presence of benzylaniine during the pyrolysis assists in the breakdown, and the products (211;X=NMe2 or NHCH2Ph) have been detected. However, agents normally effective for the trapping of metaphosphate or metaphosphonate were unable to 183 trap a species such as Me2NP(=0I2. A further reaction of (1-vinylal1ene)phosphonic diesters, this time with Lhe imidophosphites (2121, is of interest in providing examples of 5-phosphorylated-dihydro-1,Z-azaphosphepines. When K-Me the reaction pathway leads to the isolable (2131. On the other hand, the product from (212;R=Et) appears to be the 1,2-azaphosph(V)orine (214). This communication also describes other similar compounds obtained by variations in the C substituents in (212).184 N-Aryl-2-(diphenoxyphosphiny1)hydroxylarnines are useful reagents for the direct conversion of amines into hydrazines. When treated with sodium methoxide in methanol, the c-methanesulphonates of (aminophosphinoy1)hydroxylamines (215;R1=NHPh or NMe2 1 readily rearrange to the phosphorohydrazidic
Organophosphorus Chemistry
174
P h2P (O)N=C R’R2
(206)
MCPBA
U
RzN,
Il,O
Mep h
H
Me&
0 (210)
0 NPh
O=P-NHCHz
I
Ph
X
(211) ( a ) X = NMez ( b ) X = NHCHzP h
175
5: Quinquevalent Phosphorus Acids
0 CH=CHz II I
(EtO), P-C=C=CMe2
t +
R
=
Et
(RO)2PN=C(NEti!)Ph
176
Organophosphorus Chemistry
esters 1216; Kl-NHPh or NMe2J. W i t h pyridine in MeOH (10% v/v), the speeds of these reactions (t$= 70 and 6 m. respectively, at room temperacure) contrast markedly with that of the mesylate of N-(diphenylphosphinoy1)hydroxylamine (215;R=Ph)for which
x.
z.
t$12 days. The results are thought to simply represent a greater migratory aptitude of PhNH and NMe2 relative to that of Ph, and indeed no migration of the Ph group in (215) was observed. If, in place of methoxide in methanol, the amines K2NH2 are employed, then the products have the structure (217; K1=NHPh or NMe2, K2-Me or tBu3.186 On the other hand, the products resulting from the treatment of the compounds (215; R1=alkyl) with a primary aliphatic amine R 2NH2 (R2=Me or tBu) or NaOMe (for which the reaction is extremely rapid) are the anilides (219;X=NHK2 or Me); the extent of alkyl migration, by contrast, is ~ 2 % .The preferred migration of Ph suggested the possible participation of a phenonium ion-like transition state leading, in turn, to a metaphosphonimidate intermediate (2181 The migration of an anilino group also occurs when the (1-chloroalky1)phosphonamidic esters (220) are treated with NaOMe in MeOH, and the reaction is accompanied by demethylation to the monomethyl esters (222;R3=H). With a decrease in the bulk of the phospnonic carbon moiety (220; a,b,c) the initially very fast rearrangement becomes progressively slower, the extreme reaction rates differing by a factor of 3000; at the same time, the extent of demethylation increases until for (220a) i t is the principal reaction. Although the participation of a pentaco-ordinate intermediate (221) seems an attracttve mechanism, che fact that sodium ethoxide in ethanol is a more effective reactant suggests that RO- acts as a base rather than as a nucleophile, and the preferred mechanism is one involving initial l o s s of a proton leading to the azaphosphiridine (223)(although this could not be detected) followed by reaction with KO- as a nucleophile through anocher pentaco-ordinate intermediate. The rearrangement has preparative interest for the synthesis of 188 [(arylamino)alkyljphosphonic acid derivatives. The behaviour of the phosphonamidic chloriaes (224, 225; 2 R1=H, 2-Me, 2,4,6-Me3, or 2,4,6-iPr3) towards the amines R NH2 2 (R =iPr or tBu) to give the diamides (226) or (227) shows some interesting features. For the group (224), an increase in steric bulk throught the series (a),(b),(c), and (d) results in a decrease in the reaction rate; the reactions of ( a ) and (d)
5: Quinquevalent Phosphorus Acids
Ph
R'
I77
0 II
'PNHOMS
'
(215 1
CI R ' R2
0 j
-
- OR3
NHPh
R'
# f ! - - O R 3I OMe
PhNH
(221)
(220)
1 0 N
fast
N
Ph
OR^
Ph
(223)
(b) R ' = H , R2=Me
- Q-
(a) R'=R2=Me
R'
P-CI X
( 2 2 4 ) X = NMc2
$NH2
0
LI " R 2
X
( 2 2 6 ) X =NMcz ( 2 2 7 ) X =NHBu'
( c ) R'=R2=H
(a) RLH (b)
R1=2-Me
(c)
R' = 2 , 4 , 6
(d)
R1 = 2 . 4 . 6 -Pri-,
- Mc3
178
Organophosphorus Chemistty
with cBuOH differ in rate by a factor of c . 7 0 . Such a sensitivity to bulk is characteristic of a n SN2(P) process. However, the reaction rates for the members of each pair ( 2 2 5 ; a and b ) and
( 2 2 5 ; ~and d)differ little, but the the members of the pair
with bulkier aryl groups react faster by a factor of s.100; for these examples a mechanism involving elimination-addition with metaphosphonate formation is favoured. Keactions between ( 2 2 5 a ) and bulky nucleophiles e.g. tBuOH or iPr2NH, or weak nucleophiles such as F3CCH20H, are rapid, even at 0' i n
dichloromethane.
References
B . V . , Russ. Chem. Rev. ( E n g l . T r a n s l . ) , 1985, 54, l , > O l . Lamalov. R.M., Z i m i n , M.G., a n d P u d o v i k , A . N . , Russ. Chem. R e v . ( E n g l . T r a n s . ) -
1. ' i m o k h i n , ?.
.985,
2,
1210.
5,
l a h m o o d , T . , a n d S h r e e v e , J . M . , I n o r g . Chem., 1986, 3830. 4. latimood, T . . a n d S h r e e v e , J . M . . I n o r g . Chem., 1986, c 5 . 4081. 5. ' a r a k i n , O . V . , R o m a k h i n , A . S . , N i k i t i n , E . V . , I g n a t ' e v , Yu. A.,Rumarluv, G . V . , I i r o n o v , B . S . , K a r g i n , Yu. M., a n d P u d o v i k , A . N . , J . Gen. Chein. USSR 2.730. : E n g l . T r a n s l . ) . 1985, 6. ) a v i s s o n . V . J . , W o o d s i d e , A . B . , N e a l , T . R . , S t t , e r n l e r , K . E . , Muehlbackier,, M . , 3rid P o u l t e r , C . D . , J . O r g . Chem., 1986, 4768. 7. J u l i a , M . , M e s t d a g h , H . , aiid R o l a n d e , C . , T e t r a h e d r o n , 1986, 42,3841. a. I a b k o w s k i , W . , M i c h a l s k i , J . . W a s i a k , J . , a n d S k r z y p c z y r < s k l , : r o a t . Chim. Acta. 1986, 195. 9 . : o p u s i r ; s k i , A . , M i c h a l s k i , J., a n d P r t , r z e b o w s k i , M., P h o s p h o r u s S u l f u r . , 3.
=,
2,
1986,
10
11
12. 13. 14. 15. 16.
3 , iY9.
Talley, J . J . , C u l l i s , P.M., 7869.
z,
z,
a n d B e r m a n , C.B., J . Chem. E n g . D a t a , 1987, 3 2 , ? 7 9 . I a g r o s s i , A . . a n d R o u s , A . , J . Arner. Chem. S O C . , 19HO,
I_(/?.
K u z e n a s t i e v a , L . Y a . , S m i r n o v a , T.V., a n d K u z n e t s o v a , S.Yu., J . Gen. Chem. USSR ( E n g l T r a n s l . ) , 1986, 933. C h u r u s o v a . S . G . , Kozlov, V.A., Gr-apov. A . F . , a n d M e l ' n i k o v , N . N . , J . G e n . Chem. U S S R ( E n g l . T r d n s l . ) , 1985, 55, 2495. Novikova, Z.S., K u r k i n , A.N., a n d L u t s e n k o , I . F . , J . Gen. Chem. U S S R ( E n g l . T r a n s l . ) , 1985, 55, 2405. H a o , R . J . , S r l v a s t a v a , G . , arid M e h r o t r a , R . C . , I n o r g . Chim. A c t a , 1986, 111, 163. C h a d h a , R . K . , D r a k e , J . E . , arid S a r k o u , A . B . , 2 . O r g a n o m e t . Chem., 1 9 8 7 .
z,
323. 271. 17. C h a d h a , R . K . , 18.
19. 20. 21. 22.
D r a k e , J . E . , McMarius, N . T . , Q u i r i l a n , B . A . , a n d S a i , k a r , A . B . , O r g a n o m e t a l l i c s . 1987, 5 , 813. M u l l i e z , M . a n d W o l f , R . , B u l l . S O C . Chim. F r . , 1986, 1 0 1 . C h e n , Q . , a n d X i e , L . , K e x u e , T a n g b a o ( F o r . L a n g . E d . ) , 198b, 1184. C h e n g , C . Y . a n d Shaw, R . A . , P h o s p h o r u s S u l f u r , 1986, 26, 185. Yun-Er S t i i h , J y - S h i h Wang, a n d L i n g Kang L i u , H e t e r o c y c l e s , 1986, 24, 1599. M i z h i r - i t s k i i , M.D. a n d R e i k h s f e l ' d , V . O . , J . G e n . Chem. USSR ( E n g l . T r a n s . ) ,
I,
55,
1985, 1674. 23. Kim, S . , C h a n g , S . B . , a n d L e e , P . H . , T e t r a h e d r o n L e t t . , 1987, 2735. 24. L i u , H - J . , a n d F e n g , W.M., S y n t h e t i c . Commun., 1986, 1485. A s s e r c q , J . - M . , L o h , J - P . , a n d G l a s e , S . A . , J . Org. Chem., 25. W e l c h , S . C . , 1987. 1440. 2 6 . K u r i h a r a , T . , M l k i , M., Y o n e d a . R . , a n d H a r u s a w a , S . , Chem. P h a r m . B u l l . , 1986, 2747.
g,
2,
3,
2,
5: Quinquevalent Phosphorus Acids
179
2 7 . Kuriharcl, r . , M l k l . M., S a n t o , K . , Harusawa, >., and Yoneda, R . , 4620. Chem. Pharm. B u l l . , 1 9 8 6 , M.M., Z a k h a r o v , L . S . , Goryunov, E . I . , P e t r o v s k i i , P . V . , S h L h e r b i n a , T.M., K a s h k l n , A.V., d n d S h d l d u r o v , V . S . , B u l l . Acad. Sci. USSR, D i v . L h r m . S c i . , 1 9 8 5 , 1774. 29. N i t t a , Y . , A ~ a k a w d , Y . . and Ueyama N., Lhem. Pharm. B u l l . , 1 9 8 6 , 3 4 , 2710, N i t t a , Y . and Arakawa, Y . . i b i d . , 1 9 8 6 , 34, 3 1 2 1 . 3 0 . U g l , I . , B a u e r . J . , F o n t a i n , E . , Goetz, J . , H e r i n g , G . , J a k o b , P . , Ldndgr-af, B . , K a r l , R . , Lemmen, F . , Schnrlderwlnd-StGckleln, R . , Schwarz, R . , S l u k a , P . , B a l g o b ~ n , N . , C h a t t o p a d h y a y a , J . , P a t h a k , T . , and Zhou, X . - X . . Chem. S c r . , 1 9 8 6 , 205 31. Dhawan, B. and Redmore, D . , S y n t h . Commun., 1 9 8 7 , 465. 3 2 . Hammerschmidt, F . and V G l l e n k l e , H . , L i e b i g s Ann. Chem., 1986, 2 0 5 3 . 33. Wotrlldk, L . , K o w a l s k i , J . , and C h o ~ r i o w s k i , J . , T e t r a h e d r o n Lett., 1985, 2 6 , 4965. 34. Modro, T.A., T e t r a h e d r o n L e t t . , 1 9 8 6 , 27, 3063. 3 5 . B e l e t s k i i , I . P . , and Y a t s r m i r s k l l , K.B., J . Gen. Chem. USbR ( E n g l . T r a n s l ) , 1 9 8 6 , 56, 2 9 . 7870. 3 6 . C u l l i s , P.M. a n d I a g r o s s i , A., J . A m e r . Chem. SOC., 1 9 8 6 , 469. 3 7 . G o i e n s t e i n , D.G., Chang, A., and Ydng, J . , T e t r a h e d r o n , 1987. 38. Fdrinl, T . , T a i l - a , K., G o r e n s t e l n , D.G., Vaidyanathaswamy, R . , a n d V e r k a d e , J . G . , J . Amer. Chem. S O C . , 1 9 8 6 , 6311. 39. C o r r i u , R . J . P . , Phosphorus S u l f u r , 1986, 1. 43. 40. Lanneau, G.F., P h o s p h o r u s S u l f u r , 1 9 8 6 , 4 1 . C o r r i u , R . J . P . , Lanneau, G . F . , and L e c l e r q , D . , T e t r a h e d r o n , 1 9 8 6 , 42, 5591. 4 2 . Periczek, S . , L a p l e n i s , G . , and K f o s i n / s k l , P., P h o s p h o r u s Sul%, 1986, 2 7 , 153. 4 3 . E d s w o r t h , W.S., J . Org. Chem., 1 9 8 7 , 52, 1748. 4 4 . PTihoda, J . , Zeman, A . , and Herrmann, E . , Z . Chem., 1 9 8 6 , 26, 301. 413. K u t y r e v , A.A., O v r u t s k r i , D.G., a n d Moskva, V.V., J . Gen. Chem. USSR (Engl. T r a n s l . ) , 1 9 8 6 , 56, 1043. 1755. 4 6 . Thanappan, A . , and Wadsworth, W.S., T e t r a h e d r o n L e t t . , 1 9 8 6 , 4 7 . O v r u t s k l i , V.M., and P r o t s e n k o , L . D . . R u s s . Chem. Rev. ( E n g l . T r a n s l . ) , 1986, 343. 4 8 . R l e s e l , L . a n d S t u r m , D . , Z . Anorg. A l l g . Chem., 1 9 8 6 , 539, 1 8 7 . 4 9 . K o l e s o v d . V . A . . A l e s h n r k o v a . T . V . , S t r e p i k e e v , Yu. A . , and Arbuzova, M . V . , J . Gen. Chem. USSR ( E n g l . T r a n s l . ) , 1 9 8 5 , g ,1808. 50. Zimin, M.G., Fomakhln, E.V., Sadykov, A.R., Smirnov, V.N., and P u d o v i k , A.N., J . Gen. Chem. USSR ( E n g l . T r a n s l . ) . 1985, 55, 1 5 2 6 . Fomakhln, E.V., I s l a m o v , R.G., a n d P u d o v i k , A.N., 51. Z i m i r i , M . G . , J . Gen. Chem. USSR ( E n g l . T r a n s l . ) , 1 9 8 5 , 5 5 , 2384. 52. Z a b l r o v , N.G., C h e r k a s o v , R.A., a n d P u d o v l k , A.N., J . Gen. Chem. U S S R ( E n g l . T r a n s l . ) , 1986, 56, 1089. 4591. 53. M i k o t a j c z y k , M., K i e l b a s i n s k l , P . , and S u t , A . , T e t r a h e d r o n , 1986, 54. S h a b a n a , R . , Meyer, H . J . , and Lawesson, S . O . , P h o s p h o r u s S u l f u r , 1 9 8 5 , 2 5 , 297. 55. Freedman, L . D . a n d Freeman, H.S., Chem. Rev., 1 9 8 7 , 87, 289. 5 6 . P e t r o v , K.A., C h i z h o v , V.M., P o k a t u n , V . P . , and Agafonov, S . V . , Russ. Chem. Rev. ( E n g l . T r a n s l . ) , 1 9 8 6 , 55, 1 0 4 2 . 57. Logusch, E.W., T e t r a h e d r o n L e t t . , 1 9 8 6 , 27, 5935. 58. Osepay, G . , S z i l & y i , I . , a n d S e r e s , J . , T e t r a h e d r o n , 1 9 8 7 , 43, 2977. 59. Hartmann, W . , S t e i n k e , W . , G l o e d e , J . , and Gross, H.,Z. Chem., 1 9 8 6 , 26, 131. 345. 6 0 . Ley, S . V . , a n d Woodward, P.R., T e t r a h e d r o n L e t t . , 1 9 8 7 , 61. Abdulganeeva, S . A . , E r z h a n o v , K.B., a n d Sadykov, T . S . , J . Gen. Chem. USSR ( E n g l . T r a n s l . ) , 1986, 56, 1100. 62. L i v a n t s o v , M.V., P r i s h c h e n k o , A.A., L u t s e n k o , I.F., J . Gen. Chem. U S S R (Engl. T r a n s l . l , 1 9 8 6 , 2146. 6 3 , A l b r e c h t , S . a n d Herrmann, E . , Z . Anorg. A l l g . Chem., 1 9 8 6 , 538, 207. 6 4 . K h a c h a t r y a n , R.A., Ovsepyan, S . A . , Lulukyan, R . K . , P a n o s y a n , G.A., and 3 6 9 ; Chem. A b s t r . 1 9 8 6 , I n d z h i k y a n , M.A., A r m . Khim. Z h . , 1 9 8 5 , 20901 7 . 2 8 . Kabachnik,
34,
5
11,
108,
s,
108, g, g,
27,
2,
s,
e,
s,
2,
105,
180
Organophosphorus Chemistry
65. Xu, Y. and Zhang, J., Tetrahedron Lett., 985, 26, 4771. 66. Lu, X. and Zhu, J., Synthesis, 1986, 563. 67. Xu, Y., Jin, X., Huong, G., and Wang, Q., Huaxue Xuebao, 198b, 44. 183; Chem. Abstr., 1986, 106, 5148. 68. Petrakis. K.S.. and Naeabhushan. T.L.., J. Amer. Chem. S u c . , 1987, 109, 2831. 69. Kandil, A.A., Porter, T.M., Slessov, K.N., Synthesis, 1987, 411. 70. Sarnpson, P., Hammond, G.B., and Wiener, D.F., J. Org. Chem., 1986, 43Ur’. 71. Rozinov, V.G., Pensionerova, G.A., Izhboldina, L.P., and Donskikh, V.I., J . Gen. Chern. USSR (EnR1. Transl.), 1985, 55, 2335. 72. Rozinov, V.G., Kolbina, V.E., Rybkina, V.V., and Donskikh, V.I., J . Gen. Chem. USSR (Engl. Transl.), 1985, 2 , 1903. 73. Mokva, V.V., Novruzov, S.A., Isrnailov, V.M., and Musaev, Sh. A . , Azerb. Khim. Zh.. 1985, 40; Chem. Abstr.. 1986, 105, 226785. 74. Dmitrichenko, M.Yu., Donskikh, V.I., Rozinov, V.G., Rybkhina, V.V., and Sergienko, L.M., J. Gen. Chem. USSR (EnR1. TI-ansl.),1985, E, 1672. 75. Shvedova, Yu. I., Dogadina, A.V., Ionin, B.I., Petrov, A.A., J. Gen. Chem. USSR (Engl. Transl.). 1985, 2 , 1663. 76. Startsev, V.V., Zubritskii, L.M., Lukin, M.G., and Petr-ov, A.A.. J. Gen. Chem. USSR (Engl. Transl.), 1985, 55, 1660. 77. Teulade, M.P., and Savignac, P., Tetrahedron Lett., 1987, 2,405. 78 . Coutrot, P., and Ghribi, A., Synthesis, 1986, 661. 79. Teulade, M.-P. and Savignac, P., Synth. Commun., 1987, 11, 125. 80. Aboujaoude, E.E., Collignon, N . , Teulade, M.-P., and Savignac, P., Phos horus Sulfur, 1985, 2 5 , 57. 81. Abouyaoude. E.E., Lie/tJe/,S., Collignon, N., Teulade, M.-P. and SavignaL,P., Synthesis, 1986, 934. 82. Savignac, P., Teulade, M.-P., and Collignon, N., J. Organomet. Chrm., 1987, 323, 135. 83. Kuo, F. and Fuchs, P.L., Synth. Commun., 1986, Is, 1745. 84. Ismailov, V.M., Guliev, A.N., and Moskva, V.V., J. Gen. Chem. USSR (Engl. Transl.), 1985, 55, 2127. 85. Coutrot, P., Youssefi-Tabrizi, M., and Grison, C., J . Organomet. Chem., 1986, 316, 13. 86. Mikorajczyk, M., Midura, W., Miller, A . , and Wieczorek, Tetrahedron, 1987, 43, 2967. 87. Blackburn, G.M.. Brown D., Martin, S.J., and Parratt, M.J., J. Chern. SOC., Perkin Trans. 2 , 1987, 181. 88. Blackburn, G.M., and Parratt, M.J., J. Chem. S O C . , Perkin Trans. 1 , 1986, 1417. 89. Ishihara, T., Maekawa, T., Yamasaki, Y., and Ando, T., J . Org. Chem., 1987, g ,300. 90. Costisella, €3.. and Keitel, I., S nthesis, 1987, 44. 91. Heinicke, J . , BAhle,I., and Tzsch:ch, A., J. Organomet. Chem., 1986, 317, 11. 92. K m o n d . G . B . , Calogeropoulou, T., and Wiemer, D.F. , Tetrahedron Lett. , 1986, 11, 4 2 6 5 . 93. Lu, X. and Zhu, J., J. Organomet. Chem., 1986, 2,239. 94. Zimin, M.G.. Cherkasov, R.A., and Pudovik, A.N., J. Gen. Chem. USSR (Engl. Transl.), 1986, 56, 859. 95. Ovchinnikov, V.V., Cherezev, S.V., Cherkasov, R.A., and Pudovik, A.N., J. Gen. Chem. USSR (Engl. Transl.), 1985, 55, 1109. 96. Texrer-Boullet, F., and Lequitte, M., Tetrahedron Lett., 1986, 3515. 97. Aleinikov, S.F., Krutikov, V.I., Golovanov, A.V., and Lavrent‘ev, A.N., J. Gen. Chem. USSR (Engl. Transl.), 1985, 55, 2485. 98. Aleinikov, S.F., Krutikov, V.I., Golovanov, A.V., Lavrent’ev, A.N., J. Gen. Chem. USSR (Engl. Transl.), 1986, 56. 1046. 99. Wrablewski, A. E., Liebigs Ann. Chem., 1986, 1448. 100. WrGblewski, A.E., Liebigs iInn. Chem., 1986, 1854. 41, 791. 101. Wrgblewski,,A.E., 2 . Naturlrorsch.,Teil B, 1986, 102. Nifant’ev E . E . , Kukhareva, T.S., Popkova, T.N., and Davydochk.ina, O.V., J. Gen. Chem. USSR (Engl Transl.), 1986, 56, 264. I
s,
c,
5: Quinquevalent Phosphorus Acids
181
10.3. Majcwski, P., Synthesis, 1987, 555. 104. Belakhov, V.V., Yudelevich, V.I., Yakovlev, A.A., and Ionin, B.I., J. Gen. Chem. USSR (Engl. Transl.), 1986, 56, 289. _____ 105. McKenna, C.E. and Khawli, L.A., J . Org. Chem., 1986, 51, 5467. 1751. 106. Karanewsky, D.S. and Badia, M . C . , Tetrahedron Lett., 1986, 107. Zuchi, Gh., Vlad, Z . , and Tudose, A., Farmacia (Bucharest). 1985, 2, 245; Chem. Abstr., 1986, 106,67394. 108. Yuan, C . and Qi, Y., Huaxue Xuebao, 1986. 44, 280; Chem. Abstr., 1986, 106. 84725. 109. Yuan, C. and Qi, Y., Synthesis, 1986, 821. 110. Hoffmann, M., Synthesis, 1986, 557. 111. Schgllkopf, U. and Schbtze, R . , Liebigs Ann. Chem., 1987, 45. 112. Shiozaki, M. and Masuko, H., Bull. Chem. SOC. J n., 1987, 645. 113. WAjtowicz, H. and Mastalerz, P., Synthesis, 198;, 477. 114. Chakrovarty, P.K., Combs, P., Roth, A., and Greelee, W.J., Tetrahedron Lett., 1987, 28, 611. 115. Gevaza, Yu. I . , and Staninets, V.I.,Chem. Heterocycl. Compd. (Engl. Transl.) 1986, 231. 116. Belakhov, V.V. and Ionin, B.I., J. Gen. Chem. USSR (Engl. Transl.), 1986, 56, 1260. 117. Knockel, P. and Normant, J.F., J . Organomet. Chem., 1986, 309, 1. 118. Vysotskli, V.I., Prikhod’ko, Yu. V., Pavel, G.V., Tilichenko, M.N., J. Gen. Chem. USSR (Engl. Transl.), 1985, 2,2198. 119. Proklina, N.V. and Fedorova, G.K., J. Gen. Chem. USSR (Engl. Transl.), 1985, 55, 1905. / 120. Mukhametov, F.S., Korshin, E.E., Korshunov, R.L., Efremov, Yu. Ya., and Zyablikova, T.A., J. Gen. Chem. USSR (Engl.Transl.), 1986, 56, 1574. 121. Slngh, R.K. and Rogeys, M.D., J. Heterocycl. Chem,, 1985, 2,1713. 1.22. Likhterov, V.R. and Etlls. V.S.. J. Gen. Chem. USSR (Engl. Transl.), 1985, 2 , 1536. 127. Kawashima, T.. Miki, Y., Tomita, T., and Inamoto, N., Chem. Lett., 1986, 1986, 1883. 501; Kawashima, T., Miki, Y., and Inamoto, N., E., 124. Kluge, A.F., Org. Synth., 1986, 64, 80. 125. Okamoto, Y. and Azuhata, T., Synthesis, 1986, 941. 126. Mahmood, T. and Shreeve, J.M., Inorg. Chem., 1986, 25, 3128. 127. Degenhardt, C.R. and Burdsall, D.C., J. Org. Chem., 1986, 2,3488. 128. Khokhlov, P.S., Mikltvuk, A.D., Kashernlrov, B.A., Kukalenko, S.S., J. Gen. Chem. USSR (Engl. Transl.), 1985, 55, 2002. 129. Blum, H., 2 . Anorg. Allg. Chem., 1985, g , 152. 130. Arbuzov, B.A., Polozov, A.M., and Polezheeva, N.A., Doklady Chem. 1986, 287, 949; Chem. Abstr. 1986, 106,33182. 131. Sasaki, M., Agric. 8101. Chem., 1986, 50, 741. 132. Pavlenko, N.V., Matyushecheva, G.I., Semenii, V.Ya., and Yagupol’skii, L . M . J. Gen. Chem. USSR (EnE1. Transl.), 1985, 1410. 133. Begley, M.J., Sowerby, D.B., Wesolek, D.M., Silvestru, C., and Haiduc, I., J. Organomet. Chem., 1986, 316, 281. 134. Hahn, J. and Nataniel, T., 2 . Anorg. Allg. Chem., 1986, 543, 7. 135. Hahn, J. and Nataniel, T., Z . Anorg. Allg. Chem., 1987, 547, 180. 136. Kutyrev, G.A., Korolev, O.S., Safiullina, N.R., Yarkova, E.G., Lebedeva,O.E., Cherkasov, R.A., and Pudovik, A.N., J . Gen. Chem. USSR (Engl. Transl.), 1986, 2 , 1227. 137. Pashkovich, K.I., Busygin, I.G., Yufit. D.S., and Struchkov, Doklady Chem.(Engl. Transl.), 1986, 288, 161. 138. Boese, R., Haegele, G., KGckelhaus, W., and Tossing, G., Phosphorus Sulfur, 1985, S,103. Haegele, G . , KGckelhaus, W., Tossrng, G., Seega, J , , Harris, R.K., Cresswell, C.J., and Jageland, P.T., J . Chem. SOC., Dalton Trans., 198.7, 795.
z,
so,
_-
s,
182
Organophosphorus Chemistry
139. Danchenko, M.N. and S i n i t s a , A.D., J . Gen. Chem. USSR ( E n g l . Transl.), 1986, E, 1567. 1 4 0 , Acheson, D.M. and Ansell, P.J., J . Chem. SOC., Perkin Trans. 1 , 1 9 8 7 , 1275. 141. Garibina, V.A., Levnov, A.A., Dogadina, A.V., Ionin, B.I., dnd Pptrov, A.A., J. Gen. Chem. USSR (Engl. Transl.), 1 9 8 5 , 55, 1771. 142. Okamoto, Y., Iwamoto, N., Toki, S., and Takamuku, S., Bull. Chem. S O C . Jpn., 1987, 60, 2 7 7 . 1 4 3 . Iwamoto, N., Okamoto, Y., and Takamuku, S., Bull. Chem. S O C . J p n . , 1 9 8 6 , 5 9 , 1505. 1 4 4 . Frost, J.W., Loo, S., Cordiero. M . L . , and Lr, D., J. Amer. Chem. S O C . , 1987, 1oy, 2166. 145. Mikityuk, A.D., Kashemirov, B.A., Chervin, 1.1. and Khokhlov, P.S., J. Gen. Chem. USSR (Engl. Transl.), 1985, 2491. 231. 1 4 6 . Gross, H . , and Costisella, B., J. Prakt. Chem., 1986, 147. Rymareva, T.G., Khaskin, B.A., and Sandakov, V.B., J. Gen. Chem. USSR (En@. Transl.), 1985, 2 , 1904. 171 148. Reetz, M.T., Peter, R . , and Von Itzstein, M., Chem. Ber., 1 9 8 7 , g , 5829. 1 4 9 . Binder, J. and Zbiral, E., Tetrahedron Lett., 1 9 8 6 , 150. Brel‘, V.K., Prudnikova, O.G., Chernega, A.N., Antipin, M . Yu,
2,
328,
z,
Struchkov, Yu. T., Chekhlov, A.N., Ionin, B.I., Partynov, I.V., and Petrov. A.A., J. Gen. Chern. USSR (Engl. Transl.), 1986, 1542. 151. Trifonov, L . S . , Simova, S.D., and Orahovats, A.S., Tetrahedron Lett.,
g,
iga7, 3391. 152. Spears, L.G., Liao, A., Minsek, D., and Lewis, E.S., J. Org. Chem., 1987, 52, 6 1 . 153. Teulade, M.-P., Savignac, P., Aboujaoude, E.E., and Collignon, N., J. Organomet. Chem., 1986, 283. 154. Zhu, J . and Lu, X., Tetrahedron Lett., 1987, 28, 1897. 155. Minami, T., Kitajirna, Y., and Chikugo, T., Chem. Lett., 1986, 1 1 2 9 . 156. Blackburn, G.M. and Parratt, M.J.,J.Chern. SOC.,Perkin Trans. 1, 1986, 1425. C7. 1 5 7 . Hutchinson, D.W. and Semple, G., J. Organornet. Chem., 1986, 158. Yamashita, M., Morizane, Fujita, K., Nakatani, K., and Inokawa, S., Bull. Chem. S O C . Jpn., 1987, 60, 8 1 2 . , 1 5 9 . Al’fonsov, V.A., Nizamov, I . S . , Batyeva, E.S., and Pudovik, A.N., J. Gen. Chem. USSR (Engl. Transl.), 1985, 55, 1 8 9 7 . 160 Trornetin, A., el Manouni, D., and Burgada, R . , Phosphorus Sulfur, 1986, 301. 161 . Griffiths, D.V., Jamali, H.A.R., and Tebby, J.C., Phosphorus Sulfur, 1985, 1 7 3 ; Griffiths, D.V. and Tebby. J.C., J. Chem. SOC.,Chem. Commun., 1986, 871. 162 Belvkh. O.A.. Dogadina. A.V., Ionln, B.I., and Petrov, A.A., J. Gen. Chem. USSR (Engl. Transl.), 1 9 8 5 , 2 , 1901. 163. Belykh, O.A., Gurevich, I.E., Ryabov, B.V., Dogadina, A.V., and Ionin, B.I., J. Gen. Chem. USSR (Engl. Transl.). 1986, 56, 1690. 164. Polozov, A.M., Pavlov, V.A., Polezhaeva, N.A., Liorber, B.G., Tarzivola, T.A., and Arbuzov, B.A., J . Gen. Chern. USSR (Engl. Transl.), 1986, 1072. 1 6 5 . Kashemirov, B.A., Kakadii, L.I., and Khokhlov, P.S., J. Gen. Chem. USSR (Engl. Transl.), 1986, 56, 1052. 166. Stamos, I.K., Tetrahedron Lett., 1986, 6261. 167. Ishibashi, H . , Sato, T., Irie, M., Eto, M., and Ikeda, M., J . Chem.Soc., Perkin Trans. 1, 1987, 1095. 168. Kardanov, N.A., Tlmofeev, A.M., Godovikov, N.N., Petrovskii, P.V., and Kabachnik, M.I., Doklady Chern. (Engl. Transl.), 1 9 8 6 , 19. 169. Dangyan, Yu. M . , Turakyan, M.R., Panosyan, G.A., and Badanyan, Sh. O., J . Gen. Chem. USSR (Engl. Transl.), 1986, 1344. 170. Yang, J.-C. and Gorenstein, D.G., Tetrahedron, 1987, 43, 479.
312,
309,
g, g,
56,
g,
286.
2,
5: Quinquevalent Phosphorus Acids
183
1 7 1 . Sukorukhova, N.A., Baranskii, V.A., and Kalabina, A.V., J . G e n . Chem.USSR (Engl. Transl.) , 1985, 55, 1670. 172. Cook, R.D., Farah, S., Ghawi, L., Itani, A., and Rahil, J., Can. J . Chem., 1986, 64, 1630. Res. ( S ) , 1986, 192. 173. Buckland, S . J . and Davidson, R . S . , =hem. 174. Shabana, R., Yousif, N.M., and Lawesson, S.O., Phosphorus Sulfur, 1985, 24, 3 2 7 . 175. Rauchfuss and Zank, G.A., Tetrahedron Lett., 1986, 27, 3445. 176. Kutyrev, G.A., Korolev, O.S., Yarkova, E . G . , Cherkasov, and Pudovik, A.N., J. Gen. Chem. USSR ( E n g l . Transl.), 1986. 56, 1086. 177. Krawiecka, B., Michalski, J., and Wojna-Tadeusiak, E . , J . Org. Chem., 1986, 2 , 4201. 178. Malenko, D.M. and Sinitsa, A.D., J. Gen. Chem. USSR (Engl.Transl.), 1986, 56, 1467. 5979. 179, Creary, X and Inocencio, P.A., J. Amer. Chem. S O C . , 1986, 180. Khusainova, N.G., Sippel‘, I., Berdnikov , E.A., Cherkasov, R.A., and Pudovik, A.N., J. Gen. Chem. USSR (Engl. Transl.), 1985, 55.2377. 181. Mori, S., Aoyama, T., and Shiori, T., Chem. Pharm. Bull., 1986, 34, 1524, 182. Hutchins, R . O . , Abdel-Magid, A., Stercho, Y.P., and Wambsgans, A . , J. O r R . Chem., 1987, z , - 7 0 2 . 183. Quin, L.D., Szewczyk, J., Szewczyk, K.M., and McPhail, A.T., J. Org. Chem., 1986, 51, 3341. 184. Bredikhina, Z . A . , Khusainova, N . G . , Efremov, Yu. Ye., Korshunov, R.L., and Pudovik, A . N . , J. Gen. Chem. USSR (Engl. Transl.), 1985, 1519. 185. Boche, G., Sommerlade, R.H., and Bosold, F., Angew. Chem., Int. Ed. Engl., 1986, 2 , 562. 186. Harger, M.J.P. and Smith,, J. Chem.Soc., Perkin Trans. 1, 1986, 2169. 187. Harger, M.J.P., and Smith, A . , J. Chem. SOC., Perkin Trans. 1, 1987, 683 188. Harger, M.J.P., and Williams, A., J. Chem. Soc., Perkin Trans, 1, 1986, 1681. 189. Freeman, S. and Harger, M.J.P., J . Chem. soc. Perkin Trans. 1, 1987, 1399.
108.
2,
Nucleotides and Nucleic Acids BY J. B. HOBBS
1
Introduction
The e f f i c i e n c y of p r e s e n t m e t h o d s of o l i g o n u c l e o t i d e synthesis has not discouraged workers in the field from developing new methods, such a s the use of nucleoside H-phosphonates, or seeking to optimise current procedures, while the applications of oligonucleotides of defined sequence in research and biotechnology are constantly increasing. has
explained
"Why
Westheimer, in a published
Nature
c h o s e phosphates".'
lecture, Nature's
utilization o f n u c l e o s i d e p h o s p h a t e s i n u n e x p e c t e d w a y s i s emphasized
by
continuing revelations of t h e r6les of cyclic
nucleotides i n gating conductances in the membranes of receptor cells involved in vision2 and olfaction3 and t h e rble of tRNA in the biosynthesis of chlorophyll!4 symposium
As
usual, several valuable
reports have appeared a s journal issues o r in book
form,5 and a n e w book o n t h e organic chemistry of the nucleic acids has been pub1 ished.6 2 2.1
Mononucleotides
Chemical Synthesis -
In a general synthesis of nucleoside
3 ' -monophospha tes , a base -unprotec t e d 5 *-g-t - but y 1 d i met h y 1 s i 1 y 1 -
2 '-deoxynucleoside is treated successively with t-butylmagnesium chloride and diallyl phosphorochloridate, or alternatively a base-
protected 5'-~-dimethoxytrityl-2'-deoxynucleoside
is treated with
bis(ally1oxy) chlorophosphine and the resulting phosphite oxidised with
t-butyl
hydroperoxide.
'
T h e products ( 1 ) o r
(2) are
deprotected by standard methods, the ally1 group being removed with pa 1 1ad iurn
(
t r i ph e ny 1 piles ph i ne ) - n- b u t y 1a m i ne - form ic acid.
Yields are high, and the procedures a r e equally adaptable for
184
I85
6: Nucleotides and Nucleic Acids preparing nucleoside 5 .-monophosphates.
The nucleoside 6 -monophosphates of several 2-deoxy-fi- D allopyranosyl n u c l e o s i d e s ( 3 ) h a v e b e e n p r e p a r e d
using the
standard phosphoryl chloride-trimethyl phosphate procedure8.
The
4’,6’-monophosphate o f ( ( 3 ) ; B = C y t ) w a s a l s o p r e p a r e d , a s a n analogue of c C M P , by cyclisation o f the 6’-phosphate with DCC. The U M P analogue ( ( 3 ) ; antitumour activity
B=clra) showed moderate antiviral and
vitro.
A
series of derivatives of 5’-dUMP
containing quinone rings attached t o the 5-position of the base (4)
was
prepared
bis( methylated)
by
treating the
hydroquinones
corresponding nucleosidyl
with
phosphory 1
c h l o r ide
in
acetonitrile-pyridine-water, followed by oxidation using silver oxide and nitric acid.’
A l l the nucleotides showed high affinity
for thymidylate synthetase from Lactobacillus casei and L l Z l O leukaemia cells, and the dimethylbenzoquinone-containing compound behaved a s an active-site-directed alkylating agent enzyme.
None o f the compounds w a s active in antitumour or
antiviral assays. followed
for the
by
M e r c u r a t i o n of d U M P a t t h e 5 - p o s i t i o n ,
treatment
with
allylamine
and
potassium
tetrachloropalladate affords 5-(3-aminoallyl)-dUMP, (5) which when
treated w i t h t h e N-hydroxysuccinimide ( N H S ) ester of 3-carboxy2,2,5,5-tetramethyl-3-pyrrolin-l-oxyl
dUMP derivative (6).1°
affords the spin-labelled
Both ( 5 ) and (6) w e r e good competitive
inhibitors for thymidylate synthetase, with ( 6 ) displaying changes in t h e e.p.r. spectrum indicative of spin label immobilization upon binding t o t h e enzyme.
From this and other results, the
depth of t h e cavity i n which a substituent a t the 5-position of dUMP becomes bound was estimated.
2’,3’-Secouridine-2‘,3‘-di-~-acetate has been phosphorylated
using 4-nitrophenylphosphorodichloridate to afford ( 7 ) , after hydrolysis
and
deprotection.’
The
4-nitrophenyl
ester
of
secouridine 3’-phosphate (8) was prepared similarly from 2’,5’-di-
0-monomethoxytrity1)-secouridine.
Both
(7) and (8) (which are
diastereoisomers) were hydrolysed very slowly
by snake venom
186
Organophosphorus Chemist?
0
Hoi:-oII
I
0
n
I
7=
0-P-0
II
0
HO HO
( 1 ) R=TBDMS ; B = B a s e ( 21 R = DMTr ; 8 = P r o t e c t e d Base
( 3 ) 8-Ade ; Ura; Cyt
R'O
R20
(71 R1= 4 - NO,C,H,OP
-
I
( 0 OH ) ; R2= H
( 8 ) R'= H ; R2=4 N02C,H,0P( 0)OH
1
0
It
0
II
R-C-P-0
I
Me*
0 0
x
CH=CH-CH~NHZ
0
( 6 ) R =CH=CH-CH2-N-C
"
(5) R
5
I
Me
N-O'
Me Me
NH2
I
OH (13)
1
2
I
-H HO
R2
( 9 ) R = E t O ; R = O H ; B = G u a or (10) R ' = H O ; RZ=O H ; B=Gua or (11 1 R'= H2N; R2s OH ; B = Gua or (12) R ' = HO ; R2a H ; B = G u a o r
Adc Ade Adt Adc
6: Nucleorides and Nucleic Acids
187
p h o s p h o d i e s t e r a s e , a n d i n h i b i t e d c o m p e t i t i v e l y t h e h y d r o l y s i s of
e s t e r of
the 4-nitrophenyl
5 -dTMP.
Neither
h y d r o l y s e d by c a l f s p l e e n p h o s p h o d i e s t e r a s e , competitively t h e h y d r o l y s i s of dTMP.
Thus
both
t h e 4-nitrophenyl
diastereoisomers
(8) was
( 7 ) nor
though each inhibited e s t e r of
recognized
were
by
3 -
both
p h o s p h o d i e s te r a s e s .
S e v e r a l p u r i n e n u c l e o s i d e 5 ’ - p h o s p h o n o f o r m a t e s p e c i e s havc: been p r e p a r e d f o r i n v e s t i g a t i o n a s a n t i v i r a l a g e n t s . ( o r 2 ’ , 3 ~ - ~ , ~ - i s o p r o p y l i d edneer i v a t i v e s
Unprotected
o f ) adenosine and
g u a n o s i n e were t r e a t e d w i t h ( e t h o x y c a r b o n y l ) p h o s p h o n i c d i c h l o r i d e i n t r i m e t h y l phosphate t o a f f o r d ( 9 )o n work-up.12 treatment
with
or
hydroxide
methanolic
Subsequent
ammonia
hydroxycarbonylphosphonates
( 1 0 ) o r aminocarbonylphosphonates
respectively.
treatment
Analogous
of t h e
gave (11)
corresponding
2
’-
deoxynucleoside-3’-~-acetates a f f o r d e d t h e p h o s p h o n o f o r m a t e s ( 1 2 ) , which d i s p l a y e d s i g n i f i c a n t a c t i v i t y a g a i n s t herpes simplex v i r u s
in
(HSV)-2
(S)-9-(3-Hydroxy-2-phosphonomethoxypropyl)
vitro.
adenine ( 1 3 ) , presumably prepared
(S)-9-(2,3-
treatment of
d i h y d r o x y p r o p y l ) a d e n i n e w i t h chloromethylphosphonodichloridate,
as a novel
has been d e s c r i b e d agent,
a c t i v e
a g a i n s t
A
retroviruses.13
a
s e l e c t i v e broad-spectrum
range
phosphonate
of
isostere
monophospho-3-deoxy-D-manno-2-octulosonic of outer-membrane
v i r u s e s (14) of
acid
(
151,
antiviral and
also
cytidine
5‘-
a component
lipopolysaccharide of Gram negative bacteria,
has been prepared moiety
DNA
coupling t h e protected sugar phosphonate
t o ~4-benzoyl-2’,3’-isopropylidenecytidine u s i n g
t r i p h e n y l p h o s p h i n e a n d d i i s o p r o p y 1 a z o d i c a r b o x y 1a t e .
The
p h o s p h o n a t e ( 1 4 ) was a w e a k i n h i b i t o r o f t h e s y n t h e t a s e r e p o n s i b l e for t h e biosynthesis of (15).
S e v e r a l d e r i v a t i v e s o f 1‘-deoxy-
1 ’-phosphono-1-B-D-fructofuranosyluracil methyl
ester
(17),
the
( 16 )
3’-deoxy-analogue
,
including
(18), and
t h e
the 0 2 , 2 ‘ -
a n h y d r o - a n a l o g u e s of ( 1 6 ) a n d ( 1 7 ) , h a v e b e e n p r e p a r e d b y s t a n d a r d methods,
w i t h t h e anhydro-species s e r v i n g as i n t e r m e d i a t e s i n t h e
s y n t h e s e s of t h e o t h e r c o m p o u n d s . I 5
188
Organophosphorus Chemistr?.
Hoy$ioH ' ROfoR
0 - P-0-(Nucleoside-
OR I
HO
0 II
5')
-0 I
(19) R=Stearoyl ;Palmitoyl;Oleoyl
( 1 6 ) R1=H ; R 2 = OH (17)R':Mt;R2-OH
(18) R ' = M c ; RZ= H
O
ArA I
fcL;2ph
HO
OH
TBDMsow TBDMSO
R
( 2 1 ) R = H or OTBDMS
--OC6HLNO2-4
(22) (dThd-3/10
I 0--P.'
-.y'"
(dlhd H2@
#
- 3/10 I
p---0
04h
S
P P h
(24)
6: Nucleotides and Nucleic Acids
I89
5 ‘-Phosphatidylnucleosides
(
efficiently by using phospholipase phase
system
to
transfer
the
1Y D
)
have
been
p r e pa r c d
f r o m StrepgEySc? in a t w o -
phosphatidyl
phosphatidylcholines t o t h e 5 ‘ - h y d r o x y g r o u p o f
residue
of
a n u m b e r of
nucleoside acceptors, including adenosine, uridine, cytidine, 2 deoxyadenosi ne , 2
’-
deoxy thymidi ne , -_a ra - c y ti d in e , 5 - f 1 uor o u r id i n e
and 2 ’ - d e o x y - 5 - fl u o r o u r i d i n e , b r e d i n i n a n d n e p l a n o c i n A.16 Cytidine 5‘-monophosphosialate has been prepared f r o m CTP and 8 acety 1 neuramin ic a c id
u s i ng
c y t id i n e
5
‘-
m o n o p h o sp h o s i a 1 at e
synthase i m m o b i l i s e d o n a m i n o p r o p y l s i l i c a , a s p a r t of t h e synthesis of a trisaccharide using immobilized enzymes.17 Arabinof uranosyladenine-5 *-monophosphate
(
ais - A M P
ha s
9-B -D-
bee n
coupled t o poly (L-lysine) o r g a l a c t o s y l - p o l y ( L - l y s i n e ) using the
water-soluble l - e t h y l - 3 - d i m e t h y l a m i n o p r o p y lcarbodiimide ( E D C ) . The latter con jugate delivered the =-AMP
specif ical ly to 1 iver
cells, while the poly(l-lysine) conjugate w a s l e s s specific, inhibiting DNA synthesis in liver, intestine and bone marrow. Methyl 4-chlorobut-2-ynoate reacts with A M P , ADP o r ATP to afford
the
corresponding
chloromethylpyrimido[2,l-i
3- B-~-ribofuranosyl-7~-1-0~0-9-
I purine 5‘-phosphates ( 2 0 ~ ~ ’The
analogue ( 2 0 ; ~ = 2 ) w a s a substrate for pyruvate
ADP
kinase, and the
ATP analogue (20;1=3) w a s a substrate for hexokinase, adenylate kinase, and myosin ( w h i c h became irreversibly modified).
N2-
Benzoylated sugar-protected guanosine and 2’-deoxyguanosine react
with di ch loro- (N,N-diisopropy 1amino) phosphine in the presence of
N-ethy ldiisopropylamine t o give tr icy cl i c phosphi ty 1 ated guan i ne derivatives (21).20
Reaction is thought to occur initially at N-
1 followed by cyclisation, and other N2-acylated guanosine species react t o g i v e products analogous t o (21).
Reaction does not
occur if 0-6 is protected, or t h e 2-amino group is unprotected or tritylated.
The ribonucleoside product is converted back to the
starting material by brief treatment with trichloroacetic acid, the phosphite thus acting as a protecting group. In a n e w m e t h o d o f
preparing isotopomeric monoalkyl
190
Organophosphorus Chemisrry
[ l6O,
’0,”0 1
phosphates,
of ( R )-2’-deoxythymidine 3 -P ( 2 2 ) w i t h s t y r e n e [ 180] o x i d e i n
treatment
(4-nitrophenyl) phosphorothioate [170] H20
containing
DMF
[160,170,1801
p h o s p h a t e
diastereoisotopomeric
intermediate
afforded i n
( 2 3 )
purity.”
d e p i c t e d i n Scheme 1 .
’-
( R )-2’-deoxyt.hymldine P good y i e l d and h i q h
The
proposed
mechanism
I n t h e c r u c i a l s t a g e a t t a c k of
(23) is
followed
by
pseudorotation
1s
[170] ~
~ o n(
bring
the
to
sulphur atom t o t h e a p i c a l p o s i t i o n from which it is expelled; elimination of s t y r e n e sulphide then y i e l d s (23). c o n f i g u r a t i o n of
The a b s o l u t e
( 2 3 ) w a s determined v i a cyclisation t o t h e
cyclic monophosphate,
m e t h y l a t i o n a n d 31P n.m.r.
3‘,5‘-
spectroscopy.
T r e a t m e n t of a d e n o s i n e w i t h t h i o p h o s p h o r y l c h l o r i d e i n t r i e t h y l phosphate,
f o l l o w e d by m e t h a n o l ,
and p a r t i a l a l k a l i n e h y d r o l y s i s
o f t h e r e s u l t a n t t r i e s t e r a f f o r d s a racemic m i x t u r e of
(R ) and -P ( S ) m e t h y l a d e n o s i n e S ‘ - p h o s p h ~ r o t h i o a t e . ~ ~I n c u b a t i o n w i t h -P s n a k e venom p h o s p h o d i e s t e r a s e w h i c h p e r f o r m s s e l e c t i v e h y d r o l y s i s
) d i a s t e r e o i s o m e r ( 2 5 ) , p e r m i t t e d t h e (FP) a n d (5,) -P c o n f i g u r a t i o n s t o be a s s i g n e d i n t h e 31P n.m.r. s p e c t r u m a n d o n
of
the
h.p.1.c.
(S
traces.
Then,
bovine i n t e s t i n a l 11’0]
H20,
when t h e r a c e m a t e w a s i n c u b a t e d w i t h
mucosal
5’-nucleot i d e phosphodiesterase,
it c o u l d b e shown t h a t o n l y t h e
(S,)
was h y d r o l y s e d .
The r e s u l t a n t [180] AMPS formed
methylated,
shown
and
by
31P
n.m.r.
to
have
was i s o l a t e d , had
configuration (26), indicating t h a t t h e hydrolysis of
the
interm ed iate
monomethoxytrityl-2’-deoxyadenosine phosphoroanilidate,
s e p a r a t i o n of
. with
T r e a t m e n t
(S,)
(25) to ( 2 6 )
had p r o c e e d e d w i t h r e t e n t i o n o f c o n f i g u r a t i o n , p r e s u m a b l y nucleotidyl-enzyme
in
diastereoisomer
of
a
S’-O-
4-nitrophenylchloro-
the resulting diastereoisomers,
thiation w i t h sodium hydride and carbon d i s u l p h i d e , and f i n a l l y R 1 n u c l e o s i d y l 3‘m e t h y l a t i o n w i t h m e t h y l i o d i d e a f f o r d e d t h e ( -P ( 5 - m e t h y l ) ( 4 - n i t r o p h e n y l ) p h o s p h o r o t h i o a t e ( 2 7 ) a n d i t s (S,)
d i a s t e r e o i somer.
T r e a t m e n t
of
( 2 7 )
w i t h
3 ’ - 0 - t -
b u t y l d i m e t h y l s i l y l - 2 ’-deoxyadenosine a c t i v a t e d w i t h b u t y l l i t h i u m t h e n a f f o r d e d t h e (Ft.,)
diastereoisomer (28), t h e nitrophenolate
being expel led stereospecifically with inversion a t The (S ) d i a s t e r e o i s o r n e r o f ( 2 7 ) w a s s i m i l a r l y c o n v e r t e d t o t h e -P
1
6: Nucleotides and Nucleir Acids
191
( S ) d i a s t e r e o i s o m e r of ( 2 8 1. A s s i g n m e n t s of c o n f i g u r a t i o n were -P made b y 31P n . m . r . , a n d a l s o by u n b l o c k i n g ( 2 8 ) t o a f f o r d t h e
dinucleosidyl
phosphorothioate,
by
nuclease
P1
and
demethylation
of
(28) could
thus
of
which w a s r e s i s t a n t
(R
to hydrolysis
configuration.
)
P be performed
using
The?-
thiophenolate,
a l b e i t s l o w l y , a n d w i t h some c o n c o m i t a n t a t t a c k a t C - 5 ’ .
The p r o t e c t e d d i ( d e o x y t h y m i d y l y 1 ) p h o s p h i t e ( 2 9 ) e x h i b i t s two signals
in
the
diastereoisomers, the
product,
n.m.r.
31P
spectrum,
corresponding
b u t when t r e a t e d w i t h 2 , 3 - b u t a n e d i o n e
formulated
as
(30),
exhibits
only
a
to
its
a t O°C, single
I t is thought t h a t t h i s is due to pseudorotation
resonance.24
leading t o r a p i d s t e r e o m u t a t i o n a t t h e c h i r a l phosphorus atom. T h i s m u s t r e q u i r e d i e q u a t o r i a l l o c a t i o n of t h e d i o x a p h o s p h o l e n e r i n g i n s o m e rotamers,
a n arrangement which i s g e n e r a l l y regarded
as disfavoured due t o ring s t r a i n . T h e p o t e n t i a l of n u c l e o s i d e H - p h o s p h o n a t e s
€or t h e s y n t h e s i s
of o l i g o n u c l e o t i d e s , r e p o r t e d l a s t y e a r , 2 5 h a s b e e n e x t e n s i v e l y explored.
On t r e a t men t o f 5 ‘ - 2 - d i m e t h o x y t r i t y 1- 2 ’ - d e o x y t hym i d i n e -
3’-H-phosphonate TPS-tet,
( 3 1 ) w i t h a v a r i e t y o f c o u p l i n g a g e n t s (TPS-C1,
bis(2-oxo-3-oxazolidinyl)
diphenyl phosphorochloridate,
p h o s p h o r o c h l o r i d a t e ) a c o m p l e x p a t t e r n a p p e a r s i n t h e 31P n.m.r. spectrum which h a s been a s c r i b e d t o t h e t r i m e t a p h o s p h i t e ( 3 2 ) i n which t h e n u c l e o s i d e r e s i d u e s a r e s t e r i c a l l y n o n - e q u i v a l e n t . 2 6
Model an
reactions
anhydride
using
(33) is
e t h y l g-phosphonate formed
with
the
suggest
that
initially
condensing agent,
and
s u b s e q u e n t l y r e a c t s w i t h more p h o s p h o n a t e t o f o r m t h e s y m m e t r i c a l pyrophosphonate 134), which d o e s n o t react f u r t h e r i n t h e a b s e n c e
of p y r i d i n e ,
b u t w h i c h i s c o n d e n s e d w i t h more p h o s p h o n a t e m o n o m e r
to form (32) i n its presence. the diethyl
(32) is t r e a t e d with ethanol,
nucleosidyl-3’-phosphonate,
phosphonate a n d proportions,
If
s t a r t i n g material
presumably
a
initial
monoethyl
nucleosidyl-3’-
(31) are formed formation
of
i n
equal
the diethyl
p h o s p h o n a t e a n d (34), w h i c h i s t h e n a t t a c k e d t o g i v e t h e m o n o e t h y l compound a n d
(31).
T h e s e r e a c t i o n s may e x p l a i n why c o u p l i n g
192
Organophosphorus Chemistry
( 5 ' - MMTr- dAdo-3')O
I
125) R = OMc 1 2 6 ) R=180
(
27)
OMe
Thy
R 2 0 $ : - f - o J i ~R'3 Ac 0
( 3 5 ) R ' = H ; R * * D M T r ; R3:8t
130) R*,
P 1
NO,
0,
P I
136) R'z Me,CCO; R2: DM Tr ; R3=B t ( 3 7 ) R' = 4-CIC6H,C0 ; R2=R3=TBDMS ( 3 8 ) R'g 2-02NC6H,S; R2:R3sTBDMS (39) R' = DMTr; R2: R3: TBDMS ( 4 0 ) R'z H ; R2s DM Tr ; R 31 Polymer
,OR
10
P
I
141
OR
n n
( 3 2 )R: 5'-DMTr - d T h d - 3'-
O;N L J U
N
0
R'O - P
II
1
(33)
R'x
(12)
- OR
H
0
II
A r S O y or ( P h O ) , P -
[R as in ( 3 2 ) ]
R'= NH, ; MeNH ; Bu"NH ;
;
2
NMe, R ZDMTr; 3
R = Polymer
R': CCI,CH,OCO; R2=DMTr ;R360T 0
II
, ( 3 4 ) R ' = R U - P -I
H
6: Nucleorides and Nucleic Acids
193 is pre-activated
y i e l d s a r e lower when t h e i j - p h o s p h o n a t e
with
c o u p l i n g a g e n t b e f o r e a d d i n g t h e n u c l e o s i d i c c o m p o n e n t t h a n when adding t h e c o u p l i n g a g e n t component.
i n t h e presence of
the nucleosidic
triesters are not
Since phosphite
formed
in
the
l a t t e r case, t h e n u c l e o s i d e component presumably a t t a c k s (33)or
(34) t o g i v e c o u p l e d p r o d u c t b e f o r e
(32) is formed.
Pivaloyl
chloride i s o f t e n used, w i t h pyridine, t o couple n-phosphonates s u c h a s ( 3 1 ) t o 3 ’ - ~ - b e n z o y l - 2 ’ - d e o x y t h y m i d i n e( f o r i n s t a n c e ) t o afford
(351, b u t
it
has
now
been
established
that
the
H_-
phosphonate i s n o t i n e r t t o t h e c o u p l i n g a g e n t , b u t i n s t e a d reacts s l o w l y t o g i v e t h e p i v a l o y l p h o s p h o n a t e (36).*’ f o r t h e u s e of
t h i s method r e m a i n
to be established.
silylated dinucleosidyl b i s (t r i m e t h y l s i l y l )
3-phosphate
acetamide,
chlorobenzoy1 ch lor id e , or dimethoxytrityl and
The i m p l i c a t i o n s
p i v a l o y l c h l o r i d e i n o l i g o n u c l e o t i d e s y n t h e s i s by
chloride,
S i l y l a t i o n of t h e s u g a r -
analoglie of
f o l lowed
by
(35) w i t h El?-
treatment
with
4-
2 - n i t r o p h e n y 1s u 1p h e n y 1 c h 1 o r i d e o r
a f f o r d s (371, ( 3 8 )
and t r i e t h y l a m i n e ,
(391, r e s p e c t i v e l ~ . ~ ’ The n i t r o p h e n y l s u l p h e n y l
group is
r e a d i l y r e m o v e d f r o m ( 3 8 ) by o x i m a t e i o n s .
A similar reaction is
observed w i t h t h e
(31).
polymer-bound
5’-c-TBDMS
analogue of
n u c l e o s i d e H-phosphonate
O x i d a t i o n of
d i e s t e r (40) u s i n g ammonia
o r p r i m a r y or s e c o n d a r y a m i n e s i n c a r b o n t e t r a c h l o r i d e a f f o r d s a number
of
phosphoramidates
phosphoramidate
(41).*’
( 4 1 ; R = N H 2 ) were
but
A l l
stable
i n
the
ammonia
parent i n
the
c o n d i t i o n s n o r m a l l y u s e d f o r d e a c y l a t i o n o f b a s e s , a n d a l l were s t a b l e t o d i g e s t i o n b y s p l e e n a n d s n a k e venom p h o s p h o d i e s t e r a s e s . T r e a t m e n t of ( 4 0 ) w i t h s u l p h u r i n c a r b o n d i s u l p h i d e a f f o r d e d t h e p h o s p h o r o t h i o a t e , w h i l e t r e a t m e n t w i t h a n h y d r o u s m e t h a n o l o r nbutanol
i n t h e presence of carbon t e t r a c h l o r i d e and base afforded
the corresponding phosphotriesters.
When
( j l ) is coupled t o
2,2 , 2 - t r i c h l o r o e t h o x y c a r b o n y l p h o s p h o n i c a c i d disulphonyl
chloride,
separable b y
(42)
is
m e s i t y 1e n e -
and t h e p r o d u c t coupled i n t u r n t o 3’-0-
(1,3-benzodithio1-2-y1)-2’-deoxythymidine, phosphonate
w ith
formed
h.p.1 . c . ~ ’
The
as
a
mixture
corresponding
d i m e t h o x y t r i t y l a d e n i n e a s t h e b a s e of
t h e of
r e s u l t a n t diastereoisomers
compounds
t h e 5’-residue
with
z6-
were a l s o
Organophosphorus Chemist r?:
194 prepared.
When a single diastereoisomer w a s deprotected with
zinc, silylated with trimethylsilyl chloride and then oxidiscd with
sulphur,
a
single diastereoisomer
the ~ ~ r o t e c t ~ d
of
phosphorothioate, d(Ap(s)T), was formed in high yield, showing that n o racemisation had occurred. 311,
The chemical shifts i n the
n.m.r. spectra of starting material and product suggested that
the chirality at phosphorus had been retained throughout, and th(. mechanism depicted of serine,
1
n Scheme 2 w a s suggested.
The hydroxy groups
threonine and tyrosine, both in protected monomers
and in protected oligopeptides, have been converted t o their phosphonates
and
coupled
with
g-
3 -9-tetrahydropyranyl-2
-
deoxythymidine using pivaloyl chloride, after which subsequent oxidation with i o d ~ n cafforded the protected nucleopeptides.
’’
5‘-O-Dimethoxytrityl-2‘-deoxynucleosidyl-3‘-methyl-
phosphonates have been coupled t o 3 ’-g-(1 -menthoxycarbonyl ) -2 ’ deoxynucleosides
ILI
s ing
r J , rJ- b i s ( 2 -
O X -~ 3
-
X z ~o
O
1 i d iny 1
)
phosphorodiamidic chloride and N-methylimidazole t o afford the methylphosphonate
(43)
diastereoisomers.32
as
a
(generally) separable
T h e chiral
menthyl
pair
of
group facilitates
resolution, and can subsequently be removed selectively without cleaving the base-protecting groups t o afford good yields of the protected dimers.
A mixture of t h e diastereoisomers of’ ( 4 4 ) ,
formed by oxidising the corresponding phosphite with iodine in [’*O]
H20, could not be separated chromatographically, but on
desilylation with fluoride the diastereoisomers of ( 4 5 ) were easily separated o n silica
After deblocking s a m p l e s of
each to assign the configuration using 31P n.m.r. spectroscopy, the
( R ) and ( S ) diastereoisomers of ( 4 5 ) were converted to their 3’-P -P methoxydiisopropylphosphoramidites f o r u s e a s d i m e r b l o c k s in solid phase oligonucleotide synthesis. of
5‘-0-(2’-deoxythyrnidyl)
The ( -P S
)
diastereoisorner
3’-0-(2’-deoxyadenosyl)
phosphorothioate (46) w a s hydrolysed specifically by mung bean nuclease, and when this reaction w a s performed i n [ l 8 0 ] H Z O , stereochemical a n a l y s i s o f
the
2’-deoxythymidine
phosphorothioate] formed showed it to have the
(S
-P
)
5,-[180-
configuration
6: Nucleotides and Nucleic Acids
NucO
Scheme 2
OMc
( d 3 ) B,= Thy or C y t B Z 8,- Thy C y t B Z JAdeezor GuaEu’
(LLI R = TBDMS ( 4 5 ) R = OH
R = 1 - Menthoxycarbonyl
0,
.o
P’A s
I
HO
(46)
A dc Bz
cytBz
AcO OAc ( L 7 ) R = 9 -(L-octadccyl oxyphcnyl) xanthcn 9 - y l
-
196
Organophosphorus Chemistry
(e. a s in
(26)) and thus that hydrolysis had proceeded with
inversion a t t h e p h o s p h o r u s atom.34
Using appropriately
protected starting materials, and phosphotriester methods, t h e fully protected UpU species (47) has been synthesized.35
After
removal of the phosphate-protection with fluoride, treatment of (47) with methanolic ammonia results in specific displacement of the
6-methyl-2-pyridyl
function,
converting the
3'-base
to
cytosine, while treatment with aqueous ammonia displaces both the 6-methyl-2-pyridyl group and the 2,4,6-trimethylphenyl group, converting
both
bases
t o cytosine.
deprotection protocols can lead UpU, UpC or CpC.
to
Thus,
alternative
the conversion of (47) to
Treatment of (48) with 4-toluenesulphonic acid
to r e m o v e the pixy1 group resulted in isomerisation of the
internucleotidic link with l o s s of 2-chlorophenolate, and a l s o
fracture of the internucleotidic link,presumably via formation of
a phosphotriester intermediate in which the 2'-hydroxy group had expelled 2-chlorophenolate by transester if ication. 36
A number o f
analogues of ApG have been synthesized using the phosphotriester approach a n d t h e i r a b i l i t y t o p r i m e t h e s y n t h e s i s of m R N A catalysed by influenza virus RNA polymerase has been studied.37
Highly reactive phosphoramidates of mono- and dinucleotides have
reportedly been
deoxythymidylic acid
prepsred
by
[ d(pT(0Ac) 1 ]
condensing
3.-2-acetyl-2'-
, or d[ pTpT(O4c)) with g-methyl-
imidazole ( t o give ( 4 9 ) ) o r 4 - g , N - d i m e t h y l a m i n o p y r i d i n e
tr ipheny lphosphine a n d
2 ,2 ' -d i p y r i d y 1 d i s u 1 p h i d e .
*
using Upo n
treatment w i t h a l i p h a t i c a m i n e s , r a p i d d i s p l a c e m e n t of _Nmethylimidazole or dimethylaminopyridine takes place to form new phosphoramidates.
T h e parameters affecting reaction rates and
yields of phosphoramidates prepared using triphenylphosphine and 2,2'-dipyridyl
d'isulphide h a v e b e e n studied.39
The Perkow
react ion o f 5 '-g- ace ty 1- 3 ' - 9 - t osy 1 - 2 '-ke t ou ridine with t r ime th y 1
phosphite afforded the enol phosphate (50) in low yield.40 catalytic
hydrogenation
of
(501,
dideoxyuridine could be obtained.
only
upon
5'-9-acetyl-2',3'-
I97
6: Nucleotides and Nucleic Acids Heavy-atom
s u b s t i t u t i o n s o f AMP i n t h e b a s e a n d sugar r l n y s
t o a f f o r d (L,-2HIAMP, [9-l5N]AMP,
1 ,-2HlAMP,
11 * - 1 4 C ] A M P , [ 1
' -
2 H , 1 c-'4C]AMP a n d [ 9 - I 5 ~ , l, - 1 4 C ] A M P h a v e b e e n p e r f o r m e d , m o s t l y using enzymic methods, in
i n order t o study kinetic isotope e f f e c t s
t h e N-glycohydrolase
a c t i v i t y of
v a r i a t i o n i n t h e p r e s e n c e of
an
AMP n u c l e o s i d a s e ,
allosteric
and t h e i r
activator.41
The
s e l f - a s s o c i a t i o n a n d p r o t o n a t i o n o f 5'-AMP h a v e b e e n c o m p a r e d w i t h those of
3'-AMP,
2 '-AMP
and t u b e r c i d i n - 5 '-monophosphate
AMP) b y m o n i t o r i n g t h e c o n c e n t r a t i o n - d e p e n d e n t sugar-ring suggest
protons
that
stacking,
i n four
all
the
lH n . m . r .
s h i f t s of
spectra.42
monophosphates
base and results
exhibit non-cooperative
and t h a t no hydrogen-bonding
p h o s p h a t e m o n o a n i o n o c c u r s i n 5'-AMP.
The
(7-deaza-
between
N-7
and
the
I n 50% a q u e o u s d i o x a n ,
the
lowering o f s o l v e n t p o l a r i t y f a c i l i t a t e s t h e removal of t h e proton f r o m 5'-AMP p r o t o n a t e d a t N-1, w h i l e t h e d i a n i o n i c p h o s p h a t e g r o u p b e c o m e s more b a s i c . monoanion o f pH
range.
I n c o n s e q u e n c e , t h e pH r a n g e o v e r w h i c h t h e
AMP i s s t a b l e i s e x t e n d e d i n t o t h e p h y s i o l o g i c a l A comparable
situation
may
obtain
in
regions
of
causing a phosphate group
lowered d i e l e c t r i c c o n s t a n t i n p r o t e i n s ,
which is d i a n i o n i c i n b u l k s o l u t i o n t o become a n e f f e c t i v e p r o t o n acceptor.
T h e k i n e t i c s o f h y d r o l y s i s o f AMP a t h i g h t e m p e r a t u r e
h a v e b e e n i n v e s t i g a t e d , t h e m a i n p a t h w a y a p p a r e n t l y i n v o l v i n g loss of p h o s p h a t e from t h e p h o ~ p h o m o n o a n i o n . ~ ~ T h e f r e e e n e r g y of h y d r o l y s i s o f t y r o s y l a d e n y l a t e h a s been d e t e r m i n e d . 4 4
An e p o x i d i s e d
form
(51) of
t h e hypermodified nucleoside
queuosine h a s been i s o l a t e d from tRNATYr
of p " g L i c h i a
~ 0 1 1 , ~ ~
a n d a new f l u o r e s c e n t t r i c y c l i c n u c l e o s i d e ( 5 2 ) h a s b e e n o b t a i n e d .
from t h e t R N A o f
Sulpholobus s o l f a t a r i c u s and o t h e r thermophilic
a r c h a e b a c t e r i a . 46 2.2
C y c l i c N u c l e o t i d e s - T h e m e c h a n i s m of r e a c t i o n o f 3'-UMP
N-benzoylimidazole h a s been i n v e s t i g a t e d . 4 7 base,
t h e r e a c t i o n p r o c e e d s m a i n l y &y
f o r m a t i o n of t h e mixed
benzoic-phosphoric a n h y d r i d e t o form u r i d i n e - 2 and i t s !i'-C-benzoylated
derivative,
with
I n t . h e a b s e n c e of
',3 '-m o n o p h o s p h a t e
while i n t h e presence of
Organophosphorus Chemistry
I98
Acoy---
Ura
0
0 II
0- POMe
I
(49)R=3'-0-Acor 3 ' -
dThd
- 5'
(501
0-AC - d ( TpT)- 5'
Me0
NH
I
I
I
Me
Rib
(52) Rib
Adc
R'O 1
2
( 5 5 ) R : T o s ; R =Me, 8 u
, PhCH2
Adt
( 5 3 ) R = H ; X: F , C I ,Br (5L)R*Me;X * B r , I R:PhCH,;X= I
RL
,I , CF, 56) R': Tos ; R2= H , R3= Ph I C,H,,,C6H,, or R2=R3sE t NH
2
(57) R'zTos ; R OMe ; S E t ; N E t 2 ; X i s absent (58) R': H ; R2: OMe ; SEt ; NEt, ; X = O or S
0'1 HO
OH (59)
6: Nucleotides and Nucleic Acids
199
strong organic bases,
deprotonatlon
of
t h e 2.-
and
functions favours benzoylation a t these positions, of
5 -hydroxy
while formation
t h e p h o s p h a t e d i a n i o n , a weakcr n u c l e o p h i l e t h a n t h e monoaniun,
renders
f o r m a t i o n of
t h e mixed a n h y d r i d e more d i f f i c u l t ,
t o s u p p r e s s f o r m a t i o n of
A number
prepared
using
antiviral
5-halo-2’-deoxyuridine-3’, 5 ’ - m o n o p h o s p h a t e s
of
( 5 3 ) a n d some o f
m e t h y l o r benzyl e s t e r s ( 5 4 ) h a v e b e e n
their
standard methods,
properties
and
examined.48
trif luoromethyl-2 ‘-deoxyuridine highly
tendinq
t h e c y c l i c phosphate.
active against
and
t h e i r
While t h e i r
c e r t a i n tumour
antitumour
5-fluoro-
and
5 ’-phosphates lines,
cell
and
their
5-
werv 3’,5’-
c y c l i c p h o s p h a t e s w e r e much less p o t e n t , s u g g e s t i n g t h a t t h e y d o n o t a c t a s p r o d r u g s of t h e 5 ’ - m o n o p h o s p h a t e s .
Against. v a c c i n i a
v i r u s , h o w e v e r , t h e c y c l i c p h o s p h a t e s ( 5 3 ) w e r e more p o t e n t t h a n corresponding
the
5‘-monophosphates,
although t h i s
order
was
reversed f o r herpes simplex v i r u s .
2
with
' -g-Tosy 1a d e n o s i n e - 3 ‘ ,5 - m o n o p h o s p h a t e ‘
alkyl
tosylates
in
the
presence
of
has
t r ea t ed
he e n
quaternary
ammonium
hydroxide t o a f f o r d ( 5 5 ) , or w i t h p r i m a r y o r s e c o n d a r y a m i n e s i n t h e p r e s e n c e of t r i p h e n y l p h o s p h i n e a n d c a r b o n t e t r a c h l o r i d e t o a f f o r d ( 5 6 ) , a s m i x t u r e s of d i a s t e r e o i s o m e r s . 4 9
Removal o f t h e
tosyl
afforded
group
using
corresponding a l k y l
sodium
naphthalide
then
the
e s t e r s o r a m i d a t e s o f cAMP i n g o o d y i e l d .
Alternatively,treatmen t o f 2
’-g-tos y l a d e n o s i n e
with appropriate
phosphite r e a g e n t s has been used t o prepare t h e cyclophosphites ( 5 7 ) which on o x i d a t i o n w i t h aqueous i o d i n e or s u l p h u r , by
detosylation
as above,
or cyclothiophosphates
followed
give t h e corresponding cyclophosphates (581,
r e s p e ~ t i v e l y . ~ I~n
a
simple
s y n t h e s i s o f t h e a l k y l t r i e s t e r s of CAMP, t h e t r i - n - b u t y l a m m o n i u m
s a l t o f cAMP i s t r e a t e d w i t h t h e c o r r e s p o n d i n g a l k y l b r o m i d e i n N,N-dimethylacetamide
a t elevated temperatures.
Y i e l d s a re
g e n e r a l l y good, t h e r e a c t i o n being r e g i o s e l e c t i v e f o r f o r m a t i o n of t h e m o r e t h e r m o d y n a m i c a l l y s t a b l e isomer w i t h t h e a l k y l ‘ g r o u p i n the axial position.
Treatment
of
lI3-bis(2-hydroxyethyl)
200
Organophosphorus Chemistry
adenosine-3‘,5 ’-phosphate w i t h sodium h y d r o x i d e f a i l e d t o e l i c i t the usual
Dimroth
pyrimidine
ring
rearrangement.52
occurred,
with
Instead,
loss
of
opening
ethylene
of
the
oxide and
f o r m a t e a s t h e major p a t h w a y s , t o f o r m ( 5 9 ) .
The
3 ’, 5 ’ - c y c l i c
phosphates
of
2
’, 3 ’ - s e c o a d e n o s i n e
and
2‘,3 ’-secoguanosine ( 6 0 ) have been p r e p a r e d by c y c l i s a t i o n o f t h e 5 ‘-phosphates
of
t h e corresponding
seconucleosides.53
T h e CAMP
analogue was c o n v e r t e d t o 8-bromo-2’, 3 ‘ - ~ e c o a d e n o s i n e - 3 ~ , 5 ’ a n d t o 2’,3’-secoinosine-3’,5’-phosphate
p h o s p h a t e by b r o m i n a t i o n , using
nitrous
acid.
The
s e c o - 3 ’,5 ‘ - c y c l i c
phosphates
were
r e s i s t a n t t o m a m m a l i a n cAMP p h o s p h o d i e s t e r a s e s , b u t w e r e s l o w l y hydrolysed by c y c l i c n u c l e o t i d e p h o s p h o d i e s t e r a s e s from h i g h e r
2 ‘ - ~ - M e t h y l a n t h r a n i l o y l - - c G M Pu n d e r g o e s a 4 5 % d e c r e a s e i n
plants.
f l u o r e s c e n c e w h e n c l e a v e d b y b r a i n cGMP p h o s p h o d i e s t e r a s e i n t h e presence of calmodulin,
a property
which h a s been u t i l i z e d i n
developing a c o n t i n u o u s f l u o r e s c e n c e a s s a y of t h e h y d r o l y s i s of cGMP b y c y c l i c n u c l e o t i d e p h o s p h o d i e s t e r a s e . 5 4
The d y n a m i c s o f
cGMP m e t a b o l i s m
may
b e m o n i t o r e d by
m e a s u r i n g t h e r a t e o f i n c o r p o r a t i o n o f l 8 O f r o m [180]H 2 0 i n t o t h e a-phosphoryl
g r o u p s of g u a n i n e n u c l e o t i d e s , a n d t h i s t e c h n i q u e h a s
been u s e d t o show t h a t t h e m e t a b o l i c
calls
increases
to
up
4.5-fold
f l u x o f cGMP i n r e c e p t o r
i n
correlation
with
the
i l l u m i n a t i o n o f o c u l a r p h o t o r e c e p t o r s . 55
(Rp)
Once a g a i n t h e
and (S
-P
)
d i a s t e r e o i s o m e r s of a d e n o s i n e
3 ’ , 5 ’ - p h o s p h o r o t h i o a t e (CAMPS) h a v e p r o v e d u s e f u l i n e l u c i d a t i n g hormone-directed messenger
‘.
cellular
While
responses
( S )-CAMPS m i m i c s
involving
cAMP
as
’second
t h e n o r m a l l y CAMP-mediated
-P response t o e x t r a c e l l u l a r glucagon by p h o s p h o r y l a t i n g c y t o s o l i c i n rat hepatocytes, ( R )-CAMPS a n t a g o n i s e s t h i s -P r e s p o n s e , 5 6 a n d a 1 so i n h i b i t , s g l u c o n e o g e n e s i s . 5 7 A n a 1o g o u s 1 y ,
proteins
( S )-CAMPS a c t i v a t e s
CAMP-dependent p r o t e i n k i n a s e i s o l a t e d f r o m -P Leydig t u m o u r c e l l s , a n d a c t i v a t e s s t e r o i d b i o s y n t h e s i s i n t h e intact
cells,
while
the
(R ) - d i a s t e r e o i s o m e r -P
inhibits
these
6: Nucleotides and Nucleic Acids
20 1
responses. ’8 3.
Nucleoside Polyphosphates Nucleoside
5’-diphosphates (61), 5 ’ - m e t h y l e n e d i p h o s p h o n a t e s
(62) and ATP have been prepared in generally g o o d yields
by
displacement of the tosyl group from the corresponding !i’-
The a m i n o groups of the guanine and cytosine
bases were protected by the dimethylaminomethylene function during the
reactions,
and
masking
the
sugar
as
the
2‘,3‘-9,c)-
isopropylidene derivative gave a n increased yield of ADP.
The
attempted use of this method to prepare pyrimidine nucleoside 5’triphosphates afforded poor yields, however. action
of
a
water-soluble
In a study of the
carbodiimide on
adenosine
5’-
polyphosphates, treatment of A M P , ADP or ADP with EDC afforded the expected diadenosine-5 ’-5’-polyphosphates A( 5’)p2A, A( 5 ‘)p4A and
A(5 ‘)p6A, respectively, a s major products, i n yields which were significantly increased in the presence of Mg2+ ions.60
However,
with adenosine 5‘-tetraphosphate the major nucleotidic product was AMP.
It
was
proposed
that
in
the
latter
case
the
trimetaphosphate derivative ( 6 3 ) is formed, after which hydrolytic attack at PB either regenerates the starting material or liberates AMP with concomitant formation of trimetaphosphate.
In the other
cases, all the observed products could be rationalised as arising -a
terminal phosphorylurea of type (64). The hydrolysis of nucleoside polyphosphates by macrocyclic
polyarnines continues to stimulate interest.
1 , 4 , 7, 13, 16, 1 9 -
Hexaaza-lo, 22-dioxocyclotetraeicosane catalyses the hydrolysis of ATP w i t h f o r m a t i o n o f t h e p h o s p h o r y l a t e d m a c r o c y c l e a s a n intermediate, and the entropies of activation for this process at pH3 and pH7, and for the solvation of t h e intermediate at pH7, have been determined.61 strength, although Na’
T h e reaction is insensitive t o ionic and C1- ions depress the rate at pH7.
202
Organophosphorus Chemistry
HO-
0
0
P-X-
P -0
II
I
( 6 0 ) B = Ade,Gua
i
- ( N U C- 5’)
HO
HO
HO
II
(61) X = 0 ; N uc: Urd, C y d , Guo, Ado,dThd
, d Ado
(62) X = CFz ; N U C= A d o X * CH,; Nuc = A d o
0
II
I
R’
4 65)
(66)
0 HO -C
II
- 0-
II
P - 0-
I
0-
0
0- P
0 II
I
0
ii - 0 - PI
-0
-0
(67)
R’S
I
( 69
1 R’= 4 - NO,C,H,CH,
s
0
I
I
2
; R absent
( 70) R’, R 2 absent
(71 1 R’ a b s e n t , R2rP0,
P
4
*\\
0 .
0 .
l
,o-
0,
l
(721
( A d o - 5’)
4: Nucleotides and Nucleir Acids
203
Analogues of the macrocycle in which the oxygen atoms are replacc3d by nitrogen atoms, or removed, enhance the rates of hydrolysis of ATP at pH3 and pH7.
Using analogues o f ATP and A(5’)p4A
as
potential substrates, it has been shown that adenosine nucleotidcs with a readily hydrolysable link between P a and P y (i.e. - A’rP, adenylyl
imidodiphosphate,
adenosine
5 ’ - (
, B
a
-
methyleneltriphosphate) a r e hydrolysed rapidly with l o s s of t h e terminal phosphoryl group, while those with a non-hydrolysable link in the s a m e position (i.e. - (5’-adenylyl)difluoromethylenebis(5’-adenylyl)dichloromethylenediphosphonatc~)
diphosphonate and
are hydrolysed very slowly to release AMP.62
It has been argued
that, while phosphoryl transfer to the macrocycle could occur an associative SN2P o r a dissociative SNIP mechanism,
V
J
it is
difficult t o reconcile the former mechanism with the observed selective c l e a v a g e
at
symmetrically (65).
The polyprotonated macrocycle may facilitate
Py
rather
than
P,
i f
is bound
ATP
proton transfer from Py-OH t o t h e BY-bridging oxygen a t o m , or a P y , -oxygen a t o m , potentiating phosphoryl transfer t o the nitrogen atom
of t h e macrocycle via a dissociative process.
It is
evidently capable of acting a s a ’protoenzyme’, and it will be interesting to see whether studies with chiral phosphates can shed further light on the mechanism.
(S)-6-(Hydroxymethyl)-1,5,10,14-
tetraazacyclooctadecane (66) has been prepared, starting from Lornithine,
and
appears
to
bind
ATP
strongly
with
1:l
stoicheiometry, as evidenced by downfield shifts in the 31P n.m.r. spectrum when ATP is mixed with (66) at pH 6.8.63 Heat-conduction m i c r o c a 1 o r i m e t r y u t i 1 i z ny t h e A T P a s e activity of heavy meromyosin has been employed t o determine the thermodynamics
of
orthophosphate.64
the
hydrolysis
A n e w model
of
ATP
to
ADP
and
for the molecular mechanism of
FIFO H+-ATPase/ATP synthase makes specific proposals regarding
proton flow through the enzyme following conformational changes at the F1/Fo interface, and the resultant protonation of phosphoryl
oxygens leading t o loss of water and phosphorylation of ADP.65
Using biotin carboxylase from E.coli in t h e absence of biotin, a
204
Organophosphorus Chemistry
b i c a r b o n a t e - d e p e n d e n t ATPase a c t i v i t y h a s b e e n d e m o n s t r a t e d , correlates
with
the
activity
of
biotin
carboxylation
which
in
the
p r e s e n c e of b i o t i n , a n d a p p e a r s t o b e a g e n u i n e p a r t i a l a c t i v i t y o f t h e enzyme.66
I t h a s t h e r e f o r e been proposed t h a t b i c a r b o n a t e
i s p h o s p h o r y l a t e d b y ATP t o g i v e c a r b o x y l p h o s p h a t e ( 6 7 ) i n t h e first
s t e p
of
t h e
reaction,
r a t h e r
than
b i o t i n
being
p h o s p h o r y l a t e d b y ATP p r i o r t o r e a c t i o n w i t h b i c a r b o n a t e , a n d t h a t t h i s may b e a common m e c h a n i s m f o r e n z y m e s e m p l o y i n g c a r b o n a t e f o r carboxylation.
seems q u i t e c o n s i s t e n t w i t h t h e
The p r o p o s a l
c o n c l u s i o n s drawn from a s t u d y of carbamoyl phosphate s y n t h e t a s e , which
[ Y -180]
used
ATP
and
monitored
BY-bridge
exchange i n t h e p r e s e n c e a n d a b s e n c e o f
-B-nonbridge
bicarbonate
and o t h e r
s u b s t r a t e s . 67
E n z y m i c m e t h o d s h a v e b e e n u s e d t o p r e p a r e f o u r ADP s p e c i e s w i t h l80 l a b e l l i n g i n t h e ap - b r i d g e p o s i t i o n , o r i n n o n - b r i d g e p o s i t i o n s , o r b o t h , a n d s i x ATP s p e c i e s w i t h l 8 0 i n t h e B Y - b r i d g e p o s i t i o n , or i n n o n - b r i d g e p o s i t i o n s , or i n b o t h , i n o r d e r t o ree v a l u a t e t h e 180-isotope s h i f t e f f e c t i n t h e 31P n.m.r. t h e t e r m i n a l phosphate groups.68 position
was
found
phosphorus atom Following
to cause a
than
for
the central
shift
different
exchanged
with
for
the terminal
phosphorus
binding t o t h e active site of
[y--1804]ATP b e c o m e
atom
in
ATP.
m y o s i n , t h e l80 atoms o f
surrounding
water
by
t w o
p a t h w a y s d i s t i n g u i s h e d k i n e t i c a l l y b y t h e i n f l u e n c e of
actin, and t h e temperature has
larger
s l g n a l s of
180 i n a b r i d g e
Interestingly,
been
examined
in
dependence of t h i s ‘isotope washout’
order
to
characterise
the
pathways.69
D u r i n g t h e s y n t h e s i s o f ATP f r o m A D P a n d 1 1 8 0 ] o r t h o p h o s p h a t e i n submitochondrial particles, labelled
species
have
u n e x p e c t e d d i s t r i b u t i o n s of
been
observed,
possibly
due
[ 180]-
to
the
incomplete randomization o f phosphate oxygens d u r i n g r e v e r s i b l e c y c l e s o f h y d r o l y s i s and s y n t h e s i s o f t h e enzyme-bound
else
to
a
s l o w
transition
between
high-
and
ATP, o r
low-exchange
pathways. 7 0
Once a g a i n ,
chiral
nucleotides have found wide application
6: Nucleorides and Nucleic Acids for
205
e l i c i t i n g t h e s t e r e o c h e m i c a l c o u r s e of r e a c t i o n .
method
for
the
analogues of
synthesis
the
of
~n a r a p i d
diastereoisomers
of
a -thio
r i b o - and deoxyribonucleoside d i - and t r i p h o s p h a t e s ,
t h e unprotected nucleoside is treated with thiophosphoryl chloride in t r i e t h y l phosphate a t l o w temperature i n t h e presence of 2,6lutidine,
a n d
t h e
r e s u l t a n t
phosphorodichloridothioate
treated
c r u d e
n u c l e o s i d y l
b r i e f 1y
with
5‘-
( s a y ) t r i -n-
o c t y l a m m o n i u m p y r o p h o s p h a t e i n DMF, p r i o r t o a q u e o u s q u e n c h i n g a n d s e p a r a t i o n of t h e ( R ) and ( S ) n u c l e o s i d e 5 ’ - ( l - t h i o ) t r i p h o s p h a t e -P -P p r o d u c t s u s i n g r e v e r s e p h a s e h . p . l . ~ . ~ ‘ An o x y g e n i s o t o p e may b e introduced,
i f
(gp)-isomer of action
desired,
by quenching i n l a b e l l e d water.
[ a - 1 7 0 , a - l 8 0 , nf? -180] ATP ( 6 8 ) i s c l e a v e d b y t h e
argininosuccinate
of
The
synthetase
i n
the
presence
of
c i t r u l l i n e a n d a s p a r t a t e t o a f f o r d ( S ) - [ 160,170,180]AMP, t h u s -P demonstrating t h a t net inversion occurs a t phosphorus, without t h e formation of
a n a d e n y l y l a t e d e n z y m e p r i o r t o t h e s y n t h e s i s of
citrulline adenylate.72
In t h i s study,
t h e preference of
the
e n z y m e f o r t h e ( R ) i s o m e r o f ATPBS a s s u b s t r a t e i n t h e p r e s e n c e -P o f Mg2+ i o n s , a n d f o r t h e ( S ) isomer i n t h e p r e s e n c e o f C d 2 + i o n s
-P
was a l s o d e m o n s t r a t e d ,
i n d i c a t i n g t h a t t h e enzyme p r e f e r s thePC
screw s e n s e c o n f i g u r a t ’ i o n o f
as substrate.
the B
,Y-bidentate
Using (gp)-[a-170]dATP,
metal-ATP
complex
it h a s been shown t h a t
deoxyadenylyl t r a n s f e r t o t h e aminoglycoside a n t i b i o t i c tobramycin catalysed
by
inversion of nucleotidyl
gentamycin
nucleotidyltransferase proceeds
t h e configuration a t phosphorus, transfer.73
Using
probably
( g p ) - [ a- 1 8 0 ] A T P ,
it
with direct
was
also
d e m o n s t r a t e d t h a t c y c l i s a t i o n t o [ 180]cAMP b y a d e n y l a t e c y c l a s e from Bordetella p e r t u s s i s a l s o proceeds w i t h inversion.
I n a s t u d y o f t r a n s c r i p t i o n u s i n g T7 R N A p o l y m e r a s e , ATPoS
was a
incorporated inhibitor.74
good
substrate
for
t h e enzyme,
becoming
(Sp)-
readily
w h i l e ( R )-ATPaS w a s n e i t h e r s u b s t r a t e n o r -P Analysis of t h e stereochemistry of t h e
i n t o RNA,
internucleotidic phosphorothioate links using chirality-specific n u e l e a s e s r e v e a l e d t h a t t h e 1 i n k s f o r m e d h a d ( ~ ~ ) - c O l ng fu r a t i o n , the polymerisation
r e a c t i o n having t h u s proceeded
with inversion
206
Organophosphorus Chemistry I n t e r e s t i n g l y , t h e s t e r e o c h e m i c a l s e l e c t i v i t y s h o w n by
a t Po.
for
the nucleases was
RNA
links
(R ) -- P
phosphorothioate-substituted
in the
less s t r i n g e n t t h a n
t h a t observed using dinucleotide
mode 1 s .
Sa l a c t o s e - 1 - p h o s p h a t e u r i d y l y 1 t r a n s f e r a s e a c c e p t s
[2-14C]
UDPaS-glucose
as
a
substrate,
t o a f f o r d a UMPS-enzyme
phosphate
displacing
intermediate
(R
)
-
~-P glucose-l-
i n
which
a
h i s t i d i n e r e s i d u e h a s become t h i o p h ~ s p h o r y l a t e d . ~ ~ On t r e a t m e n t with
t-butoxide
(R ) u r i d i n e - 3
-P
', 5
i n
the
DMSO,
'-phosphorothioate,
is
nucleotide and,
released
as
since this cyclisation
p r o c e e d s w i t h i n v e r s i o n , t h e o r i g i n a l t r a n s f e r of t h e t h i o u r i d y l y l m o i e t y t o t h e e n z y m e m u s t also h a v e p r o c e e d e d w i t h i n v e r s i o n . Since,
moreover,
t h e o v e r a l l r e a c t i o n t o form UDPaS-galactose
was
a l r e a d y k n o w n t o p r o c e e d w i t h r e t e n t i o n of c o n f i g u r a t i o n , t r a n s f e r of
the
thiouridylyl
phosphate must
moiety
from
the
to
enzyme
a l s o proceed with inversion,
galactose-l-
thus defining the
s t e r e o c h e m i c a l c o u r s e of r e a c t i o n a t p h o s p h o r u s i n b o t h s t a g e s of t h e double-displacement
(Rp)
mechanism.
~ , - [ Y - ~ ~ O , ~ ~ O ] Ah T a sP bYeSe n p r e p a r e d b y a n o v e l h i g h -
yield route:
adenosine is t r e a t e d with thiophosphoryl chloride i n
t r i e t h y l ' p h o s p h a t e ( a p r o c e s s m o r e s p e c i f i c for p h o s p h o r y l a t i n g the 5'-position
in
t h a n using phosphoryl c h l o r i d e ) , and t h e n worked
t o a f f o r d [1802]AMPS,
up [ 1 8 0 ] H 2 0 [180]H,0
nitrobenzyl)
t o give [
703]
which is o x i d i s e d w i t h bromine
[1803]AMP.76
This
thiophosphate using
is c o u p l e d
to
S-(4-
diphenylphosphoro-
c h l o r i d a t e (DPPC), t o g i v e (691, w h i c h i s r e d u c e d w i t h s o d i u m a n d l i q u i d ammonia ( g i v i n g ( 7 0 ) ), a n d PEP
to
give
and t h e n treated
an with
(Rp)
phosphorylated with pyruvate kinase and
(Rp)-ATP5S e x c l u s i v e l y t o l e a v e
(3,)
( S
-P
hexokinase and
D-glucose,
(sp)-ATPY S
-'80,8-170,]ATPyS
5,-[a-1802,aB
m i x t u r e o f ATPBS i s o m e r s ,
or,
(71).
which removes
more
accurately,
Finally,
(71) is
t r e a t e d w i t h methionyl-tRNA s y n t h e t a s e and m e t h i o n i n e , which f o r m s the
adenylyl
enzyme
thiopyrophosphoryl isolated,
effect
moiety
i n high yield,
and
scrambles
displaced,
t h e
ends
permitting
the reverse reaction.
of
(72) t o
t h e be
Th1.s i s , i n
( g p ) - 5 ' - [ Y - ~ ~ o , ~ ~ O ] - A T Pt h~eS ,o t h e r i s o t o p i c a l l y l a b e l l e d
6: Nucleotides and Nucleic Acids
207
oxygen a t o m s being superfluous for its use in determining tht stereochemistry of phosphoryl transfer.
(Sp)-[By - 1 7 0 , ~- I 7 ( ) ,
Y -180]ATPYS i s a substrate for the nucleoside 5 '-triphosphat-ase
activity o f transcription termination factor
from ~ . c o il. 7 7
p
Analysis of t h e [ 170,180] thiophosphate released s h o w s it t o possess
(R
-P
)-chirality,
indicating
that
transfer
the
of
thiophosphoryl moiety t o water occurs w i t h inversion, and thus probably directly without formation of a phosphoenzyrne or phosphoRNA intermediate.
(Sp)-[ Y-1702,180] ATPY
S
has been used to
investigate the stereochemistry of thiophosphoryl transfer to the C-3
o x y g e n a t o m o f m e v a l o n a t e 5 - d i p h o s p h a t e c a t a l y z e d by
mevalonate
c a r b o x y 1 a s e.
5 - d i ph o s p h a t e
The
C - 3
thiophosphorylated mevalonate-5-diphosphate loses carbon dioxide and, a s demonstrated by analysis, (Hp)-[1 7 0 , 1 8 0 ] thiophosphate, showing that
thiophosphoryl transfer had proceeded with inversion
at phosphorus, probably directly and without the intermediacy of a thiophosphoryl-enzyme species.
(Rp)-[y -1802] ITPyS has been used
as a substrate for P E P carboxykinase from rat liver cytosol, forming
(S
-P
)-thio[l*O] PEP a s demonstrated by transfer of t h e
thiophosphoryl
group
to
ADP
using
pyruvatt
kinase
stereochemical analysis of the resulting [ y-180]ATPyS.79
and Again
thiophosphoryl transfer had thus occurred with inversion, probably directly without involving a thiophosphoryl-enzyme intermediate. The ( R
S -P ) and ( -P
diastereoisomers of ATPaS and A T B S , and
also A T P y S , h a v e b e e n t e s t e d a s s u b s t r a t e s o f d y n e i n f r o m T h e ( S ) isomer of ATPBS w a s preferred a s -P in the presence of Mg2+ ions, and t h e ( R ) isomer with
Tetrahymena_cilia.80 substrate
-P
Cd2+ ions, but n o comparable stereospecificity was shown with the stereoisomers o f ATPaS.
W h e n p r o c h i r a l ADPB S w a s u s e d as a
substrate €or the reverse reaction of N1'-formyltetrahydrofolate
synthetase in the presence o f Mg2+ ions, isolation of the ATPBS formed and stereochemical analysis showed that the ( S
-P ) isomer of
[Mg.ATPBSI2-, having A s c r e w sense, had been formed, consistent with t h e enzyme's preference for (Sp)-[ Mg.ATP6SI2- a s substrate for the forward reaction.81
The
fix
screw sense isomers (R -P
)
also
Organophosphorus Chemistry b i n d e f f i c i e n t l y t o t h e enzyme, b u t n o n - p r o d u c t i v e l y
The s u b s t i t u t i o n - i n e r t
triamminecobalt
(111) ATP
exists as
four t r i d e n t a t e complexes (731, s e p a r a b l e o n cycloheptaamylose c o l u m n s , i n w h i c h t h e a b s o l u t e c o n f i g u r a t i o n s a t . Pa a n d P R h a v e now
b e e n e s t a b l i s h e d by c o m p a r i n g t h e
d i f f e r e n c e s o b s e r v e d i n t h e 31P n.m.r. [aJ80]ATP
[180]-induced
s h i f t
(R~)-
s p e c t r u m when e i t h e r
a r e m i x e d w i t h ATP w h e n p r e p a r i n g t h e
o r (sp)-[B-’80]ATP
I n preparing t h e s t a r t i n g m a t e r i a l s , it w a s found
complexes.82
t h a t d e s u l p h u r i z a t i o n of c h i r a l ADPaS a n d ATPBS u s i n g b r o m i n e i n [ 180]H20 a t
pH3 o c c u r s
with
near-quantitative
w i t h o u t s c r a m b l i n g t h e l8O l a b e l i n t r o d u c e d .
inversion,
and
The isomers ( 7 3 )
s h o u l d p r o v e v a l u a b l e i n p r o b i n g t h e s u b s t r a t e s p e c i f i c i t y of e n z y m e s w h i c h u t i l i s e t r i d e n t a t e [Mg.ATPI2- a s s u b s t r a t e :
for i n s t a n c e ,
kinase,
isomer.
The
is preferentially
BY-bidentate
therefqre thought
and
that
inactivates
a, B , Y - t r i d e n t a t e
the
natural
t h e enzyme.83
substrate,
recognized by t h e enzyme a s i t s B,y-bidentate studies
on
the
conformational
diastereoisomers
of
described,84
the syntheses
and
B,y
bidentate complexes of
exo
chromium (III).ATP complex h a s h i g h e r
a f f i n i t y f o r b i n d i n g t o (Na++K+)ATPase t h a n t h e Cr(III).ATP complex,
creatine
i n h i b i t e d by t h e n
complex.
isomerization
-bidentate of
is
I t
[Mg.ATPI2-,
is
Kinetic the
four
Cr(III).ATP have
been
the
of
y-monodentate
and
,Y
-
C r ( I I I ) I T P , a n d t h e s e p a r a t i o n of t h e i r
s t e r e o i g o m e r s , h a v e b e e n r e p o r t e d . 85 5 ,6 - D i h y d r o - d T T P
( 7 4 ) a n d 5 ,6 - d i h y d r o x y - d T T P
(
75) have been
p r e p a r e d b y c a t a l y t i c r e d u c t i o n o f dTTP o v e r r h o d i u m - a l u m i n a ,
and
b y t r e a t m e n t of dTTP w i t h b r o m i n e w a t e r f o l l o w e d b y s i l v e r o x i d e , r e s p e c t J v e l ~ . ~T ~he d i h y d r o n u c l e o t i d e ( 7 4 ) was i n c o r p o r a t e d i n
place
of
dTTP
during
fragment o f E.coli dTTP,
without
primer
apparent
diastereoisomers,
elongation
catalysed
DNA p o l y m e r a s e I , a l b e i t a t
selectivity
suggesting that
for
cellular
by
Klenow
a lower r a t e t h a n the
(5R)
o r
(5.5)
(74) produced
r a d i a t i o n c o u l d a l s o b e c o m e i n c o r p o r a t e d i n t o DNA.
by
The t h y m i d i n e
g l y c o l d e r i v a t i v e ( 7 5 ) w a s n o t a s u b s t r a t e f o r Klenow f r a g m e n t .
6: Nucleotides and Nucleic Acids
209
Two new procedures for preparing C-5 biotinylated derivatives of dUTP start from 5-~nercurateddUTP, which in one case is coupled
with ( y - b i o t i n y l ) - 6 - a m i n o h e x y l acrylate in the presence of lithium tetrachloropalladate,87
and
in
the
other
treated
is
with
allylamine to form 5-(3-aminoallyl)dUTP which is then N-acylated by the y-hydroxysuccinimide
(NHS)
ester of biotin, or of 2-
(biotinamido)ethyl-l,3 ‘-dithiopropionate.88
In the last c a s e ,
this means that biotin is attached to dUTP by a chain containing an easily reducible disulphide link (76). species c o u l d
be
used
a s substrates
permitting the biotinylation of DNA.
All three biotin-dUTP i n nick
translation,
5-(3-Aminoallyl )dUTP has
also b e e n t r e a t e d w i t h t h e N H S e s t e r of 4 - c a r b o x y - 2 , 2 , 6 , 6 tetramethylpyrrolidin-1-oxyl
(4-carboxy-TEMPO) t o introduce the
spin-label at the 5-position of dUTP, and similarly spin-labelled derivatives of dUTP and UDP have been prepared by treating 4-thiodUTP and 4-thio-UDP, respectively, with 4-iodoacetarnido-TEMPO and an epoxide derivative of nucleotides
The three spin-label led
were s u b s t r a t e s f o r D N A p o l y m e r a s e I, t e r m i n a l
deoxynuc leot idy 1 t r a ns f e ra se , and PO 1 y nu c 1 eo t ide phosphor y 1 ase , respectively,
per m itt ing
s p i n - 1 a b e 1 1 ing
of
cop01yme ric
polynucleotide products at levels from 2 to 6%. A review of enzymic, chemical and combined syntheses of nucleotides
9
radiolabelled with
Tr it ia ted prepared
by
-et hy 1 - 2
I-
phosphorus-32 has appeared.90
deoxy thy m 1 d 1 ne - 5 ‘-t r i p h o s p ha t e ha s been
p h o s p h o r y 1 at i n g
e4- e t h y 1 - 5 - n y d r o x y m e t hy 1 - 2
‘-
deoxyuridine consecutively with carrot phosphotransferase, and carbonyldiimidazole
and
pyrophosphate,
to
obtain
the
5
’-
triphosphate, which was then reduced with tritium gas over Adams’ catalyst . 9 ’ The inhibition of reverse transcriptases by sugar-modified nucleoside 5‘-triphosphates is attracting much interest, not least for t h e h o p e i t o f f e r s of c o n t r o l l i n g r e t r o v i r a l d i s e a s e s including
AIDS.
dideoxythymidine
The
(
5’-triphosphates
of
3’-azido-2‘,3’-
’AZT‘), 9 2 , 9 3 as well as the analogous 3’-amino-,
210
Organophosphorus Chemistry
RZ
R1
0
0
'*.
1
0
/p\o
0
H,N-,CoH3N"
0 '
;--[
- P=O 1 1
0
\p'O
RL R3 2 3 L R = R = R :Aexo 2 R = A d o - 5 ' ; R ' = R 3 = R' : A endo 1 2 L R?-Ado - 5 ' ; R = R :R : A e n d o 1 2 3 RiAdo -5'; R = R = R : Aexo S
I
_PEP
_P_P_P
(71) R = H
1
(75)
(73)R=Ado-5';
dRib-5'-
I
dRib-5'-
:\ 0 ' 0
R = OH 0
0
(761 d C O N H 2
CH2
Y
I
Ad e
Ade Dpa
R ( 8 1 ) R . L -MeC,H,S
(82)R=OH
M S E = MeS02CH2CH,
6: Nucleotides and N u c l e i Acids 3’-fluoro-, a n d
21 1
2’,3’-dideoxy-analogues of d T T P g 3 a r e all
powerful inhibitors of human immunodeficiency virus ( H Z V ) reverse transcriptase, and other studies have identified these, or closely related compounds, a s inhibitors o f reverse transcriptases from Rauscher virus.95
murine
leukaemia
virus94
and
avian
myeloblastosis
For the most part, inhibition appears to be competitive
against dTTP a s substrate €or these e n z y m e s rather than due to incorporation leading to chain termination.
However, A M V reverse
transcriptase and a number o f other polymerising enzymes (terminal deoxynucleotidyl transferase,9 5 Klenow fragment, T4 D N A polymerase
and calf thymus D N A polymerase a ) 9 6 can recognize and incorporate a number of these sugar-modified analogues, particularly 3’-amino2 ’,3 ’-dideoxynucleoside 5 ‘-triphosphates a n d s o m e of t h e i r 3
‘-
derivatives, with resultant blockage of further chain elongation. Syntheses of the 5’-triphosphates of 3‘-amino- and 3’-azido-(E)-5(2-bromovinyl)-Z ’, 3 ’-dideoxyuridine have been described.97 replication
and
UV-induced
DNA
repair
synthesis
in
DNA
human
fibroblasts are sensitive t o aphidicol in, thus implicating the aphidicolin-sensitive D N A polymerases a and
6
in these processes.
Since both processes a r e relatively insensitive to N2-(4-nbutylpheny1)-dGTP which is a strong inhibitor of D N A polymerase a ,
and more sensitive t o inhibition by 2‘,3‘-dideoxy-TTP than D N A polymerase a
,
D N A polymerase 6 is implicated in these
A number of 2 ’ - d e o x y - 2 ’ - h a l o c ~ e n a t e d
function^.'^
ribo- and ?La-nucleoside-5 ’-
triphosphates have been investigated as alternative substrates or mechanism-based inhibitors of r i b o n u c l e o t i d e r e d u c t a s e f r o m Lactobacillus leishmanii.99 fluoronucleotides
gave
In the pyrimidine series, the 2’-
mainly the normal 2‘-deoxynucleotide
product of r e d u c t i o n , w h i l e 2 ’ - c h l o r o n u c l e o t i d e s a c t e d a s mechanism-based inhibitors t o inactivate the enzyme (although partitioning between these modes of reaction was pH-dependent, and thought
to be
reductase).
dependent These
on
results
the
protonation
are
consistent
s t a t e of with
a
the
model
postulating a radical cation intermediate, reported previously . 2 5 5-Deazaflavin adenine dinucleotide has been prepared using a
Organophosphorus Chemistry
212 modified p h o s p h o t r i e s t e r a p p r o a c h
i n which
2 , 3 , 4 - t r i s - O--
tetrahydropyranyl-7-dea~ariboflavin was t r e a t e d s u c c e s s i v e l y w i t h b i s ( 1-benzotriazolyl) phosphoromorphol i d a t e , 2-cyanoethanol, triethylamine t o a f f o r d (77).’0° acidic deblockiny,
then
R e a c t i o n w i t h AMP,
afforded
the deslred
and
f o l l o w e d by
material.
The
antitumour e f f e c t of t i a z o f u r i n i s r e l a t e d t o i t s anabolism t o thiazole-4-carboxamide
adenine
dinucleotide
(TAD),
a
powerful
IMP d e h y d r o g e n a s e , a n d s e v e r a l p h o s p h o d i e s t e r a s e -
i n h i b i t o r of
r e s i s t a n t analogues of
TAD ( 7 8 - 8 0 ) h a v e b e e n p r e p a r e d b y c o u p l i n g
the appropriate phosphonates with phosphoramidate s p e c i e s ( f o r ( 7 8 ) a n d ( 7 9 ) ) , or c o u p l i n g s u g a r - p r o t e c t e d t i a z o f u r i n t o s u q a r -
protected
adenosine
(80)).lo1
dehydrogenase,
5 -methylenediphosphonate
three
A l l
while
were
analogues
being
more
using
DCC
(for
to
IMP
inhibitory
resistant
t o
hydrolysis
by
p h o s p h o d i e s t e r a s e t h a n TAU, w i t h ( 8 0 ) b e i n g t h e m o s t s t a b l e .
A n u m b e r o f d n a l o g u e s of GTP, m o d i f i e d i n t h e t r i p h o s p h a t e
chain,
have been
transducin,
t h e
photoreceptors,
€or t h e i r a b i l i t y t o i n t e r a c t
examined s i g n a l
i n order
coupling
i n
with
v e r t e b r a t e
t o e x p l o r e t h e s p e c i t i c i t y of
the
y -
I n a s t u d y which a l s o i n v o l v e d GDP
phosphate binding region.lo2 species modified
p r o t e i n
i n the diphosphate chain,
t h e i n t e r a c t i o n of
p r o t e i n s y n t h e s i s i n i t i a t i o n f a c t o r 2 f r o m Xenopus l a e v i s o o c y t e s w i t h GDP a n d GTP a n a l o g u e s w a s e x a m i n e d . l o 3
The
three
possible
pyrophosphate-linked
dimers
deoxyadenosine-3 ‘ , 5 ‘-bis(phosphate1 h a v e b e e n p r e p a r e d p h o s p h o t r i es t e r
was
treated
successively and
triazoly1)phosphorothioate
2’-
g6 - D ip h e ny 1ace t y 1- 2 *- d e o x y a d e n o s i n e
approach.
phosphorochlor i d a t e,
of
using a
bis[2-(methylsulphonyl)ethyl]
with
2 - 4 - m e t h y 1 p h e n y 1 -0,9-b i s i n
aqueous p y r i d i n e t o g i v e ( 8 1 ) .
dioxan,
and
O x i d a t i o n of
(
1- b e nz o-
subsequently
with
(81) usinq aqueous
i o d i n e t h e n a f f o r d e d ( 8 2 ) , a n d o x i d a t i o n of ( 8 1 ) u s i n g i o d i n e i n p y r i d i n e i n t h e p r e s e n c e of ammonia, g a v e
the
(82),
f o l l o w e d by d e b l o c k i n g w i t h
3’-3’-pyrophosphate
(83) i n
high yield.
A
m i n o r v a r i a t i o n i n t h e o r d e r of p h o s p h o r y l a t i o n a l l o w e d ( 8 4 ) t o b e
6: Nucleotides and Nucleic- Acid5
I
I
Hd
HO
213
Ht)
I
OH
(831
AdeDPa
-0
CH,O(CH, ),CH,
I
0
II
CHzO-P-O-P-
I
I
-0
O - y t dCYt
-0
HO
&
( 8 5 ) R = CH,(CH,l,,CO ; n : 15 or 17 ( 8 6 ) R CH, ; 17
0
II
0
wAde
II -;
0 - P -I0 - P - 0
-0
0
0
I
o=p-o-
I
(88) Ac-
X
- Ala-
Ser - Y
I
-0
- OMe
PPPA (891 X m i s s i n g , Y : L e u or X r A r g , Y m i s s i n g or X : L e u , Y m i s s i n g
F
DMTrO
0- P -0Mc 0 PSiMe3 5 -cc I
(92)
I CCI,
Thy
(901 R
='a
(91) R = O - C C = C C I ~
I
CCI,
(931 R = C I
(94)R = H
, (951 R = I
OH
Organophosphorus Chemist?
2 14 prepdred
as
prepared
intcrrnt,diat~ for
an
pyrophosphate,
the
whi l r
making
3 -5 - 1inked
tht.
-1 inkcd
5 -5
could
pyrophosphate
be-.
from ( 8 4 ) a n d (82).
(5 - a d e n o s y l 1 t e t r a p h o s p h a t e
p4-Bis
P’,
p4n)
(A(5 )
and
t r i p h o s p h a t p ( A (5 ) p 3 R ) h a v e b e e n p r e p a r t l d
P1 , g 3 - b i s ( 5 - a d e n o s y l )
by c o n d e n s i n g A D P w i t h i t s e l f or w i t h A M P u s i n g c a r b o n y l h i s ( l , L , 4 -
o r c a r b o n y I b i s ( b e n zi IT ida z o l e
t r i a z o le
continues to
attract
polyamines a
marked
is o b s e r v c d . l o 6
much
interest:
enhancement of It
).
t t l t r a ph ospha t c
The
in t h e presence
intramolecular adenine stdcking
is a p o w e r f u l
a c t i v a t o r of
the
proposal
shock
to
that
heat
proteins
acts
it
shock
no
c
and
longer
3
~
an
appears
to
with
dNTP
and
i n h i b i t o r s . lo’) s u b s t r a t e - and
A(5
from
of
hexaphosphate
primer-bindiny
pentaphosphate,
inhibitors
to
to
bind
Terminal
which
being
the
t h e
of
to act a s an
kina5e
from
compete
enzyme,
the
partic ~ l a r l y 5trong
human
both to the
enzyme,
affinity
a n d also t h e t e t r a p h o s p h a t e ,
adenosine
in
heat
of
t h y m u s is i n h i b i t e d b y t h e
domains
by periodate,
formed
tenable.’”
The> p e n t a p h o s p h a t e a p p e a r s t o b i n d
following oxidation The
being
-
moleculrs
Howeve>r,
formation
o l i g o p h o s p h a t e 5 A ( 5 ) p n A (n_=2-6),
substrate
pentaphosphate
the
be
deoxynucleotidyl transferase frcm calf bis(5’-adenosyl)
,
alarmone
stimulating
5 -
cytosolic
n u c l e o t i d a s e s in A r t e m i a e m b r y o s a n d i n r a t l i v e r . ’ ( ” response
Mg2+ or
of
and,
label. l 1
w erc p o w e r f u l
liver
cells,
and
) p 5 ( d T ) a n d A(5 ) p 6 ( d ‘ I ’ ) s t r o n g l y i n h i b i t e d t h y m i d y l a t e k i n d 5 e peripheral
patterns
of
bisubstrate binding
cells
blast
inhibition analogues
of
leukaemic
indicate
t h a t
for t h e entymes,
sites s i m u l t a n e o u s l y ,
patients.”’
t h e s e blocking
species both
The a c t
a s
substratc-
and suygest t h a t i n t h e s e enLymes,
p h o s p h o r y l t r a n s f e r f r o m A ‘ r P t o t h e a c c e p t o r n u c l e o s i d e is d i r e c t , rather than proceeding
v s a double-displacement
s t u d y of t h e i n h i b i t i o n c h a r a c t e r i s t i c s of from Lactobacillus
mechanism.
deoxynucleoside
A
kinases
a c i d o p h i l u s b y d N T P species ( t h e e n d - p r o d u c t s )
a n d ( d N ) ( 5 ) p 4 A species f c u n d t h a t t h e s e c c m p o u n d s a r e u s e f u l f o r d i s t i n g u i s h i n g t h e k i n e t i c m e c h a n i s m s of sequential pathways.
k i n a s e s w h i c h follow
6: Nudeorides and Nucleic Acids
21s
L i p i d c o n j u g a t e s of E - C D P by
treating
( 8 5 ) and
appropriate ph~spholipid.”~
The compound
be
E-cytidine
much
more e f f e c t i v e t h a n
leukaemias.
metabolite
A
species in
( 8 6 ) have been prepared
gig-cytidine- 5 - p h o s p h o r o m o r p h o l i d a t e
the
with
the
(85;n=15) wa5 f o u n d t o against
certain
mouse
which appears t o b e dn intermediate
7-dehydroxylation
of
bile
acids appears,
on
thc
b a s i s o f e v i d e n c e o b t a i n e d b y e n z y m i c d e g r a d a t i o n a n d g.1.c.-m.s. analysis,
t o have t h e structure
S e v e r a l ATP v - p e p t i d y l
(88). l1
esters ( 8 9 ) h a v e b e e n p r e p a r e d as p o t e n t i a l m u l t i s u b s t r a t e a d d u c t i n h i b i t o r s of c A M P - d e p e n d e n t p r o t e i n k i n a s e b y c o u p l i n g t h e s e r y l phosphate
of
the
preformed
oligopeptide
to
A DP
activated
with
ca r b o n y 1 d i i m i d a z o l e .
4.
4.1
Oligo:
and Poly-nucleotides
- Chemical S y n t h e s i s -
An e x c e l l e n t r e v i e w
i n t e r alia,
review dealing, containing
the
of
chemistry
with t h e synthesis of oligonucleotides
solid-phase
,
synthesis
of
DN A
via
base-protected
5
synthesis,
have been surveyed.
deoxynucleoside
derivatives has been further developed.
a
ch e m i c a l l y
Recent improvements
oligonucleotide
together with developments i n apparatus
The
as has another
i n t e r n u c le o t i d i c l i n k s , o r b e a r i n g
modified
r e a c t i v e g r o u p s or i n t e r c a l a t i n g a g e n t s . l 1 in
the organic
of
chemistry underlying D N A synthesis has appeared,
‘-g - d i m e t h o x y t r i t y l - 2
I.1 - p h o s p h o n a t e
T y p i c a l l y , t r e a t m e n t of ’-deoxynucleoside
with
t r i s ( t r i a z o l y 1 ) p h o s p h i t e l l 9 or tris ( i m i d a z o l y l ) p h o s p h i t e , 1 2 ’ formed
& situ
heterocyclic phosphonate
from
base,
phosphorus
( e . g . ( 31) )
preferred
solid
coupling
notwithstanding
the
and
the
support, agent
2 ’-deoxynucleoside
with out
considerations
of
pivaloyl t h e noted
appropriate
nucleoside
following aqueous work-up.
coupled to a base-protected position to a
trichloride
affords t h e corresponding
3
bound
i t s 3 ’-
chloride being
range above. 27
’-g-
T h i s is t h e n
the
available,120 The
requires n o protection a t phosphorus, and n o capping step.
method The
216
Organophosphorus Chemisty
P r o d u c t o f coupling
(e.9.
dichloroacetic
in
next
coupliny
minutes120
acid step.
Cycle t i m e s
have been
elongation,
a
( 4 0 ) ) is t h e n d e t r i t y l a t e d
dichloiomethane,
reported!
of
in
four the
A t
using L-2.5%
preparation minutes119 completion
s t e p serves t o oxidise
single cxidaticn
for
the
and
seven
of
chain
all t h e
H-
phosphonate links t o t h e corresFonding
phosphates,
aqueous Fyridine h a s proved t o b e t h e
p r e f e r r e d r e a g e n t . ' 19-'
Rerroval
from
the
polymer
and
deblocking
and iodine in
follow
procedurestand oligonucleotides as long as 107-mers prepared i n t h i s way.119
Using
base-protected
*'
established have been
2 -0-TBDMS-
ribonucleosides as s t a r t i n g materials, t h e s a m e p r o c e d u r e h a s b e e n utilized
to
oligoribonuclectides.122
prepare
In
a
comparative
study of a g e n t s f o r t h e oxidation of t h e H-phosphonatelinkage,
(31)
a n d its m e t h y l e s t e r were u s e d a s r r o d t l c o m p c u n d s € o r c x i d a t i o n b y dipyridyl
disulphide,
Oxidation but
the
using species
fcrmed
toc
phosphodiester
hexachloroacetone,
was
hexachloroacetone,
dipyridyl disulphide
formed a s
(e.g.(90)) undergc
be
to
n.m.r.
some c o n c o m i t a n t d e m e t h y l a t i o n
iodine.' 21 silylation,
practicably
spectrcscopy
an Intermediate,
and prior
hydrolysis
-
slowly 'P
requires
the
to
useful.
Using
suggested t h a t
~ r i o rt o h y d r o l y s i s . w a s cbserved.
(91)
Hobever,
P r e s i l y l a t i o n of
t h e p h o s p h o n a t e i n c r e a s e d t h e r a t e o f r e a c t i o n , t h e p a t t e r n of b y Froduct
formaticn
intermediate,
sugqesting
prior t o forminq
t h a t
(92)
(91) or t h e
was
formed
a s
chlorophocphate
a n
( 93 ) .
Oxidation with iodine i n aqueous pyridine w a s also accelerated by p r e s i l y l a t i o n of t h e p h o s p h o n a t e , a n d w a s l u d q e d t h e b e s t m e t h o d , with
the
intermediate
iodophosphate
(95)
undergoing
rapid
hydrolysis to give t h e phosphodiester. Presently, widely-used
m e t h o d is t h e
most
p r c c e d u r e i n oliqcdeoxyribonucleotide s y n t h e s i s .
though,
t h e phosphoramidite
In
a s t u d y of t h e t h e r m a l s t a b i l i t y of scme a l k y l p h o s p h o r o d i a n i d i t e s ( 9 6 ) - ( 101)
of
potential
phosphoramidites,
utility
f o r
preparing
nuclec5idyl
a l l e x c e p t ( 9 6 ) a n d (101) were t h e r m a l l y s t a b l e ,
b u t ( 9 6 ) a n d ( 1 0 1 ) d e c o m p o s e a t o r b e l o w room t e m p e r a t u r e t o t h e corresponding
alkenes
and
y-phosphonic
formed t h e a l k y l p h o s p h o n i c
diamides
diamides,
(102) and
w hich
in
(103).123
turn
An
6: Nucleotides and Nucleic Acids
217
0 It
ROPI NR’,)~
~~22)
R’CH~CH~P(
(96) R = C Y C H 2 C N ; R’: E t (971 R : C H , C H ~ ; R’= P r ’
(102) R’zCN ; R Z =E t ( 1 0 3 ) R1=MeS02 ; R Z = E t or P r ’
198) R-CHMeCH2CN ; R’: E t (99) RsCMe2CH2CN ; R’= E t
(100) R: CMe2CH2CN ; R’= P r ’ (101) R=CH2CH2S0fic ; R’x Et o r P r ’
(105) X i s absent (106)X = H +
N
OR1 (107)
1
(109) R * M M T r ; R 2 = R 3 = C H 2 C H 2 C N (110) R’:DMTr; R2:2-ClCSHL;R3=Me
(111) X - B r or C l ; ~ = 2 , n = 3 (112) X = B r ; m = 3 I n - 2
R
\
N I I
(113) X = OH (111) x C I N (115) X
N’ V
yNo2 N
Me (116) R x N O z (117) R = CF,
218
Organophosphorus Chemistry
improved treated
diisopropylamine
the
in
with
which
in cther,
of
presence
in
acetonitril~~,,ind
h a s D P P ~ c l e ~ c r i b c d . ’ * ~T r e a t m e n t 0 1
p e r m i t s the
tetrazole
deoxyribonucletside
L‘,
phosphoru5 trichloridt,
2-cyanoethanol
5 -0-dimethohytrit yl-2 -deoxynucleosides
base-protc,ctcld in
of ( 9 7 1 ,
synthesis
succc5sively
L)hosphorllmiditEs
z t u
(104)
u5e
for
with
(07)
preparation in
of
pclymer
s u p p o r t e d oligodecxyribonucleotidt, sb n t h c s i s . ’ l 5
O n l y t r a c e s of
3 -3
guanine
-coubled
requires
by-products
protection
a t
carbamoyl groJ1’ i n arrino group,
are by
O6
tht.
to
addition
formed, but
the
4-nitrophenylethyl
(104) t o prey a r e o l i g o n u c l e o t i d e s o n
a
diphenyl
01
by-products. long
2-
a t thi.
conventional prctection
t o s u p p r e s s t h t l f o r m a t i o n of
rinq
II%inq
chain alkylainin(
-
c o n t r o l l e d pore glass ( L C A A - C P G 1 s u p p o r t , e f f i c i e n t s y n t h e s e 5 w i t h c y c l e t i m e s of 1 0 - 1 2 . 5 a
similar
nucleotides phase
to
way both
t h e
to
above,
v x block-coupliny
synthesis,
s t u d i e s of
minutps w e r e achieved.
(97),
has
also
reaction
T h e u%c> of
prepare
in
solution,
and
bcen
of
a 5olid-
in
In
n u m b e r of
a
( 9 0 ) in
oligodt cxyriho-
mc,chanl%tlc-
3 -
2 -deoxythymidint
p h o s p h o r a m i d i t e s p e c i e s , of g e n e r a l t c p e ( l O S ) , w i t h P j 6 - b e n z o y l - 3
~ - t - b u t y l d i p h e n y l s i l y l - 2 - d e o x y a d e n o s i n e , t h e r a t e of c o u p l i n q to
found
depend
phosphoramidite
in
k h e t h e r
b e f o r e
or
t c t r a z o l e
a f t e r
addition
’”
of
addcd the,
The results obtained a r e accommodated in a
which
tetrazole
initially
f o r m t h e t e t r a z o l i d e s a l t of
protonates
to
thr,
d d e n o ~ i n c ~
(106) by
tetrazole then
the
mechanism
phosphor dmidite
(106) i n a rapid equilibrium
is r e v e r s e d b y a d d e d t e t r a z o l i d e .
which
was
a n d also t o b e i n h i b i t e d b y d i a l k y l a m monium t e t r a z o l i d c .
component,
salts.
o n
-
wd5
affords
the
Nucleophllic
to
reaction attack
phosphorotetrazolldite
on
(1071
w i t h d i s p l a c e m e n t of t h e d i a l k y l a m i n e m o i e t y a s a d i a l k y l a m m o n i u m ion,
a n d ( 1 0 7 ) reacts w i t h t h e a d e n o s i n e
coupled basicity
state
product.
of
5N H I
facilitates
tetrazole,
low
R
reactivity
being
a 2-chlorophenyl
since
moderately observed
group.
component t o afford t h e
ccupling increases wlth increasing
enhanced
displacemrnt
was
and
T h e r a t e of
of
protonation t h e
in
the
transition
dialkylammonium
ion
s e n s i t i v e t o steric h i n d r a n c e
when
p h o s p h t e oxygen
by
with
w a s blocked by
6: Nucleotides and Nucleic Acids
219
B i s ( trimcthylsi l y l ) peroxidr., t - h d t y 1 hydropt:roxide,
hydroFeroxide and N-methylmorphol ine-!-oxide
cumene
have been cxplored as
nonaqueous agents f o r oxidi5ing phosphites such a s (108) to th(. corresponding phosphates, as an alternative to the aqueous iodine which
is
normally used.128
B i s
( T M S ) peroxide was particularly
effective, especia11y in thc presence of TMS-trif late, dnd w d 5 also s u c c e s s f u l l y used
for t h i s p u r p o s e
in a sol id-pha5c’
synthesis. In s o m e solid-phase o l i g o d e o x y r i b o n u c l e o t i d ~s y n t h e s ~ s dimoric phosphoiamidite synthons such a s prepared by
(
109)1L9 and ( 1 1 0 ) ’ 3 0 ,
s t a n d a r d s o l u t i o n m e t h o d s , h a v e b e e n used
blockwise elongation.
In t w o lengthy g e n e syntheses,131
for 32
however, most of the sequences were assembled using standard protected dinucleotide synthons, employing MS-nt
ds
agent .
Bi s ( 2 ,4 , 6-trihalophenoxy 1 trich lorophosphoranes
tr i s ( L ,4 ,6 - t ri br omop he noxy ) d ic h 1 or op ho sphora ne
(
1 1L )
(
coup1 ing
11 1 )
and
have been
described a s n e w condensing agents for internucleotidic bond formation in the phosphotriester approach.
Reaction of the
protected 2 -deoxynucleoside 3 -(S-phenyl) phosphorothioate (113) with these reagents appears, on3+ n.m.r. spectroscopic evidence, to afford the phosphorochloridate (114), which reacts with 3 nitro-lfL,4-triazole added as catalyst t o g i v e (115), which then reacts with the 5 -hydroxy group of a second nucleosidic component to complete the coupling. rapid and afford high yields. preferred
to
the
The reactions a r e reportedly very T h e dichlorophosphorane ( 1 1 2 ) is
trichlorophosphoranes
( 1 13 )
bec-ause t h e
phosphorochloridate by-products formed from the latter reagents compete t o phosphorylate the 5 -hydroxy group. (mesitylene-2-sulphony1oxy)benzotriazole
4,6-Dinitro-l-
(116), l-(mesitylene-2-
sulphonyloxy)-4-nitro-6-trifluoromethylbenzotriazole
( 1 1 7 ) and 1 -
(mesitylene-L-sulphonyl)-4-nitro-lf2,3-triazole, a n isomer o t M S -
nt, have also been found to be highly effective condenslng agents in oligonucleotide yynthesis by the phosphotriester method, being
220 more
Organophosphorus Chemistry reactive than MS-nt, currently the most widely-used
reagent.'j5
Both (1161, which w a s particularly reactive, and
(117) are also powerful sulphonatinq agents, but failed to effect
significant 5'-sulphonation of t h e 5'-hydroxy component in the reaction i n the short time that was required for near-quantitative coupling to occur.
Using reagents ( 1 1 2 ) or (116), it is possibl(:
that the speed of 'phosphotric'st-er synthesis will approach that
of phosphite triester synthesis.
In a new variant of the latter,
nucleoside 3 '-(benzotriazolyloxy)(methoxy)phosphines have been employed a s monomer units for synthesis, giving rapid reactions with high coupling yields in the presence of basic catalysts.136 The u s e o f o x y g e n - n u c l e o p h i l i c c a t a l y s t s , s u c h a s
4-
substituted d e r i v a t i v e s of p y r i d i n e - a n d quinoline-!-oxide, substantially increases the rate of phosphotriester bond formation in coupling reactions using MS-cl, MS-nt, or TPS-cl as condensiny agents, and also in the hydroxybenzotriazole approach.13'
This
observation has been exploited further by developing phosphateprotecting groups carrying catalytic functions, and ( 1 1 8 ) and (119) have been protocols.13*
synthesized for this purpose using
standard
Both condense very rapidly with 5'-hydroxy-bearing
nucleosidic species in t h e presence of arylsulphonyl chloride o r arylsulphonyl-3-nitro-1,2,4-triazole,
the highest rate of reaction
being observed w it h t h e 1 -ox ido-4 - a 1 koxy- 2 -p ico 1 y 1 derivatives. An intermediate of type (120) is thought to be involved.
The use
of these groups is claimed t o minimise t h e quantity o f 5'-0sulphonated by-products formed.
W h e n deblocking t h e products,
the groups are removed using piperidine or thiophenolate. The synthesis and utilization of nucleoside phosphorothioates
in
reviewed.' 3 9 group
has
the
synthesis
of
oligonucleotides
has
been
The 3 - ( imidazol- 1 -y lmethy 1 ) - 4 ,4"-dimethoxytrit y 1
been
introduced a s a
5*-OH-protecting group
catalytically active in effecting internucleotidic bond formation in the phosphorothioester approach.14'
The protected nucleoside
(121) reacts unusually rapidly with g,g-diphenylphosphorodithioate
6: Nucleotides and Nucleic Acids
22 1
o'cH29 R
(118) R = H (119) R = A l k o x y
(120)
OMe
OMe
*B
1
5)R
Et
6)R':Bu'
SR1
.
I
Prn , P r '
t
I
Bu ; R2=Me
; R2=CH,CH2CN
-
2 CI C6HL0 (127) R1z MMTrOCH2CH2; R 2 z Ph (128) R ' = TrOCH,CH, ; R Z z H
,
OCH2CH2CN
,OMe TrSCH2CHzO- P
RO-P,
N Pr' (129)
RO-
, OMe
H p\NPr'z (131) MMTr N(CH2I3 (1 34) R = McOOC(CHt)ll
(1301 R = DMTrOCH2CH,S02CH,CH, ( 132 1 R = CF, CONHCH,CH,
0
H II MMTrNCH2CH20 - P - O H
I
OC,H,CI (133)
-2
222
Organophosphorus Chemistr?> niesitylenedisulphonyl chloride t o give
i n a conden5ation iising pi obdbl y
(12L),
due
imidazolc= m o i e t y .
t o
ntighbouring-group
A f t e r i c m o v a l of
a c ; s i s t a n c e by
phosphinic a c i d , ( 1 2 3 ) condenses w i t h a 5 -OH-bearing i n t h e presence of
within
thirty
seconds.
studies.
The
coupled
product
y i e l d of
An i n t e r m e d i a t e of
( 1 2 4 ) h a s b e e n p r o p o s e d o n t h e b a s i s o f 3 1 P n.m.r.
phenylthio qroup,
nucl~oside
isodurenedi5ulphonyl c h l o r i d e and 2 equivalents
of d i i s o p r o p y l e t h y l a m i n e t o g i v c a n e a r - q u a n t i t a t i v e
coupled product
the
one thiophenyl group with
contains
an
the
type
spcctroscopic
internucl~otidic
a n d r e a c t i o n w i t h a l a r g e e x c e s s of b i s ( t r i h u t y 1
tin) oxide has been
found t o he a very e f f i c i e n t agent
dephenylthiolation
such compounds,
of
affording
the
for
tributyl-
stannyl p h o s p h a t e which i s decomposed by s u c c e s s i v e t r e a t m e n t s with
t r i m e t h y l s i l y l
c h l o r i d e
water
and
qive
t o
t h e
phosphodiester
In
t h e
synthesis, an
phosphorothioite
method
oligonucleotide
of
an appropriately protected nucleoside
is treated
with
(alkylthio)methoxychlorophosphine t o a f f o r d a p h o s p h o r o t h i o i t e
such a s (125).142
_04 , 3 - g - d i b e n z o y l - 2 lutidine, effects
T r e a t m e n t of
(125) with iodine together with
-deoxythymidine
i n d i c h l o r o m e t h a n e c o n t a i n 1 ng
arid s u b s e q u e n t a d d i t i o n o f
oxidative
coupling
and
a small
oxidation
amount of t h e
of
water,
resulting
phosphite t o a f f o r d t h e methyl p h o s p h o t r i e s t e r a s product.
If
s i l v e r acetate is used i n s t e a d of i o d i n e , t h e d i n u c l e o s i d y l methyl phosphite
is
formed,
aqueous i o d i n e .
requiring
a
further oxidation
step with
The method is r e a d i l y a d a p t e d t o s o l l d - p h a s e
s y n t h e s i s , a n d ( t - b u t y 1t h i o ) ( 2 - c y a n o e t h o x y ) c h l o r o p h o s p h i n e been
used t o prepare
phosphorothloites
such as
has
( 1 2 6 ) for t h l s
purpose.
The
g-met h o x y t r i t y l o x y e t h y 1a n i 1 i n o l 4 4
groups h a v e b e e n u s e d a s p r o t e c t i n g phosphates
introduced
nucleotide
synthesis
at on
the
final
a polymer
a n d t r it y loxyamino' 45
groups
for
5'-terminal
of
oligodeoxyribo-
support.
Conventional
stage
condensation methods w e r e used t o p r e p a r e t h e phosphoramidates
6: Nucleorides and Nucleic Acids
223
(127) and (128), which were then debenzoylated, converted to their 3'-(2-chlorophenyl)phosphate
derivatives, and
terminal elongation stage of a conventional
used
in t h e
directed
3'-+5'
phosphotriester o l i g o n u c l e o t i d e s y n t h e s i s o n a p o l y s t y r e n e support.
After unblocking the internucleot idic phosphates and
release from t h e polymer , the lipophilic phosphoramidate moiety facilitated
separation
chromatography.
of
the
products
by
reverse-phase
Both protecting groups were subsequently easily
removed w i t h acetic acid.
T h e use o f ( 1 2 8 ) w a s preferred, since
the s t e r i c bulk of t h e a m i d a t e m o i e t y i n ( 1 2 7 ) s u p p r e s s e d dearylation at t h e phosphorus atom by 0 ~ i m a t e . l ~ T ~ h e 2-(2pyridyllethyl
group has also been introduced as a new protecting
group for internucleotidic phosphate.146
It i s stable t o weak
alkali, acetic acid, and oximates, and may b e removed at t.he conclusion of oligonucleotide synthesis by treatment with methyl iodide in acetonitrile, which forms the N-methylpyridinium species and p e r m i t s r e a d y B - e l i m i n a t i o n .
It i s c l a i m e d t h a t n o
alkylation
this
of
bases
allyloxycarbonyl
occurs during
group
has
been
used
procedure.
to
protect
The sugar
hydroxy functions, and a l s o a m i n o and imide functions of bases, while
the
allyl
group,
introduced
has
allyloxydichlorophosphine,
been
via
used
to
the
use
protect
of the
internucleotidic l i n k i n a ' p h o s p h i t e ' s y n t h e s i s o f a n a l l y l dinucleosidyl phosphotriester.147
The allyl and allyloxycarbonyl
groups are removed using t e t r a k i s ( t r i p h e n y l p h o s p h i n e ] p a l l a d i u m in the presence of butylamine and acetic acid. methoxy-4-phenoxybenzoyl
T h e uses o f
3-
g r o u p s 1 4 8 a n d 4 , 4 ',4"-tris(benzyloxy)
trityl groups149 t o protect the a m i n o functions of nucleic acid bases during oligonucleotide synthesis have been described. more t h o r o u g h s u r v e y o f
base protecting g r o u p s useful
A
in
oligonucleotide synthesis proposed that the phenoxyacetyl group be used for protection of adenine and guanine a m i n o groups, and isobutyryl for the amino group of cytosine, the
recommendations
being based on the efficiency of introduction of these groups and their half-lives under deprotection conditions.150
T h e groups
were u s e d , s u c c e s s € u l l y in phosphotriester and phosphoramidite
224
Organophosphorus Chemistry
solid phase oligonucleotide syntheses, and a t the conclusion of synthesis a single treatment with a m m o n i a sufficed to deprotect the bases, remove the oligomer from t h e support, and r e m o v e t h e
chlorophenyl o r c y a n o e t h y l p h o s p h a t e - p r o t e c t i n g g r 0 ~ p s . l ~ ~ Various strategies have been considered in order t o prevent guanine modification and consequent chain cleavage during the solid phase synthesis o f oligonucleotides using phosphoramidite derivatives.152
Phosphitylation o f t h e g u a n i n e base a t an
unprotected 06-position may
result in chain cleavage
if
the
phosphitylation is not eliminated before the nucleotide is exposed to water during oxidation with aqueous iodine.
While blocking
the 06-position with t h e cyanoethyl or 4-nitrophenylethyl group affords a n effective
if
laborious solution, t h e b e s t way may be to
follow the coupling stage with a
capping step using acetic
anhydride and 4-dimethylaminopyridine prior to the oxidation step. The capping reagent acts a s a source o f acetate and removes
06-
phosphitylation to regenerate the guanine base. 2-(?-Trityl) m e r c a p t o e t h o x y m e t h o x y m o r p h o l i n o p h o s p h i n e
(
129)
has been used to introduce a 5’-phosphate group at the terminus of an oligonucleotide synthesised by the solid phase phosphoramidite method.153
After
(129) has been used in t h e final stage of
addition in place of a nlicleosidyl
3’-phosphoramidite, followed
by capping, the oligonucleotide is oxidised, cleaved from the CPG phase,
and all
protecting
mercaptoethyl) group removed.
groups
but
the
5’-(2-trityl-2-
After purification by reverse-
phase h.p.l.c., oxidation w i t h silver nitrate o r aqueous iodine removes t h e b l o c k i n g
g r o u p t o leave t h e 5’-phosphorylated
oligonucleotide. ( 2 - C y a n o e t h o x y )- 2 - ( 2 ‘ - 2 - d i m e t h o x y t ri ty l o x y ethylsulphonyl) e t h o x y - N , N - d i i s o p r o p y l a m i n o p h o s p h i n e
( 1 3 0 ) has
been used for the s a m e p ~ r p 0 s e . l ~ ~ After addition at t h e 5 ’ -
terminus, capping and oxidation, release of the dimethoxytrityl cation with dichloroacetic acid permits the efficiency of the 5 ’phosphorylation t o be assessed, and t h e residue of the blocking group is subsequently removed by 6 -elimination using hydroxide.
sodium
Analogously, primary a m i n o groups linked t o a 5‘-
6: Nucleotides and Nucleic Acids
225
phosphorylated oligodeoxyribonucleotide have been introduced using
3-(tj-monomethoxytrityl) a m i n o p r o p o x y m e t h o x y d i i s o p r o p y l a m i n o -
p h ~ s p h i n e l (~ 1~3 1 ) or 2-(Ij-trifluoroacetyl )aminoethoxy(2cyanoethoxy)di isopropy laminophosphine ( 132).l 56
After unblocking
the a m i n o groups a t the completion of synthesis using standard methods, they were used a s attachment points for reporter groups such
as
dansyl
chloride156 or
biotin.155i156
For
the
affinity
ligands
attachment
of
a
such
as
5‘-(2-
aminoethy1)phosphcryl terminus to an oligonucleotide as the final stage o f a solid phase phosphotriester synthesis, the reagent (133) h a s
been
used.157
In
an
alternative
approach
to
introduction of a 5,-aminoalkyl terminus, the 5’-detritylated oligonucleotide still bearing phosphate- and base-protection and attached t o t h e s o l i d p h a s e carbonyldiimidazole
is t r e a t e d
successively with
and hexane-lI6-diamine t o introduce a
aminohexylcarbamoyl group.158
The carbamate
6-
1 ink reportedly
withstands the normal deprotection sequence, and the process is efficient.
In order to immobilize DNA &v
terminus , m et h y 1
attachment at the 5 ’ -
1 2 - ( m e t hoxy -Ej ,Ij-di 1 sopr opy 1 a m i nophosphino y 1 )
dodecanoate(l34) has been used in the s a m e way a s reagents (129)( 1 3 2 ) to attach a n alkanoate moiety a t t h e 5’-terminus of an
o1igonucleotide.l5’
After deprotection and hydrolysis t o g i v e
the carboxylic acid (1351, condensation with the aminc group of 3aminopropane-1 ,2-diol using a water-soluble carbodiimide fol lowed by oxidation with periodate afforded (136).
Both (135) and (136)
were conjugated with biotinyl hydrazide using standard methods, and also attached to latex microspheres impregnated with Nile Red for flucrimetric detection
and derivatized to bear hydrazide
groups on the surface, using standard condensation methods.
The
immobilised oligonucleotides were then used as templates for the attachment o f
a 98-mer using T4 polynucleotide ligase and an
oligonucleotide splint. complementary D N A
T h e immobilized D N A hybridized with
in solution a t r a t e s c o m p a r a b l e t o those
observed for homogeneous hybridization reactions. 160 Protected o l i g o d e o x y r i b o n u c l e o t i d e b l o c k s b e a r i n g 3
’-
226
Organophosphorus Chemistry
terminal
phosphate
condensations
groups
have
been
suitable
made
by
for
block
subsequent
preparing
substituted
a
p h o s p h o r o a n i l i d a t e t y p e ( 13 7 ) w h i c h becomes i m m o b i l i z e d a s ( 1 3 8 ) on
treatment
with
conventional
aminomethylated
polystyrene.161
phosphotriester synthesis,
Fol lowing
a
t h e complete protected
oligonucleotide block is removed from t h e s u p p o r t u s i n g isoamyl nitrite.
I n t h e capping steps, acetic a n h y d r i d e was used w i t h
p y r i d i n e r a t h e > r t h a n DMAP, s i n c e u s e o f t h e l a t t e r b a s e a c e t y l a t e d the
phosphoramidate
nucleotides bearing
and
cleaved
3’-phosphate
the
1i n k .
01 i g o d e o x y r i b o -
t e r m i n u s have a l s o been prepared
by s y n t h e s i s i n g o l i y o m e r s b e a r i n g a s i n g l e 3 ’ - t e r m i n a l chemical
or
enzymic
methods,
followed
by
u r i d i n e by
oxidation
of
the
r i b o n u c l e o s i d e r e s i d u e w i t h p e r i o d a t e a n d b a s i c H - e l i m i n a t i o n of A n u m b e r of
t h e o l i g o n u c l e o t i d e - 3 ‘-phosphate.162 benzotriazole-activated been
prepared
and
phosphorylating reagents
tested
s y n t h e s i s of
s h o r t RNA
modification
at
While
the
compounds
acetyluridine i n
for
their
fragments,
lactam
efficacy
l-hydroxy-
139-1 4 0 ) have
in
the
solution
and t h e i r tendency t o cause
function
of
uridine
(139) caused
modification
the
of
presence
(
base,
of
they
residues.163
2’,3‘,5’-tri-9phosphorylated
n u c l e o s i d i c s u g a r h y d r o x y g r o u p s s o much f a s t e r t.han n o r e a c t i o n
a t t h e lactam f u n c t i o n was o b s e r v a b l e i n t h e t i m e d u r i n g which p h o s p h o r y l a t i o n o f t h e s u g a r w a s c o m p l e t e , a n d a n y e x c e s s of
was e a s i l y
mopped
up
by
addition
nucleosidic
component
to
be
of
coupled
excess i n
of
second
t-he p r e s e n c e o f g -
methylimidazole d u r i n g t h e second c o u p l i n g s t a g e . that
t h e
(139)
I t was found
(139;R=CF3) r e a c t e d f a s t e r t h a n (139;R=H), o b v i a t i n g t h e n e e d
for N-methylimidazole previously,25
during
t h e u s e of
t h e second
stage.
As
reported
t h e s e compounds had been c a l l e d i n t o
question on a c c o u n t o f t h e i r a b i l i t y t o react w i t h b a s e l a c t a m functions. using
the
similarity
0 1i g o r i b o n u c l e o t i d e
phosphoramidite
s y n t h e s e s o n pol y m e r i c s u p p o r t s
approach
have
shown
considerable
t o t h e p r o c e d u r e s u s e d i n oligodeoxyribonucleotide
s y n t h e s i s , b u t w i t h t h e 2 , - h y d r o x y f u n c t i o n p r o t e c t e d v a r i o u s l y by tetrahydropyranyl groups.
,
2-nit robenzyl
65 and tetrahydrofurany1166
I n t h e l a s t c a s e , t h e u s e of
5-(4-nitrophenyl)tetrazole
6: Nucleotides and Nuc-leic Acids
227
0 R-C(
II
CH ) 0
0
l2
II
- PI
OHCCHzNH
1 0 -
0
- -
DMT
O C H ,COR
OC,H,CI
-2
(137) R = OCH,CCI R = NHCH2- Polystyrene "6 LOTht
q
T-7 N
DMTrO
O
H
I
Pr I2N- P - OCH, CH2CN (1L3)
0
0 Me O = P - S C H 2 C H 2 0 ! N e t - E t
I
I
(139) X = 0 ; R =H ,CF,,NO, (1LO) X = S ; R z C F , , N O 2
N\N
*
H
R
R
( 138)
-0
- 5')
-0 (135)R:OH (136) R
*B
0 -(Oligonucleotide
Et
T7 N
-I
228
Organophosphorus Chemistry
in place> of tetraLole significantly decreased the t i m e requlred for coupling.
In solid phase synthesis of oligoarabinonucleotides
by the phosphoramidite approach, t h e 2 -hydroxy f unction was protected by t h e a c e t y l g r o u p in a n o t h e r w i s ~c o n v e n t i o n a l procedure.167
In solution synthesis of oligoribonuclcotides by
the p h o s p h o t r i e s t e r a p p r o a c h , 4 - m e t h o x y b e n z y l 1 6 * a n d
3,4-
d i m e t h o ~ y b e n z y l 'groups ~~ have been used t o block the 2 -hydroxy functions, t h e f o r m e r b c i n q r e m o v e d , a t t h e c o n c l u s i o n of synthesis, using trityl fluoroborate, and the latter
sing
1100.
The 4,4 , 4 " - t r i s ( 4 , 5 - d i c h l o r o p h t h a l i m i d o ) t r i t y l group has been
utilized as a new 5 -hydroxy-protc>cting group in the synthesis of oligoribonucleotides bearing
3 - or
5 -terminal
phosphates.' 7"
It i s removed using hydrazine, or by successive treatments with
ammonia and dilute mineral acid. oligoribonucleotides
has
A
u sed
new solid-phase synthesis of ba se - protected
2 -
0-
tetrahydrofuranyl-3 - ~ - ( 2 - c h l o r o p h e n y l ) p h o s p h o r o - 4 - a n i s i d a t eunits to extend in the 3'-direction a nucleotide anchored by its 5 terminus to the support (141).171
Removal of the anisido moiety
from ( 1 4 1 ) with isoamylnitrite affords a phosphate oxygen for coupling t o the next monomer unit using MS-nt.
This approach
avoids the use o f zinc bromide for detritylation a s in syntheses in the 5 -direction, but the cleavage of the p-anisidate is slow.
Recent developments in automated synthesizing systems for nucleic acids have been reviewed.' 72 Oligomers containing o n 1 y
a-2 -deoxyr ibonuc leot ides have
been prepared using a solution phosphotriester method in which phosphate was protected by the lipophilic 2-chloro-4-tritylphenyl group
and
the
guanine
base
dipheny 1 carbamoy 1 der ivat i ve
as
its
2-N-palmitoyl-6-9-
The a - 0 1 igor ibonuc leot ides were
more resistant t o nuclease S 1 and calf spleen and snake venom phosphodiesterases t h a n t h e u s u a l B - 0 1 i g o r i b o n u c l e o t i d e s identical sequence.
A
of
pentamer sequence containing only L-
ribonucleotides has been prepared by a phosphotriester approach
using 2 -chlorophenyl - 0 , O -bi s ( 1 - b e n z o t r i a z o 1 y 1 p h o s p h a t e .
6: Nudeorides arid Nuclric Acids
229 2 -i ,3 -i
l ’ h r e e f u r t h r r s y n t h e s e s of
s t r u c t u r e s s i m i l a r t o thosc, found a t
RNA
becLn
have
tiPscrihed.
first, a n d t h e 2 - 5 - l i n k a1 t h o u g h
approach,
cas,.175t176
In
two,
using
splice sit€, i n
the
3 -5 -link
lari<3t formtJd
is
then constructed using a phosphoramiditc,
t h e
procedurcs
In t h e t h i r d method,
concomitantly
linked t r ~ r i ~ ~ o n l ~ c l ~ ~ o t l d € , ~ , t h e
vary
both
somewhat
in
each
links a r e construct<,d
2 , 3 - g , ~ - i s o ~ ) r o p y l i d e n e a d e n o s i n t5.
- ( O -
a 1l y 1 ) p h o s p h o r o c h l o r i d i t e . 01 i g o d eo x y r i b o n u c 1 eo t i d e s
con t a in
i
ng
5 - m et h y 1
a
-
rj ,
r\l
-
( 1 4 3)
ethanocytosine b a s e ( 142) have been p r e p a r e d by p r e p a r i n g
( b y t r e a t m e n t of t h e c o r r e s p o n d i n g 2 - d e o x y t h y m i d i n e c o m p o u n d w i t h phosphoryl c h l o r i d e and t r i a z o l e ) , r e s i d u e i n a 21-mer
incorporating it a s t h e c e n t r e
p r e p a r e d by t h e p h o s p h o r a m i d i t e a p p r o a c h ,
and
t h e n d i s p l a c i n g t r i a z o l e w i t h e t h y l e n e i m i n e prior t o d e p r o t e c t i o n Upon h y b r i d i z a t i o n t o o l i g o d e o x y r i b o n u c l e o t i d e s of
with base.178
complementary s e q u e n c e b u t w i t h d i f f e r e n t b a s e s o p p o s i t e ( 1 4 2 ) , cross-linking cytosine. diminished
by
p o s i t i o n of
mer
of
occurred,
the
by
but
not
exclusively
cross-linking
was
mismatched
bases
of
(142) i n t h e sequence.
I n a similar
around
exercise,
f o l l o w e d b y o x i d a t i o n of
t h e
21-mer
a L1-
c o n t a i n i n g
tendency t o c r o s s - l i n k
a
6 -
method,
t h e m e t h y l t h i o m o i e t y w i t h MCPBA a n d
ethyleneimine.17’
Upon
otherwise complementary oligonucleotides,
lower t h a n t h a t o f
the
(144) r e s i d u e a t t h e seventh p o s i t i o n has been
r i b o s i d e r e s i d u e by t h e Ij-phosphonate
with
to
slgnificantly
a c i d i n t e r r u p t e d b y t h e p r e s e n c e of a n
s y n t h e s i z i n g
methylthiopurine
displacement
of
presence
L -deoxythymidylic
N, 6c6-ethanoadenine
prepared
p r e d o m i n a n t 1y
The e f f i c i e n c y
hybridization
with
(144) showed a s p e c i f i c
to cytosine, although its reactivity was
(142).
Once a g a i n , many s y n t h e s e s o f o l i g o n u c l e o t i d e s c o n t a i n i n g u n u s u a l or m o d i f i e d r e s i d u e s h a v e b e e n d e s c r i b e d .
These have
i n c l u d e d 5 - m e t h y l d e o x y c y t idine180-184,deoxyinosine1 8 0 , 1 8 2 ,
84,186,
d e o x y u r l d l n e l 8 0 1 8 4 , z 6 - m e t h y l d e o x y a d e n o s i n e l 82-1 8 4 , 2 - a r n i n o d e o x y a d e n o s i n e ’ 82 1 8 4 , 2 - a m 1 n o p u r
i
n e d e o x y r ibos i d e 1 8 4 ,
5-f 1u o r o -
230
Organophosphorus Chemisrrv *6
0
0 (148)
-0 (1C9) (150) (151 1 (153 ) (154
-0
-0
R'=H ; R2=N3; 8'=C u a ; B z = C y t R'= PO,H, ; RZ=NH2; B ' = G u a ; B 2 = C y t R'= P03H, ; R2=NH,; B ' = C y t ; B 2 = G u a R'x H; Rz=NH, ; 6'=G u a ; 62=C y t R'= PO,H,; R'zN,; 6': G u a ; B 2 s C y t Cvt
Cvt
Gua
-0
-0
-0
1152)
-0
( 1 53 1
Gu a
Gua
'0
1 CHZ
Ho
OH
HO
(155)
0
0
I
I -0
H 11 II HSC?CH2N -P-O-P-O-(Ado-5')
-0
(158)
(156) n = 2 (157) n = 1
OH
1 c=o 1 c=o 1
CH, &
6: Nudeotides and Nudeic Acids
23 1
deoxyuridine,’81 5 - b r o m o - d e o x y u r i d i n e a n d - d e o x y c y t i d i n e , ’ 84 5 iododeoxyuridine , 18’
inosine,
dea z an c b u 1 a r i n c
tu b e r ci d i n ,
a nd
7 - d e a I ai n o s i n e ,
tubericidin’911 droxyxanthosine,’90 N’-methyldeoxyguanosine
’d
nebu 1a r 1 ne,
e ox y n e b u 1 a r i n e ,
7-
d eo x y -
N4-rnethyldeoxycytidi n e , l a 3 ,
and 3-deazadeoxyadenosine,185 pyrid- L-oncl-
deoxyr ibos ide, py r i mid-2 -one devxyr 1 bos i d e and 4-am i nopyr id -2 -one
deox y r i bos id c ,
’
8- h y d r o x y d e o x y q u a no s i n e ,
thymidine,1y4 g 6 - , l k y l d e o x y g u a n o s i n e
0
- me t h y 1 d e ox y -
species,195, dnd
a n d l I 4 - a n h y d r o - 2 - d e o x y - g - r i b i t o l, a s
propanediol
1,I-
no-base
For the most part, the synthesis involved s o l id-
residues).lg6
phase p h o s p h o t r i e s t e r o r p h o s p h o r a m i d i t e m e t h o d s .
The 2-amino
functions of 2-arninodeoxyadenosine and 2-aminopurine deoxyriboside were b l o c k e d by i s o b u t y r y l g r o u p s , a n d
O6
protected by a 4 -nit ropheny 1ethy 1 group.
of d e o x y x a n t h o 5 i n e w a s
8-Hydroxydeoxyg ua nos i ne
was introduced a s its 8-methoxy derivative, and subsequently unblocked w i t h triethylamine.
Particular c a r e needed t o be taken
with 4-C)-methyl deoxythymidine dnd 6-9-alkyldeoxyguanosine species due t o their instability.
T h c oligonucleotides w e r e variously
investigated, i n the, m a i n , for t h e e f f e c t s of t h e
odd
bases o n
the ability of restriction endonucleases t o cleave a t their target sequences, o n t h e s t a b i l i t y of o l i g o n u c l e o t i d e d u p l e x e s , a n d o n the polymerase-catalyzed synthesis of a complementary strand. 0 1 igodeoxy r i bonucl eo t ide s c o n t a 1n 1 ng 5 - 5- p h o sph o r ot h i o a t e links
have
been
prepared
by
treating
base-protected
deoxynucleoside 3 - t h i o p h o s p h a t e s w i t h a ~ w i t t e r i o n i c 5 - i o d o 2 ,5 -dideoxynucleoside derivative (145) i n DMF.
T h e presence of
the zwitterionic moiety i n (145) enhances considerably the rate, of reaction
of
the
position.19’ phosphoramidate hybridising
incoming
sulphur
nucleophile
at
the
5 -
0ligodeoxyribonucleotides containing a 3 -5 -
or
pyrophosphate
link
have been
(sdy) a n oligonucleotide possessing
formed
by
a 3 -terminal
phosphate g r o u p a n d a n o t h e r c o n t a i n i n g a 5 ’ - t e r m i n a l a m i n o o r phosphate group t o a complementary oligonucleotide, the sequences being chosen so that t h e t w o termini lie adjacent.”’ ligation
w i t h EDC t h e n s e a l s t h e
Chemical
nick’ t o form the modified
232
Organophosphorus Chemistry
internucleotidic link.
Diastereoisomerically pure ( K
?
)
and ( S
P
)
d(GGsAATTCC), c o n t a i n i n g a s i n y l e p h o s p h o r o t h i o a t e 1 ink a t t h e posltion indicated, have been prepared by a sol id-phase procedure using u n i t s o f t y p e ( 1 0 4 ) a n d a s i n g l e e t h y l p h o s p h o r a m l d i t e oi type (1461, which, following addition, w a s oxidised with sulphur t o form the phosphorothioate unit.lY9
The racemlc assembled
oligorner w a s c l e a v e d f r o m t h e s u p p o r t , t h e t r i t y l , b a s e , a n d cyanoethyl groups removed, and the crude g-ethyl phosphorothioate products s e p a r a t e d a n d pllrified b y h.p.1.c. b e f o r e r e m o v a l o f t h e ethyl g r o u p w i t h a m m o n i a . complementary
Spectroscopic studies of the self-
octamers suggested that the
(! ) conf iguration P caused the greatest structural perturbation in comparison with the
unmodified p a r e n t d u p l e x .
Several oliqodeoxyribonucleot~dcs
containing a single ethylated interndcleotide phosphatc, have been prepared, e i t h e r a s d e s c r i b e d a b o v e u s i n g (146)(but w i t h o u t t h e thiation step) in a procedure with separated the diastereoisomers of d[GGAA(Et)TTCC]’”
o r by
nucleotidic 2 - c h l o r o p h e n y l
transesterification of a n inter-
blocking
g r o u p using
ethanol ( f o r d [ T ( E t ) T ] a n d d [ p T ( E t ) T ] ) phos phot r i e s tt‘r a p p r o a c h
(
for
absolute c o n f i g u r a t i o n of ( R assigned e i t h e r by
-P
)
or
d [ ‘1’TT ( E t ) T C T A T TT ]
and
( S
-P
fluoride and
by a s o l u t i o n - p h a s e
.
)
‘r h e
)-d[GGAA(Et)TTCC] c o u l d b e
i d e n t i f i c a t i o n of
the nuclease digestion
products with samples of k n o w n absolute configuration generated by stereospec i f i c
ox i d a t 1 o n
of
the
c o r r e s P O nd i n g
9- e t h y 1 a t e d
p h o s p h o r o t h i o a t e ~ , ~ ~o’r b y u s i n g a t w o - d i m e n s i o n a 1 n u r l e a r Overhauser e f f e c t i n t h e (Kp)-(R
-P
)
nor
the
’H
n.m.r.
spectrum.202
(Sp)-(Sp) duplexes
could
Npither be
cleaved
the by
restriction endonuclease e R 1 , although the unmodified duplex w a s cleaved readily.”’
While d[T(Et)T] w a s not phosphorylated by T 4
polynucleotide k i n a s e , t h e e t h y l a t e d decarner w a s p h o s p h o r y l a t e d readily, showing that the e n z y m e requires t o recognize a negative charge o n t h e
3‘-phosphate of the residue which
phosphorylate. 201
i t 1s t o
It also demonstrates that postlabelling assays
of DNA d a m a g e employing polynucleotide kinase cannot b e applied t o dinucleoside produced a
a 1 k y 1 p h o s p h o t r i e s t e r s.
The ethylat ed d e c a m e r
high frequency of strand breaks o n exposure t o alkali,
6: Nucleotides and Nucleic Acids
233
and could also act as a primer for DNA synthcsis when annealed t o a single-5trandrd plasmid template, affording a method for s l t r 3 specific incorporation of phosphoti iesterc, into v l r a l vrac-tor5. Solid-phase s y n t h e s e s of
o l i g o d e o x y r i b o n u c l c o ~ i d ~mc~thyl-
phosphonatcs hacc been performed u 5 i n y (147),
monomer unlts of t y p e
p r e p a r e d by t r e a t l n q t h e p r o t e c t e d
methylphosphonic
b
1
( i
m
1da
zo t i d e 1 .
’
n u c l e o s i d e with
The
conde nsa t i on
reactions, which were cdtdly/ed b y tetrazole, were appreciably more
efficient
on a polystyrene support than on C P G .
conventionally immobilized 3 -terminus w a s employed.
R
5incjlc
A
phosphodiester link w a s introduced at the 5 -end of the sequences synthesized, condensation,
us 1ng
p h o s p h o t r i c’s t e r
since
after deprotection
or
the
phosphor dm resulting
id 1
te
sinqly
charged oligomers are conveniently purified on DEAE-cellulose, and additionally cannot otherwise be polynucleotide
kinase,
01 igodeoxyribonucl eoside
for
5 -phosphorylated by
reasons
described
the ‘r4 dbovc.
m e t h y 1 ph o s ph o n a t e s c o m p 1 e ment a ry to
sequences including the initiation codons of certain genes encoded by vesicular stomatitis virus ( V S V ) have been found to inhibit specif ical ly the corresponding v i ra 1 proteins in VSV-inf ected cells in a concentration-dependent manner, without affecting cellular protein synthesis in non-infected cells.L04
They may
therefore be useful for studying the expression of viral genes and controlling virus production.
Normal phosphate-containing oligo-
deoxyr ibonuc leot ides c o m p 1 ementar y t o the
1 n 1 t iat i on
r ey ion of a
VSV protein have been ligated t o p C p at their 3 -termini, which were then dephosphorylated, oxidised with periodate, and condensed with poly( L-lysine), using sodium cyanoborohydride to render the covalent binding ~ r r e v e r s i b l e . ~ ’ ~The resulting ol igonuc leot idepoly(L-lysine) conjugates strongly inhibited the synthesis of viral proteins in infected cells and showed strong specific antiviral activity against VSV at low concentrations in the cell culture medium.
Oligodeoxyribonucleotides complementary t o a
primer binding site o n H I V R N A , o r to certaln splice sites in the m R N A sequence of H I V , have been found capable of inhibiting the
replication and expression of the virus in cultured cells. 2 0 6
234
Organophosphorus Chemistry Methods
ot .2-
f o r t h e chemical207 and enzymic208 synthc.sis
5 A ’ ( p p p A ( 2 ‘ ) p R ( L’ ) P A )
have b e e n
kpy prnt.oc:ol
reviewed and
:i
P h o s p h o t r i e s t e i - m e t h o d s h a v e b e e n u s e d t o [>repart.
described.
’core t r i m t r ’ ( A ( L ) p A ( 2 ) [ ) A ) a n d including
t h o s e
dcoxyadenosine’l’
of
various
8-bromo-,
w i t h
residues a t t h e 3’-terminus.
pA(L’)pA(Z‘)pA v a r i o l u s l y
its
dnalocju~s,
8-hydr0xy-,~’’
s u b s t i t u t e d
and
3‘-
Usiny analoqucs of
3 ‘-deoxyadenosinc
w i t h
r e s i d u e s i n p l a c e of a d e n o s i n e , i t h a s b e e n s h o w n t h a t . i n o r d e r t o be d e g r a d e d by t h e c y t o p l a s m i c 2 - p h o s p h o d i e s t e r a s e a c t i v i t y i n a n analogue must have a f r e e 3’-hydroxy
m o u s e 1, c e l l s , the
penultimate
residue,L11 and
s u b s t i t u t e d w i t h =&-adenosine
using
analogues
i t was shown t h a t
group must be i n t h e &o-confiyuration.2i2 s y n t h e s i s of
2-5A
group in
variously
3 ‘-hyciroxy
this
on
the,
s t a r t s by c o n d e n s i n g ApA w i t h t u b , e r c i d i n
A new v a r i a n t
(7-
d c a z a a d e n o s i n e , c7A)-5’-phos$horimidazol i d a t e i n t h c [ j r e s u n c e of Pb2+
ions,
nuclease
yiving
ApA(2 ‘ ) I ) ( C ~ A ) . ~ ’
t o q i v e pA(2 )p(c’A), which
P1
and so on.
condensation,
reportedJ5 previously
I[
is
This
diyest-etl
is used
i n
This procedure[toyether
t h t , n<.xt
with dnothpr
was u s e d t o make a n a l o g u e s o f
2-5A s i n g l y
or d o u b l y
substituted
a b i l i t y of
t h e substituted analogues t o bind to ribonuclease
mouse
c e l 1 s
L
w a s
by
tubercidin
r e l a t i v e l y
residues.213
unimpaired,
with
While
thc L of
s u b s t i t u t i o n
of
t u b e r c i d i n for a d e n o s i n e a t a n y r e s i d u e b u t t h e s e c o n d d r a s t i c a l l y reduced
a b i l i t y to a c t i v a t e
the
R N a s e L.
A
related
analogue
p G ( 2 ) p ( c 7 A )( 2 ) p ( c ’ A ) s h o w c d s e v e r e l y d i m i n i s h e d a b i l i t y t o b i n d
t o RNase L.L14 adenosine,
I n a n a l o g u e s of
replacement
of
ppA(2 ) p A ( L )PA c o n t a i n i n g
adenosine by
8-bromo-
8-brornoadenosine
i n
p o s i t i o n s o n e or t w o d e c r e a s e d t h e a b i 1i t y of t h c a n a l o g u e t o b i n d
t o RNase Indeed, only
L,
while
replacement
t h e analogue with
i n
position
8-bromoadenosine
three
in the
did
third
w a s t e n t i m e s more e f f e c t i v e as a n i n h i b i t o r of
not.L15 position
tran5lation
t h a n 2 - 5 A itseli.
I t i s t h o u g h t t h a t c h a n g e s i n the’ b a s e - s u q a r
torsional
the
angle i n
8 - b r o m o a d e n o s i n e - s u b s t ~ t u t e dc o m p o u n d s
m o d u l a t e b i n d i n q t o RNase L , a n d i t s a c t i v a t i o n . p p p A ( 2 ) p A ( L )pA(:!’)p4 3 -terminal
‘I’he t e t r a m f ’ r
has been conjugated to poly(L-lysine) a f t e r
oxidation with periodate,
as described above,
and t h e
'35
6: Nucleotides and Nuclcic Acid.\ conjuqate infected
LILIO
not.L16
~ 1 1 c c
cell-frcc bt:
proved
t a f
ct.11
1
n
nliihitinq
I
g r r ~ w t h 1 n VSV-
viral
i ~ l t l ~ o l ~ q~ tui n c o n l l ~ g a t e 2d - S R wd:;
culturcs,
o n j u q a t r , was a c t . i v e
r a d i o b i n d i n g assay.
i n tiinding
,3F)Fi
It
in
t o ~ < N a s ( I' ,
,I
t h a t p o I y ( l , - l y s i n ( - . ) niciy
a g e n e r a l l y u s c ~ f u l v r h i c l e f o r - t h e d e l i v c r y of o l i q o n u c l e o t i d c s
t o i n t a c t cells.
is
fective
A f u r t h c t r p o s s i h l t , , + n t . i v i r a l a c t i v i t y (if 2 - 5 A
by
s u g g e s t e d
t h e
f i n d i n q
t r a n s c r i p t a s e s f r o m a nl.irnt)ttr o f B i s ( 3 '-5 ' ) c y c l i c d i g u a n y l synt-hesis i n Acetobacter
t h a t
which
acid,
I C
i t
i n h i b i t s
r
s o u r - c e s . '17
viral
r c g u l a t e s cel lulosc:
x y l i n u m b y a c t i v a t i n g c e l l u l o s c :;ynt.hds(:,
i s f o r m e d e n z y m i c a l l y f r o m G T P v i a pppGpG a s i n t . e r m e d i a t c . 2 1 R ~
T h e c h e m i c a l s y n t h e s i s w a s re[)ortt,tl l a s t y e a r . 2 5
3 ' - 5 . - 1 i n k c d c y c l i c trimc:r
nor t h e
could
replace
N e 1 t h c . r cGMP
t h e c y c l i c di1nc.r
a s a c t i v a t o r , a n d i t w i l l b e i n t e r e s t i n q t o s e e i f t h i s class o f nucleotides t u r n s o u t t o be widespread i n nature.
Non-enzymic been
has
t e m p l a t e - d i r c > c t . e d 01 i g o n u c l e o t i d e : s y n t h e s i s
s t u d i e d u s i n g d(C7-G-C7)
as a t . e i n p l a t e . 2 1 Y
Upon
incubation
L - m e t h y 1 ) i m i d a zo 1 i d a t e s ,
w i t h g u a n o s i n e - a n d cg t i d 1 n e - 5 ' - p h o s p h o r
(
o l i g o g u a n y l a t c s u p t o ( L ) G ) ~a r e f o r m e d ,
t o g e t h e r w i t h s e q u e n c e s of
f o r m u l a ( ~ G ) , C ' ( P S ) ~c, o n t a i n i n g u p t o t h i r t e e n g u a n y l a t e
general
W h e r e t h e s e c o n t a i n e d rnorc t h a n s e v e n g u a n y l a t e s ,
units.
were c o m p l c x t t . l y giving the that
d e g r a d e d a t t h e C/G
(~G)~@pw a se l l a s (pG),pCp as m a j o r p r o d u c t s ,
l i n k s formed a t t h c product
synthesis
junction does
t e r m i n u s of t h e t e m p l a t e . monomers that
were e x c l u s i v e l y
not
thc-.y
j u n c t i o n by p a n c r e a t i c HNasc,
necessarily
Similar
showing that
3'-5',
begin
studies i n
and a l s o
a t
which
the the
3'-
same'
were o l i g o m e r i s e d o n p o l y ( C , G ) r a n d o m c o p o l y m e r s s h o w e d
the e f f i c i e n c y
of
monomer
incorporation
i n t o
thc' n e w l y
s y n t h e s i z e d o l i y o m e r s w a s g r e a t e r f o r t h e g u a n y l a t e t h a n for t h e c y t i d y l a t e , b u t d e c r e a s e d f o r b o t h as t h e g u a n i n e c o n t e n t o f template
increased.220
The
formation i n t h e products
~ 4 1 2 )was h i g h . t h e Mg2+
The
reyiospecif i c i t y
i d e n t i f i e d ( m a i n l y Gn,
study
_
was
bedevilled by
of
3 '-5
'
the
1i n k a q e
G n - l C a n d Gn-2C2r -
t h e f a c t t h a t at
c o n c e n t r a t i o n r e q u i r e d for r e a c t i o n t o o c c u 1 - , t h e r e i s a n
0rganophosphoru.t Chemist?
236 increasing
t(.ndericy
t h e t e m 6 ) l a t r t o f o r m sc2l f - 5 t r i c t u l c
for
i n c r t ~ a s i n gg u a n i n e c o n t c ’ n t , [)rodlict% o f
15omerizdtion,
sell - s t r l i c t u r o
must
polynucleotititx
of
be
a l ~ t h o r sc o n c l u d i n g
the
ovc’rcome
self-replication
i f
I S
t r a n 5 1 t i o n
polymtlrisation in
aqueous
to occur
of
series) c y a n o g e n
o l i g o a d e n y l a t e s on a
5 0 l u t i o n . ~ ~ ’
that
.
Jn t h e presence d
metal
b r o m i d e
frorn the t h e
e f f e c t s
acid t e m p l a t e
polyuridylic
Probably
the,
tcmplatcx
non-eniymlc
e f f i c i e n t
i m i d d L o l t . a n d a d l v a l e n t m e t a l i o n (Mg2+ o r
first
wlth
and dl50 to form duplcxrs with
N-cyanoimldazole
or
N,N
irninodiimidarole, formed 1 : sitg, a r e the t r u e condensing agents, giving r i s e t o p h o s p h o r i m i d a z o l i d a t e s or species a s d e p i c t e d i n
(148).
PA)^ a s s u b s t r a t e , o l i g o m e r s u p
Using
PA)^^, w e r e
obtained,
t h e n a t u r e of
strongly dependent on t h e metal Ni”
the
m i x t u r e s of h i g h e s t
2 -5
p r o p o r t i o n
p r e d o m i n a n t l y 5 -5
3
pyrophosphatkx
3 -deoxyguanosine
3 -Amino azido-3
o f
-deoxy-CMP
phosphorylated
EDC
u s i n g
w i t h phosphoryl
-5
octamer,
w i t h Co2+, Z n 2 + a n d
ion used: l i n k s were
3 -5
and
to th?
t h e linkaqes furmed being
formed,
l i n k s ,
N i l +
w h i l e
affording
MnLt
yave
links.
has
t o
been
condensed
( 1 4 9 )
g i v e
chloride in triethyl
w i t h
3 -
w h i c h
w a s
phosphate
and
t h e n r e d u c e d w i t h t r i p h e n y l p h o s p h i n e a n d a m m o n i a t o g i v e pGNHpCNH 2 When t h e s e ( 1 5 0 ) .2 2 L S i m i l a r l y , p C N H p G N H 2 ( 1 51 ) w a s p r e p a r e d .
were
incubated
separately
with
EDC
a t
(150) afforded
pH7.5,
oligomers up t o f i f t e e n d i m e r u n i t s long, c o n t a i n i n g a l t e r n a t i n g 3 (N)-+5
(P) phosphoramidate l i n k s ,
i n high yield,
while (152)
g a v e a much lower y i e l d o f o l i g o m e r s u p t o s e v e n dimer u n i t s l o n g , but
a
much
h i g h e r
of
y i e l d
t h e
c y c l i s e d
d i n u c l e o s i d e
diphosphoramidate.
The d i f f e r e n c e is thought t o be r e l a t e d to
the
forms
fact
that
GpC
promoting o l i g o m e r i s a t i o n intramolecular
more of
stable
mini-helices
EDC-activated
than
CpG,
( 15 0 ) a s o p p o s e d t o
c y c l i s a t i o n i n a c t i v a t e d ( 15 1 ) .
The r e a c t i o n of
EDC w i t h t h e 3 ’ - a ~ , i n og r o u p s of ( 1 5 0 ) a n d ( 1 5 1 ) a l s o g a v e r i s e t o
Some 3 - q u a n i d i n i u m
adducts,
h a s a l s o been shown t h a t condensation
of
(153)
preventing
3 -terminal
ligation.
It
( 1 5 2 ) a c t s a s a template t o c a t a l y s e t h e and
(154),
using
EDC
under
slmilar
6: Nucleotides and Nucleic Acids
237
conditions t o t h e previous study.2L3
Since t h e reaction product
i s i d e n t i c a l t o t h e t e m p l a t e - i.e. - it d i r e c t s i t s own s y n t h e s i s is an autocatalytic reaction,
this
support t h i s interpretation:
catalytic reaction.
I n another example,
kinetics
3 -3'-pyrophosphate being
(153) w a s activated with
t o g i v e t h e 3 -5 - j o i n e d h e x a m e r a n d
EDC a n d c o n d e n s e d w i t h ( 1 5 4 1 ,
these products
the reaction
it can a l s o continue t o p a r t i c l p a t e i n t h e auto-
a s t a b l e duplex,
the
and
although t h e template (152) can form
formed
from
(153), the
proportions
t e r n p e r a t ~ r e - d e p e n d e n t . ~ ~ S~ i n c e
(154) are complementary,
blunt-end
(
of
153) and
ligation of t h e duplexes to
g i v e t h e 3 - 5 - l i n k e d h e x a m e r i s f a v o u r e d a t lower t e m p e r a t u r e s , but a t higher temperatures dissociation of pyrophosphate formation.
is added
at
present i n
the
start
the duplex favours
I f , however, t h e 3 -5 - l i n k e d hexamer of
the
large e x c e s s ,
reaction,
with
then auto-catalytic
(153) and
(154)
s y n t h e s i s of
the
hexamer i s o b s e r v e d .
4.2
E n z y m a t i c S y n t h e s i s -1
units
of
Copolymers containing
2-amino-2'-deoxyadenylate a n d
e i t h e r
alternating 5-bromo-2
' -
deoxyuridylate or 5-iodo-2 ' - d e o x y u r i d y l a t e h a v e b e e n p r e p a r e d by polymerising
2-NH2-dATP
and
e i t h e r
5-Br-dUTP
or
5-I-dUTP,
r e s p e c t i v e l y , w i t h D N A p o l y m e r a s e I ( E . c o l i ) i n t h e p r e s e n c e of poly[d(A-T) s t u d y of
I
.225
their
The copolymers
high s a l t concentrations. which
were
used
for
spectroscopic
interconversions between B and A conformations i n
Ij6-methyladenine
Copolymer analogues of poly[d(A-T) ] replaces
t h e
adenine
bases,
or
in 5-
e t h y l u r a c i l or 5 - m e t h o x y m e t h y l u r a c i l replace t h e t h y m i n e b a s e s , h a v e b e e n p r e p a r e d s i m i l a r l y , t o i n v e s t i g a t e t h e e f f e c t s of t h e m o d i f i c a t i o n s on t h e a l t e r n a t i n g conformation of While a l l
poly[d(A-T)
the m o d i f i c a t i o n s d e s t a b i l i z e d t h e d u p l e x e s i n v a r y i n g
degrees, t h e e f f e c t s on t h e a l t e r n a t i n g c o n f o r m a t i o n of p o l y [ d ( A T)],
as indicated by
salt-dependent. alkene
31p n . m . r .
spectroscopy,
( E ) - 5 - ( l - A l k e n y l 1-dUTP
substituent ranged
tested f o r t h e i r a b i l i t y
from propenyl
were v a r i e d a n d
species
i n
to octenyl
which
the
have been
t o b e i n c o r p o r a t e d w i t h dATP b y K l e n o w
f r a g m e n t i n t h e p r e s e n c e of p o l y [ d ( A - T ) ] , 2 2 7
A l l the alkenyl-
238
Organophosphorus C hernis i r! 1p t o h r x e n y l
dU'1'P species
weic
P r o p e n y I IdUTP) incorporation sub5tituent
1
( a n d also 5 - v i n y l - d u ~ P a n c j ( 2 ) 5 ( 1 d
incorpoi ated,
diminish(.d
I though
non-1 inc.arly
ncreased.
G4-Methyl-L
incorporated i n t o p o l y [ d ( A - ' I ' )
1
the
a s
ef f i c i e n c - y
t h e
-deoxythymidint,
has
of
the
lenytil o t
i,f,en
( 5 - 1 0 8 ) r e p l a c e m e n t of
i n partial
d e o x y t h y m i d i n e b y c o p o l y m e r i s a t i o n o f d A T P , d T ' I ' P , a n d ~ 4 - r n e t h y -l dTTP b y K l e n o w re5ulting
fragment
copolymer
using poly
was
Id(A-T)] a s templatc'.LL8
resistant
the
to
3 -5
a c t i v i t y of
K l e n o w f r a g m e n t a n d T 4 DNA p o l y m e r d s e ,
observation
supporting
and
~n
into p o l y [ d ( G - C ) ] cannot
be
b u t when m i s i n c o r p o r a t f d
thymidine
it
O4-Ethyl-L and
removed
by
the
bases,
a t
polymerases
mutant
o€
5 -exonuclease
[ d ( A - T ) ] i n p l a c e of
proofreading
e x o n u c l e a s ~ . ~ ~ ~
gaps
genrratcd
by u s i n g G4-ethyl-dTTP
for t h e g a p - f i l l i n g
with
reaction
catalysed
M ~ ~ r O c o c c u ~ - l ~ t e ou rs, ,
T h i s process c a n b e u s e d t o g e n e r a t e h i g h 0 1 1g o d e o x y r
p 1a s m i d s .
recessed
gig-uridine,
uridine,
residue,
or
ib
o n u c 1e o t i d e s
3 -termini
recoqnized
3 -termini
bearing
L -deoxy-xylg-thymidinc
i
th
hair-pin
a s
the
3
-
methods.231
polymerase enzymes t o recoqnise t h e s e
as p r i m e r s t o p e r f o r m region,
w
decxythymidine,
have been preparrd using solid-phase
Upon t e s t i n g t h e a b i l i t y o f
single-stranded
a t
and o t h e r
self - c o m p l e m e n t a r y s e q u e n c e s f o l d i n g t o f o r m
partially
structures,
terminal
d e o x y c y t i d i n e by
3 4
into poly
f r o m E>_oJl,
p a r t i c u l a r l y , AMV.L30 leve1s
the
single-stranded
dNTP s p e c i e s a s s u b s t r a t e s DNA
by
-deoxycytidine
-deoxythymidine h a s been m i s i n s e r t e d o p p o s i t e a d c n i nc
guanint-
r e s t r i c t i o n s i t e s i n d u p l e x DNA,
by
i n place of
removed
activity,
is
the
it w a s shown t h a t y4-amino-2
a n a n a l o y o u 5 .,tudy,
fragment
that
former
polymer i51ny
Klenow
n o t ion
thr
prootreading domains i n Klenow f r a g m e n t are s e p a r a t e sites.
misincorporated
the
'I'he
exonucl(1dse
fill-in
synthesis opposite the
i t w a s f o u n d t h a t DNA p o l y m e r a s e a
deoxythymidine and uridine,
readily
and reverse transcriptdse
from Moloney m u r i n e leukaemia v i r u s r e c o g n i z e d deoxythyrnidine,
but
t h e o t h e r t e r m i n i were r e c o g n i z e d p o o r l y o r n o t a t a l l .
Riboadenosine r e s i d u e s
place
of
have been
deoxyriboadenosine
by
substituted
nick-translation
i n t o DNA i n u s i n g ATP,
6: Nucieotides and Nudeic Acids
239
cesulting in thc sdrprising 1 indiny t h a t D N A containlny morr t h,ln 5% of r i b o n u c l c o t i d e s c a n n o t f o r m n l ~ c l e o s o m e s . ~ In ~ ~ tact, level of r 1 bosubst formation.
it
ution
a5
1ow
a 5 0.4%
RibosIJbstitution resulted in a chanqe i n mobi 1 ity
electrophoresis
I
it
i m p a i red nucl ~ ’ ~ s o m r > 01)
n pol yacry lam ide g e 1 s , s u y q e s t ing a 1 ter a t 1 on5
1
n
helical structure, and hence that nuclcosome formation may h c vc’ry sensitive t o perturbdtions of t h i s typc.
A number of d < ~ r i v a t i v r ~ ~ ,
of d A T P b e a r i n g b i o t i n a t t a c h e d t o t h e 6 - a m i n o grotip y ~ Ie i n k t ~ r ~ , of 3-17 a t o m s , and 01 dCTP bearing biotin attached t o th(, 4-amino l i n k e r s of
group
incorporated labelled
DNA
3-14 atoms have been
s y n t h e 5 i / e d
i n t o D N A by n i c k - t r a n ~ l a t i o n . ~ ~T ~ h e resultant probes
hybridized
efficiently to
tdrqt’t
I)NA
sequences. ( 15 5 ),
NL,3-Ethenoguanosine
1
ormed
by
treating
6-9-
ethylguanosine w i t h b r o m o a c e t a l d e h y d c , h a s b e e n c o n v e r t e d to
I
t5
5 ’-monophosphate u s i n g 4 - n i t r o p h e n y l p h o s p h a t e a n d whclat s h o o t phosphotransferase,
and thence t o its diphosphate which
could h c
copolymerised with CDP o r ADP using polynucleotide phosphoryldse from M.luteus.234
T h e resulting polymers contained between 6 and
3 2 % of ( 1 5 5 1 , a n d e x h i b i t e d f l u o r e s c e n c e i n p r o p o r t i o n t o
content.
th15
I t i s t h o u g h t t h a t ( 1 5 5 ) m a y b e of relevance’ ~n vlnyl
chloride-induced c a n c e r . Terminal deoxynucleotidyl transferase (TDTase) has been used to add [a-32P]dCTP t o the 3 -OH termini of oligo(dT)12-181 t o form radiolabelled oliqomers w i t h a continuum of chain lengths ranging from t h e 13-mer t o over 100 residues long.235 with
o l i g ~ ( d T ) ~l a~ b-e l~l ~ ed
using
When this is mixed
[v -3LP] ATP and T 4
polynucleotide k i n a s e , a n d t h e m i x t u r e s e p a r a t e d o n a s e q u e n c i n g gel, a c o n t i n u o u s
ladder
represents t h e 1 2 - m e r .
i s f o r m e d , i n w h i c h t h e bottom rung
T h i s serves a s a s c a l e for u s e in t h e
purification and identification o f synthetic oligonucleotides. A
number
of o l i g o r i b o n u c l e o t i d e s c o m m e n c i n g
with
the
sequence AUG have been prepared by stepwise ligation of p N p units
240
Organophosphorus Chemistn,
to AUG using T 4 RNA llgase.236 used to
T h e sequences synthesised were
investigate t h e changes in the energetics of
formation w h e n a n A - U p a i r
i s r e p l a c e d by a G - U
helix
mismatch.
Reaction conditions have been defined which optimise the ligation of sing le-stranded o 1 igodeoxyr i bonuc 1 eotides by T 4 RNA 1 igase2 3 7 . These include the use of polyethylene glycol as a n additive to increase macromolecular crowding, a stratagem which seems widely applicable for increasing enzyme-DNA interactions.238
Oligomers
of uridylic acid of varying chain lengths have been prepared using UDP and polynucleotide phosphorylase, 5'-end-label led with
[y - 3 2 ]
ATP and polynucleotide kinase, and then ligated with RNA ligase to form circles.239
T h e strength of binding of cyclised (U),("=7-
15) t o poly ( A ) w a s found t o be far weaker than that of linear oligomers of equal
length, which may be significant for the
function of loop structures in tRNA and other RNA species. The
dodecamers
d(TTTCGACTTCGA1
and
d( T C G A A A T C G A A G ) ,
synthesized chemically, form a concatemeric DNA-like duplex when mixed in equirnolar quantities, and chemical and enzymic ligation using T4 DNA ligase affords a polymer coding for the polypeptide (
Phe -Asp )
-
'.
5. Other Studies 5.1 Affinity Separation -
In a n e w e n z y m a t i c procedure
for
linking DNA to cellulose, terminal deoxynucleotidyl transferase is
used t o add a poly
( d A ) tail t o the 3 -ends of a segment of
double-stranded DNA.241
T h e poly(dA) tail i s then hybridized to
oligo(dT)-cellulose, and the g a p between the 3 '-terminus o f the oligo(dT) a n d t h e 5 - t e r m i n u s o f a D N A s t r a n d f i l l e d in a n d ligated using denaturation
Klenow
fragment and T 4 DNA
ligase.
Thermal
then separates the DNA strands t o leave a single
strand linked specifically and covalently 9i t s 5'-end t o the
cellulose matrix.
Affinity purification of sequence-specific DNA
binding proteins can
be performed
by synthesizlng complementary
ol igodeoxyribonucleotides containing a recogn it i o n site for the
6: Nucleotides and Nucleic Acids protein
of
oligomers,
24 1
i n t ~ r e s t ,annealing and then
coupling
cyanogen bromide.L42
and
ligatinq
the oligomers
t o
When a p a r t i a l l y - p u r i f i e d
them
to
give
Sepharase with protein
f raction
combined w i t h n o n - s p e c i f i c c o m p e t i t o r DNA i s p a s s e d t h r o u g h t h e column, o n l y p r o t e i n s b i n d i n g s p e c i f i c a l l y t o r e c o g n i t i o n sites o n t h e Sepharose-immobi
11
z e d DNA a r e r e t a i n e d .
t h e c a t a l y t i c s u b u n i t of
MI R N A ,
h a s been l i n k e d t o a g a r o s e beads
ribonuclease P (E.coli)
o x i d a t i o n of t h e
3 -terminal
r e s i d u e w i t h p e r i o d a t e and condensation w i t h a g a r o s e - a d i p i c dihydrazide.243
acid
The r e s u l t i n g column c o u l d b e used t o o b t a i n C5,
t h e p r o t e i n c o m p o n e n t o f R N a s e P,
a single step.
from crude e x t r a c t s of E.coli
Interestingly,
a l t h o u g h M1 R N A
is
active
in in
t h e immobilised M1 w a s inactive
solution i n t h e absence of C5, u n l e s s C5 w a s p r e s e n t .
Pre-mRNA,
t h e f o r m of mHNA p r i o r t o m a t u r a t i o n a l s p l i c i n g ,
h a s b e e n s y n t h e s i z e d i n t h e p r e s e n c e of a l o w l e v e l o f a b i o t i n it with a few b i o t i n residues.L44
UTP c o n j u g a t e i n o r d e r t o l a b e l
T h e b i o t i n y l a t e d pre-mRNA w a s t h e n i n c u b a t e d a s a s u b s t r a t e f o r s p l i c i n g w i t h a n u c l e a r e x t r a c t f r o m HeLa c e l l s , a n d t h e e n t i r e r e a c t i o n m i x t u r e t h e n f r a c t i o n a t e d by s e d i m e n t a t i o n o n gradient.
Passage of
glycerol
t h e fractions over streptavidin-agarose
beads t h e n p e r m i t t e d r e t e n t i o n o f t h e b i o t i n y l a t e d RNA t o g e t h e r w i t h a t t a c h e d small r i b o n u c l e o p r o t e i n p a r t i c l e s w h i c h a r e t h o u g h t
to
be
integral
components
of
t h e
spliceosome
complex
r e s p o n s i b l e f o r s p l i c i n q pre-mRNA.
5.2
Affinity Labelling -
Treatment
of
dUMP
t e t r a f l u o r o b o r a t e i n DMF y i e l d s 5 - n i t r o - d U M P I w i t h z i n c t o g i v e 5-amino-duMP, with
sodium
azide
to
afford
with
nitronium
w h i c h may b e r e d u c e d
and t h e n d i a z o t i z e d and t r e a t e d 5 - a ~ i d o - d U M P . ~ ~F~o l l o w i n g
c o n v e r s i o n t o t h e t r i p h o s p h a t e w i t h DPPC a n d p y r o p h o s p h a t e ,
5-
azido-dUTP p r o v e d t o b e a n e f f e c t i v e p h o t o a f f i n l t y l a b e l f o r DNA polymerase I from E.coli,
b i n d i n g t o t h e a c t i v e s i t e of t h e e n z y m e
w i t h h i g h e r a f f i n i t y t h a n dTTP.
Moreover,
i n t h e a b s e n c e of
242
Orgunophosphorus Chemistry
irradiation,
it acts as an effective
alternative
dTTP f o r t h e e n z y m e , p e r m i t t i n g t h e s y n t h e s i s of DNA.245fL46
template,
photoactivable
26-base
f r a g m e n t w a s p r e p a r e d i n t h i s way, repressor
lac
Using a s v n t h e t i c 26-mer a
protein
upon
operator
duplex
and became c r o s s - l i n k e d wlth
to
o p e r a t o r s e q u e n c e as
pair
irradiation
p h o t o a c t i v i t y o f 5-azido-dUMP
\ub\tratc
photoactivdblc
U.V.
t o 1%
light.L46
The
i s s t a b l e t o e x t r e m e s of p H , d n d t h e
t r i p h o s p h a t e c a n b e u s e d e v e n i n t h e p r e s e n c e o f DTT, u n l i k e some other
azide-containing
Azidoguanosine-3
photoaf f i n i t y
-phosphate-5
8-
-[ 32P]phosphate h a s
been
used
t o
p h o t o l a b e l t h e ppGpp b i n d i n g s i t e o n D N A - d i r e c t e d R N A p o l y m e r a s e from
E.coli,
labelled,L47
The
of
p r e s e n c e of
3 -9-(4-Benzoyl)
labelling. been
the o-subunit
the
enzyme being
ppGpp d e c r e a s e d
most
the
t h e
degree
of
benzoyl c y t i d i n e - 5 - t r i p h o s p h a t e h a s
p r e p a r e d b y c o n d e n s i n g CTP w i t h 4 - b e n z o y l b e n z o i c
carbonyldiimidazole,
heavily
assignment
of
t h e
acid using
position
of
e s t e r i f i c a t i o n b e i n g b a s e d o n t h e d o w n f i e l d s h i f t of t h e 3 - p r o t o n of t h e s u g a r r i n g . 2 4 8
The r e a g e n t was b o t h a s u b s t r a t e a n d a n
effective photoaffinity label
for CMP-N-acetylneuraminic
synthetase from E.coli
liver,
or
rat
photoincorporation
acid being
s u p p r e s s e d b y t h e p r e s e n c e of C T P .
I t m u s t be e m p h a s i z e d t h a t o n l y n o v e l o r u n u s u a l n u c l e o t i d i c
affinity
l a b e l s are considered i n t h i s
Section:
commonly-used
l a b e l s e m p l o y e d i n a r o u t i n e way a r e n o t r e p o r t e d h e r e , a n d t h e i n t e r e s t e d r e a d e r i s a d v i s e d t o s e e k o t h e r s o u r c e s of
information.
O x i d a t i o n o f ADP w i t h MCPBA a f f o r d s a d e n o s i n e - 1 - o x i d e - 5 diphosphate.
’-
T r e a t m e n t w i t h sodium h y d r o x i d e , f o l l o w e d by c a r b o n
d i s u l p h i d e , a f f o r d s 2-thio-ADP1
which upon
a l k y l a t i o n by
1,4-
d i b r o m o b u t a n e d i o n e g i v e s 2- ( 4 - b r o m o - 2 , 3 - d i o x o b u t y 1t h i o ) a d e n 0 s i n e
5’-diphosphate
allosteric
(156), which is a n e f f e c t i v e a f f i n i t y l a b e l f o r t h e
ADP-binding
site
dehydrogenase from p i g heart.249
of
NAD+-dependent
isocitrate
The c o r r e s p o n d i n g monophosphate
( 1 5 7 ) i s a n a f f i n i t y l a b e l f o r a n a l l o s t e r i c A D P - b i n d i n g ’ s i t e of g l u t a m a t e dehydrogenase from b o v i n e 1i v e r . 250
6: Nucleotides and Nucleic Acids
243
And now: affinity unlabelliny!
p 1 - ( 5 -Adenosyl ) - p 2 - N - ( 2 -
mercaptoethyl) d i p h o s p h o r a m i d a t e ( 1 5 8 ) h a s b e e n p r e p a r e d by condensing ADP with bis(2-aminoethy1)disulphide using D C C ,
and
subsequent reduction of the disulphide bond with borohydride.L51 This agent binds to a nucleotide-binding site of F1-ATPase which has
been
inactivated by
the attachment
of
a
4-nitro-L,1,3-
benzoxadiazolyl group t o the phenolic hydroxyl of tyrosine 8-311 in the hydrolytic site, and re-activates the enzyme by removal of the blocking group. mechanism,
The reactivation kinetics suggest a dual-path
the rapid path (involving binding
of
( 1 5 8 ) at
the
nucleotide-binding site) being suppressed by the presence of A D P or A T P .
T h e product o f the reaction i s thought to be ( 1 5 Y ) .
The observed reactivation establishes that tyrosine 6 -311 must be located close t o t h e triphosphate chain of ATP bound
at the
hydrolytic site. 3,3 -Dithiobis[3 ( 2 ) - g - { 6 - ( p r o p i o n y l a m i n o ) h e x a n o y l J A T P ] (160) has been prepared by coupling the dicarboxylic acid formed
from 3 , 3 ' - d i t h i o b i s ( p r o p i o n i c ester) a n d
acid) b i s ( t j - h y d r o x y s u c c i n i m i d e
6-aminohexanoic acid
diimidazole. 2 5 2
to
ATP
using
carbonyl
Both myosin subfragment 1 and heavy meromyosin
hydrolyse ( 1 6 0 ) t o the bis(diphosphate) (161), and on addition of excess vanadate ion both enzymes are inactivated by the formation of a stable vanadate-(161) complex a t t h e active site.
Uslng
this agent, dimers of both proteins cross-linked by vanadate-(161) have b e e n o b t a i n e d , a result which has p e r m i t t e d a n upper limit to be estimated for t h e distance of t h e ATP-binding site of myosin from the surface of the protein. Two Russian reviews on chemical and biochemical aspects of the use of reactive nucleotides and oligonucleotides as affinity reagents and for complementarily addressed modification of nucleic acid s e q u e n c e s h a v e a p p e a r e d . 2 5 3
S o m e of t h e s e a r e w e l l
exemplified i n a study i n which sixteen different derivatives of AMP,
ADP, A T P ,
G M P , G D P , o r GTP m o d i f i e d a t t h e t e r m i n a l
Organophosphorus Chemistp
244 phosphates
to behave as
phosphorylating agents
(phosphor-
imidazolidates or trimetaphosphate5), alkylating agents (nitrogen mustards) or condensing
aqents
(benzaldehydic m o i c t i e s ) were
investigated as affinity labels f o r R N A polymerase in the presence of promoter-containing templates.254
Treatment of the e n z y m e
with the label w a s followed by addition of a n pyrimidine nucleoside triphosphate.
If
labrllcd
the affinity label became
attached at t h e active site, and its purine base and that of the added
pyrimidine
nucleotidc
corresponded
to
the
nucleotide
sequence o f the promoter, synthesis occurred t o aive the enzymebound radioactive dinucleotide Enz-(p)nPu( 32P]pPy, whi le residues of affinity reagent binding outside the active site remained nonradioactive.
Reagents w i t h only a short
arm
between the
terminal phosphate and the reactive group were found to label only the 6-subunit of the enzyme, while reagents w i t h a longer labelled the u-subunit also. last study,
I
arm
One of the species used in this
-[ N - 2 - c h l o r o e t h y l --N - m e t h y l a m i n o )] b e n ~ y l a m i d o - A T P
(162) has also been used f o r the affinity l a b e l l ~ n go i a form of Na',
K'-ATPase,
enzyme.255
becoming bound to the catalytic 11-subunit o f the
An oligoribonucleotide AUGU6, derivatized t o bear a
similar alkylating function at the terminal uridine residue ( 1 6 3 ) has been used for the affinity labelling of E.coli ribosomes wlthin the initiation and pretranslocational complexes formed during
protein
synthesis.256
The
patterns of
labelling of
ribosomal proteins varied considerably between the two complexes. The platinated oligonucleotide d[ (pT),pC[Pt2+(NH3)20H][PT)7]
1s an
affinity label for the template site of
a
D N A polymerase
from
human placenta, and has been used in a competitive bindlng assay in which the ability of other oligonucleotides t o bind t o the
template site and prevent inactivation w a s measured.257
The
affinity of oligo(deoxythymidy1ate) for the binding slte rose with increasing chain length, and, while partial ethylation at the internucleotidic phosphates did not alter t h e blnding afflnity greatly from that of the corresponding non-ethylated compound, complete ethylation caused a substantial drop ~n the affinity. It was thought that a single charged internucleotidic phosphate of
6: Nucleotides and Nucleic Acids
245
t h e t e m p l a t e i s r e q u i r e d f o r a n t l e c t r o s t a t i c c o n t a c t w i t h tiicx enzyme.
The same approach h a s been
e f f i c i e n c y of
s p e c i e s , b y m e a s u r i n g t h e d e g r e e of to
the
enzyme
against
t o detcyrmine
used
the
DNA p o l y m e r a s e a w i t h dNTP
c o m p l e x f o r m a t i o n of
protection which they a t f o r d
inac-tivation
by
2 -deoxythymidlne-5
-
phosphor imidazol i d a t e . 258
The
accessibility
transcription
of
complexes
leading
the
has been
protection technique.‘”
end of
monltored
by
nascclnt a
RNA
~n
photoatf i n i t y
The a z i d o a r y l a t e d ApU d e r l v a t l v e ( 16 4 )
w a s u s e d a s a p r i m e r f o r t r a n s c r i p t i o n c d t a l y s e d by RNA p o l y m e r a s e in
t h e
presence
triphosphates.
a
of
t e m p l a t e
DNA
After transcription
s y s t e m w a s t r e a t e d w i t h t h i o l s ( e.g. azide groups,
of t h e
and then
thiophosphate
the
using
t h e
released
phenylmercuric
chain
sequencing g e l s with t h a t from t h e control
(3 - s u b u n i t s
and
by
portions cleavage
acetate,
lengths obtained w a s
a d d i t i o n of t h i o l s w a s m a d e .
the
were i n a c c e s s i b l e t o
01 i g o n u c l e o t i d e
were
transcripts
link
d i s t r i b u t i o n of
t h e fi
a z i d e groups which
Subsequently
covalently-bound
r i b o n u c l ~ o s l d e
limited period,
DTT) t o r e d u c e t h e a c c c s s i b l e
irradiated to label
enzyme using t h e
the thiols.
and
for a
of
a t
and
compared
experimclnt
the the t h e on
i n which no
T h e a c c e s s i b i l i t y of t h e l e a d i n g
e n d o f t h e R N A w a s t h u s m o n i t o r e d as a f u n c t i o n of
chain length,
and t h e r e s u l t s s u g g e s t e d t h a t t h e l e a d i n g e n d of t h e t r a n s c r i p t may d i v e r g e f r o m t h e D N A t e m p l a t e w h e n t h e t r a n s c r i p t bases long.
A f f i n i t y 1 a b e 11 i n g
of
RNA
HeLa c e l l s b y n a s c e n t t r a n s c r i p t s h a s b e e n a c h i e v e d t h e t r a n s c r i p t i o n i n t h e p r e s e n c e of transcription
4-thio-UDP
l e n g t h by t h e i n c l u s i o n o f
is 12-14
polymerase II from by p e r f o r m i n g (limiting the
3 -2-methyl-GTP
as chain
terminator) and then i r r a d i a t i n g t h e system t o cross-link thiouridine residues to the
were
found
t o be
residue i n tRNAPhe
of
E.coli
intramolecular cross-linking of
a denatured
c o n d i t l o n s .261
The s u b u n i t s
labelled predominantly.
form
of
The
has been used
11,
t h e 4a n d 11,
4-thiouridine
similarly to effect
i n order to study t h e characteristics
the
tHNA
which
occurs
under
certain
T h e 3-(3-amino-3-carboxypropyl)uridine r e s i d u e
1
246
0
0 II
0
S
II
Organophosphorus Chemistry
H - ( - l )OOwn A d e
0
i
-N-P-O-P-O-(Ado-S’) H I I
-0
OH
i o=c
( CH2 15
i
-0
II
(159) (1601n.3 (161 In = 2
CICH2CH2 0 0 0 ‘ N ~ C H ~ N - PH- O 11- P - O -II - P - O II- - ( A ~ ~ -
I
/
Me
-0
( A U GUS- 3% 0
I1
- pI -0
1
-0 (162)
0 0
t;
HNccH2cH2s
Ura
1
-0
5’)
6: Nucleotides and Nucleic Acids
247
found in the variable loop of elongator tRNAMet f r o m been
condensed
with
3 , 3 -dithiobispropionic
&coJi
acid
has
bir(N-
hydroxysuccinimide ester) to give (165) which becomes cross-linked to protein upon incubation with methionyl-tRNA synthetase, with concomitant
loss of the enzymic activity.26L
Self -complementaiy
oligodeoxyribonucleotides containing 5-bromodeoxyuridine in place
of deoxythymidine in various positions within and outside the recognition sequences for restriction endonucleases KO K I and Eco
R V have been synthesized, and are cleaved by the e n z y m ~ sa t the
appropriate recognition sequences.263
Upon irradiation, a modest
yield of photo-crosslinking to the enzymes is observed. 5.3
Post-anthetic Modification -
reporter molecules,
'rhe l a b e l l i n g of
DNA
with
or affinity ligands such a s biotin, has
attracted much attention.
Cytosine residues in single-stranded
regions of DNA have been biotinylated by treatment with bisulphite at pH 4.5, followed by addition of biotin h y d r a ~ i d e . ~Since ~~ this reaction takes place specifically in single-stranded regions, they can be labelled selectively without affecting sequences, required for hybridization. of biotin
molecules
to
a
A method of attachment of a number DNA hybridization probe consists in
effecting mutiple attachment of 6-(N-biotinyl)aminoheptanoate to a large basic molecule (histone H1, cytochrome c , polyethyleneimine) which is linked t o DNA via a bifunctional cross-linking reagent
(3. glutaraldehydc).265
sensitive.
T h e resultant probe is extremely
Midivariant RNA - which can be autocatalytically
replicated by Q B
replicase - has been 5'-[ 3 2 P ] phosphorylated,
converted to its 5 ~ - p h o s p h o r i m i d a z o l i d a t e using EDC and condensed
first with 2,2'-dithiobis(ethylamine) and then with N-hydroxy-
succinimidobiotin t o give ( 1 6 6 ), avidin.266 to any
which combined readily with
Since the avidiii - (166) complex should bind readily
biotinylated probe,
and
subsequent reduction of the
disulphide link will release the midivariant RNA for amplification by
QB
replicase, the RNA moiety of (166) represents an amplifiable
reporter group, giving an assay system of extreme sensitivity.
248
Organophosphorus Chemistry Initiator (tRNAfMet) dnd elongator tRNA molecules of E.coli
have been oxidised with periodate at the 3 -terminal adenosine and then condensed with 4-amino-TEMPO to afford, after reduction wlth borohydride, a spin-labelled terminus o f type
(
167).267
~.p.r.
spectroscopy indicated a d i f f e r e n t motional behaviour of t h e 3 terminus of tRNAfMet f r o m that of the elongator tRNA species, suggested that the terminus was constrained or folded back, rather than freely rotating.
The
penultimate cytidinc residue of the
-CCA terminus o f tRNATYr has been replaced by 2-thiocytidine by degrading the terminus by t w o cycles o f periodate, lysine ( p H 9 ) and alkaline phosphatase treatments, and then restoring it using 2-thio-CTP, ATP, and ATP(CTP): tRNA
nucleotidyltransferase.L68
After aminoacylation with tyrosyl-tRNA synthetase, the sulphur atom was alkylated using N-(iodoacetylaminoethyl)-5-naphthylamine-
1-sulphonic a c i d t o i n t r o d u c e a f l u o r e s c e n t l a b e l , a n d t h e interaction of the tyrosyl-tRNA with the elongation factor Tu.GTP complex studied by changes in fluorescence intensity. Once
again
painstaking
cleavage,
m o d i f i c a t i o n and
reassembly with nucleases, phosphatase, kinase and ligase have resulted i n t h e construction of a large number of specifically modified
tRNA species for
activity relationships.
investigation o f their structure-
In the most complex manipulation, yeast in
t h e c o u r s e of
constructing variants in the T-stern and loop.269
Other studies
tRNAASp
was
cleaved
into four
sections
have concentrated o n t h e anticodon loop the highly-conserved uridine-33
has
:
in tRNAPhe from yeast
been
replaced
n u c l e o ~ i d e sand ~ ~ ~t h e anticodon sequence altered.271
by
other
Similar
substitutions were performed in yeast tRNATyr,272 and the size of the anticodon
loop w a s altered in yeast tRNAAla 2 7 3 .
The
modified tRNA molecules were generally tested for their ability to be charged b y their cognate aminoacyl-tRNA synthetases, o r t o support protein synthesis by interacting with the ribosome.
one case271 a modified t R N A
In
w a s able t o recognize a 2-base codon,
thus demonstrating how the ribosomal are sometimes observed, might occur.
reading f rameshifts,
which
6: Nucleotides and Nucleic Acids In
several
249
studies,
an
oligonucleotide
has
been
site-
s p e c i f i c a l l y m o d i f i e d w i t h a mutagen or s i m i l a r a g e n t and t h e n incorporated enzymically e n t i r e genome, instance,
of
the
larger
DNA d u p l e x ,
complementary
strand
and
1n
For
the presence
4 -hydroxymethyl-4,5
fragment a t a central location.
i r r a d i a t i o n t o form an i n t e r s t r a n d cross-link, s u b s t r a t e f o r ABC e x c i n u c l e a s e
After further
t h e d u p l e x was used
from E.coli,
enabling the
p h o s p h o d i e s t e r b o n d s c l e a v e d i n t h e c o u r s e o f DNA r e p a i r of l e s i o n by t h i s e n z y m e t o b e i d e n t i f i e d . 2 7 5 carcinogen
,8-
t o form photoadducts a t t h e i n t e r n a l thymine
Further l i g a t i o n a f f o r d e d a 40-base p a i r duplex w i t h
the psoralen-T
as a
or even an
the modification.
d(TCGTAGCT) was p r e p a r e d a n d i r r a d i a t e d
trimethylpsoralen, base.274
into a
t o s t u d y t h e e f f e c t of
4-aminobiphenyl,
tetradeoxynucleotide,
has
attached
to
the
I n a s i m i l a r way, t h e C-8
of
guanine
in
a
b e e n l i g a t e d i n t o a c o m p l e t e M13 mp 1 0
genome f o r s t u d i e s i n s i t e - s p e c i f i c r n u t a g e n e s i s . 276
Some p r o d u c t s o f r e a c t i o n o f m i t o m y c i n C w i . t h t h e g u a n i n e bases i n polynucleotides
have been
identified.
In anaerobic
c o n d i t i o n s i n t h e p r e s e n c e of a c h e m i c a l o r b i o c h e m i c a l r e d u c t a n t , mitomycin C i s a c t i v a t e d a n d a t t a c k e d by
t h e 2-amino
group of
d e o x y g u a n o s i n e r e s i d u e s i n DNA w i t h o p e n i n g o f t h e a z i r i d i n e r i n g , giving ( 1 6 8 ~ ~ ” Under r e d u c t i v e c o n d i t i o n s , a n d p a r t i c u l a r l y when a c t i v a t e d b y s o d i u m d i t h i o n i t e , f u r t h e r r e a c t i o n c a n o c c u r with
poly[ d(G-C)] and
anion
radical
DNA,
affording
a covalent cross-linked
I t is thought t h a t reduction t o t h e semiquinone
adduct (169).278
is
f o l l o w e d by
conjugated iminium system,
loss
of
carbamate to
give
a
w h i c h i s a t t a c k e d by t h e 2 - a m i n o g r o u p
of a n o t h e r 2 ‘ - d e o x y g u a n o s i n e r e s i d u e t o f o r m t h e o b s e r v e d p r o d u c t . I n a c i d i c c o n d i t i o n s a t pH4, a n o t h e r mode o f a c t i v a t i o n o c c u r s , a n d t h e a r r a y of p r o d u c t s o b s e r v e d f r o m t h e r e a c t i o n s o f DNA or ia an d ( G p C ) w i t h m i t o m y c i n C a r e b e s t r a t i o n a l i s e d a s a r i s i n g vi n i t i a l a d d u c t of t y p e ( 1 7 0 ) i n w h i c h a l k y l a t i o n of a g u a n o s i n e r e s i d u e a t N-7 h a s o c c u r r e d f o l l o w i n g p r o t o n a t i o n of t h e a z i r i d i n e ring.279
S u b s e q u e n t l y loss o f
t h e sugar moiety can occur to
l e a v e t h e g u a n i n e a d d u c t ( t h e p r o d u c t o b t a i n e d f r o m DNA) or else
250
Organophosphorus Chemistry
tRNA - C p C p - O y j Adt
JL I
'0
(167)
Me
% N
NH2
Me
(168) R = O C O N H z (169) R - N2-(dGuo1
dRib (1701
NH,
(1 7 2 1
Rib
- 5'- fl (171)
6: Nucleotides and Nucleic Acids
25 1
hydrolysis of the imidazolium ring w i t h attached sugar may occur.
isomerisation o f the
Upon reaction with malonaldehyde, G M P
affords the fluorescent pyrimidopurlnone (1711, and t h e s a m e adduct can be isolated from RNA treated with m a l ~ n a l d e h y d e . ’ ~ ~ Spectroscopic analysis suggests that a d i m e r i c adenine photoproduct
formed in
u.v.-irradiated
poly(dA) has the structure (172).281
d(ApA), d(pApA) and
It is thought t o arise a%
hydrolytic cleavage of an azetidine photoproduct initially formed between “7)
and C ( 8 ) of t h e 5‘-adenine base and C(6) and
C(5) of
the 3’-adenine, and is degraded by acid t o form 4,6-diamino-5guanidinopyrimidine.
Direct irradiation of d(TpT) o r t h e (6-4)-
photoproduct o f d(TpT) with high-intensity U.V. light affords a photoproduct
whose
pyrimidinone
(173).282
structure has been assigned a s t h e 1)ewar While
the
(6-4)-photoproduct
was
converted quantitatively t o ( 1 7 3 ) , it w a s formed from d(TpT) in addition t o cyclobutane dimers.
Its significance a s a possible
cause of mutagenesis awaits evaluation.
The Y-irradiation of
DNA i n anoxic solutions or i n HeLa cells leads t o the formation of 5,6-dihydro-2 ‘-deoxythymidine residues ( c f . (74)) with preferential formation
of
the
( E ) d i a s t e r e o i ~ o m e r . ~ ~I~n
contrast,
irradiation of deoxythymidine affords equal quantities of the ( R ) and of
(S)
isomers.
radical
Evidence for the formation in X-irradiated DNA
precursors
of
thymine
glycol,
6-hydroxy-5,6-
dihydrothymine and 5-hydroxymethyluraci 1 has been obtained by a spin-trap method employing 2-methyl-2-nitrosopropane and e.p.r. spectroscopy .284
8-Hydroxy-2 ’-deoxyguanosine has been s h o w n t o
accumulate in the DNA of cells exposed t o the tumour promoter tetradeconylphorbol a c e t a t e .
’
T h i s a g e n t st im u 1 a t e s t h e
formation of superoxide anion radical, which gives rise in turn to hydroxyl radical which is probably the active agent.
8-Hydroxy-
2’-deoxyguanosine i s also f o r m e d i n cellular D N A exposed t o the
carcinogen 4-nitroquinoline-l-oxide,
probably
t h e agency of
4-hydroxyaminoquinol ine- 1-oxide as t h e active intermediate. Exposure
of
DNA
in
a q u e o u s solution287
or
in h u m a n
cell
cultures288 t o Y -irradiation resulted i n t h e formation of 8,5’-
252
Organophosphorus Chemist?
cyclo-2 -deoxyquanosine residucs (174). ratio of
5 (R)
:
5
( S )
In c e l l
diastereoisomers
culture the
formed was
1:3,
the
stereochemistry being assigned in the nucleosidic- products of the degraded D N A using ' H
n.m.r.
hydrogen atom from C - 5 irradiation
1s
It is thought that abstraction of a
by a hydroxyl radical generated by Y -
followed by formation of a C ( 5 ) - C ( 8 ) covalent bond
and oxidation of the resulting N-7-centred radical.
in addition
to the foregoing, a considerable number of free-radical-induced base-derived species in D N A have been detected and characterised following exposure of D N A to ionising radiation in nitrous-oxidesaturated s o 1 u t i o n , h y d r o 1 y s i s , t r i m e t hy 1 s 1 1 y 1 a t ion of t h e
products, a n d a n a l y s i s u s i n g g . 1 . c . - m . s .
with
selected-ion
monitoring.*'' 5.4
-
Sequencing and Cleavage Studies
Two n e w reviews of D N A
sequencing a r e in s o m e sense complementary, the one dealing w i t h the basics of end-labelling and cleavage,290 and the other more with strategy.lgl
Now that 1984 has c o m e and gone it should c o m e
as n o surprise that the Japanese are proposing t o commission a n automated
super-sequencer
million bases a day.292
and S a n g e r s
next year, capable of sequencing a
It will use a radiolabelling strategy,
dideoxy termination
technique.
With
such
technology available, the notion of sequencing the entire human genome no longer seems so far-fetched. The mechanism of DNA strand-breakage by piperidine at N-7alkylated guanine sites as used in the original version of MaxamGilbert sequencing has been investigated, the authors concluding that
their
observations supported
proposed by Maxam and Gilbert.293
the
mechanism
originally
Alkaline hydrolysis of the
y-
alkylated guanine affords the formamidopyrimidine (175), and opening of t h e sugar ring with displacement of the base residue then generates (176).
Piperidine-catalysed 6-elimination then
expels 5'- and 3'-phosphate
termini,
leaving (177).
alkali effected the ring-opening t o give ( 1 7 5 1 ,
Aqueous
but did not break
the p h o s p h o d i e s t e r b a c k b o n e , a n d w h i l e N - m e t h y l p i p e r i d i n e
6: Nucleotides and Nucleic Acids
253
y o
0
0 II
HO*/ C H N
II
--%-" 7irpal 0
-O
- O - ~ - o y -0 I
0
I
I
0-P-0-
O=P-OO-
O%.
O 2
I
I
(175)
( 176)
HO OH
T
H
H,C
O
I
= C-
1 CH=CH -CH=N
(177)
I
0
"NF s -0 - IIP - 0 ( 17- mcr- 5' 1 I
0
-0
(178)
H
I
d R i b- 5'-
ppp
0 11
(179)
0 II
HO
0 =p-o-
I
OR'
o=p-oI OR'
O=P-OO-
I
'3
254
Organc~phosphorusChemislry
catalyzed
strand
bieakaqe
dpurinic
a t
sites,
could
i t
not
s u b s t i t u t e for p i p e r i d i n e i n forming ( 1 7 6 ) .
An
improved
protocol
has
been
given
one-1 a n e
the'
for
s e q u e n c ? a n d l y s i s 2 Y 4 of oligodeoxyrihonucleotidcs r e p o r t c 3 d l a y t year.25
I n a v a r i a n t o f t h e d i d e o x y s e q u e n c i n c 7 t e c h n i q u e , the'
duplex DNA t o b e s e q u e n c e d l e a v e a 3 -0vcrhancj d
15
u i t
w i t h a r e s t r i c t i o n cnLynir’ t o
w h i c h i s e x t e n d e d w i t h ‘rDTase a n d dATP t o a d d ‘rhe DNA i s t h e n
s h o r t poly(dA)
cut
with
a
%ccond
r e s t r i c t i o n e n z y m e t o e n s u r e t h a t 5 e q u e n c i n g o c c u r s f r o m o n e vntl T h e s e q u e n c i n g r e a c t i o n is t h e n p r i m e d w i t h a n o l i g o ( d ‘ r )
only. primer
3 -end
which has a t its
to t h e overhang generated
by
d(T16TCGA) f o r _ P _s _t I - g e n e r a t e d performed i n t h e usual enzymatically
way.
generated
a base pair
anchor
complemcntary
t h e f i r s t restrict ion
-
(t,.y.
enzyme'
sites),and dideoxy sequencing is Another
primers
for
improved s t r a t a g e m employs consecutive
dideoxy
DNA
t e r m i n a t o r s e q u e n c i n g : a f t e r u s e o f a u n i v e r s a l p r i m e r t o r on(. r o u n d of
it i s synchronously extended a t
sequenciny,
using Klenow f r a g m e n t t o a p o i n t
d
known r a t f .
d o w n s t r e a m of
immediately
a
r e s t r i c t i o n s i t e p r e s e l e c t e d f r o m t h e s e q u e n c e e s t a b l i s h e d i n thc, i n i t i a l r o u n d of s e q u e n c i n g . 2 9 6 enzyme
then generates short primers
u s e i n t h e n e x t r o u n d of can
Cleavage w i t h the r e s t r i c t i o n
leap-frog
along a
l o n g t r a c t o f DNA.
e l i m i n a t e t h e need f o r subcloning.
s i t e s i n v o l v e s t h e u s e of terminators,*” Minus‘ a n d However,
w i t h homogent,ous
A
Both t h e s e methods
3 -2-methylribonucleotides a s c h a i n
and combines t h e principles of Sanger s also
u t i l i z e s
methylnucleotide-blocked transcription,
tor
m e t h o d of m a p p i n g p r o m o t e r
dideoxy terminator’ techniques it
5 -ends
sequencing, and thus with repetition one
referred
OK
by
as
t h e
a
p r e l u d e
authors
a s
Plus and
sequencing.
DNA
pyrophosphorolysis
t e r m i n i t o
f
of
t o
3
-0-
f u r t h e r
Lock-%tep
transcription.
I n a p r o c e d u r e f o r a u t o m a t e d DNA s e q u e n c i n g w i t h o u t t h e u s e of
radioactivity,
a
17-mer
primer
bearing
a
5’-S-trityl
3-
mercaptopropylphospho t e r m i n u s ( p r e p a r e d u s i n g a r e a g e n t s i m i l a r
255
6: Nucleotides and Nucleic Acids
to ( 1 2 9 ) ) is detritylated with silver nitrate, treated with DTT and condensed with 5-iodoacetamidof luorescein t o give This w a s t h e n used
in
dideoxy
(
178).lY8
sequencing reactivns, the
fluorescent bands in the sequencing gels being excited by laser and
the sequence data read directly into a computer.
'I'he
sensitivity of detection was of the order of attomoles per band. A method
for the direct determination of
the specific
activity of HNA uniformly label led with phosphorus-32 is based on the premise that upon its decay to Sulphur-32, the phosphodicJster bond is broken.299
Analysis of the rate of decay of a full-
length molecule using gel electrophoresis and autoradiography therefore permits the proportion of labelled phosphate residues in the R N A to be determined accurately. In an elegant new method for sequence-specific cleavage of single
stranded
DNA
to
complementarily-addressed
nucleotide
resolution
using
a
reaqent, 5 - [ [ (3-methy1thio)propionyll
aminoj-trans-1-propenyl1dUTP ( 1 7 9 ) has been prepared from 5 - ( 3 aminoallyl )dUTP and t h e NHS ester of 3-methylthiopropionic acid, and incorporated into DNA (opposite a single adenine base in a 3 4 mer
template) using Klenow fragment and a suitable primer.300
Upon treatment of the duplex with cyanogen bromide, work-up using piperidine in Maxam-Gilbert cleavage conditions, and analysis b y gel electrophoresis, t h e original template strand w a s found to have been cleaved regiospecifically at a guanine base residue (one of a run of four) t w o base-pairs to t h e 5'-side of the analogue, the efficiency of complementary strand cleavage being 11%.
The
products f o r m e d w e r e consistent with a mechanism in which the sulphonium species formed using cyanogen bromide alkylates the guanine residue at N-7 with consequent depurination. Site-directed cleavage of RNA has been effected
the use
of complementary chimaeric oligonucleotides, containing blocks of 2 '-deoxyribonucl eot ides a n d 2 '-9- m e t h y 1 r i b o n u c 1 e o t d e s
syn-
thesized using a solid-phase phosphoramidite method, and ribo-
256
Organophosphorus Chemistry
nuclease H.
For instance, when
hybridized with resulted
5 - "PIpACUUACCUG,
mainly
in
cleavage
5 -m(C)d(AGGT)m(AAGU)-3 w a s
treatment with ribonucledse H
between
and
U8
Gq
of
the
oligoribonucleotide, and in general cleavage occurs at a position in t h e oligoribonucleotide corresponding to the 5 -end of an
ol igodeoxyr i bonuc 1 eot ide b 1 oc k strand. 301
in
the c o mp 1 erne nt ar y c h i mae r i c
A deoxyribonucleotide tetramer seems to constitute a
sufficiently short tract for recognition by the enzyme.
The
technique has been tested in longer tracts of RNA, and specific cleavage could be obtained in both stem and loop regions, showing that secondary structure does not preclude its a p p l i ~ a t i o n . ~ ~ ' The observations regarding specificity of cleavage are consistent with t h e finding that a tract of RNA joined at its 3 -end t o a tract
of
DNA
and
hybridised
along
the
entire
length
to
complementary DNA is cleaved specifically in the DNA-RNA hybrid region d o w n as far as the phosphodiester bond at the RNA-DNA Junction by
RNase H ( 7 0 ) from yeast.303
The oligonucleotide
d(GTTCGG), a n analogue of the 1$CG loop of tRNA, has been used as a probe together with RNase H to investigate possible interactions of the T$CG loop w i t h 5s ribosomal RNA and its complexes with protein, by monitoring the cleavage sites produced.304
The use
of o l i g o d e o x y r i b o n u c l e o t i d e s complementary t o fragments of the sequences of inter t eron-Y mRNA and prothymos in a with RNase H ,
has permitted
the
mRNA, together
identification for
mapping
purposes o f specific mRNA species in a bulk population of mRNA, without
requiring the prior
clones.305
i s o l a t i o n of
T h e translation of
mRNA
full-length
DNA
in cell-free protein-
synthesizing systems can be arrested by treatment with oligodeoxyribonucleotides complementary to the mRNA sequence together with RNase H. 3 0 6 Using synthetic single-stranded oligonucleotides containing an E2g R I restriction sequence,
it has been s h o w n that the
restriction
single-stranded
endonuclease
cleaves
DNA
at
the
restriction site at a rate comparable to that at which it cledves double-stranded DNA.3o7
The possibility of intermolecular duplex
6: Nucleotides and Nucleic Acids formation
257
e x c l u d e d by
was
immobilising a
3 -end-lahel led
single-
s t r a n d e d o l i q o n u c l e o t l d e o n c e l l u l o s e u s i n g a m e t h o d s i m i l a r to that
described
r e l e a s e of release
above.L41
the label
was
Treatment
350
with
H I
caused
the
f r o m t h e c e l l u l o s e , a n d a l t h o u q h t h v r a t e of
increased
by
the
presence
of
the
complementary
t h e f o r r n a t l o n of d u p l e x s t r u c t u r e is c l e a r l y n o t a n a
sequence,
p r i o r i r e q u i r e m e n t f o r c l e a v a g e b y t h i s e n d o n u ~ l e a s e . ~ ' ~ '1'4 u.v.-endonuclease double-stranded
has been found t o cleave single-strdndcd with
DNA
equal
specificity
f o r
and
pyrimidine
photodimers, p e r m i t t i n q t h e i r p o s i t i o n s t o b e mapped, and a l s o t h e influence of neighbourinq bases on t h e s u s c e p t i b i l i t y to formation of p h o t o d i m e r s t o b e e v a l u a t e d . 3 0 8
Much a t t e n t i o n i s p r e s e n t l y b e i n g f o c u s s e d o n t h e c l e a v a g e of DNA b y c h e m i c a l a g e n t s .
has been reviewed.309 activated
The c h e m i s t r y o f
C l e a v a g e of
iron-bleomycin
a c t i v a t e d bleomycin
poly[d(A-((Sl-2,-3H]UI
)I
with
affords exclusively tri-tiated trans-
3 ( u r a c i l - l '-yl )propenal i n w h i c h t h e t r i t i u m l a b e l i s c o m p l e t e l y retained.310
of
t h e product
synthesized
w h e n p o l y ( d ( A - { ( R ) - [ 2 , - ~ H ] U )]
In contrast,
t h e u r a c i l propenal
obtained
i s u n l a b e l led.
was e s t a b l i s h e d b y
model
compounds.
If
i s used,
The s t e r e o c h e r n i s t r y
comparison
with
unambiguously
is used
poly[d(A-[ 3,-l80]T) ]
i n s t e a d , and t h e 5'-monophosphate t e r m i n i formed on c h a i n cleavage hydrolysed
using
alkaline
phosphatase
and
t h e
resulting
3 1 P n.m.r.,
t h e o x y g e n i s o t o p e is f o u n d
to be retained i n t h e orthophosphate,
i n d i c a t i n g t h a t C(3')-0 bond
o r t h o p h o s p h a t e e x a m i n e d by
cleavage occurs.
When D N A ,
p o l y ( d ( A - T ) ] o r d(CGCGCG) is c l e a v e d
with a c t i v a t e d iron-bleomycin
i n s o l u t i o n s s a t u r a t e d w i t h 1802,
and g l y c o l i c a c i d is r e l e a s e d from t h e 3'-phosphoglycolate formed
on
chain
phosphatase,
breakage
silylated,
and
using
nuclease
analysed
using
P1
and
g.1.c.-m.s.,
f o u n d t o be s i n g l y l a b e l l e d w i t h 180 a t t h e C-1 p o s i t i o n , l a b e l a t C-2.311
A pulse-chase
t h a t t h e atom of o x y g e n - 1 8 a c t i o n of resolved
iron-bleomycin
termini
alkaline
experiment with
it
1602 e s t a b l i s h e d
w a s i n t r o d u c e d as a e r i a l oxygen.
and oxygen
into t w o kinetic events,
i n
cleaving
however
:
is
with no
DNA
has
The be'en
strand scission,
258
Organophosphorus Chemistry
monitored viscometrical ly and
f 1 uorimetrical l y ,
precedes the
release o f base propenals f r o m DNA, indicating that a moderately
stable intermediate must be formed.312 tritium from the ( K ) - [ L * - 3 H ]
In addition, the loss of
position of tritiated I)NA
occurs
concomitantly with strand scission, indicating that t h e base propenal precursor retains the bond between the sugar remnant and the 3 ’-phosphate.
A1 1 these observations are accommodated
postulated mechanism
(
Scheme 3 ) .
the
in
Abstraction of hydroqen from
C-4
’
followed by reaction with aerial oxygen and acquisition of a hydrogen atom yields the 4‘-hydroperoxide (180). A Cricgee-type rearrangement then generates (181) which undergoes stereospecific __ anti-elimination
lost also.
o f t h e phosphoglycolate terminus, with H R being
Possibly a specifically-positioned base which is part
of the bleomycin-DNA complex mediates this process.
The long-
lived intermediate is postulated to be (182), breaking down slowly to give the base propenal (183) and a 5’-phosphate terminus.
It
is w o r t h n o t i n g t h a t C r i e g e e - t y p e r e a r r a n g e m e n t o f a 4 ’ -
hydroperoxy nucleoside has been shown to afford stereospecifically the trans base propenal, in support o f this mechanism.313 .alkali-labile product
An
which accompanies the release of cytosine
during t h e degradation by iron-bleomycin of d(CGCGCG) has been isolated, reduced w i t h borohydride, and degraded w i t h nucleases
and alkaline phosphatase to give p e n t a n e - l , 2 , 3 , 5 - t r ? t r a 0 1 . ~ ~ ~ The products observed support tne proposed alternative pathway of degradation by bleomycin 4‘
:
abstraction of a hydrogen atom from C -
leads instead to the 2’-deoxy-4’-hydroxycytidine species (184)
which loses the base t o give t h e alkali-labile product (185).
A
study of the degradation of d(CGCT3A3GCG) by iron-bleomycin in the presence of reducing agents s u c h a s ascorbic acid has s h o w n that under these conditions, bleomycin acts catalytically to cleave the 0 1 i g o m e r . ~ ~ W~h i l e t h e s p e c i f i c i t y o f c l e a v a g e f o r d ( G p C ) sequences was maintained, modification of the bleomycin structure caused
changes
in
positional
selectivity
in
the
duplex.
Metalloporphyrins linked t o intercalating moieties (acridine, 9 -
amino-7-methylimidazo[4,5-f I q u i n ~ l i n e , ~ o~ r~
2
-am i no-6 -
methyldipyrido[ 1,2-a:3 ‘ , 2 , - d ] i m i d a z ~ l e ) have ~ ~ ~ been synthesized
6: Nucleotides and Nucleic Acids
259
0
0
I
/
-' 0
II RO-P-0
o=p-o-
I
0 II
OR' (18L) +HZO
t
0
0
- H20
I
O=P-OO-
I
o=p-oI
(185)
I
OR
OR
0
4
0
II
: It
Ro--0- O
l
e
o
A 2
Ro
0
-O
t
-
7
.
RO-
H
I
-0
+
( 1 88)
I
II
P-OH
o=p-o-
I
OR' (1871
R'O
I -o-p=o
(190) (Complex from R ~ - [ ~ - ' ' O ]A D P )
(189)
0
HO
cm
(1911
llo
im
(192)
260 as
Organophosphorus Chemisrp functional
a n a l o g u e s of
species g a v e u n i f o r m with
apparent
pro penal^,^^^
base-
formationof o t h e r s
The
5’-terminal
of
DNA,
no
base
sequence
a n d 3 ‘-non-phosphatt.
of
activity
1 ,lC>-phenanthroline-copper
hydrogen peroxide i n d i c a t e t h a t
t o 3 -phosphornonoester
methylene-2g-furanone t h a t a b s t r a c t i o n of
lon
Studies on t h e oxidation
j1
p ~ l y [ d ( A - T ) ] ~a~n ’d d ( C G C G A A T T C G C G ) 3 2 0 b y
precursor
but
s i m i l a r
these
of
l7
nuclease
presence of
s o m e
cleavaqe
phosphates
showed
w i t h 5‘-phosphate
[ (OP2)Cu+] h a s a l s o b e e n rc’viewed.
of
While
sequence-neutral
reportedly
specificity to bleomycin, termini produced.
bleornycin.
and
termini
t h i s agent
i n
the
a
fol lowing cleavage,
i s f o r m e d , d n d t h a t 5-
(186) is an end-product.
It
is be1 ieved
w h i c h is l o c a t e d
a h y d r o g e n a t o m f r o m C-1
in
t h e m i n o r g r o o v e o f D N A , f o l l o w e d b y o x i d a t i o n w i t h 1 0 5 s of b d % ( ’ generates
(1871, a f t e r
elimination
affords
phosphomonoester pathway, leading
3 -phosphate
t h e
precursor
to
although an a l t e r n a t i v e pathway v
to
phosphoglycolate
groove
and
intact
termini
by 6 thc
-
3 -
may
s oxidation a l s o
c)ccur.
a t C-4 Since
is observed f o r (OP)2Cu+, it must bind i n t h e
recognize
conformational
of
variability.
DNA c l e a v a g e by
c e l l s appear generally
in vitro studies, -__
(186) and
seems t o b e t h e p r i n c i p a l
This
c h a r a c t e r i s t i c s and mechanism in
loss o f
the
terminus.
sequence-specificity minor
which
(1881,
similar
with the exception that
a l d e h y d e t e r m i n i a n d more 5 - p h o s p h a t e
The
neocarLinostatin
to those observed i n fewer
nucleoside
5 -
t e r m i n i a r e formed i n vivo
than i n vitro.321
Chiral
recognition,
l i k e sequence recognition,
a f t e r p r o p e r t y i n DNA c l e a v a g e a g e n t s , 1 , 1 0 - p h e n a n t h r o l i n e ) c o b a 1t ( I I1 ) agent,
1s
a
and
A-tris(4,7-diphenyl-
p h ot oa ct
i
v a b 1e
c 1e a v a g e
s h o w i n g s p e c i f i c c l e a v a g e of D N A a t s i t e s w h i c h a r e t h o u g h t
to have a left-hand h e l i c a l conformation.322 genome o f appear,
is a sought-
simian virus (SV)40,
intriguingly,
c o n t r o l of
When a p p l i e d t o t h e
t h e s e g m e n t s c l e a v e d by t h i s a g e n t
t o c o r r e l a t e w i t h r e g i o n s i m p o r t a n t for t h e
gene expression.
Bi s(n e t r o p s i n ) s u c c i n a m i d e c o n ] u q a t e d
6: Nudeorides and Nuc.leic Acids
26 1 c - h i r a l r e c o g n i t i o n oj r i y i i t -
w i t h EDTA s h o w 5 s e q u e n c e - s p e c i f i c -
c l e a v e d i n t h e presenctl o f
h a n d e d d o u b l e h c > l i c a l DNA,
which
FeLt
Two a n a l o g u e s , ( L S , j S ) - a n d ( L R , j H ) -
i o n s , o x y g e n a n d DTT.
15
dihydroxybis(netropsin)succinamide h a v e b e e n c o n s t r u c t e d , a n d wt1c.n c o v a l e n t l y b o n d e d t o EDTA a t o n e e n d t h e y b i n d t o d n d c l e a v e t h e , same
cumulative
A-T
base
r u n s as
pair
the
structural
c-ompound,
p a r t i c u l a r l y f o r the
although t h e binding efficiency is decreased, ( ~ ~ , 3 ~ ) - i s o m e r . ~ X -' R~a y
parent
analysis
of
quinoxaline
a n t i b i o t i c - oligodeoxyribonucleotide c o m p l e x e s h a s ~ h o w nt h a t H o o g s t e e n b a s e p a i r s o c c u r f l a n k i n g t h e p o i n t s of t h e quinoxaline been
bis intercalators,
found t o show
hyperreactivity
diethyl pyrocarbonate,
Hoogsteen
sequencing of
N-7
for Hoogsteen
required It
i n t e r c a l a t i o n by
b a s e p a i r 5 h a v e now
the
to
d u e t o e x p o s u r e of
i n t h e --conformation handed he1 ices.jL4 pyrocarbonate
and t h e s e
reagent
t h e p u r ~ n eb a s e s pairing
in
right-
has t h e r e f o r e been suggested t h a t d i e t h y l
may p r o v i d e a s e n s i t i v e p r o b e f o r t h e p r e s e n c e o f
pairs
i n
solution.
Tracts
of
alternating
d(A-T),
-
sequence c o n t i g u o u s t o DNA o f e f f e c t i v e l y random s e q u e n c e h a v e been
found
to
be
to
hyperreactive
osmium
tetroxide,
anothpr
reagent which can b e used
f o r sequencing, and a l s o p r e f e r e n t i a l l y
cleaved
nuclease
by
micrococcal
alternating tract.325
uniformly
throughout
t h e
The a l t e r n a t i n g sequence i s thought t o
ddopt a c h a r a c t e r i s t i c c o n f o r m a t i o n s u b l e c t t o e a s y t o r s i o n a l deformation.
'Footprinting use
of
h a s become a widely-used
e s t a b l i s h e d
r e a g e n t s
investigations is not
considered
f o r
technique, and t h e
r o u t i n e
f o o t p r i n t i n g
i n t h i s report.
The u s e ot
hydroxyl r a d i c a l s , generated from hydrogen peroxide using a n ironEDTA c o m p l e x i n t h e p r e s e n c e o f s o d i u m a s c o r b a t e ,
for footprinting
r e p r e s e n t s a n i n n o v a t i o n w h i c h may f i n d w i d e a p p l i c a t i o n . 3 1 6
DNA
was c l e a v e d w i t h v i r t u a l l y n o s e q u e n c e d e p e n d e n c e , a n d h y d r o x y l radical
footprintlng
f o o t p r i n t i n g methods.
revealed
or
Co3+
not
detected
Cationic metalloporphyrins
much a t t e n t i o n a s DNA-cleavage Fe3+,
contacts
complexes
of
agents,
by
are a t t r a c t i n g
and incubatlon of
meno-tetrakis
other
Mn3+,
(N-methyl-4-
262
Organophosphorus Chemistp
pyridiniumyl Iporphine w i t h D N A i n t h e p r e s e n c e of a.,corhat(>, superoxide, o r iodosobenzene results in strand cleavage at s l t e s The resultant cleavage. patterns
of minimum structure (AT)3.327
on sequencinq gels are asymmetric, indicating that binding and strand scission are highly directional.
Methylpyrroporphin X X I
ethyl ester has been linked % a 6-aminohexan-1-01 spacer to the 3 -terminus of d(Tp), or t o the 5-terminus of d [ p ( T ~ ) ~in ] the
final stages of phosphotriester synthesis
:
the latter compound
also bore an acridine ring linked at the 3 -terminus.3L*
In the
presence of iron ions, oxygen and a reducing agent, both compounds cleaved poly(dA) and poly(A),
but not poly(dT),
the reaction
yields being higher at lower temperatures where the duplexes were stable.
T h e acridine derivative w a s less efficient at low
temperature but maintained its ability t o cleave D N A to high temperatures, d u e t o extra stabilization by intercalation. N , !
The
-dimethyl-2,7-diazapyrenium cation has been reported to effect
efficient
single-strand nicking
double-stranded DNA
of
upon
irradiation with visible light in the presence of oxygen. 3 L 9 A
transcription
assay
giving
data
on
the
sequence
specificity a n d k i n e t i c s of d r u g - D N A i n t e r a c t i o n s o f f e r s a valuable alternative to footprinting : blockage of transcription occurs when a drug is bound t o its target site, and thus the rate
of chain g r o w t h past the binding
site measures the rate of
dissociation of the drug from the site.330
Electrophoresis of
the RNA transcripts on denaturing polyacrylamide gels thus reveals the sites of drug binding and the dissociation rate. The
self-splicing
reaction
RNA(pre-rRNA) of Tetrahymena have attention.
of
the
i m m a t u r e ribosomal
continued t o c o m m a n d
much
In this reaction guanosine or a guanosine nucleotide
attacks a p h o s p h o d i e s t e r b o n d a t t h e 3’-end o f t h e 5 ’ - e x o n ( sequence
- - CpUpCpUpCpUpA - - - ) cleaving t h e UpA bond (the
5’-
splice site) t o leave a 3’-terminal uridine and the guanosine
cofactor attached to the 5‘-terminus of a n intervening sequence (IVS)-3 ’-exon intermediate.
The 3’-OH
of the 3‘-terminal uridine
6: Nucleotides and Nucleic Acids
263
then performs transesterification at a G p u sequence (the 3 -splice site) to join the 5 5 -(p)GpA
-
-
-
and 3 -cxons and leave the I V S with sequence
- G414-3
-
.
L -Deoxyguanosine
and
,3
dideoxyyuanosinr klave been s h o w n t o inhibit competitively the self-splicing reactiun,
the kinetic data indicatiny
that the
ribose hydroxy-groups a r e necessary for optima 1 bindiny to the i s necessary
pre-rKNA, and that tht. 2 - O H
for thp reaction.'jl
Both nucleosides ctlso suppressed reactivity at the 3 -5plice site
which i s v e r y l a b i l e t o s i t e - s p e c i f i c h y d r o l y s i s . 3 3 2 previously postulated
~ ' h r x
IVS-3 -exon intermediate has been irolated
and characteriLed, and found to be competent to undergo the second stage of the splicing reaction.332t333. of
the
The hlgh susceptibility
3 -splice site t o hydrolysis permits
molecule
c o n t a i ~ i n g the
terminating
at
a
5 -exon
guanosine
still
isolation of
linked
residue.
to
the
'This c a n
IVS,
undergo
cyclisation at the normal 5 -splice site, as well as at the normal self-cyclisation site of the IVS sequence, which is a l s o located
at t h e end of a n o l i g o ( p y r i r n i d i n e ) s e q u e n c e .
It has thus b e e n
proposed that both reactions occur at the s a m e active site which binds by hybridization the oligo(pyrimidine) sequence
for attack
by the 3 -terminal quanosine or an added guanosine n u c l ~ o t i d e . ~ ~ ~ Oxidation of the 3 -terminal quanosine with periodate or tht. addition of periodate-oxidised guanosine both promote the cleavage reaction at the
5 - s p l i c e site, but
without cyclisation,
or
covalent attachment of the oxidised guanosine to the I V S . ~ ~ The ~ cis-diol of an intact ribose moiety is thus not essential for the __ catalysis of
hydrolysis,
although
t h e i n t e r v e n t i o n of
an
intermediate s u c h a s ( 1 8 9 ) c o u l d not b e e x c l u d e d , a n d w o u l d account for t h e observations made. splice
site
is
recognized
T h e proposal that the 5 -
base-pairing
of
the
oligo
(pyrimidine) sequence immediately upstream of t h e site t o a n
internal 5 -exon-binding site in the I V S i s supported by the finding that
if
the pre-mRNA is incubated w i t h C p U o r pCpU (but
not other pNpU species), t h e RNA
is
cleaved precisely at the 3
-
splice s i t e with attachment of the dinucleotide at the 5 -end of the 3 -exon.3J5
T h e dinucleotide, having the sequence o f the
264
Organophosphorus Chemistry
last t w o residues of the 5 -exon, binds and is ligated in its place.
Moreover, a truncated IVS lacking the first 21 residues
and also the last 5 of its normal preautocyclizatlon sequence h a s been shown to catalyse the reaction pCpUpN + G
pCpU + G p N
reversibly ( N
=
A,C,U,G).336
This represents a mini-exon
ligation r e a c t i o n , w i t h p C p U a c t i n g a s t h e 5 ’ - e x o n a n d t h e phosphodiester bond o f GpN as the 3 - s p l i c e site.
T h e reverse
process represents the first stage of the self-spl icing reaction. Comparable reactivity has been
demonstrated
in a n even more
heavily truncated core of the I V S , 3 3 7 and it will be interesting to see what the catalytically competent minimum looks like!
The
L-19 IVS (missing the first 19 residues of the 5‘-end of the IVS), previously found t o have poly(C) polymerase activity a s reported last year,25 performs a similar reaction t o the above, cleaving
HNA at sequences resembling the 5’-splice site o f pre-rRNA (i.e. after ... CpUpCpU) w i t h
t h e a d d i t i o n of
quanosine
residue
nucleotide
generated.338
to
the
a
new
free guanosine or 5’-terminus thus
In t h i s s e n s e , it a c t s like a restriction
endonuclease for RNA and, moreover, site-specific mutagenesis of the ‘guide sequence’ (which binds the recognition sequence) can be performed t o alter the restriction site specificity predictably.
When L-19 IVS is incubated with oligocytidylate bearing a 3’-
terminal phosphate, it becomes bound to the ’guide sequence’ with transfer of the phosphoryl group to the terminal quanosine of the IVS, the pH-dependence indicating greatest activity with the monoanion of t h e p h o s p h a t e m ~ n o e s t e r . ~ ~ ’T h i s p h o s p h o r y l transfer
is
reversible.
In
the
presence
of
other
oligo(pyrimidines) such a s UpCpU which can bind t o t h e guide sequence, phosphoryl transfer can occur t o the 3‘-OH group, and thus the L - 1 9
I V S can act a s a phosphotransferase, transferring
the 3*-terminal phosphate from oligo(cytidy1ate) t o U p C p U with multiple turnover.
At acidic pH ( 4 - 5 ) t h e phosphorylated L-19
IVS undergoes s l o w hydrolysis to give orthophosphate, thus acting
6: Nucleotides and Nucleic Acids
265
as a n a c i d phosphatase.
What more c a n i t d o ? !
p o l y m e r a s e a c t i v i t y o f L-19 the
possibility
of
a
The o b s e r v e d RNA
IVS h a s p r o m o t e d C e c h t o s p e c u l a t e o n
'ribozyme'
with
similar
activlty
but
dependent o n a n e x t e r n a l t e m p l a t e and a b l e t o i n c o r p o r a t e a l l f o u r ribonucleotides,
and possibly a b l e t o s e l f - r e p l i c a t e ,
have b e e n i m p o r t a n t
in prebiotic
which could
nucleic acid replication.340
Another e n t e r t a i n i n g speculation has argued t h a t hot-water s p r i n g s would
present
the
m o s t
likely
scenario
for
such
prebiotic
e v e n t s . 341
The
of
splicing
involves
nuclear
the formation of
a t which 2'-5'-,
,
3,-5'-
mRNA
precursors
in
eukaryotes
' l a r i a t RNA', p o s s e s s i n g a branch s i t e phosphodiester bonds are a l l
and 5'-3.-
a t t a c h e d t o t h e same n u c l e o s i d e
residue,
a n d i s m e d i a t e d by
a
multicomponent c o m p l e x w h i c h h a s b e e n t e r m e d a ' s p l i c e o s o m e ' . 3 4 2 Studies of
the
in vitro splicing
a r a b b i t g l o b i n pre-mRNA
of
intron w i t h base changes a t t h e normal
branch-point
adenosine
n u c l e o t i d e h a v e shown t h a t w h i l e a l l f o u r n u c l e o t i d e s c a n b e used
as b r a n c h a c c e p t o r s , to
uridine
and
adenosine and c y t i d i n e residues a r e preferred
g ~ a n o s i n e . ~ R ~ e~p l a c e m e n t
adenosine
of
by
guanosine or u r i d i n e c a n r e s u l t i n a d i f f e r e n t a d e n o s i n e r e s i d u e O n l y when a d e n o s i n e o r c y t i d i n e
being used a s branch a c c e p t o r .
formed t h e b r a n c h p o i n t s c o u l d t h e s e c o n d s p l i c i n g s t e p ( r e l e a s e
of
t h e 3'-exon
from
the tail
of
the
l a r i a t ) occur.
o b s e r v a t i o n s h a v e b e e n m a d e i n c o m p a r a b l e s t u d i e s of
Similar
the splicing
of a d e n o v i r u s pre-mRNA. 3 4 4 A self-splicing
i n t r o n of p r o k a r y o t i c o r i g i n h a s been found
i n t h e p r i m a r y t r a n s c r i p t f r o m t h e t h y m i d y l a t e s y n t h e t a s e g e n e of bacteriophage
T4,
and
shows
resemblance t o i n t r o n s o f However,
strong
structural
t h e Tetrahymena t y p e
and (
functional
-Class I
t h e f i n a l c y c l i s a t i o n . p r o c e s s of t h e i n t r o n i n v o l v e s loss
o f GpU f r o m t h e 5 , - e n d ,
r a t h e r t h a n a 15-mer as w i t h Tetrahymena.
I n a d i f f e r e n t t y p e of
cleavage and
ligation process,
RNA
c o m p l e m e n t a r y t o s a t e l l i t e RNA o f t o b a c c o r i n g s p o t v i r u s h a s b e e n found
t o
cleave
autolytically
at
a
specific
-ApG-
sequence,
Organophosphorus Chemistry
266 apparently
to
generate
f r a g m e n t s with
a d e n o s i n e - 2 , 3 -cycl ic
phosphate and 5 -quanosine termini, which after purit ication can 1 igate spontant,ously to reyenerate the A p G phosphodiester bond.
Another
RNA
molecule
with
catalytic actlvity
hds
tlceen
reported : 2.5s RNA, t h e nucleic a c i d c o m p o n e n t o f 1,4-n-ylucan branching e n z y m e f r o m rabbit m u s c l e , cdtalyses the branching reaction in the absence of the protein component.347
Partial
digestion w i t h pancreatic K N a s e afforded a large guanine-rich double-stranded
f ra g m e n t
which
reaction, albeit at a much
al s o
catalysed
s l o w e r rate.
component of RNase P from Bacillus subti% found markedly different f r o m that
the
branchinq
T h e catalytic H N A has been s e q u e n c d and
of RNase
P f r o m E.5011,
although phylogenetically consistent folding for portions of both molecules cculd be derived. 348 On incubation of 32P-label led oligo(dA) w i t h E . c o l & type I DNA topoisomerase, the enzyme becomes covalently linked sv
a 5
-
phosphate t o a n oliyo(dA) s e g m e n t , and t h e labelled sc.yment c a n then be transferred t o the 3 -OH t e r m i n u s of a linear o r nicked duplex DNA molecule subsequently added to the reaction mixturf a 3 the phosphodiester bond i s re-made.349
T h i s suggest5 that the
covalent p r o t e i n - D N A c o m p l e x o b s e r v e d p r e v i o u s l y i s a t r u e intermediate i n the topoisomerisation reaction. 5.5
Metal Complexes -
Observation
of
coupling b e t w e e n the Mn2+ ion and " O a t o m s
the superhyperfine bound t o phosphorus a s
a means of identifying oxygen ligands in metal-nucleotide-protein complexes has been r e v i e w e d 3 5 C dnd used t o d e m o n s t r a t e that in three Ha-L"-encoded
p21 proteins, bound M n 2 + ions a r e directly
coordinated t o the PB oxygen a t o m s of bound [ 6 - 1 7 0 4 ] G D P but not t o
the P a oxygen a t o m s of ( -P R 1 or ( S P ) - [ a - 1 7 0 ] G C P or la-170~]GDP.3s1 A similar study using pyruvate kinase in the presence of oxalate as a s u r r o g a t e f o r pyruvate
indicated that bound M n 2 + w a s
coordinated t o P y - o x y g e n o f A T P , b u t n c t t o Pa atorrs. 352
cr Pa
oxygen
6: Nudeorides and Nucleic Acids The
267
,P - b i d e n t d t e t e t r a a q u o r h o d l u m
11
( 1 1I ) c o m p l e x e 5 o f Rill'
and (Rp)-[~-180]ADP have been prepared as exchange-inc,rt of
t h e corresponding
separated
by
Mg2+ c o i i i p l e x e s ,
reverse-phase
h.p.l.c.,
ana1oyuc.s
t h e screw s e n s r i 5 c ) m ~ r s and
the
s t r r ec c . h c . m i 5 t r y
a s s i g n e d o n t h e b a s i s of t h e 1 8 0 - i 5 u t o p i c s h i f t s o f t h e P , - s i g n a l 5 in
the
31P
n-m-r.
k i n a s e bound t h e A
spectra.353
Rrginine
kinase
and
cre'dt
1
nc'
screw s e n s e i ~ o m e r ( 1 9 0 ) more t i g h t l y t h a n t h v
b
isomer, w i t h c o m p a r a b l e b i n d i n g a f f i n i t i e s t o t h o s e s h o w n f o r
t h e c o r r e s p o n d i n g C r ( H 2 0 I 4 A D P s c r e w sense i s o m e r s .
The quenching
o f t h e l u m i n e s c e n c e of E u 3 + b o u n d t o a C a 2 + - b i n d i n g s i t e of
+ Mg'+)-ATPase
of
(Cd"
s a r c o p l a s m i c r e t i c u l u m by t h e s u b s t i t u t i o n - i n e r t
b i d e n t a t e C r ( I I 1 ) - A T P c o m p l e x b o u n d a t t h e ATP h y d r o l y t i c s i t < ' h a s been u s e d t o e s t i m a t e a n upper l i m i t t o t h e distanc-e between t h e
two
metal
formycin-5
ions.354
of t h e plasma
fluorescence complex
The
(111) complexes
terbium
of
ATP
and
- t r i p h o s p h a t e a r e i n e r t t o h y d r o l y s i s b y t h e H+-ATPase
upon
Schizosaccharomyces pmb_e,
membrane of
the
e n h a n c e m e n t of binding
to
t h e
formycin
active
and t h c
triphosphate-Tb( I 11)
site
has
been
used
t o
c h a r a c t e r i z e t h e binding site.355
An i n v e s t i g a t i o n b y F T - 1 . r .
spectroscopy indicates that i n
t h e p r e s e n c e o f Mg2+ i o n s , t h e p h o s p h a t e g r o u p o f GMP a s s u m e s a n
almost g a u c h e - g a u c h e
conformation,
while
t h e hydrated
magnesium
i o n i s c o o r d i n a t e d d i r e c t l y t o N-7 o f t h e base a n d i n d i r e c t l y t o O6
of
t h e base a n d p h o s p h a t e oxygen v i a hydrogen-bonded
molecules.356 that
Co2+
Data f r o m 31P a n d 'H
ions bind
t o AMP
to
spectroscopy suggest
form at
least t w o different
complexes which are i n temperature-dependent there
is direct
coordination
water
n.m.r.
t o N-7
of
equilibrium : i n one, adenine and
indirect
coordination t o phosphate, and i n t h e o t h e r t h i s arrangement is reversed.3s7
A
similar s i t u a t i o n of
sphere cobalt-phosphate complexes,
inner-sphere
and outer-
c o m p l e x a t i o n seems t o e x i s t i n
cobalt-CMP
Vanadocene d i c h l o r i d e ,
an antiturnour agent, i n t e r a c t s
s e l e c t i v e l y w i t h t h e p h o s p h a t e moieties o f n u c l e o t i d e s a s r e v e a l e d by
the
shortening
of
31P
nuclear
relaxatlon
times.358
The
268
Organophosphorus Chemistry
temperature dependence o f the relaxation rates suggest l a b 1 I P outer-sphere complexation.
T h e stability data for complexes of
divalent metal ions with ATP, together with results from 'H n.m.r. and
U.V.
investigations, suggest that t w o types of back-bound
macrochelates a r e formed coordination
and
coordination.359
:
o n e (1911 with inner-sphere N-7-metal
( 1 9 2 ) with
one
outer-sphere N-7-metal
Due to the metal back-binding to the base
residue the stabilities of the [M.ATPI2- complexes are generally greater than those for complexes of the s a m e metal w i t h CTP, UTP or dTTP.
While Mg2+ ions show little tendency to form these N-7
coordinated macrochelates (a small proportion of type (192)), cu2+ ions s h o w a strong tendency t o form macrochelates of type ( 1 91 ) , and Mn2+ ions form a small proportion of each type, the remainder being 'open
chelates.
The extent of macrochelate formation for
divalent metal complexes of 1 ,y6-etheno-ATP is greater than that for the corresponding
[ M.ATPI2-
complexes.360
A
number
of
complexes f o r m e d between divalent metal ions and ATP at pH 3.5 and pH 7 . 2 have been isolated and studied by FT-i.r. spectroscopy and other
methods,
and
it a p p e a r s t h a t m e t a l
exclusively through a , fi and
Y
binding
occurs
-phosphate oxygen a t o m s when N - 1
of
adenine is p r ~ t o n a t e d . ~ In ~ ~ the complexes formed by ADP and ATP
with molybdenum ( V I ) oxoactions in acidic solutions, complexation occurs predominantly through the phosphate groups.362
N.m.r.
spectroscopic investigations of the c o m p l e x formed by M g L t ions with A(5 )p4A suggest that the metal ion coordinates to the phosphates t o stabilise a ring-stacked conformation.363
B-
With
co3+ ions, t w o different bidentate complexes are formed, one coordinating to the B -phosphates t o stabilise the ring stacking and the other to adjacent a - and B-phosphates to destabilise it. Chiral metal complexes which bind stereoselectively to lefthanded
helical
conformations
have
been
reviewed.364
Tris(tetramethylphenanthro1ine) ruthenium ( 1 1 ) has been found t o
bind selectively t o A-form helices (such a s poly(rG).poly(dC) rather than B-form helices (such as poly[ d(G-C)]) with preference for t h e A-enantiomer, and o n irradiation with visible light it
6: Nucleorides and Nucleic Acids
269
s e n s i t i s e s s i n g l e t oxygen t o c l e a v e t h e n u c l e i c acid.365
I t may
t h u s p r o v e v a l u a b l e f o r d e t e c t i n g A-form s e c o n d a r y s t r u c t u r e i n The
DNA.
substitution-inert
t r 1 s ( b 1p y r i d y 1 ) F c ( I I
enantloselectively
a nd
)
tr
1
i n v e r s i o n - l a b i Le
s ( p h e n a n iz h r o 1 i n e ) F e
comp1t.xes (
I 1)
b
i
nd
t o DNA by m a i n l y e l e c t r o s t a t i c a s s o c i a t i o n ,
l e a d i n g t o a n e x c e s s of t h e A-enantiomer
The c o m p l e x e s f o r m e d by
cis-
a s s h o w n by C D . 3 6 6
and trans-dichlorodiammino-
p l a t i n u m ( 1 1 ) (DDP) a n d r e l a t e d c o m p o u n d s w i t h n u c l e o t i d e s h a v e been i n v e s t i g a t e d .
T h e r e a c t i o n s o f AMP, ADP a n d ATP w i t h
cis-
but disagreements are evident
DDP f o l l o w b i p h a s i c
t o t h e mode o f b i n d i n g o f t h e p l a t i n u m t o t h e n u c l e o t i d e s .
as 1t
a p p e a r s t h a t d i m e r i c c o m p l e x e s of g e n e r a l f o r m u l a P t L 2 ( 5 ’ - A M P ) 2
(L = monoamine l i g a n d ) a r e f o r m e d a t n e u t r a l i t y , wit.h c o o r d i n a t i o n of t h e p l a t i n u m a t o m t o N-7 o f t h e a d e n i n e r i n g , a n d r e s t r i c t e d
rotation h a s been observed about t h i s bond, bulky.368
N o
such
restricted
e v e n when L i s n o t
r o t a t i o n is observed
c o r r e s p o n d i n g GMP c o m p o u n d s u n l e s s L i s b u l k y , s u g g e s t e d t h a t t h e s e l e c t i v i t y of have a s t e r i c o r i g i n .
i n
the
and it has been
DDP f o r g u a n i n e r e s i d u e s m a y
I n t h e c o r r e s p o n d i n g ATP c o m p l e x e s , FT-
i . r . d a t a have been i n t e r p r e t e d as i n d i c a t i n g f u r t h e r c o o r d i n a t i o n at
N-1
of
the
purine
ring.361
Others
have
postulated
that
l i g a t i o n b y t h e p h o s p h a t e c h a i n o c c u r s , 3 6 7 b u t pKa a n d o t h e r d a t a have b e e n i n v o k e d t o a r g u e t h a t h y d r o g e n - b o n d i n g t h e aminated ligand and t h e phosphate group, p l a t i n u m d o e s n o t occur.368 platinum by
N-7
occurs between
and t h a t
ligation to
Convincing evidence f o r c h e l a t i o n of
and t h e phosphate group has,
however,
been
o b t a i n e d f o r s o m e m o n o m e r i c c o m p l e x e s o f t h e t y p e P t L 2 ( 5 >-NMP) c o n t a i n i n g IMP o r GMP, b u t t h e i r m o d e o f f o r m a t i o n a n d i n s t a b i l i t y render
t h e i r wider
significance unlikely.369
I n An
v i t r o
c o m p e t i t i o n e x p e r i m e n t s , D N A r e a c t s more r a p i d l y w i t h DDP t h a n
does A ( 5 ’ ) p 4 A , a n d t h e c o m p l e x e s f o r m e d a r e s t a b l e , a n d d o n o t exchange
platinum.370
However,
the platinum
complex
of
the
proposed p l e i o t y p i c a c t i v a t o r i s s t a b l e t o h y d r o l y s i s , and c o u l d accumulate i n cells during cancer chemotherapy w i t h e - D D P .
270
Organophosphorus Chemistry Trans-DDP reacts with d(GpTpG) in a similar fashion to c s ___
DDP with the platinum atom becoming ligated by N-7 o f both guanine basc>s.371
Since thc-.~trans-isomer has little a n t i n ~ o p l a s t i c _ _ _ _
activity, the crucial lesions formed in DNA a r e thought t o be those in which the platinum is coordinated to contiguous G - G o r A G bases.
Cis-DDP has
resulting
G ( 4 ) - G ( 51 c h e l a t e
sequence.j7*
been reacted
with d(ECGGATCGC), and the
a n n e a led
M e l t i n g and 'H
n.rn.r.
to
the
complementary
studies indicated that
platination h a d destabilized the duplex, introducing a kink in the structure.
T h e sequence d(TCTAGGCCTTCT) has been pl atinated
similarly, phosphorylated with polynucleotide kinase, and ligated into gapped heteroduplex DNA to produce site-specif ic platination in the M13 genome.373
The platinated duplex was not cleaved by a
restriction e n z y m e (St!
I ) which normally recognizes the non-
platinated guanines as part of its restriction sequence. Investigation of the reaction of and c&-[C12enlPt(lI DNA
Cis- and
trans-DDP,3 7 4 , 3 7 5
)376 (which reacts similarly to cis-DDP) with
indicate that a transient monofunctional platinum-DNA adduct
is formed initially, and the kinetics suggest that m o r e than o n e primary adduct is formed.374 trapped with thiourea.376
The monofunctional adducts can be Otherwise, they form bifunctional
adducts, the second chlorine atom being lost by
hydrolysis374r375
before t h e crosslinking reaction ( w h i c h c a n a l s o be to exogenous guanosine375 o r i n t e r c a l a t i n g a g e n t s 3 7 7 ) t a k e s place. frequency of
occurrence of
G-G-adducts
The
is inconsistent with
reaction by random initial reaction a t any guanine base followed by c r o s s l i n k i n g t o t h e n e i g h b o u r i n g b a s e , a n d i t h a s b e e n suggested that the adducts finally observed result from t h e drug 'walking' along t h e double helix.376
_Cis_ and trans-DDP depart
from a c o m m o n reaction path after formation of the monodentate
adduct. 3 7 4
Evidence has been obtained, using a f ootpr inting
approach, that the gold antitumour compound the N-7 position of guanine bases in DNA.378
Et3PAuBr3 binds to
6: Nuclrotides and Nucleic Acids
6
27 1
Analytical Techniques and Physical Methods The r e s o l u t i o n of n u c l e i c a c i d s by
reviewed. 379
h.p.1.c.
has been
High-performance charge transfer chromatography,
employing acriflavin o r proflavin coupled by a
linker to the
silica stationary phase, i s reported t o give good separation of oligonucleotides up to 17 residues long,380 and the use of reverse phase
ion
pair
chromatography,
tetrabutylammonium
particularly
using
phosphate as ion-pair reagent, has been found
superior t o conventional reverse-phase h.p.1.c.
for separating
01 igodeoxyribonucleotides. 381 31P N.m.r. spectroscopic studies of mononucleotides have included determination of the pKa value of l-(3-phospho-a-D-
ribofuranosyl)-5,6-dimethylbenzimidazole
from the nucleotide group
cf c o b a l a m i n ~ ,investigation ~~~ of the effects of monovalent cations o n t h e s e l f - a s s o c i a t i o n o f C M P a n d G M P i n a q u e o u s solution,383
and
the
measurement
of
rate constants
thermodynamic p a r a m e t e r s f o r t h e f o r m a t i o n complexes with p21 and adenylate kinase.384 31P n.m.r.
and
of nucleotidic Comparison of the
saturation transfer technique w i t h a radioisotope
tracer method for the measurements of ATP-phosphocreatine exchange catalysed by creatine kinase has s h o w n that both methods give similar
results except
phosphocreatine may change
-
31P
:
at
low
temperatures or
at
high
creatine ratios, when the rate-determining step
N.m.r.
data
for
deoxyribonucleoside phosphates dimenzional n.m.r.
protected have
been
deoxycytidylyl-
tabulated. 3 8 6
Two-
methods for determining nucleic acid structure
have b e e n d e s c r i b e d 3 8 7 a n d a p p l i e d t o s e l f - c o m p l e m e n t a r y o l i c ~ o d e o x y r i b o n u c l e o t i d e sand ~ ~ ~ poly [ d(G-m5C) 1 . 3 8 9
of
n.m.r.
and
d(GGAATTCC)
U.V.
with
Comparison
data for the self-complementary the
5’-end,
the
3’-end, and
sequence
both
ends
phosphorylated s h o w s that while 3 ’-phosphorylation has little
272
Organophosphorus Chemistry
effect, 5 -phosphorylation cases a small change in phc3sphodiestc.r torsion a n g l e s t o i m p r o v e b a s e formation.390
31P N.m.r.
has
stacking and also
been
favour hellx
used
monitor
to
conformational changes in the RNA fragment r(CGm5CGCG),391 and in DNA during the B-to-A transition,392 upon base protonatlon,393 upon the binding
of cationlc porphyrins,394 and
upon
inter-
calation by p r o p i d i u n ~ . ~ The ~ ~ binding of actlnomycin D to GC sequences i n d ( T G C G C A ) 3 9 6 a n d of a c l a c i n o m y c i n A a t t h e T A sequence in d(CCTAGG)397 have also been investigated.
While
studies of nucleotide compartmentation and metabolism in whole tissue are omitted in this report, a review covering the use of 3 1 p n.m.r. spectroscopy in the understanding of disease"*
demands
mention. Fast a t o m bombardment (FAB)-m.s. in the negative ion mode has been used for t h e characterization and sequencing of short oligonucleotides399 although it has been stated that n o direct way exists o f determining the direction of a small oligonucleotide sequence
by
this
te~hnique.~"
However,
in
studies
of
dinucleotides it has been reported that during metastable ion decomposition or collisionally-activated decomposition species, the base
is eliminated
of ( M - H ) -
preferentially from the 3 ' -
terminus, a1 lowing isomeric dinucleotides to be di~tinguished.~'~ The presence of a base such as DBN to abstract dissociable protons enhances the molecular ion intensity.402
FAB-m.s. has also been
used t o determine the positions of l 8 O a t o m s in isotopically labelled nucleotides t o monitor isotopic scrambling in exchange
reactions. 4 0 3
It has been proposed o n t h e basis, mainly, of X-ray data, that transitions between B-, A- and Z- conformations in DNA a r e essentially d i c t a t e d by phosphate groups.404
t h e e c o n o m i c s of hydration of the
In B-DNA, under conditions of high water
activity, the phosphate groups are
>,
0
6 A apart and are individually
hydrated, but addition of water o r organic solvents lowers the activity of water, promoting the A- and Z-forms in which the
6: Nucleatides and Nucleic Acids
273
phosphate groups are closer and bridged by water molecules, thus making for more economical hydration.
Studies on poly[d(A-T)] in
the presence of Cs’ ions, in w h i c h transitions between B -
and C-
(alternating pnosphodiester geometry with a dinucleotidc repeat unit) forms were monitored by i.r. absorption and linear dichro15n1 ds
a function of hydration405 and comparable studifls on poly[d(Gprovide evidence of changes i n phosphate geometry with
changing hydration and salt content.
While X - r a y diffraction
studies are normally omitted from this Report, the determination of the structure of the DNA-Ecg R 1
endonuclease rpcogniticln
complex
mention
at
3;
resolution407 merits
as
an
Lmportant
milestone in the study of DNA-protein interactions. Alternating field gel electrophoresis is a valuable means of separating large
DNA molecules, and techniques employing f i e l d unidirectional pulsed f ~ e l d , ~ and ” modifications
inversion,4 0 8 a
of orthogonal field alternation410 have been described. Electroporation
- t h e use of a high voltage electric
discharge - can render cell membranes permeable to nucleotides and has been
used t o introduce gra-CTP into leukaemia cells.411
While s o m e cells were lysed by the pulse, most remained viable. Nucleic acids have been introduced into epidermal cell s of onion by
firing them
diameter!412
in a d s o r b e d
upon
tungsten
‘bullets
o f 4~
Viral and plasmid DNA introduced in this way w a s
subsequently expressed genetically.
DNA binds strongly t o the
surfaces of micelles and vesicles coated with lipopolyamines and l i p ~ i n t e r c a l a n t s ,and ~ ~ ~ its incorporation into 1 ipid vesicles
formed by sonication is greatly enhanced by the presence of excess
of a basic protein ( l y s o ~ y m e ) ~ ’ ~ .This effect could have been
important for the formation of primordial cells during evolution. The orientation of DNA molecules
has been monitored by
labelling one terminus with biotin-dUTP, binding the labelled DNA to avidin-ferritin, and imaging the resultant complex by electron microscopy.
Knowing “which end is which“ permits precise mapping
Organophosphorus Chemistry
274
a n d q u a n t i f i c a t i o n o f s i t e s o f DNA s e c o n d a r y s t r u c t u r e o r p r o t e i n DNA i n t e r a c t i o n . 4 1 5
References
1 2
3 4 5
6 7 8 9 10 11
12 13 14 15 16 17 18 19
20 21 22 23 24
25
F.H. W e s t h e i m e r , S c i e n c e , 1 9 8 7 , 235, 1 1 7 3 . E.C. J o h n s o n , P . R . R o b i n s o n , a n d J.E. L i s m a n , N a t u r e ______ ( L o n d o n ) , 1 9 8 6 , 324, 4 6 8 ; D . M a t e s i c a n d P . A . L i e b r n a n , i b i d . , 1 9 8 7 , 326, 6 0 0 ; M.L. A p p l e b u r y , i b i d . , 1 9 8 7 , 326, 546. T. Nakamura a n d G . H . G o l d , N a t u r e ( L o n d o n ) , 1 9 8 7 , 325, 4 4 2 . A. Schdn, G. Krupp, S. G o u g h , S. Berry-Lowe, C.G. K a n n a n j a r a , a n d 0 . S 6 1 1 r N a t u r e , 1 9 8 6 , 322, 2 8 1 ; D . - D . H u a n q a n d W . W a n g , J. B i o l . C h e m . , 1 9 8 6 , 261, 1 3 4 5 1 . N u c l e i c A c i d s Symp. S e r . , N o . 1 7 ; C h e m . S c r . , 1 9 8 6 , 16, N o . 1; B i o a c t i v e M o l e c u l e s V o l . 3 : B i o p h o s p h a t e s a n d t h e i r A n a l o g u e s ( E d s . K.S. Bruzik and W.J. Stec), Elsevier, Amsterdam a n d N e w Y o r k , 1 9 8 7 ; P r o c e e d i n g s o f t h e V 1 1 t h I n t e r n a t i o n a 1 Round T a b l e , Nuc leos ides a n d N u c l e o t i d e s , 1 9 8 7 , 6 , N o s . 1 a n d 2. T h e O r g a n i c c h e m i s t r y of N u c l e i c A c i d s ( E d . Y. M i z u n o ) , E l s e v i e r , A m s t e r d a m a n d New York, 1986. Y. H a y a k a w a , S . W a k a b a y a s h i , T . N o b o r i a n d R . N o y o r i , T e t r a h e d r o n L e t t . , 1 9 8 7 , 28, 2 2 5 9 . L.D. Nord, N.K. D a l l e y , P.A. M c K e r n a n , a n d R.K. Robins, J . Med. C h e m . , 1 9 8 7 , 3 0 , 1 0 4 4 . L . A . A l - R a z z a k , D. S c h w e p l e r , C . J . D e c e d u e , J . B a l z a r i n i , E. d e C l e r c q , a n d M.P. MerteS, J . Med. C h e m . , 1 9 8 7 , 30, 4 0 9 . P.D. D e v a n e s a n a n d A.M. B o b s t , J . Med. C h e m . , 1 9 8 6 , 22, 1237. A.S. Jones, S. N i w a s , H. Tanaka, a n d R.T. Walker, N u c l e i c A c i d s R e s . , 1986, 1 4 , 5409. M . M . V a g h e f i , P.A. M c K e r n a x a n d R.K. R o b i n s , J . Med. C h e m . , 1986, 29, 1389. Holy, I. R o s e n b e r g , T . S u k u m a , J . E. d e C l e r c q , A . B a l z a r i n i , a n d P.C. M a u d g a l , N a t u r e ( L o n d o n ) , 1 9 8 6 , 323, 464. D.W. N o r b e c k , J . B . K r a m e r , a n d P.A. L a r t e y , J . O r g . C h e m . , 1987, 52, 2174. T. T a t s u o k a , K . I m a o , a n d K . S u z u k i , H e t e r o c y c l e s , 1 9 8 6 , 24, 617, 2133. S. S h u t o , S. U e d a , S . I m a m u r a , K . F u k u k a w a , A . M a t s u d a , a n d T . Ueda, T e t r a h e d r o n L e t t . , 1 9 8 7 , 2 8 , 1 9 9 . J. T h i e m a n d W. T r e d e r , Angew. Chem., I n t . Ed. E n g l . , 1 9 8 6 , 25, 1096. L. F i u m e , B. B a s s i , C. B u s i , A . M a t t i o l o , G . S p i n o s a , a n d H . F a u l s t i c h , FEBS L e t t . , 1 9 8 6 , 203, 2 0 3 . F T h o r n & , F. Blois, A. Olomucki, a n d M. Olomucki, E u r . J . B i o c h e m . , 1 9 8 7 , 162, 4 3 3 . M . J . D a m h a , a n d K . K . O g i l v i e , J . O r g . C h e m . , 1 9 8 6 , 51, 3 5 5 9 . A. O k r u s z e k , P. G u g a , a n d W . J . S t e c , J. C h e m . S o c . , C h e k Commun., 1 9 8 7 , 5 9 4 . J . H . C u m m i n s a n d B.V.L. P o t t e r , E u r . J. B i o c h e m . , 1 9 8 7 , 1.2, 123. Z.J. L e s n i k o w s k i a n d A. S i b i n s k a , T e t r a h e d r o n , 1 9 8 6 , 42, 5025. L.H. K o o l e , H . M . Moody, a n d H.M. Buck, R e c l . Trav. Chim. Pays-Bas, 1986, 196. J.B. Hobbs, i n O r g a n o p h o s p h o r u s C h e m i s t r y ' , ed. B.J. W a l k e r (Specialist P e r i o d i c a l R e p o r t s ) , T h e R o y a l S o c i e t y o f Chemistry, 1987, vol. 1 8 , p.187.
105,
6: Nucleotides and Nucleic Acids 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52
53 54
275
P . J . G a r e q q , J . S t a w i n k s i , a n d H. S t r B m b e r q , _ J ._ -O-r c j . C_h_e_m _ ., 1 9 8 7 , 52, 2 8 4 ; P.J. G a r e g q , T. R e q b e r q , J . S t a w i n s k i , a n d R. S t r B m b e r q , Chem. S c r . , 1 9 8 5 , 25, 2 8 0 . E. K u y l - Y e h e s k i e l y , M . S p i e r e n b d r g , H . v a n d e n E l s t , M . Tromp, G.A. v a n der Marcl, a n d J.H. v a n B o o m , Recl. T r a v . C h E . P a y s - B a s , 1 9 8 6 , 105, 5 0 5 . E. d e V r o o m , M.L. S p i e r e n b u r g , C.E. D r e e f , G . A . v a n cler Marel, a n d J . H . v a n B o o m , R e c l . T r a v . C h i m . P a y s r a s , 1 9 8 7 , __ 106, 65. B . C . F r o e h l e r , T e t r a h e d r o n L e t t . , 1 9 8 6 , 27, 5 5 7 5 . M. F u J 1 1 , K . O z a k l , A . K u m e , M . S e k i n e , a n d T . H a t a , T e t r a h e d r o n L e t t . , 1 9 8 6 , 27, 3 3 6 5 . E. K u y l - Y e h e s k i e l y , C.M. T r o m p , A . H . S c h a e f f e r , G . A . v a n d e r Marel, a n d J . H . v a n Boom, N u c l e i c A c i d s Res., 1 9 8 7 , 15, 1807. S.B. K a t t i a n d K. A q a r w a l , T e t r a h e d r o n L e t t . , 1 9 8 6 , 27, 5327. d. H e r d e r i n g , A. K e h n e , a n d F. S e e l a , H e l v . C h i m . A c t a , 1985, 68, 2119. M . R . H a m b l i n , J . H . C u m m i n q s , a n d B.V.L. P o t t e r , B i o c h e m . J . , 1 9 8 7 , 241, 8 2 7 . X.-X. Z h o u a n d J . C h a t t o p a d h y a y a , Tetrahedyrn, 1 9 8 6 , 42, 51 4 9 . T. P a t h a k a n d J . C h a t t o p a d h y a y a , A c t a C h e m . S c a n d . , 1 Y 8 5 , B39, 799. J. H e i k k i l a e , S . S t r i d h , B. O e b e r g , a n d J . C h a t t o p a d h y a y a , A c t a Chem. S c a n d . , 1 9 8 5 , G , 6 5 7 . T.S. Godovika, V.F. Zarytova, a n d L.M. Khalimskaya, B i o o r g . K h i m . , 1 9 8 6 , 1 2 , 4 7 5 ( C h e m . A b s . , 1 9 8 7 , 106, 6 7 6 0 5 ) T . S . G o d o v i k o v a , V . F . Z a r y t o v a , A . V . L e b e d e v , V.C. R y t e a n d V.V. S a m u k o v , I z v . S i b . O t d . Akad. Nauk SSSR, 1 9 8 6 , 110 ( C h e m . A b s . , 1 9 8 7 , 106, 3 3 4 1 8 ) . J. T h i e m a n d D. R a s c h , N g c l e o s i d e s N u c l e o t i d e s , 1 9 8 5 , 4, 487. D . W . P a r k i n a n d V.L. S c h r a m m , B i o c h e m i s t r y , 1 9 8 7 , 26, 9 1 3 . R. T r i b o l e t and H. S i q e l , Eur. J. Biochem., 1987, 163, 353. V.V. Demidov, V.N. Potaman, a n d T.L. UTmasov, K i n e t . K a t a l . , 1 9 8 6 , 27, 5 7 5 ( C h e m . A b s . , 1 9 8 6 , 105, 1 3 4 2 8 6 ) T.N.C. W e l l s , C.K. H o t a n d A . K . F e r s h t , B i o c h e m i s t r y , 1 9 8 6 , 25, 6603. D.W. P h i l l i p s o n , C.G. E d m o n d s , P . F . C r a i n , D.L. S m i t h , D . R . D a v i s , a n d J . A . M c C l o s k e y , J . B i o l . C h e m . , 1 9 8 7 , 262, 3 4 6 2 . J.A. M c C l o s k e y , P.F. C r a i n , C.G. E d m o n d s , R . G u p t a , T. Hashizume, D.W. P h i l l i p s o n a n d K.O. S t e t t e r , N u c l e i c Acids R e s . , 1 9 8 7 , 683. Y. W a n q , X . - Y . L i u , 2.-W. Y a n g , Q.-W. W a n g , Y.-Z. X u , Q . - 2 . Wang a n d J . - F . X u , N u c l e i c A c i d s R e s . , 1 9 8 7 , 12, 4 2 9 1 . J. B e r e s , J . S a g i , W.G B e n t r u d e , J . B a l z a r i n i , E. d e C l e r c q , a n d L . G t v b s , J. Med. C h e m . , 1 9 8 6 , 2 , 1 2 4 3 . L. Z h a n g , L. Ma, C. X u , L. D o n g , Q. W a n q , a n d X . W a n g , Gaodeng X u e x i a o H u a z u e X u e b a o , 1 9 8 5 , 6, 9 0 3 (Chem. Abs., 1 9 8 6 , 105, 1 3 4 2 8 1 ) . J. Wu, C. W a n q , a n d L. Z h a n q , _H u a -__x u e X__ u eb__ a o , 1 9 8 6 , 44, 6 3 5 ( C h e m . A b s . , 1 9 8 7 , 106, 1 8 9 7 7 ) . S . K a t a o k a , J . I s o n o , N. Y a m a j i , a n d M . K a t o , C h e m . L e t t . , 1986, 1221. J. B e r e s , Y.C. L e e , D . I . B r i x n e r , J.I. O l s e n , a n d M.P. S c h w e i z e r , N u c l e o s i d e s N u c l e o t i d e s , 1 9 8 6 , 2, 1 . R. S t o l a r s k i , 2 . K a z i m i e r c z u k , P . L a s s o t a , a n d D . S h u g a r , Z . N a t u r f o r s c h . , C : B i o s c i . , 1 9 8 6 , 41, 7 5 8 . J.D. J o h n s o n , J.D. W a l t e r s , a n d J . S . M i l l s , ___________ Anal. Biochem -. , 1 9 8 7 , 162, 2 9 1 .
2,
276 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
Organophosphorus Chemistry A. A m e s 1 1 1 , T . F W a l s e t h , R . A . Heyman, M. Barad, H.M. G r a e f f , a n d N . D . G o l d b e r g , J . B i o l . C h e m . , 1 9 8 6 , 261, 1 3 0 3 4 . P.A. C o n n e l l y , L.H.P. B o t e l h c , R.B. S i s k , a n d J . C . G a r r i s o n , J. B i o l . C h e m . , 1 9 8 7 , 262, 4 3 2 4 . C.J. D r a g l a n d - M e s e r v e , M.C. 0 1 i v e i r i , a n d L . H . P . B o t e l h o , Biochem.J., 1 9 8 6 , 237, 4 6 3 . M.E. P e r e i r a , D . L . S e g a l o f f , M . A s c o l i , a n d F . E c k s t e i n , 3. B i o l . C h-e m . , 1 9 8 7 ,~262, 6 0 9 3 .~ _ V.J. D a v i s s o n , D.R. D a v i s , V.M. D i x i t , a n d C.D. P o u l t e r , J- O r g . C h e m . , 1 9 8 7 , 52, 1 7 9 4 . K.E. Ng a n d L . E . O r g e l , N U C l e i c A c i d s R e s . , 1 9 8 7 , 1 5 , 3 5 7 3 . M.W. H o s s e i n i , J.-M. L e h n , L. M a g g i o r a , K.B. M e r t e s , a n d M.P. Mertes, J . Am. Chem. S O C . , 1 9 8 7 , 109, 5 3 7 . G.M. B l a c k b u r n , G . R . J . T h a t c h e r , M.W. H o s s e i n i , and J.-M. L e h n , T e t r a h e d r o n L e t t . , 1 9 8 7 , 2,2 7 7 9 . J . F . M a r e c e k a n d C . J . B u r r o w s , T e t r a h e d r o n L e t t . , 1 9 8 6 , iz, 5943. E. Gajewski, D.K. S t e c k l e r , a n d R.N. Goldberg, 3. B i o l . C h e m . , 1 9 8 6 , 261, 1 2 7 3 3 . G.A. S c a r b o r o u g h , ? r o c . N a t l . A c a d . S c i . USA, 1 9 8 6 , f33, 3688. I . C l e m e n t a n d V. R u b i o , A r c h . B i o c h e m . B i o g h y s . , 1 9 8 6 , 251, 465. T.D. M e e k , W.E. K a r s e n , a n d C.W. d e B r o s s e , B i o c h e m i s t r y - , 1987, 26, 2584. W. v o n - ; i e r S a a l a n d J.J. V i l l a f r a n c a , B i o o r q . Chern., 1 9 8 6 , 1 4 . 28. K.K. S h u k l a , H.M. L e v y , F. H a m i r e z , a n d J . F . M a r e c e k , ~. J . B i o l . C h e m . , 1 9 8 6 1 261, 1 2 1 4 1 . J.J. S i n e s a n d D.D. Hackney, B i o c h e m i s t r y , 1986, 25, 6144. R.S. Goody a n d M . I s a k o v , T e t r a h e d r o n L e t t . , 1 9 8 6 7 2 7 , 3599. T . L . C h a p m a n , T.B. S h u l l , a n d F.M. R a u s h e l , B i o c h e m i s t r y , 1986, 25, 4739. J . E . V F n P e l t , R . I y e n g a r , a n d P.?.. F r e y , J . B i o l . C h e m . , 1 9 8 6 , 261, 1 5 9 9 5 . A.D. G r i f f i t h s , B.V.L. P o t t e r , and I.C. Eperon, N u c l e i c A c i d s R e s . , 1 9 8 7 , 15, 4 1 4 5 . A. A r a b s h a h i , R.S. B r o d y , A. S m a l l w o o d , T.-C. T s a i , a n d P.A. F r e y , B i o c h e m i s t r y , 1 9 8 6 , 25, 5 5 8 3 . R.C. B e t h e l 1 a n d G . L o w e , J. Chem. SOC. Chem. Commun., 1 9 8 6 , 1341. B . L . S t i t t a n d M . R . Webb, J . B i o l . C h e m . , 1 9 8 6 , 261, 1 5 9 0 6 . R. I y e n g a r , E. C a r d e m i l , a n d P.A. F r e y , B i o c h e m i s t r y , 1 9 8 6 , 25 , 4693. J . M . K o n o p k a , H.A. L a r d y , a n d P.A. F r e y , B i o c h e q L s t r y , 1 9 8 6 , 25, 5571. T . S h i m i z u a n d K . F u r u s a w a , B i o c h e m i s t r y , 1 9 8 6 , 2,5 7 8 7 . M.R. M e j i l l a n o a n d R.H. H i m e s , Biochem. B i o p h y ~ - R e s . Commun., 1 9 8 6 , 1 3 9 , 9 6 7 . D.C. Speckhard7V.L. P e c o r a r o , W.B. K n i g h t , a n d W.W. C l e l a n d , J- Am. Chem. S O C . , 1 9 8 6 , 108, 4 1 6 7 . H. Pauls, E.H. S e r p e r s u , U. K i r c h , a n d W. Schoner, -E u r . J . B i o c h e m . , 1 9 8 6 , 157, 5 8 5 . K.J. G r u y s , P.R. G r e g o r y and S.M. S c h u s t e r , J. I n o r g . Biochem., 1986, 28, 67. K . J . G r u y s a n d S.M. S c h u s t e r , J. I n o r g . B i o c h e m . , 1 9 8 6 , 22, 75. H . I d e , R.I. M e l a m e d e , a n d S.S. Wallace, B i o c h e m i s t r y , 1 9 8 7 , 26, 964. P.S. Nelson, C. Bahl, and I. Gibbons, Nucleosidgs N u c l e o t i d e s , 1986, 5 , 233.
6: Nucleotides and Nucleic Acids 88
277
M.L. S h i m k u s , P . G u a g l i a n o n e , a n d T.M . H e r m a n , _Dye, 1 9 8 6 , 5 , 247; T.M. Herman, E. L e f e v e r , and M. Shimkus, Anal. Biochem., 1 9 8 6 , 1 5 6 , 48. C.R. T o p p i n , G.T. P a u i - y , P . D e v a n e s a n , D . K r y a k , a n d A . M . B o b s t , H e l v . C h i m . A c t a , 1 9 8 6 , 69, 3 4 5 . M. H a v r a n e k , C h e m . L i s t y , 1 9 8 6 , 83, 3 6 6 ( C h e m . A b s . , 1 9 8 6 , 105, 79239). A. B h a t t a c h a r Y Y a a n d B.C. Pal, Nucleosides Nucleotides, 1986, 5 , 265. P.A. F i r m a n , J . A . F y f e , M.H. S t . C l a i r , K . W e i n h o l d , J . L . Freeman, S.N. Lehrman, D.P. Bolognesi, S. H i d e o u t , G.A. Broder, H. Mitsuya, and D.W. B a r r y , P r o c . N a t l . A c a d . S c i . U S A , 1 9 8 6 , 83, 8 3 3 3 . Y . -c. C h e n g , G.E. D u t s c h m a n , K.F. B a s t o w , M . G . S a r n g a d h a r a n , T i n g , J . B i o l . C h e m . , 1 9 8 7 , 262, 2 1 8 7 . and R.Y.C. K. O n o , M . O g a s a w a r a , Y. ~ w a t a , H . N a k a n e , T. F u j i l , K . S a w a i , a n d M . S a n e y o s h i , ___ B i o c-h-e-m . B i o g h y s . H e s . C o m m q . , 1986, K O , 498. R.S. B e a b e a l a s h v i l l i , A . V . S c a m r o v , T.V. K u t a t e l a d z e , A . M . Mazo, A.A. K r a y e v s k y , a n d M . K . K u k h a n o v a , Kutateladze, B i o c h e m . B i o p h y s . A c t a , 1 9 8 6 , 8 6 8 , 1 3 6 ; T.V. A.M. ~ r i t z y n , V.L. ~ i o r e n t 3 e v , V.M. ~ a v s a n , Z.G. C h i d g e a v a d z e , a n d R.S. B e a b e a l a s h v i l l i , F E B S L e t t . , 1 9 8 6 , 207, 205. Z.G. C h i d q e a v a d z e , R.S. B e a b e a l a s h v i l l i , A.A. K r a y e v s k y , a n d M . K . K u k h a n o v a , Biochem. B i o p h y s . Acta, 1 9 8 6 , 145. N.B. D y a t k i n a , A.A K r a e v s k i i , G . G e r m a n , M . Von J a n t a L i p i n s k i , P. L a n g e n , a n d I . V . Y a r t s e v a , B i o o r g . K h i m . , 1 9 8 6 , 1 2 , 408 (Chem. A b s . 1 9 8 6 , 227205). S . L . D r e s l e r a n d M.G. F r a t t i n i , N u c l e i c A c i d s R e s . , 1 9 8 6 , 1 4 , 7 0 9 3 ; S . L . D r e s l e r a n d K.S. K i m b r o , --_--B i o c h e-m__ i s_try, 1987, 26, 2664. G. H a r r i s , G . W . Ashley, M.J. R o b i n s , R.L. T o l m a n , a n d J . Stubbe, Biochernistr , 1987, 26, 1895. P. S m i t , G.A Stork', H.C. v a n d e r P l a s , J . A . J . den Hartoq, G.A. v a n d e r M a r e l , a n d J . H . v a n B o o m , Recl. T r a v . Chim. P a y s - B a s , 1 9 8 6 , 538. V.E. M a r q u e z , C.K.H. T s e n g , G . G e b e y e h u , D . A . C o o n e y , G.S. K e l l e y , M . D a l a l , R.W. F u l l e r , Y.A. W i l s o n , A h l u w a l i a , J.A. a n d D . G . J o h n s , J . Med. C h e m . , 1 9 8 6 , 2 , 1 7 2 6 . G. Y a m a n a k a , F . E c k s t e i n , a n d L. S t r y e r , B i o c h e m i s t r y , 1986, 25, 6149. P . C a r G l l o a n d J . E . A l l e n d e , FEBS L e t t . , 1 9 8 7 , 215, 1 0 9 . R. v a n d e r Woerd, C.G. Bakker, a n d A.W. Schwartz, T e t r a h e d r o n L e t t . , 1987, 28, 2763. T.I. Osipova, P.P. Purygin, a n d I.A. N.B. Tarusova, Yakimova, B i o o r g . Khim., 1 9 8 6 , 12, 4 0 4 ( C h e m . A b s . 1 9 8 6 , 105, 227204). R.B. W e s t k a e m p e r , B i o c h e m . B i o p h y s . Res.Cornmun., 1987, 922. R.M. P i n t o , J. C a n a l e s , M.A.G. S i l l e r o , a n d A. S i l l e r o , B i o c h e m . B i o p h y s . R e s . Commun., 1 9 8 6 , 261. D. M i l l e r a n d A . G . M c L e n n a n , N u c l e i c A c i d s R e s . , 1 9 8 6 , 6031; G.F. Guedon, G.J.P. Gilson, J.P. Ebel, N.M.-T. B e l f o r t , a n d P.M. R e m y , J . B i o l . C h e m . , 1 9 8 6 , 16459. V.N. P a n d e y , S.B. A m r u t e , J . G . Satav, and M.J. Modak, FEBS L e t t . , 1 9 8 7 , 213, 2 0 4 . V . P a n d e y a n d M . J . M o d a k , B i o c h e m i s t r y , 1 9 8 7 , 26, 2 0 3 3 . R. B o n e , Y.-C. C h e n g , a n d R. W o l f e n d e n , J. B i o l . Chem., 1986, 16410. S. I k e d a , R. C h a k r a v a r t y , a n d D.H. I v e s , J . B i o l . Chem., 1986, 15836. _ _ _ _ _ _ I
89 90 91 92
93 94
95
96 97 98 99
100 101
102
103
104
105 106 107 108 109
110 111 112
868,
105,
105,
144,
138,
XL,
261, 261,
14,
278 11 3 114 115 116 117 118 119
12 0 121 122
123 124 125
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
Organophosphorus Chemistry H o n g , S.-H. A n , D . J . B u c h h e i t , A. Nechaev, A.J. K i r i s i t s , C . K . west a n d W.E. B e r d e l , &-_Med. C h c m . , I ' j 8 6 , 2 2 , 2038. J.P. C o l e m a n , W.B. w h i t e , B. E g e s t a d , J . S J o v d l l , a n d P.B. Hylemon, J,-Biol. C h c m . , 1 0 8 7 , 262, 4 7 0 1 . T . B . J o h n s o n a n d J . K . C o w a r d , J. O r g . C h e m . , 1 9 8 7 , 52, 1 7 7 1 . E. S o n v e a u x , B i o o r g . C k m . , 1 9 8 6 , 274. N.T. T h u o n q a n d U. A s s e l i n e , --B i o -__ chem-i e , 1 Y 8 5 , 6.2, 6 7 3 ; s e e a l s o IJ. A s s e l i n e , N.T. T h u o n g , a n d C . H e l k n e , N u c l e o s i d e s ________ Nucleotides, 1986, 5 , 45. H . S e l i q e r , Chem. S c r . , 1 9 8 6 , 2 6 , 5 6 1 , 5 6 9 . B.C. F r o e h l e r , P.G. N q , a n d M X . ~ a t t e u c c i , ~ u c l e i cp r & d s R e s , 1986, 1 4 , 5399. E. G a r e g T , I . L i n d h , T . R e q b e r y , J . S t a w i n s k i , R . S t r B m b e r g a n d C. H e n r i c h s o n , T e t r a h e d r o n & g t t . , 1 9 8 6 , 22, 4051. P . J . G a r e g g , T . R e g b e r g , J . S t a w i n s k i , a n d H. S t r B m h e r q , ____-J . Chem. S O C . , P e r k i n T r a n s . I . , 1 9 8 7 , 1 2 6 9 . P.J. Garegq, I Lindh, T. Reqberq, J. S t a w i n s k i , H. S t r B m b c r q , a n d C. H e n r i c h s o n , T e t r a h e d r o n L e t t . , 1 9 8 6 , 27, 4055. J. N i e l s e n , J.E. Maruqq, J.H. v a n B o o m , J. H o n n e n s , M . T a a q a a r d , a n d 0 . D a h l , J . Chem. R e s . , S y n o p 2 1986, 26. J . N i e l s e n a n d 0. D a h l , N u c l e i c Acids R e s . , 1987, 3626. J. N i e l s e n , J . E . M a r u g g , M . T a a q a a r d , J . H . v a n B o o m , a n d 0. Dahl, Reel. T r a v . C h i m . P a y s - B a s . , 1986, 33; J. Nielsen, M. T a a q a r d , J.E. Marugg, J.H. v a n B o o m , a n d 0. Dahl, Nucleic Acids R e s . , 1986, 7391. J.E. M a r u g q , J . N i e l s e n , 0. D a h l , A. B u r i k , G . A . van der Marel, a n d J . H . v a n Boom, Reel. T r a v . C h i m , P a y s - B a s . , 1987, ___ 106, 72. N u-c.-l -e-i -c A c-i __ d s Hes., B.H. D a h l , J . N i e l s e n , a n d 0. D a h l , _1987, 15, 1729. Y. H a y a k a w a , M . U c h i y a m a , a n d R . N o y o r i , T e t r a h e d r o n L e t t . , 1986, 27, 4191, 4195. A. Wulter, J. B i c r n a t , a n d H. Koester, N u c l e o s i d e s N u c l e o t i d e s , 1986, 5 , 65. K. Miura, K. S a w a d a i s h i , H. Inoue, a n d E. O h t s u k a , Chem. P h a r m . B u l l . , 1 9 8 7 , 3 5 , 8 3 3 . S. I w a i , A . I m u r a , Y . I n o u e , H . I n o u e , K . M i u r a , T . T o k u m a q a , M . I k e h a r a , a n d E. O h t s u k a , C h e m . P h a r m . B U L L . , 1 9 8 6 , 34, 4 7 2 4 . M. I k e h a r a , K . F u j i m o t o , Y . A o y a m a , K . Y a n a s e , J . M a t s u q i , T. I n a o k a , T . T o k u n a q a , S. U e s u g i , S. I w a i , a n d E. O h t s u k a , Chem. P h a r m . B u l l . , 1 9 8 6 , 34, 2 2 0 2 . J. M a t s u z a k i , H . Hotoda, M. S e k i n e , a n d T. H a t a , T e t r a h e d r o n L e t t . , 1 9 8 6 , 27, 5 6 4 5 . H. Hotoda, T. Wada, M. S e k i n e , a n d T. H a t a , Tetrahedron L e t t . , 1987, 28, 1681. K . G . D e v i n e a n d C.B. Reeye, T e t r a h e d r o n L e t t . , 1 9 8 6 , 27, 5529. B.J. H a m i l l a n d D.J. P i c k e n , W o r l d B i o t e c h . Rep., 1 9 8 5 , 7 3 5 ( C h e m . A b s . , 1 9 8 6 , 105, 1 7 2 8 5 7 ) V . A . E f i n o v a n d O.G. C h a k h m a k h c h e v a , E L o o r g . K h i m . , 1 9 8 5 , 11, 1 0 8 7 ( C h e m . A b s . , 1 9 8 6 , 105, 6 7 4 4 ) . V . A . E f i m o v , A.A. B u r y a k o v a , I . Y . D u b e y , N . N . P o l u s h i n , O . G . C h a k h m a k h c h e v a , a n d Yu.A. O v c h i n n i k o v , N u c l e i c A c i d s R e s . , 1986, 1 4 , 6525. M. S e k i n e a n d T. H a t a , Y u k i Gos~;~~Kga~;ajku K y o k a i s h i , 1 9 8 6 , 4 4 , 2 2 9 ( C h e m . A b s . , 1 9 8 6 , 105, M . S e k i n e a n d T. Hata, J . Or Chem., 1 9 8 7 , 5 2 , 946 H. T a n i m u r a , M . S e k i n e , a n d g T . H a t a , T e t r a h y d r o n , 1 9 8 6 , 42, 4 1 7 9 . C.1.
14,
Is,
lo>,
14,
I,
.
6: Nuckeoridus and Nur-leic Acids
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
379
M. F u l i i , H. N a g a i , M. S c k i n c , a n d 'I'. Hata, J - . -~ Am. Chern. Soc,, 1986, lg8, 3832. M. F u J ~ ~H . , N a q a i , M . S c k i n e , a n d T. H a t a , T e t r a h e d r o n L e t t . , 1 9 8 7 , 28, 1 4 3 5 . T. T a n a k a , Y . Y a m a d a , a n d M . I k c h a r a , T e t r a h e d r o n L e t t . , 1986, 27, 3267. T. Tan-a-ka, Y . Y a r n a d a , a n d M. I k e h a r a , T e t r a h e c l r g n - L e t t . , 1 9 8 6 , 22, 5 6 4 1 . H . T a k a k u , S. H a r n a r n o t o , a n d T . W a t a n a b e , Chgm,-&ett., 1986, 699. Y. H a y a k a w a , H . K a t o , M . U c h i y a m a , 11. K a j i n o , a n d R. N o y o r i , J . Org. Chem., 1 9 8 6 , 2400. R.K. Mishra a n d K . M i s r a , N u c l e i c A c i d s Res., 1 9 8 6 , 1 4 , 6197. M. S e k i n e , N . M a s u d a , a n d T. H a t a , g u l l . C h e i n . soc. 1 9 8 6 , '33, 1 7 8 1 . J . C . S c h u l h o f , D . M o l k o , a n d R. T e o u l e , T e r i q h e d r o n - & g t t . , 1987, 28, 51. J . C . S c h u l h o f , D . M o l k o , a n d R. T e o u l e , N u c l e i c - A c i d ~ K c s . , 1987, 397. R.T. P o n , N . U s m a n , M . J . D a r n h a , a n d K . K . O g i l v i e , N _ _u_ c_ l_ ~ _ i c _ A-c i d s R e s . , 1 9 8 6 , 6453. B.A. C o n n o l l y , T e t r a h e d r o n L e t t . , 1 9 8 7 , 28, 4 6 3 . T. H o r n a n d M.S. U r d e a , T e t r a h e d r o n L e t t . , 1 9 8 6 , 2 1 , 4 7 0 5 . 3131. B.A. C o n n o l l y , N u c l e i c A c i d s R e s . , 1 9 8 7 , J.M. C o u l l , H.L. W e i t h , a n d R . B i s c h o f f , T e t r a h e d r o n L e t t . , 1 9 8 6 , 2.2, 3 9 9 1 ; s e e a l s o S. A g r a w a l , C . C h r i s t o d o u l o u , a n d M.J. G a i t , Nucleic Acids Res., 1986, 6227. T. T a n a k a , S. T a r n a t s u k u r l , a n d M. Ikehdra, Tetrahedron L e t t . , 1 9 8 7 , 28, 2 6 1 1 . L. W a c h t e r , J . - A . J a b l o n s k i , a n d K.L. R a r n a c h a n d r a n , bJgc_lgic Acids R e s . , 1986, 1 4 , 7985. J.N. K r e r n s k y , J . L . W o o t e r s , J . P . D o u g h e r t y , H.E. M e y e r s , M . C o l l i n s , a n d E.L. B r o w n , N u c l e i c A c i d s R e s . , 1 9 8 7 , 12, 2 8 9 1 . L. Haines, J. Fisch, J.N. Kremsky, J.P. S.F. Wolf, Dougherty, a n d K. J a c o b s , N u c l e i c A c i d s R e s . , 1987, 2911. S. Iwai, M. Koizumi, M. Ikehara, a n d E. Ohtsuka, ______ T e t r a h e d r o n , 1 9 8 7 , 43, 5 9 . N.F. K r y n e t s k a y a , G.V. Z a y a k i n a , T . S . O r e t s k a y a , E.M. V o l k o v , a n d Z.A. S h a b a r o v a , N u c l e o s i d e s N u c l e o t i d e s , 1 9 8 6 , 5, 33. E. d e Vroorn, A. F i d d e r , J . E . M a r u g g , G . A . v a n d e r M a r e l , a n d J.H. van Boom, N u c l e i c A c i d s Res., 1986, 1 4 , 5885. R. K i e r z e k , M . H . C a r u t h e r s , C . E . L o n g f e T l o w , D. S w i n t o n , D . H . T u r n e r , a n d S.M. F r e i e r , B i o c h e m i s t r y , 1 9 8 6 , 25, 7 8 4 0 . T. T a n a k a , S. T a r n a t s u k u r i , a n d M. I k e h a r a , 6265. Nucleic A c i d s Res., 1986, T. T a n a k a , K . F u j i n o , S . T a m a t s u k u r i , a n d M . I k e h a r a , Chem. P h a r m . B u l l . , 1 9 8 6 , 3 4 , 4 1 2 6 . M . J . D a m h a , N . U s m a n , and-K.K. Ogilvie, Tetrahedron Lett., 1987, 28, 1633. K. Kamaike, H. T s u c h i y a , K. I m a i , a n d H. T a k a k u , T e t r a h e d r o n , 1 9 8 6 , 42, 4 7 0 1 . H . T a k a k u , T. I t o , a n d K . I m a i , C h e m . L e t t . , 1 9 8 6 , 1 0 0 5 . M. S e k i n e a n d T. H a t a , J . A m . C h e m . S O C . , 1 9 8 6 , L c g , 4 5 8 1 . S. I w a i . E. Y a m a d a , M . A s a k a , Y. H a y a s e , H . I n o u e , a n d E. O h t s u k a , N u c l e i c Acids R e s . , 1 9 8 7 , 1 5 , 3761. Y. C h i n o G o s e i K a G k u K y o k a i s h i , 1 9 8 6 , 44, 365 (Chem. Abs., 1 9 8 6 , LOS, 4 3 1 6 0 ) .
ZL,
J~c.,
15,
14,
15,
14,
12,
14,
2 80 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
Organophosphorus Chemistrv F. M o r v a n , B. R a y n e r , J . - L . I m b a c h , S. T h e n e t , J . R . Bertrana, J. P a o l e t t i , C. M a l v i a n d C. P a o l e t t i , N u c l e i c Acids R e . , 1 9 8 7 , I S , 3 4 2 1 . G . M V i s s e r , J . v a n W e s t r e n e n , C.A.A. v a n B o e c k e l , a n d J . H . v a n Boom, R e c l . T r a v . C h i m . P a y s - B a s . , 1986, 528. J . L . F o u r r e y , J . V a r e n n e , C. F o n t a i n e , E. G u i t t e t , a n d Z . W . Y a n q , T e t r a h e d r o n L e t t . , 1 9 8 7 , 28, 1 7 6 9 . s. H U S S I G . G o s s e l i n , a n d J . - L . I m b a c h , T e t r a h e d r o n L e t t . , 1987, 28, 415. Y. Hayakawa, T. Nobori, R. Noyori, a n d J. lmai, Tetrahedron Lett., 1987, J g , 2623. T.R. Webb a n d M . D . M a t t e u c c i , N u c l e i c A c i d s R e s . , 1 9 8 6 , 7661. M.D. M a t t e u c c i a n d T.R. W e b b , T e t r a h e d r o n L e t t . , 1 9 8 7 , 2469. J.W. D u b e n d o r f f , P.L. d e H a s e t h , M.S. R o s e n d a h l , a n d M . H . C a r u t h e r s , J. B i o l . Chem., 1 9 8 7 , 892. A. R o s e n t h a l , F. S c h u b e r t , D . C e c h , T.S. O r e z k a j a , S.A. Kusnezova, and Z.A. S h a b a r o v a , Biomed. Biochim. Acta, 1 9 8 5 , 44, K75. T. T a n a k a , S. T a m a t s u k u r i , a n d M . I k e h a r a , C h e m . !harm.B u l l . , 1 9 8 6 , 34, 2 0 4 4 . A. O n o a n d T . U e d a , N u c l e i c A c i d s R e s . , 1 9 8 7 , 1 5 , 2 1 9 . C.A. B r e n n a n , M . D . Van C l e v e , a n d R . I . G u m p o r t , J. B i o l . 1 9 8 6 , 261, 7 2 7 0 , 7 2 7 9 . A. O n 0 a n d T. U e d a , N u c l e i c A c i d s R e s . , 1 9 8 7 , 1 5 , 3059. Y. K a w a s e , S . I w a i , H . I n o u e , K . M i u r a , a n d . O h t s u k a , N u c l e i c A c i d s R e s . , 1 9 8 6 , 14, 7 7 2 1 . R. E r i t j a , B.E. K a p l a n , D . M h a s k a r , L.C. S o w e r s , J. P e t r u s k a , a n d M.F. G o o d m a n , N u c l e i c A c i d s R e s . , 1 9 8 6 , 1_l, 5869. R . D . S h e a r d y a n d N.C. S e e m a n , J . O r g . C h e m . , 1 9 8 6 , 4301. J. J i r i c n y , S.G. W o o d , D . M a r t i n , a n d A . I l b a s a w a , N u c l e i c Acids Res., 1986, 6579. R. E r i t j a , D.M. H o r o w i t z , P.A. W a l k e r , J . P . Z i e h l e r - M a r t i n , M.S. B o o s a l i s , M.F. G o o d m a n , K . I t a k u r a , a n d B.E. K a p l a n , N u c l e i c Acids R e s . , 1 9 8 6 , 1 4 , 8 1 3 5 . F. S e e l a a n d A. K e h n e , B i o c h e m i s t r y , 1 9 8 7 , 22, 2 2 3 2 . R . C h a r c z u k , C. T a m m , B. S u r i , a n d T.A. B i c k l e , N g c l e i c Acids Res., 1986, 9530. Y. K u c h i n o , F. M o r i , H . K a s a i , H . I n o u e , S . I w a i , K . M i u r a , E. O h t s u k a a n d S. N i s h i m u r a , N a t u r e ( L o n d o n ) , 1 9 8 7 , X I 7 7 . B . F . L . L i , C.B. Reese, a n d P . F . S w a n n , B i o c h e m i s t r y , 1 9 8 7 , 26, 1 0 8 6 . H. B o r o w y - B o r o w s k i a n d R . W . C h a m b e r s , B i o c h e m i s t r y , 1 9 8 7 , 26, 2465. F. S e e l a a n d K . K a i s e r , N u c l e i c A c i d s R e s , 1 9 8 7 , I S , 3 1 1 3 ; S.K. R a n d a l l , R. E r i t j a , B.E. K a p l a n , J . P e t r u s k a , a n d M.F. G o o d m a n , J . B i o l . C h e m . , 1 9 8 7 , 262, 6 8 6 4 . V.S B o g a c h e v a n d V.P. K u m a r e v , B i o o r g . K h i F . , 1 9 8 5 , 1541 ( C h e m . A b s . , 1 9 8 6 , 1 0 5 , 2 0 9 3 1 0 ) ; V.S B o g a c h e v , V.P. K u m a r e v , a n d V.N. R y b a k o v , B T z % r g . K h i m . , 1 9 8 6 , 1 3 3 (Chem. A b s . , 1986, Lg5, 209326) N.G. D o l i n n a y a , 0.1. G r y a z n o v a , N . I . S o k o l o v a , a n d Z.A. S h a b a r o v a , B i o o r g . K h i m . , 1 9 8 6 , 12, 7 5 5 ( C h e m . A b s . , 1 9 8 7 , 106, 67607) L.A. L a P l a n c h e , T . L . J a m e s , C . P o w e l l , W . D . W i l s o n , B. Uznanski, W.J. S t e c , M.F. Summers, and G. Zon, Nucleic Acids Res., 1986, 9081. K.A. G a l l o , K. Shao, L.R. Phillips, J.B. Regan, M. Koziolkiewicz, B. Uznanski, W.J. S t e c , a n d G. Zon, N u c l e i c Acids R e s . , 1 9 8 6 , 7405.
105,
14,
?a,
Xz,
m.,
51,
14,
14,
12,
198 199 200
14,
14,
11,
6: Nucleotides and Nucleic Acids 201 202 203 204 205 206 207 208 209 2 10
211 212 213 214 215 216 217 218
219 220 221 222 223 224 225 226 227 228 229 230 231
28 1
M. W e l n f e l d a n d D.C. L i v i n g s t o n , B i o c h e m i s t r y , 1 9 8 6 , 25, 5083. M.F. S u m m e r s , C . P o w e l l , W . E g a n , R . A . B y r d , W . D . W i l s o n , a n d G. Z o n , N u c l e i c A c i d s R e s . , 1 9 8 6 , 1 4 , 7 4 2 1 . P.S. M i l l e r , M.P. R e d d y , A . M u r a k a m i , K . R . B l a k e , S . - B . I , i r n , a n d C.H. A g r i s , B i o c h e m i s t r y , 1 9 8 6 , 22, 5 0 9 . 2 . C.H. A g r i s , K . R . B l a k e , P . S . M i l l e r , M.P. R e d d y , a n d P . o . P . T s ' 0 , B i o c h e m i s t r y , 1 9 8 6 , 25, 6 2 6 8 . M. L e m a i t r e , B. B a y a r d , a n d B. L e b l e u , P r o c . N a t l . A c a g . S c i . U S A , 1 9 8 7 , 84, 6 4 8 . P.C. Z a m e c n i k , J . G o o d c h i l d , Y . T a q u c h i , a n d P.S. S a r i n , P r o c . N a t l . A c a d . S c i . USA, 1 9 8 6 , 83, 4 1 4 3 . P.F. T o r r e n c e , J . I m a i , J . C . J a m o u l l e , a n d K . L e s i a k , M e t h o d s Enzymol-., 1 9 8 6 , 112, 5 2 2 . H. S a m a n t a a n d P. L e n g y e l , M e t h o d s E n z m o l . , 1 9 8 6 , 119, 5 1 6 . S. Y o s h i d a a n d H . T a k a k u , CTem. P h a r m . y ~ u ~ .1,9 8 6 , 3 4 , 2 4 5 6 . E.I. Kvasyuk, T.I. Kulak, E.N. Kalinichenkz, T.L. Podkopaeva, I.A. Mikhailopulo, a n d W. Pf leiderer, B i o o r g . Khim., 1 9 8 5 , 11, 1 2 2 7 ( C h e m . A b s . , 1 9 8 6 , LO>, 60864). D. A l s t e r . D . B r o z d a , Y. K i t a d e , A . W o n q , R . C h a r u b a l a , W . P f l e i d e r e r , a n d P.F. Torrence, Biochem. Biophys. K e s . Commun., 1 9 8 6 , U & , 5 5 5 . P.F. T o r r e n c e , D. A l s t e r , S . H U S S , G. G o s s e l i n , a n d J.-L. I m b a c h , FEBS L e t t . , 1 9 8 7 , 212, 2 6 7 . J.C. J a m o u l l e , K . L e s i a k , a n d P.F. T o r r e n c e , B i o c h e m i s t r y , 1 9 8 7 , 26, 3 7 6 . J . C . J a m o u l l e a n d P.F. T o r r e n c e , E u r . J . Med. C h e m . - C h i m . T h e r . , 1986, 21, 517. K . L e s i a k a n d 7 . F . T o r r e n c e , J. B i o l . Chem., 1 9 8 7 , X 2 , 1 9 6 1 . B. B a y a r d , C. B i s b a l , a n d B. L e b l e u , B i o c h e m i s t r y , 1 9 8 6 , 25, 3730. D.K. L i u a n d G.F. O w e n s , B l o c h e m . B i o p h y s . Res. C o m _ m g f l . , 1987, 145, 291. P. Ross,%. W e i n h o u s e , Y . A l o n i , D . M i c h a e l i , P. W e i n b e r y e r O h a n a , R . M a y e r , S. B r a u n , E. d e V r o o m , G . A . v a n d e r M a r e l , J . H . v a n B o o m , a n d M . B e n z i m a n , N a t u r e ( L o n d o n ) , 1 9 8 7 , 222, 279. T. H a e r t l e a n d L.E. O r g e l , J . M o l . B i o l . , 1 9 8 6 , lEg, 7 7 . G.F. J o y c e a n d L.E. O r g e l , J . M o l . B i o l . , 1 9 8 6 , 188, 4 3 3 . E. K a n a y a a n d H . Y a n a q a w a , B i o c h e m i s t r y , 1 9 8 6 , 22, 7 4 2 3 . W.S. Z i e l i n s k i a n d L.E. O r g e l , N u c l e i c A c i d s R s . , 1 9 8 7 , 15, 1699. W.S. Z i e l i n k s i a n d L.E. O r g e l , N a t u r e ( L o n d o n ) , 1 9 8 7 , 327, 346. G. v o n K i e d r o w s k i , A n g e w . C h e m . , I n t . E d . E n q l . , 1 9 8 6 , 2 5 , 932. Howard, H.T. Miles, a n d J.S. Cohen, B. Borah, F.B. B i o c h e m i s t r y , 1 9 8 6 , 25, 7 4 6 4 . R.S. R e i d , A.L. S t u a r t , S . V G u p t a , L . J . P . L a t i m e r , B.L. Haug,! a n d J . S . L e e , , N u , c l e i c A c i d s R e s . , 1 9 8 7 , 15, 4 3 2 5 . L. Otvds, J. S a g i , T. K o v T F Z T a n d R.T. Walker, N u c l e i c A c i d s R e s . , 1 9 8 7 , 15, 1 7 6 3 . B. S i n g e r , N u c l e i c A c i d s R e s . , 1 9 8 6 , 6735. M. T a k a h a s h i , K . N e g i s h i , a n d H . H a y a t s u , B i o c h e m . B i o p h y s . R e s . Commun., 1 9 8 7 , 143, 1 0 4 . H.L. D u r a n a n d A.A. W a i i i , B i o c h i m . B i o p h y s . Ac>, 1 9 8 7 , 908, 60. Ng, N u c l e i c Acids R e s . , T . R . Webb, P. J h u r a n i , a n d P.G. 1987, IS, 3997.
14,
282 232 233 234 235
Orgunophosphorus Chemistry K.K. H o v a t t e r a n d 1i.G. M a r t i n s o n , g r o c . - N f i t l . Acad.-:ck USA, 1 9 8 7 , 813, 1 1 6 2 . G . G e b e y e h u , P.Y. R a o , P . S o o C h a n , [).A. S i m m s , a n d L . K l e v a n , g u c l e i c A c i d s Res., 1 9 8 7 , 4 5 1 3 ; see a l s o I.C. G l l l a m a n d G . M . T e n e r , A n a l . B i o c h e m . , 1 9 8 6 , 157, 1 9 9 . J . T . K u s m i e r e k , D.E. , J e n s e n , S.J. S p e n g l e r , H . S t o l a r s k r , a n d B. S i n g e r , J . O r g . C h e m . , 1 9 8 7 , 52, 2 3 7 4 . G. J i n g , A . L i u , a n d W . - C . L e u n g , _A n-a l . B i o c-.h__ em . , 1 9 8 6 , 155, 376. N. S u g l m o t o , H . K i c r r e k , S.M. F r e i e r , a n d D.H. Turner, B i o c h e m i s t r y , 1 9 8 6 , &>, 5 7 5 5 . D.C. T e s s i e r , R . B r o u s s e a u , a n d T. V e r n e t , A n a l . Bioc_hem., 1 9 8 6 , IsS, 1 7 1 . S.B. Z i m m e r m a n a n d B. H a r r i s o n , P r o c . N a t l . A c a d . S c i . U S A , 1987, 84, 1871; B. H a r r i s o n a n d S.B. Zimmerman, A n a l . B l o c h e m . , 1 9 8 6 , Pjg, 3 0 7 ; K . H a y a s h i , M . N a k a z a w a , Y . I s h i z a k i , N. H i r a o k a , a n d A. O b a y a s h i , N u c l e i c & i d s Hes., 1986, 7617. Q . - S . W a n g , P.M. B r o n s k i l l , S . - B . Z h a n g , a n d J.T.-F. Wong, A r c h . B i o c h e m . B i o p h y s . , 1 9 8 7 , ZSZ, 1 7 6 . O.N. K o r o l e v a , V . K . P o t a p o v , S.M. G r y a z n o v , T.S. O r e t s k a y a , V.G. M e t e l e v , a n d Z.A. S h a b a r o v a , M o i . B i o l . ( M o s c o w ) , 1 9 8 6 , LO, 4 8 9 (Chem. Abs. 1 9 8 6 , LO>, 1 1 1 4 1 6 ) . T. G o l d k o r n a n d D . J . P r o c k o p , N u c l e i c A c i d s R e s . , 1 9 8 6 , 91 7 1 . J.T. Kadonaga a n d R. T j i a n , P r o c . Natl. Acad. S c i . LJSa, 1 9 8 6 , 83, 5 8 8 9 . A . V l o q u e a n d S. A l t m a n , Proc. N a t l . A c a d . S c i . US&, 1 9 8 6 , 83, 5904. P . J . G r a b o w s k l a n d P.A. S h a r p , S c i e n c e , 1 9 8 6 , 123, 1 2 9 4 . R . K . E v a n s a n d B.E. H a l e y , B i o c h e m i s t r y , 1 9 8 7 , 26, 2 6 9 . R.K. E v a n s , J.D. J o h n s o n , a n d B.E. H a l e y , p r - 2 ~N a t l . A c a d . S c i . USA., 1 9 8 6 , 83, 5 3 8 2 . J . R . O w e n s , A.Y.M. W o o d y , a n d B.E. H a l e y , g i o c h e m . m3phys. R e s . Commun., 1 9 8 7 , I&, 964. C. A b e i j o n , J . M . C a p a s s o , D . T a l , W.F. V a n n , a n d C . B . H i r s c h b e r g , J. B i o l . C h e m . , 1 9 8 6 , 11374. Y. Huang, J.M. B a i l e y , a n d R.F. C o l m a n , J . B i o l . C h e m . , 1986, 14100. S . P . B a t r a a n d R . F . C o l m a n , J . B i o l . C h g m . , 1 9 8 6 , /6!, 15565. J.C. Wu, H. C h u a n , a n d J . H . Wang, J. B i o l . Chem., 1 9 8 7 , 262, 5 1 4 5 . K.B. M u n s o n , M . J . S m e r d o n , a n d R . G . Y o u n t , l33whemistry, 1 9 8 6 , 22, 7 6 4 0 . D . G . K n o r r e , V.V. V l a s s o v , V.F. Z a r y t o v a , a n d G . G . K a r p o v a , Adv. Enzyme R e g u l . , 1 9 8 5 , 24, 2 7 7 ; V.V. Vlassov, A.A. G o d o v i k o v , N . D . K o b e t s , A.S. R y t e , L.V. Y u r c h e n k o , a n d A . G . B u k r i n s k a y a , i b i d , 1 9 8 5 , 24, 3 0 1 . M.A. G r a c h e v , T . I . K o l o c h e v a , E.A. L u k h t a n o v , a n d A . A . M u s t a e v , E u r . J . B i o c h e m . , 1 9 8 7 , i52, 1 1 3 . Yu.A. O v c h i n n i k o v , K . N . D z h a n d z u g a z y a n , S . V . L u t s e n k o , A.A M u s t a y e v , a n d N . N . M o d y a n o v , FEBS L e t t . , 1 9 8 7 , 211, 1 1 1 . G.T. B a b k i n a , A.G. V e n i a m i n o v a , S.N. V l a d i m i r o v , G.G. Karpova, V.I. Y a m k o v o y , V.A. B e r z i n , E.J. G r e n , a n d J.E. C i e l e n s , F E B S L e t t . , 1 9 8 6 , 2?2, 3 4 0 . 0.1. L a v r i k , A.S. L e v i n a , G . A . N e v i n s k y , a n d V . N . Podust, FEBS L e t t . , 1 9 8 7 , 225. S.V. D o f o n i n , 0.1. L a v r i k , G . A . N e v i n s k y , a n d V . N . P o d u s t , FEBS L e t t . , 1 9 8 7 , 221. S . L . B e r n h a r d a n d C.F. Meares, B i o c h e m i s t r y , 1 9 8 6 , 6397.
iz,
I _ _ -
2 36 2 37
238
239 240 241 242 243 244 245 246 247 248 249 250 251 2 52 253
254 255 256 257
258 259
14,
14,
Xl,
Xl,
2l5,
s,
6: Nucleotides und Nucleic Acids 260
261 262 263 264 265 266 267 268 269 270
27 1 272 273 274 275 276 277 278 279 28 0 281 282 283 284 285 286 287 288 289 290 291 292
2 83
Bartholomew, M.E. Dahmus, and C.F. Mearcs, B i o l . C h e m . , 1 9 8 6 , 251, 1 4 2 2 6 . Y.L. Dubreuil, L. K a b a , E. H a j n s d o r f , a n d A . Favre, B i o c h e m i s t r y , 1 9 8 6 , 22, 5 2 7 6 . 0 . L e o n a n d L.H. S c h u l m a n , B i o c h e m i s t r y , 1 9 8 7 , 26, 1 9 3 3 . H. Wolfes, A. Fliess, F. Winkler, a n d A. Pinqoud, E u r . J . B i o c h e r n . , 1 9 8 6 , 129, 2 6 7 . A. R e i s f e l d , J . M . R o t h e n b e r g , E.A. B a y e r , a n d M . W i l c h e k , Biochem. Biophys. Res.Commn., 1 9 8 7 , 519. A.H. Al-Hakim and R H u l l , N u c l e i c A c i d s Res., 1 9 8 6 , 14, 9965. B.C.F. C h u , F.R. K r a m e r , a n d L.E. O r g e l , N u c l e i c A c i d s R e s . , 1986, 14, 5591. R.H. P s c h e i d t a n d B.D. W e l l s , J. B i o l . C h e m . , 1 9 8 6 , 261, 7253. R.L. J o s h i , H.G. F a u l h a m m e r , A . L . H a e n n i , a n d M. S p r i n z l , FEBS L e t t . , 1 9 8 6 , 228, 1 8 9 . P. C a r b o n a n d J . P . E b e l , N u c l e i c A c i d s R e s . , 1 9 8 7 , 1 5 , 1 9 3 3 . D.B. D i x , W.L. Wittenberg, 0.C. Uhlenbeck, a n d H.c. T h o m p s o n , J . B i o l . C h e m . , 1 9 8 6 , 261, 1 0 1 1 2 . A.G. B r u c e , J . F . A t k i n s , a n d R.F. G e s t e l a n d , Proc. Natl. Acad. S c i . z A , 1 9 8 6 , 83, 5 0 6 2 . L.A. B a r e a n d O.C. U h l e n b e c k B i o c h e m i s t r y , 1 9 8 6 , 25, 5 8 2 5 . Y. J i n , M . Q i u , W . L i , K . Z e n g , J . B a o , P. G o n g , R . Wu, a n d D. W a n g , A n a l . B i o c h e m . , 1 9 8 7 , 161, 4 5 3 . B. V a n H o u t e n , H . G a m p e r , J . E . H e a r s t , a n d A . S a n c a r , J . B i o l . C h e m . , 1 9 8 6 , 261, 1 4 1 3 5 . B. V a n H o u t e n , H . G a m p e r , S.R. H o l b r o o k , J . E . H e a r s t , a n d A. S a n c a r , P r o c . N a t l . Acad. S c i . USA, 1 9 8 6 , 83, 8 0 7 7 . D.D. L a s k o , A . K . B a s u , F . F . K a d l u b a r , F.E. E v a n s , J . 0 . L a y , J r . , a n d J . M . E s s i g m a n n , B i o c h e m i s t r y , 1 9 8 7 , 26, 3 0 7 2 . M. T o m a s z , D. C h o w d a r y , R . L i p m a n , S. S h i m o t a k a h a r a , D. V e i r o , V. W a l k e r , a n d G.L. V e r d i n e , P r o c . N a t l . Acad. S c i . USA, 1 9 8 6 , 83,6702. M. T o m a s z , H . L i p m a n , D . C h o w d h a r y , J . P a w l a k , G.L. Verdine, a n d K . N a k a n i s h i , S c i e n c e , 1 9 8 7 , 225, 1 2 0 4 . M. T o m a s z , R . L i p m a n , M . S . L e e , G.L. Verdine, and K. N a k a n i s h i , B i o c h e m i s t r y , 1987, 26, 2010. H . S e t o , T. T a k e s u e , a n d T . I k e m u r a , B u l l . C h e m . S O C . J p n . , 1 9 8 5 , Sg, 3 4 3 1 . S. K u m a r , N.D. Sharma, R.J.H. D a v i e s , D.W. P h i l l i p s o n , a n d J . A . McCloskey, N u c l e i c Acids Res., 1987, 1199. J.-S. T a y l o r a n d M.P. C o h r s , J . A m . C h e m . S O C . , 1 9 8 7 , 2834. E.A. F u r l o n g , T . J . J o r g e n s e n , a n d W.D. H e n n e r , B i o c h e m i s t r y , 1 9 8 6 , 22, 4 3 4 4 . M. Kuwabara. 0. Inanami, D. Endoh, a n d F. S a t o , B i o c h e m i s t r y , 1 9 8 7 , 26, 2 4 5 8 . R . A . F l o y d , J . J . W a t s o n , J . H a r r i s , M . W e s t , a n d P.K. W o n g , B i o c h e m . B i o p h y s . R e s . Commun., 1 9 8 6 , 122, 8 4 1 . K . K o h d a , M . T a d a , H . K a s a i , S. N i s h i m u r a , a n d Y . K a w a z o e , B i o c h e m . B i o p h y s . R e s . Commun., 1 9 8 6 , 132, 6 2 6 . M . D i z d a r o g l u , B i o c h e m . J . , 1 9 8 6 , 238, 2 4 7 . M. D i z d a r o g l u , M.-L. D i r k s e n , H. J i a n g , a n d J . H . R o b b i n s , Biochem. J . . , 1 9 8 7 , 2 1 ,929. M. D i z d a r o g l u a n d D.S. B e r g t d l d , A n a l . B i o c h e m . , 1 9 8 6 , 155, 182. A.M. Maxam a n d W . G i l b e r t , M o l . B i o l . ( M o s c o w ~ , 1 9 8 6 , 20, 5 8 1 ( C h e m . A b s . , 1 9 8 6 , LO>, 1 3 0 3 1 5 ) . J . C . Morris, A n a l . B i o c h e m . , 1 9 8 7 , 1. A . Wada, N a t u r e ( L o n d o n ) , 1 9 8 7 , 326, 7 7 1 . B.
J.
Mz,
2,
163,
Lo?,
Organophosphorus Chemistry
2 84 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 3 10 31 1 312 31 3 314
315 316 317 318 319 32 0 321 322 323 324 325
s., 868,
W - B . M a t t e s , J.A. H a r t l e y , a n d K.W. Kohn, ~ i o c h & p~ , i o p h y 1986, 71. B . J . B . A m b r o s e , M . M . C a s t r o , a n d R.C. P l e s s , !pal. ~iochem., 1 9 8 6 , !I, 2 4 . n a l . Biochem., R.L. S t a l l a r d , U . C e r t a , a n d W . B a n n w a r t - h , A --- - -- - .. 1 9 8 7 , Jl?, 1 9 7 . M. S p e e k , H . I l v e s , a n d A . L i n d , A n a l . B i o c h e ; . , 1986, 158, 242. G . A . K a s s a v e t i s , P.G. Z e n t n e r , a n d E . P . G e i d u s c h e k , J . Blol. 1986, 14256. W. A n s o r q e , B. S p r o a t , J . S t e g e m a n n , c. S c h w a g e r , a n d M. Zenke, N u c l e i c - A c i d s H e s . , 1987, 4593. D . M . M u e l l e r a n d G.S. G e t z , A n a l . B i o c h e m . , 1 9 8 7 , 521. B.L. l v e r s o n a n d P.B. D e r v a n , J . A m . C h e m . S O C . , 1 9 8 7 , 109, 1241. H . I n o u e , Y . H a y a s e , S . I w a i , a n d E. O h t s u k a , F E B S L e y t , , 1987, 327. S. S h i b a h a r a , S. M u k a i , T. N i s h i h a r a , H . I n o u e , E. O h t s u k a , a n d H. M o r i s a w a , N u c l e i c Acids R e s . , 1987, 4403. R. K a r w a n a n d U. W i n t e r s b e r q e r , FEBS L e t t . , 1 9 8 6 , 206, 1 8 9 . S. L O r e n Z , R . K . H a r t m a n n , N . P i e l , N. U l b r i c h , a n d V.A. Erdmann, E u r . J. B i o c h e m . , 1 9 8 7 , 1 6 3 , 239. S.L. B e r q e r , A n a l . B i o c h e m . , 1 9 8 7 T - m , 2 7 2 . J . M i n s h u l l a n d T. H u n t , N u c l e i c A c i d s R e s . , 1986, 14, 6433. N . B i s c h o f b e r g e r , P.G. N g , T.R. W e b b , a n d M . D . Matteucci, Nucleic Acids Res., 1987, 709. W. S a u e r b i e r , B i o c h e m . B i o p h y s . R e s . Commun., 1986, 204. 383. S.M. H e c h t , A c c . Chem. R e s . , 1 9 8 6 , S. A j m e r a , J . C . Wu, L. W o r t h J r . , L.E. R a b o w , J . S t u b b e , a n d J.W. K o z a r i c h , B i o c h e m i s t r y , 1986, 25, 6586. G.H. McGall, L.E. Rabow, J . S t u b c e , a n d J.W. K o z a r i c h , J . A m . Chem. S O C . , 1 9 8 7 , 1 0 9 , 2 8 3 6 . R.M. B u r g e r , S.J. ProjanT-S-B. Horwitz, and J. Peisach, J . B i o l . C h e m . , 1 9 8 6 , 261, 1 5 9 5 5 . I . S a i t o , T. M o r i i , a n d T. M a t s u u r a , J. O r g . _ C_ h e_m _., 1 9 8 7 , 52, 1008. L. R a b o w , J. S t u b b e , J . W . Kozarich, and J.A. G e r l t , J . Am. Chem. S O C . , 1 9 8 6 , 7130. H . S u q i y a m a , R.E. K i l k u s k i e , L.-H. C h a n g , L.-T. M a , S.M. H e c h t , G.A. v a n d e r M a r e l , a n d J . H . v a n B o o m , J . A m . C h e m . Soc., 1986, 3852. J.W. L o w n , S.M. S o n d h i , C.-W. O n g , A. S k o r o b o g a t y , H. K i s h i k a w a , a n d J.C. D a b r o w i a k , B i o c h e m i s t r y , 1 9 8 6 , 5111. Y. Hashimoto, H. Iijima, Y. Nozaki, a n d K. Shudo, B i o c h e m i s t r y , 1 9 8 6 , 25, 5 1 0 3 . D . S . S i q m a n , A c c . Chem. R e s . , 1 9 8 6 , 180. 1 9 8 7 , Lgz, T . E . G o y n e a n d D.S. S i q m a n , J . A m . C h e m . SOC., 2846. M. K u w a b a r a , C. Y o o n , T . G o y n e , T . T h e d e r a h n , a n d D . S . S i g m a n , B i o c h e m i s t r y , 1 9 8 6 , 25, 7 4 0 1 . L.S. Kappen, T.E. E l l e n b e r q e r , and I.H. Goldberq, Biochernistr , 1987, 26, 384. M U l l e Z , A.L. Raphael, and J.K. Barton, Proc. N a t l . B.C. Acad. S c i USA, 1 9 8 7 , 1764. J.H. G r i f f i n a n d P.B. D e r v a n , J . A m . C h e m . S O C . , 1 9 8 6 , 5008. D. M e n d e l a n d P.B. D e r v a n , P r o c . N a t l . Acad. S c i . USA, 1 9 8 7 , 84, 910. J.A. McClellan, E. P a l e c e k , a n d D.M.J. L i l l e y , Nucleic Acids Res., 1986, 9291.
m.,
261,
15,
215,
162,
15,
15,
141,
19,
log,
108,
25,
19,
84,
log,
14,
~
6: Nucleotides and N u d e i c .4cids 3 26 327 328 329 330 331 332 333 334 335 3 36 3 37 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 395 36 0 361
285
T u l l i u s a n d B.A. D o m b r o w s k i , P r o c . N a t l . A c a d . Stir 1986, 83, 5469. B. W a r d , A . - C k o r o b o g a t y , a n d J.C. D a b r o w i a k , ~ -i o c-hem -istry, 1986, 25, 6 8 7 5 . T. L e D o a n , L . P e r r o u a u l t , C . H e l e n e , M . C h a s s l g n o l , a n d N.T. T h u o n g , B i o c h e m i s t r y , 1 9 8 6 , 2 5 , 6 7 3 6 . A.J. B l a c k e r , J. J a z w i n s k i , T . - M T L e h n . a n d F.X. W l l h c l m . J . Chem. S O C . , Chem. Commun., 1 9 8 6 , 1 0 3 5 . D . R . P h i l l i p s a n d D.M. C r o t h c r s , B ' g g h e m i s t r y , 1 9 8 6 , 2>, 7355. B.L. B a s s a n d T.R. C e c h , B-_i o c -_ h em-i_s tr y , 1 9 8 6 , 25, 4 4 1 3 . I . I n o u e , F.X. S u l l i v a n , a n d T.R. C e c h , J . M o l . B i o l . , 1 9 8 6 , __ 189, 143. K.-P. Kister a n d W.A. E c k e r t , N u c l e i c A c i d s E.,1 9 8 7 , 1 5 , 1905. P . S . K a y a n d T . I n o u e , N ~ ~ A~c i d gs Res., ~ c 1987, 15, 1559. G. G a r r i g a , A.M. Lambowitz, T.I. Inoue, a n d T.R. Ccch, N a t u r e ( L o n d o n ) , 1 9 8 6 , 322, 8 6 . P . S . K a y a n d T. I n o u e , N a t u r e ( L o n d o n ) , 1 9 8 7 , >&?, 3 4 3 . J . W . S z o s t a k , N a t u r e ( L o n d o n ) , 1 9 8 6 , E, 8 3 . A . J . Z a u g , M . D . B e e n , a n d T.K. C e c h , N a t u r e ( L o n d n J , 1986, 324, 4 2 9 . A . J . Z a u g a n d T.R. C e c h , B i o c h e m i s t r y , 1 9 8 6 , 25, 4 4 7 8 . T.R. C e c h , P r o c . N a t l . A c a d . S c i . US&, 1 9 8 6 , 83, 4 3 6 0 . E . G . N i s b e t , N a t u r e ( L o n d o n ) , 1 9 8 6 , 322, 2 0 6 . P . A . S h a r p , S c i e n c e , 1 9 8 7 , 235, 7 6 6 . H . H o r n i g , M . A e b i , a n d C. W e i s s m a n n , N a t u r e ( L o n d o n ) , 1 9 8 6 , 324, 589. G.A. F r e y e r , J. A r e n a s , K.K. P e r k i n s , H.M. F u r n e a u x , L. Pick, B. Young, R . J . Roberts, a n d J. H u r w i t ~ , J . B i o l . Chem., 1 9 8 7 , 262, 4 2 6 7 . F.K. C h u , G.F. M a l e y , a n d F . M a l e y , B i o c h e m i s t r y , 1 9 8 7 , 26, 3050. J.M. B u z a y a n , W.L. G e r l a c h , a n d G. B r u e n i n g , N a t u r e ( L o n d o n ) , 1 9 8 6 , 322, 3 4 9 ; J . M . B u z a y a n , A . H a m p e l , a n d G . B r u e n i n g , N u c l e i c A c i d s R e s . , 1 9 8 6 , 14, 9 7 2 9 . T.A. S h v e d o v a , G . A . K o r n e e v a , V.A. O t r o s h c h e n k o , a n d T.V. Venkstern, Nucleic Acids Res., 1987, 1745. C. R e i c h , K . J . G a r d i n e r , G . J . O l s e n , B. P a c e , T.L. M a r s h , a n d N . R . P a c e , J. B i o l . C h e m . , 1 9 8 6 , 261, 7 8 8 8 . Y.-C. T s e - D i n h , J . B i o l . C h e m . , 1 9 8 6 , 261, 1 0 9 3 1 . H.R. K a l b i t z e r , i n 'Metal I o n s i n B i o l o g i c a l S y s t e m s , V o l . 22 ( E d . H. Sigel), D e k k e r , N e w Y o r k , 1 9 8 6 . J. F e u e r s t e i n , H . R . K a l b i t z e r , J . J o h n , R.S. G o o d y , a n d A . W i t t i n g h o f e r , E u r . J . B i o c h e m . , 1 9 8 7 , 162, 4 9 . D.T. L o d a t o a n d G . H . R e e d , B i o c h e m i s t r y , 1 9 8 7 , 26, 2 2 4 3 . A.L. S h o r t e r . T . P . H a r o m v , T. S c a l z o - B r u s h , W.B. K n i q h t , D. Dunaway-Mariano, a n d M . S u n d a r a l i n g a m , B i o c h e m i s t r y ; 1 9 8 7 , 26, 2060. T.P. H e r r m a n n , P. G a n g o l a , a n d A.E. Shamoo, E u r . J . B i o c h e m . , 1 9 8 6 , Yjg, 5 5 5 . M. R o n j a t , J . J . L a c a p e r e , J.-P. D u f o u r , a n d Y . D u p o n t , J . B i o l . C h e m . , 1 9 8 7 , 262, 3 1 4 6 . T. T h e o p h a n i d e s a n d M. P o l i s s i o u , M a n e s i u p , 1 9 8 6 , 5 , 2 2 1 . J . L . L e r o y a n d M . G u e r o n J . A m . C h e m g S o c . , 1 9 8 6 , LlH, 5 7 5 3 . J.H. T o n e y , C.P. B r o c k , a n d T . J . M a r k s , J . A m . C h e m . S O C . , 1 9 8 6 , il3, 7 2 6 3 . H . S i g e l , E u r . J . B i o c h e m . , 1 9 8 7 , 165, 6 5 . H. S i g e l , K . H . S c h e l l e r , V. Scheller-Krattiger, a n d B. P r i j s , J. A m . C h e m -_-_ . S o c . , 1 9 8 6 , Lgg, 4 1 7 1 . H.A. Taimir-Rlahi, M.J. B e r t r a n d , a n d T. Theophanides, C a n . J . C h e m . , 1 9 8 6 , 64, 9 6 0 . T.D.
-_ USA,
15,
Organophosphorus Chemistry
286 362 363 364 365 366 367 368 369 37 0 371 372 373 374 375 376 377 378 379 38 0 381 382 383 384 385 386 387 388
C.F.G.C. G e r a l d c s , M. M a r g a r i d a , a n d C.A. C a s t r o , J. I n o r g . Biochem., 1 9 8 6 , 2 8 , 319. N.H. K o l o d n y a n d L . J . Col-1-ins, J . B i o l . C h e m . , 1 9 8 6 , 251, 14571. J . K . B a r t o n , S c i e n c e , 1986, G , 727. H.-Y. M e i a n d J.K. B a r t o n , __J. Am. C h e m --. S O C . , 1 9 8 6 , 128, 7414. H . H a r d a n d B. NordGn, B i o p o l y m e r s , 1 9 8 6 , 2 5 , 1 2 0 9 . R.N. B o s e , R.D. C o r n e l i u s , and-R.E. V i o l a , J . Am. Chem. S O C . , 1 9 8 6 , Log, 4 4 0 3 . M . D . R e i l y a n d L.G. M a r z i l l i , J. A m . C h e m . S O C . , 1 9 8 6 , 128, 6785. M.D. R e i l y a n d L.G. M a r z i l l i , J . A m . C h e m . Soc., 1 9 8 6 , L O , 8299. A. B a c h m e i e r , G. J u s t , a n d E. H o l l e r , F u r . J. B i o c h e m . , 1986, 621. J.L. v a n d e r Veer, G.J. L i g t v o e t , H . v a n d e n E l s t , a n d J . R e e d i j k , J . A m . C h e m . S O C . , 1 9 8 6 , 1.8, 3 8 6 0 . B. v a n H e m e l r y c k , E. G u i t t e t , G. C h o t t a r d , J . - P . G i r a u l t , F. L a l l e m a n d , J. I g o l e n , a n d J.-C. H e r m a n , T. H u y n h - D i n h , J . - Y . C h o t t a r d , B i o c h e m . B i o p h y s . . R e s . Commun., 1 9 8 6 , 138, 7 5 8 . A.L. P i n t o , L.J N a s e r , J . M . E s s i g m a n n , a n d S.J. L i p p a r d , J . Am. Chem. S O C . , 1 9 8 6 , 7405. W. S c h a l l e r , H. K e i s n e r , a n d E. H o l l e r , B i o c h e m i s t r y , 1 9 8 7 , 26, 943. J.-L. B u t o u r a n d N.P. J o h n s o n , B i o c h e m i s t r y , 1 9 8 6 , 25, 4 5 3 4 . A . E a s t m a n , B i o c h e m i s t r y , 1 9 8 6 , 25, 3 9 1 2 . J.-M. M a l i n g e a n d M. L e n g , P r o c . N a t l . Acad. S c i . USA, 1 9 8 6 , 83, 6317. 9. W a r d a n d J . C . D a b r o w i a k , J . A m . C h e m . S O C . , 1 9 8 7 , 109, 3810. L.W. M c L a u g h l i n , T r e n d s A n a l . C h e m . , 1 9 8 6 , 5 , 2 1 5 . P.A.D. E d w a r d s o n , C.R. Lowe, a n d T . A t k i n s o n , J . C h r o m a t o g r . , 1 9 8 6 , 338, 3 6 3 . K. M a k i n o , H . O z a k i , T. M a t s u m o t o , T . T a k e u c h i , T. F u k u i , a n d H. H a t a n o , N i p p o n K a g a k u - K a i s h i , 1 9 8 6 , 1 0 4 3 ( C h e m . A b s . , 1 9 8 7 , 196, 1 9 6 7 1 9 ) . K.L. B r o w n , J . Am. Chem. S O C . , 1 9 8 7 , 2277. J . A . W a l m s l e y a n d B.L. S a g a n , B i o 01 mers, 1 9 8 6 , 25, 2 1 4 9 . W. K l a u s , I . S c h l i c h t l i n g , R* .yTA. W i t t i n g h o f e r , P. 1 9 8 6 , 367, R d s c h , a n d K.C. Holmes, B i o l . Chem. H o p p e - S e y l e r , 781. V . V . K u p r i y a n o v , N . V . L y u l i n a , A. Ya. S t e i n s c h n e i d e r , M . Yu. Z u e v a a n d V.A. S a k s , FEBS L e t t . , 1 9 8 6 , zgg, 8 9 . L. E r n s t , N u c l e i c A c i d s R e s . , 1 9 8 7 , 361. R . V . H O S U r , C u r r . S c i . , 1 9 8 6 , 55, 5 9 7 . V. S k l e n a r , H . M i y a s h i r o , G. Z o n , H.T. M i l e s , a n d A. B a x , FEBS L e t t . , 1 9 8 6 , Z g g , 9 4 ; A . O t t e r , J.W. L o w n , a n d G . Koty';;ioysgn. ,Reson. C h e m . , 1 9 8 6 , 24, 2 5 1 ; M . D e l e p i e r r e , B. d E s t a i n t o t , J . I g o l e n , a n d B.P. Roques, 1986, 571; S. T a k a h a s h i , N. Eur. J . Biochem., N a g a s h i m a , Y. N i s h i m u r a , a n d M . T s u b o i , C h e m . P h a r m . D u l l . , 1 9 8 6 , 34, 3 9 8 7 . V. S k l e n a r , A. B a x , a n d G. Z o n , J. A m . C h e m . S O C . , 1 9 8 7 , 109, 2221. M. B o w e r , M.F S u m m e r s , B. K e l l , J . H o s k i n s , G . Z o n , a n d W . D . W i l s o n , N u c l e i c Acids R e s . , 1987, 3531. F. C e o l i n , F. B a b i n , T. H u y n h - D i n h , J . I g o l e n , G . B l o c h , S. Tran-Dinh, a n d J.M. N e u m a n n , J. A m . C h e m . S o c . , 1 9 8 7 , LO_), 2539, J. K y p r , V . S k l e n a r , a n d M . V o r l i c k o v a , B i o p o l y m e r s , 1 9 8 6 , 25, 1 8 0 3 . -
151,
122,
109,
15,
lal,
389 39 0 391 392
15,
6: Nucleotides and Nucleic Acids 393 394
395 396 397 398 399
4 00 401 402 403 404 405 40 6 407 408 409 4 10 411
287
D.L. B a n v i l l e , L.G. M a r z i l l i , a n d W.D. W i l s o n , ___ B i o c_ h_ emistry, 1 9 8 6 , 25, 7 3 9 3 . D.L. B a n v i l l e , L.G. M a r z i l l i , <J.A. S t r i c k l a n d , a n d W . D . W i l s o n , H i o p o l y m e r s , 1 9 8 6 , 2 5 , 1 8 3 7 ; L.G. M a r z i l l i , D.1,. Banville,-c. ~ , n ~ - W~. D . ~ W d i i s o n , J. Am. Chem. SOC., 1 9 8 6 , 108, 4188. W.D. W i l s o n , R.L. J o n e s , G . Z o n , D.L. B a n v i l l e , a n d I,.G. M a r z i l l i , B i o p o l y m e r s , 1 9 8 6 , 25, 1 9 9 7 . W.D. W i l s o n , R.L. J o n e s , G . Z o n , E.V. S c o t t , D.L. B a n v i l l e a n d L.G. M a r z i l l i , J . A m . C h e m . S O C . , 1 9 8 6 , _1_gg,7 1 1 3 . S. T a k a h a s h i , N. N a g a s h i m a , Y. N i s h i m u r a , a n d M . Tsuboi, Chem. P h a r m . B u l l . , 1 9 8 6 , 24, 4 4 9 4 . G . K . R a d d a , S c i e n c e , 1 9 8 6 , 233, 6 4 0 . L. G r o t j a h n , S p r i n g e r Proc. Phys., 1986, 9 (Chem. A b s . , 1 9 8 6 , l_O> 2, 2 7 2 1 4 1 7 L.R. P h i l l i p s , K . A . G a l l o , G . Z o n , W . J . S t e c , a n d 8. U z n a n s k i , O r g . M a s s S p e c t r o m . , 1 9 8 5 , 20, 7 8 1 ; F. S o e l e r a n d K . J a n k o w s k i , S p e c t r o s c o p y , 1 9 8 5 , 4, 3 5 . A.M. Hoqq, J.G. K e l l a n d , J.C. Vederas, a n d C. Tamm, H e l v . C h i m . A c t a . , 1 9 8 6 , 63, 9 0 8 . R.L. C e r n y , M.L. G r o s s , a n d I,. G r o t j a h n , A n a l . B i o c h e m . , 1 9 8 6 , 156, 4 2 4 . A. S a n d s t r B m a n d J . C h a t t o p a d h y a y a , J . C h e m . S O C . , C h e m . Commun., 1 9 8 7 , 8 6 2 . D.H. R u s s e l l , A n a l . Chem., L.M. M a l l i s , F.M. R a u s h e l , a n d 1 9 8 7 , 52, 9 8 0 . W. S a e n g e r , W . N . H u n t e r , a n d 0. K e n n a r d , N a t u r e ( L o n d o n ) , 1 9 8 6 , 324, 3 8 5 . S. A d a m , P . B o u r t a y r e , J . L i q u i e r , J . A . ' r a b o u r y , a n d E. T a i l l a n d i e r , B i o p o l mers, 1 9 8 7 , 2 6 , 2 5 1 . P.B. K e l l e r a n d K . A Y H a r t m a n , N u z e i c A c i d s R e s . , 1 9 8 6 , 88167. J . A . M c C l a r i n , C.A. F r e d e r i c k , B.-C. W a n g , P. G r e e n e , H . W . B o y e r , J . G r a b l e , a n d J . M . R o s e n b e r g , _S cie -n. ce, 1 9 8 6 , 234, 1 5 2 6 . H.J.S. Dawkins, D.J. F e r r i e r , a n d T.L. Spencer, N u c l e i c Acids R e s . , 1 9 8 7 , 1 5 , 3634. M u g a v e r o , a n d J. J.C. S u t h e r l a n d , D.C. M o n t e l e o n e , J.H. Trunk, A n a l . B i o c h e m . , 1 9 8 7 , la, 5 1 1 . G . C h u , D. V o l l r a t h , a n d R . W . D a v i s , S c i e n c e , 1 9 8 6 , 224, 1 5 8 2 ; F.D. M c P e e k J r . , J . F . C o y l e - M o r r i s , a n d R.M. G e m m i l l , A n a l . B i o c h e m . , 1 9 8 6 , 156, 2 7 4 . J.A. Sokoloski, M.M. J a s t r e b o f f , J.R. Bertino, A.C. 1 9 8 6 , ISg, S a r t o r e l l i , a n d R. N a r a y a n a n , A n a l . B i o c h e m . ,
14,
272.
412 413 414 415
T.M.
84, B.
K l e i n ,
1978.
Theveny
E.D.
a n d B.
Wolf,
Revet,
R.
Wu,
a n d
N u c l e i c A c i d s Res.,
J.C.
1987,
S a n f o r d ,
15, 9 4 7 .
7
Ylides and Related Compounds BY B. J . WALKER Introduction Although the mechanism of the Wittig reaction continues t o be a topic of wide interest and a number of novel synthetic applications o f ylides have been reported (notably an increasing use o f arsonium ylides) the year has been mainly one of consolidation. 1
2 Methylenephosphoranes Preparation and Structure.- The electronic structures and energies of a number of model fluorine-substituted ylides (e.g. - 1) have been determined from ab initio calculations at the SCF level.’ M.O. calculations of ylide structures are also included in a number of reports dealing mainly with theoretical studies o f reactions of ylides (see section 2.2.1). A study of the kinetic acidity (through H-D exchange) o f a small number of tetraalkylphosphonium salts has been reported. A review of methods of generation o f ylides by desilylation reactions contains some information concerning phosphorus ylides. The previously unknown arenecarbodithioate ylides (2) have been phosphonium ylides ( 3 ) prepared and their reactions ~ t u d i e d . The ~ have been silylated and deprotonated to give the corresponding silylated ylides ( 4 ) .5 Attempts to convert the chlorosilylated ylides (4, R 2 = C 1 ) into the cumulene ylides ( 6 ) by dehydrohalogenation led instead to formation of the cyclic ylides (5) (Scheme 1). the structure of which was confirmed by &-ray analysis in one case. The C-substituted diphosphetes (7) have been synthesised and their chemistry and n.m.r . spectra studied.6 The reaction of tri(4-rnethoxypheny1)phosphine with neo-pentyl iodide gives a mixture o f eight different phosphonium salts, probably via intermediate ylides of the type (81.’ 2.2 Reactions of Methylenephosphoranes -_ 2.2.1 Aldehydes.- A recent ab initio theoretical study compares the reactivity o f the simplest phosphonium and sulphonium ylides towards formaldehyde.8 The calculations predict stability f o r
2.1
oxaphosphetan, but not f o r betaine, intermediates and suggest that the different reactivity of the two types of ylide is due to both kinetic and thermodynamic reasons. An important factor in alkene 288
7: Ylides and Related Compounds
289
S
II
P%P=CHSCAr
Reagents:
I,
1 2 R2R SiCl;
1 1 ,
K H , THF,
111,
ButLi
,
TMEDA
Scheme 1 R*
(7 R
2
= Ph , Me
X 3 P =CH( CHz),CH,
( 9 ) X - Ph (10) X = n-Butyl
290
Organophosphorus Chemistry
H
I
Reagen+s : i , B u L i ; i i , T i ( O P r ' I L ; i l l , R C H O ; t v , M e I
Scheme 2 CH,CH, COO-
I
PhZPcCHR
CHSMe
Reagents : i , ( C F CH 0 ) P ( 0 ) C H M c C 0 2 M e , K H M O S ;
3
2
2
(16)
Scheme 3
,
PhjP=CMeCOZMc
7: Rides and Related Compounds
29 1
formation from the four-membered Cyclic intermediate appears to be
facile exchange of oxygen and carbon between apical and equatorial sites via pseudorotation; this is much more difficult for sulphuranes than for oxaphosphetans. A study of the kinetics and linear free energy relationships of the reaction of semi-stabilized ylides with substituted benzaldehydes has been reported.' The authors conclude that the alkene formation step (rather than oxaphosphetan formation) is most likely to be the rate-determining step. Maryanoff and Reitz have reviewed aspects of their excellent work on the mechanism of the wittig reaction of reactive y1ides.l' They conclude that the increase in (E_)-alkene formed from trialkylphosphonium ylides over that formed from triphenylphosphonium ylides is mostly due t o thermodynamic control (i.e. greater reversibility of oxaphosphetane to ylide and aldehyde in the former case). However, Vedejs has now shown that in some cases (El-alkene can become the kinetically-favoured product. A very extensive kinetic study of the Wittig reaction of benzaldehyde with triphenyl-(9) and tri-n-butyl-(10)-butylidene ylides using 13C, ' H and 31P n.m.r. spectroscopy has provided a detailed picture of the processes involved .I2 These results have confirmed earlier reports that in many cases the relative proportions of cis- and transoxaphosphetans observed at low temperature (where elimination to alkene is precluded) do not correspond to the final proportions of and (El-alkenes obtained. A a'synergistic'teffect between Cisand trans-oxaphosphetans is again proposed to explain increases in the proportions of (E)-alkene. however no suggestion is made as to the nature of this effect. In spite of the care with which these experiments have been designed and carried out. one is tempted to suggest that a s o far unobserved isomerisation mechanism is contributing to the proportions of alkene isomers formed in some cases. Concentration also appears to have a marked effect on the stereochemistry of the Wittig reaction under certain conditions.13 At low concentrations reactions of 1:l y1ide:lithium salt mixtures with aldehydes provide alkene stereochemistries identical to "salt-free" reactions and proportions of (E)-alkene only begin to increase when a certain concentration is exceeded. Although changes in lithium salt-ylide ratios are known to effect stereochemistry. these latest results indicate that many reported variations in stereochemistry in Wittig reactions will have to be reassessed. Methods for controlling stereochemistry in the Wittig reaction
(z)-
continue to be reported,
Reaction of the titanium derivative (11)
292
Reagents:
Organophosphorus Chemistry
i , R 3 S i O T f , P h 3 P ; i i , Bu"Li , T H F , -78 "C THF
,
0
Scheme
Reagents : i
,
;
III,
R C H O ; iv,(Bu"LN+F,-
OC
R3SiOTf
, Ph3P
4
; i i ,BunLi ; iii , 0HC(CH2),-
Scheme 5
C02Me
7: Ylides and Related Compounds
293
OR R’
A
CHO
+
OR
OR
OSi MePh,
OSiMePh2
s y n -(19l
u n t i - (19)
R3
R‘
R3
R3
R2
OSiMcPh,
R2
syn- ( 2 1 1
R ( C H=CN ),CHO n=0,l
Ph
+
AS CH ZCH=CH
unti-(21)
COCH,
Br-
(22)
i
K2C03, Et20
OSiMePh2
,
H20, 0
OC
294
Orgunophosphorus Chemistry
o f allyldiphenylphosphine with aldehydes followed by treatment with
methyl iodide provides a synthesis of 1,3-dienes in high yield and
with high stereoselectivity (Scheme 2) .14 The stereochemistry is explained by an allylic rearrangement a cyclic transition state (12). Replacement o f triphenyl-substituted by diphenyl(2 carboxyethy1)-substituted
phosphorus in Wittig reagents ( 1 3 ) increases ( E ) - selectivity with semistabilized ylides and gives a water soluble phosphine oxide by-product. The authors suggest that either a Schlosser-type equilibration of the isomeric oxaphosphetans takes place (this seems unlikely in view o f the relatively low basicity of the carboxylate anion) or that the mechanism involving C - P bond breaking which has been suggested by Bestmann is responsible. An explanation not considered in that modification of the phosphorus substituents in this way leads to the threo-oxaphosphetane being kinetically-preferred and hence t o enhanced (E)-selectivity. The use of methanol as a solvent for
Wittig reactions o f stabilized ylides in known to increase (Z)-selectivity. It is now reported that highly (z)-stereoselective olefination of carbohydrate-derived alkoxyaldehydes can be achieved under these conditions. l6 The stereochemistry o f Wittig reactions of reactive and semi-stabilized ylides generated using alkali metal carbonates has been investigated. l 7 For reactive ylides in methanol containing small quantities o f water, moderate (E)-selectivity was observed; this selectivity was reversed under anhydrous, aprotic conditions. Both phosphonate and phosphonium salt-based olefinations can be accomplished using ZnO or MgO as the basic catalyst.18 The (z)-(lS) and (E)-(16) alkenes have been prepared
with high stereoselectivity by olefination using the phosphonate (14) and corresponding ylide,respectively (Scheme 3 ) .19 A combination of phosphoniosylation and Wittig reaction has
been developed as a method for $-functionalization of enones (Scheme 4 ) ” and for the synthesis o f trienes (17) useful for the
construction of tricyclic systems through intramolecular Diels/Alder The reactions of a-alkoxyaldehydes with reactions (Scheme 5). the @-silylphosphonium ylide (18) give exclusively the vinylation products (19) with high anti-selectivity. rather than the normal This &-selectivity is also observed for Wittig product.” similar reactions of a,€3-epoxyaldehydes (20) to give (21).23
The synthesis of conjugated dienones using ylide o r phosphonate methods can be difficult. However, the arsonium salt (22) is reportedZ4 to provide a general route to dienones and trienones
7: Hides and Related Compounds
R ( CH =CH
1 CHO
+
Ph
295
A', CH,CON
Br-
R' R 2
(231
K 2 C 4 , THF, H 2 0 , 25
R(CH=CH I,+,CONR' (24)
R~
OC
296
A
[‘
Organophosphorus Chemistry
0
EtOI2PtiPPh.] II
(311
(301
Reagents :
I
, ( E t O 1 2 P ( 0 ) L ~;
11,
R’CHO ;
III
,
BULI ;
IV,
R2CH0
Scheme 6
Reagents : i
,
2 x Base ;
II
, R’CHO
;
III
, RN,
+ -
OMe
Scheme 7
w’
Ph,P
OH
OLi
Me Reagents:
I ,
Ph2PLi ; Me1 ; CHjCOZH
Scheme 8
L I0
7: Ylides and Related Compounds
297
through reaction with the corresponding aldehyde in the presence of
potassium carbonate.
Similarly the arsonium salt (23) can be used
to prepare all (H)-unsaturated amides (24) and this method h a s been applied to the synthesis of a number of natural amides.25 A new route to a number o f polyene systems is provided by the Wittig reaction of (25) with the readily available fumaraldehyde ,
monodimethyl acetal (26). 2 6 The oliyomers (29) have been prepared by wittig reaction of salts (27) with aldehydes ( 2 8 1 . ’ ~ Both
symmetrical and unsymmetrical 1 . 2 - b i s ( y l i d e n e ) c y c l o b u t a n e s (31) have been synthesised by a double olefination o f the [2-(diethoxyphosphinyl)cyclobutylltriphenylphosphonium
ylide ( 3 0 ) (Scheme 6) . 2 8 1,4-disubstituted 1,3-diynes in moderate to excellent yields has been reported.29 Wittig reactions o f the cummulene ylide ( 3 2 ) with aldehydes give cummulenes which are isomerised to the diyne on treatment with quaternary ammonium methoxide (Scheme 7). A wide range of a-hydroxyketones can be dehydroxylated in good yield by reaction with lithium diphenylphosphide followed by treatment with methyl iodide (Scheme 8 ) . 3 0 The ceaction follows a similar route to that of V e d e j s ’ method of oxirane to alkene conversion. 31 Under specified conditions the amino acid-derived aldehydes ( 3 3 ) can be converted by the Wittig reaction to the corresponding allylic amines without l o s s of optical purity.32 A wide range of alkyl- and aryl-substituted A one-pot synthesis o f
1.1-diiodoalkenes has been prepared by the reactions o f
t r i phenyl phos ph i ne/ te t r a i odome thane with aldehydes , p r esuma b 1y &y in situ formation of d i i o d o m e t h y l e n e t r i p h e n y l p h o s p h o r a n e .
2 . 2 . 2 Ketones.- Wittig methylenation is preferred to the Peterson method for formation of the d i h y d r o m e t h y l e n e - 1 . 2 . 3 - t r i a z o l e (34) from the corresponding carbonyl compound. 3 4 Protection o f the indolic NH groups by tosylate leads to greatly improved ylides from Wittig methylenations of indolic ketones. 3 5 High pressure conditions have now been applied to Wittig reactions of stabilized ylides. 3 6 A s previously predicted37 the
effect in these cases is much more dramatic than in the case of semi-stabilized ylides due to the rate-determining first step in the reaction o f stabilized-ylides. The method allows formation o f alkenes from a variety of unreactive ketones, including a number of hindered steroids. A variety of benzo-fused five- and six-membered heterocycles have been prepared by intramolecular Wittig reaction o f the (ortho-substituted b e n z y 1 ) t r i p h e n y l p h o s p h o n i u m salts ( 3 5 ) . 3 8
2.2.3 Miscellaneous Reactions.- Examples of ylide-anions of the type
298
Organophosphorus Chemistry
XHNycHo + Ph,P=CH,
XHN
% II
R
N=N
i2 +
773-0R
RL (351 X = 0 , NH
R'
R2
I
iii , i v
Rcagcn+s :
I
,
NCINISIM~; ~ )i ~i , Br(CH2)5
0
;
111,
0.1M HCI ;;v,{> H
Scheme 9
7: Mides and Related Compounds
CN
A
Ph,P=C-X
Na+ (36)X = C N
CN
299
Na00C
OH
0-
CN
OH
WR3
OSiMe3
ph3 P +zR3
R
R
I R'
VII,
Reagents : vi,
I ,
/O\
R'CH-CR2R3
[CH20],,
vII
;
11,
H30+;
111,
H20 ; iv,Me3SiCL ; v
, -OH Scheme 10
,
Heat;
ii
300
Organophosphorus Chemistry
oz;--;
+
Ph3P=CMeCOOR
I
I
Me
Me
PhHC
H (41)
/c
+
Ph3P=C=C=NPh
R \C
(42)
R=
Reagents
,
““i, Ph
k,
>CHPh
II
0
H
O=Cl”,{
: I , RCOCL , P y ;
H
i t ,
MeONa,MeOH
Scheme 11
4
co
PPh,
(43)
7: Ylides und Reluted Compounds
(36)
are rare and in some cases disputed.
30 1 Bestmann has now
generated the cyanomethylene analogue (36, X = C N ) by deprotonation of the corresponding ~ l i d e . ~ ’A s might be expected ( 3 6 , X = C N ) is highly reactive and can be alkylated to give a variety of synthetically useful intermediates (Scheme 9). Alternatively the reaction of (36, X = C N ) with epoxides can be used to prepare y-hydroxynitriles (37). y-butyrolactones ( 3 8 ) . and y-methylene-butyrolactones ( 3 9 ) by employing different work-up procedures (Scheme 10) .40
The reactions o f ylides with various diones have been studied.
The reaction of cyclic anhydrides ( 4 0 ) with a-alkoxycarbonylethylidenetriphenylphosphoranes generally gives mixtures o f Eand endo-enol lactones,41 althouqh in some cases these initial products underqo rinq-openinq. However, similar reactions of (E)-Z-benzyl-
i d e n e o x a z o l i d i n e - 4 , 5 - d i o n e (41) qive new ylide adducts instead of Wittiq products.42 Ylide-adducts (43) are also formed in the reaction of cyclic 1,3-diones with N - p h e n y l i m i n o k e t e n y l i d e n e t r i phenyl phospho r ane ( 4 2 ) . 43 A variety of chromones ( 4 5 ) have been prepared from phosphoranes ( 4 4 ) by acylation. intramolecular olefination and A route to a number of different 5-(e.q. hydrolysis (Scheme ll).44 4 7 ) and 6-(e.q. 4 8 ) membered nitroqen heterocycles is provided by the reaction o f Z - ( i m i n o e t h y l i d e n e ) p h o s p h o r a n e s ( 4 6 ) with dicarbonyl dichlorides, mono- and dicarboximidoyl chlorides, and N,N-bis(chloroformyl)amines.45 The reaction of ( 4 6 ) with N-phenylbenzonitrile imide ( 4 9 ) provides a one-step synthesis o f
salts ( 5 0 ) (Scheme 12). Further investiqations o f the reactions of azine phosphoranes ( 5 1 ) . now witt ketenes and isocyanates, have provided new routes to a variety o f heterocyclic systems . 4 6 The reactions of B-carbonylphosphonium salts (52) with nucleophiles provide one-pot syntheses o f , for example, tetrasubstituted f luoroalkenes ( 53)47 and f luoroenynes (54)48 (Scheme 13). Unlike their previously reported reactions with perfluoroacyl 1,3.4,5-tetraaryl-l,2.4-triazolium
fluorides, fluorophosphoranium salts ( 5 5 ) react with perfluoroacyl chlorides to uive the betaines ( 5 6 ) .49 Subsequent haloqenation o f
( 5 6 ) provides a new route to a.a-dihalogenofluoromethyl perfluoroalkyl ketones ( 5 7 ) (Scheme 14). The optically active cyclopentane diol derivative ( 6 0 ) . a key synthetic intermediate. ha been prepared from tartaric acid Viq reaction of the methyl trimethylsilyl ester (58) with phosphorane ( 5 9 ) . followed by therma
302
Organophosphorus Chemistry
Ph
(46 1
( 501
+
Yh c I-
Ph
Scheme 12
R
Me
Ph,P
COOMc
Ph (51)R=H,Mc
Nuc
Ph, P=CR' R
li, i
Ph3P0
+
(53)
PhP 3
\CR'R~
I oc\
Rf
(54) Reagents
I
, PhLi ; 1 1 ,
RZI;
111
, (RtCOI2O ; i v , Nuc ; v , R 3 C G C L I
Scheme 13
R, COO-
303
7: Hides and Related Compounds
[ Bu36CFb6u3]
--&
X-
[Bu3F'CFPBu3] + +
X - CI-
I
(55)
co Rf
1 +
0I
6u3p+Rf F
R,COCFX,
+
Bu3PX,
(57)
Reagents :
i , RfCOCl ;
Ii
,
X2
,0
OC
Scheme 14
C 00 S iMe *COOMc
(58)
+
Ph3P=CHSiMe3
I
(59)
+
&,PXCI
Organophosphorus Chemistry
304
-I-
Ph3P=CHCH=CHCOOMe
R , C E CCOOMe
I61 1 ,COOMe Ph,P=C C '
/
=CH.CH=CHCOOMe
Rf
Reagents :
CHZCIZ
I ,
, r.+. ;
11,
xylene
Scheme
Ar,P
R'
+ \7AR2
, reflux 15
Ar3&H,CR'R'OH
1"+
( 67 1
+
Ar36CH=CR'R2
Reagents :
I
, ROH
A r , h
clo;
ClO, 35
(62)
+ Ar,PCH,CR'R20€t
'C ; I I EtOH , 100 'C ;
ClO, III
HCIOI
OR
7: Hides and Related Compounds
305
epimerization and intramolecular Wittig reaction.50
A new route to methyl 2-perfluoroalkyl-6-methoxybenzoates (63) from stabilized ylides has been reported.51 The ylide (62). prepared in excellent yield from the ylide ( 6 1 ) and the appropriate methyl 2-perfluoroalkynoate. UndeKgOeS intramolecular Wittig-type reaction on refluxing in xylene (Scheme 15). The adduct (65, X = N ) , formed from the reaction o f the phosphine imine (64, X = N ) with dimethyl acetylene dicarboxylate. undergoes cyclization on heating with base to give the 3H-k5-phosphole ( 6 6 , X = N ) . ” The analoguous phosphonium ylide ( 6 5 . X=CH) undecgoes a similar reaction, but only the hydrolysis product of the 3H-X5-phosphole ( 6 6 , X = C H ) was isolated. Reactions of t r i s ( 2 . 6 - d i m e t h o x y p h e n y 1 ) p h o s p h i n e with epoxides occur readily to give 8-hydroxyalkylphosphonium salts (671, but no Wittig products.53 Heating the adducts (67) gives a variety of products (Scheme 16). but none from P-C cleavage. An obvious explanation of this is that the electron-donating methoxy groups preclude attack o f oxygen at phosphorus to form a oxaphosphetane, although the authors suggest steric factors may also be important. The reaction of optically active N-acyl or N-sulphonyl aziridines with ethoxycarbonyltriphenylphosphoranes gives isolable ylides ( 6 8 ) as the major p r ~ d u c t . ~ ‘ These compounds can be used in wittiq reactions to provide a useful synthesis of optically pure unsaturated aminoacids. A study of the effect of changing the halogen atom on the reaction of methylene ylide with epihalogenohydrins to give oxaphospholanes ( 6 9 ) has been reported.55 The sequence developed by Cava €or the preparation of unsymmetrical heterofulvalenes has been applied to the synthesis of (70) and (71).56 Bestmann has extended his study of the reactions of ylides with alkylchloroboranes.57 The adducts (721, which are the initial products o f reactions with alkyldichloroboranes, provide a variety of derivatives on reduction o r further reaction with ylides. The reactions of tautomeric furoxans (73) with ester-stabilized phosphonium ylides have been investigated.58 As with most similar
reactions the pathways are complex, however a common initial reaction is deoxygenation of the furoxan to the correspondinq furazan through a Wittig-type reaction. A number of o-halogenoalkyl carbonyl ylides based on (74) have been used to 59 study lithium-halogen exchange-initiated cyclization reactions. The phosphorane substituent in (74) has the advantage that it is
Organophosphorus Chemistry
306
COOEt
-k
Ph P=CHCOO E t
N 'H X
-- H
HNX
(68)
ph3rzax#"x X
0
X
(69)
Ph3P=CR1R2
+
R3BCI,
-78
"c
Ph36 -CR1R2
___)
I
CI,BR -
(72)
I
(73)
COOEt
COOEt
I
I
Lx
CHCOC= PPh3
CHCOC=PPh3
I
RLI ___+
/\
Mcs =
"'v Me
0COOEt
I
L iCHCOC=PPh3
7: Ylides and Related Compounds
CI
I
Et,Zr
/CH2
\
‘
/
CH2
PR,
307
Et,M
2‘ ‘CH=PR3
(78)
Zr , Hf R = Me, N M e 2 , N E t 2
MsTi,
308
Organophosphorus Chemistry
reactive towards the required Michael addition reaction. while being resistant t o direct nucleophilic attack on the functional group. The synthesis and reactions o f compounds containing ylide-metal bonds continue to be an area of active interest. Examples include the synthesis of new tellurium compounds,60 the first example (75) of a phosphonium ylide complex of dioxomolybdenum(VI)61 and the hafnium and zirconium63 complexes (76), ( 7 7 ) and (78). A number of different methylene-bridged dinuclear gold(II1) complexes (e.g. - 79) containing terminal and bridging ylide ligands have also been prepared. 64 &-Ray photoelectron spectroscopic studies of gold and copper complexes of methylene ylide have been reported. 6 5 A new route to the rarely accessible metallocyclobutabenzene compounds ( 8 1 ) is provided by the reaction of methylene ylide with the appropriate metal-aryne complex,66 although formation of (81) competes with H-transfer from the intermediate (80) to give the metallocene-substituted ylide (82). The rhenium-ylide complex (83) can be deprotonated to give the metal-substituted ylide (84). which reacts stereospecifically with methyl triflate to form the methylated complex ( 8 5 ) (Scheme 17). 67 Bis(y1ide)nickel Catalysts of type (86) have been used to control polymer molecular weight in poly(ethene) synthesis.68 3 Reactions of Phosphonate Anions detailed study of lithiated methyl diethylphosphonoacetate by i.r. and ’H. 13C and 31P n.m.r. in THF and in acetonitrile indicates that the carbanion exists as mixtures of monomeric ion-pairs, agregates. free-ions and triple ions depending on the solvent used. 6 9 These results may be important in phosphorus-based olefinations in view of the evidence that the rate of formation of the initial diastereomeric adducts in the Wittig reaction depends on the structure of the carbanion. Convincing evidence that earlier reports” of the generation of phosphonate dicarbanions (87) are in error has been p ~ b l i s h e d . ~ ’Under the reaction conditions
A
previously described only the monocarbanion appears to be generated. However, the dianion (87) can be formed by successive treatment of the parent phosphonate with NaH and BuLi and it does give increased yields of alkenes in Wittig reactions compared to the monocarbanion. a-Lithioalkylphosphonates ( 8 8 ) can be generated from trialkyl phosphates by treatment with 2 mole equivalents of the appropriate alkyll ithium.72 a- (Diethoxyphosphinoyl)-y-butenol ide
7: Ylides a d Related Compounds
ON”
0
309
Re.
I
;‘PPh, C H,PP h3
(83)
Reagents :
I ,
BULI I T M E D A ;
11,
MeOS02CF3
Scheme 17
PhPt
(86)
(RO),P
+
0 R’CH2Li
(09)
II
+( R O ) z P C H z R ’
R’CH~L~
(90) x=so3( 9 1 ) X = S0,Et
0
II
( R 0 ) 2 P C H L i R’
310
Organophosphorus Chemistry
(92 1
R 26 Reagents :
K 2 C 0 3 , DMF ;
I
11
0
, Na , DME
Q
S c h e m e 18
0
II
(Et012PCHR’Li
( EtO) P 21 I
0
II
OEt
0,
(Et0)2PCHR’CH=NPh
,NPh Li
1“ R’
0, ,NPh Li
H Reagents
:
I
~
EtOCH=NPh
, THF
;
11,
P r I2NLi, T H F ,
Scheme 19
-
7 8 OC;
III
, R2CHO;
IV,
H30+
7: Ylides and Related Compounds
(89)
31 1
undergoes Michael addition of various nucleophiles to give the
COKreSpOnding phosphonate carbanion, which has been used in the synthesis o f y-butyrolactones and lignans.73 A new, high yield route to certain 8-ketophosphonates is worth noting.74 The reactions of both ylides and phosphonate carbanions with gyoxal acetal have been studied and shown to provide routes to a-func t iona 1 i zed a ldehydes . 7 5 The d i e thy 1phos pho ry 1 methanesulphonates (90) and (91) can be used to generate a,@-unsaturated sulphonates by normal olef ination reactions.76 Much higher (E_)-stereoselectivity is observed using the phosphonate (91) than (90). A new route to 3(2H)-fucanones (93). involving intramolecular olefination of y - ( a c y 1 o x y ) - 8 - k e t o p h o s p h o n a t e s (92). has been developed.77 The choice o f conditions, especially the b a s e used, is critical in these reactions (Scheme 18). Phosphonate-based olefin syntheses have been carried out by passing the gaseous reagents through a column packed with potassium Carbonate (gas-liquid phase-transfer catalysis conditions) .78 Yields were moderate and (E)-alkenes were formed stereoselectively. Reactions of phosphonate carbanions with ethoxymethyleneaniline, followed by treatment with base, lead to lithiated enaminoalkylphosphonates (94).79 Further reaction of (94) with aldehydes, followed by hydrolysis, provides a,@-unsaturated a-substituted aldehydes in good yield (Scheme 19). Various reactions involving phosphonate carbanions have been used to prepare vinylphosphonates. Reactions of ester-stabilized phosphonate carbanions with aldehydes in the presence of titanium tetrachloride are known to give Knoevenagel products having the thermodynamically-preferred (E_)-configuration. It is now reported that the (Z)-isomers (95) can be formed almost exclusively from similar reactions in the presence of tri(isopropoxy)titanium chloride and sodium hydride." In an attempt to synthesize dihydrogen phosphonomethyl-substituted ethenylphosphonic acids (96) the reaction of bis(diethy1 phosphonomethy1)phosphinic amide carbanions (97) with aldehydes has been investigated.81 A synthesis
of a-hydroxy esters (99) is provided by Peterson olefination of the a-trimethylsilyl-substituted phosphonate (98) followed by hydroxylation with catalytic amounts of osoq (Scheme 2 0 ) The reactions of a-fluoromethanephosphonate carbanions (100) have been investigated. The thermal stability decreases in the order X=H > X = F > x=c1, the last two carbanions being unstable a t Loom t e r n p e r a t u ~ e . ~A ~ variety of functionalized
3 12
Organophosphorus Chemistry
0
II
( E+O12PCH2COO E t
N a H , C l T i IOPr’13
COOPr‘
RCHO
H
(95 1
0
(96)
(R0)2PCHOCHZCH,SiMe3
I
197)
0
1 I1 ( R O I 2II P - C - OCH2CH2SiMe3 I
II
Si Me3
CR’R,
1
iii
R’ ‘C.COOCH2CH2Si Rz/
I
Scheme
0
II-
( RO), P C F X
(100) 0
20
Me3
7: Ylides and Related Compounds
313
a-fluoroalkylphosphonates have been prepared by the reaction o f diisopropyl fluoromethylphosphonate carbanion (100. R = isopropyl, X=H) with electrophiles. Generally reactions with aldehydes and ketones gave 6 - h y d r o x y a l k y l p h o s p h o n a t e s : 8 4 however, reactions with formaldehyde and acetaldehyde gave the vinylphosphonate (101) and a mixture of (102) and (103). respectively. Reactions o f the analogous bisphosphonate carbanion (104) with aldehydes and ketones provide a new general synthesis of 8-fluorovinylphosphonates ( 105 ) . 85 Regitz's method of generating vinylidene carbenes from diethyl didzomethylphosphonate carbanions and ketones has been used to synt hes ise f urans (Scheme 2 1 ) 86 and cyc lohepta [ b I pyr K O 1- 2 -ones ( 106 ) . 87 Opt i ca 1 ly act ive 4 - d i e thoxyphos phi ny 1 - 3 - ( 1-hydr oxye t hy 1) 2-azetidinone ( 1 0 8 ) has been prepared by base-induced cyclization of the epoxide phosphonate (107). 4 Selected ARPlications in Synthesis 4.1 Carotenoids. Retinoids and Related ComPounds.- Phosphorus-based olefinations continue to be extensively used in syntheses of retinoids. Examples include retinal analogues ( L g . 109) with locked 6,7-conformations,89 aromatic and ring-fused analogues, 90 the 11.13-bridged analogues (110) and ( 1 1 1 1 , 91 and 5-methoxyretinal (112) reduction o f the cyano analogue.92 In this last synthesis some isomerisation of the a- to the 8-isomer occurred during the reduction step. The use of the oxido-allylic phosphoranes (113) in "salt-free" Wittig reactions leads to high (Z)-selectivity and this method has been applied to the synthesis o f l l - c i s - ~ e t i n o i d s . ~ ~ The diene ester phosphorane (115). previously used by Vedejs for triene synthesis, has now been applied to the synthesis of a variety of all (IZ)-polyenes using the readily available enal (114) as the initial carbonyl component (Scheme 22) .94 Both ylide-based and phosphonate-based olefinations have been used as key reactions
in a total synthesis of the mycotoxin citreomontanin (116) and its isomer (117). 95
Leukotrienes and related Compounds.- A recent review o f the leukotrienes contains much information on synthesis, including the use of the wittig reaction.96 What are now standard Wittig methods continue t o be used widely in leukotriene synthesis, for example, to prepare the 20-(g-trif1uoroacetamido)phenyl derivative o f LTAi7 and in a new 4.2
Organophosphorus Chemistry
3 14
0
II
(EtO),PCH=N,
+
R'COCR2( O M e I 2
* OMe
R'
1
Me0
t R e a g e n t s : I , Bu OK
, THF,
-LO ' C ;
11,
H30+
Scheme
0
(EtO),PCH=N, II
+
0
*[ %'D] 21
C
X
Me
J
7: Ylides and Related Compounds
315
CHO
(110) n = 2 (111 I n = 3
R'
i
Ph3P=CH(113 1
C=CHCH20H
R'=
H
,M e
(114)
COOMc
Reagents : i , Ph3P=C
4
'COOMe
; i i , 1 2 , C H C 1 3 , Zh ;
(115)
iv , M n 0 2 ; v , Ph3P=CHCOOMe
Scheme 22
. .
III
,
DIBAL;
316
Organophosphorus
Chemistq
LoUte to (+)-LTB4.98 This also applies to the synthesis of HETE derivatives and metabolites. for example, ( B ) . and (5)-isomers of 8 and 1 2 - h y d r o x y e i c o s a t e t r a e n o i c acids. 99 loo ~ ( 5 ) and ~~(SI-HETE methyl esters,l o o and 5(S), 2 0 and l5(s) 20-dihydroxyeicosatetraenoic acids.”’ Extensive use of the Wittig reaction has also been made in syntheses o f both enantiomers o f the epoxygenase metabolites 8 , 9 - and 11.12-epoxyeicosatrienoic acids‘” and of (118). a possible biosynthetic precursor o f lipoxins.lo3 The four ChiKal stereoisomers of 14.15-oxide-5(g), 8(z), ll(Z)-eicosatrienoic acid have been synthesized using a Wittig reaction of the phosphonium salt (119) to construct the polyene chain.lo4 In view of the tendency to use well established methods in these syntheses, a report that arsonium salts have been used as olefination reagents in a synthesis of LTA4 methyl ester (120) is worth noting.“’ 4 . 3 Macrolides and Related Compounds.- Intramolecular olefination of complex phosphonates has become the method of choice to construct a variety of natural macrocyclic ring systems. Examples include the synthesis o f methynolide (121),lo6 the aglycone of the 12-membered rnacroli.de methymycin, and tylonolide (122). the aglycone o f the 16-membered tylosin.lo7 The method has also been used in the synthesis of pikromycin, a 14-membered macrolide antibiotic. and the first total synthesis of (-)-asperdiol involves cyclization the phosphonate (123).’09 The macrocyclic system (125). a model system related to the rubradirin group of polypeptide biosynthesis inhibitors, has been synthesized by cyclization of the phosphonate (124).‘10 However, the yield is low and the B-elimination product (126) is also formed. A highly stereoselective total synthesis of the cembranolide diterpene anisomelic acid involves a (z)-selective intramolecular olef ination of the phosphonate (127).’11 Olefination-dimerisation of a-aldehydo phosphonates has been used as a method of macrocyclic synthesis in spite of the difficulties involved in the synthesis of the appropriate phosphonate (128). I t is now reported that these intermediates can be generated by DMAP-catalyzed ester exchange o f phosphonoacetates with lactols and this method has been used to synthesized the 112 16-membered macrodiolide (-)-pyrenophorin (129). Phosphonate-based olefinations continue to be used to generate intermediates suitable for macrocyclization. For example, reaction of the phosphonate (130) is a key step in the first synthesis of mycinolide V. the aglycone of a mycinamycin series macrolide 8
~
317
7: Ylides and Related Compounds Me OMc
0 Me
(
121)
OH
318
Organophosphorus Chemistry
OR CHO
R
;"'"p"$ OMe M e
Me0
'c1
OMe
+
0
I!
(R0)2PCH2COOMe
0
-CO CHZ P(0R 12
(129) X = O
7: Ylides and Related Compounds
32s
0
OR2
Ph,P
Me *
1159)
CHO
1160)
(-&.o R (161) X = NH
, S ,O
(162)
Na H
0
0
(164)
I1 6 5 )
Organophosphorus Chemistry
320
0 Me
Reagents : i
, N a H , R1R 2CO
Me
THF ; ii
Me
BuLN+F-; i i i , C u O C O C F 3
Scheme
23
OR
I
Ph,P=CH( CH2),CE CCH2C.
\=
(133)
Me
H
I
I
OHC
OR (134)
^v" OR
7: Hides and Related Compounds
32 I
\
Br-
(1371
0
II
T C O O E t Me (138)
T
COOEt T
(139)
322
Organophosphorus Chemistry
phosphonate ( 1 4 6 ) with the appropriate aldehyde (Scheme 24) .I2-’ Methodogy involving the phosphonate ( 1 4 8 ) previously used in the synthesis o f dihydrocompactin has now been applied to the synthesis o f the closely related ( t ) - dihydromevino1in.lZ8 A new convergent total synthesis of (+)-compactin involves generation o f the novel
phosphorane (151) by Y alkylation of the enolate-phosphorane (149) with (150). followed by Wittig reaction of (151) to give ( 1 5 2 ) (Scheme 25).12’ This last product can be cyclized and functionalized to give (+)-compactin.
The acetylenic polyenes
(154). (155). (1571, and (158) (naturally occurring in the red algae
-~ Laurencia _____ okamuri) have been synthesized by Wittig reactions of the salts (153) and (156). followed by separation of the major. (154) and (157), and minor. (155) and (158). isomers (Scheme 26).I3O The reaction of the ylide (159) with a variety of model aldehydes has been studied with a view to predicting the
applicability o € such an approach to the synthesis of a number o f biologically active acyltetramic acids.131 Sequential Wittig reactions with ( 1 - e t h o x y c a r b o n y 1 ) e t h y l i d e n e t r i p h e n y l p h o s p h o r a n e have been used to prepare verrucosal (160).13’ The attempted olef ination of a variety of monocyclic and bicyclic B-lactams with stabilized phosphonium ylides and phosphonate carbanions has been reported. 133 Successful conversion to the alkene depends on both the phosphorane reactivity and the B-lactam structure. The Wittig reaction has been used to prepare a variety of ( E ) - 2 - hydroxy- 4 -substituted s t i 1 b e n e ~ land ~ ~st i 1beno id heterocycles ( 161)135 in spite of the potential problems associated
with the presence of the phenolic group in the former case. Both Wittig and phosphonate-based olefinations have been used to prepare a large number of pyrrolyl- and 3 - c h l o r o p y r r o l y l p o l y e n e s (e.9. 162). 136 The key step in a synthesis of the ribasine skeleton is the
formation of the azepin ring by an intramolecular Wittig reaction of the salt (163). Met hano br idged te trahydr oannu 1enes have been
synthesized by Wittig reaction of the dialdehyde (164) with the ylide (165) followed by oxidative coupling.138 A variety o f related [1,3]-cyclophanpolyenediynes have also been prepared vy&
double
Wittig reactions of the salt (166). A Wittig reaction of the stabilized ylide (167) with (E)-cinnamaldehyde has been used to prepare one isomer of the fungicidal natural product strobilurin. 13’
7: Ylides and Related Compounds
323
LCN
11431
Ac 0
OMe
OMe
R’vL
CHO
Reagents :
I,
KOBut
Et
RO’
(1421
I
THF, 0
OC
;
11,
CF,COOH
Scheme 2 4 McOOC
.SIR,
324
Organophosphorus Chemistry
0 Ts-OCH
‘‘7
I
-
1
P +,Ph3
(150)
(151 1
Scheme 25
7: Ylides and Related Compounds
32s
0
OR2
Ph,P
Me *
1159)
CHO
1160)
(-&.o R (161) X = NH
, S ,O
(162)
Na H
0
0
(164)
I1 6 5 )
326
Orgunophosphorus Chemistry
REFERENCES 1. D.A. Dixon and B.E. Smart, J. Am. Chem. SOC., 1986, 7172. 2. S . Alunni, J . Chem. Res.. Synop., 1986, 231. 3. E. Vedejs and F.G. West, Chem. Rev., 1986, &, 941. 4. H. Ishida, K. Kaga, H. Sato, M . Yokoi, and S. Kato, Bull. Chem. SOC. JF., 1986, 59, 1403. 5. H . Schmidbaur, R. Pichl, and G. Huller, Chem. Ber., 1987, 120, 789. 6. 8. Neumiiller and E. Fluck, Phosphorus Sulfur, 1987, 29, 23. 7. G. Singh, J . Org. Chem., 1907, 52, 1647. 8. E . Volatron and 0. Elsenstein, J . Am. Chem. SOC., 1987, 2 ,1. 9. L. Donxia, W. Dexian, L. Yaozhong, and Z. Huaming, Tetrahedron, 1986, 9 ,
m,
4161.
B.E. Haryanoff and A.B. Reitz, Phosphorus Sulfur, 1986, 3, 167. E. Vedejs and C. Harth, Tetrahedron Lett., 1987, 28, 3445. B.E. Haryanoff, A.B. Reitz, H.S. Mutter, R.E. Inners, H.R. Almond, J r . , R.R. Whittle, and R.A. Olofson, J . Am. Chem. SOC., 1986, 108, 7664. 13. A.B. Reitz, S . O . Nortey, A.D. Jordan, Jr., H.S. Mutter, and B.E. Haryanoff, J . Org. Chem., 1986, 2, 3302. 14. Y . Ikeda, J . Ukai, N. Ikeda, and H. Yamamoto, Tetrahedron, 1987, 9, 723. 15. H. Daniel and H. Le Corre, Tetrahedron Lett., 1987, 2 8 , 1165. 16. S. Valverde, H. Hartin-Lomas, 8. Herradon, and S. Garia-Ochoa, Tetrahedron, 1987, 43, 1895. 17. Y. Le Bigot, R. El Gharbi, H. Delmas, and A. Gaset, Tetrahedron, 1986, 10. 11. 12.
42,
3813.
18. 19. 20. 21. 22.
H. Hoison, F. Texier-Boullet, and A. Foucoud, Tetrahedron, 1987, 43, 537. S E. Denmark and J.A. Sternberg, J. Am. Chem. SOC., 1986, 108,8277. A.P. Kozikowski and S.H. Jung, J. Org. Chem., 1986, 5 l , 3400. A.P. Kozikowski and S.H. Jung. Tetrahedron Lett., 1986, 27, 3227. H. Iio, T. Hizobuchi, H. Tsukamoto, and T. Tokoroyama, Tetrahedron Lett.,
23.
H. Iio, T. Hizobuchi, and T. Tokoroyama, Tetrahedron Lett., 1987,
24.
L. Shi, W. Xia, J . Yang, X. Wen, and Y.Z. Huang, Tetrahedron Lett., 1987,
25.
Y.Z. Huang, L. Shi, 3. Yang, and J. Zhang, Tetrahedron Lett., 1987, 2 8 ,
26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41.
1986,
27, 6373.
2379.
28,
a,
2155.
2159.
R. Gree, H. Tourbah, and R. Carrie, Tetrahedron Lett., 1984, 2 7 , 4983. J . Heinze, J. Hortensen, K. Hullen, and R. Schenk, J. Chem. SOC., Chem. C o m n . , 1987, 701. T. Hinami, N. Harui, and Y. Taniguchi, J . Org. Chem., 1986, S l , 3572. C.B. Ziegler, Jr., and S.H. Harris, J. Org. Chem., 1987, 5 2 , 443. A. Leone-Bay, J . Org. Chem.. 1986, a, 2378. E. Vedejs and P.L. Fuchs. J . Am. Chem. SOC., 1913, 95, 822. J . R . Luly, J.F. Dellaria, J.J. Plattner, J.L. Soderquist, and N. Yi, JOrg. Chem., 1987, 5 2 , 1487. F. Gavina, S.V. Luis, P. Ferrer, A.A. Costero, and J.A. Harco, J. Chem. Res., S y n o p . , 1986, 330. H. Quast and G. Heichsner, Chem. Ber., 1987, 120, 1049. W.J. Wheeler, Tetrahedron Lett., 1986, 3469. N.S. Isaacs and G.N. El-Din, Tetrahedron Lett., 1987, 28, 2191. B.J. Walker, in "Organophosphorus Chemistry", Ed. B.J. Walker (Specialist Periodical Reports), The Royal Society of Chemistry, London 1987, V01.18,
z,
p.304.
L. Capuano, A. Ahlehelm, and H. Hartmann, Chem. Ber., 1986, 119, 2069. H.J. Bestmann and H. Schmidt, Angew. Chem.. Int. Ed. Engl., 1987, 79. H.J. Bestmann and H. Schmidt, Tetrahedron Lett., 1987, 28, 2111. S. Tsuboi, H. Fukumoto, H. Wade, A. Takeda, and K. Fukuyama, Bull. Chem. SOC. Jpn., 1987, 6 1 , 689. 42. H.H. Sidky, H.R. Hahran, A.A. El-Kateb, I . T . Hennawy, and H.A.A. El-Halek, Phosphorus Sulfur, 1987. 2 9 , 227.
a,
7: Ylides and Related Compounds
43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54.
55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69.
32 7
F.H. Soliman and Kh. H . Khalil, Phosphorus Sulfur, 1987, 29, 165. Y. Le Floc'h and H . Lefeuvre, Tetrahedron Lett., 1986, 27, 5503. L. Capuano, B. Dahm. and V. Schramm, Chem. Bet., 1986, 119, 3536. E . E . Schweizer, J.E. Hayes, A. Rheingold, and X. Wei, J. Org. Chem., 1987, 5 2 , 1810. Y . Shen and W. Qui, Tetrahedron Lett., 1987, 28, 449. Y . shen and W . Qui, J. Chem. SOC.. Chem. C o m n . , 1987, 703. I.H. Jeong, D.J. Burton, and D.G. Cox, Tetrahedron Lett., 1986, 21, 3709. H.J. Bestmann and T. Hoenius, Axnew. Chem., Int. Ed. Engl., 1986, 25, 994. W. Ding, P. Zhang, and W. Cao, Tetrahedron Lett., 1987, 28, 81. J. Barluenga, F. Lopez, and.F. Palacios, J. Chem. SOC., Chem. Commun., 1986, 1574. U. Wada and A. Tsuboi, J. Chem. S O C . , Perkin Trans.1, 1987, 151.
J . E . Baldwin, R.H. Adlington, and U.G. Robinson, J. Chem. SOC.. Chem. C o m n . , 1987, 153. H . Daniel, A. Turcant, and H . Le Corre, Phosphorus Sulfur, 1987, 29, 211. L. Giral, J.H. Fabre, and A. Gouasmia, Tetrahedron Lett., 1986, 21, 4315. H . J . Bestmann and T . Arenz, Angew. Chem., Int. Ed. Engl., 1986, 22, 559. N.G. Argyropoulos, J.K. Gallos, and D.N. Nicolaides, Tetrahedron, 1986, 42, 3631. H . P . Cooke, Jr., and R.K. Widener, J. Or%. Chem., 1987, 52, 1381. Y . Yamamoto, Bull. Chem. SOC. JE., 1986, 59, 3053. R. Lai, S. Le Bot, A. Brady, H . Pierrot, and H. Arzoumanian, J . Chem. SOC.. Chem. Commun., 1986, 1208.
-
H. Schmidbaur, R. Pichl, and G. Huller, Angew. Chem., Int. Ed. Engl.. 1986, 2 5 , 574. H. Schmidbaur, R. Pichl, and G. nuller, Chem. Ber., 1987, 120, 39. H. Schmidbaur and C. Hartmann, AnKeW Chem.. Int. Ed. Engl., 1986, 2 5 , 575. Y. Yamamoto and H. Konno, Bull. Chem. SOC. Jpn., 1986, 1327. H.J.R. de Boer, 0.S. Akkermann, F. Bickelhaupt, G. Erker, P . Czisch, R. Hynott, J.U. Wallis, and C. Kruger, Angew. Chem., Int. Ed. Engl., 1986,
z,
25, 639.
F L . Crocco and J.A. Gladysz, J . Chem. S O C . , Chem. C o m n . , 1986, 1154. K.A.O. Starzewski and J. Witte, AnRew. Chem.. Int. Ed. Engl., 1987, 26, 63.
T. Strzalko, J . Seyden-Penne, F. Froment, J . Corset, and H-P. Simmonnin, J. Chem. SOC., Perkin Trans.2, 1987, 783. R. Bodalski, K.H. Pietrusiewicz, J . Honkiewicz, and J. Koszuk, 70 Tetrahedron Lett., 1980, 2 l . 2287. 71. C.N. Hoorhoflf and D . F . Schneider, Tetrahedron Lett., 1987, 28, 559. 405. 72. H-P. Teulade and P . Savignac, Tetrahedron Lett., 1987, 73. T. Hinami, Y. Kitajima, and T. Chikugo, Chem. Lett., 1986, 1229 (Chem. Abstr., 1987, 106, 196502). 74. G.B. Hanunond, T. Calogeropoulou, and D.F. Wiemer, Tetrahedron Lett.,
a,
75. 76. 77. 78. 79. 80. 81. 82. 83. 84.
1986, 2?.
4265.
A. Stambouli, F . Chastrette, R. Amouroux, H . Chastrette, G. Uattioda, and A. Blenc, Tetrahedron Lett., 1986, 21, 4149. J.C. Carretero and L. Ghosez, Tetrahedron Lett., 1987, 28, 1101. P. Sampson, V. Roussis, G.J. Drtina, F.L. Koerwitz, and D . F . Wiemer, JOrg. Chem.. 1986, 5.1, 2525. E. Angeletti, P. Tundo, and P. Venturello, J. Chem. SOC., Perkin Trans.1, 1987 , 713.
H.K. Tay, E.E. Aboujaoude, N. Collignon, and Ph. Savignac, Tetrahedron Lett., 1987, 2 8 , 1263. U.T. Reetz, R. Peter, and U.V. Itz'stein, Chem. Ber., 1987, 120, ;21. W . F . Gilmore and J.S. Park, Phosphorus Sulfur, 1987, 3, 287. J . Binder and E.. Zbiral, Tetrahedron Lett., 1986, 27, 5829. G.H. Blackburn, D. Brown, S.J. Hartin. and M.J. Parratt, J. Chem. SOC., Perkin Trans.1. 1987, 181. G.H. Blackburn and U . J . Parratt, J. Chem. SOC.. Perbin Trans.1, 1986, 1425.
328
Organophosphorus Chemistry
85.
G.H. Blackburn and H.J. Parratt, J . Chem. S O C . . Perkin Trans.1, 1986,
86.
S.R. Buxton, K.H. Holm, and L. Skattebol, Tetrahedron Lett., 1987,
87. 88. 89.
1417. 2167.
g,
J.C. Gilbert and B.K. Blackburn, J. Org. Chem., 1986, 5 l , 4087. H. Shiozaki and H. Hasuko, Bull. Chem. SOC. Jpn., 1987, 6 0 , 645. R. van der Steen, P.L. Biesheuvel, R.A. Hathies, and J . Lugtenburg, JAm. Chem. S O C . , 1986, 108,6410. 90. A.E. Asato, H. Denny, and R.S.H. Liu, J. Am. Chem. S O C . , 1986, 108,5032. 91. A. Albeck, N. Friedman, H. Sheves, and H. Ottolenghi, J. Am. Chem. S O C . . 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105.
1986,
108,4614.
E. Kolling, D. Oesterhelt, H. Hopf, and N. Krause, Angew. Chem., Int. Ed. 1987, 26, 580. A . Hosoda, T. Taguchi, and Y. Kobayshi, Tetrahedron Lett., 1987, 3 , 65. S . Hanessian and U. Botta, Tetrahedron Lett., 1987, 28, 1151. H . Venkataraman and J.K. Cha, Tetrahedron Lett., 1987, 28, 2455. R.P. Evstigneeva and G . I . Hyagkova, Russ. Chem. Rev., 1986, 15,455. P. Perrin. F. Aubert, J.P. Lellouche, and J.P. Beaucourt, Tetrahedron 1986, 27, 6193. Y. Le Herrer, C. Gravier, D. Languin-Micas, and J.C. Depezay, Tetrahedron
w.,
w., w ., 1986, 2 7 ,
4161.
P. Yadagiri, S. Lumin, P. Uosset, J . Capdevila, and J.R. Falck, Tetrahedron Lett., 1986, 2 7 , 6039. G. Just and Z.Y. Wang, J. Org. Chem., 1986, 51, 4196. S. Lumin, P. Yadagiri, J.R. Falck, J. Capdevila, P. Hosset, and R. Gree, J. Chem. S o c . . Chem. Commun., 1987, 389. P. Hosset, P. Yadagiri, S. Lumin, J . Capdevila, and J.R. Falck, Tetrahedron Lett., 1986, 27. 6035. E.J. Corey and H.U. Hehrotra, Tetrahedron Lett., 1986, 27, 5173. H.D. Ennis and H.E. Baze, Tetrahedron Lett., 1986, Z?, 6031. Y . Wang, J. Li, Y. Wu, Y. Huang, L. Shi, and J. Yang, Tetrahedron Lett.,
1986, 21, 4583. 106. Y. Oikawa. T. Tanaka, and 0. Yonemitzu, Tetrahedron Lett., 1986, 21, 3647 107. T. Tanaka, Y . Oikawa, T. Hamada, and 0. Yonemitsu, Tetrahedron Lett., 1986, 2 7 , 3651. 108. N. Nakajima, T. Hamada, T. Tanaka, Y. Oikawa, and 0. Yonemitsu, J. Am. Chem. S o c . , 1986, 108,4645. 109. U.A. Tius and A. Fauq, J. Am. Chem. S o c . , 1986, 108,6389. 110. A.P. Kozikowski and Y. Xia, J. OrR. Chem., 1987, 52, 1375. 111. J.A. Harshall and B.S. DeHo€f, Tetrahedron Lett., 1986, 2 7 , 4873. 112. S. Hatakeyama, K. Satoh, K. Sakuri, and S. Takano, Tetrahedron Lett., 1987, 2 8 . 2717. 113. K. Ditrich, T. Bube, R. Stunner, and R.W. Hoffmann, Angew. Chem.. Int. Ed. Eng1.. 1986, 25, 1028. 114. K.C. Nicolaou, R.A. Daines, and T.K. Chakraborty, J. Am. Chem. S o c . , 1987, 2208; K . C . Nicolaou, R.A. Daines. J. Uenishi, W . S . Li, D.P. Papahatjis, and T.K. Chakraborty, J. Am. Chem. S O C . , 1987, 109, 2205. 115. S . V . Ley and P.R. Woodward, Tetrahedron Lett., 1987, 345. 116. P.P. Waanders, L. Thijs, and B. Zwanenburg, Tetrahedron Lett., 1987, 2409. 117. R. Baker, H.J. O'Hahony, and C.J. Swain, Tetrahedron Lett., 1986, 27, 3059. 118. A.I. Ueyers, J.P. Lawson, D.G. Walker, and R.J. Lindennann, J. OrK. 1986, 51, 5111. 119. E.D. Uatveeva, A.L. Kurtz, and Yu. G. Bundel, Russ. Chem. Rev., 1986, 15. 672. 120. B. O'Connor and G. Just, J. Org. Chem., 1987, 2.1801. 121. H.F. Boehm and G.D. Prestwich, J. OrR. Chem., 1987, 2,1349. 122. e.g. E.K. Dolence, H. Horita, D.S. Watt, and T. Fitz, Tetrahedron Lett., Tv87, 28, 43; R.C. Larock, K. Harayanan, R.K. Carlson, and J.A. Ward, JOrg. Chem., 1987, 52, 1364.
m,
m.,
a,
a.
7: Ylides and Related Compounds
32')
123. S . W . Djuric, H . Hiyano, and J . P . Snyder, Tetrahedron Lett., 1986, 2 7 , 4403. 124. A. Takahashi and H. Shibasaki, Tetrahedron Lett., 1987, 8 , 1893. 125. R.K. Boeckman, J r . , E.J. Enholm, D.H. Demko, and A.B. Charette, J. Org. Chem., 1986, 5.1, 4743. 126. S. Nishiyama, H. Toshima, H. Kanai, and S. Yamamura, Tetrahedron Lett., 1986, 2 7 , 3643. 127. R.K. Boeckman, Jr., J.E. Starrett, Jr., D.G. Nickell, and P . - E . Sum, tl, Am. Chem. SOC., 1986, 108,5549. 128. S.J. Hecker and C.H. Heathcock, J. Am. Chem. SOC., 1986, 108, 4586. 129. G.E. Keck and D.F. Kachensky, J. O r g . Chem., 1986, 2 , 2487. 130. H. Kigoshi, Y . Shizuri, H. Niwa, and K. Yamada, Tetrahedron, 1986, 42, 3781. 131. R.E. Ireland and R.B. Wardle, J . Org. Chem., 1987, 52, 1780. 132. L.L. Klein, Tetrahedron Lett., 1986, 4545. 133. M.L. Gilpin, J.B. Harbridge, and T.T. Houarth, J. Chem. SOC., Perkin Trans.1. 1987, 1369. 134. A. Hylona, J. Nikokavouras, and I . H . Takakis, J. Chem. Res.,Synop., 1986, 433. 135. V.H. Rawal, R.J. Jones, and H.P. Cava, J. Org. Chem., 1987, 52, 19. 136. F.R. Ahmed and T.P. Toube, J. Chem. Res. Synop., 1986, 440. 137. R. Alonso, L. Castedo, and D. Dominguez, Tetrahedron Lett., 1986, 21, 3539. 138. J . Ojima, E. Ejiri, T. Kato, M . Nakamura, S. Kuroda, S . Hirooka, and H. Shibutani, J. Chem. SOC., Perkin Trans.1, 1987, 831. 139. K. Beauternent and J.H. Clough, Tetrahedron Lett., 1987, 28. 475.
-
x,
Phosphazenes BY 1.
Introduction
C. W . ALLEN
T h i s c h a p t e r c o v e r s t h e l i t e r a t u r e o f phosph[v)azenes.
The
m a j o r p o i n t s o f i n t e r e s t c o n t i n u e t o be m a t e r i a l s w h i c h a r e o r are related t o cyclo-
and polyphosphazenes.
Numerous h i g h l y
f o c u s e d r e v i e w s h a v e a p p e a r e d a n d w i l l be q u o t e d i n t h e a p p r o p r i a t e s e c t i o n s below.
P u b l i c a t i o n s o f more g e n e r a l
i n t e r e s t i n c l u d i n g a two volume monograph c o n t a i n i n g comprehens i v e r e v i e w s o f t h e c h e m i s t r y o f i n o r g a n i c r i n g systems c o v e r i n g the period of
1969 t o t h e e a r l y e i g h t i e s
1
,
s e l e c t e d papers from
t h e 4 t h I n t e r n a t i o n a l Symposium o n I n o r g a n i c R i n g Systems ( O r s a y 198512 a n d a l l p a p e r s and p o s t e r s from t h e 1 0 t h I n t e r n a t i o n a l C o n f e r e n c e o n P h o s p h o r u s C h e m i s t r y (Bonn 198613 have a p p e a r e d i n the l a s t year. 2.
A c y c l i c Phosphazenes Numerous p u b l i c a t i o n s h a v e b e e n d e v o t e d t o a c y c l i c p h o s p h a z -
nes (phosphazo d e r i v a t i v e s ,
phosphine imines,
phosphoranimines)
with a s h i f t towards r e a c t i o n s o f molecules c o n t a i n i n g the
phosphazene u n i t b e i n g noted.
Reviews o f t h e a z i d e p h o t o l y s i s
r o u t e t o t h e p h o s p h o r u s - n i t r o g e n t r i p l e bond (phosphazynes) have appeared.4s5
Following a trend noted i n l a s t year's
review,
high
l e v e l m o l e c u l a r o r b i t a l c a l c u l a t i o n s h a v e been a p p l i e d t o m o d e l a c y c l i c phosphazenes.
A n a b i n i t i o s t u d y o f t h e H3PN+ e n e r g y
s u r f a c e shows l o c a l m i n i m a c o r r e s p o n d i n g t o s t r u c t u r e s r e l a t e d by 1 , Z - h y d r o g e n the series.
s h i f t s w i t h HPNH2+ b e i n g t h e g l o b a l minimum i n
These c a l c u l a t i o n s do n o t s u p p o r t t h e o c c u r a n c e o f
330
8: Phosphazenes
33 1
p h o s p h o n i t r e n e s as i n t e r m e d i a t e s i n azidophosphonium i o n p h o t o l y sis.6
S i m i l a r c a l c u l a t i o n s o n t h e H3PNH, H2PNH2 t a u t o m e r i c
e q u i l i b r i u m i n t h e gas phase p r e d i c t t h a t , s o l u t io n behavior, phosphazene.
as opposed t o o b s e r v e d
t h e a m i n o p h o s p h i n e i s more s t a b l e t h a n t h e
The c a l c u l a t e d p h o s p h o r u s - n i t r o g e n d i s t . a n c e a n d
v i b r a t i o n a l f r e q u e n c y f o r H3PNH f i t w e l l w i t h t y p i c a l v a l u e s . 7 Experimental i n v e s t i g a t i o n s of
the nature o f the phosphorus-
n i t r o g e n b o n d i n a c y c l i c p h o s p h a z e n e s h a v e a l l i n v o l v e d nmr
In a d e t a i l e d nmr (31P,
spectroscopy.
15N a n d 1 3 C ) s t u d y o f a
s e r i e s o f N-(arylsulfony1)-triphenyl-phosphazenes, l a t i o n s o f t h e 31P s h i f t , w i t h Hammett
'JpN
linear corre-
s e v e r a l o f t h e 13C s h i f t s a n d o f
u c o n s t a n t s and a l i n e a r c o r r e l a t i o n o f
Similar c o r r e l a t i o n s with
'JpN w i t h t h e 31P s h i f t w e r e 15N s h i f t s c o u l d n o t b e o b t a i n e d .
V a r i a t i o n s i n t h e nmr p a r a m e -
t e r s w e r e c o n s i d e r e d t o be c o n s i s t e n t w i t h b o t h d - o r b i t a l a n d p h o s p h o r u s - c a r b o n o* p a r t i c i p a t i o n i n t h e p h o s p h o r u s - n i t r o g e n bond.
The e l e c t r o n w i t h d r a w i n g a b i l i t y ,
u-constants,
q u a n t i f i e d i n terms o f
o f s e v e r a l h e t e r o c y c l i c u n i t s have been e s t i m a t e d
f r o m t h e 31P c h e m i c a l s h i f t s i n N - h e t a r y l t r i p h e n y l p h o s p h a z e n e s . E l e c t r i c f i e l d a n d m a g n e t i c a n i s o t r o p y e f f e c t s become i m p o r t a n t i n c a s e s where t h e phosphazene i s i n t h e a - p o s i t i o n o f
the
The 19F a n d 31P c h e m i c a l s h i f t s o f 6 2 m o n o p h o s p h a -
hetarene."
z e n e s o f t h e t y p e RR'PF=NC6H4X w e r e r e l a t e d t o s u b s t i t u e n t e l e c t r o n e g a t i v i t i e s . 11,12
The p o l a r n a t u r e o f t h e p h o s p h o r u s -
n i t r o g e n b o n d i n R3P=NN=CPh2 was e s t a b l i s h e d b y 1 3 C a n d "P spectroscopy.
nmr
13
B o t h p h o t o l y t i c a n d t h e r m a l r e a c t i o n s o f f i v e new p h o s p h o r u s ( I I 1 ) a z i d e s , RR'PN3, nes,
RR'PN,
proceed t h r o u g h t r a n s i e n t phosphazy-
r a t h e r than following the Staudinger reaction.
14
332
Orgunophosphorus Chemistrv
I n addition to cyclo-
and polyphosphazene formation,
2,3
tri-
m e t h y l s i l y l m i g r a t i o n l e a d i n g t o methylene(imino)phosphoranes ( l a ) o r b i s ( i m i n o ) p h o s p h o r a n e s \ ( l b ) were o b s e r v e d .
Trapping o f
t h e phosphazynes w i t h t r i m e t h y l s i l y l c h l o r i d e g i v e s t h e phosphaz e n e s RR’PC1=NSiMe3. i n a variety of
The S t a u d i n g e r r e a c t i o n h a s b e e n e m p l o y e d
systems5 f o r example t h e r e a c t i o n o f a wide r a n g e
o f diorganofluorophosphines w i t h s u b s t i t u t e d p h e n y l a z i d e s p r o v i d e s t h e m o n o p h o s p h a z e n e s , R2PF= NC6HqX. difluorophosphines
RPF2(R=(CH2I5N,
S e l e c t e d monoorgano-
ET2N) r e a c t w i t h n i t r o p h e n y l -
a z i d e s t o form monophosphazenes b u t o t h e r s u b s t i t u e n t s l e a d t o d i m e r i z a t i o n t o t h e d i a ~ a d i p h o s p h e t i d i n e s . ~One ~ ~ ~p~o t t r a n s f o r m a t i o n o f a l k y l h a l i d e s t o t h e a z i d e f o l l o w e d by a d d i t i o n o f t r i e t h y l p h o s p h i t e g i v e s p h o s p h a z e n e s w h i c h may be t r a n s f o r m e d t o amines,
p h o s p h o r a m i d a t e s o r _N , N - d i a l k y l p h o s p h o r a m i d a t e s . l6
The
r e a c t i o n o f t r i m e t h y l p h o s p h i t e w i t h 2-chloro-N-azidomethy12,6d i e t h y l a c e t a n i l i d e g i v e s t h e expected iminophosphorane which upon a c e t y l a t i o n s e r v e s as a g r o w t h i n h i b i t o r f o r t u r f g r a s s . ”
The
r e a c t i o n o f phenylazide with the phosphine centers i n phosphole dimers g i v e s t h e diphosphazene 2 which can undergo Et3N c a t a l y z e d
c i s - t r ans isomerization
o f t h e phosphazenes r e l a t i v e t o one
a n o t h e r o r r i n g c o n t r a c t i o n t o 3 a t 5Oo.l8
The 192 a d d i t i o n
p r o d u c t s o f 1,2,4,3-triazaphospholes u n d e r g o t h e S t a u d i n g e r r e a c t i o n t o g i v e 4.19
The s y n t h e s i s o f 3 - h y d r o x y a c y l
p h o r a n e s , RR’C(OH)CH2C(O)N=P”’’ s t a r t i n g from t h e azide.*’
iminophos-
can be c o n v e n i e n t l y accomplished
The f o r m a t i o n o f (Ph3P=N-N=N)2C=C(CN)-
C02Me f r o m t h e d i a z i d e a n d t r i p h e n y l p h o s p h i n e f o l l o w e d b y e l i m i n a t i o n o f n i t r o g e n t o g i v e t h e d i p h o s p h a z e n e h a s been r e p o r t e d . The u s e o f Ph3PCH2CH2PPh3 i n p l a c e o f t r i p h e n y l p h o s p h i n e l e a d s t o t h e c y c l i c s p e c i e s 5 w h i c h upon h y d r o l y s i s y i e l d s
8: Phosphazenes
333
(1) (a) E = N ( b ) E = CH
n ph2ii NC
0
Ph
X-P-N
II
NR'
N-P-X \p/
I
I\
NR'
N
I
iPh2
x
N
II
McN-P-P=P
I
N
C02Mc
334
Organophosphorus Chemist?
*’
P h 3 P ( 0 )CH2CH2PPh2=NC (NH2 )=C (CN )C02ME.
compounds s u c h a s ( E t o l 3 P = N P ( 0 ) ( O E t ) 2 , cides,
u t i l i z e s the r e a c t i o n of
A one p o t s y n t h e s i s o f
which a r e used as b i o -
the phosphite,
s o d i u m a z i d e and an organoammonium h a l i d e . ”
(Et0I3P,
with
The r e a c t i o n o f
t r i e t h y l p h o s p h i t e w i t h 2,3-diphenylpyrazine-3,3-bis(sulfonylazide) gives the expected phosphinimine.23 of
Some k i n e t i c s t u d i e s
t h e S t a u d i n g e r r e a c t i o n have been r e p o r t e d .
I n the rea c t i o n
o f p h o s p h i t e s o f t h e form (Et0)2PX w i t h p h e n y l a z i d e ,
the induc-
t i v e e f f e c t of X is only important i n the f i r s t step o f the react i o n l e a d i n g t o (EtO)2P(X)N3Ph.24
In the reactions of
c a t i o n i c s p e c i e s R(Et2N)P+ w i t h p h e n y l a z i d e , f i r s t - o r d e r w h e r e R=C1 a n d s e c o n d - o r d e r
the
the reaction i s
when R = E t 2 N .
The f o r -
m a t i o n o f t h e i n i t i a l a d d u c t , R(Et2N)PN3Ar i s r a t e l i m i t i n g f o r R=C1 w h i l e t h e f o r m a t i o n o f t h e p h o s p h a z e n e
via
nitrogen elimina-
t i o n f r o m t h e a d d u c t i s r a t e l i m i t i n g when R z E ~ ~ N . ’ ~ O t h e r s y n t h e t i c r o u t e s t o l i n e a r phosphazenes have a l s o been explored. R2SiFNH2
The K i r s a n o v r e a c t i o n o f PX5(X=F,C1) (R=CMe3,
Mixed chloro-fluoro
d e r i v a t i v e s c a n be o b t a i n e d by exchange r e a c -
tions o f the perfluoro derivative.
S u b s t i t u t i o n a t p h o s p h o r u s by
a l c o h o l a t e s and s i l y l a m i n e s occurs.26 C(CN)*
with
CHMe2) g i v e s t h e e x p e c t e d p h o s p h a z e n e s .
The r e a c t i o n o f (F3C)2C=
w i t h PC15 y i e l d s ( F 3 C ) , C C 1 C ( C N ) = C C 1 = N P C l 3
w h i c h c a n be
d e r i v a t i z e d a t t h e p h o s p h o r u s c e n t e r by r e a c t i o n w i t h Me3SiNMe2. 27
O r g a n o f l u o r o n i t r i l e s r e a c t with phosphorus y i e l d s
t o g i v e t h e i m i n o p h o s p h o r a n e s , Ph3P=NCFfC=CHCOR, w h i c h a r e q u a n t i t a t i v e l y c o n v e r t e d t o t h e B - d i k e t o n e s by a c i d h y d r o l y s i s . 2 8 T h e r m a l d e a l k y l a t i o n o f [Me2NPF (NMeR ) R ’ ) ‘XMe2NPF(=NR)R’ .29
gives
E l i m i n a t i o n o f water occurs i n the r e a c t i o n
o f 3-amino-4-(4-chlorophenyl)-furazan
with t r i o r g a n o p h o s p h i n e
8: Phosphazenes
335
m-
o x i d e s t o g i v e t h e p h o s p h i n e irnine w h i c h upon o x i d a t i o n w i t h c h l o r o p e r o x y b e n z o i c a c i d e l i m i n a t e s t h e p h o s p h i n e o x i d e and y i e l d s t h e c o u p l e d p r o d u c t 6.30
The r e a c t i o n o f t h e d i c y a n o -
p h o s p h i d e i o n w i t h d i p h e n y l p h o s p h i n o a n i l i d g i v e s PhN=PPh2PCNw h i c h s u b s e q u e n t l y c o n v e r t s t o PhN=PPh2P=PPh2-NPhfurther
and upon
r e a c t i o n g i v e s the n o v e l triazaphosphole d e r i v a t i v e 7 . 31
Reactions o f the phosphorus(III)imines, e.g. phosphoranes -
RP=NR’,
lead t o imino-
t r e a t m e n t w i t h d i m e t h y l a m i n e g i v e s RPH(NMe2)=NR’
which i s i n t a u t o m e r i c e q u i l i b r i u m w i t h t h e aminophosphine,
oxi-
d a t i o n w i t h c h l o r i n e g i v e s RPC12=NR’ w h i l e o t h e r o x i d a t i v e r o u t e s
give R P ( X ) = N R ’ ( X = O , S , S ~ -) 3 2
I n t e r e s t i n g r e a c t i o n s o f carbon
t e t r a c h l o r i d e or t o s y l a z i d e w i t h X 3 - d i a z a d i p h o s p h e t i n e , (R=i-Prl
N=PNR2’
R’=SiMe3), (X=C1,N3)
(R2NPNR’ ) 2
l e a d t o t h e l i n e a r p h o s p h a z e n e s XPNR2(=NR)-
which dimerize t o 8 .
The r e a c t i o n o f t h e
p h o s p h e t i n e h a v i n g R=R’=SiMe3 w i t h c a r b o n t e t r a c h l o r i d e g i v e s a s i m i l a r l i n e a r s p e c i e s w h i c h r e a r r a n g e s t o 9. 32 Numerous r e a c t i o n s o f a c y c l i c phosphazenes h a v e been i n v e s t i gated i n order t o e i t h e r d e r i v a t i z e the molecule or transform the p h o s p h o r u s - n i t r o g e n bond.
Triarnino(imino)phosphoranes, which can
b e p r e p a r e d f r o m C13P=NCMe3, t h a t o f DBU.
h a v e b a s i c i t i e s 1 5 0 0 t o 10,000
The u s e o f t h e s e b a s e s i n e l i m i n a t i o n a n d c o n d e n -
s a t i o n r e a c t i o n s has been d i s c u s s e d . 3 3 PhS02N=PC13,
times
The r e a c t i o n s
C13C(0)N=PC13 a n d NO C H N=PC13 w i t h t r i m o r p h o l i n o 2 6 4
methane p r o c e e d i n a s t e p w i s e f a s h i o n t o y i e l d m o r p h o l i n e d e r i v a t e s o f each o f t h e phosphazenes.34
The r e a c t i o n o f
C13CC(0)N=PC13 w i t h (Me2N)2CH2 s t o p a t t h e d i s u b s t i t u t e d s t a g e . S i m i l a r r e a c t i o n s o f C13CCC12N=PC13 h a v e b e e n d e s c r i b e d . 34 A d d i t i o n a l s t u d i e s o f t h e i n t e r a c t i o n o f sodium m e t h o x i d e w i t h the b i s (triphenylphosphine)
n i t r o g e n ( + 1 ) c a t i o n (PPN’)
have been
336
Organophosphorus Chemistry
reported.
The p r o d u c t ,
Ph2P(0)NPPh3 c a n s e r v e as l i g a n d t o
t u n g s t e n , b i n d i n g t h r o u g h t h e oxygen atom w h i c h h a s c o n s i d e r a b l e n e g a t i v e c h a r g e due t o t h e z w i t t e r i o n i c c h a r a c t e r o f t h e The r e a c t i o n o f C12P(0)N=PC13 w i t h N204 o r N203 l e a d
ligand.35
t o Cl2P(O)NPCl2ONO. 36
The p h o s p h o r y l g r o u p i n p h o s p h o r y l p h o s p h a -
z e n e s c a n b e d e o x y g e n a t e d b y r e a c t i o n w i t h PC15 t o g i v e s a l t s o f the type
[ ( PhO ),C1
f u r a n s ,39
3-mPNP(OPh n C 1 3 - n l
-
-
-
+PC16-. 37
P y r a n s 38 b e n z o -
t h i ~ p h e n e sa~n d~ i n d 0 1 e s ~w~i t h t r i p h e n y l p h o s p h i n i r n i n o
s u b s t i t u e n t s undergo c y c l o a d d i t i o n r e a c t i o n s w i t h a c e t y l e n e s w i t h o u t d i s r u p t i o n o f t h e p h o s p h o r u s - n i t r o g e n bond.
The m e t h y l
g r o u p a t t h e p h o s p h o r u s c e n t e r i n p h o s p h o r a n i m i n e s , Me3SiN= P(OCH2CF3)(CH3)R
c a n be l i t h i a t e d and a l l o w e d t o r e a c t w i t h
e l e c t r o p h i l e s t o g i v e o r g a n o p h o s p h i n e and o r g a n o s i l a n e
derivative^.^^-^^
I r o n and chromium c a r b o n y l complexes o f
p h o s p h i n e f u n c t i o n a l i z e d p h o s p h o r a n i m i n e s , Me3SiN=P(OCH2CF3)MeCH2PRR',
have been p r e p a r e d w i t h o u t d i s r u p t i o n o f
phosphorus-nitrogen unit.41
the
The r e a c t i o n o f t h e l i t h i a t e d i n t e r -
mediate w i t h dichlorosilanes gives bis-[[phosphoranimino)s i l a n e s ] .42 RCH2SiR3,
The s i l y l a t e d p h o s p h o r a n i m i n e s , Me3SiN=P(OCH2CF3)-
a r e v e r y t h e r m a l l y s t a b l e a n d do n o t y i e l d
p o l y p h o s p h a z e n e s o n t h e r m o l y s i s .42
Transsilylation reactions of
Me3SiN=P(OCH2CF3)Me2 w i t h c h l o r o s i l a n e s ,
d i c h l o r o s i l a n e s and
d i c h l o r o s i l o x a n e s h a v e b e e n a c c o m p l i s h e d y i e l d i n g new s i l y l a t e d phosphoranimines and
his-[( p h o s p h o r a n i m i n o ) s i l a n e s ] .43
range o f r e a c t i o n s a v a i l a b l e t o 5-silylphosphoranimines summarized.44
The has been
The r e a c t i o n s o f Ph3P=NH w i t h s i l y l s t a n n a n e s
l e a d s t o Sn(N=PPh3)4.45
The r e a c t i o n o f Me3SiN=PR3 w i t h t r a n -
s i t i o n m e t a l h a l i d e s p r o v i d e s a r o u t e t o Ti(C5H5)C12N=PPh3,46 t h e t u n g s t e n d e r i v a t i v e s WF5N=PR3 a n d WF4(N=PR3l2
and
(R=p-CH3C6H4;
Me;
8: Phosphazenes
337
(CMe3)2NH) . 4 7
A l k y l a n d a r y l d e r i v a t e s o f RR’R’P=NSiMe3
w i t h g e r m a n i u m t e t r a c h l o r i d e t o g i v e RR’R”P=NGeC13 with the dimer
react
which c o e x i s t
S t a b i l i z a t i o n o f t h e unknown
PH(=NAr)2 l i g a n d a s i t s n i c k e l (11) c h l o r i d e complex has been reported49.
The r e a c t i o n o f t h e p h o s p h a ( I I 1 ) z e n e ( M e 3 S i ) 2 N P =
NSiMe3
F e 3 ( C 0 ) 1 2 g i v e s t h e t w o c o m p l e x c l u s t e r s 11 a n d 1 2 .
with
50
I n c r e a s i n g i n t e r e s t h a s b e e n shown i n r e a c t i o n s o f t h e phosphazene bond i n a c y c l i c m a t e r i a l s . have been d i s c u s s e d above.
Some o f
these reactions
T r e a t m e n t o f Me3CPBr2=NCMe3 w i t h
magnesium l e a d s t o t h e n o v e l three-membered
r i n g 13 which
undergoes a c i d catalyzed i s o m e r i z a t i o n t o the diazadiphosphetid i n e (Me3CPNCMe3)2.51
The r e a c t i o n o f v i n y l i m i n o p h o s p h o r a n e s
w i t h a-bromoketones p r o v i d e s a r o u t e t o p y r r o l e ~ . ~ ~ Dimethylacetylene dicarboxylate i n s e r t s i n t o the phosphorusn i t r o g e n double bond.53954
The r e a c t i o n o f (ET2N)2P(CC1J)=NH
with carboxylic acids gives the a c i d anhydrides while r e a c t i o n w i t h a l d e h y d e s g i v e s RCH=NP(O) ( N E t 2 ) 2 5 5 a n d w i t h s e l e c t e d ’ k e -
t o n e s t o y i e l d Ph ( C F 3 ) C = N P ( 0 ) ( N E T 2 ) 2 . 5 6 t e t r a a l k y l d i p h o s p h i n i m i n e s , RR’PP(=NX)R2”
The d e c o m p o s i t i o n o f leads t o diphosphines
b y t h e e l i m i n a t i o n o f R2PNHR1 w h i c h i n t u r n c a t a l y z e s t h e proce~s.~’
A Wittig-type
r e a c t i o n o f RCH=CPhN=PPh3 w i t h R’NCO
gives the conjugated carbodiimides, Dialkylbenzylphosphines imines,
.
RCH=CPhN=C=NR’ 58
PhCH2PRR’=NR”,
react with alde-
h y d e s t o g i v e o l e f i n s b u t w i t h k e t o n e s o n l y O/NR” observed.59
exchange i s
The r e a c t i o n o f Ph2(PhNH)P=NPh w i t h t h e
d i m e t h y l s u l f i d e borane adduct gives the boron-nitrogen-phosphorus h e t e r o c y c l e s 14.60
The r e a c t i o n o f t h e t r i p h e n y l p h o s p h i n i m i n o
h y d r a z o n e PhNHN=C(C02Me)N=PPh3 w i t h a c y l h a l i d e s f o l l o w e d b y t r e a t m e n t w i t h base r e p r e s e n t s a r o u t e t o 1 , 2 , 4 - t r i a z o l e ~ . ~ ~
338
Organophosphorus Chemistry
CI,
R R'R"P =N
N=PRR'R"
'Ge'
/p\
Mc3C
NCMe3
NR, (13)
(11)
Ph
(121
H,
Ph
\
Ph2P\/N-B'-N
7 h 2
N--8-N Ph H, (14)
Ph
n
n
HN,
N4
I
- N,
,N-(CH,), P N'
,NH P
' 4 N
1
II
N
II
(15)
0d 0 C H 'P' N4"
I
CI,P,
'N'
II
PCI,
8: Phosphazenes
339
I n addition t o previously noted applications,
(Me3Si)2NP-
(=NSiMe3)2 a c t s a s a c o c a t a l y s t ( w i t h N i ( 0 ) complexes) p o l y m e r i z a t i o n o f a l k y l o l e f i n s by 2,w [(R2R’P)2Nl+X-
coupling.62
for the
Iminium halides
have been used i n t h e p r e p a r a t i o n o f c u r a b l e
f l u ~ r o e l a s t o m e r s . ~O~t h e r e x a m p l e s o f l i n e a r p h o s p h a z e n e s a s s u b s t i t u e n t s o n i n o r g a n i c r i n g s y s t e m s may b e f o u n d i n s e c t i o n s 3,4
and 5.
3.
Cyclophosphazenes A v a l u a b l e , comprehensive r e v i e w o f cyclophosphazene che-
m i s t r y c o v e r i n g t h e p e r i o d o f 1969 t o t h e e a r l y e i g h t i e s h a s appeared64 and a d e t a i l e d r e v i e w o f t h e o r g a n o m e t a l l i c c h e m i s t r y o f c y c l o p h ~ s p h a z e n e sh~a ~ ve appeared.
More h i g h l y f o c u s e d
r e v i e w s i n c l u d e phosphazene r e s e a r c h a t t h e I n d i a n I n s t i t u t e o f S c i e n c e ( w i t h e m p h a s i s o n a m i n o l y s i s r e a c t i o n s ) ,66 t h e s y n t h e s i s o f cyclophosphazenes t h r o u g h phosphazyne i n t e r m e d i a t e s 4 ’
and
p o l y m e r s d e r i v e d from o r g a n o f u n c t i o n a l p h o s p h a ~ e n e s . ~ ~ E x t e n d e d H G c k e l c a l c u l a t i o n s o n (NPF214 s u g g e s t t h a t t h e i n p l a n e p h o s p h o r u s and n i t r o g e n based o r b i t a l s a r e s i g n i f i c a n t l y s p l i t i n energy l e a d i n g t o n-charge t e r e d o n t h e n i t r o g e n atoms.68 a r e r e p o r t e d i n s e c t i o n 7,
d e n s i t y b e i n g l a r g e l y cen-
While s p e c i f i c c r y s t a l structures
s e v e r a l papers have appeared r e p o r t i n g
c o r r e l a t i o n s o f s t r u c t u r a l and s p e c t r o s c o p i c p r o p e r t i e s .
A
systematic survey o f attempts t o c o r r e l a t e s t r u c t u r a l parameters (bond l e n g t h s , a n g l e s and d i h e d r a l a n g l e s ) w i t h a b r o a d c r o s s s e c t i o n o f p h y s i c a l ( e l e c t r o n e g a t i v i t y , b a s i c i t y ) and spectroscop i c (NMR s h i f t s a n d c o u p l i n g c o n s t a n t s ,
NQR) p r o p e r t i e s f o r
c y c l o t r i p h o s p h a z e n e s has been p r e ~ e n t e d . ~ ’ S p e c i f i c systems e x p l o r e d i n more d e t a i l i n c l u d e :
the c o r r e l a t i o n o f 35Cl
NQR
f r e q u e n c i e s with s t r u c t u r e and phase changes f o r amino and s p i r o -
Orgarlophosphorus Chemisrry
340
c y c l i c p h o s p h a ~ e n e s ~ ' , t h e r e l a t i o n o f s t r u c t u r e t o NMR p r o p e r t i e s f o r s p i r o c y c l i c d e r i v a t i v e s 7 1 ,72, a c o m p a r i s o n o f s t r u c t u r e s
f o r ansa d e r i v a t i v e s 7 3 and c o r r e l a t i o n o f s t r u c t u r e and c o n f o r m a t i o n o f t h e e x o c y c l i c t r i p h e n y l p h o s p h a z o (Ph3P=N) solution.74975
function
in
R e s t r i c t e d r o t a t i o n a b o u t t h e phosphazene bond
i n t h e e x o c y c l i c N=PPh
s p e c t r u m a s l o w as
m o e i t y i s n o t o b s e r v e d i n t h e 31P NMR
I -50 C.75
shows t h a t t h e p l o t o f
Consideration o f add i t i o n a l data
t h e e x o c y c l i c P-N b o n d l e n g t h a g a i n s t t h e
sum o f i n t e r b o n d a n g l e s a b o u t n i t r o g e n g i v e s a s c a t t e r e d r a t h e r than a l i n e a r plot.76
The NMR d a t a (31P,
f o r numerous
13C)
s p i r o c y c l i c p h o s p h a z e n e s h a s b e e n ~ o l l e c t e d . ' ~ The mass s p e c t r a o f methylchlorocyclotriphosphazenes has been r e p o r t e d . 7 7
A
s t u d y o f t h e t e m p e r a t u r e dependence o f t h e v a p o r p r e s s u r e f o r S e r i e s N,P3Cl,-,(OCH2CF,CF,H), v a p o r i z a t i o n . 78
(?=1-6) g i v e s AH
0
a n d AS
0
the
of
P o t e n t i o m e t r i c and conductome t r i c a c i d - base
t i t r a t i o n s o f s e v e r a l cyclophosphazenes i n three d i f f e r e n t s o l v e n t s h a v e b e e n i n v e s t i g a t e d . 79 constants for
B a s i c i t y subs t it u e n t
s e v e r a l s p i r o c y c l i c d e r i v a t i v e s have been and show, f o r example, a v a r i a t i o n o f 4 p K a I u n i t s i n
t h e s e r i e s N3P3[0(CH2)301 X 4
(X=NHET,
morph.,
cyclopropylamine)
.8 0
Reports concerning modifications o f the c l a s s i c synthesis o f c h l o r o c y c l o p h o s p h a z e n e s ( a m m o n l y s i s o f PC15) c o n t i n u e t o appear.
Specific details include:
a m i n e (e.9. p y r i d i n e ) complex81,
i n i t i a l f o r m a t i o n o f a PC15-
r e a c t i o n with p y r i d i n e
hydrochloride/ammonium c h l o r i d e mixtures8* and m u l t i p l e a d d i t i o n o f PC15 d u r i n g t h e c o u r s e o f t h e r e a c t i o n . 8 3
A recipe for puri-
f i c a t i o n o f p o l y m e r i z a t i o n g r a d e (NPC12)3 h a s b e e n d i s ~ l o s e d . ' ~ T h e r m o l y s i s o f p h o s p h o r u s (111) a z i d e s l e a d s t o [NP(CMe3)23 other oligiocyclophosphazenes through cyclodiphosphazene
and
34 1
8: Phosphazenes i n t e r m e d i a t e s . l4
Thermolysis of
the s i l y l a t e d phosphoranimine,
MejSiN=P(OCH CF )MeCH2E ( E = R 2 P ~ R M e 2 S i ) g i v e s c y c l o p h o s p h a z e n e s 2 3
o r low molecular weight l i n e a r
material^.^'
Nucleophilic s u b s t i t u t i o n processes continue t o represent the most v a l u a b l e s y n t h e t i c pathways t o cyclophosphazene d e r i v a t i v e s . New p s e u d o h a l o g e n d e r i v a t i v e s a r e a v a i l a b l e i n c l u d i n g N3P3(OPh)5CN a n d t r a n s - N 3 P 3 ( N M e 2 ) 3 ( C N ) 3 .85 vatives of
Isocyanato d e ri -
t h e t y p e N3P3C14X(NCO) (X=C1,NH2)
have been r e p o r t e d . 8 6
The r e a c t i o n s o f a r o m a t i c P r i m a r y m i n e s N H 2 C 6 H 4 - p - X [ X = ~ , M e , 0 M e ) , w i t h (NPC12)3 h a v e b e e n s t u d i e d i n d e t a i l . disubstitution,
A t the stage o f
a l l i s o m e r s a r e formed w i t h t h e non-gerninal spe-
c i e s p r e d o m i n a t i n g b u t i n t h e presence o f Et3N t h e geminal d e r i v a t i v e i s formed e x c l u s i v e l y .
F o r X=OMe,
three isomers o f the
t r i s u b s t i t u t e d m a t e r i a l a r e formed w h i l e a l l t e t r a k i s d e r i v a t i v e s a r e e x c l u s i v e l y geminal.
The p e n t a a n d h e x a s u b s t i t u t e d d e r i v a t i -
ves a s w e l l a s t h e d i m e t h y l a m i n o v a t i v e s were a l s o r e p o r t e d . 8 7
o r methoxy, a r o m a t i c amino d e r i -
The k i n e t i c s o f t h e s e r e a c t i o n s
h a v e been e x a m i n e d a n d f o u n d t o f o l l o w a b i m o l e c u l a r SN2(P) E v, i d m e c h a n i s m i n THF a n d a c e t ~ n i t r i l e . ~ ~ ~ e~n c e f o r a c h a n g e i n m e c h a n i s m t o a b a s e c a t a l y z e d E1(C8) E t 3 N was p r e s e n t e d .
The t h r e e c o o r d i n a t e P ( v )
i n v o l v e d was t r a p p e d w i t h t r a c e w a t e r N3P3Cl4(NHC6H4Me)E
process i n the presence of intermediate
or a d d e d m e t h a n o l t o y i e l d
w h e r e E=O- a n d OMe r e s p e c t i v e l y .88989
r e p o r t i n d i c a t e s t h a t t h e r e a c t i o n o f 2,2-N3P3C14Ph2
A brief
with alkyla-
m i n e s goes by a one s t e p SN2(P) mechanism i n a c e t o n i t r i l e a n d t h r o u g h a d i s t i n c t p e n t a c o o r d i n a t e d i n t e r m e d i a t e i n THF.89 A d d i t i o n a l c o m p l e x i t i e s i n t h e r e a c t i o n s o f p r i m a r y amines have been uncovered i n a s t u d y o f t h e r e a c t i o n s o f 2 - s u b s t i t u t e d e t h y l a m i n e s w i t h (NPC12),.90
The r e a c t i o n s o f 2 - h a l o e t h y l a m i n e s
p r o v i d e t h e s e r i e s N3P3C16-n(NHCH2CH2X)n ( n = 1 , 2 , x = C l , B r ; n = 4 , x=Cl). I n contrast t o the corresponding reactions o f ethylamine where t h e n o n - g e m i n a l substitution,
isomers predominate a t the b i s stage o f
t h e g e m i n a l 2 - h a l o a m i n o d e r i v a t i v e s a r e formed.
In
a c e t o n i t r i l e n o n - g e m i n a l as w e l l a s t h e g e m i n a l p r o d u c t s a r e obtained.
A t
the stage of
product i s obtained.
The d i m e t h y l a m i n o d e r i v a t i v e s , N3P3-
(NMe2)6-,(NHCH2CH2NMe2)n contrast,
t e t r a s u b s t i t u t i o n only the geminal
w e r e a l s o p r e p a r e d . By way o f
(n=1,2,4),
the r e a c t i o n s w i t h 2-methoxyethylamine
(NHCH2CH20Me)2.90
The a z i r i d i n o l y s i s p a t t e r n s i n ( N P C 1 2 ) 3 , 4
l e a d i n g t o N3P3C16-n
(NC2H4)n
(2=1-6)
a n d N4P4Clg-n(NC2H4)n
(2=1-8) have been s t u d i e d i n d e t a i l . 9 1 t h e s e r e a c t i o n s has been p r o b e d . e q u a l amounts o f formed.
The s o l v e n t d e p e n d e n c e o f
In the t r i m e r i c series roughly
t h e g e m i n a l and n o n - g e m i n a l d e r i v a t i v e s a r e
I n terms o f f u r t h e r r e a c t i v i t y ,
gem was d e d u c e d .
g a v e 2,4-N3P3C14-
For the
tetramers,
2,6
the series trans > c i s z d i s u b s t i t u t i o n was p r e -
f e r r e d i n e t h e r o r benzene w h i l e an e q u a l m i x t u r e o f 2,4 d i s u b s t i t u t e d m a t e r i a l s was o b s e r v e d i n h e x a n e . was p r e f e r r e d a n d o n l y s m a l l a m o u n t s o f were observed.91 6C1-
(6 = 4 - d i m e t h y l a m i n o p y r i d i n e ,
the geminal derivatives
octane),
(N3P3E16)6+
1-methylimidazole, The r e a c t i o n s
were r e p o r t e d . 9 2
o f t h i o u r e a w i t h (NPCl2l3 have been examined. pyridine,
The t r a n s i s o m e r
T h r e e new a m i n o p h o s p h a z e n e s a l t s ,
1,4-diazabicycl0[2.2.23
and 2,6
I n C2H4C12 o r
N3P3[NHC(S)NH21 6 , i s f o r m e d w h i l e i n a c e t o n e s p i r o -
c y c l i c d e r i v a t i v e s i n v o l v i n g b o t h n i t r o g e n and s u l f u r b o n d i n g t o t h e p h o s p h a z e n e w e r e s u g g e s t e d .93*94 C o m p l e x e s o f p h o s p h a z e n e s w i t h Ag+,Cu2+
the thiourea
a n d Hg2+ h a v e m e t a l i o n s c o o r d i n a t e d
t o b o t h n i t r o g e n and s u l f u r c e n t e r s . 9 4
decomposition
Of
t h e t h i o u r e a p h o s p h a ~ e n e s ~a n ~ d, ~t h~ e i r m e t a l c o m p l e x e s 9 4 were
343 s t u d i e d u s i n g DTA.
The r e a c t i o n s o f p o l y a m i n e s w i t h ( N P C 1 2 ) J
continue to a t t r a c t attention. [NH(CH2)4NHI
The i n t e r a c t i o n o f N 3 P 3 C l 4 -
with N-ethylpropylenediamine
gives the mixed d i s p i r o
d e r i v a t i v e N3P3C12 [NH(CH2)4Nl-d [NH(CH2
1 3 N E t l .96
amino d e r i v a t i v e ,
,
N3PJC14[NH(CH2)JNHI
The s p i r o p r o p y l -
reacts w i t h long chain
d i a m i n e s t o g i v e s p e c i e s i n w h i c h two c y c l o t r i p h o s p h a z e n e s a r e l i n k e d b y t h e d i a m i n e , N3P3C1J[NH(CH2)3NHI NH(CH ) NHN3P3Cl3-
2 2
“H(CH2)3NHj
( ~ = 7 - 9 ) . ~ ’ The d e c i p t i v e s i m p l e 31P NHR s p e c t r a o f
The t h e s e m a t e r i a l s a r e r e s o l v e d i n t o ABC s y s t e m s a t 202 M H z . ~ ~ r e a c t i o n s o f N3PJC14[NH(CH
) NH] 2n g i v e s t h e b r i d g e d s p e c i e s 15 ( X 2
( ~ = 2 , 43 9~8 ~ ) ,w i t h s p e r m i n e
1
NH;
r e a c t i o n w i t h a z i r i d i n e g i v e s 1 5 (X2=NH(CH
2 2
show s i g n i f i c a n t l y N3P3C14(NC2H,)2.98
= NH(CH
2n
1
Y=Cl).
NH,
Further
Y=NC2H4) w h i c h
improved anticancer a c t i v i t y r e l a t i v e t o The s p e r m i n e b r i d g e d t e t r a c h l o r o d e r i v a t i v e ,
1 5 ( X = Y = C l ) r e a c t s w i t h a z i r i d i n e t o y i e l d 1 5 (X=Y=NC2H4) w h i c h has s u p e r i o r a n t i c a n c e r a c t i v i t y s i x murine tumor systems.
( c o m p a r e d t o N3P3C12(NC2H4)4) i n
The i m p r o v e m e n t i n e f f e c t i v e n e s s
r e l a t e d t o lower toxicity.99
The r e a c t i o n o f
is
the l i t h i u m enolate
o f a c e t a l d e h y d e w i t h (NPC12)4 g i v e s N4P4C18-n(OCH=CH2)11
-
(n=l,Z).
The p o w e r o f m o d e r n NMR t e c h n i q u e s was d e m o n s t r a t e d i n t h e q u a l i t a t i v e and q u a n t i t a t i v e a n a l y s i s o f t h e m i x t u r e o f b i s i s o m e r s w h i c h was a c c o m p l i s h e d b y a c o m b i n a t i o n o f J - r e s o l v e d
homonuclear
2-0 NMR, 31P h o m o n u c l e a r s h i f t c o r r e l a t e d 2-0 NMR a n d m i x t u r e simulation techniques.
A l l f i v e i s o m e r s were d e t e c t e d and as
opposed t o a l l o t h e r t e t r a m e r i c d e r i v a t i v e s , i s o m e r i s one o f
t h e 2 , 4 - d e r i v a t i v e ~ . ~ The ~ ~
the predominant
cis
isomer fs found
i n g r e a t e r t h a n s t a t i s t i c a l a m o u n t s i n N3P3C13(0CH=CH2)3. loo The e n o l a t e d e r i v e d f r o m a c e t o a c e t i c e s t e r r e a c t s w i t h
( NPC12 1
t o g i v e N3P3Cl6-,(0C
( CH3) =CHC ( 0I O E t In (!=3,6). lo’The
-
344
Organophosphorus Chemistry
r e a c t i o n of 2-chloroethanol
w i t h [ N P C 1 2 ) 3 p r o v i d e s 2,2-N3P3C14-
( O C H ~ C H , C ~ ) , . ~ ~ H y d r o x y t r y p t a m i n e s a l t s a r e u s e d t o p r e p a r e 16 [ 2 = 1 , 3 ) . lo'The p r o p a r g y l a l c o h o l a t e s N 3 P 3 ( 0 C H 2 C = ~ ~ ) (R=H,Me 6 ,Ph) h a v e b e e n p r e p a r e d f r o m (NPC12)3 a n d t h e s o d i u m s a l t o f
the
a l c o h 0 1 . l ~ ~The u t i l i t y o f p h a s e t r a n s f e r c a t a l y s i s i n p h o s p h a zene c h e m i s t r y has been d e m o n s t r a t e d i n t h e s y n t h e s i s o f N3P3C150Ar ,lo4 N3P3C16,n(OAr)n
-
-
("=1-4)
, l o 5 N3P3C16-n(OCH2CFj)n
a n d m i x e d OCH2(CF ) x ( X = H , F; Y = 1 - 1 0 ) - a l k o x y o r 2 Y a r y l o x y c y c l o p h o s p h a z e n e s ( l o w t e m p e r a t u r e h y d r a u l i c f l u i d s ) lo7 (n=l-4)lo6
from t h e a l c o h o l a t e s .
E x c e s s NaOCH2CF3 ( f o l l o w e d b y a c i d i f i c a -
t i o n ) C o n v e r t s N3P3(0CH2CF3)6 t o N3P3(0CH2CF3)50H.
The same
p r o d u c t c a n b e o b t a i n e d f r o m t h e r e a c t i o n o f N3P3C150- w i t h NaOCH2CF3 a n d HC1.108
F u r t h e r examples o f t h e g e m i n a l t o non-
g e m i n a l r e a r r a n g e m e n t have been n o t e d i n t h e a l c o h o l y s i s o f 2,2-N3P3C14(NH2)2 tions of
w i t h NaOMe, NaOEt a n d NaOCHMe2.109
The r e a c -
(NPCl2I3 w i t h polyethylene g l y c o l a l k y l e t h e r s y i e l d
h e x a s u b s t i t u t e d d e r i v a t i v e s w h i c h c a n be u s e d as phase t r a n s f e r The r e a c t i o n w i t h g l y c e r o l y i e l d s t h e s p i r o c y c l i c c a t a l y s t s . 'lo (17) and b r i d g e d (18) d e r i v a t i v e s . ' "
N3P3C14R2 (R=Ph, s u m m a r i z e d . 11'
The i n t e r a c t i o n s o f
NHCMe3) w i t h d i f u n c t i o n a l r e a g e n t s h a v e been The r e a c t i o n o f d i h y d r o x y p r o p a n e w i t h
N3P3C14(NHCMe3)2 g o e s t h r o u g h t h e i s o l a b l e N3P3(NHCMe3)2C130(CH2)30H t o t h e e x p e c t e d s p i r o c y c l i c d e r i v a t i v e ,
the structure of
w h i c h was e s t a b l i s h e d b y x-ray
The s t r u c t u r e o f
crystallography.
t h e s p i r o c y c l i c s p e c i e s i n i t i a l l y was a s s i g n e d a s t h e a n s a ( 2 , 4 ) d e r i v a t i v e f r o m 1 3 C a n d b a s i c i t y data."' wood a n d wood c o m p o n e n t s w i t h ( N P C l 2 I 3 , N3P3C13(0CH2CF3)3 o c c u r s c e l l u l o s e . '13
via
The m o d i f i c a t i o n o f N3P3C150Ph a n d
f o r m a t i o n o f P-0 b o n d s w i t h
Lignosulfonates
r e a c t with chlorophosphazenes t o
345
8: Phosphazenes g i v e h e a t and flame of
resistant materials. 113y114
2- a n d p-LiC6H4C(Me)=CH2
The r e a c t i o n
w i t h ( N P F 2 I 3 g i v e s r i s e t o t h e a-
m e t h y l s t y r e n e d e r i v a t i v e s N3P3F6-n[C,H4C(Me)=CHJ
-
(p=1,2).
Both
g e m i n a l and n o n - g e m i n a l d i s u b s t i t u t e d m a t e r i a l s a r e formed w i t h t h e c i s isomer predominating.1159116
A brief
report o f a
m u l t i s t e p s y n t h e s i s o f N3P3F5C6H4CH=CH2 i n v o l v i n g h y d r o s t a n n a t i o n o f N3P3F5C6H4C(OMe)=CH2 f o l l o w e d b y 6 - e l i m i n a t i o n a b l e . '16
The s y n t h e s i s o f N3P3F5C6H4C(0)R
i s avail-
(R=H,Me)
has been
accomplished u s i n g the a r y l l i t h i u m reagent i n the form o f the a c e t a l f o l l o w e d by r e m o v a l o f t h e p r o t e c t i n g group.1169117
The
s y n t h e s i s o f t h e m e t h y l s i l y l and m e t h y l s i l o x y l phosphazenes N 3 P 3C 1 5 R ,
2,2-N 3P 3 C 1 4R 2 a n d 2,2-N3P3C14(Me)R
CH2SiMe20SiMe3,
and CH2SiMe(OSiMe3I3b)
(R=CH2SiMe3,
involves,
i n t h e case o f
t h e mono a n d s y m m e t r i c a l d i s u b s t i t u t e d d e r i v a t i v e s , the appropriate Grignard reagent.
addition o f
The m i x e d d e r i v a t i v e c o u l d be
p r e p a r e d e i t h e r by r e a c t i o n o f t h e m o n o s u b s t i t u t e d d e r i v a t i v e w i t h methylmagnesium c h l o r i d e o r by t h e r e a c t i o n o f
(N3P3C14Me)2Cu-
(RI).
the
anion with the appropriate organosilicon iodide
The r e m a i n i n g c h l o r i n e a t o m s i n a l l t h e new d e r i v a t i v e s
c a n b e r e p l a c e d by t h e t r i f l u o r e t h o x y m o i e t y , h o w e v e r o f C-Si
some c a s e s
bond c l e a v a g e were a l s o o b s e r v e d i n t h e s e r e a c t i o n s . ' 1 8
The r e a c t i o n o f c o p p e r p h o s p h a z e n e a n i o n s w i t h k e t o n e s l e a d s t o d e r i v a t i v e s o f t h e t y p e 2,2-N3P3C14(R)CR1R20H.
The a s y m m e t r y a t
t h e e x o c y c l i c p o s i t i o n s r e s u l t s i n d i a s t e r e o t o p i c PC12 g r o u p s a n d hence
3Jpc-2pc-2
was o b s e r v e d i n t h e 31P nmr s p e c t r a . 8 6 9 1 1 9
o r g a n o m e t a l l i c phosphazenes c o n t i n u e t o be d i s c o v e r e d . b i s ( b e n z e n e ) c h r o m i u m b r i d g e d phosphazene,
New
A
N3P3F4(n-C6H5)2Cr,
p r e p a r e d f r o m (NPF2)3 a n d t h e 1,l'-dilithioorganometallic.
was
120
The s t e r e o c h e m i c a l p a t h w a y f o l l o w e d i n t h e r e a c t i o n s o f m e t a l l o -
346
Organoph osyh o rus Chem is1n f e r r o c e n y 1-
cenylphosphazenes i s complex.
The t r a n s a n n u l a r
p h o s p h a z e n e , 2,4-N3P3F4[C5H4)2Fel
r e a c t s w i t h mono o r d i l i t h i o -
f e r r o c e n e by s u c c e s s i v e r e p l a c e m e n t o f
f l u o r i n e atoms g e m i n a l t o
t h e o r g a n o m e t a l l i c g r o u p t o g i v e 1 9 (M=Fe:X=z=F, Z=F,
X=Y=C5H4FeC5H5).
Y = C ~ H ~ F ~ C ~ H ~
The same p a t h w a y i s f o l l o w e d b y t h e r u t h e -
n o c e n y l a n a l o g i n i t s r e a c t i o n s w i t h mono o r d i l i t h i o r u t h e n o c e n e .
I n the tetrameric series, 2,6-N,P4F6[(C5H4)2Fe~ (M=Fe,X=F,
,
Y=C5H4FeC H 5 5
g o u s compound 2 0 (M=Ru,
the transannular
ferrocenyl
derivative,
gives the non-geminal d e r i v a t i v e 20 w h i l e i n t h e ruthenium system t h e analoX=F,
Y=C5H4RuC5H5) a n d t h e d o u b l e t r a n -
s a n n u l a r d e r i v a t i v e 2 1 a r e formed.
M i x e d m e t a l l o c e n y l p h e n y l and
m e t h y l d e r i v a t i v e s have a l s o been p r e p a r e d . l Z 1
The r e a c t i o n o f
N3P3F5Ph w i t h d i l i t h i o f e r r o c e n e g i v e s t h e n o n - g e m i n a l d e r i v a t i v e
19 (M=Fe,
X=Y=F,
19 (M=Fe,
X=Y=Z=F) r e a c t s w i t h m e t h y l l i t h i u m t o g i v e t h e g e m i n a l
Z=Ph).
d e r i v a t i v e 1 9 (M=Fe,
The t r a n s a n n u l a r f e r r o c e n y l
X=Me,
Y = Z = F ) and w i t h sodium t r i f l u o r o -
e t h o x i d e t o g i v e t h e n o n - g e m i n a l d e r i v a t i v e 1 9 (M=Fe, Z=OCH2CF3).
derivative
X=Y=F,
Additional t r i f l u o r o e t h o x i d e s u b s t i t u t i o n s occurs
geminal t o the metallocenyl u n i t eventually leading t o the e n t i r e Another s e r i e s o f t r i f l u o r o e t h o x y d e r i v a t i v e s o f 1 9 (M=Fe) .lZ1 r o u t e t o o r g a n o m e t a l l i c phosphazene d e r i v a t i v e s i n v o l v e s t h e r e a c t i o n o f the cyclophosphazene anion,
N3P3C14Ph(BEt3)-Li+
with
cyclopentadienyl metal i o d i d e s t o g i v e the geminal d e r i v a t i v e s 22 (n=3,M=Cr,Mo,W;
5=2, M=Fe,Ru) .122
Reactions a t the exocyclic p o s i t i o n of
phosphazenes r e p r e s e n t
t h e o t h e r m a j o r r o u t e t o new c y c l o p h o s p h a z e n e d e r i v a t i v e s .
The
S t a u d i n g e r r e a c t i o n o f t h e a z i r i d i n y l phosphazene a z i d e s , 2,2-N3P3(NC2~4)4(N3)2,
w i t h p h o s p h i n e s o c c u r s a t o n l y one o f t h e
a z i d e g r o u p s r e s u l t i n g i n f o r m a t i o n o f N3P3(NC2H4)4(N3)N=PR3. 123
8: Phosphazenes
CI,P\ N ‘’
347
PCI,
FP,-N=PF
CI,P‘ (21)
(20)
MtO
’
\N
‘N’
’
FhZ
\c/o
\P=N
IIPCI,
I
-C
do “H
-/ C.
N
N‘
348
Organophosphorus Chemistry
The r e a c t i o n s o f carbamates.86
i s o c y a n a t o phosphazenes w i t h a l c o h o l s g i v e s The r e a c t i o n o f
i n a c e t o n i t r i l e gives,
( N P C 1 2 ) 3 w i t h AgNCO a n d a l c o h o l s
i n a d d i t i o n t o the carbamates, the novel
s p i r o c y c l i c d e r i v a t i v e 23 v i a s o l v e n t a t t a c k . 8 6
Quaternization
o f n u m e r o u s t r i m e r i c a n d t e t r a m e r i c c y c l o p h o s p h a z e n e s w i t h Me1 o r
for t h e p i p e r i d i n o
Ph3P o c c u r s a t t h e e x o c y c l i c p o s i t i o n s e x c e p t
d e r i v a t i v e where t h e e n d o c y c l i c n i t r o g e n atoms were t h e r e a c t i v e sites.lZ4
The q u a t e r n i z e d s p e c i e s w e r e a l l o w e d t o r e a c t w i t h t h e
lithium s a l t of
7,7,8,8-tetracyanoquinodimethane
g e n e r a t e TCNQ-phosphazene s a l t s . t h e s e s a l t s was m e a s u r e d . 1 2 4
(TCNQ) t o
The e l e c t r i c a l c o n d u c t i v i t y o f
Carbon c h a i n polymers w i t h
c y c l o p h o s p h a z e n e s a s s u b s t i t u e n t s were d e r i v e d f r o m p o l y m e r i z a t i o n o f N3P3F5C6H4C(Me)=CHz,116 N3PJ(OCH2C=CR)6.103
N 3 P 3 F 5 C 6 H4 CH=CH2116 a n d
Weak 1 : l c o m p l e x e s o f N 3 P 3 ( 0 P h I 6 w i t h
TaF5 h a v e b e e n d e t e c t e d b y nmr s p e c t r o s c o p y . 1 2 ' o f B-arylamides
The t r e a t m e n t
w i t h ( N P C l 2 l 3 g i v e s 3,4-dihydroisoquinolines
dehydration ring-closure
by a
route.Iz6
Numerous a p p l i c a t i o n s o f c y c l o p h o s p h a z e n e s , i n a d d i t i o n t o t h o s e q u o t e d above,
have been noted.
Use a s f l a m e r e t a r d e n t s h a s
b e e n r e p o r t e d f o r many s y s t e m s i n c l u d i n g :
derivatives o f
( N P C l 2 I 3 w i t h b i f u n c t i o n a l t h i o l s o f t h e t y p e AH(CR1R2)1?SH
)I
(~=3-12) com2 n b i n e d w i t h (C1CH2CHC1CH20)3P0 f o r r a y o n , I z 8 c h i t s a n - c h l o r o p h o s (A=O,NH;
m=1-4)
f o r polymers,127
[NP(OR1)(OR
p h a z e n e d e r i v a t i v e s for t e x t i l e s a n d p l a s t i c p r o d u c t s tris(2-phenylenedixoyl-phosphazenes
for 2-cyanoacrylate
a d h e s i v e s , 130 b r o m o p h e n o x y p h o s p h a z e n e s f o r i n j e c t e d m o l d e d d i c y c l o p e n t a d i e n e p o l y m e r s , 131 d i a m i n o p h o s p h a z e n e s f o r textiles
,
a m i n o p r o p y l t r i e t h o x y s i l a n e - p h ~ s p h a z e n e s a~n~d~ o t h e r
c h l o r o p h o s p h a ~ e n e s ~f o~ r ~ wood ~ ~ ~ ~a n d a l k o x y p h o s p h a z e n e s f o r
8: Phosphazenes
349
s e m i c o n d u c t o r d e v i c e s . 134
C u r i n g o f epoxy r e s i n s w i t h
c y c l o p h o s p h a z e n e s h a s b e e n r e p o r t e d u s i n g a m i n o p h e n o x y , 135 a l l y l o x y , 136 d i a m i n o t e t r a o r g a n o ( a 1 k o x y , a r y l o x y , a l k y l t , h i o
and
a r y l t h i ~ ) 'a~n d~ i s o p r o p y l a r n i n o p h o s p h a z e n e s . 138 Propoxyphosphazene c a t a l y s t s have been used as c a t a l y s t s i n oxaz o l i n e d e r i v a t i v e p o l y m e r i z a t i o n . 139
Heat r e s i s t a n t elastomers
h a v e b e e n c l a i m e d t o be p r e p a r e d b y g r a f t tion of
and b l o c k c o p o l y m e r i z a -
( N P C 1 2 ) 3 w i t h c y c l o s i l o x a n e s u s i n g C1S03H a s a
c a t a l y s t . 140
F l u o r o a l k o x y p h o s p h a z e n e s a r e v e r y p r o m i s i n g pump
o i l materials.1419142
The u s e o f p h o s p h a z e n e d e r i v a t i v e s a s d e n -
t a l m a t e r i a l s h a s b e e n r e p o r t e d . 143 4.
Cyclophospha(thia)zenes Cyclophospha(thia1zene chemistry covering the period of
t o t h e e a r l y e i g h t i e s has been reviewed.14' n i t r o g e n a t o m s o f 1,3- a n d 1 , 5 - ( P h 2 P N ) 2 ( S N )
1969
The e n d o c y c l i c s e r v e as b a s i c s i t e s
i n r e a c t i o n s w i t h L e w i s and p r o t o n i c a c i d s . 1 4 5
S e l e c t i v e 15N
l a b e l i n g e x p e r i m e n t s show t h a t n o n i t r o g e n a t o m s c r a m b l i n g o c c u r s i n t h e t h e r m o l y s i s o f t h e b i c y c l i c m a t e r i a l 24.146
The r e a c t i o n s
o f t h i a z e n e s w i t h p h o s p h i n e s c a n l e a d t o t h i a z e n e s w i t h endoe x o c y c l i c p h o s p h a z e n e m o i e t i e s . 144
or
Reactions reported t h i s year
f o c u s o n f o r m a t i o n o f c y c l o t h i a z e n e s w i t h e x o c y c l i c phosphazene substituents.
I n t h e r e a c t i o n o f S4N4 w i t h a m i x t u r e o f
(p-CH3C6H4)PPh2, obtained.
Ph3P a n d
a m i x t u r e o f t h e RPh2P=NS3N3 d e r i v a t i v e s a r e
I f however, t h e p - t o y 1 g r o u p i s r e p l a c e d by t h e
m o r p h o l i n e m o i e t y a m i x t u r e o f (morph)Ph2P=NS3N3 a n d 1,5-(Ph3P=N)2S4N4
i s formed.
By way o f f u r t h e r c o n t r a s t ,
the
r e a c t i o n w i t h two m o l a r e q u i v a l e n t s o f t h e t o l y l d i p h e n y l p h o s p h i n e g i v e s 1,5- [_p-CH3C6H4)Ph2P=d (Ph3P=N)S4N4 a n d [p-CH
-
C H ) P h 2 P = d (Ph3P=N)2S+S4N5-. 3 6 4
147
The r e a c t i o n o f Ph3P w i t h
350
Organophosphorus Chemist n
t h e b i c y c l i c t h i a z y l h e t e r o c y c l e PhCN5S3 p r o d u c e s a c y c l o t h i a z e n e , 25, w i t h t h e t r i p h e n y l p h o s p h a z o g r o u p i n t h e endo p o s i t i o n .
The
corresponding r e a c t i o n with t r i p h e n y l a r s i n e produces both the endo a n d exo c o n f i g u r a t i o n a l
isorners.14'
The r e a c t i o n s o f
(1=1,2) w i t h R L i (R=Me, Me3C) f o l l o w e d b y
(NPCl2),(NS0Ph),-,
i s o p r o p a n o l a r e complex g o i n g t h r o u g h an i n i t i a l m e t a l - h a l o g e n exchange and l e a d i n g t o hydridoisopropoxycyclophospha(thia)zenes,
NPH(OPri)(NPC12)1~NSOPh)z-~
(n=O,l),
various a l k y l s u b s t i t u t e d derivatives.149 [NP(NH2)l 2 ( N S 0 z ) -
and m i x t u r e s o f The s o d i u m s a l t o f t h e
a n i o n has been p r e p a r e d and t h e d i s s o c i a t i o n
c o n s t a n t o f t h e p a r e n t a c i d has been measured.15' 5.
M i s c e l l a n e o u s P h o s p h a z e n e - C o n t a i n i n g R i n q Systems Due t o t h e i n t i m a t e r e l a t i o n s h i p b e t w e e n m o n o p h o s p h a z e n e s a n d
c y c l o d i p h o s p h a z a n e s , t h e r e a r e numerous examples o f m i s c e l l a n e o u s r i n g s y s t e m s c o n t a i n i n g endo
or e x o c y c l i c p h o s p h a z e n e u n i t s i n a
r e v i e w cyclophosph( v)azanes.151
The c h e m i s t r y o f t r i a z a p h o s p h o -
l e s i n c l u d i n g p h o s p h a z e n e i n t e r m e d i a t e s i n some o f t h e i r r e a c t i o n s has been reviewed.15'
The s y n t h e s i s o f t h e f i r s t
m o n o u n s a t u r a t e d d i a z a d i p h o s p h e t i n e s 26 ( R = i P r ; Z=N( i P r ) 2 ) 3 3 (R=Me3Si,
a n d t h e r e l a t e d 1, 3 - d i a z a - 2 X 5 ,
Z=X=CH(SiMe3)2,
X=C1,N3;
Y=:;
4X5 d i p h o s p h e t e n e 26
Y=NSiMe3)l4 have been p r e p a r e d .
L i t h i a t i o n o f one o f t h e P - m e t h y l g r o u p s i n Me2Si(C1)CH2CH2SiMe2N=P(OCH2CF3)Me2 i s f o l l o w e d b y a n i n t r a m o l e c u l a r r e a c t i o n w i t h t h e t e r m i n a l s i l i c o n - c h l o r i n e bond t o form t h e c y c l i c r n o n ~ p h o s p h a z e n e . ~ The ~ imidophosphonate, 2 7 , w h i c h is i n e q u i l i b r i u m w i t h i t s dimer, undergoes,
upon d i s t i l l a t i o n ,
r e a r r a n g e m e n t t o t h e a m i d o p h o s p h i t e b y m i g r a t i o n o f t h e -CH2NEt2 group from the phosphorus t o the n i t r o g e n center.lS3 PhP(0)(NHCONHNMe2)
Heating of
i n t h e p r e s e n c e o f MeX y i e l d s t h e m o n o p h o s p h a -
35 1
8: Phosphazenes
z e n e 28 w h i c h i s i n e q u i l i b r i u m w i t h t h e h e a v i l y f a v o r e d t a u t o m e r formed by m i g r a t i o n o f t h e h y d r o x y l p r o t o n t o t h e phosphazene n i t r o g e n atoms.154
The 4 + 2 c y c l o a d d i t i o n r e a c t i o n o f N-
vinyliminophosphoranes with electron d e f i c i e n t acetylenes gives 1 ,2-X5-azaphosphorines(29) .155
S2P(N3l2-
The r e a c t i o n o f P q S l 0 w i t h t h e
a n i o n 1 5 6 o r b e n z ~ n i t r i l e ’ ~ ’l e a d s t o r e p l a c e m e n t o f a
e n d o c y c l i c s u l f u r a t o m b y a n i t r o g e n a t o m t o g i v e t h e P4S9Nm o n o p h o s p h a z e n e a n i o n (30).
The d i p h o s p h a z e n e c o n t a i n i n g r i n g ,
5 , h a s been p r e p a r e d by t h e S t a u d i n g e r r e a c t i o n . 2 1
Further
examples o f c y c l o p h o s p h a z e n e s w i t h e n d o c y c l i c m e t a l atoms have been r e p o r t e d .
The r e a c t i o n o f t h e l i n e a r p h o s p h a z e n e s a l t ,
“H2PPh2NPPh2NH21+C1-
n = 5 ; M=W, n = 6 ) a n d
w i t h m e t a l c h l o r i d e s y i e l d s 3 1 (E=N,M=Nb, w i t h C13MoN p r o v i d e s 30 (E=N1 M=Mo,
The r e a c t i o n s o f Me3SiNPPh2CH2PPh2NSiMe3 w i t h SeOC12 t o g i v e 32 (M=Se,
X = C l , 1 = 2 ) , w i t h TeC14 t o g i v e 32 (M=Te,
w i t h W X 6 t o g i v e 32 (M=W,
X=F,Cl,
X = C l , n=2), a n d
n = 4 ) have been r e p o r t e d .
The
d e h y d r o h a l o g e n a t i o n o f t h e c h l o r o t u n g s t e n d e r i v a t i v e w i t h DBU g i v e s 31 (E=CH,
M=W,
X=C1, n = 3 ) . 1 5 9
6. P o l y ( p h o s p h a z e n e s ) This s e c t i o n i s devoted t o polymers c o n t a i n i n g open-chain phosphazenes.
C y c l o l i n e a r and c y c l o m a t r i x phosphazene p o l y m e r s
a r e c o v e r e d i n s e c t i o n 3.
Reviews i n c l u d e an overview o f synthe-
sis, u n i q u e p r o p e r t i e s a n d a p p l i c a t i o n s o f p o l y ( o r g a n o p h o s phazenes),16’
a summary o f t h e c u r r e n t s t a t u s o f p o l y ( p h o s -
phazene) chemistry,161 t h e p r e p a r a t i o n o f poly(phosphazenes) w i t h o r g a n o m e t a l l i c s u b ~ t i t u e n t sa ~n d~ t h e c h e m i s t r y o f f l u o r a l k o x y and a r y l o x y phosphazene rubbers.16’
Reviews i n l e s s a c c e s s i b l e
sources i n c l u d e a survey o f the p r e p a r a t i o n o f poly(organoh o s p h a z e n e s ) a n d a p p l i c a t i o n s t o p h a r m a c e u t i c a l s ( i n C h i n e s e ) 16’
Organophosphorus Chemistry
352
SiMe3 (28)
(29)
A
E Phzp/’
Ph2i iPh2
‘PPhz
N
N
M ‘’ Xn
(32)
F
/Q
4“B
P ‘
N
CN (33)
I
II
F2\N/p\F
(34)
..-‘
8: Phosphazenes
353
a l o n g w i t h p h o s p h a z e n e p o l y m e r i z a t i o n ( i n F i n n i s h ) .164 The s y n t h e s i s o f p o l y ( p h o s p h a z e n e s ) poly(dichlorophosphazene),
(NPC12),,
i n general,
and
i n p a r t i c u l a r i s the
focus
o f several recent investigations.
I n the r i n g opening polymeri-
zation of
is a b s e n t a t low c o n v e r s i o n
(NPC12)3,
chain transfer
b u t t h e p o l y d i s p e r s i t y i n c r e a s e s t o 1.39 a t 7 4 % c o n v e r s i o n . 165 The e f f e c t s o f v a r i o u s a d d i t i v e s on t h e p o l y m e r i z a t i o n o f (NPCl2I3 have been i n v e s t i g a t e d .
The t e t r a m e r ,
(NPC12)4,
has
b o t h c a t a l y t i c and i n h i b i t i n g e f f e c t s o n t h e p o l y m e r i z a t i o n . 1 6 6 The c a t a l y t i c e f f e c t
o f Ph4Sn h a s b e e n t r a c e d t o p h e n y l e x c h a n g e
between phosphorus and tin.167 (NPC12)3
The s o l u t i o n p o l y m e r i z a t i o n o f
i n CS2 p r o v i d e s a h i g h m o l e c u l a r w e i g h t ,
p r o d u c t .168
uncross-linked
P h o s p h a z e n e p o l y m e r s w i t h PXC12 (X=O,S)
a r e o b t a i n e d by t h e s e l f - c o n d e n s a t i o n
end g r o u p s
r e a c t i o n o f C12P(X)N=PC1
3
( w i t h e l i m i n a t i o n o f PXC13) i n a n i n e r t s 0 1 v e n t . l ~ ~P l a s m a p o l y m e r i z a t i o n o f (NPCl2I3 proceeds a t lower temperature b u t gives lower molecular weight products than thermal p 0 1 y m e r i z a t i o n . l ~ ~ The s t a b i l i t y o f ( N P C l 1 i n solution i s m a r k e d l y i m p r o v e d b y 2n a d d i t i o n o f a n o r g a n o m e t a l l i c h a l i d e (M=Si,Ge,Sn,Ti) and a t e r t i a r y amine t o t h e solution.171 (NPC1 )
211
Recipes f o r the p u r i f i c a t i o n of
have been reported.849172
S e v e r a l o t h e r monomers h a v e
been d i r e c t l y c o n v e r t e d t o poly(phosphazenes).
The e f f e c t
of
organometallic s u b s t i t u e n t s on the p o l y m e r i z a t i o n o f c y c l o p h o s p h a z e n e s has been examined.
The r e l e a s e o f r i n g s t r a i n
i n d u c e d by t r a n s a n n u l a r b r i d g i n g f e r r o c e n y l o r r u t h e n o c e n y l groups i s an important f a c t o r i n the p o l y m e r i z a t i o n o f cyclotetramers with transannular substituents but the e f f e c t i s less s i g n i f i c a n t i n the t r i m e r i c series.173 weight
e.e x t e n t
A study of molecular
o f r e a c t i o n f o r the formation of
354
Organophosphorus Chemistry
(RR'PN),
-
(R,R'=Me,Et
,Ph)
b y t h e r m o l y s i s o f Me3SiN=P(OCH2CF3)RR'
i n d i c a t e s t h a t a c h a i n g r o w t h mechanism i s o p e r a t i v e . 1 7 4 9 1 7 5 C o t h e r m o l y s i s o f Me3SiN=P(OCH2CF3)Me2 w i t h Me3SiN=P(OCH CF )Me2 3 CH2E (E=R2P; [(NPMe
R M e 2 S i ) g i v e s h i g h MW s p e c i e s o f t h e t y p e
1
1
(NPMeCH E ) 40 The p o l y m e r i z a t i o n o f 2 Y 2' RP(0)(NH,)2 gives poly(oxaphosphazanes) which are i n e q u i l i b r i u m
2x
w i t h t h e h y d r o x y p h o s p h a z e n e s w h i c h c a n be c o n v e r t e d t o t h e
m e t h o x y p h o s p h a z e n e s by r e a c t i o n w i t h d i a ~ o r n e t h a n e . ' ~ ~ The e l i m i n a t i o n o f NOCl f r o m C12P(0)N=PC120N0 l e a d s t o C l 2 P ( 0 ) CNPCl203 nN0.36 R e a c t i o n s i n w h i c h t h e c h l o r i n e a t o m s i n (NPC1 ) a r e r e p l a c e d by 2 n other f u n c t i o n a l i t i e s represent another route t o poly(phosphazenes).
L i q u i d c r y s t a l l i n e p o l y m e r s have been
o b t a i n e d from the r e a c t i o n s of
(NPC1 )
2n
with phenolates
which a r e chain extended w i t h 2-chloroethanol s p a c e r s 1 7 7 o r w i t h NaO(Et0)3PC6H40Me. 17'
polybis(pyroly1)phosphazenes
flexible
The p r e p a r a t i o n o f
from the potassium s a l t of p y r r o l
a n d (NPC12)n h a s b e e n r e p o r t e d .
The m a t e r i a l becomes s e m i c o n -
d u c t i n g upon e l e c t r o c h e m i c a l o x i d a t i o n w h i l e more h i g h l y c o n d u c t i n g m a t e r i a l s a r e o b t a i n e d by t h e r m o l y s i s o f
the parent
Expoxy phosphazenes a r e o b t a i n e d f r o m t h e r e a c t i o n s
p o l y m e r . 179
o f (NPC12)11 w i t h e p i c h l o r o h y d r i n u s i n g F r i e d e l - C r a f t s catalysts.
The r e a c t i o n s o f
(NPC1 1 w i t h h y d r o x y c a r b a z o l e s 2 n
or h y d r o x y - o r aminonapthalenes have been r e p o r t e d t o g i v e p o l y mers u s e f u l as p h o t o c o n d u c t i n g m a t e r i a l s . 1 8 1
Controlled release
o f d r u g s appended t o b i o d e g r a d a b l e p o l y ( p h o s p h a z e n e s ) h a v e been examined.
The d r u g may b e i o n i c a l l y a s s o c i a t e d w i t h a p h o s p h a -
zene s u b s t i t u e n t s 1 8 2
o r c o v a l e n t l y bound t h r o u g h spacers as i n
t h e case o f t h e e t h y l e s t e r s o f p h e n y l a c e t y l l y s i n e and naproxen. la3
The r e l e a s e o f t h e n a p r o x e n d e r i v a t i v e was
8: Phosphazenes
355
c o n t r o l l e d b y t h e r a t e o f h y d r 0 1 y s i s . l ~ ~A r e c i p e f o r
t h e manu-
f a c t u r e o f a l k o x y p h o s p h a z e n e p o l y m e r s h a s b e e n d i s c l o s e d . la5 The r e m a i n i n g m a j o r s y n t h e t i c r o u t e t o new p o l y p h o s p h a z e n e d e r i v a t i ves i s t h e r e a c t i o n o f o r g a n o s u b s t i t u e n t s on t h e poly(phosphazene1. (NPMePh),
-
The l i t h i a t i o n o f t h e m e t h y l g r o u p s i n
p r o v i d e s a n i o n s w h i c h c a n be r e a c t e d w i t h v a r i o u s
f u n c t i o n a l c h l o r ~ s i l a n e os r ~ k~e t ~o n~e s~ (~i n c l u d i n g f e r r o c e n y l k e t o n e s ) t o y i e l d a l c o h o l s a s s u b ~ t i t u e n t s . ~ ' No c h a i n c l e a v a g e was o b s e r v e d i n t h e s e d e r i v a t i z a t i o n r e a c t i o n s .
Grafting of
1-
s e l e c t e d o r g a n i c polymers t o p o l y Cbis (4-isopropylphenoxy phosphazenes]
c a n be a c c o m p l i s h e d by f o r m i n g a p e r o x i d e a t t h e
i s o p r o p o x y s i t e and h e a t i n g t h i s m a t e r i a l w i t h s t y r e n e .
The
r e s u l t i n g m a t e r i a l s show i n c r e a s e d t h e r m a l s t a b i l i t y o v e r p o l y s t y r e n e . 187 e.g. -
Quaternization o f poly(phosphazene)
derivatives,
a m i n o p h o s p h a z e n e , b y Me1 o r PhjP p r o v i d e s p o l y m e r i c s a l t s
w h i c h c a n be c o n v e r t e d t o tetracyanoquinodimethane(TCNQ)
salts.
The e l e c t r i c a l c o n d u c t i v i t i e s o f t h e m a t e r i a l s h a v e b e e n Radiation cross-linking r e p o r t e d . lZ4 phospharenes and methylamino b e e n examined.188
o f 2-methoxyethoxyl
o r t r i f l u o r o e t h o x y d e r i v a t i v e s has
The g e l f o r m a t i o n b e h a v i o r o f a r y l a m i n o o r
a r y l o x y phosphazenes exposed t o r a d i a t i o n h a s been s t u d i e d q u a n t i t a t i v e l y . lag C h a r a c t e r i z a t i o n o f v a r i o u s p o l y ( p h o s p h a z e n e s ) h a s been t h e focus o f several investigations. s t r u c t u r e o f (NPC12),
A redetermination o f the c r y s t a l
i n d i c a t e s a g l i d e conformation r a t h e r than
t h e 2/1 h e l i x conformation p r e v i o u s l y proposed. controversial level,
A t a more
t h i s s t u d y s u g g e s t e d a l t e r n a t i v e s i n g l e (167
pm) a n d d o u b l e ( 1 4 4 pm) p h o s p h o r u s - n i t F o g e n bonds.19' e l e c t r o n i c s t r u c t u r e o f (NPC12),,
The
i n c l u d i n g band s t r u c t u r e ,
was
356
Organophosphorus Chemistr?;
p r o b e d u s i n g c a l c u l a t i o n s o f t h e SCF-CONDO
Poly[bis(trifluoroethoxy)phosphazenel
,
type.191
PBFP,
h a s been t h e s u b j e c t
o f numerous i n v e s t i g a t i o n s w i t h m o r p h o l o g i c a l s t u d i e s r e c e i v i n g t h e most a t t e n t i o n .
P r o p e r t i e s o f PBFP s u c h a s c r y s t a l l i n i t y
l e v e l s a n d t r a n s i t i o n t e m p e r a t u r e s h a v e b e e n shown t o v a r y w i t h the r e a c t i o n time used i n i t s preparation.
The o b s e r v a t i o n t h a t
t h e c r y s t a l l i n i t y c a n b e l o w e r e d by r e a c t i o n w i t h e x c e s s sodium t r i f l u o r o e t h o x i d e has been r e l a t e d t o s i d e group cleavage reactions.lo8
C h a n g e s i n s o l u t i o n g r o w n c r y s t a l s o f PBFP w h i c h
o c c u r upon h e a t i n g t h r o u g h t h e t h e r m o t r o p i c t r a n s i t i o n i n v o l v e c h a i n e x t e n s i o n . 192
Phase changes i n p o l y ( d i p h e n o x y p h o s p h a z e n e )
a l s o h a v e b e e n s t u d i e d . 19' crystals192
F r a c t u r e s u r f a c e m o r p h o l o g i e s i n PBFP
a n d s o l u t i o n c a s t f i l m s 1 9 3 h a v e been s t u d i e d by R e l a x a t i o n b e h a v i o r i n t h e 'ti
scanning elecron microscopy.
NMR
o f PBFP h a s b e e n r e l a t e d t o v a r i a t i o n s i n c h a i n m o t i o n i n d i f f e r e n t ( c r y s t a l l i n e , amphorous, molecules.194
a.) states
of the
Molecular motions i n a series of poly-
( d i a l k o x y p h o s p h a z e n e s ) h a v e b e e n s t u d i e d b y N M R a n d show a weak dependence o f t h e m o t i o n o f t h e s u b s t i t u e n t s and f l e x i b i l i t y o f t h e m a i n c h a i n . 195
Single c r y s t a l s of poly[bis(phenylphenoxy)l-
and C b i s ( d i m e t h y 1I p h o s p h a z e n e l have been examined by t r a n s m i s s i o n e l e c t r o n microscopy l e a d i n g t o l a t t i c e imaging.
The a r y l o x y
d e r i v a t i v e s exhibited thermotropic behavior but the methyl de ri v a t i v e s d i d not.196
DSC a n d X - r a y
s t u d i e s o f t h e phase t r a n -
s i t i o n s o f p o l y [ b i s - ( 4 - i s o p r o p y l p h e n o x y ) p h o s p h a z e n e l show t h a t p h a s e t r a n s i t i o n b e h a v i o r upon g o i n g t h r o u g h t h e mesophase d e p e n d s o n t h e h e a t i n g r a t e . 19'
Dilute solution characterization
using such techniques such as l i g h t s a t t e r i n g , h a v e b e e n a p p l i e d t o PBFP.
gpc,
viscosity
P o l y m e r i c a g g r e g a t e s were d e t e c t e d i n
8: Phosphazenes
357
solution.198
S i m i l a r measurements a p p l i e d t o p o l y -
(alkyl/aryl)phosphazenes, [(R(Ph)PN)x(R2PN)yln -
mations for
(NPRR’
(R=Me,Et),
In(R,R’=Me,Et
and
show r a n d o m c o i l s o l u t i o n c o n f o r -
these-materials.174’175
The c r o s s - l i n k i n g
a n d mechanism o f e x p o x y r e s i n - p o l y e s t e r poly(phosphazene)
,Ph)
-
kinetics
blends containing
f i r e p r o o f i n g a g e n t s h a v e b e e n i n v e s t i g a t e d . 199
Complexes between a l k a l i m e t a l s a l t s and phosphazenes h a v i n g p o l y e t h e r s i d e c h a i n s show g r e a t p r o m i s e a s p o l y m e r i c e l e c t r o l y t e s f o r b a t t e r i e s and hence have been t h e s u b j e c t o f i n t e n s e study.
The b a s i c s y n t h e s i s a n d c o n d u c t i v i t y o f t h e s e m a t e r i a l s
have been d e s c r i b e d 2 0 0 9 2 0 1 and patented.’02
The c o n d u c t i v i t y o f
t h e s e s y s t e m s was h i g h e r t h a n s e v e r a l o r g a n i c p o l y m e r - m e t a l s a l t complexes.203
Cross-linked m a t e r i a l s derived from r e a c t i o n s o f
(NPC12)s1 w i t h p o l y e t h y l e n e g l y c o l d i a l k o x i d e s h a v e s i m i l a r c o n d u c t i v i t i e s but improved dimensional s t a b i l i t y r e l a t i v e t o the uncross-linked
materials.204
I o n t r a n s p o r t numbers f o r t h e
phosphazene based e l e c t r o l y t e s have been measured.205
Another
a r e a o f g r o w i n g i n t e r e s t i n polyphosphazene c h e m i s t r y i s t h e use a s membranes.
A l c o h o l s e x h i b i t h i g h d i f f u s i o n c o e f f i c i e n t s and
l o w a c t i v a t i o n e n e r g y f o r d i f f u s i o n a c r o s s PBFP membranes.206 Gas p e r m e a b i l i t y a n d s e l e c t i v i t y b e t w e e n O 2 a n d N2 w e r e m e a s u r e d f o r v a r i o u s p o l y ( o r g a n o p h o s p h a z e n e ) membranes. m e a b i l i t y was o b s e r v e d f o r [NP(NHPr”) ( N H E t ) ] s e l e c t i v i t y f o r [NP(OC6H4C1)J
E.207
-
The h i g h e s t p e r and t h e h i g h e s t
Mechanical p r o p e r t i e s such
t e a r 2 0 8 and t e n s i l e s t r e n g t h e l o n g a t i o n 2 0 9 have been d e t e r m i n e d
for f l u o r o a l k o x y p h o s p h a z e n e p o l y m e r s . A c o u l o m e t r i c m e t h o d f o r d e t e r m i n a t i o n o f t r a c e c h l o r i n e i n phosphazene p o l y m e r s has been d e s c r i b e d .210 I n a d d i t i o n t o t h e s t u d i e s c i t e d above,
numerous r e f e r e n c e s
358
Organophosphorub Chemistn
t o a p p l i c a t i o n s o f poly(phosphazenes1 have appeared. polyfluoroalkoxy foams211
and a r y l o x y phosphazene rubbers16’
have been surveyed.
a r e a v a i l a b l e .212 for
water-insoluble
The u s e s o f and
R e c i p e s f o r p r o d u c t i o n o f t h e s e foams
Amidophosphosphazene p o l y m e r s have been used fiber
f i r e p r o o f i n g agents.
9214
Fluoroalkoxyphosphazenes are s u i t a b l e m a t e r i a l s for
denture
1 i n i n c ~ T ~ ~ P h y s i cp ar ol p e r t i e s o f e x p o x y r e s i n s s u c h a s h e a t resistance,
crack resistance,
etc. -
o f p o l y ( p h o s p h a z e n e s ) .216-218
are improved with the a d d i t i o n
A r y l o x y p h o s p h a z e n e s have been used
a s oxygen r e a c t i v e b a r r i e r l a y e r s i n r e s i s t systems.219
butylamino(bromo)phenoxy
Mixed
phosphazene p o l y m e r f i l m s have
increased c o ld resistance
.*”
P i p e r i d i n o o r phenoxyphosphazenes
have been used as c o a t i n g f o r f e r t i l i z e r g r a n u l e s i n o r d e r t o e f f e c t slow r e l e a s e o f urea.221 7.
M o l e c u l a r S t r u c t u r e s o f Phosphazenes The f o l l o w i n g s t r u c t u r e s h a v e b e e n d e t e r m i n e d b y X - r a y
diffraction.
A l l d i s t a n c e s a r e i n p i c o m e t e r s and a n g l e s - i n degrees.
Comments
Compound Ph2P[OW(CO)J
NPPh3
33 Sn(NPPh3)4 Ti(C5H5)C12NPPh3 Cis-W(NPMe3)2F4
Av.PN
1 5 8 . 2 ; L PNP 1 3 8
PN 1 5 9 . 4
Reference 35 39
(6)
PN 1 5 5 . 9 ( 9 ) , 1 5 3 . 2 ( 7 ) ; L SnNP 1 3 3 . 1 ( 4 ) , 1 4 3 . 7 ( 6 )
45
PN 1 5 6 ( 1 ) ;
46
PN 1 6 3 . 2 ( 7 ) ,
L T i N P 174.7(9) 160.9(8)
47
11
PN 1 5 9 . 7 ( 8 )
50
12
PN(endo) 1 6 0 . 5 ( 5 ) ; PN(endo) 1 7 4 . 2 ( 5 ) , 173.0(5); PN(ex0) 165.9(5), 169.2(6)
50
P r e l i m . Comm. PN 158.1(2), 1 5 6 . 2 ( 2 ) , 157.1(2)fOPO 98.3(2)
71
N3
~ i4 3CNH ~( C H ,ol ~
71
P r e l i m . Comm. PN 1 5 9 . 3 ( 2 ) , 1 5 5 . 4 ( 2 ) LOPN (exo) 95.6(2)
158.5(2)
P r e l i m . Comm. PN 1 5 6 . 8 ( 2 ) , 1 5 5 . 6 ( 3 ) , L OPN(exo 95.7 ( 4 ) P r e l i m . Comm. PN 1 5 6 . 3 ( 2 ) , 158.7, LOP0 97.8(1)
156.8(2)
157.2(1)
P r e l i m . Comm. PN 1 6 1 . 9 ( 3 ) , 1 5 5 . 5 ( 3 ) , f NPN(ex0) 103.8(2)
2,2-N3P3C14(NH2)N=PPh3
N3P3C15N=PPh 3
34
158.4(3)
71
71
71
PN(endo) 155.7(2)-161.7(2); PN(ex0) 160.7(4)-163.1(3); L NPN(exo) 1 0 5 . 0 ( 2 ) , 1 0 3 . 8 ( 2 ) ; c o m p l e x H- b o n d i n g
74
P=N(exo) 156.2(3); PN(ex0) 157.3(3), 162.6; PN(endo) 154.6-163.3 Type 1 1 1 C o n f o r m a t i o n
74
Redetermination; PN(exo) 158.0, 157.1; PN(endo) 155.6, 157.8, Type I C o n f o r m a t i o n
74,75 158.0
Bicyclic; PN(bridge)170.6(4), 172.5(4) PN(exo) 162.8(4)-165.6 ( 4 ) PN(endo) 158.1(4)-161.5(4)
76
Prelim.
Comm;
111
Prelim.
Comm.;
no d a t a s u p p l i e d no d a t a s u p p l i e d
112
PN 1 6 2 . 3 ( 2 ) , 155.1(1), 153.9(5), 1 5 8 . 1 ( 5 ) ; L CPC 1 0 5 . 5 ( 2 ) L NPlN 113.7(2) s l i g h t l y puckered ring
118
PN 1 6 2 . 5 ( 2 ) , 155.3(2), 158.7 (21, 155.8( 3 ) ; L CPlC 1 0 6 . 3 ( 2 ) ; L N P l N 114.0(2) puckered ring
118
PN 1 5 9 . 2 ( 3 ) , 155.8(3); N1 (between Ph) d i s p l a c e d from r e s t o f r i n g ; L P N l P 110.8(2)
120
3 60
Organophosphorus Chemisrn
21
N1 ( b e t w e e n Cp) d i s p l a c e d from r e s t o f r i n g ; PN 1 5 2 . 1 ( 2 ) - 1 5 6 . 9 ( 2 ) ; L PNlP 1 1 1 . 0 ( 2 )
121
N1 ( b e t w e e n Cp) d i s p l a c e d from r e s t o f r i n g ; PN 1 5 8 . 2 ( 4 ) - 1 6 0 . 2 ( 4 ) ; L PNlP 109.6(2)
121
D i s t o r t e d (NP)4 r i n g ; 156.5(3); LNPN(Av) 121.9(2)8 L PNP(Av) 1 3 4 . 2 ( 2 )
121
PN(Av)
PN 1 6 5 . 2 ( 3 ) , 1 5 4 . 9 ( 2 ) , 1 5 8 . 2 ( 3 ) i L PNP ( a d j a c e n t t o M) 1 2 1 . 7 ( 1 )
122
PN 1 6 4 . 7 ( 6 ) , 1 5 5 . 0 ( 6 ) , 1 5 8 . 1 ( 6 ) ; PNP ( a d j . t o M) 1 2 3 . 8 ( 4 )
122
PN 1 6 4 . 4 ( 4 ) , 1 5 4 . 5 ( 4 ) , 1 5 8 . 1 ( 4 ) ; L PNP ( a d j . t o M ) 1 2 3 . 6 ( 3 )
122
PN 1 6 4 . 4 ( 3 ) , 154.3(3), 157.8(3); L PNP ( a d j . t o M) 1 2 3 . 4 ( 1 )
122
PN 1 6 0 . 1 ( 2 )
222
PN 1 6 2 . 0 ( 6 ) , 159.6(6); I PNP 1 3 0 . 0 ( 4 )
157
PN 1 5 8 . 7 ( 3 ) , PNP 1 3 3
156
L
158.1(3);
Redetermination; Glide C o n f o r m a t i o n ; PN 1 4 4 ( 5 ) , L N P N 1 1 5 ; L PNP 1 3 1
167(6);
190
References 1. " T h e C h e m i s t r y o f I n o r g a n i c Homo- a n d H e t e r o c y c l e s " , V o l . 1 , 2 , E d s . 11. H a i d u c a n d 0 . 5 . S o w e r b y , A c a d e m i c P r e s s , London U.K., 1987.
2.
Phosphorus S u l f u r ,
3.
Phosphorus S u l f u r , B e r t r a n d , J.P. 1 9 8 6 , l9, 1 7 .
I . G.
5.
1986,
28.
1387,
30.
M a j o r a l and A.
J.P. M a j o r a l , G. B e r t r a n d , A . P h o s p h o r u s S u l f u r , 1 9 8 6 , 27,
B a c e i r e d o , Acc.
B a c e i r e d o and E.O. 75.
Chem.
Res.,
Mavarez,
6 . M . T . N g u y e n , M.B. O'Regan a n d N.J. F i t t p a t r i c k , J. Chem. SOC., P e r k i n T r a n s . 2, 1 9 8 6 , 2 0 0 3 .
36 1
8: Phosphuzenes 7.
M.T.
N g u y e n a n d A.F.
8.
M . P o m e r a n t z , W.N. Chou, Chem., 1 9 8 7 , 52, 1 5 9 .
9.
M.
10.
P o m e r a n t z , W.N. Phosphorus S u l f u r ,
J. Chem. S O C . ,
Hegarty,
2_L 1 9 8 7 , 47.
P e r k i n Trans.
W i t c z a k a n d C.G.
M.K.
Smith,
Chou, M . K . W i t c z a k a n d C.G. 1987, 30, 799.
J. B o e d e k e r , A . K o e c k r i t z , P. P r a k t . Chem., 1985, 723.
Smith,
K o e c k k r i t z and R.
11. L . R i e s e l , D. S t e r m , A . Z s c h u n k e a n d B. A l l g e m . Chem., 1 9 8 7 , 544, 2 2 5 .
J. O r g .
Thomas,
Z s c h u n k e a n d 8. Thomas,
R a d e g l i a , J. 2 . Anorq.
12.
L. R i e s e l , D. S t r u m , A . S u l f u r , 1987, 3 0 , 801.
13.
J. B e l l a n , C.R. Acad.
14.
J. Bb'ske, Bertrand,
15.
L . R i e s e l , 0. S t u r m , A . N a g e l , S . T a u d i e n , A. B e u s t e r a n d A . K a r w a t z k i , Z. A n o r q . A l l q e m . Chem., 1 9 8 6 , 5 4 2 , 1 5 7 .
M.R.
Sci.,
M a r r e - M a z i e r e s , M . S a n c h e z a n d J. S e r . 2., 1 9 8 5 , 301, 785.
E. N i e c k e , E. I n o r q . Chem.,
16. A . Z w i e r z a k and A . 331. 17. 18.
Oscando-Marevez, 1 9 8 6 , 25, 2 6 9 5 .
Koziara,
Chupp, E u r . P a t . 221027~).
L.D.
Q u i n , G. K e g l e v i c h a n d K . C . 31, 1 3 3 .
1987,
Appl.
EP 1 9 4 9 8 5 A2 (Chem. Caster,
Songstad,
M a j o r a l a n d G.
3.P.
Phosphorus Sulfur,
J.P.
105,
Phosphorus
1987, Abst.,
21.
22.
P. P o e c h l a u e r , W . Chem. SOC., Chem.
1986,
Phosphorus S u l f u r ,
1 9 . M . - T . B o i s d o n , L . L o p e z , C . H a l a v a n d , J. B a r r a n s , A . a n d R . M a t h i s , Can. J. Chem., 1 9 8 6 , 6 4 , 1 7 2 5 . 20.
a
P e t t e r , P. P e r i n g e r a n d E.P. Commun., 1 9 8 5 , 1 7 6 4 .
Chabane
Mueller,
J .
S a a l f r a n k . E. A c k e r m a n n . M. F i s h e r . B. W e i s s . R . C a r r i e , 0. O a n i o n , K. P e t e r s ' a n d H.G. Von S c h n e r i n g , B u l l . Chem. S O C . B e l g . , 1 9 8 5 , 9 4 , 4 7 5 (Chem. A b s t . , 1986, 105, 79038m). R.W.
S. A l b r e c h t a n d E. H e r r m a n n , G e r . ( E a s t ) DD 2 2 9 1 2 9 A 1 (Chem. A b s t . , 1 9 8 6 , 105, 1 7 2 7 2 3 r ) .
23.
R . J . C r e m l y n , F.J. S w l n b o u r n e a n d 0. Chem., 1 9 8 5 , 22, 1 2 1 1 .
24.
Yu. G. G o l o l o b o v , L.F. K a s u k h i n a n d V.S. P h o s p h o r u s S u l f u r , 1987, 393.
E,
Shode,
J. H e t e r o c y c l .
Petrenko,
Organophosphorus Cht~mistr?
362 25.
26.
L.F. K a s u k h i n , M.P. P o r o m a r c h u k , T . V . K i m a n d V . P . K u k h a r , D o k l . Akad. N a u k . SSSR ( E n q l . T r a n s l . ) 1 9 8 7 , 290, 4 1 3 .
U.
K l i e b i s c h a n d U.
314, 33.
Klingebiel,
J . O r g a n o m e t . Chem.,
1986,
27.
H.W.
28.
K u d r y a v t s e v , I . F . Tsymbal and A.M. A.P. M a r c h e n k o , A . A . P i n c h u k , 3. Gen. Chem. USSR ( E n g l . T r a n s l . ) , 1 9 8 5 1 , 55, 2336.
29.
M.D.
30.
R o e s k y , H. P l e n i o , K . K e l l e r , M. N o l t e m e y e r a n d G . M . S h e l d r i c k , Chem. B e r . , 1 9 8 6 , 119, 3 1 5 0 .
A.
Coburn,
J.
Heterocycl.
S c h m i d p e t e r a n d G. 1306.
408,
Chem.,
Eurget,
1986,
23,
421.
2. N a t u r f o r s c h .
8 , 1985,
31.
Romanenko, A.B. D r a p a i l o , A . V . Ruban, C.N. M a r k o v s k i i , V . D . A.N. C h e r n e g o , M.Yu. A n t i p i n a n d Yu. T . S t r u c h k o v , J. Gen. Chem. USSR ( E n q l . T r a n s l . ) , 1 9 8 6 , 56, 1 9 6 9 .
32.
J. G.
33. R .
Bb’ske, E . Bertrand,
O s c a n d o - M a v a r e z , E . N i e c k e , J.-P. M a j o r a l and J. Amer. Chem. S O C . , 1 9 8 7 , 109, 2 8 2 2 .
Schwesinger, Chimia,
1985,
105, 2 2 6 7 1 1 r ) .
S h e v c h e n k o a n d V.P. Transl.), 1 9 8 6 , 56, 7 3 .
2,2 6 9
(Chem. A b s t . ,
J. Gen. Chem.
Kukhar,
34.
M.V.
35.
D.J. D a r e n s b o u r g , M. I n o r q . Chem., 1 9 8 6 ,
36.
J. H e u b e l , R . D e J a e g e r 1 9 8 6 , 23, 2 6 4 .
37.
E. Herrmann, 178.
J.
38.
H.
Wamhoff, 119, 3515.
F.J.
39.
H . W a m h o f f , F.J. Fassbender, B e r . , 1 9 8 6 , 119, 2 7 2 3 .
40.
P. W i s i a n - N e i l s o n 315.
41.
A.K. R o y , R . H a n i , R.H. O r g a n o m e t a l l i c s , 1987,
42.
U.G. W e t t e r m a r k , P. W i s i a n - N e i l s o n , G.M. N e i l s o n , O r q a n o m e t a l l i c s , 1987, 959.
43.
U.G. 929.
P a l a , 0. 3537.
25,
and A.
Simmons a n d A.L. Mazzah,
P r i v i h o d a a n d G.
Ohms,
F a s s b e n d e r a n d J. F.
Rev.
USSR ( E n g l . Rheingold,
Chirn.
Miner.,
Chem.,
1987,
z,
Ber.,
1986,
P a a s c h , Chem.
Knoch and R.
A p p e l , Chem.
Ford, Phosphorus S u l f u r ,
and R.
N e i l s o n a n d P. 378.
6,
W e t t e r m a r k a n d R.H.
Z.
Neilson,
1986,
1987,
30,
Wisian-Neilson,
Inorg.
S c h e i d e a n d R.H. Chem.,
1 9 8 7 , 26,
363 44.
R.H. N e i l s o n , B . A . B o y d , D . A . D u B o i s , R . Skheide, J.T. S h o r e a n d [J.G. W e t t e r m a r k , 1 9 8 7 , 30, 4 6 3 .
45.
M.
46.
I.A. L a t h a r n , J.G. L e i g h , C. Y u t t n e r a n d 1. SOC., D a l t o n T r a n s . , 1986, 377.
47.
H.W. R o e s k y , K . V . K a t t i , U . S e s e k e , U . S c h o l z , R . H e r b s t , E g e r t and G.M. S h e l d r i c k , Z. N a t u r f o r s c h B., 1986, 4 1 8 , 1509.
48.
W.
49.
P.B. H i t c h c o c k , H.A. J . Chem. S O C . , Chem.
V e i t h and V.
Wolfsberger,
50. O.J.
Enql.,
J. Orqanomet.
Chemiker-Ztg.,
,1 9 8 6 ,
Chem.,
293,
1985,
Jibril,
a n d J.
Budat and E. 25, 8 3 4 .
Kaub,
Symalla,
K o b a y a s h i a n d M.
J. Chem.
Angew, Angew.
Chem., Chem.,
Int.
53.
J . B a r l u e n g a , F . L o p e z a n d F. P a l a c i o s , Chem. Commun., 1985, 1681.
J. Chern.
Soc.,
54.
31 B a r l u e n g a , F . L o p e z a n d F . Chem. Commun., 1986, 1574.
Palacios,
J. Chem.
SOC.,
55.
E.S. K o s l o v a n d L.G. D u b e n k o , Transl.), 1 9 8 5 , 55, 2 3 9 3 .
J.
Gen.
Chem.
USSR ( E n a l .
56.
E.S. K o s l o v a n d L.G. O u b e n k o , Transl.), 1 9 8 6 , 56, 2 3 9 6 .
J. Gen.
Chem.
USSR ( E n g l .
57.
V.L. F o s s , E.G. N e g a n o v a , Yu. A . V e i t s a n d V.N. T o r o c h e s c h i n i k o v , J. Gen. Chem. USSR ( E n g l . T r a n s l . ) , 56, 6 3 7 .
58.
T . S a i t o , M. N a k a n e , M . S . M o t o k i , Chem. L e t t . ,
59.
U. W a n n a q a t a n d R . 233.
60.
G.
St'ss-Fink,
Chem.
61.
L.
Bruche,
G a r a n t i a n d G.
62.
V.M.
L.
M b ' h r i n g a n d G. 1 9 8 5 , 24, 1 0 0 1 .
Heterocycles,
E n d o , H. Y a m a s h j i t a , 1986, 135.
Ber.,
Fink,
Y.
Phosphorus S u l f u r ,
1986,
1986,
24,
1986,
Oyamada a n d 1987,
29,
1986,
772.
119, 2 3 9 3 .
Zecchi,
Angew.
Ed. Ed.
Int.
Y. I i n o , 2437.
Minstedt,
E.
Williams,
52.
T.
Nitta,
161.
fi,4 1 5 .
1986,
H a s i m , M .F. L a p p e r t a n d H.D. Commun., 1 9 8 6 , 1 6 3 4 .
S c h e r e r , K. Gobel, 1 9 8 7 , 26, 5 9 .
51. E. N e i c k e , D. Engl.
Huch,
H a i n i , G.M. Phosphorus S u l f u r ,
Synthesis,
Chem.,
Int.
Ed.
Engl.,
364
Organophosphorus C h r m i s t p
63.
M . K a s a h a r a a n d H. K o d e r a , E u r . A b s t . , 1 9 8 6 , 105, 9 9 0 0 8 e ) .
64.
C.W. A l l e n i n " T h e C h e m i s t r y o f I n o r g a n i c Homo- a n d H e t e r o c y c l e s " , E d s . I. H a i d u c a n d 0. 6. S o w e r b y , V o l . 501. A c a d e m i c P r e s s , L o n d o n , U.K., 1987.
65.
H.R. A l l c o c k , 1987, 119.
66.
S.S. Krishnamurthy, Proc. 1020.
Indian Natl.
67.
C.W. A l l e n , Polym. P r e p r . Chem.), 1987, 28(1), 441.
(Am.
68.
R.A.
SOC.
W h e e l e r , R . H o f f m a n n a n d J. 1 9 8 6 , los, 5381.
69.
R.A.
Shaw,
70.
M . E . H u r s t h o u s e , A.L. P o r t e , P h o s p h o r u s S u l f u r , 1 9 8 6 , 28,
71.
A.H. A l k u b a i s i , H.A. A l - M a d f a , W.F. D e u t s c h , M.E. H u r s t h o u s e , H.G. P a r k s , L.S. Shaw a n d R . A . Shaw, P h o s p h o r u s S u l f u r , 1 9 8 6 , 28, 2 7 7 .
J.L.
Pat.
D e s o r c i e a n d G.H.
Chem.
Phosphorus S u l f u r ,
Appl.
Riding, Sci.
1986,
2,
p.
Polyhedron, Acad.,
SOC. D i v .
Straehle,
L.S. 213.
EP 1 8 2 2 9 9 (Chem.
1986,
52,
Polym.
J. A m .
Chem.
28, 9 9 .
Shaw a n d R . A .
Shaw,
72. A.H.
L.S.
A l k u b a i s i , W.F. D e u t s c h , M.B. H u r S t h o u s e , H.G. P a r k e s , Shaw a n d R . A . Shaw, P h o s p h o r u s S u l f u r , 1 9 8 6 , 28, 2 2 9 .
73.
S.R. R.A.
Contractor, Shaw a n d H .
74.
J.K. F i n c h a m , M.B. H u r s t h o u s e , Shaw, A c t a C r y s t a l l o g r . , S e c t .
75.
M . B . H u r s t h o u s e , H .G. P a r k e s , L . S . Shaw, Yilma P h o s p h o r u s S u l f u r , 1 9 8 6 , 28, 2 6 7 .
,
H.G. P a r k e s , L . Shaw a n d R . A . 6 , 1 9 8 6 , 842, 462.
J.K. F i n c h a m , M.B. H u r s t h o u s e , R. R y c r o f t , L . S . Shaw a n d R . A . Shaw,
28, 1 7 5 . 76.
T.S. Cameron, Crystalloqr.,
77.
P . J . H a r r i s , L.A. Spectrom., 1986,
78.
E.I. 'V.F. 275. N.
80.
W.F. R.A.
R.E. C o r d e s a n d B.R. V i n c e n t , S e c t . C, 1 9 8 6 , C42, 1 2 4 2 . Jackson and K.C.
21, 377.
Harich,
Acta
Org. Mass
L e v i t e s , G.S. G o l ' d i n , S.F. K r a v t s o v a , S.G. F e d o r o v a n d O l e n i a , J. Gen. Chem. USSR (Eng. T r a n s l . ) , 1 9 8 6 , 56,
Gunduz, T. Shaw a n d R . A .
79.
K e a t , H.G. P a r k e s , O . S . Phosphorus S u l f u r , 1986,
Gunduz, E. K i l i c , S. Shaw, J. Chem. SOC.,
O z t a s , M . T u z u n , L .S. D a l t o n Trans., 1987, 925.
D e u t s c h , N. Gunduz, T . Gunduz, E. K i l i c , L.S. Shaw, Shaw, M. T u z u n , P h o s p h o r u s S u l f u r , 1 9 8 6 , 28, 1 9 5 .
8: Phosphazenrs 81.
365
H.R. A l l c o c k , S.J. S t i n n e t t , Adams, J r . , U.S. US 4656017A 216465k). J.B. Tedder, US 4656018A
J.B. T e d d e r , (Chem. A b s t . ,
J r . , R . J . Adams,
Jr., a n d R . J . 1 9 8 7 , 106,
J r . a n d M.K.
82.
G.M. Sulzer, J u n e a u , U.S.
83.
G . I . M i t r o p o l ’ s k a y a and T . I . N o v i k o v a , U.S.S.R. (Chem. A b s t . , 1986, 105, 4 5 8 0 5 ~ ) .
84.
W.D. K l o b u e a r , R . J . Adams, J r . , J . R . M i t r a n o a n d M . K . J u n e a u , E u r . P a t . A p p l . EP 1 7 7 3 7 0 A2 (Chem. Abst., 1986, 105,6 9 6 9 f ) .
85.
J.S. R u t t , M . P a r e v e z a n d H.R. A l l c o c k , 1 9 8 6 , 108, 6 0 8 9 ; i b i d , 1 9 8 7 , 109, 2 8 6 1 .
J.
86.
J.C. v a n de G r a m p e l , P.L. B u w a l d a , A . A . W i l t i n g , A . Meetsma a n d F. v a n B o l h u i s , 1987, 519.
van d e r H u i z e n , T. Phosphorus S u l f u r ,
87.
S. G a n a p a t h i a p p a n a n d S . S . D a l t o n Trans., 1 9 8 7 , 579.
Krishnamurthy,
J.
Chem.
SOC.,
88.
S. G a n a p a t h i a p p a n a n d S . S . D a l t o n Trans., 1 9 8 7 , 585.
Krishnamurthy,
J.
Chem.
SOC.,
89.
P.Y. S.S.
N a r a y a n a Swamy, S. G a n a p a t h i p p a n , Krishnamurthy, Phosphorus S u l f u r ,
90.
C.W.
A l l e n a n d J.A.
91.
A.A. v a n d e r H u i z e n , J.C. v a n de G r a m p e l , J.W. R u s c h , T . W i l t i n g , F. v a n B o l h u i s a n d A . Meetsma, J. Chem. SOC., D a l t o n Trans., 1986, 1317.
92.
A.E. S h u m e i k o , G.d. T i t s k i i , L.P. K u r c h e n k o a n d V . V . V a p i r o v , J. Gen. Chem. USSR ( E n g l . T r a n s l . ) , 1 9 8 6 , 56, 2007.
93.
A.I. Bortun, I n o r g . Chem.
94.
A.I. B o r t u n a n d V.N., Belyakov, Transl.), 1 9 8 6 , 56, 1 0 6 5 .
95.
A.I. Bortun, I n o r g . Chem.
96.
M . W i l l s o n , L. L a F a i l l e , Phosphorus S u l f u r , 1987,
97.
G. F o l c h e r , 8. P e r l y , G. Guenchg, J.F. L a b a r r e , a n d L . V i d a u d , J. M o l . S t r u c t . , 1 9 8 7 , 159, 1 1 3 .
98.
J.L. S a s s u s , Inorg. Chim.
(Chem.
a
MacKay,
Abst.,
Inorq.
106,2 1 6 4 6 6 m ) .
1987,
SU 1 2 2 5 8 0 8
Am.
Chem.
K.C. Kumara Swamy a n d 1 9 8 7 , 30, 429. 1 9 8 6 , 25, 4 6 2 8 .
Chem.,
V.N. B e l y a k o v a n d A.P. K v a s h e n k o , R u s s . (Enql. Transl.), 1 9 8 6 , 31, 8 0 7 . J.
Gen.
Chem.
L.
V i d a u d a n d J.F. 147.
J.
USSR ( E n g l .
V.N. B e l y a k o v a n d A.P. K v a s h e n k o , R u s s . (Enpl. Transl.), 1 9 8 6 , 31, 1 1 4 4 .
29,
SOC.,
J .
Labarre,
M . G r a f f e u i l , P. C a s t e r a a n d J.F. A c t a , 1 9 8 5 , G , 23.
F.
Sournies
Labarre,
366 99.
Orgunophosphorus Chemistry F. X.
S o u r n i e s , J.F. L a b a r r e , F . S p r e a f i c o , S. J i n , J. Mol. S t r u c t . , 1 9 8 6 , 161.
147,
F i l i p p e s c h i and
26, 9 3 4 .
100.
O.E.
101.
M.G. Yaklakov, V . I . A s t r i n a and V.V. USSR ( E n g l . T r a n s l . ) , 1 9 8 6 , 56, 6 9 2 .
102.
G.V. P o p o v a , M.G. a n d N.N. S u v o r o v , 56, 9 4 2 .
103.
L.L. N i k o g o s y a n , A . A . Pogosyan, V.A. M a t n i s h y a n a n d M.G. Indzhikyan, Arm. (Chem. A b s t . , 1 9 8 7 , 1 0 6 , 1 7 6 8 9 3 q T .
104.
A.A. V o l o d i n , S.V. B u r i n , V.V. K i r e e v , V.B. I s a e v , A.S. Maksirnov a n d M . A . E r y a n , U.S.S.R. SU 1 2 2 5 8 4 5 A 1 (Chem. Abst., 1 9 8 6 , 105,2 0 9 2 0 1 ~ ) .
105.
I b i d . , U.S.S.R. 153327~).
106.
A.A. V o l o d i n , E.M. M y a s o e d o v , V . V . K i r e e v and I . E . O r l o v a , U.S.S.R. Su 1 2 4 5 5 7 7 A 1 (Chem. A b s t . , 1 9 8 7 , 106, 5 0 4 5 6 f ) .
107.
L . J . C a r r , G.M. N i c h o l s a n d S.H. R o s e , (Chem. A b s t . , 1986, 105, 1 9 4 3 0 2 e ) .
108.
W.T. F e r r a r , A.S. M a r s h a l l a n d J. Macromolecules, 1 9 8 7 , 20, 317.
109.
J.K. R.A.
110.
L . C o r d a , C . A n c h i s i , G. P o d d a , H e t e r o c y c l e s , 1 9 8 6 , 24, 2 8 2 1 .
Brown a n d C.W.
Allen,
Inorg.
Chem.,
1987,
J.
Kireev,
Gen.
A l a p i s h v i l i , E.D. V o r o n t s o v , V.V. Kireev J. Gen. Chem. USSR ( E n q l . T r a n s l . ) , 1986, Ovasapyan, A.A. K h i m . Zh., 1987,
SU 1 2 2 5 8 4 4 A 1 (Chem.
Abst.,
1986,
U.S.
40,
105,
Whitefield,
P.
T r a l d i a n d M.
A l - M a d f a , M.B. H u r s t h o u s e , H.G. Shaw, P h o s p h o r u s S u l f u r , 1 9 8 6 ,
P a r k e s , L.S.
28, 2 0 3 .
Shaw a n d Gleria, Shaw a n d
112.
F.W. D e u t s c h , N. Gt'ndgz, T. Gunduz, K i l i c , H.G. P a r k e s , L . S . Shaw, R.A. P h o s p h o r u s S u l f u r , 1 9 8 6 , 28, 2 5 3 .
113.
E.N. P o k r o v s k a y a , T.P. N i k i f o r o v a , V.V. S i d o r o v , T.G. B e l ' t s o v a , V.V. K i r e e v , A . A . V o l o d i n a n d E.M. M y a s o e d o v , Khim Oriv., 1 9 8 6 , 5 0 (Chem. A b s t . , 1987, 106, 8 6 4 0 3 a ) .
1 1 4 . H.
Struszczyk,
J. Macromol. S c i . ,
115.
J.C.
Shaw a n d C . W .
116.
C.W.
A l l e n a n d J.C.
117.
J.C. Shaw a n d C.W. Allen, Chem. 1 9 8 6 , .16, 1 2 0 7 .
,
Allen, Shaw,
M.B. H u r s t h o u s e , E. Shaw a n d M . T u z u n ,
Chem.,
I n o r g . Chem.,
1 9 8 6 , A23, 1986,
Phosphorus S u l f u r , Synth.
44
US 4601843A
F i n c h a m , M.B. H u r s t h o u s e , H.G. P a r k e s , L.S. Shaw, P h o s p h o r u s S u l f u r , 1 9 8 6 , 28, 1 8 5 .
111. H.A. R.A.
Chem.
React.
973.
25, 4 6 3 2 . 1 9 8 7 , 30, 9 7 .
I n o r q . Met.-Org.
8: Phosphuzenes
367
118. H.R. A l l c o c k , D.J. B r e n n a n , J . M . O r g a n o m e t a l l i c s , 1986, 5 , 2434. 119.
P.L. B u w a l d a a n d J.C. Commun. 1 9 8 6 , 1793.
120. G.H. R i d i n g , M . 1986, 2153.
Graaskamp and M .
van de Grampel,
P a r v e z a n d H.R.
J.
Allcock,
Chem. S O C . ,
123. M . W i l l s o n , M . 1987, 3)0, 845. 124.
A l l c o c k , M.L. 1 9 8 6 , 25, 2281.
R i d i n g and R.R. 2244. Labarre,
L e v i n and P.E.
H.R.
W h i t t l e and M.
G.H.
Sanchez and J . F .
Austin,
Chem.
Organometallics,
121. H.R. A l l c o c k , K.D. L a v i n , G.H. R i d i n g , R . R . P a r v e z , O r q a n o m e t a l l i c s , 1986, 1626. 122. H.R. A l l c o c k , M.N. Mang, O r q a n o m e t a l l i c s , 1986,
Parvez,
Whittle,
Phosphorus Sulfur, I n o r g . Chem.,
125. M.E. I g n a t o v , B.V. L e v i n , Z.G. Rumyantseva and E.G. L l ’ i n , Russ. J. I n o r g . Chem. ( E n g l . T r a n s l . ) , 1 9 8 6 , 31, 373. 126.
R.
Mamesh a n d M .
16,1523.
Srinivasan,
S y n t h e t i c Comunications,
127.
J. B r o s s a s , G. C l o u e t and M . K n i p e r , F r . A 1 (Chem. Abst., 1 9 8 6 , 105, 2 5 1 4 3 ~ ) .
128.
S. L a c a t u s , M. B a l a n e s c u , R O 87484 B 1 (Chem. A b s t . ,
129.
M . W e l t r o w s k i , H. S t r u s z c z y k , W.G. (Chem. A b s t . , 1986, 105, 8 0 6 1 3 b ) .
130. K . Nagasawa and C. 61/40386 A2 (Chem.
Demande FR 2567127
V i l c e a n u a n d N., 1 9 8 6 , 105, 6 2 1 0 4 9 ) .
R.
Nakada, Jpn. A b s t . , 1986,
Itba,
Pol.
Florin,
P.A. S i l v e r a n d A . L u k a c s 1 1 1 , U.S. Abst., 1986, 105, 227945x1.
132.
I. Nogami, Jpn. K o k a i Tokkyo Koho JP 61/215687 Abst., 1987, 106, 1 0 3 7 7 5 t ) .
133.
V.I.
PL 1 2 7 9 5 1 B1
134.
T. Yokoyama, Abst., 1987,
US 4607077 A
(Chem.
A2 (Chem.
S i d o r o v , E.N. P o k r o v s k a y a a n d T.G. Bel’tsova, 1 9 8 6 , 55 (Chem. A b s t . , 1987, 106,8 6 4 0 4 b ) . Jpn. 106,
K o k a i Tokkyo Koho JP 61/120850 85893~).
Khim.
A2 (Chem.
135. D. Kumar, G. F o h l e n a n d J.A. P a r k e r , U.S. P e t . A p p l . 806572 A 0 (Chem. Abstr., 1987, 106, 1 2 0 7 7 8 ~ ) . 136.
Rom.
K o k a i Tokkyo Koho JP 105, 9 8 8 1 2 a ) .
131.
Drev.,
1986,
US
A.F. N i k o l a e v , V.G. K a r k o z o v , A.N. A f a n a s ’ e v a , V . M . Mokhov a n d N . Ya. S u r p i n a , U.S.S.R. SU 1213035 A 1 (Chem. A b s t . , 1 9 8 6 , 105, 2 2 7 9 0 9 ~ 3 ) .
Organophosphorus Chemist?
368 137.
N. S a k a m o t o , N. K a j i w a r a a n d K . O k a m o t o , 1987, Koho JP 6 1 / 1 9 0 5 2 2 A2 (Chem. A b s t . ,
Jpn. 106,
K o k a i Tokkyo 214938t).
1 3 8 . M.L. D e t t l o f f , D . L . S t e e l e a n d R . C . W h i t e s i d e , 4614788A (Chem. A b s t . , 1 9 8 7 , 1 0 6 , 6 0 2 3 ~ ) .
Jr.,
139.
T . M o r i m o t o a n d K . N i s h i u c h i , Jpn. K o k a i T o k k y o Koho JP 1987, 106, 1 5 7 0 1 7 r ) . 6 1 / 2 0 7 4 3 7 A2 (Chem. A b s t . ,
140.
T . H o r i c h i , J p n . K o k a i T o k k y o Koho JP 6 0 / 2 5 5 8 2 3 Abst., 1986, 105, 44500d).
141.
T . M o r i m o t o , T . N a s k a n a g a a n d Y . Tada, Jpn. K o k a i T o k k y o Koho JP 6 1 / 2 6 0 0 8 8 A2 (Chem. A b s t . , 1987, 106, 1 2 2 9 0 9 f ) .
142.
Y . N a k a c h o , Y . Tada a n d T . Y a g i , E u r . A2 (Chem. A b s t . , 1 9 8 7 , 106, 8 7 4 6 5 3 ) .
143.
S. A n z a i a n d M . O h a s h i , A2 (Chem. A b s t . , 1986,
144.
T . C h i v e r s i n " T h e C h e m i s t r y o f I n o r g a n i c Homo- a n d H e t e r o c y c l e s " , E d s . I. H a i d u c a n d D.B. S o w e r b y , V o l . 7 9 3 , A c a d e m i c P r e s s , L o n d o n , U.K., 1987.
Jpn.
T . C h i v e r s , S.W. L i b l o n g a n d J.F. S u l f u r , 1 9 8 7 , 30, 7 8 5 .
146.
R.T.
147.
A.J. E l i a s , C.J. Thomas a n d M.N. S u l f u r , 1 9 8 7 , 30, 253.
Chem.
Boere, R.T. O a k l e y a n d M. Commun., 1 9 8 7 , 1 1 0 .
EP 2 0 4 1 4 4
Koho JP 6 1 / 4 7 4 0 6
105,6 6 4 9 4 9 ) .
145.
A2 (Chem.
Pat. Appl.
K o k a i Tokkyo.
US
U.S.
2,
p.
Richardson, Phosphorus
Schevalier,
J.
Chem.
S u d h e e n d r a Rao,
SOC.,
Phosphorus
148.
R.T. B o e r e , A.W. Oakley and J.A. 1986, 807.
149.
H. W i n t e r a n d J.C. v a n de G r a m p e l , Trans., 1986, 1389.
150.
I.A. R u z a n o v , L.Ya. I n o r q . Chem. ( E n g l .
151.
A . S c h m i d p e t E r i n " T h e C h e m i s t r y o f I n o r g a n i c Homo-and Heterocycles E d s . I. H a i d u c a n d D.B. S o w e r b y , V o l . 2 . , 6 1 7 , A c a d e m i c P r e s s , L o n d o n , U.K., 1987.
152.
A.
153.
S.A T r e n t ' e v a , M . A . P u d o v i k a n d A.N. USSR ( E n g l . T r a n s l . ) , 1 9 8 6 , 56, 6 3 2 .
154.
L.A. C a t e s a n d V.S. 1559.
155.
T.
C o r d e s , S.L. S c o t t , J.B. Graham, R . T . James P r i v e t t , J. Chem. SOC., Chem. Commun., Chem.
J.
SOC., D a l t o n
M e d v e d e v a a n d E.N. B e r e s e n e v , T r a n s l . ) , 1 9 8 7 , 32, 350.
Russ.
,
Schmidpeter, Phosphorus S u l f u r ,
K o b a y a s h i and M.
Li,
J.
p.
1 9 8 6 , 28, 7 1 . Pudovik,
Heterocycl.
N i t t a , Chem.
J.
Lett.,
Chem., 1986,
J.
Gen.
Chem.
1 9 8 5 , 22, 1459.
8: Phosphu,-.rne.c 156.
369
H.W. R o e s k y , N. Banmohamed, M. N o l t e m e y e r a n d G.M. S h e l d r i c k , & N a t u r f o r s c h B., 1 9 8 6 , 4 1 8 , 9 3 8 .
157.
J . N e e l s , 8. Z i e m e r , M . M e i s e l a n d P. A l l q e m . Chem., 1 9 8 6 , 5 4 2 , 1 2 3 .
158.
K.V. K a t t i , U. S e s e k e , S u l f u r , 1 9 8 7 , 30, 421.
159. K.V.
Katti,
24, 8 1 4 .
W i l t a n d H.W.
M.
S e s e k e a n d H.W.
U.
Makrornol.
160.
H.R. A l l c o c k , 101.
Chem.,
161.
H.R. A l l c o c k , P o l y m . Chem.), 1987, 2 8 ( 1 ) ,
162.
H.R. P e n t o n , P o l y m . P r e p r . Chem.), 1 9 8 7 , 2 8 ( 1 ) , 439.
163.
H.
Prepr. 437.
Zenga, H u a z u e Tongbao, 173077~).
1 6 4 . E. S e p p a l a a n d M. Abst. 1986, 105,
Roesky,
(Am. (Am.
1986,
Chem. Chem.
Z.
Anorg.
Roesky, Phosphorus I n o r q . Chem.,
Macromol.
Symp.,
SOC.,
Div.
Abst.,
5
Polym. POlym.
1986,
12, 6 9 7
1985,
1987,
1986,
Div.
SOC.,
7 (Chem.
L e s k e l a , Kern.-Kemi, 209406t).
,
Leibnitz,
105,
(Chem.
165.
O.R. T u r , V.V. K o r s h a k , S.V. V i n o g r a d o v a , S.S.A. Pavlova, G.I. T i m o f e e v a , Ts. A . Godguadze a n d N.O. A l i k h a n o v a , D o k l . Akad. Nauk SSSR ( E n q l . T r a n s l . ) , 1 9 8 6 , 291, 455.
166.
V.V. K o r s h a k , S . V . V i n o g r a d o v a , D.R. Tur, T.A. Shirnina, P.V. P e t r o v s k i i , I . V . S t a n k e v i c h , R.Sh. B a k u r a d z e a n d V.A. G u b a n o v , V y s o k o m o l . S o e d i n . , S e r . B., 1 9 8 7 , 29, 1 6 4 (Chem. Abst., 1 9 8 7 , 106, 2 1 4 4 9 3 ~ ) .
167.
V.V. G.I. Ser.
K i r e e v . M.V. M i l a s h v i l i . V. Ya. M i t r o p o l ’ s k a y a and V.V.’Korshak, A , 1 9 8 6 , 28, 1 5 8 9 (Chem. A b s t . ,
168.
A.G. 432.
S c o p e l i a n o s a n d H.R.
169.
R. D e J a g e r , G. P a g n i e z a n d P. P o t i n , (Chem. A b s t . , 1986, 105, 61144h).
170.
J.A.
Klein,
20, 782.
A.T.
Allcock,
B e l l a n d D.S.
R o c h e v . G.N. K o s o v a . Vysokomol. Soedin.; 1986, 105, 191655m).
M a c r o m o l e c u l e s , 1 9 8 7 , 20,
Soong,
Belg.
BE 9 0 3 4 5 6 A 1
Macromolecules,
171.
W.L. H e r g e n r o t h e r , J.W. 4 6 2 3 5 2 5 A (Chem. A b s t . ,
172.
W.M. C o l e , C.R. Johnson a n d R.V. Sagar, Eur. 1 9 8 9 5 3 A2 (Chem. Abst., 1987, 106, 5 1 4 8 4 a ) .
173.
H.R. A l l c o c k , 1 9 8 7 , 20, 6.
G.H.
F i e l d h o u s e a n d A. F . 1 9 8 7 , 106,5 0 8 7 4 r ) .
R i d i n g a n d K.O.
Lavin,
Halasa, Pat.
1987,
U.S.
Appl.
US
EP
Macromolecules,
370 174.
Organophosphorus Chemistry R.H. N e i l s o n , R . Han, P . W i s i a n - N e i l s o n , J.J. M e i s t e r , A . K . Roy a n d G.L. H a g n a u e r , M a c r o m o l e c u l e s , 1 9 8 7 , 20, 910.
1 7 5 . R.H. N e i l s o n , R.R. F o r d , R . H a n i , A.K. R o y , G . M . S c h e i d e , U.G. W e t t e r m a r k a n d P. W i s i a n - N e i l s o n , P o l y m . P r e p r . (Am. Chem. SOC., D i v . P o l y m . Chem), 1 9 8 7 , 2 8 ( 1 ) , 4 4 2 . 176.
L.G. A n a n ’ e v a , G.K. F e d o r o v a a n d N.G. F e s h c h e n k o , J. Chem. USSR ( E n g l . T r a n s l . ) , 1 9 8 6 , 56, 6 3 9 .
177.
Furukawa and R.E. S i n g l e r , R.4. W i l l i n g h a m , R . W i L e n z , A . , F i n k e l m a n n , P o l y m P r e p r . ( A m . Chem. SOC., D i v . P o l y m . Chem.), 1 9 8 7 , 2 8 ( 1 ) , 448.
Gen.
H.
(Am.
178.
C . K i m a n d H.R. A l l c o c k , P o l y m . P r e p r . D i v . P o l y m . Chem.), 1987, 28(1), 446.
179.
R.C. H a d d o n , S . M . S t e i n , S . V . C h i c h e s t e r - H i c k s , J.H. M a r s h a l l , M.L. K a p l a n , M.Y. H e l l m a n a n d T.N. Bowmer, Res. B u l l . , 1 9 8 7 , 22, 1 1 7 .
180.
M.
181.
S. L o r a , F . M i n t o , G. P e r z i n , G. G i r o a n d P. D i M a r c o , E u r . P a t . A p p l . EP 2 0 0 8 5 4 A2 (Chem. A b s t . , 1987, 106, 177126d).
182.
J. H e l l e r , E u r . 105, 12104m).
183.
C.W.J. G r o l l e m a n , A.C. G o o t a n d H. Timmerman,
O e V i s s e r , J.G.C. W o l k e , H. v a n d e r 143. 3. C o n t r o l l e d R e l e a s e , 1 9 8 6 ,
G r o l l e m a n , A.C. 1 8 4 . C.W.J. G o o t a n d H. Timmerman,
D e V i s s e r , J.G.C. W o l k e , H., v a n d e r J. C o n t r o l l e d R e l e a s e , 1 9 8 6 , & 1 1 9 .
K a j i w a r a and K.
Shiomoto,
Pat.
Appl.
J. M a t e r .
Sci.,
Chem.
SOC.,
Mater.
1 9 8 7 , 22, 1 5 5 .
EP 1 6 8 2 7 7 A 1 (Chem.
Abst.,
1986,
US
185.
R.A. E l e f r i t z , W.M. C o l e a n d C.R. Johnson, 4609724A (Chem. A b s t . , 1 9 8 6 , 1 0 5 , 2 2 8 2 8 3 s ) .
186.
F o r d , R.H. P. W i s i a n - N e i l s o n , R.R. M a c r o m o l e c u l e s , 1 9 8 6 , 19, 2 0 8 9 .
187.
M. G l e r i a , A . B o l o g n e s i , W . P r o z i o , M . C a t e l l a n i , a n d G. A u d i s i o , M a c r o m o l e c u l e s , 1 9 8 7 , 20, 469.
188.
H.R.
189.
D. B a b i c , D. S o u v e r a i n , V . T . S t a n n e t t , D.R. S q u i r e , G.L. H a g n a u e r a n d R.E. S i n g l e r , R a d i a t . P h y s . Chem., 1 9 8 6 , 28, 169.
190.
Y . C h a t a n i a n d K. 1042.
191.
K.
Allcock,
Tanaka,
19, 2 0 6 2 .
S.
R.J. (&
F i t z p a t r i c k , M. Chem SOC., D i v .
Yatsuyanagi,
Y a m a s h i t a and T.
U.S.
N e i l s o n a n d A.K.
Roy, S.
Destri
G e b u r a a n d S. Kwon, P o l y m . Chem.), 1987,
Macromolecules, Yamabe,
1 9 8 7 , 20,
M a c r o m o l e c u l e s , 1986,
8: Phosphazenes
37 1
192.
M. K o j i m a a n d J . H . M a g i l l , M o r p h o l . Polym., P r o c . , E u r o p h y s . C o n f . M a c r o m o l . P h y s . , 1 9 8 5 , 4 3 5 IChem. A b s t . , 1986, 105, 1 7 3 3 9 1 t ) .
193.
M.
K o j i m a a n d J.H. Sato and T.
194. K.
Magill,
J. M a t e r .
Masuko, Polym.
1 9 8 6 , 21, 2 6 5 1 .
Sci.,
Commun.,
1986,
27, 2 9 9 .
195.
K i r e e v a n d Yu. V. Z e l e n e v , I.B. Sokol'skaya, V.V. V y s o k o m o l . S o e d i n . , S e r A, 1 9 8 6 , 28, 2 0 6 9 ( C h e m . . A b s t . , 1 9 8 7 , 106,5 6 8 5 ~ ) .
196.
U.
197.
S.V. M e i l l e , W . P o r z o , A . E o l o g n e s i a n d M. Chem., R a p i d Commun., 1 9 8 7 , & 43.
198.
W.T. F e r r a r , A.S. M a r s h a l l , E.C. D.Y., Meyers, Polym. P r e p r . (Am. Chem.), 1 9 8 7 , 2 8 ( 1 ) , 444.
199.
R i e c k a n d J .H.
Vashevka,
D.S.
M a g i l l , Polym.
Commun.,
Flod, Chem.
1 9 8 7 , 28, 1 0 7 . Gleria,
Makromol.
K.E. G o p p e r t a n d SOC., D i v . P o l y m .
T.I. V o l k o v a n d M . S . T r i z n o , Zh. P r i k l . 3 8 6 (Chem. A b s t . , 1 9 8 7 , 106, 1 9 7 2 7 5 e ) .
Khim., 1 9 8 7 , 60,
200.
P.M. B l o n s k y , D.F. S h r i v e r , P. A u s t i n a n d H.R. S o l i d S t a t e I o n i c s , 1 9 8 6 , 18-19, 258.
201.
D.F. S h r i v e r , J . S . Tonge, A . B a r r i o l a , A l l c o c k , S. Kwon a n d P. A u s t i n , P o l y m . S O C . , D i v . P o l y m . Chem.), 1987, 2 8 ( 1 ) ,
202.
A l l c o c k , P.E. A u s t i n , E.P. S c h r e i b e r a n d P. M . B r o n s k y , K o k a i T o k k y o Koho JP 6 1 / 2 5 4 6 2 6 A2 (Chem. A b s t . , 1 9 8 7 , 106, 1 5 9 5 7 5 ~ ) .
203.
M. tiara, 731.
204.
Allcock,
B l o n s k y , H.R. P r e p r . ( A m . Chem. 438. P. M.
H.R.
Jpn.
J.S.
134,
K.
S h i g e h a r a and A.
Tonge a n d D.F. 269.
Yamada,
Schriver,
Synth.
Met.,
1987,
J. E l e c t r o c h e m . SOC.,
18,
1987,
205.
D.F. S c h r i v e r , S. C l a n c y , P.M. B l o n s k y a n d L.C. H a r d y , T r a n s p . - S t r u c . R e l a t . F a s t I o n M i x e d Conduct'. , P r o c . R i s o e I n t . Symp. M e t a l l . M a t e r . S c i . , 1 9 8 5 , 3 5 3 (Chem. A b s t . , 1986, 105, 1 3 4 6 8 3 ~ ) .
206.
R.R. M c C a f f r e y , R.E. M c A t e e , A.E. Grey, C . A . A l l e n , D.G. Cummings a n d A . 0 . A p p e l h a n s , J. Membr. S c i . , 1 9 8 6 , 28, 4 7 .
207.
M.
208.
A.K.
209.
J.T. B o o k s , Gummi, F a s e r n , K u n s t s t . , A b s t . , 1986, 105, 1 3 5 2 2 5 j ) .
Kajiwara,
Phosphorus S u l f u r ,
Bhowmick,
3. Mater. Sci.,
1987, 1986,
30. 8 3 5 . 3 3927. 1986,
39, 3 7 4
(Chem.
372 210.
Organophosphorus Chrmisrr~ N.I.
Anal.
L a r i n a , E.A. Khim, 1986,
T e r e n t ’ e v a a n d 0.
A.
41, 5 6 1 (Chem. Abst.,
L e v i n s k a y a , Zh. 1 9 8 6 , 105, 7 0 9 1 a ) .
1 9 8 6 , 22, 53 (Chem.
211.
W.B. M u e l l e r , J. C e l l . 1 9 8 6 , 105,6 1 7 0 3 q ) .
212.
H.R. P e n t o n a n d F.A. P e l t i g r e w , 1986, 105 2 2 8 2 8 7 ~ ) . Abs t
213.
ti. T a k e d a , S. I t o a n d T . S a s a k u r a , Jpn. K o k a i T o k k y o Koho JP 6 1 / 1 8 3 3 8 3 A2 (Chem. A b s t . , 1987, 106, 1 9 8 5 9 r ) .
214.
M.
215.
L . G e t t l e m a n , J.M. V a r g o , P.H. G e b e r t , C.L. F a r r i s , R . J . L e B o e u f , Jr. a n d R.H. R a w l s , P o l y m . S c i . T e c h n o l . , 1 9 8 7 , 35, 5 5 (Chem. A b s t . , 1 9 8 7 , 106, 2 0 1 6 7 4 4 ) .
216.
K . N i s h i i , Y . Yoneda, S. Fukyama, M . M i y a g a w a a n d A . M a t s u r a , JP K o k a i T o k k y o Koho JP 6 1 / 1 1 3 6 1 3 A2 (Chem. 1987, 106, 3 4 2 6 9 r ) .
217.
Ibid,
218.
Sheshina, N.I. L.N. S h i k h a n o v a , Yu. P. B e l y a e v , G.M. G o r v u n o v , N.N. S m i r n o v , a n d M . S . T r i z n o , U.S.S.R. SU 1 2 4 0 7 7 3 A 1 (Chem. A b s t . , 1986, 105, 2 2 8 5 9 8 ~ ) .
219.
H.
220.
C . I . M i t r o p o l ’ s k a y a , M. P o e t z s c h a n d V.P. K a t z u r i n a , U.S.S.R. SU 1 2 1 4 6 8 1 A 1 (Chem. A b s t . , 1 9 8 6 , 105,2 2 8 1 2 4 r ) .
221.
G.Kh. C h e r c h e s , S . V . P l y s h e v s k i i a n d V.V. Pechkovskii, U.S.S.R. SU 1 2 3 1 0 4 7 A 1 (Chem. A b s t . , 1 9 8 6 , 105, 1 1 4 3 2 0 ~ ) .
222.
R.T. Boere, G.Ferguson and R.T. O a k l e y , A c t a C r y s t a l l o g r . , S e c t . C : C r y s t . S t r u c t . Cornmun., 1 9 8 6 , C42, 900.
.,
Plast.,
,
U.S.
US 4 6 0 2 0 4 8 A
Abst., (Chem.
O a i m o n , T . S a s a k u r a a n d S. Tamura, Jpn. K o k a i T o k k y o Koho JP 6 1 / 2 6 6 6 7 0 A2 (Chem. A b s t . , 1 9 8 7 , 106, 2 1 5 4 6 8 b ) .
JP 6 1 / 1 1 5 9 2 9
H i r a o k a a n d K.N. 386.
A2 (Chem.
Chiong,
Abst.,
J.
Vac.
1987,
Sci.
106,
Abst.,
196953).
Technol.,
B,
1987,
9
Physical Methods BY J. C. TEBBY
The
need
to
refer t o co-ordination
a l o n e is now w i d e l y authors
n2,
n',
co-ordination are
represents
n',
of
with
nature.
a
terminology
more
varied
apical
stereochemical
or
alkyl
and
radial of
description
equatorial
can
preferences
be
has the
reserved
to
o f s u b s t i t u e n t s o n n'
membered a n d r e l a t e d r i n g s . u s e d f o r n'
" p h o s p h i n e " for
are
2
used
in
As
each In the
aryl,
X
been
represent for
retained
atoms
of
the any
the
atoms t h a t
so t h a t t h e t e r m s a x i a l
describe
and
conformational element
in
six
T h e n o n - I UPAC n o m e n c l a t u r e " p h o s p h a n e "
p h o s p h o r u s compounds i n g e n e r a l , phosphanes
which
possess
r e s e r v i n g t h e term
three
p h o s p h o r u s and t h e term " p h o s p h i t e " studies
of
general
carbon/hydrogen
f o r phosphanes which
posseas t h r e e chalcogenide bonds t o phosphorus. theoretical
to
p r e v i o u s volumes t h e
a u b s t i t u e n t e o n n'
possess t r i g o n a l bipyramidal geometry,
studies
in
t h e above order.
hydrogen,
and Y and
contains
the
e l e c t r o n e g a t i v e s u b a t i t u e n t , Ch r e p r e s e n t s c h a l c o g e n i d e
of
to
Many
volumes
Compounds
in
groups
bonds
previous
phosphorus.
dealt
represents
R
with
( u s u a l l y o x y g e n or s u l p h u r ) ,
is
chemists.
and n b , w i l l c o n t i n u e t o be u s e d f o r
n'
number
usually
the letter
formulae,
phosphorus
H o w e v e r for c o n s i s t e n c y
sigma bonds.
subsection
number r a t h e r t h a n t o v a l e n c y
by
j o u r n a l s now u s e o i n o r d e r t o r e f e r t o t h e n u m b e r o f
and
abbreviations the
acknowledged
Uhilst Section one
interest,
theoretical
r e l a t i n g t o s p e c i f i c p h y s i c a l methods w i l l be found i n t h e
a p p r o p r i a t e s e c t i o n as u s u a l .
I
Theoretiul Studies
1 . 1 S t u Q e a B a s e d on M o l e c u l a r O r b i t a l T h e o r y .
b e e n t h e s u b j e c t of g b i n i t i o G a u s s i a n 8 0 electronic
structures.'
In
the
373
-
Phosphi nes
have
HO c a l c u l a t i o n s of t h e i r
c a s e of a m m o n i a ,
hydrogen atom
374
repulsions
account
t h e 2s e l e c t r o n s of
t h e HNH bond
for
phosphorus minimises t h e s e repulsions
and
also
alkylphosphines
i n phosphine
Whilst
utilising
of
b o n d s t o s e c o n d row e l e m e n t s are
The P-N
C-P
bonds
bonds but
Thus i n
do
contrast
t o
to
H 0 ' s
the
r a n g e of
angles
Thus
basicities
caused
by
alkyl
s u b s t i t u t i o n i n PH3
than
for
larger
alkyl
changes i n proton a f f i n i t i e s is
It
HOMO
also
a
nitrogen
t h r o u g h t h e bond general
at
electron
that
density
h y p e r c o n j u g a t i o n w h i c h i s most
less i m p o r t a n t
for
P-Me
stabilised
the
3s
by
strongly influenced parts
of
The
orbital
by bonding the
is replaced
This involvement a
dramatic
ethynyl ring
phosphines
and
effect,
orbitals
of
destabilisation
of
also
was
bond
on
that
orbital
whilst
or
For of
the
is
i t may a l s o b e
interactions
2pF
HOMO.
i n
with
fluoromethyl
The
effects
the n-orbitals
cyanophosphines
produced
of of a
interaction with the
is
a
resultant
effect
on
the charge
There
little
orbital.
o r b i t a l s and t h e r e
Whilst
phenylphosphines ring
i s much HOMO
t h e l a t t e r i n t h e nr
particularly
d i s t r i b u t i o n within t h e phenyl
the
but
example,
studied
but
i n
o r b i t a l s a n d t h e 3s o r b i t a l o f
3pT
HOMO
of
antibonding
of
the
change
i n the anions
t h e r e was a n a n t i b o n d i n g the
a much
i n
angle effect
energy
by non-bonding
stabilisation
groups
stabiliaing
produces
increase
contribution
molecule. the
or
The c a l c u l a t i o n s a l s o show
prominent
eroups
phosphorus reduces t h e involvement
is
feature
phosphorus
p h o a p h i n e s t h e c l o s e n e s s of
unsaturated
The
the
contributions
vary considerably t h e r e is u s u a l l y l i t t l e
contributions
behave
groups accounts e n t i r e l y f o r the
the
other
NHs
not
substituents
p r o t o n a t i o n produce q u i t e marked c h a n g e s i n t h e A 0 wider
on
t h e HOMO
)
a r e characteristic of
p o l a r i s a b l e a n d m o d i f i c a t i o n of
highly
f o r bonding localised
contribution thus accounting for
character
a s weak c o u n t e r p a r t s
bonds
This allows
3s a t o m i c o r b i t a l ( A 0
the
forcing
t h e bonds i n phosphine
wholly on p-orbitals
has an appreciable p-orbital
i t s marked d i r e c t i o n a l simply
and
phosphines 1s non-bonding and e x t e n s i v e l y
phosphorus
also
rely
thus
whereas t h e l a r g e atomic core
t h e HPH b o n d a n g l e t o f a l l t o n e a r l y 9 0 ° T h e HOMO o f
106 7 "
angle of
i n t o a bonding role,
This effect
was less f o r
the
phoaphide a n i o n b u t s l i g h t l y enhanced for t h e phosphonium i o n which
also
produced
influences (
i n
its
appreciable
of
p-substituents
moat
favourable
phosphonium salts,
polarisation
of
on t h e phenyl
r i n g of
t h e phenyl
conformation f o r conjugation)
were a l s o e v a l u a t e d .
ring
The
phenylphoaphine
T h e r o l e of d-'fI
and t h e i r bonding
18
3 75
quite and
l i m i t e d a n d a p p e a r s t o be valence
total
utilisation INDO a n d
INDO13
conformational
analysia
population
conformers
of
conJugation
with
the
of
methods
with
phenyl
the
'
have
is
the
MNDO s t u d i e s
is
considerable
t o the low-lying
of
electrostatic Simple
harmonic
oscillator
crystallographic
d a t a of
the contribution
of
thiourea
moiety
lone
bonded
complexes
PFJ a n d PCl3
of
the
P-C1
bond
0'
N,N-disubstituted
(HOSE
set,
t o
An
the
mechanism
electron
showed
without
density and
were
study
oxyphosphoranes a s one
with
an
obtained
i n t e r v e n t i o n of
for
course
carbon
with
(activation
prefer.
The s t e p t h a t
sulphur
in
the
25
energy
functions
fragments
of
reaction
the
apical
no
oxygen
evidence
for
phosphorus
t h e ease w i t h which t h e oxygen c a n m i g r a t e
phosphine
1s
and
controlled the
by
aulphide.
the
'
olefin.
In contrast leaving The
the
the
The
from
the cyclic
form
reaction
and
strongly
conditioned
apical to a radial orientation.
and
A
which sulphonium y l i d e s
W i t t i g r e a c t i o n i s t h e r i n g o p e n i n g of oxide
and
'
o v e r t h e Corey-Chaykovsky
kcal/mol)
kinetically differentiates the
a
Spatial
various
intermediate t o by
the
using
T h e W i t t i g p a t h w a y was
a c t i v a t i o n e n e r g y 5. 2 k c a l / m o l )
(
pathway
Wittig of
were s h o r t e r when t h e
tone with an
atom)
a stable betaine.
favoured
the
analysis
b a s i c set a l s o found only
using a 4-3lG'
intermediates
apical
the
'
of
formaldehyde,
polarisation
compared i n o r d e r t o a s c e r t a i n t h e initio
that
t h e e x i s t e n c e of a n o x y p h o s p h o r a n e
confirmed
populations
'
based on
was a l a r g e c o n t r i b u t i o n o f a p o l a r f o r m
There
s t r u c t u r e was o p t i m i s e d
similar ab
whilst
complex
model)
thiourea8
The bonds t o p h o s p h o r u s i n t h e o x y p h o s p h o r a n e electron
of
indicated that
t h e NH g r o u p d e p e n d s on t h e c o n f o r m a t i o n of
appeared.
basic
in
properties
a l a r g e r o l e i n t h e PF3
r e a c t i o n between methylenephosphorane 3-2lG'
pair
and chemical
calculations
Several studies relating have
a
The r o l e o f
when t h e m o l e c u l e i s i n a n a n t i p e r i p l a n a r c o n f o r m a t i o n . rection
to
Proforontial
e l e c t r o n d e n s i t y from t h e amine
orbital
i n t e r a c t i o n s played
applied
I)
(
and i t s phosphonium s a l t s h a s
hydrogen
t r a n s f e r of
unoccupied
been
the
'
indicated.
physical
ammonia a n d m e t h y l a m i n e w i t h p h o s p h i n e , there
polarisation
Nevertheless.
phosphorus
rings
N, N - d i m e t h y l a m i n o d i p h e n y l p h o s p h i n e
been discussed
between
sigma bonds
phanylphaephinoe
overlap i n determining
N 2 , - P 3 d
of
the
d e n s i t y is m o r e t h a n d o u b l e f o r P h P F 2
d-function CND0/2,
intermediate
in
capacity
is
from an
Corey-Chaykovsky
group properties structures
of
of
the
several
376
Organophosphorus Chemist#
f l u o r i n a t e d phosphonium y l i d e s have been s t u d i e d . in
the
ylide (2; (2;
parent
X
=
X
= F,
Y
=
bistrifluoromethyl
X =
more
X = Y = CFa).
(2;
= F)
Y
is
it
but
HI
ylide
difluoro ylide (2;
The c a r b o n a t o m
Y = H) i s m o r e p y r a m i d a l t h a n t h a t
planar
i n the
in
the
On t h e o t h e r h a n d t h e
more c l o s e l y r e s e m b l e s t h e
structure
of i s o l a t e d H l P a n d c a r b e n e CF2. a
Studiea
1.2
Based
- The m o l e c u l a r
on Molecular Mechanics Theory.
m e c h a n i c s a p p r o a c h is f u n d a m e n t a l l y q u i t e d i f f e r e n t f r o m MO t h e o r y . T h e e n e r g i e s of t h e summing
the
together
molecules
calculated
with
interactions.
the The
being
energies energies
arising
are
and
their
force
are
determined
from
calculated
w h i c h c o n t a i n s a d a t a b a s e of t h e angles
studied
normal
constants,
intramolecular
using a Force Field
bond
lengths
and
distance.
f r o m MO t h e o r y ,
data,
to
to
adjusted
molecules
being
if
or even e s t i m a t e s based on t r e n d s
more
by
specific
achieving
data
is
iterative
There a r e s e v e r a l
minimisation,
Newton-Raphson method.
available
such
established
well
as
the
Simplex
for
the
of
the
of
is(a r e )
generated.
rotated,
b o n d s a n d a t o m s may b e d i s p l a y e d i n a
method
and
and i n t e r a t o m i c d i s t a n c e s , be measured.
bond a n g l e s ,
most
may
of
of the
the
Molecules variety
the
methods
A f t e r c h e c k i n g f o r g l o b a l minima
conformation( s)
r e l a t i o n s h i p s &.may
energy
adjustments
stable
and colours,
found
One of t h e f i r s t u s e s of t h e m o l e c u l a r
studied. appropriate
stereochemistry.
and
The p a r a m e t e r s i n t h i s F o r c e F i e l d
m e c h a n i c s p r o g r a m i s t h e m i n i m i s a t i o n of t h e t o t a l molecule
coulombic
T h i s d a t a may o r i g i n a t e f r o m s p e c t r o s c o p i c
give sensible end-results.
may b e
bond
together with the rotational
e n e r g y b a r r i e r s a n d e q u a t i o n s r e l a t i n g Van d e r W a a l s a n d energies
by
e n e r g i e s of t h e c o n s t i t u e n t b o n d s
strain
be
sizes
dihedral angle
The e n e r g i e s c a l c u l a t e d a r e n o t
a b s o l u t e a n d m u s t b e c o m p a r e d o n l y w i t h e n e r g i e s of o t h e r m o l e c u l e s calculated
t h e same p r o g r a m .
by
a r e r e g u l a r l y used t o perform combined
with
partial
charge calculations,
electrostatic isopotential energy
Molecular mechanics c a l c u l a t i o n s
conformational
maps
and
for
p a t h w a y s f o r d o c k i n g two m o l e c u l e s .
analyses
predicting
quality
of
when
the
lowest
T h e g r a p h i c d i s p l a y of
t h e r e s u l t s i s o n e of t h e m o s t s t r i k i n g f e a t u r e s of most The
and,
f o r t h e g e n e r a t i o n of
programs.
t h e graphics v a r i e s considerably depending on t h e
program and t h e hardware,
Q u i t e l o w c o s t t e r m i n a l s c a n be used f o r
s t r u c t u r e b u i l d i n g and i n i t i a t i n g c a l c u l a t i o n s but one high q u a l i t y
377
9: Physical Methods
(3)
Sms -P
=C
=C
=C
/R ‘R (9)
(8)
(10)
R’
Rz>P (12 1
K
(13)
/y\
R-P-P-R (14)
Ph Ph
(15)
(16)
(17)
378
graphics
terminal
needed
is
for
viewing
and
comparing
the
s t r u c t u r e s gene r a t e d There
have
conformational mechanics
been
several
a n a l y s i s of
programs.
chlorophosphite ( 3 ;
I t X
literature
phosphorus
reports
compounds
using
one
carbon out of
mixture of
h a s b e e n shown t h a t c y c l i c f i v e membered
repectively,
have
'
m e m b e r e d h 3 a n d A'
been
examined
Cartesian coordinates for the
was
t o
larger
f r a g m e n t s based on X-ray t o
simulate
uniaxial
the
rings data
molecular
hydrophobic
by
seven
defining
one
of
on
the
5)
and
(I(
The
membered
ring
or
two p l a n a r
The Monte C a r l o method
l o
shapes
environment.
calculations
S)
=
method
was
used
d i a l k y l phosphonates i n a
The
surrounding
molecules
e x e r t e d a s t r o n g i n f l u e n c e on t h e o r d e r i n g p a r a m e t e r s . " mechanics
Y
=
P-heterocycles
by t h e Cremer-Pople
c a l c u l a t i o n of extended
X
whereas t h e oxathiaphosphite i s a
the ring,
these conformations
Seven and e i g h t
the
Y = 0) h a s a n e n v e l o p e c o n f o r m a t i o n w i t h a n
=
a x i a l c h l o r i n e atom and t h a t t h e sulphur analogue ( 3 ; has
on
molecular
structural
Molecular
solution
of
duplex
o l i g o n u c l e o t i d e s have a l s o been reported
2 2.7
Nuclear Hagnetic Resonance
Biological
the o f ~n
study
of
phosphate samples.
here,
phosphorus-31
is
it
although
the
nervous
system
recommended
as
n.m.r
pK.
ppm d o w n f i e l d o f a b s e n c e of
concerning
p r o c e s s e s a r e t o o numerous t o
be
has
been
reviewed
Triethyl
l 3
an internal reference i n biological reduction
in
e s t i m a t e s from t h e f i t t e d curves.
the
standard
I t a p p e a r s 0 44
8 5 % H s P O ~ , a n d h a s a l i n e w l d t h of o n l y 0 0 2 7 p p m i n e x p o n e n t i a l m u l t i p l i c a t i o n o f t h e FID.
t h e advantage t h a t i t is miscible with water, i n d e p e n d e n t of
Reports
spectroscopy t o the study
is noted t h a t its application t o the
I t s u s e l e a d s t o a two f o l d
d e v i a t i o n of the
of
v i t r o and i n v i v o m e t a b o l i c
reported
-
ADDlications and References.
application
s o l v e n t and i s
constant
within
i o n i c s t r e n g t h s found i n t h e physiological
I t a l s o has
its chemical s h i f t the
variation
1s
of
9: Physical Methods
379
2.2 Chemical S h i f t s and S h i e l d i n g E f f e c t s 2.2.1
Phosphorus-31
reference
-
Positive s h i f t s a r e downfield of
85% phosphoric acid,
and a r e usually
the external
given
without
the
appellation p p m of
6r
n2
compounds
compounds p o s s e s s i n g covered of
The a
by e a c h t y p e o f
t h i s group
dependent
have
on
than t h e element
have
shifts
listed
nature
of
s i n g l y bound
The
chemical
t h e e l e m e n t bound t o
phosphorus
groups a t carbon cause strong deshielding
-
300
400)
( w i t h 6~
whilst
two n i t r o g e n p -
often negative) (6)
structure
prepared
r e c e n t l y and th'y
stated
i n
standard
earlier
of
substituents more
paper
uses
lie
the
trimethyl
which has In
2 2
have a p-r
400
( 1 3 ; R'=
phosphide have
t h e sp2
245)
s.2 3 3
as
6
~2 5 3 )
when
they
supermesityl
have
P=Sb
4
the of
The i n f l u e n c e
found
f o r (9, R = Ph)
i n 6~
eA
-121
carbon atom
(
"
values
been
-
been
are (Sms)
343 3
for
the
than they
assigned
to
S e v e r a l n 2 c o m p o u n d s w i t h PP
well
a P=P bond a p p e a r
On t h e o t h e r h a n d a P - P
t o 520.19 and
the
diphosphabutadiene
for which t h e amine g r o u p s must be h e l d
of
135 3 , ' '
bond
compound p o s s e s s i n g a P=Si
t h e r e l a t e d a n t i m o n y compound
resonates
at
low
very
field
(6r
c o n t r a s t t h e p h o s p h o n i u m compound ( 1 2 ) w h i c h c a n n o t
bond g i v e s
resonate H,
the
have t h i s e f f e c t
1
very high f i e l d s h i f t ,
The p o t a s s i u m p h o s p h i d e s groups
t o
Whereas t h e t r i - t - b u t y l
a
-
Those possessing
region
bond h a s a c h e m i c a l s h i f t
630 5 )
a (7)
phosphite
Thus t h e
variations
has a highfield s h i f t , 2 o
u~ s u a l l y
shielding
chemical s h i f t s
s l i g h t l y downfield
phosphaalkene
The
s i n g l e bond d o e s n o t responsible
silicon 6
Note t h e s h i f t of
i n o r b i t a l symmetries i n
large
with
which i n c o r p o r a t e s
closer
bonds have been prepared downfield
keeping
(160
more
( 8 ; R = P h , T m s ) h a v e 6~ v a l u e s 1 5 6 . 7 a n d
corresponding mesityl difrerencea
Two
phosphorus (
fluoro analogues
as i n a cumulene
which
do to each other.
is
shift
carbon is not diminished
on t h e sp'
distant
respectively
(77)
i n
6~ 2 0
ring resonates
I-phosphacumulenes
(10)
more
c o m p o u n d s i n t h e C-P=CCZ c l a s s
made
of
a l s o have upfield
phosphaalkene
A
within a fluorenyl other
I '
compound ( 7 , X = F) the
ranges
t o t h e carbon atom
groups produce g r e a t e r
Several
betaine
pentafluoro
two c o - o r d i n a t e
of
been reviewed and t h e
s t r u c t u r e a s d e f i n e d by t h e c o n n e c t i v i t i e s
been
the
chemical
P=C b o n d
(13)
i n the region 43
R2= tBu) have
6~
-60
"
similar t o t h a t for a l k y l phosphines
-180.
possessing 22 and
Note
"
two
bulky
alkyl
t h o s e w i t h P H g r o u p s &e that
this
trend
is
380
6r
Organophosphorus Chemistr!
nJ
of
membered
compounds
phosphorus the
phosphorus
(14,
R = SmS,
b e e n s a v e r a l s t u d i e s of
have
heterocycles
atoms ( 1 4 )
containing
= CH2),
eg -141
and a t even h i g h e r
field
a hydrogen atom o r a s i l y l group ( 1 4 ,
initio
calculations
of
shielding
constants
2 2 8 ppm a n d t h a t
t h e v e r y l a r g e s h i e l d i n g i n Pa
0’ c o n t r i b u t i o n
i n t h e HOMO
The
diphosphine
(
15)
for the dl
’’
has
66 8
6r
when
f o r phosphirine when
phosphorus
Y = PH or PTms) indicate
s h i e l d i n g c o n s t a n t i s more p o s i t i v e i n
isotropic
6~
three
three2’
u p f i e l d i n t h e r a n g e -90 t o - 1 7 8
atom bears an a l k y l group,
Y
or
two“
Like the monophosphirines,”
a r e well
and t r i p h o s p h i r i n e s
bears
There
phosphorus
P4
Ab
2 7
that
the
than i n PHJ
is due t o
a
The marked
by
small
downfield
s h i f t caused by t h i s p o l y c y c l i c
s y s t e m r e s e m b l e s t h a t c a u s e d by t h e
phosphanorbornene s t r u c t u r e
In contrast
phosphine
(16)
2 7
t r i s ( 2 - and
closely resembling very
high
a
restraints,
field
polycyclic
the
tertiary
the bicyclo(2 2 2loctane ring
also
the
system
of
additional
(171, 6r
phosphine
7)
tris
the
normally appear
presence
3 ’
of
tertiary
and
The p h o s p h i r i n e s
However,
’O
appears t o reduce t h e shielding e f f e c t signals
acyclic
3-fury1)phosphines
(2,6-difluorophenyl) phosphines a t
the
h i g h l y s h i e l d e d p h o s p h o r u s a t o m ( 6 -~7 4
a
has
-130
2,
The s t e r i c r e s t r a i n t s o f moves
the
phosphorus
a n d p h o s p h i t e g r o u p s of ( 1 8 ) t o h i g h e r
phosphine
The c h e m i c a l
shifts
of
f i e l d r e l a t i v e t o t h e acyclic analogues
3 2
the
of a n t i - 7 - p h o s p h a n o r b o r n e n e
P-chloro
and
P-bromo
analogues
e x h i b i t t h e reverse trend t o t h e phosphines and t h e s i g n a l s a t higher
Solid
state “P
showed t h e p r e s e n c e became e q u i v a l e n t A
n m. r
of
i n solution. cation
mesomeric
well
upfield
’‘
has
been
examples
resonance (22;
by
prepared
a n d c o r r e s p o n d s more
of
a new c l a s s of O’h’
carbene,
structures Y =
which
assigned (
6r
the 20)
ylide
(22a-c)
closely
to
the
”
have
and
compound,
w h i c h may b e
phosphaacetylene/nltrile
been characterised.
Y = CTms) g i v e s a n u p f i e l d s i g n a l a t -41’‘
analogue (22;
and
However i t s p h o s p h o r u s s i g n a l
t e r t i a r y phosphine s t r u c t u r e ( 2 1 ) . Two
phosphorus atoms
of t h e c o r r e s p o n d i n g 0 3 h ’ p h o s p h o r a n a s w i t h t h r e e
c a r b o n b o n d s ( 8 0 t o 2 0 5 ppm)
represented
t h e t r i o x a t r i p h o s p h o r i n a n e (19)
of
three non-equivalent
phosphonium s t r u c t u r e ( 2 0 )
is
appear
f i e l d than usual ”
but
N) r e s o n a t e s d o w n f i e l d a t 6 r 2 4 6
”
the
Compound rlitroBen
38 1
9: Physical Merhods
6 p
of
n'
comoounds
Studies
of
chemical s h i f t s are properties
of
influenced
the
heteroarene
electric field effects g r o u p is b o u n d substituent
(23)
effects
(24)
t o
a
is
the trends directly
that
the
the
''
bonds.
when
of
the
phosphorus
LFER s t u d i e s o f
moves
and a l k y a t i o n upfield
rationalised
of
i n terms o f
phosphorus
phosphorus the
2-ni
either
shift move
30
of
the
ppm,
of
role of
d is s o c ia t ion
'*
o n 6~ with
The
phosphorus This
positive
charge
TBP
of
was on
nitrogen
for
structure
whereas
a l l
the
of
also the
trialkylphosphrne used
t o
rings
have
r i n g s a five-membered
d o e s a seven-membered
determine
technique
has
also
neighbouring group participation (
26),
"
to
and
t o
been
the
been
i n the
possible
metathiophosphate.
prepared.
r i n g causes
r i n g too but
of
large
a l k a l i n e h y d r o l y s i s of a
and
This
a
''
l a b e l l i n g were acid
gives
(27) which have a d d i t i o n a l s p i r o
diaminopolymethylene
(
1, 1
''
linked)
Compared t o t h e
marked
deshielding
t o a much l e s s e r e x t e n t .
a n s a ( 1 , 3 l i n k e d ) c o m p o u n d was a l s o o b t a i n e d . " 6p
i n
and P-0
shifts
balanced
thiophosphates
Cyclotriphosphazenes
as
bound
(25) which have a n
co-ordination
telluride
r e a r r a n g e m e n t of t h e p h o s p h o n a t e s
six-membered
the
is
ring
coordination
more
ribofuranosyl cyclic phosphate."
to
as
is o p p o s i t e t o
haloalkylphosphonates
downfield
d o w n f i e l d upon a l k y l a t i o n
regiospecificity
applied
aryl
an increase of
a
Novel
o c c u p a n c y f o r P-OAr
i n transannular
producing
''
ppm
This
trophenyl
for
I s o t o p i c s h i f t s due t o "0 the
aza
I t s h o u l d a l s o be n o t e d t h a t a l k y l a t i o n ( a t Te)
"
tellurides
an
The r e s u l t s a r e e x p l a i n e d
than
tris(dimethylamino) phosphine
upfield
If
range
diphenylphosphinates
bicylic phosphites
rather
phosphorus o r an increase
to
phosphazene
downfield
substituted
ethyl
7
ca.
Y increase
atom.
amino group s u i t a b l y positioned produced
short
the
t o have a s t r o n g i n f l u e n c e
inductive effects
protonation
"P
the
by
heterarene of
t e r m s o f d i f f e r e n t d e g r e e s of d - o r b i t a l showed
also
for the aryl
6~
properties
observed t o
but
a n i s o t r o p y when
shift
are reported
found
electron-accepting
that
to t h e phosphazene group t h e through-space
downfield
effects
I t
rinss
to the @-position of
lead
for a s e r i e s of
indicated
o n l y by t h e e l e c t r o n - w i t h d r a w i n g
and magnetic
is adjacent
substituent
not
o constants
the
N-hateroaryltriphanylphosphinimides
The u s e f u l n e s s
An
of
for d i s t i n g u i s h i n g axial and e q u a t o r i a l phosphoryl groups i n t h e
oxaaaphoaphorines
has
been
a n a l o g u e s t h e i m p o r t a n c e of
evaluated"
and
taking i n t o account
for
t h e monocyclic
the orientation
of
382
Organophosphorus Chemistrv
SmsO\
P
BuzP =CHNMe2 1 *
,O,p,OSms
I
i
Op,O /
I
OSms
(21)
(19)
Ph,P =NArhct
(23)
n
N
Me
‘c-P
P-z
\
OEt
Ph’i] -‘COCF,
(24)
(25)
( 2 6)
X?
OH (27)
S
Ph Y
’
$P=C X
(30)
(29)
(28)
(32)
/z
II I
/
Y-P-N
z‘
,N-P-Y R
I II S
(33)
R
9: Ph?~sircilMethods
the of
383
substituent
on n i t r o g e n emphasized
The d o w n f i e l d p o s i t i o n
"
t h e c y c l i c phosphonates (28) which have a n
to
the
phosphoryl
attributed t o compounds and have 6~
(
group,
hydrogen
Y = H,
29,
n5 compounds
of
''
bonding OTms)
C02R,
11 2 t o - 1 5
6r
1
have been prepared
thiohydroxyphosphorane
and
P-alkoxy
gave ( 3 0 ,
(31,
6s.
Thus w h i l s t phosphine
and Oxygen-17.
to
sensitive
CFJ)
X=
X=
of
and -270,
-268
deshielded
2-thienylphosphine
selenide)
selenium
groups
+&
selenide
"
6s.
phosphites, molecules
46 2 A
the anion
conformation, d o w n f i e l d of
signal
from
tri-3-furyl-
thienyl
whilst
of
rings
In contrast
(-168
resonate
at
2. 2 . 3 C a r b o n - 1 3
The " C
n m.r
spectra
of i n
in
a
ring
6~ o f
t h e amino
field
at
R= a l k y l , the
relevant
ylidic
chair
Exocyclic
i n phosphates
oxygen than for
Other trends a r e a l s o reported
chemical s h i f t s of
p-n
bonded
s u c h a s i o d i n e bound
carbon
of
Compounds
t o carbon have
From t h e c o r r e l a t i o n o f
"
"
t h e alkane region (38 the
6~ a n d
a c a r b o n , i t was i n f e r r e d t h a t i n d u c t i v e e f f e c t s o f
t h e a m i n o g r o u p h a d a c o n t r o l l i n g i n f l u e n c e o n 6r (33;
a boat
a
from an a x i a l l y o r i e n t a t e d P=O is
higher
( s .1 0 0 )
of
with
t o 103) i n keeping with a considerable y l i d i c c h a r a c t e r moat d o w n f i e l d s i g n a l s
cyclic bicyclic
group which is p a r t
phosphoranes ( 3 2 ) a r e mostly u p f i e l d of
which have l a r g e atoms ( 2 )
phenyl
( 2 ,6 - d i m e t h o x y p h e n y l ) p h o s p h i n e
that i n an equatorial orientation. t o
tris
for
by o r t h o s u b s t i t u t i o n of
that
the signal
is
atoms
t h e s i g n a l of
P=O
a
shift
and
the "0
of
14 2 and
are very similar,
and
p h o s p h i t e s or t h i o p h o s p h a t e s .
A'U'
chemical
selenide
The
"
"
p h o s p h a t e s a n d t h i o p h o s p h a t e s showed t h a t the
found
by
6
has a signal a t
6~
had
C1)
-14
~ u x t a p o s e dc h a l c o g e n i d e
tris
for
study
conformation appears upfield
was
X=
6~
well u p f i e l d a t -354
appears
is
the
of
triphenylphosphine
tri-2-furylphosphine
TmsO) 2PH
(
oxaphosphetanes
OHe)
The s e l e n i u m
t h e presence
selenide,
from
The c h l o r o p h o s p h o r a n e ( 3 0 ,
moves d o w n f i e l d t o 1 7 4 on t h e g e n e r a t i o n o f
very
has been
a 1ko x y c a r b o n y l p h o s p h o r u s
The
Some new P - h a l o
14 and on r e a c t i o n with methanol
2 . 2. 2 S e l e n i u m - 7 7
group ~ 1 s
' O
( 3 0 ) have been p r e p a r e d novel
hydroxyl
o(
compared t o t h e t r a n s i s o m e r s ,
Y = Ph)
"
carbon
The u s e o f assisted
f o r t h e compounds
a n y l i d e 92% e n r i c h e d
with
''C
s revealing k i n e t i c s t u d y of a l l
i n t e r m e d i a t e s i n t h e m e c h a n i s m of
the
Wlttig
reaction
"
3 84
Organophosphorus Chrmisrq
The
solvation
of
diphosphoryl n. m. r .
w a s s t u d i e d b y '.'C
3.2.4 H y d r o g e n - I . tris
the
increasing
chalcogenide
Ch= O , S , S e )
substituent constants,
positive
number.''
(34;
charge
on
for t h e m e t h i n e
6"
The l i n e a r r e l a t i o n s h i p o f
phosphine
t h e chalcogenide
compounds a t d i f f e r e n t t e m p e r a t u r e s
'* of
w i t h t h e sum of
terms
was e x p l a i n e d i n
of
phosphorus with increasing atomic
When t h e c o u p l i n g c o n s t a n t s c o u l d n o t
be measured i n
an
'H n. m. r . s t u d y o f t h e s t e r e o c h e m i s t r y of t h e b i c y c l i c h e t e r o c y c l e s
( 3 5 ) , c o n f o r m a t i o n a l a s s i g n m e n t s w e r e m a d e o n t h e b a s i s of t h e p e a k w i d t h s of h y d r o x y l s i g n a l s .
3.3
Restricted
about and
R o t a t i o n and P s e u d o r o t a t i o n
t h e P-N bond o f could
( 3 6 ) ."
by
H, I!
rotation,
steric
thiophosphonamides
"
bis( dichloro-
which
factors
i n solution
(38;
g=
be
determined
for t h e
studied
the 31P n m r
spectra
down t o - 9 0 " , i t was
of t h e c o n f o r m e r ( 3 7 ) c o u l d n o t
i s r a p i d when o n e o f
2D
the
2)
Correlated Low
rotation
studied,"
"
rings but compound.''
t o
been
phosphino) phenylamines,
3).
FP
also
From t h e symmetry o f
P s e u d o r o t a t i o n i s s l o w on hydridophosphorane
Restricted
for t h e b e n z o t h i a z o l o n e
appears
has
deduced t h a t s i g n i f i c a n t q u a n t i t i e s be p r e s e n t
-
s e l e c t e d aminophosphines has been
be o b s e r v e d a t room t e m p e r a t u r e
Restricted
essentially
of
"
time
the rings is
spectra
were
n m r
temperature
tri(fluoroa1koxy)phosphorane
n m r
scale
for
six-membered
for
recorded
spectroscopy
indicated
a
of
preference
a
ring
t h e phosphorane (39)
two
spans
radial
former dicyano-
for a t
the
was
sulphur
and
i n t h e g r o u n d s t a t e w i t h c o r r e s p o n d i n g w e a k e n i n g of P - 0 s t u d y of
series of s i x co-ordinate dissociative ring.
"
2.4
Stu d i e a
Valence
mechanism
of
phosphines (42)
have
fluxional
isomerisations
of
a
c o m p o u n d s ( 4 0 ) , s h o w e d t h e o p e r a t i o n of
y&
Ea u i 11b r i e .
isomerism
the
beween
stability
phosphorus
A detailed
interaction
eight-membered
of
lack
t o
"
transannular
that A
b p and a
attributed bond
a
indicated
positions
g=
(38,
the
s t r u c t u r e with t h e cyano groups occupying r a d i a l positions," s t u d y of
the
which h a s two s p i r o five-membered
beween been
o p e n i n g of t h e f o u r - m e m b e r e d
Configuration phoaphaalkenes studied
by
and (
-
Conformation. 41)
variable
and
a
nitrogen
bicyclic
temperature
"P
385
9: Physical Methods
R-N
(36)
(461
386
''
n . m. r
The
diphosphine but
low
stability
of
to four centred association i n
chain
tautomerism
involving
alkylphosphonates," and
sulphur
i n
by 3 1 P
studied
chlorinated
borate
and phosphorus
triazene n m r
tautomerism
compounds
as
spectroscopy
phosphate have been i n t e r p r e t e d
P"OP( 0 )O E t z tetraoxy
co-ordinate
between
variable
i n t e r m s of
Rlng
nitrogen have been
temperature
bonds which a r e i n e q u i l i b r i u m with salts
the
formation
p o s s e s s i n g two or t h r e e
phosphoranes
quasi-phosphonium
co-ordinate
''
b i s tx-hydroxy
shown i n ( 4 4 ) ' ' The
diethyl
five
of
catechol-dichlorophosphoranes i n t h e p r e s e n c e o f
spectra of
novel
solvents
derivatives
n.m.r of
of t h e c y c l i c
the configuration
to i n v e r s i o n i n h y d r o c a r b o n s o l v e n t s
is a t t r i b u t e d
(43)
and
their
the
dissociated
corresponding
compounds i n v o l v i n g t h e a d d i t i o n o f
another
six
phosphate
group."
T h i s l a t t e r o b s e r v a t i o n a d d s c r e d i b i l i t y t o new p r o p o s a l s
for
mechanisms
the
groups discussed
of
nucleophilic
i n the section
Enantiomeric excess determined
by
measuring n m r.
the
''
ratios
The method
n.m r
was
technique
enantiotopic
of
powerful
menthyl
''
and
the
groups
phosphinates state.
''
to
determine
(451,
of
stereochemistry (46; The
Ch
diphosphonate
signals
accumulation
'*
The
was
spectra
of
shown
"
and
racemic
and (
of
the
the
was
was u s e d t o heterocyclic
t o
of
the solid have
the
the phosphorus
to
shown
p h o s p h a z e n e s b 2 were s t u d i e d l i k e w i s e The
eight-membered
attributed
diadamantylphosphi n i c a c i d chlorides'
of their
inversion
techniques
i n s t a b i l i t y of o n e o f
Diestereotopis m
pent-I, 3-dienephosphonates,
P
and/or
was
and
the saturation transfer
i n solution with that (47)
The
enantiomers
stereochemistry
2D n m. r the
of
= S, S e )
shown
during
of
3 1 P and 13C
studies
diastereotopic
D
of
"P
the
dimenthylphosphine and with
ring
T h e same r a n g e
of
of
of
and
purity
2D ' H ,
of
variety
the
together
atereochemistry mobility.
application
L
chloro-
by 3 1 P
phosphonates
technique
i n
and
existence
established." compare t h e
the
been
d i c h l o r i d e and
enantiomeric
used f o r t h e c h a r a c t e r i s a t i o n
dioxaphosphorinanes technique
of
the
has been used i n a
dichloromenthylphosphine sulphides,
of
phosphoryl
t h i o l s and amines have
diastereoisomeric
example
The
"
spectroscopy
a t
i n t h i s chapter
them with methylphosphonic
determination
p r o s t a n o i d s is another n m r
alcohols,
of
reacting
substitution
on k i n e t i c s
conformational by
conf
i i
someri c
gurations
of
vinyloxyi chlorocyclotetra-
u a i n g 2 D n . m. r .
1, 2 - d i - t - b u t y l - I ,
spectroscopy. 2-di-neo-pentyl
387
diphosphine
dioxide,
and
I , 3, 5 - d i o x a p h o s p h o r i n a n e s b '
conformational of
dialkyl
on
the
a
were
mixture used
of
as
stereoiaomers
of
of
a
the
basis
The c o n f i g u r a t i o n of m o l e c u l a r
analyses.
phosphites has been s t u d i e d , " conformations
and
associates solvent
and t h e e f f e c t of
configurations
of
phosphonium-
ethanesulphonate b e t a i n e s o b has been reported. Spin-Spin
2.5
J-resolved
-
Couplings.
spectra
to
number
A
compounds a r e g i v e n i n t h e p r e v i o u s 2. 5 . 1 J(PSe)
and J(PTe).
or
heteroaryl
aryl
applications
that
have
is l a r g e r
'JPs.
repectively)
' J P T . = 1600 Hz.
tri-t-butylphosphine
-
J(PP) had
'' '
P'NP'
The
(48)
coupling was
Ha,
vicinal
whilst couplings
are
Van d e r W a a l s
dihedral
angle
effects
However,
coordinate phosphorus
(50) a r e i n the range
Hz
37
for
and
pair
atom
is
The
''
the
is
there
four
have
been
of
(51)
respectively) s-character
are
-
92
The
9 o
a
qulte
diphospha-
favourable
t o transmit
electrons
directed bond
rigid
on
away
couplings
from in
0"
coupling
each
three
the
other
phosphazenyl
found t o c o r r e l a t e with t h e s o l i d
2.5. 3 J ( P F ) a n d J ( P N ) . T h e P F a n d P C F c o u p l i n g s i n s i x compounds
and
t h i s c a s e t h e two phosphorus atoms a r e
t h e r e a r e t h r e e pathways
"
isomer)
PP c o u p l i n g s i n t h e
-
lone
s t a t e conformations
I0 Hz ( t r a n s
Seminal
In
the
atom.
linear
t h e phosphorane
35
phosphorus
cyclotriphosphazenes
stabilised
c o u p l i n g s a r e o n l y I 6 - 2 9 Hz
distances,
and
the
-
The
the vicinal
bicycle( 2 , 2 , 2 ) o c t a n e s .
within
dotoluene
t e l l u r i d e had
In contrast
only 6
(u isomer)
Ha
for
Hz
70
PP geminal c o u p l i n g of
13
and
T r i -t-butylphosphine
conformationally mobile polyphosphines 113
s e l e n i d e has
O 7
tetraphosphazene I 0
for
strong electron-accepting
t h e t r i m e t h y l a n a l o g u e ( 6 8 4 Hz a n d 7 1 1 Hz f o r C D C 1 3
(49)
2D
c o u p l i n g 1 7 1 2 Hz) w h i c h i s o n l y s l i g h t l y l a r g e r t h a n t h a t o f
solutions
2 , 5 .2
of
organophosphorus
section.
The c o u p l i n g c o n s t a n t
groups
On t h e o t h e r h a n d ,
properties.'' a P-Se
of
s t e r e o c h e m i c a l s t u d i e s of
(922-936
large
f o r b o t h a p i c a l and r a d i a l p o s i t i o n s .
a p p e a r s t o be s u b s t a n t i a l
and
co-ordinate 745-156
and t h e s t r u c t u r e s cannot
w h o l l y d e s c r i b e d i n terms of t h e p r e s e n c e
of
Hz
Thus mrxing of
a 3-centre
be
2-electron
388
Organophosphorus Chemistry
(49 1
Me
(57 1
(56)
Me
I
Mt
(59)
(60)
9: Physical Methods
p-orbital
bond w i t h s u b s t a n t i a l
The ''N Hz,
3 89
whereas
the
geminal
a t t r i b u t e d t o N-P=P phosphole
for
was
''
showed
The
the
zero.
n . m. r .
spectra
reviewed.
of
the configuration
spectra
labelled
phosphorus
was
enriched
be considerably diethylamino
configuration.
cyclophosphazenes
e.g.
substituents
hexachlorocyclotriphosphazene compound.
"N
of
t o
an &
with
latter
The
"
have
been
d i r e c t PN c o u p l i n g i s v e r y s e n s i t i v e t o t h e n a t u r e
The
the
"N
The
coupling
t h a n t h e c o u p l i n g ( 7 5 Hz) f o r t h e
group
86
compound ( 5 2 ) had ' J ( P " N )
coupling
conjugation.
(53)
dimers
s m a l l e r ( 4 8 Hz)
of
ionic character."
e n r i c h e d two c o - o r d i n a t e
For t h e p y r r o l e compounds
(
for
the
for
hexafluoro
Me o r S') , e v e n
Y=
54;
Hz
-3
Hz
72
and
the
s u b s t i t u t i o n o f m e t h y l f o r s u l p h i d e a l t e r s ' J P M f r o m 5 6 t o 1 3 Hz. The
nitrogen
coupling. 2.5.4
substituents
''
J(PC).
The
direct
one-bond
and a r e l a r g e r t o exocyclic carbon atoms ( p h e n y l o r equivalent
endocyclic
carbons.qq
phosphonates (55) can vary coupling
in
coupling
from
t-butyl)
to
208
Ha. l o o
300
over
f o r P-fluorophosphonium y l i d e s a r e characterised
Thi s
by l a r g e
A study of
t h i s range."'
I-hydroxycycloalkylphoaphonates w i t h r i n g s i z e s v a r y i n g from showed
membered
that ring
a
possess
the and
direct
smallest PC
direct
largest
coupling
was
for
eleven.
the
c o u p l i n g of
a p i c a l a n d o v e r 1 7 0 Ha when i t
is
than
This coupling f o r acetylenic
couplings which o v e r l a p t h e lower end of 12
n3
a r e s e n s i t i v e t o t h e bond a n g l e a t p h o s p h o r u s
7-phosphanorbornenes t o
''
h a v e a m a r k e d i n f l u e n c e on t h i s
also
s. 120
I02
4
to
for the five
Phenylphosphoranes
when t h e p h e n y l g r o u p i s
radially
orientated.103
This
d i f f e r e n c e has been used t o a s s e s s t h e r e l a t i v e a p i c o p h i l i c i t i e a of methyl
groups
and
phosphorane 156) carbon
p h e n y l groups."'
t h a t t h e PC c o u p l i n g t o
carbon of
PC
couplings
-
etereochemietry carbon
is
atom
electrons. couplings
radial
sp3
i t s isomer ( 5 7 ) . " '
S t u d i e s of r i g i d h e t e r o c y c l i c geminal
study of the
A
the
2 1 5 HI, w h i c h i s c o n s i d e r a b l y l a r g e r t h a n t h e c o u p l i n g
wa6
t o t h e sp'
substituted
revealed
l o *
i n
phosphines have confirmed
phosphines
are
reliable
of
when
the
the coupling being considerably larger directed
towards
the
phosphorus
I t w o u l d seem l i k e l y t h a t t h e
recorded
for
2-alkoxyvinylphosphanes
the (
58)
isomers compared
t o
much
of the
that
probes
lone
p a i r of
larger
geminal
several
series
corresponding
of
2
390
isomers
a r e due t o t h e same phenomenon
are a manifestation of co-ordinate the
compounds t h e o p p o s i t e
spectra
of
primary
would
involve
i n which c a s e t h e couplings
preferences
trend has
2-alkylaminovinyl
oxides exhibited The
conformational
difference
inter-
intra-
and
than
expected
molecular
n m r ,
An
reported
-phosphonates
l a r g e r PC S e m i n a l c o u p l i n g s
structural
For t h e f o u r
lo'
been
&
the
isomers
for these
compounds
hydrogen bonding,"'
X-ray
lo'
MNDO s t u d y o f
chiral
t-butylmenthylthiophosphoryl compounds
2
larger
t~ o ~ b e
couplings vicinal than
of
for
geminal
assumptions.'12
The sum o f
appear
atom.
s t u d y of
A
of 'Jen
with 'JPW
i n the of
The
the
Fermi
the
the
vicinal and
3
contact
of
pressure
'"
on
plot
to
vinyl
the
n m. r
JIM increasing
was
Further
phosphorinan
g e o m e t r i e s of
Nuclear
have been d e t e c t e d
phosphates
attributed reports
distinguish oxides"L phosphorus
readily
chlorine-35
NQR
were arraigned o n t h e b a s i s
(
to
on t h e
chair
and
and f o r t h e compounds"'
60).
Quadrupole Resonance.
b y t h e CIDNP
diphenylphosphinite
t r a n s i t i o n s were
difference
couplings
of
of
mechanism d o e s n o t
f i v e b o n d PH c o u p l i n g ( I . 5 Hz) w a s o b s e r v e d f o r a
A
s e r i e s of p r o p e n y l d i t h i o and
both
factor since the correlation
solvent
PH
conformations
1
zig-zag that
"
effect
unchanged with
with
indicates
The
have appeared.
by
previous
dioxaphosphorinanes has
was
a s s i g n m e n t of
(27)
i n n'
'JPC
i n c h l o r o f o r m showed
application of
methyl
are larger
of
PC c o u p l i n g s
diphenylphosphine
hydrogen-bonding
CIDNP
PC The
dependence on t h e e l e c t r o n i c s t r u c t u r e
through t h e ori g i n
2. 5. 5 J ( P H ) .
2, 6
of
t o be t h e o n l y c o n t r o l l i n g
twist-boat
reverse
t o determine the stereochemistry
relationship
have a s i m i l a r phosphorus
spectra
'''
studied
and l a r g e r values appear associated
linear
A
did not pass
whilst
used
the
geminal and v i c i n a l
stereospecificity
geometry n3
been
showed
various
' I s
been investigated
the
-
couplings
p h o s p h o l e s (59) were
couplings
The
' l o
of arylpentafluorocyclophosphazenes
PC c o u p l i n g s
The
compounds
SCPI
oxazaphosphorinanes have a l s o
the
ring fusion
the
cf
c r y s t a l l o g r a p h i c and
propenylphosphonates. J
Thus
and -phosphine
phenomenon with
detected
for
-
Radical the
ion pairs
reaction
I - n i t r o p r o p e n e . "* i n
spectroscopy.
of
Phase
chlorocyclotriphoaphaaenes
The c h l o r i n e f r e q u e n c i e s
of b o n d l e n g t h s a n d n o n - e q u i v a l e n c e
from
9: Physicwl Methods
a n X-ray very
39 1
crystallographic
interesting
observed
study
spectra;
The s i x - m e m b e r e d s p i r o
at
room
temperature a
i n a c c o r d a n c e w i t h t h e p r e s e n c e of
mirror
and gave o n l y two s i g n a l s o v e r t h e same t e m p e r a t u r e
''C1
g e m i n a l 1y s u b s t
f r e q u e n c i e s of
t r i e n e s were
related
3 Gamma
t o P-C1
of
radiolysis
e
s p e c t r a of
r
8
corresponding
anion
phosphorus
trichloride A
1 2 '
planar
a
T-shaped '"The
in
Y
=
temperature
interpreted
the
with
the
presence
C1,
of
indicated
of " 0
is
a quinone gives t h e
8
1300
r
at1
G
s t u d y of
that
the
the
unpaired C1)
=
( 6 1 , Y = HI
S p e c t r a of d i ( supermesityl) phosphonyl A,
CNDO
atom
The p h o t o l y s i s of
single crystal e
H, O R )
oxidation
t h e a i d of
phosphorus
"'
the
independent
w i t h s p e c t r a p o s s e s s i n g ap and
to
electrochemical
whereas t h e monochlorophosphine
= t B u 3 C b H ~ ) possessed
= HI
The
2 2
a
gave
attributed
u* o r b i t a l a n d t h a t t h e t r i c h l o r i d e ( 6 1 , Y
t h e r e l a t i v e s i g n s of delocalised
was
indicated that
theoretical
electron occupies
R
-
lengths
formed by
were
Y = C1)
radical cations (61,
(61;
The
c h l o r o c y c 1o t r i p h o s p h a z a
P - N n - c o n ~ u g a t i o ni s weak
radical cation (61,
spectrum
t ut ed
which
radical
The r e s u l t s
pyramidal and t h a t
pyramidal
i
symmetry
range
1. 2 - b i s ( d i p h e n y l p h o s p h i n o ) e t h a n e
signal
cyclotetraphosphines,
G
bond
radical cations,
calculations
R
but The
E l e c t r o n S p i n Resonance
non-resolved
is
plane,
s p i r o r i n g h a s d i a d a x e s of
compound w i t h a seven-membered
50
has
i s l o s t a t 260K when f o u r s i g n a l s a p p e a r i n t h e s p e c t r a
this
of
ring
two s i g n a l s a r e
radical
(
is
62,
unique l i n e width v a r i a t i o n s which a l l o w e d A.
and
enriched
t o
be
species
w h i c h is i n a g r e e m e n t
determined
indicated that
e s r
The
the electron is
w i t h MO a b i n i t i ~c a l c u l a t i o n s o n
w i t h imposed p l a n a r geometry
The
preferred
geometry
of t h i s l a t t e r r a d i c a l i s p y r a m i d a l E.s r
s p e c t r o s c o p y was u s e d t o c o m p a r e t h e s t r u c t u r e s of
phosphoranyl (18;
R =
sinule
cc1J)
r a d i c a l s d e r l v e d f r o m t h e r e a c t i o n of with tert-butoxy
crystal
phosphoramidates (63; showed
the
0 . 8
r
X =
formation
C1,
of
radicals
study
0'
F,
of
Y
=
radicals
and o r t h o
quinones
2-irradiated morpholino,
or
the
the heterocycle
trigonal
"'
A
halothiopyrrolidino) bipyramidal
392
Organophosphorus Chemistry
radicals
which have t h e u n p a i r e d
orientation.
Weak
P-Hal
thiophosphoryl
radicals."'
electron i n a radial (equatorial)
bonds
react w i t h t e t r a p h e n y l d i p h o s p h i n e various
radicals
and
model, away
dissociation photoexcited
diphosphite
64)
(
t o
ketones t o
give
E.s. r .
of
spectra
phosphazene
c o m b i n e d w i t h a b i n i t i g c a l c u l a t i o n s of t h e h y d r o g e n
(67)
a x radical with t h e unpaired
indicated from
and
such a s ( 6 5 ) and ( 6 6 ) with phosphorus s p l i t t i n g s
of c a I 5 a n d 2 7 G r e p e c t i v e l y . " ' radical
allowed
Carbenes
the
-X - i r r a d i a t i o n
heterocyclic
of
It
ring.'"
2'-deoxyguanosine
electron has
polarised
been
5'-monophosphate
shown t h a t at
15
p r o d u c e s n a n i o n r a d i c a l s of t h e g u a n i d i n e b a s e . ' "
4
Vibrational
4. I V i b r a t i o n a l
4. 1. 1
Group
and R o t a t i o n a l SDectroscoDY
SD9ctroSco~y.
Frequencies
-
and
Assignments.
The d i c h l o r o p h o s p h i n o
g r o u p h a s been shown t o p r o d u c e a d e c r e a s e i n frequency
cm-'
bound t o a d o u b l e b o n d . l J '
i n t h e 1 . r,
related mode.
when
of
spectra
sulphides
'*
(34)
has
in
groups
assigned
- I . r.
various
compounds h a s been r e p o r t e d .
the
C=C
stretching
An i n t e n s e b a n d a t 9 3 5
t r i s (diphenylphosphory1)methane been
4. 1. 2 Bon d i n g a n d C o - o r d i n a t i o n . thiocyanato
"'
t o
a P-C
evidence on t h e bonding
three
i . r.
spectroscopy.
intermolecular
co-ordinate
on t h e
of
nature
the
spectral
group^.^"
organic
Hydrogen-bonding
low
T h e r e was e v i d e n c e
b o n d i n g of SH t o t h i o l s u l p h u r
of
van."'
1.r.
SH
t o S=P.
s t u d i e s of
(68)
Changes i n V P - m
intermolecular
h y d r o g e n b o n d i n g of p h o s p h o r y l
p o l a r i t y of
hydrogen
were l a r g e r t h a n
V P - a
groups
or t o
t h e phosphoryl
i n an adamantane s t r u c t u r e i n c r e a s e s its b a s i c i t y .
attributed t o a higher
i n
spectroscopy a t
f o r i n t r a m o l e c u l a r hydrogen
and
s u b s t i t u t e d p h e n o l s s h o w e d t h a t t h e i n c o r p o r a t i o n of group
of
were f o u n d t o h a v e a s i m i l a r d e p e n d e n c e
a c i d s was i n v e s t i g a t e d b y i . r .
bonding
compared
manifestations
bis-dithiophosphonic temperaturep.
of
phosphorus
T h e h y d r o g e n b o n d i n g p r o p e r t i e s of The
interactions
aad
stretching
p h o s p h o r y l and s u l p h i n y l compounds w i t h d e c a n o l hdve been by
K
T h i s was
t h e bond a r i s i n g f r o m c h a n g e s i n
9: Physical Methods
393
( 66 )
H
(68)
(67 1
c'Eo 0>P-OPh
CI
/sms
Sms'P=P
OH
ph*ph
0
PCI 3
+
(73)
(72)
(751
0 OR )2
p (o :
\ /
PPh,
[
- \/ '
0
I
>P-Y
P;y,/
X
R' (77)
'R
Organophosphorus Chemistrv
394
the hybridisation p. -d.
of
t h e phosphorus atom r a t h e r
Various macrocyclic phosphonamide
groups,
showing
U P - o
ethers,
which i n c o r p o r a t e phosphonate and
was
due
t h e u t i l i s a t i o n of
its
t o
peculiar
the phosphoryl
sandwich
s p h e r e a n d g o o d s h i e l d i n g of ring
1 . r . a n d 'H n m . r .
bis-a-hydroxyalkylphosphlne
4. 1. 3 S t e r e o c h e m i s t r y v o l u m e of
normal
oxides.
'"
taken
into
and
O q
phosphate
A
''
showed
A
aided
that
twist-boat
the
when dipole
planar
the
butene
'"
f i r s t time.
a l s o has t o
and
group
be
axial-equatorial
(70)
and
its
Kerr e f f e c t m e a s u r e m e n t s stabilises
t r a n s 1,2 epoxy-
studies
the
of
flexible various
propylphosphonic
acid
have a l s o been reported.
d i and tri
c o n s t a n t s have '42
probe
Spectroscopic
( - )
oxazaphosphorinanes
dioxaphosphepine
moment
4. 2 R o t a t i o n a l S p e c t r o s c o ~ y .
rotational
t o
indicate
planar-a-trans
the H-substituent
using UP-a
of
study by
a
s t u d y of
been
interconversion
vinylphosphonates occupy
conformational
o x a a a p h ~ s p h o l e s ' ~ ~a n d
a n d i t s mono,
data of groups
C=C
conformers.
derivatives"'
of
analogue
The b a r r i e r s t o r o t a t i o n have
function f o r trans-gauche
t h e o r i e n t a t i o n of
account
preferences
of
"
and i t s p e n t a d e u t e r i a t e d
a n d n m. r
I r.
that
study
derivatives
f o r t h e t r a n s conformer have been a s s i g n e d and
P=O
conformation concludes
t o the
boron
Host o f t h e f u n d a m e n t a l s a p p e a r e d a s d o u b l e t s
modes
the
which
- The v i b r a t i o n a l s p e c t r a a n d d e p o l a r i s a t l o n
estimated and a p o t e n t i a l that
ionophoric a c t i v i t y
s t r u c t u r e with a hydrophobic
of
8ome f o r t h e g a u c h e c o n f o r m e r suggested
in
Only one
the calcium ion.'"
ethyldifluorophosphine
have been obtained The
decrease
groups.
s p e c t r o s c o p y was a p p l i e d
t a u t omer i s m
chain
a
complex c a l c i u m i o n s c a u s i n g
t h e compounds (69) showed s u b s t a n t i a l
of
than any changes i n
' ''
bondi ng
-
The microwave s p e c t r a o f
phosphine
d e u t e r i a t e d forms h a v e b e e n r e c o r d e d . been
independently
evaluated
for
The the
9: Phvsical Methods
5
395
Electronic SDectroscoEy
5. 1 A b s o r D t i o n S D e c t r o s c o D y . at
343
nm
(7640)
and
d i p h o s p h a a l k e n e (71) has bands
- The
452
nm
(7230)
both
slightly shorter
at
w a v e l e n g t h and i n t e n s i t y t h a n t h e t r a n s i ~ o m e r . ' ~ ' The f o r m a t i o n a
hydrogen
bonded
complex
nm.124
established
The
aao
of
phosphite
The f o r m a t i o n o f a phosphonium
a band a t 242 was
tripropyl
and
h y d r a t e was s t u d i e d b y m o n i t o r i n g t h e i n t e n s i t y o f
octafluoropentanal (72)
between
quinone
ylide
through i t s long wavelength absorption a t 620
(73)
compounds
are
red
or
violet,
the
colour
d e p e n d i n g o n t h e n a t u r e of t h e a r y l s u b s t i t u e n t Y.
The d i m e t h y l a m i n o
derivative
band which c a n be
has
an
intramolecular
charge-transfer
used a s a solvatochromism i n d i c a t o r of s o l v e n t donor
power.
The
band
Potential
dyes
q u i n o l i n i urn
N - d i m e t h y l e n e t r i p h e n y l p h o s p h o n i um
spectra with
v.."
5 6 2 nm
o n c e SDe c t r o e c o p y.
The
anthracene
acidic
media
concentration. (A'".
535,
to lo-'
bisphosphonium and
give
a
The
I"
system
luminescence.
"*
as
2-styryl
have
vi sib l e
-
have good chromophoric p r o p e r t i e s . (Arm
exhibit
a
416b.14'
s a l t s ( 7 5 ) are s t a b l e i n n e u t r a l and
phosphates
(
fluorescence
76)
Distortion
causes
p-anisyl),
H concentration
violet-blue
q 0. 3 1 - 0. 4 1 ) .
conjueated
such salts
- O x a p h o s p h i n d o l e s (74) i n which t h e
i n particular (74; R
lo-'
blue fluorescence a t
proton
I"
p h o s p h o r u s a t o m i s two c o - o r d i n a t e The a r y l d e r i v a t i v e s ,
and
2 5 . 5 7 5 when h e x a n e i s t h e
s h i f t s f r o m v...
s o l v e n t t o 21 810 f o r w a t e r . ' 4 '
polarity
have
of
the
bathochromic
at
very
low
luminescence spectra coplanarity shift
and
of
fall
the in
5.
3 P h o t o e l e c t r o n a n d F l u o r e s c e n c e S D e c t r o s c o D y. - T h e p h o t o e l e c t r o n (PE) s p e c t r a of and t r a n s p h o s p h a a e n e (HP=NH) h a v e b e e n t h e s u b j e c t o f a t h e o r e t i c a l MO s t u d y .
and
nitrogen
lone
pairs
of
T h e i o n i r a t i o n of t h e electrons
effects
ecncountered
The
s p e c t r a of t h e d i h e t e r o p h o s p h o l a n e s ( 7 7 ;
and t h e i r a c y c l i c The
largest
phoaphorus l o n e p a i r . increase
indicated
that
states the
change
were X =
in
p o t e n t i a l u p o n r i n g c l o s u r e was r e l a t e d t o c o n f o r m a t i o n a l
ionisation effects.
analogues
ionic
phosphorus electronic
analysed. 0,NMe)
the
the
reorganisation
PE
i n
and
i n
IPI
and
contribution
t o
the
HOMO
The c y c l i c a m i d e a ( 7 7 ; X = 0, a
decrease
in
IPI
came
Y= NRz)
from
the
showed a n
compared t o t h e a c y c l i c
396
Organophosphorus Chemistry
analogue.
T h e PE s p e c t r a o f
R=
C,Si,
the
spiro
methyl and
hydrogen
interactin
which c o u l d n o t be d e t e c t e d i n t h e s p e c t r a
photoelectron
(78;
polyphosphines
Y=
h a v e b e e n a s s i g n e d w i t h t h e a i d o f MO c a l c u l a t i o n s o n
tBu)
analogues.
spectra
of
Theory
indicated
triphenylphosphonium
a
small
”’
spiro
The X - r a y
methylide
was
not
a l t e r e d upon c o m p l e x a t i o n w i t h g o l d o r c o p p e r . ” 3 X-ray
i n c o m b i n a t i o n w i t h CD a n d I R s p e c t r o s c o p y
fluorescence
was u s e d f o r t h e c o n f o r m a t i o n a l The n - d o n o r
power
dialkylphenylphosphines.
a n a l y s i s of
dialkylphosphino
group i n t h e conformer
c o n j u g a t i o n was a q u a r t e r o f t h a t o f
f a v o u r i n g p-n The
the
of
fluorescence
conformers with t h e phosphorus lone p a i r i n and with
the
phenyl
ring
the
MezN
group,
c o r r e s p o n d e d t o a n e q u i l i b r i u m m i x t u r e of
spectra and
indicated
a
out
lower
c o n j u g a t e d c o n f o r m e r t h a n t h a t e s t i m a t e d b y UV a n d ~ p e c t r o a c o p y . ~ ’An ~ X-ray
of
conjugation
proportion of carbon-I3
emission spectroscopic study of
the
n m.r.
phosphines
a n d t h e 1 r c h a l c o g e n i d e s showed q u a n t i t a t i v e r e l a t i o n s h i pa b e t w e e n t h e
K.
phosphorus
emission l i n e s h i f t and t h e charge on phosphorus.
relationship
of
P-substituent
o c o n s t a n t s were a l s o e x a m i n e d . “ 5
6
latter
t o
bond
polarities
D r f f r a c t i on.
-
book
A
on
of
of
of
n 2 ComDounds .
i n v e s t i g a t i o n s o f two c o - o r d i n a t e
w h i c h o r i g i n a t e from t h e g r o u p s i n B o n n several
studies of
sym-tri-t-butylphenyl ene.”’,
pentadienyl are
and
a
(Sma)
subatituents,
cyclopentadienyl)
’”
ag.
Tokyo.
observed diphosphene.
introduces
in
a
number
There
a
have and
tetraphosphatri-
a diphosphabutene,’”
triphosphabutadiene’”.
substituent i n (79) also
and
the
c o m p o u n d s many
compounds w i t h t h e u s u a l t r i m e t h y l s i l y l
a diphosphahexadiene,
butadiene’” which
Within
bonds.
There h a s been a marked i n c r e a s e i n
cryatallographic
been
Russia.”’
t h e f o l l o w i n g s u b s e c t i o n s t h e compounds a r e r e v i e w e d i n t h e
s e q u e n c e of d e c r e a s i n g n u m b e r of P-C
L. I.I
The
overall
m o l e c u l a r s t r u c t u r e of
the
o r g a n o p h o s p h o r u s compounds h a s b e e n p u b l i s h e d i n each
and
Diffraction
X-ray
6.7
the
a diphospha-
The p e n t a m e t h y l c y c l o fluxional
related
(bis
properties’” pentamethyl-
A phosphaalkene i n which
the
PIC
397
9: Physical Methods
carbon
atom
has
been incorporated
studied.
'''
The
structures
of
i n a four-membered
the
and
p h o s p h a a l k e n e (80) i n which t h e c a r b o n b e a r s been
' ''
compared.
The
crystal
( 8 1 )' '' a n d t h e p h o s p h a c u m u l e n e di-t-butylphosphino
phenyl
structures
8)
(
of
have
r i n g has been
isomers
of
the
and hydrogen have the
been
phosphaallene
determined.
Two
g r o u p s bound t o n i t r o g e n i n t r o d u c e d t h e n e c e s s a r y An & - r a y
structure
bulk t o give a s t a b l e c r y s t a l l i n e phosphazene.
1 6 '
of
system t o divide i n t o a
the
phosphapentalene
(82)
p o s i t i v e l y charged a z a a l l y l
showed t h e
T
g r o u p and a n e g a t i v e l y c h a r g e d
6.1.2
n3
ComDounds
The
c r y s t a l s t r u c t u r e of
one stereomer
phosphine ( 8 3 ) h a s been d e t e r m i n e d and t h e d e f o r m a t i o n conformational dimeric
analysis
described
R=
(84,
phosphaallene
structures
X-ray
1 7 0
for
the i n
and have
confirms
exceptionally
a
related
been determined
to
found
certain restrained polycyclic
the
the 9
have the
phosphine
compounds,
such a s the
low
"P
field
n m r
2 9 1 1 0 b
The
molecular
I, 2-di phosphi nes
di phosphetane,
l 7
have a l s o been slightly
was
crystallography
d i p h o s p h i n e (151, which p o s s e s s signals.
CPh2)"'
Y = NPh)"'
(85)
dioxadiphosphaphosphorinane
g e o m e t r y shown
Y=
Ph,
of
parameters
The c r y s t a l s t r u c t u r e s of
l b 7
p h e n y l i m i n o compound (84, R = b e n z y l , The
phosphole
'"
ring.
'
structures
have
been
a diazaphospholane,
studied Sip
highly
and
'
'''
A
large
ringed a
and a diazadi phospholane'
crowded
PP b o n d s ,
and
diphosphi rane, diphosphasilirane
'
had
w i t h p u c k e r i n g of
t h e phenyl
r i n g s of
t h e p h o s p h o r u s s u p e r m e s i t y l s u b ~ t i t u e n t s . ' ~ ' The
structure
of
new
the
elongated
A
acyclic
of
r e v i ewed
(86)"'
methano- bridged diphospha heterocycle
has been
established The c o n f o r m a t i o n s
of
two
bis-dia~adiphosphetidine'~' have
trioxatriphosphorinane conformation
with
environments
i n
(88)
three
was
The s t u c t u r e s o f
n'
with
0 '
t o
been
have
atoms
a i n
s o l i d s t a t e n.m.r.
has a l s o been s t u d i e d .
compounds have
a l s o been c r y s t a l l o g r a p h i c
~ i l o p h o a p h i r a n e ' ~ ~ ,a
found
phosphorus
agreement
b i c y c l i c compound (18; R = C C 1 3 ) have
The
structures
d i p h o s p h a d i b o r e t a n e ~ ' ~ ~ * ' a~ ~d,i a z a p h o s p h e t i d i n e ' 7 a
amine l i n k e d
(87)
t h e bis-dichlorophosphinoaminobenzene
of
i n t h e c r y s t a l and i n s o l u t i o n have been compared.''
s t u d i e s of
been
and a n
studied.
The
distorted
boat
non-equivalent results
The
"
''I
reviewed
"
There
a bismethylenephosphorane
chlorodiazaphospholium
salt,
"'
and
a
Organophosphorus Chrmistn
398
Smr /p
=CHPh
Sms
/
P =C
=CPh,
(81 1
(80)
R
I
Et
Me2N I
/OH
>P-CH Ph
P ‘C=Y
Y=C’
‘P’
‘Ph
I
R
(83)
(84)
Me2N
(62)
.Me
(86) Ph,P =N
(90)
OR
RO+
/SAr
-!yo
0-P
‘OR
(88) (89) Ph
9: Phyyicul Methods
399
''
diphenylphosphinodimesitylborane. 6, 1.3
nr
ComDounds
The
n-hydroxyphosphonium intermediates
in
salt
the
structure
of
a
was
to
identify
used
Wittig
reaction
t r i p h e n y l p h o s p h o n i u m s a l t s examined
'
perchlorate,
selenobetaine
derived
carbodiphosphorane, p h o s p h o n i urn
from
the
and
l a b
met h y l i d e
dioxomolybdate.'" distannate
tj,K-diethylthiocarbamoyl
a
addition
products
was f o u n d
'"
structure
betaine,
of
selenium
the
reaction
t o have a
The s t r u c t u r e o f
y l i d e ( 8 9 ) h a s also b e e n e s t a b l i s h e d
( 9 0 )'"
have
been
established
c a t i o n has been used a s a thionitrite (911
anions.'"
has t r a n s
conformation, one r i n g selenidea
i n
a
have
s e l e n i d e (209 4
rings
twist
One
is
one of
for of
inclusion
of
a
had
both
(
chloride,
compounds.'"
The
PhaPO)
have
bicyclic
been
chlorophoaphenium
'
include
chloride, and
anion,
salt
' ''
the
' ''
determined.
phosphinamides
various
in
a
chair
s u b s t i t u e n t s had
structures
of
two
tri-2-furylphosphine whilst
an
eight
a crown c o n f o r m a t i o n . ' " bonds and a r e d u c t i o n of
'"
structures
diphenylthiophosphinate
of
group i n t h e adamantanone s k e l e t o n
They
-)nenthylphenylthiophosphinyl
the
the sulphide
r e p o r t s on t h e c o n f i g u r a t i o n s of
chlorides.
thiophosphinyl
rings
found,"
t h e e n d o c y c l i c C-P
There have been t h r e e thiophosphinic
t h a t of
study
The
Iq'
the shortest
t h e a n g l e formed by t h e s e bonds
and
the stabilised
and
the
t h e P=Se bond o f
phosphoryl
leads to a lengthening of
the
pentacyclic
two i s o m e r s of
membered c y c l i c p h o s p h i n e s e l e n i d e p o s s e s s e d The
a
of
diphosphoraneiminium
two a x i a l phenyl
conformation studied,
The
ion
o t h e r which had
been pm)
counter
The s t r u c t u r e
fused the
to
l q 0
T h e s t r u c t u r e of a s t a b i l i s e d p h o s p h a z e n e , ' "
imine
a
't.'
diazastannylenes"',
Another product
dibetaine
from
with
-detected
Amongst a number o f
' 7 ' 1 8 3
were
diastereomeric n m.r
methylene-I-boraadamantane
a
I'
trapped
RP
t-butyl-l-menthyl-
corresponding an
antimony
and
two
diphosphetes
from
obtained
dimenthyl
of
Structural
derived
menthyl
a s t u d y of t h e e p i m e r s o f
the
of
Y = H,
(92;
of
investigations
phosphole
from
complex
dimera'"
and
reaction
a
with
I, ~ - c y c l o o c t a d i e n e z o ' have a l s o been reported. A , s t r u c t u r a l a t u d y of
a trismorpholinophenacylphosphonium
a n d i t s y l i d e s h o w e d t h a t t h e P-C
bond o f
t o t h e n i t r o g e n which h a s t w o s m a l l a d j a c e n t bond a n g l e s and n o t nitrogen with t h e highest
tetragonal
salt
the ylide is antiperiplanar
character.
the
This contrasts with
400
Orgunophosphorus Chemistry
previous
results.
The
c o n ~ u g a t i o ni s l e s s phosphonium
ylide.
s t e r e o c h e m i s t r y of configuration of have
i n
been
In
lo’
unfavourable
of
support of
addition
Ph),
’*
of
a
t o
the
20
and
a
crown
7
(931,
tetraaaadiphosphonium
salt,
”’
the
cyclophosphazenes
been
investigated.
a
21’
and a phenylchromium bridged hydrogen-bonding and
the
have
thiophosphoramidate
a
s a l t of
configurations determined.
derivative of
lone
pair
-N, Y - d i met h y l - 1 -
heterocycles
t o l u i d ines
(48)
tetraphosphazane
has
~ t u d y , ~a ’s h a v e n u m e r o u s
two
isomeric
acid,
the
dialkylamino
a
2 2 0
related
N-phenyl-
The bond l e n g t h s the
nitrogen
There have
R = CHaPh, from
Y=
cyclodiphosphaaene”
and
reaction
of
’’
The
a crystallographic
The
structure
and
amides
A
systematic
triphosphazenezZ4 have been reported.
been
SNe)”’
the
s u b j e c t of
cyclophosphazenes.
tris
a
diastereomer
i n t e r a c t i o n of
the
a 2 1 6
cyclic
of
thi ophosphorylt r i c h l o r i d e .
been
of
include
structures
obtained
and
and a
2 1 7
with t h e a x i a l phosphorus s u b s t i t u e n t . “
membered
*’’
number
of
r e p o r t s on a dithiodiaaadiphosphetane ( 3 3 ; eight
(9b)
The
and
bicyclic
a dibromo-2-hydroxyphenyl
D-gluconic
of t h e l a t t e r were c o n s i s t e n t w i t h n - u *
Y=
(
cyclotriphosphazene,
( 9 5 ) have a l s o been determined.
oxaza-phosphorinane
be The of
They
cyclotriphosphaaene.
6-phanylcyclophosphamide’
of
t o
33;
A
reported.
methylsilane
in
been
an The
studies
a fused
thiazaphosphorin
been
cyanocyclotriphosphazene,
’“
’ O ‘
diazadiphosphetane 2’’
S
there
found
Crystallographlc
a trans
”
also
have
was
the the
bonding t o electron-acceptors.’Oq
triphosphabenzene214have
phosphates“’
and
compound.
(69)
ether
that
trrphenyl-
establishing
glycosyl
a triaminophosphonium dititanylmethyllde,
phosphate”’
the
3, 8-diphosphonate,
phenenthroline
f o r co-ordinative
phosphonamides
The
conclusion
than
a fl-formylphosphonateZo‘
1 4 c r o w n 5 e t h e r was a l s o s t u d i e d . ” ’ cyclic
the
ylide
e t h y l l,1-phenylhydroxyethylphosphonate2’’
(-1
phosphonate2’’
conformation
type
t h e oxime of
studies
a-guanine
structures this
of
of
a
a
cyclo-
study
of
the
c r y s t a l d a t a f o r t e t r a f l u o r o and t e t r a c h l o r o t r i p h o s p h a z e n e s r e v e a l e d a
correlatfon
of
triphosphazenes five-,
six-
diamines,
and a l s o
e.g. (
and
271
established.
t o
basicities.”’
Several
monospiro
have been examined where a d d i t i o n a l s a t u r a t e d
seven-membered
~ b . t 2 0 # 2 2 ~
a n d PNP bond a n g l e s t o t h e g r o u p
NPN
endocyclic
electronegativities
An A
hexachlorotetraphosphaaene
example
rings of
originate
an
ANSA
from
structure
diols was
and also
diaziridotetrachlorotriphosphazene
and
have
The
also
been
investigated.”’
40 1
9: Physical Methods
c r y s t a l s t r u c t u r e of 6 . 1. 4
n'
and
n6
five-co-ordinate (96),
which
a dithiazaphosphazene ComDounds.
compounds.
has
a
most
pentaphenylphosphorane, CFJ)
'
There They
have
been
include
interesting and
2 q
has been r e p o r t e d . 2 2 a
the
the
source-
carbon
and
97;
X=
(
The b i c y c l i c c a r b o x a m i d e
an
apical
position.
The
ring i n a half-twist structure
of
a
conformation fused
'
t h i ohydroxyphosphorane'
Electron
t o
"'
cyclohexene.
phosphorane,"'
its
a six-membered and
The
the
first
been d e termi ned.
have
The s t e r e o c h e m i s t r y o f e s t a b l i s h e d by X - r a y
similar
bicyclic
methylene
a t o m is p l a n a r ,
nitrogen
e n d o c y c l i c a n g l e i s e n l a r g e d t o 132" and i t is p a r t o f
6.2
dioxide
(98) h a s a n e a r l y i d e a l t b p s t r u c t u r e w i t h t h e
phosphorane i n
s t u d i e s of
monocyclic-phosphorane
which h a s a n a p i c a l hydrogen
group
several
carboxy-phosphorane
the
hexaco-ordinate
(51)
betaine
was
crystallography.P3
- A gas phase conformational
Diffraction.
a n a l y s i s of
n-styryldichlorophosphine i n d i c a t e d t h e p r e s e n c e o f a n e q u i l i b r i u m o f e i t h e r ~ 1 a8n d e c l i p s e d c o n f o r m e r s o r ~ 1 a8n d t r a n s
7
D i p o l e Moments.
Kerr Effects,
conformer^.^"
Cyclic Voltammetry
and Polarography
7.1
Moments
DLpole
and is
t-butylphosphaethyne
Kerr
esu i n cyclohexane.
The a n i s o t r o p y o f
both
and
the
electron
molecule
is
8.07
An.2s'
The
have
of
been
applied
to
phosphate
of
of
the
has
initio
(5. 3
of for
A')
C=P
been
bond
have
been
of
publi~hed."~ analysis
of
the
The
oxides these
f o r t h e i n t e r p r e t a t i o n of t o
the
dimethyl
and d i a r y l m e t h y l p h o s p h i n e
applied
in
polarisability
calculations
5, 6 - b e n a o - I , 3, 2 - d i o x a p h o s p h e p i n s .
t h e o x i d e i s a n equilibrium of
moment
i s 104 x
methyl phosphinate,
conformational
The g r a p h i c a l method
m o m e n t s a n d Kerr E f f e c t s analysis
the
ab
m o m e n t s of
m o m e n t s of n e a r l y 5 0 d i a l k y l
compounds.
polarisability
polarity
results dipole
phosphonate and t r i m e t h y l dipole
dipole
i s 0.46 D and t h e l o n g i t u d i n a l
The and
The
C = P bond i n d i c a t e d a h i g h asymmetry of
the
density."'
adamantylphosphaethyne stereochemistry
-
Effect
1.24 D and t h e Kerr c o n s t a n t
dipole
conformational
In a polar solvent
t h e c h a i r conformer and
two
flexlble
402
Organophosphorus Chemistn
forms.
'"
These
conformational
Cyclic
controlled the
VoltammetrY
formation phenyl
of
and
of
fluoro,
Ph2P < <
as
mono
f o l l o w i n g s e q u e n c e of
chlorodiphenylphosphine c h l o r o and bromo Nucleophilic
the
and
exclusive
dipole
P o t e n t i ometri c and conduct imetric vinyl triphenylmethanolic have been
indicate
and
diphenylphosphine substitution
benzene
gives
'''
product.
diphosphorylated
P( S) He2 :: PNRHe2
P( 0 )He2 <
cyclotriphosphaaenes
Cyclic
indicates
the
'*'
P( S e ) Me2 <
measurements
Studies
of
have
the
propargylt riphenyl-
< P'Ph3
P'He3
been
made
electrosorption
p h o s p h o n i um
cations
on of
from
s o l u t i o n s a t dropping and hanging mercury drop e l e c t r o d e s published.
voltammetry, differential
Differential
2 4 2
using
accumulation time,
mercury
drop
g a v e 8 - 100 f o l d
pulse
pulse
adsorptive
electrodes increase
'"
polarography
used f o r t h e determination of metabolites.
NAD',
i n
stripping
a
and
2
minute
sensitivity
over
The l a t t e r t e c h n i q u e h a s b e e n NADP'244
and
various
adenine
"'
Mass S p e c t r o m e t r y
8 base
in
peaks
the
bis( diethylamino) phosphanes
mass (
99;
spectra
X=
NEt2)
s h o w i n g t h e r e a d y l o s s of t h e o r g a n l c base
peaks i n t h e s p e c t r a of
X=
Br)
are
formed
dichlorophosphanes the
by
other
hand
of
ethene
alkenyl-
of
all contain the
and ions
arylPX2'
g r o u p bound t o p h o s p h o r u s .
The
t h e correspondlng dibromophosphanes
(99;
the
elimination
more r e a d i l y f r a g m e n t w i t h
( t r i c h l o r o m e t h y l ) phosphane molecules
The
e l e c t r o n a c c e p t i n g shown b e l o w . 2 b o
< < NO2
On
7 0 ) .' ' '
- C y c l i c voltammetry and
PolarograDhu.
diphenylphosphini te.
voltammetry
The
(
the diphenylphosphide anion a s an intermediate i n
tetraphenyldiphosphine
He2P < <
were a l s o u s e d i n t h e
methods
dioxaphosphepins
c o u l o m e t r y of
potential
t h e cathodic reduction of and
physical
of
a I4 c r o w n 5 p h o s p h o n a t e h a s b e e n m e a s u r e d . ' "
moment o f 7.2
combined
analysis
of
HBr,
loss
of
chlorodiethylphosphane fragment
with
loss
respectively t o give their
of
and one
whilst
the
diethyland
b a s e peaks."'
two Not
9: Physical Methods
403
s u p r i s i n g l y t h e s p e c t r u m of t h e b i s 1 , 2 - d i c h l o r o p h o s p h a n e dominated
by r e t r o c y c l o a d d i t i o n ,
The d i p h o s p h a c y c l o b u t a n e involves
loss
resultant
of
bis
pathways.‘” produced
evidence
examined.
i n
spectrometry
It
has
phosphinates
’“
P-N
bonds
For
diphosphadiboretane
of
shown
carboxylic
of
both
that
the
organic‘”
latter
group
of
effect
some been
thiolo
and
(109)
compounds,
for
the
nitro
were
are
isomeric
(105).
but
a good
elimination
the
of
for
of
dialkyl
example
found
whilst
t o
alkyl groups
Selected
been
Thus,
and t h a t
resistant
elimination of
has
with
oxides
phosphorus
thiono
phosphates.’”
groups
nitrobennylthiophosphonates
and
by mass s p e c t r o m e t r y , ’ ”
methylphoaphonates have been studied,”’and orthg
of have
c o n t a i n i n g f r a g m e n t s were
bound t o p h o s p h o r u s o c c u r s f o r t h e p h o a p h i n a t e s , the
spectra
chlorides
of (103)
t o P z N containing fragments
phosphorylcarbamates
the
mass
The
“
The
variety
The mass s p e c t r a o f c y c l i c p h o s p h i n e
extrusion
been
a
the alkyl s a l t s especially those
may b e d i s t i n g u i s h e d
cleavage.
the
of
spectra of
’’
the
by
is
which
a s shown i n ( 1 0 1 )
fragments
i o n s c o r r e s p o n d i n g t o P-N
the
evidence
fragments.
’
ions corresponding
lower c h a i n l e n g t h s . show
of
’
benzene
fragmentation
am1 n o p h o s p h o n i um
tri alkyl-
Whilst
complex
possibly
(102)
f o r SmsP=BNC* H I a .
and
always observed, observed
trimethylamine
Mass
tri phenyl-
a
undergoes
phosphaquinone
(100)
with t h e elimination of
dimethyl
the
nitro
isomer g i v e s s t r o n g m o l e c u l a r i o n s a n d a b u n d a n t i o n s c o r r e s p o n d i n g t o
e l i m i n a t i o n of t h e n i t r o b e n a y l g r o u p ,
is
dominated
by
M
the
i n v o l v i n g a t t a c k of s u l p h u r
shown has
i n been
(105)
’”
A
again
facile
bond with
r i n g with t h e adamantyl moiety.”’
s t u d y of t h e E . I .
Me,
the
P-C
adamantylphosphonate a l s o rearranges phrnyl
CDj,
One)
intrn8ities
that
”‘
spectrometry
of
c h a r a c t e r i s a t 1o n liquid-phase
systems.
of
the aryl
alkyl the
has a
been study
but
product
and
diphenyl
of
incorporation
a
t o
ntermedi a tes
of
Y=
H,D,
X=
Y = Me, 2 = F ) a n d i t s
applied i
the i
n
direct r e a c ting
iodolactonisation,
poaks corresponding t o r e a c t a n t
and t h e iodolactone
as
There has been a d e t a i l e d
of S o m a n ( 1 0 6 ;
s h o r t -11 v e d
In
ring
compounds
phosphonates
cleavage
s p e c t r a of some p i n a c o y l c o m p o u n d s ( 1 0 6 , including
deuteriated analogues.
PAB
t h e o r t h o isomer
can be r a t i o n a l i s e d a s
which
r a n g e of a d a m a n t y l p h o s p h o r y l
Once
exhibit
t h e s p e c t r a of
ion
a t t h e o r t h o carbon of
wide
investigated.
phosphonamides
NO2
-
(
the
1071, i n t e r m e d i a t e s
was m o n i t o r e d o v e r 24 h.
Diiodo
and
404
Organophosphorus Chemisty
RPX,
m p C l 2
PCI 7
(99) (100)
(101)
cx3
(X,C),C
I
-ex-0 (106)
0
II
-PYZ
(1021
0
II
(RO 12 P -X
(CH 2 1n C H (107)
=C H2
9: Physical Methods
monoiodo
405
phosphonium
evidence f o r the (108)
give
cleavage bond
stable
of
intermediates
formation
of
molecular
t h e P-S and C-S
cleavage.’”
ions
observed but The a l k e n y l
and
dithiophosphate
w i t h H t r a n s f e r a s shown ( 1 0 9 )
full
of
the
bond
was
readily
cleaved
compounds showed s t r o n g m o l e c u l a r very abundant catecholP’ discussed
g r o u p was n o t but
it
above
the
labelled
with
the
molecules. enabled the
must
Nevertheless isomers
myo-inositol
t o
be
1,2-cyclic
have
The
(
were
of
the
when
simultaneously.’bJ been i n v e s t i g a t e d . The
mass
diphosphetidines the
loss
of
A l l
and
effect
the nitro
e s t e r (111, X =
NO2)
JhS, “S,
“0,
indicate
extensive
i n
the
a t
spectra the
A l l
t o determine
two
which
isomers
of
GC/HS
of
by
P o s i t i v e and negative
used
showed
least
ion FAB
t h e amounts
of
2 b 2
c h l o r o spiroamino-cyclotriphosphazenes h a s been
temperature
that
the ortho
loss o f
i n t e r a c t i o n of
present
derivatives
c a r r i e d by t h e v a r i o u s showed
t o that
112)
d:stingui~hed.~”
d e t e r m i n e d by mass s p e c t r o m e t r y raising
the
during preparation
purity
the
was f a c i l e
phosphate have been determined
been described
epimers produced
a
dithio
Scrambling experiments
involve
ions
per-trimethylsilyl
spectra
SH
The mass s p e c t r a o f
monothiophosphates
mechanism
bond
been
an o r t h o c h l o r i n e gave base peaks
isomerisation prior t o fragmentation that
of
With r e g a r d
C1.2bo
has
t h e l a t t e r compounds
loss
interesting t o note
compounds
gave C-S
catechol thio,
reported for the ortho nitrophenyl
related
c o r r e s p o n d i n g t o loss o f a n d ’H
of
t o
P-O(R)
i o n s and t h e a r y l e s t e r s (111) gave
ions
was
For
and
also There
2 ’ g
fragmentation patterns
p h o s p h a t e s and phosphoramidates ( 1 1 0 )
P-N
was n o
fragments corresponding
cleavage but study
there
thiophosphates
bonds a r e o b s e r v e d i n a d d i t i o n t o
related
A
were
*”
dimers
of
This the
ions. two
A
was
probe study
chlorine
achieved
and of
by
carefully
measuring t h e current fragmentation
atoms
are
I n addition pentaphenoxy
lost
patterns
they
depart
cyclophosphaaenes
have
”‘
spectra
of
several
five
co-ordinate
have a l s o been analysed.’” alkylamino
radicals
difluoroalkylaminophosphinimine.
or
from
fluorodiaza-
Base peaks a r o s e dissociation
t o
from the
406
9
Acidities.
A comparison of phosphite 17.4
the ionisation constants
(113)
i n
B a s i c i t i e s and Thermochemistr~
showed
thf
DBU
than
and
are
salts
have
v a l u e s of
on
was
group
as
A
i n
reagents
basic
electron
study
of
catalysts
those
of
were
constants
of
(
(methylphosphonic acid) The
pK.
reviewedz7'
(116)
showed t h a t
acidity
constants
The d i s s o c i a t i o n
2 7 0
and phosphinic a c i d s ,
2 7 1
et hylenedi a m i n e t e t r a k i s-
and
have been determined.
The l a t t e r were weaker
found
marked.
the effects
that
of
oxygen
the
of
constraints
have
been
which maintain pyramidal
aminophosphoranes have been studied
basicity of
apical nitrogen
It
atoms c a n b e q u i t e
07'
Increased heats
hydroxytetraoxyphosphoranes
of
values
and
n i t r o g e n o n t h e b a s i c i t y of
s e n s i t i v i t y i s c l a i m e d for t h e d e t e r m i n a t i o n
c o m b u s t i o n of
pressure
chloro-organic phosphonates
'''
10 10.1
n m. r
t h a n EDTA a n d E N H T P . 2 7 J
acids
DTA.
t h e compounds
acids
T h e pK.
2 * a
by ' H
diphenylthiophosphoryl
hydrazides
picolylamino) salicylphosphonic
a-f l u o r i n a t e d p h o s p h o n i c
was
of
The charge
The d i p h e n y l p h o s p h o r y l
than of
state
a l t e r i n g the group R caused larger changes i n the t h a n t o Lhe b a s i c i t y c o n s t a n t s
organic
negative
determined
base mixtures.
series
for
basic
nitroalkanes
of
the transition
accepting a
20 9 and
a l k y l ( t r i - t - b u t y l ) phosphonium
than
(115)
acid-quenched
more
2 ' q
2,3-butylene The
3 33 i n d i c a t e s a h i g h d e g r e e
the a-carbon
of
and
1 , 5 0 0 t o 1 0 , 000 t i m e s m o r e
are
recommended
t h e Horner
integration group
(114)
b e e n shown t o be s l o w e r
development
diethyl
2 b 6
The k i n e t i c a c i d i t i e s o f
H a m m e t t p v a l u e of
of
l a t t e r t o be more a c i d i c (pK.
respectively)
triaminophosphinimines synthesis
the
of
20
organophosphorus
-
40
compounds.27b
by t h e a m i n a t i o n o f
at
been studied
the
addition
of
formation
dimethylphosphite
the
of
solid
aminomethylene-
can be followed by
Chr&oPrsphy
G a s L i a u i d C h r omatogrgEhy. -
association
by
The
of
c o m p o u n d s i n a bomb w i t h a n
between by
The
trioctylphosphine
g . l c.
Strongly
thermodynamics oxides
negative
of
molecular
and haloalkanes deviation
from
have ideal
9: Physical Methods
407
X 4
(113
(112)
(111)
Y
Catalyst
JyY
-
(118)
(117)
-
Nu
6\l,Y
Nu
Catalvst
\O
(119)
0
II
YCO(CH,), P(OE t 1,
C a t a l y s t +Y
Catalyst
L
(122 1
(121 1
(120)
(12 3 1
(124)
408
Organophosphorus Chemist n
behaviour
i n t e r p r e t e d i n terms of
WBS
for ethers, chlorides,”‘
t h e a n a l y s i s of
the
thermodynamic
10,2 L i a u i d Chromatography. of
tributyl
-
phase based on
t h e o t h e r hand acid
the
optical
its
and
by
inorganic
can
phosphate.
and i t s phosphate 1 0 . 2. I
achieved
specifically
stationary
bonded
t o
phase
prepared
of
Lawesson‘s
coupling reagent,’” the
of
naturally-occurring spectrofluorimetry,
from
reaction
with
from
p h o s p h a t e s and alumina
using
Enantiomeric
tertiary
as
a
was
of
2 q
used
t o
enhanced
racemisation phosphates,“’
the
and a v a r i e t y of
other
In
combination
study
the
by
free
f o r t h e e s t i m a t i o n of
inositol
thiamin,”’
phosphates. HPLC
n i t r o b e n z o y l p h e n y l g l y c i ne
reagent
separation
m o n o m e r i s a t i o n of g r a m i c i d i n A
time
with dependent
phosphatidylcholine
in
l i p i d c o n c e n t r a t i o n induced monomerisation and enhanced emission intensity.
’”
1 0 , 2. 2 T h i n Laver Chromatouraphu. separation
of
the
This technique has been applied
products
from
recoil atoms with tetrachloromethane,’q4 d e t e c t i o n of
On
diastereoisomers
organic
o n a r a p i d method
phytic acid,“’
and
’”
There have been r e p o r t s on an
orthophosphate,’“
metal
the the
Chromatography.
determination
the
using
displaced
aminopropylsilica
HPLC m e d i a t e d t e s t
fluorescent
acids
were s e p a r a t e d i n 9 6 % y i e l d a n d 9 9 % p u r i t y u s i n g a
oxides
High
-amino
esters a r e a l s o reported.”’
chiral
t . h. f .
a series
L i q u i d c h r o m a t o g r a p h i c a n a l y s i s of t h i a m i n
High Performance L i a u i d
phosphine
peptide
was
’”‘
for
I-hydroxyethylphosphlnic
of
resolution
I t has been found t h a t
be
and c a l c u l a t i o n s
by l i q u i d c h r o m a t o g r a p h y on a c h i r a l
f o l l o w e d by s e p a r a t i o n o f
chromatography.”’
phosphonates
been
vaporization
N-( 3 , 5 - d i n i t r o b e n z o y l )
esters
I-naphthylethylamine
of
The e n a n t i o m e r i c r e s o l u t i o n o f
p h o s p h i n e o x i d e s was a c h i e v e d
stationary
phosphate’”’
parameters
’”’
c y c l o t r i phosphazenes
There have a l s o
d i and trichloromethanephosphonate e s t e r
r e p o r t s on t h e p r o p e r t i e s of of
a s s o c i a t i o n w h i c h was g r e a t e r
t h i o e t h e r s and t e r t i a r y a m i n e s . ” ”
ammonium
salts
polyphosphates
determination of
of
thio
and
phosphorus
the
of
2’7
separation
alkali
seleno phosphates,”’
i n f i s h products‘”
l e c i t h i n i n foods.
t o
t h e r e a c t i o n s of
and t h e
the
9: Phvs i c u 1 Methods
31 The
409
Kinetic&
kinetics
and
mechanism
(117)
amidocyclophosphite parameters
of
The n a t u r e
of
t h e polymers The
compound ( 1 1 7 ,
R= E t )
role
medium,
the
structure
and
concluded
that
species of
produced
the
of
rates have
aprotic
The
protogenic
amide a l c o h o l
the
of
diethylamino
F o l l o w i n g a s t u d y of
of
the
complex
the
reagents,
and
the
reagents,
it
was
was
the
most
reactive
Arbusov r e a c t i o n have been d e t e r m i n e d and t h e former
triethylphosphine with
and
constant
for
tertiary
butoxy
activation
abstraction
the
The
' O 0
order
kinetics from
Solvat
i
on
phosphine by t h e The
' 0 2
relationships of
of
The a b s o l u t e r a t e
' O '
determined
addition
reaction
with carbon disulphide
hydrogen
been
LFER
and
have
kinetics,
been used i n a
dialkyl
phosphites
t o
cyclohexylimine rate
constants
tetracyanoquinodimethane
(
transfer
of
for
TCNQ) w i t h
t o t h e b a s i c i t y of
alkaline hydrolysis the nature of
of
has
t h e mechanism of
related
cases
pseudo-first
radical
parameters
The
most
n i t r i l e solutions are small
the
crotonaldehyde
i n
diethylphenylphosphine
reversible
effects i n various
phase
and
organisation
found t o be r a t e - d e t e r m i n i n g
was
determined
Rate c o n s t a n t s f o r t h e a l k y l a t i o n and d e a l k y l a t l o n s t e p s
2 9 q
s t u d y of
the
by a n i o n i c and c a t i o n i c c a t a l y s t s alcoholysis
been determined
molecular
the Michaelis
occurs
of
polymerisation
s t u d i e d and t h e thermodynamic
e n d o t h e r m i c and d r i v e n by a p o s i t i v e change i n e n t r o p y
a r e compared of
the
been
r i n g c h a i n i n t e r c o n v e r s i o n have been
is
reaction
of
have
the
complexation
stabilised
the l a t t e r
phosphonium The h a l f
' O '
of ylides
l i v e s of
a l k y l t r i b u t y l q u a t e r n a r y phosphonium
salts
the in
c o n d i t i o n s a r e r e p o r t e d and found t o be dependent on
t h e h a l i d e ion.
The r e a c t i o n o c c u r r e d i n
the
organic
p h a s e w i t h water b e i n g e x t r a c t e d f r o m t h e a q u e o u s p h a s e a s q u a t e r n a r y phosphonium
hydroxide
unimportant."' introduction
Interfacial
In contrast t o of
alkyl
hydrolysis
of
of
the
trend
t e t r a p h e n y l p h o s p h o n i um
alkaline
bromide.
benayltriphenylphosphonium
involving
desolvation
c o n t r i b u t e t o an increase
found
produced
t o by
be the
hydrolysis
of
b r o m i d e i n DMSO w a s f a s t e r t h a n t h e
and
i n volume.
' O '
The
rates
of
s a l t s are strongly retarded
by a n i n c r e a s e i n p r e s s u r e i n accordance with a mechanism
were
phenomena usual
groups,
3-bromopropyltriphenylphosphonium hydrolysis
the
two
fragmentation
or
three
each
of
step which
' O '
N u c l e o p h i l i c s u b s t i t u t i o n b y p h e n o x i d e of t h e c h l o r i n e a t o m
i n
410
Organophosphorus Chemistry
chloromethyldiarylphosphine reaction
at
The of
t h e @-carbon atom
electronic a
been s t u d i e d
and
phenyl
The c a t a l y t i c a c t i v i t y was of
the a r y l groups
catalytic
p o l a r i s a b i l i t y t h a n mononuclear p y r i d i n e s
(118).
has involved
This
mechanism
of
been
The
benzo
the
derivatives
The g e n e r a l l y a c c e p t e d
'lo
t h e s o l v o l y s i s of
phosphoryl
intermediates such as
challenged
and
evidence
for
a
t o five
s i x c o - o r d i n a t e d s p e c i e s ( 1 1 9 ) a n d (720,121) h a s b e e n p r e s e n t e d (120)
I t i s p r o p o s e d t h a t o v e r a l l i n v e r s i o n i s o b s e r v e d when w h e r e a s (121) l e a d s t o r e t e n t i o n o f
intermediate
r a t e equations i n d i c a t e f o r a v a r i e t y of
reaction profiles and
the
relative
rates
of
formation
intermediates.
' I '
The r a t e s o f
esters
up
to
were
entropy of
diphenylphosphinates
are
The
facile
catalysis
alkaline
phosphonates
by
the
-M-- d i e t h y l a m i n o
(
enolate
is Also
' I '
thionophosphonates,"'
ethyl-
and vinyl-
The n e e d t o u n d e r s t a n d stereochemistry considerable elements
of
been found t h a t
been
of
t o
t h e r a t e s of t h e thermal
phosphonates,'"
the stereochemistry of
for and
isomerisation of properties
of
d e c o m p o s i t i o n of
have been s t u d i e d
substitution
Comparisons with
due
intramolecular
the inhibitory and
and
acetylalkyl-
attributed
r e w a r d i n g a n d marked
p h o s p h o r u s a t o m of
the
the
rates
and
phosphorus is of
a t
chemistry
of
other
I t has
s i m i l a r i t l e s noted.
nucleophilic
substitution
a t
a p h o s p h o r y l g r o u p c a n bo e x p l a i n e d u s i n g t h e
same f r o n t i e r o r b i t a l terms a s
those
used
for
silicon
compounds.
T h e m e t h o d i n v o l v e s N g u y e n T r o n g Anh a n d C. H i n o t e x t e n s i o n of the
these
The a m i n o l y s i s
the factors controlling
nucleophilic
importance.
has
of
phosphinate
catalysed
'"
hydrolysis
122)
chlorocyclohexenylphosphonate~,''~ p e r e s t e r s of
of
activation.'"
general-base
diamines t h i s occurs intramolecularly carboxyalkyl-
depending
decomposition
hydrolysis
an The
10 t i m e s f a s t e r f o r t h e t h i o n o p h o s p h i n a t e s
mainly t o a l a r g e r negative
of a r y l
alkaline
is
configuration
on
tho
been
t o
The c a t a l y t i c e f f e c t s
' 0 9
double s u b s t i t u t i o n has
has
related
mechanism i n v o l v i n g i n t e r m e d i a t e s w i t h e x t e n d e d c o - o r d i n a t i o n and
SN2
which i s a t t r i b u t e d t o a h i g h e r
activity
m e c h a n i s m f o r n u c l e o p h i l i c c a t a l y s i s of compounds
rate
isocyanate
linearly
p y r i d i n e s have a l s o been s t u d i e d
higher
Although t h e
the
t r i a r y l p h o s p h i n e o x i d e on t h e r e a c t l o n
hydrazide
properties
various
have
has
' O n
c a t a l y t i c e f f e c t of
diphenylphosphinic
investigated of
oxides
group is electron-accepting i t reduces
phosphorus
approach.
In
transition
nucleophile
a n d t h e L U M O is t h e
state
the
HOMO
is
a* a n t l b o n d i n g o r b i t a l
Sal'em's
centred on t h e of
the
bond
41 1
9: Physical Methods between
phosphorus
The b i g l o b e o f t h e L U M O
and t h e l e a v i n g group.
i s l o c a t e d i n t h i s bond a n d when b o n d i n g o v e r l a p b e t w e e n t h i s o r b i t a l a n d t h e HOMO p r e d o m i n a t e s o v e r a n t i b o n d i n g i n t e r a c t i o n s i n v o l v i n g t h e l e a v i n g g r o u p ( a s o f t e n o c c u r s when f l u o r i d e i s
of
retention
configuration
i n t e r a c t i o n s predominate
occurs;
(as
the
whereas
often
occurs
leaving
when when
group)
the antibonding
is
chloride
the
l e a v i n g g r o u p ) t h e n u c l e o p h i l e i s r e p e l l e d and r e a c t i o n o c c u r s a t t h e
of
backside
this
bond,
Thus
a
more
delocalised
i.e. when
inversion contrast group.
the
&.
occurs,
nucleophile.
of
amount
inversion.
and
the
leaving
is
group
strong
for
b o t h g r o u p s a r e i n a p i c a l p o s i t i o n s o f a t . b. p.
In
electronic
interaction
is
very
smallest
when t h e n u c l e o p h i l e a f f o r d s a 9 0 " a n g l e
when to
retention
the
leaving
I
The i n f l u e n c e o f s t e r e o e l e c t r o n i c the
isomers.
alkaline
a s shown,
c h a i r conformer, equatorial
are very
similar
leavin$
a pseudo a x i a l
position
have
been
phosphinic chlorides. hydrolysis
probably
of
involve
a
The f a s t e r r e a c t i o n i s a t t r i b u t e d t o
group. which
which h a s t h e
allows
leaving
favourable
3 2 0
found
to
be
additive,
which
R e p o r t s have a p p e a r e d on
phosphono u r e a s ,
t h e o a o n o l y s i s of c y c l o p h o s p h a m i d e
group
in
stereoelectronic
A r y l s u b s t i t u e n t e f f e c t s on t h e h y d r o l y s i s
3 1 9
phosphates
and
t h e r e i s a 30% d i f f e r e n c e b e t w e e n t h e compounds w i t h
r e a c t i o n of a t w i s t - b o a t c o n f o r m e r effects.
e f f e c t s has been i n v e s t i g a t e d
d i o x a p h o s p h o r i n a n e s ( 1 2 3 ) and i t s
of
hydrolysis
W h e r e a s t h e r a t e s o f h y d r o l y s i s of t h e i s o m e r s w i t h a n a x i a l
l e a v i n g Qroup, an
the
n u c l e o p h i l e c a n have a l a r g e r a n t i b o n d i n g
k i n e t i c d a t a i n d i c a t e t h a t t h e e l e c t r o n i c i n t e r a c t i o n between an
incoming n u c l e o p h i l e
for
of
nature
i n t e r a c t i o n which l e a d s t o a n i n c r e a s e i n t h e The
The m a g n i t u d e of t h e
leading t o inversion.
i n t e r a c t i o n s a r e a l s o d e p e n d e n t on t h e
the
of
triaryl
contrasts t o kinetics
of
t h e cascade r e a c t i o n s involved i n metabolites,322
the
reaction
of
b u t a n o l w i t h p h o s p h o r y l t r i c h l o r i d e , 3 2 3 and t h e s t e r i c e f f e c t s on t h e a l c o h o l y s i s of a l k y l p h o s p h o r o d i c h l o r i d a t e s . 3 2 4 The with
u. v.
i n i t i a t e d r e a c t i o n of t h e b i c y c l i c p h o s p h o r a n e ( 1 2 4 )
d i a l k y l d i s u l p h i de
formation
of
involves
cleavage t o form a l k y l t h i o r a d i c a l s kinetics
hydrogen
a phosphoranyl r a d i c a l .
is
abstraction
with
the
I t is c o n c l u d e d t h a t S-S bond rate
determining.
32'
The
of i s o m e r i s a t i o n s i n d u c e d b y t h e r e a c t i o n s o f h y d r o p e r o x i d e
w i t h d i c a t e c h o l and d i p i n a c o l y l h y d r o p h o s p h o r a n e s have b e e n compared. The l a t t e r a r e n e a r l y t w i c e a s r e a c t i v e . 3 2 6
Organophosphorus Chemistry
412 References 1 2
10 11
12
13 14 15 16
17
18 19a 19b 19c 20 21 22 23 24 25
26
27 28 29 30 31 32
a,
E . Hagnusson3 Phosphorus S u l f u r , 1986, 379. A.N. P a n k r a t o v , V.N. Sheenson, S.P. Hushtakova and L . A . G r i b o v , Zh. S t r u h t . Khim.1 1986, 1 1 8 28. S.M. C a i r n s , D i s a . A b o t r . I n t . 89 1987, 7 8 2911. A . A . K a r e l o v and V . I . H o l o s t o v ~ Zh. Obshch. Khim.. 1985. 55, 2233. J . K a r o l a k - W o j c i e c h o u s k a ~ Phosphorus S u l f u r , 19859 25, 229. A . S t r e i t v i e s e r J r and R.S. M c D o u e l l I Theochem., 1936, 318 89. F . V o l a t r o n and 0. E i s e n s t e i n t J . Am. Chem. S o c . ~ 1987, 109 1. D . A . D i x o n and B.E. Smarts J . Am. Chem. Soc., 1986, 108, 7172. A. Kh. P l y a m o v a t y i n 1.1. Vandyukova and R . R . S h a q i d u l l i n IZV. Akad. Nauk SSSR, Ser Khim.. 1986, 1116. R.P. A r s h i n o v a , R . A . Kadyrov and B . A . Arbuzovs Zh. Obshch. Khim.1 19861 56, 1457. S. B i l k e and G . K l o s e , C o l l o i d . Polym. S c i . 3 19859 2638 1031. D.G. G o r e n s t e i n s S . A . S c h r o e d e r ~ M . H i y a s a k i ~ J.M. F u , V . Roongta, P . Abuaft J.T. Met2 and C . R . Jones1 B u l l . Hag. Reson., 19869 3, 137. 2 . Y o s h i z a k i , S h i n k e i Kenkyu No S h i n p o l 1986, 30, 412. K . K i r k , J.E. R a f t o s and P.W. K u c h e l , J. Hagn. Reson., 1986, 484 L.N. M a r k o v s k i and V.D. Romanenko, Zh. Obshch. Khim., 1986, 56, 253. H.E. H o s s e i n i I H.W. K r o t o s J.F. N i x o n and 0. Ohashi, J. Orsanomet. Chem.1 1985, 296, 351: J . Grobet D. Le Vans J. S c h u l z e and 3 . S z a m e i t a t l Phosphorus S u l f u r s 19869 239. V.D. Romanenko, A . U . Ruban, M . I . P o v o l o t s k i i , L . K . P o l y a c h r n k o and L.N. H a r k o v s k i i ~Zh. Obshch. Khrm., 1986, 2,1186; 0.1. K o l o d y a z h n y i , I.V. Shevenko and U.P. K u k h a r l Zh. Obahch. Khimr 1985, 2214. G. H a e r k l , H. S e j p k a l S. D i e t 1 9 S. Nuber and H.L. Z i e 9 1 e r s Angew. Chern., 1986, 98, 1020. P . J u t z i a U. Meyer, 8 . K r e b s and H . Dartmann, Angcw. Chem., 1986, 98 894. R . A p p e l , 8. N i e m a n n ~ W . Schuhn and F. Knoch, Angew. Chem.8 19861 98, 934. J. S a t g e l J. E s c u d i e ~H. C o u r e t t H. R a n a i v o n j a t o v o and H . A n d r i a n a r i s o n a Phosphorus S u l f u r , 1986, 3165. V.D. Romanenkot L.S. Kuchkovskaya and L.N. M a r k o v s k i i , j h . Obahch. Khim., 19851 5 5 1 2140. V.D. Romanenko~ A.U. Ruban, A . S . D r a p a i l o and L.N. H a r k o v s k i i ~ Zh. Obahch. Khin.8 1985, 2793. V.D. Romanenko, E. 0. K l e b a n s k i i and L.N. H a r k o v o k i i , Zh. Obohch. Khim., 1985, = I 2141. S. L o c h o c h m i d t l G. H u e l l e r v 8 . Huber and A. S c h m i d p e t e r , 2 . N a t u r f o r s c h . , 8: Anorg. Chem., Org. Chem., 1986. 444. H . B a u d l e r and G. K u p o r a t , 2 . flnorg. A119. Chem., 1966, 533) 153. J. B e l l a n , G. Etcmad-Hoghadam, M. Payard and t i . K o e n i g l T e t r a h e d r o n L e t t . 1986, 2 7 1 1145: H. Baudler, A . U . Ruban, H.I. P o v o l o t s k i i , L.K. Polyachenko and L.N. H a r k o v a k i i ~Zh. Obshch.Khim., 19861 1186: 0.1. K o l o d y a z h n y i , I.U. Shcvenko and V.P. Kukhar, Zh. Obohch. Khims 1985, 3.2214. H. B a u d l e r l B. Makowka and K . L a n g e r b e i n e , Z. N a t u r f o r s c h . , B: Anorg. Chem., Org. Chem.1 1985, -I 1274: H. B a u d l c r t and L . De Rteae-never, 3 . N a t u r f o r 8 c h . t 8: Anorg. Chem., Or9. Chem., 1986, 418, 399; H. B a u d l e r and B. Makowkal 2 . Anor9. A l l s . Chen., 1985, 528, 7. Organophosphorus C h e m i s t r y S p e c i a l i s t P e r i o d i c a l R c p o r t a I 19871 Uol 181 Chapter 11. P. L a z e r e t t i and J.A. T o s o e l l I J. Phvs. Chem., 1987, 91, 800. G. H a e r k l , H.J. Beckh, K.K. Mayer, H.L. Z i e g l e r and T . Zahn, Ansew. Chem., 1987, 9 9 3 255. K . K a r a g i o s o f f l C . C l e a v e and A . S c h m i d p e t e r , PhooDhorue S u l f u r , 1986, 289. K . B l a t t e r and W . Roench, Angew. Chem.~ 1987, 99, 67. Yu.G. S h e r o o l o v i c h l € . A . Danchenkot A.U. S l o v ’ e r and L.N. M a r k o v s k i , Jh. Obohch. Khim.1 19858 55) 2216.
a,
zg
si
a,
as
9: Physical Methods
33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 50
51 52 53
sa 55 56
57 58 59
60 61 62 63
64
65
66 67 68
413
G . K e g l e v i c h and L . D . Q u i n ~P h o s p h o r u s h u l f u r p 1986, 3 , 129. D.W. C h a s a r , J.P. F a c k l e r s A . M . f l a z a n a v ~ R . A . K o m o r o s k ~ and U . J . K r o e n h e , J. Am. Chem. Soc., 1986, 5956. 0 . 1 . K o l o d r a z h n i i a n d N.N. K a l i b a b c h u k , Zh. Obshch. K h i m . , 19859 55, 2 7 9 1 . A . B a c e i r e d o and G . B e r t r a n d ~ P h o s p h o r u s S u l f u r ) 19863 57. Phosphorus J.P. H a J O r a l I G . B e r t r a n d l A . B a c e i r e d o a n d E . O . M a v a r e z , S u l f u r 1 1986, 21. 75. J. B o e d e k e r l A . K o r c k r i t z ~ P. K o e c k r i t z a n d R . R a d e g l i a , J . P r a k t . Chem., 1985, 327, 723. S. HOZI E . J . . D u n n l E. B u n c e l q R.A.B. B a n n a r d a n d J.G. P u r d o n , P h o s p h o r u s S u l f u r , 1985, 24, 321. G.G. B l i n o v a , O.N. B u r o v a , A . N . L a v r e t ’ e v a n d L.N. H e l ’ n ~ k a v a Zh. ~ Obshch. Khim., 19861 56, 1 2 7 7 . L.E. C a r p e r t e r 9 B . Oe R u i t e r , 0. Van Aken, H.M. Buck a n d J.G. U r r k a d e g J. Am. Chem. Soc., 1986, 108, 4918. N. Kuhn a n d H. Schumanns P h o s p h o r u s S u l f u r , 1 9 8 6 - & P 199. R . F a t h i a n d F . J o r d a n , J . O r g . Chem.9 19869 5 1 8 4143. X . C r e a r y a n d P.A. I n o c e n c i d g J. Am. Chem. Soc., 1986, 108, 5779. P.H. C u l l i s t A . I o g r o s s i a n d A.J. Rousr J . Am. Chem. Soc.9 19869 108, 7869; P.H. C u l l i s a n d A . I o g r o s s i ~ J . Am. Chem. Soc., 1986, 108, 7870. A.H. A l k u b a i s i , W.F. D e u t s c h , M.B. H u r s t h o u s e t H.G. P a r k e s , L.S. Shaw a n d R . A . Shaw, P h o s p h o r u s S u l f u r , 1986, 28, 2 2 9 . R.J. G o o d r i d g e , T . W . Hambley a n d O.D. R i d l e y 9 A u s t . J. Chem., 1986, 399 591. U.G. B e n t r u d e , W.N. S e t z e r a n d A.E. S o p c h i k ~ J . Am. Chem. Sot., 1 9 8 6 % 108, 6669. A.E. W r o b l e u s k i , PhoeDhorus S u l f u r , 1986, 28, 371. K . I s s l e i b 8 W . M o e g e l i n a n d A . B a l s z u w e i t l 2 . A n o r g . 11119. Chem., 1985, 530, 16. 0 . 1 . K o l o d y a z h n y i a Zh. Obohch. K h i m . , 1986, S S283. G.U. R o e s c h e n t h a l e r , R. B o h l e n a n d D. Schomburg, 7 . N a t u r f o r s c h . 1 B : Anorg. Chem., O r g . Chem., 1985, 408, 1589. D.W. A l l e n , I . W . N o u e l l a n d B.F. T a y l o r , J. Chem. Soc., D a l t o n T r a n p . , 19851 2505. E.E. E l i e l , S . C h a n d r a s e k a r a n n L.E. C a r p e r t e r I 1 a n d J.G. Verkades J . Am. Chem. S o c . ~ 19861 mt 6651. H. Germa a n d J . N a v e c h , P h o r D h o r u s S u l f u r , 1986,269 327. H . B . H u r s t h o u e e ~E.H. I b r a h i m l H.G. P a r k e s , L.S. Shaw, R . A . Shau a n d D . A . W a t k i n s , P h o o p h o r u e S u l f u r , 19861 28, 261. B. M a r y a n o f f a n d A.B R e i t z , P h o s p h o r u s S u l f u r , 1986, 271 167. N. P l a t z e r r F . D a r d o i s e , W . B e r g e r e t , J.C. G a u t i e r a n d S. Roynalv PhooDhorus S u l f u r , 1987, 275. S.O. G r i m . S . A . Sengokoya, I . J . C o l q u h o u n a n d W. M c F a r l a n e , J . Org. Chem.l 1986, 251 2699. B.H. B u t i n t G.M. I s a e v a a n d K.B. E r z h a n o v t 2 . Obohch. K h i m . , 1986, 56, 1285. T.G. H i 1 1 1 D t s s . A b o t r . I n t . B 19863 46, 2660. K. Chen a n d J. Zhang. Gaodens X u e x i a d Huaxue Xuebao, 1986, 2 , 36. a ) 0. D a k t e r n i e k s a n d R. Di Gtacomo, PhosDhorus S u l f u r , 1985, 3 ,217; b ) H . J . Chen, J.H. B a r e n d t l R . C . H a l t i w a n g e r , T.G. H i 1 1 and A.D. Norman, P h o s p h o r u s S u l f u r , 19861 &, 155. R. B o h l e n l J . H e i n e l W. Kuhn, W . O f f e r m a n n ~ J . S t e l t e n , G.U. R o s c h e n t h a l e r a n d W.B. B e n t r u d e r PhosDhorus S u l f u r 1986, 21, 313: R . B o h l e n , H. H a c k l i n , J. H e i n e l W . O f f e r m a n n t a n d G.V. R o s c h e n t h a l e r l PhosDhoruo S u l f u r 1986, 27, 321. Yu.G. S h e r m o l o v i c h , N.P. K o l e s n i k t S.U. I k s a n o v a r U.V. T r a c h e v s k i i a n d L.N. M a r k o v s k i i , Zh. Obshch. Khim., 1 9 8 6 1 1193. W.M. Abdou a n d M.R. H a h r a n t P h o s ~ h o r u sS u l f u r , 1986, 119. U.U. N e g r e b e t o k i ~U~. I . K a l ’ c h e n k o t R.B. R u d y i and L.N. M a r k o v s k i i ~ z h . Obshch. Khim., 1985, 55 1982. See r e f e r e n c e 6 3 b 4
-
-
4 14 69 70
71 72
73 74 75 76 77
78 79 80
81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
103
104
Organophosphorus Chernisr ry
R . A p p e l , V . B a r t h . W . P a u l e n and F . K n o c k , P h o s p h o r u o S u l f u r , 19869 &, 1 . R . Appelv B. B r u e c k $ F . Knock and J . H u n e r t e i n , P h o m h o r u s S u l f u r , 1986, 27, 55. B . A . A r b u z o v t G.N. N i k o n o v and C . 6 . E r a s t o v v IZV. Akad. Nauk SSSRI S e r . Khim., 1986, 171: 1985, 2 3 6 2 . H.G. Z i m i n l E.V. F o r m a k h i n t R . G . I l a m o v a n d A . N . P u d o v i k ,
Zh. Obshch. K h i m . , 1985, 55, 2681: M . G . Z i m i n , E.V. F o r m a k h i n , E . I . G o l ’ d f a r b , a n d A.N. P u d o v i k , Zh. Obshch. Khim.9 19861 553: H.G. Z i m i n 3 E.V. F o r m a k h i n , A.N. P u d o v i k l L . V . Z h e l e z n o v a a n d E . I . G o l ’ d f a r b , Zh. Obshch. Khim.9 1986% 56, 756. A . Skowronoka, J . B u r s k i c , E. K r a w c z y k a n d H. P a k u l s k i 3 P h o s p h o r u s S u l f u r ,
1986,
a s
119.
B.L. F e r i n g a t Ab A . S m a a r d i j k l H. W y n b e r g ~ 8. S t r i j t v e e n a n d R.H. K e l l o g g , T e t r a h e d r o n L e t t . , 1986, 27, 997: B.L. F e r i n g a ? B. S t r i j t v e e n , a n d R . H . K e l l o g g , J . O r q . Cbem., 1986, X I 5484. T . W . P e n n i n g , piso. A b s t r . I n t . , B 1986, 47, 215. G . H a e g e l e , W . K u e c k e l h a u s , J . Seegal G . T o s s i n g , H . K e s s l e r a n d R . S c h u c k , Z . N a t u r f o r s c h . ~ 6 : A n o r s . Chem., O r s . Chem., 1985, 408, 1053. G . S z a l o n t a i I J . Bakes, I . l o t h , B. H e i l l 1. P e l c z e r a n d P. S o h a r , Hasn. Reson. Chem., 1986, 890. C . P i c c i n n i - L e o p a r d i $ J. R e l o s e , G. G e r m a i n ~ J.P. D e c l e r c q , M . U . t l e e r s s c h e , k. J u r k s c h a t , C . Mugger A . Zochunke, J.P. O u t u s t a a n d J . B. R o b e r t , Chem. Sot., P e r k i n T r a n s . 21 1986s 85. J. P e t r o v a l S.K. I v a n o v , H . K r i l o v j 0. S t o j a o v a , E.T.K. H a u p t and H. tom O i e c k , PhomDhoruo S u l f u r 1986, 285. H. Duddeck, M. H a n i s A . E l g a m a l ~ A . G . Hanna a n d H . K a i s e r * T e t r a h e d r o n , 1985, 41, 3763. 0. bang, X . J i n a n d Y . Xu, Huaxue Xucbao I 1986, 441 235. D.E. Brown a n d C.W. A l l e n , I n o r s . Chem., 1987, 934. G. H a e g e l e , W . K u e c k e l h a u o and H. O u a s t , Chim.-Ztq., 1985, 109, 405. B.A. A r b u z o v , O.A. E r a s t o v , A . S . I o n k i n a n d S.N. I g n a t ’ c v a , I z v . Akad. Nauk SSSRI S i r . K h i m . ~ 19861 640. C . Z h a i a n d W. L U S BOXPUXU e l a t h i l 1984, 1, 487. D . U . G r i f f i t h s a n d J.C. T c b b y , P h o s D h o r u s S u l f u r 19851 177. W . W . Ou Honta 2 . N a t u r f o r s c h . l B: A n o r g . Chem.1 Org. C h e m . ~ 1985, @, 1453. J.H. B a r e n d t a n d R.C. H a l t i u a n g e r , I n o r g . Chea., 1986, 25, 4323. E.A. M o n i n l Z.S. N o v i k o v a and H.H. K a b a c h n r k , Zh. Obshch. Khim., 1985, 1 5 1
I.
u s
a,
2618. J.L.
Bookhams W .
1986, 1041.
H c F a r l a n e and I . J .
Colquhounr
J . Chem. Soc.9 Chem. Cornmun.~
Yu. G . S h e r m o l o v i c h ~E.A. D a n c h e n k o l A . V . S o l o v ’ e v , U . V . T r a c h e r s k i i a n d L.N. t l a r k o v o k i i ~ Zh. Obshch. Kh1m.B 1986, 56, 560. H . B i d d l e e t o n e g R . K e a t , H.G. P a r k e s , H. Rose! O.S. R y c r o f t and R . A . Shawl P h o o D h o r u r S u l f u r , 1985, 25, 25. R.G. Cave11 a n d L . Uande G r i e n d , I n o r g . Chem.8 1986, 4699. L.N. H a r k o v s k r i l U.D. Romanenko, E.O. K l e b a n s k i i a n d S.V. Iksanova, Zh. Obshch. Khim., 19851 % I 1867. J. Szewczyk a n d L.D. Q u i n ~J . Org. Chem, 1987, X I 1190. B. Thomas a n d G . 2 . Grossmannt USP. Kh1a.B 1986, 1124. B. Wrackmeyer, J. Organomet. Chem., 19851 297, 265. K. N a g a r a j a n , S . J . Shenoy, H . F r i t z , 0. Hoeang a n d W.J. R i c h t e r , Chim. Clctpl 19858 4 8 1 900. L.O. Q u i n a n d F.C. B e r n h a r d t , Magn. Reson. Chen., 19859 23, 929. U . A . G a r i b i n a , A.A. Leonovl A . U . Dogadina, B . I . I o n r n and A.A. P e t r o v , / h . Obshch. Khim., 19851 1994. J. S v a r a a n d E. F l u c k t P h o s p h o r u p S u l f u r , 1985, 251 129. G.W. B u c h a n a n l K. B o u r q u e a n d A. S e e l e y , Haqn. Reson. Chem., 1986) 3, 360. tl. Won I t r m t e i n a n d 1.0. J e n k i n s , J . Chem. S o c . , P e r k i n Trano. t 1986, 437. P.B. Kay a n d S . T r i p p e t t r J . Chem. Res., Synoe., 19861 62.
=I
m.
z,
415
9: Phvsical Methods
105 106 107 108 109 110 111 112 113 114 115 116 117
118 119 120 121 122 123 124 125 126 127
128 129
L a b a u d i n i e r r a n d R . B u r g a d a t P k u s p h o r u s S u : f u r 9 1985, 3 , c ' 5 5 . L.D. Q u i n s N . S . Raoo R.J. r o ~ ~ i na 3 n d A . T . H i P h a i l , J . 4m. i h e m . S d . , 198h, 108, 4519: L . D . 4 u i n a n d F . C . B e r n h a r d t , J . O r g . Chem., 1986, 5 1 , 3235. E . I . L a z h k o , I . G . T r o s t y a n s k a v a . H . A . Kazankova a n d Yu. A . U s ? , n f ~ , Zh. Obehch. K h i m . , 19869 3, 1504. V.U. Moskva, T * S h . S i t d i k o v a , T . V . Z y k o v a , M . V . A l o a r v v a a n d F . S h . S h a g v a l e e v t Zh. Obshch. K h i m . , 1986, 1051. E. G a l v e z - R u a n o , J . B e l l a n d t o , M. F e r n a n d e z - I b a n e z , C.I. S a i n z - D i a z a n d M.S. A r i a s - P e r e z , J . Mol. S t r u c t . , 1986. 142, 397. R . B o e s e l G . H a e g e l e , W . K u e c l e l h a u s and G . Tossing. P h o s p h o r u s S u l f u r , 1985, 2 5 9 103. J.M.A. Al-Raw18 N. A y e d B R . Kraemer a n d J . Navech, Magn. Resort. Chem., 1985, 238 925. J.C. Shau a n d C . W . A l l e n , I n o r 9 . Chem., 1986, 2 , 4632. L.D. O u i n a n d K . C . C a s t e r 1 P h o s p h o r u s S u l f u r , 1985, 25, 117. E.E. N i f a n t ' e v ~ S.F. S o r o k i n a and 4 . A . B o r i s e n k o , & Obshch. k h i m . , 1985, 55, 1665. H. Yamaddl K . F u r u b a y a s h i a n d A . S e r a , Chem. L e t t . , 1986, 3 - 1377. L.P. K r a s n o m o l o v a ~ O . V . A g a s h k i n v V . B . Rozhnov, A.P. L o g a n o w a n d Y u . G . Bosyakovs Zh. Obmhch. Kh1m.i 198Lr 56, 817. E.E. Aboujaoudem S . L i e t j e ~L . C o l l i g n ~ nH.P. ~ T e u l a d e and Ph. S a ~ i g n a c , T e t r a h e d r o n L e t t . , 1985, 4435: V . V . B e l a k h o v , V . I . Y u d e l e v i c h , A . P . F e t t e r a n d B . I . I o n i n n Zh. Obehch. K h i m . ? 19861 56, 1423: E . E . N i f a n t ' e v ? L.A. S o l o v e t s k a y d * W . I . M a s l e n n l k o * a t R . K . Magdeeva a n d N.M. S e r g e e v , Zh. Obmhch. Khim., 19863 56, 773. S.G. C h u r u s o v a , V . A . K o z l o v ~ 4.F. G r a p o v and N . N . H e l ' n i k o v r Z h . Obshch. Khim.9 19859 55, 2803. R.O. Gareev a n d A . N . P u d o v i k g Zh. Obohch. Khim.. 1986, % I 241. H.B. H u r s t h o u s e , A.L. F o r t e s L.S. S h a w a n d R . A . Shawr P h o s D h t r u s S u l f u r , 19863 213. R.A. Shau, P h o s p h o r u s S u l f u r , 19868 at 99. J.O. D z i e g i e l e u s k i ~ T e t r a h e d r o n , 1986, 42, 109. H.G. S c h a e f e r , W . W . S c h o e l l e r , J . N i e m a n n l W . Haugl 1. D a b i s c h and E . N i e c k e , 4. Am. Chem. Soq.3 1986, 108, 7481. D.B. S v i r i d o v j V . I . Porkhung M . U . S e r d o b o v , Yu.S. R y a b o k o b y l k o , G . M . Adamova a n d R . V . Poponova, Zh. Obohch. Khim.. 1986, 3, 1268. H. C a t t a n i - L o r e n t e p M. Geoffrey? S.P. M i s h r a r J. Weber a n d G . B e r n a r d i n e l l i , $. Am. Chem. S o c . ~ 1986, 108, 7148. N.J. W i n t e r , J. F o s s e y ~ B. B e c c a r d , Y . B e r c h a d s k y , F . V i l a , L . Werbelow and P . Tordog J. Phye. C h e m . ~ 1986 I 909 6709. A.N. Chernega, B.L. T u m a n B k i i * M.Yu. A n t i p i n s S . P . S o l o d o v n i k o v , N.N. B u b n o v l A . I . P r o k o f ' e v l Yu.1. S t r u c h k o v . E.S. K o z l o v , € . I . B o l d e s t u l a n d H . I . K a b a c h n i k ? Zh. Obshch. Khim.9 1986, 5 6 1 546. R.A.J. J a n s s e n , H.H.W. Sonnemans a n d H.M. B u c k , J . Am. Chem. Soc.9 19869 LpB, 6145. A. A l b e r t i , D. G r i l l e r , A.S. N a z r a n a n d G . F . P e d u l l i , J . O r g . Chem., 1986, L.
-
-
3959. O i k l e y , J. Chen. S V C . ~Chem. Commun.3 1986, 596. E.O. H o l e a n d E. S a g s t u e n ~ R a d i a t . Res., 19878 1091 190. S.V. F r i d l a n d v L . I . L a p t e r a , A . V . C h e r n o v a a n d A . I . E f r e m o v , Zh. Obshch. 19858 2256. R. A l i a n d K.B. dill on^ P o l y h e d r o n 9 19861 1197. I . F . T s y m b a l t E . V . R y l ' t s e v a n d I.E. B o l d e s k u l , Zh. Obshch. Khim.9 1986, 56, 1342. 13.6. K u t r e v , O.S. K o r o l e v t N.R. S a f i u l l i n a , Zh. Obshch. Khim, 1986, 561 1227. S.I. Udovenko, U.N. Z e m l y a n o i and V.P. Kukharg Zh. Obohch. Khim.9 19851 55, 2210. O.A. R a e v o k i , V.E. Z u b a r e v a l A.F. S o l o t n o v , T.N. Kudryaa L.N. T o c h i l k i n a and A.Ya. C h a i k o v e k a y a , Zh. Obshch. Khim., 1986, 5 6 1 1054.
1 1 1
130 131 132 133 134
135 136
137
R.T.
u.,
=*
416
138 139 140 141 142 143 144 145 146 147 148 149
Organophosphorus Chemistry
J.R. D u r i g , J.S. Chur ch, C . M . Whangn R . D . Johnson and B.J. S t r e u s l a n d , J. P h ys. Chem., 1987, 91, 2769. B . A . A rbu zo vr R . A . K a d y r o v ~ R.P. f i r s h i n o v a , 1.Kh. S h a r i k o v a n d R . R . S h a g i d u l l i n a Zh. Obshch. Khim.1 1985, s t 1975. R.R. S h a g i d u l l i n t I. Kh. S h a k i r o v , O.N. N u r e t d i n o v a v S . A . K a t s y u b a and € . A . F i l i p p O V a , 1zv.Akad. Nauk SSSR, S e r . Khim ., 1985, 2232. H . F e r n a n d e z - I b a n e z r A . P r i e t o , J . B e l l a n a t o , E . Gal v ez - R uano and M.5 A r i a s - P e r e z 1 J. Hol. S t r u c t . ~ 19861 142, 391. G . A . HcRae, H.C.L. G e r r y a n d E . A . Coheng J. M ol. S D e c t r o e c . , 1986, 58. A . M . Caminade, F. E l K h a t l b l C . f i d e s l H . U e r r i e r , N. P a l l o u s and ki t( oeni g, P h o sp h o rus S u l f u r , 1986, 91. U . I . K r a t i k o v , S.F. A l e i n i k o v and I . N . R o ~ o z i n aZh. ~ Obehch. Khl m ., 1785,
ml
558
2710
s,
U a l e e v a a n d Ya.A. L e v i n , Zh. Obshch. Khim., 1985, 2286. Z h i v o g l a z o v a l U . E . P r i d a n a n d H . I . Shevchuk, Zh. Obshch Khi m .,
T.G. L.E.
14, 1069.
J . H e i n i c k e a n d A . Tzchach, Phosphor us S u l f u r , 1985, 25, 345. U.N. L i s t v a n 1 Zh. Obshch. Khim.8 1985, Z B2629. G.A. H eze n tse va , I . U . Kornlev a n d G.N. R o d i o n o v a l Zh Obshch. Khi m .,
1254.
1986, 56,
1 50 151
0 . Gonbeau a n d J.L. G a r c i a 1 Can. J. Chem., 19869 U . U . Z v e r e v l Z.G. Bazhanoval N. U i l l e m s and Yu.P.
152
R. G l e i t e r l J . Uschmann a n d H. B a u d l e r t J.
153 154
Y . Yarnatnoto a n d H . Konnov B u l l . Chem. SOC. JDn.1 1986, 59, 1327. A . M . Panov, G.U. R a t o v s k i i , G.N. D o l e n k o a n d V . I . D m i t r i e v , Zh. Obshch.
155 156 157 158 159 160
3 ,99.
1986,
1659.
b .1985, ~ 55, 2243. G.N.
Oo l en ko ,
290, 375. U.A.
R. R. R. R.
H . G . Uor onkov a n d N.U.
64, 1530.
1986,
K i t a e v t Zh,
Obshch K h i m . ,
Chern. S o c . ~ D a l t o n T r a n s . ,
1986,
Kudyakov, O o k l . Akad. Nauk SSSR 1986,
Naurnov an d L.U. U i l k o v l Chem. A b s t r . 1986, 196, 120063. A p o e l s C . P o r z and F. Knock, Chem. B e r . , 1986, 119, 2748. A p o e l r J . K o c h t a a n d F . Knock, Chern. B e r . , 1987, 131. A p o e l I C . Caeeer and F . Knock, Chem. B e r . , 1986, 2609. A o o e l I P. F o e l l i n g , W . Schuhn a n d F. Knock, T e t r a h e d r o n L e t t . ,
1661.
1986, 27,
161 162 163
D . G u d a t t E. N i e c k c , B. K r e b s and H. D a r t m a n n l C h i n i a , 1985, 2 277. R. cl o p e l , W . Winkhauo and F. K n o c k - Chem. Ber ., 1987, 243. R . cl pp e l , J. H e n z e l , F. Knock and P. U o l z , Z . Anor q. c l l l q . Chem., 1986,
164
H. y o s h i f u j i t
165
H . Y o s h i f u j i m K. T o y o t a p N. Inam oto9 K . H i r o t n u , 1. H l g u c h i and S. Nagase, P h o 8 ~ h o r u 8S u l f u r . , 19851 at 237. A.N. C h e rne g a t H.Yu. A n t i p i n g Y u . T . S t r u c h k o v s I . E . B o l d e s k u l , E.O. K l e b a n m k i i a n d U . D . Ronanenko, I z v . Akad. Nauk SSSR, S e r . Khirn.,19858 2236. K . K a r a g h i o n o f f , W.S. S h e l d r i c k and A . S c h m i d p e t e r ~ Chen B e r . , 1986, 119,
166 167 168 169 170
mI
100.
19851
K. T o y o t a m N.
6443.
I n a m o t o ~K .
534,
H i r o t n u a n d 1. H i g u c h i , T e t r a h e d r o n
3213. R.
A p p e l , F. Knock a n d U. Winkhaus, Chern. Ber ., 1986, U P 2466. H. R i f f e l , W. U h l a n d H.J. W esselyl Z . clnorg, 6113. Chem.,
s
t
G. B e c k e r , 31.
19861
A . Tzmchach, K. J u r k s c h a t , A. Zschunke, C. Huegge, C . P i c c i n n i - L e o o a r d i , G. Gerrnain, J.P. D e c l e r c a n d M. Van M e e r s e ~ h e J~. C r y s t a l l o s r . S D e c t r o s c . & . I
1985,
fii
423.
171 172
R. A p p e l , C . C a eser , F. Knock and B. Nlemann, Chcm. B e r . , 1986, U , 2915. L. Yeung, Y . Y . C . KO, R. C a r r i e , L . Toupet a n d F. de S a r l o . B u l l . SOC. Chim.
173 174
D.J. B r a u e r l F. Go11 S. S i b b e l e and 0. S t e l z e r Chea. Ber., 1986, R. N c r d l e i n , H . J . D e g c n e r l A. G i e r e n , G. Wcber a n d T. H ubner , N s t u r f o r o c h . , B: h n o r s . Chen., O r s . Chen.1 19851 - 9 1532.
1986, 115.
L
U I2767.
9: Physical Methods
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
193 194 195 196 197 198 199 200
201 202 203 204
205 206 207 208
417
R . N e i d l e i n , H.J. Degener, A . G i e r e n ~G . Weber and T . Hubner, N a t u r f o r n c h . ~ 8: Anorq. Chem., Org. Chem., 19851 408, 1532. P. K o e l l e r H. Noeth and R . T . P a i n e r Chern. Ber.8 1986, 119, 2681. A.M. A r i f , J.E. B o g g s ~ A.H. C o w l e r r J.G. Lee, M . P a k u l s k i and J . M . Power, J. Am. Chem. S O C . ~ 1986, 6083. E. F l u c k l H. R i f f e l and H . R i c h t e r , Phosphorus S u l f u r , 1985, 24, 273. M.L. Thompson, A . T a r a s s o l 1 1 R . C . H a l t i w a n g e r and A.D. Norman, I n o r g . Chem., 1987, 684. R. A p p e l - 1. G a i t z s c h n F . Knock and G. Len21 Chem. B e r . , 19861 119, 1977. G . B e t t e r m a n n ~ D. Schomberg and R . S c h m u t z l e r , Phosohorus S u l f u r , 1986, 3 , 327. X . Feng, M.M. Olmntead and P.P. Power, I n o r g . Chem., 1986, 4615. B.E. M a r v a n o f f , A . B . R e i t r , M.S. M u t t e r , R . R . I n n e r s , H.R. Almond, R . R . W h i t t l e and R . A . Olofsonn J . Am. Chem. Soc., 1986, 108, 7664. L.Yu U k h i n l Z . S . Morkovnikn D.S. Y u f i t and Yu.1. Struchkovn Zh. Obshch. Khim.1 1985, 5 5 1 2701. M . V . Sergeeval A . I . Y a n o v s k i i , Yu.1. S t r u c h k o v , B.M. M i k h a l l o v , M. G u r s k ~ i and O.G. P e r s h i n , I z v . Akad. Nauk SSSRI Ser. Khlm., 1985, 2483. H. Schmidbaurl C . Z y b i l l l 0. Neugebauer and G. M u l l e r , 2 . N s t u r f o r s c h . , B: Anorg. Chem.1 Org. Chern.1 19851 - I 1293. M. V e i t h and V . Huchr J . Organornet. Chem.1 1985, 293, 161. H. A r z o u m a n i a n ~ A. B a l d y , R . L a i f A . Odreman, J . Metzger and M. P i e r r o t , J . Organornet. Chem.1 1985, 343. M. V e i t h and V. Huch, J. Organornet. Chem., 1986, 308, 263. L. Capuano~ 8 . Oahm and V . Schramml Chem. B e r . , 1986, M I 3536. W.R. S a a l f r a n k , E . Ackermannr M. F i s c h e r * 8 . Weissl R. C a r r i e , D . Danion, K . P e t e r s and H.G. Von S c h n e r i n g t B u l . S O C . Chim. Be1g.r 19851 94, 475. K.W. C h i u l J . F a u c e t t , R.S.W. Kemmitt and D.R. R u s s e l l , J . Chem. Soc., D a l t o n T r a n s . , 19861 457.
1.
ml
a,
-
al
=I
F. S e e l , R. Kuhn, G. Simon, M. Wagner, 8 . Krebs and M . Oartmann, 2 . N a t u r f o r s c h . l 8: Anorg. Chem.1 O r g . Chem.l 1985, 1607. A.E. Shalamovl A . I . Y a n o v s k i i and Yu.T. S t r u c h k o v l I z v . Akad. Nauk Kaz. SSR, Ser. K h i m . ~ 19861 69. V . E . S c h l o v e r l Yu.1. S t r u c h k o v , N.M. Kudyakov and M . G . Voronkov, J . Orqanomet. Chem., 19861 393, 83. V.N. Zemlyanoi, A.M. A l e k s o n d r o v and U . P . K u k h a r l x h . Obshch. Khim., 19851 2667. R. Boeoe, G. Haegele, W. Kueckelhaus, J. Seega and G. T o s s i n g , Chem.-Ztg., 19851 1 0 9 1 233. R. Boese, G. Haegele, W . K u e c k e l h a u s ~ J . Seegal G. Tosming and H. S c h n e i d e r s , PhosDhorus S u l f u r . , 19868 28, 351. C . S i l v e n t r u and L . S i l a g h i - D u m i t r e s c u g J. Chem. Soc., O a l t o n Trans., 1986, 1031. H. K e l l e r l G . Hams and H R e d i t z , T e r t a h e d r o n L e t t . , 1986, 1903: J. S v a r a l E. F l u c k and H. R i f f e l , 2 . N a t u r f o r r c h . B: Anorq. Chem.3 Org. Chem., 1985, DI 1258; E. F l u c k l P h o m h o r u s S u l f u r , 1986, 2121. L.0. Q u i n ~J . Szewczyk, K.M. Srewczyk and A . T . McPharl, J. Org. Chem., 19861 5 1 8 3341. S.A. Weissman, S.G. B a x t e r , A . M . A r i f and A.H. C o w l e y ~ J . Chem. Soc.1 Chem. Jommun.1 19861 1081. G.O. Nevstad, K . Maartnann-Moel C . Romming and J. Songetadl A c t a Chem. 523. Scand.1 Ser. AI 19851 M D W . K r u c g e r l E.J. M i l l e r and A.L. R h e i n g o l d , PhosDhoruo S u l f u r , 1985, G B 251. F. Hammerschnidt and H. V o e l l e n k l e , L i e b i g s Ann. Chem.9 19861 2053. I. Takeuchi, Y . S h i b a t a , Y . Hanada and M. K i d o l H e t e r o c v c l e p , 1986, 647. T . tlaruyamal Y. Sato, M. H o n j o l H. O i s h i , K . 0gawa1 1. F u j i u a r a and K . T o n i t a l Chem. Pharm. B u l 1 . 1 1986, 3 0 1 471. 8 . B e r n e t , E. Kravczyk and A. V a s e l l a , H e l v . Chia. A c t a t 19851 2299.
=I
418
Organophosphorus Chernistn
209
U.V.
210
O.A.
21 1 212 213 214 215 216 217 218 219 220 22 1 222 223 224
225
226 227 228 229 230 231 232 233 234 235 236 237 238 239
240
T k a c h e v , L.O. Atovmvant 1 . 0 . U m a r o v a . 0 . 4 . RaeY-ski, T.N. A.M. P i n c h u k s I z v . Akad. Nauk SSSR, Ser K h i m . ! 1985, 1 7 7 5 . Raevskiit
1986, 2003.
1.0.
Umaro*ab
V.U.
T k a c h e v ~ I z u . Akad.
I K u J t ~ o ~and a
Nauk SSSR S e r . khirn.,
H. S c h m i d b a u r j R . P i c h l a n d G . M u e l l e r , Ansew. Chem., 1986, 3 ,5 7 2 . G . B e t t e r m a n n s L. E r n s t a n d R . S c h m u t r l e r , Anqew. Che_m., 19?,5,
0. Schomburg, 771.
973
K . I . P a s h k e v i c h . I . G . B u s y g i n s D . S . l u f i t a n d Yu.T. S t r u c h k o k , D o k l . Akad. Nauk SSSR, 19863 288, 642 (Chern.). E . F l u c k t G . B e c k e r , B . N e u m u e l l e r , R . K n e b l , G. Heckmann and Y . R i f f e l , Angeu. i h e m , 1986, 98, 1018. J.S. R u t t n M . P a r v e z a n d H.R. all cock^ J . Am. Chem. S o c . , 1 7 8 6 , 6089. H.R. A l l c o c k , D . J . Brennanp J.H. GraaskamD and M. P a r v e z t Q r g a n o m e t a l l I C S ,
1986,
z,
5 , 2434.
G.H. R i d i n g , M. P a r v e z a n d H.R. A l l c o c k , O r g a n o m e t a l l i i s ~ i986) 5 , 2153 U . D . C h e r e p i n s k i i , Yu.T. S t r u c h k o v , L . I . ( r u r a r i i , E.T. hukmenev a n d B . A . A r b u z o v I Zh. Obshch Khim., 19851 55, 2457. A , S . J o n e s , A . Kumar and R . T . W a l k e r , J . Org. Chem., 19864310. I . A . L i t v i n o v n L.I. G u r a r i i , Y u . T . S t r u c h k o v , B.A. A r b u z o v a r , d E . T . Hukmenev, I v z . Akad. Nauk SSSR S e r . K h i m . , 15'86, 1274. Y.E. S h i h , J.S. Wan9 a n d L . K . L i u , H e t e r e o c ~ c l e s 1986, ~ 1599. Ch. D o n a t h l H . M e i s e l , k.H. J o s t , K . K . P a l k i n a , S . I . Maksimova a n d N . T . C i b i s k o v a . 2 . N a t u r f o r o c h . B: A n o r g . Chem., Org. Chem., 19861 1201. C . Y . Cheng a n d R - A . Shaw, P h o s p h o r u s S u l f u r , 1986, 263 185. J.K. F i n c h a m , M.B. H ~ r s t h o u s e R~. K e a t , H.G. P a r k e s , D.S. R y c r o f t , L . S . Shaw a n d R . A . Shaw, P h o o ~ h o r u sS u l f u r , 1986% 2 , 175: J.K. F i n c h a r n u M . B . H u r s t h o u s e , H.G. P a r k e s l L . S . Shaw a n d R . A . Shawl P h o s p h o r u s S u l f u r , 1986-
a,
28,
184.
A.H. A l k u b a l s i t H.A. 6 1 - H a d f a , W.F. O e u t s c h 8 M.B. H u r s t h o u s e , H . G . P a r k e s , L . S . Shaw a n d R . A . Shaw, P h o s p h o r u s S u l f u r , 1986, 28, 229: W.F. DeaAtsch, N. Gunduz. T . Gunduzt M.B. H u r s t h o u s e , E. K i l i c ~H.G. P a r k e s , L . S . Shaw, R . A . Shaw a n d H . Tuzun, P h o s p h o r u s S u l f u r , 1986, 253: W . Hoeve, K . S . D h a t h a t h r e y a n , J.C. Van de Grampel a n d F. van B o l h u i s , P h o s p h o r u s S u l f u r ,
1986,
26,
293.
a,
S.R. C o n t r a c t o r t M.B. H u r s t h o u s e , H.G. P a r k e s , L.S. Shaw, R . A . Shaw and H. Y i l m a z r p h o s p h o r u s b u l f u r , 1986, 28, 267. A . A . Wan de H u i z e n g J.C. Wan de G r a m p e l , J.W. R u s c h ~ T . W i l t i n g , F . van B o l h u i s a n d A . Heetsma, J . Chen. Soc.8 O a l t o n T r a n s . , 1986, 1317. F . J . U i e r s o n l E. Boama, B. de R u i t e r , K.S. D h a t h a t h r e y a n , J.C. Van de Grampel a n d F . van B o l h u i s ~ P h o s p h o r u s sulfur.^ 1986, 6 , 285. V . V . S h a r u t i n l U . T . B y c h k o v a n d V . A . L e b e d e v , Zh. Obshch. Kh1m.t 19868 5 6 9
325.
G.U. R o e s c h e n t h a l e r , R . B o h l e n a n d 0. Schomburgr Z . N a t u r f o r s c h . , B: A n o r q . 1593. Chen., Org. Chem.1 1985, - 3 P. P o e c h l a u e r , W . P e t t e r , P. P e r i n g e r a n d E.P. huller^ J. Chem. Soc., Chem. Commun. t 1985, 1764. H.W. Roesky, U.W. P o g a t s k i ? K.S. D h a t h a t h r e y a n ? A . T h i e l , H.G. S c h m i d t , M. D y r b u s c h , M. N o l t m e y e r a n d G.H. S h e l d r i c k , Chem. Bet-., 19863 119, 2687. V.Yu. N e o t e r o v a n d U.A. Naumov, Zh. S t r u k t . Khim., 1986, 1 1 s 48. E . A . Ishmaeva, 1.1. P a t s a n o v s k i i , Yu.2. S t e p a n o v a , G. B e c k e r , R . K n o e b e l , U . Weber a n d A.N. P u d o v i k , O o k l . Akad. Nauk SSSR, 1986, 288 160 ( P h y s . Chem.). 1.1. P a t a a n o v o k i i , E.A. Ishrnaeva, Y u . 2 . S t e p a n o v a , G. B e c k e r , V . B e c k e r , R . K n o e b e l , a n d A.N. P u d o v i k , I z v . Clkad. Nauk SSSR, S e r . Khim.9 19861 1690. J.R. Wan Wazer a n d C . S . €wig, J . An. Chem. Sot., 1986, 108, 4354. 1.1. P a t o a n o v 8 k i 1 , € . A . I a h m a e v a l E.N. S u n d u k o v a l A.N. Y a r k e v i c h a n d E.N. T e v c t k o v l Jh. Obshch. Kh8m.r 19861 2 1 567. B.A. A r b u z o v , R . A . K a d y r o v a n d R.P. f i r s h i n o v a t I z v . Akad. Nauk SSSR, S e r . Khim. B 1985, 1762. T.J. H a l l a n d J.H. H a r g i o , J. O r s . Chem., 1986, 4185. H. Bock, U. L e c h n e r - K n o b l a u c h a n d P. H a e n e l , Chem. B e r . , 1986, 119, 3749.
-
4 19
9: Phvsical Methods
24 1
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 25 7 258 259 260
W.F. D e u t s c h , N. G r u d u z , T. Grunduz, E . I k i I i c , ~ . 5 .b h a u , R . A . S t l a w a n d M. Tuzunv P h o s p h o r u s S u l f u r , 1 9 8 6 , 195. C h r i s t o d o u l o u , A . A n a s t o o o u l o s and 0 . J a n r ~ a k o u d a k i s ~ Can. J. Chem., 1986.
a,
A.
u*2279. A.G.
b.1. Y.M.
F099, & . A . B a r r o s a n d J . O . L a b r a ; , A n a l y s t ( L o n d o r l r , 1Y86, 111%8 3 1 . S u l a i m a n , M i c r o c h e m . J . 9 1786, 3 ,254. Ternerk, Z . A . Ahmedl M.E. Ahmed a n d M . H . harnal, F r e s e r l i u s ’ Z . A n a l .
1987,
- . I
326,
K . D i e m e r t , B. G. Aksnes and G. M a e r k l , 8 . L.K. K r a n n i c h ,
1.
146.
K o t t w i t z and W . Kuchen, P h o s p h o r u s S u l f u r , 1786, &, 3 0 7 . P . M a J e w s k i t P h o s p h o r u s S u l f u r , 1986, &, 261. A 1 1 9 and E. E c k l v T e t r a h e d r o n L e t t . , 1985, 26, 5285. R . K . K a n j o l i a a n d C . L . W a t k i n s t I n o r g . Chim. A c t a t 1985, 103,
V.I.
U y s o t s k i i a n d H . F . R o s t o v s k d y a g Z h . Obshch. Khirn., 1986, 56, 1 0 4 6 . H. K e c k , W. Kuchen a n d S. K u h l b o r n , PhosDhorus S u l f u r ? 1985, 343. V.&. K o l e s o v a , T . U . A l e s h n i k o v a , Yu.A. S t r e p i k h e e v a n d H . V . A r b u z o v a Zh. Obshch. K h i m . , 1985, 55, 2037. J.R. H o l t z c l a w , DISS. A b s t r . I n t . B, 1986, 41, 1516. E.R.J. W i l s a n d A . G . H u l s t t Org. Mass S o e c t r o m . ? 1986, 164. H. Duddeck, H . H . A . E l g a m a l a n d 6.G. Hanna, P h o s D h o r u s S u l f u r , 1986, 28, 307. E.R.J. W i l s a n d 6.G. H u l s t l O r g . Mass S p e c t r o m . , 1986, 763. W . C h a r , M. Ye, L . Yan a n d Y . Zhao, J . Org. C h e m . ~ 1987, 5 2 1 1617. L.Ya. Z o z e n s h e v a , T . V . Siriirnova a n d S.Ya. K a z n e t s o v a ) Zh. Obshch. K h i m . ,
a,
19868 56, 1062.
O.E. N a s a k i n , E.G. N i k o l a e v g P.B. l e r e n t ’ e v , A.Kh. Zh. Obehch. Khim., 1986, 56, 5 7 7 . G . H a n g z h o u ~ K . T s a o ~ L . Yu-Gul a n d W a n g j i a n ~ Org.
283.
B u l a i a n d B.A. Mass S p e c t r o m . ,
Khaskin,
1986, 2 , 1986,
26 1
R.
262
W.R. Sherman, K.E. Ackermannl R . A . B e r g e r , B.G. G i s h a n d M. Z i n b o , Biomed. E n v i r o n . Haoo S p e c t r o m . , 19869 1 3 1 333. tl. W i l l e o n , L . L a f a i l l e , G . Commenges a n d J.F. L a b a r r e g P h o s p h o r u s S u l f u r ,
263
K a m i n s k i , P. P a n e t h a n d W .
419.
1985,
a
t
273.
R e i m s c h u s s e l , Org. Mass Spectrom.3
1985s
264
K.U.
265 266
K. U t v a r y a n d M. K u b j a c e k r Monatsh. Chem., 1986, 117,287. I.S. A n t i p i n , R.F. Gareev a n d V.U. O v c h i n n i k o v r Zh. Obshch.
267 268 269 2 70
R . S c h w e s i n g e r , C h i m i a r 1985, 39, 269. S. S e r g i o . J . Chem. Res.1 Synoe., 1986, 231. E . J u a r i e t i l B. G o r d i l l o a n d L . U a l l e , T e t r a h e d r o n s 1986. 42, 1963. V.M. O v r u t o k i i , A . E . B o l d e s k u l , tl.1. G o l u b o v a n d T . M . C h e r n o v a , Zh. Obshch.
27 1 272 273 274 275 276 277 278 279 280 281
167.
Katti,
S.S.
K r i s h n a m u r t h y a n d H . Woods,
PhoeDhorue S u l f u r ,
2619.
19852249. J . S i e p a k , P o l . J. Chem.8
-.I
G.M. U.P. N.A. J.G. N.Yu.
2
9
1985,
59,
K h i m . ~ 1985,
651.
55%
B l a c k b u r n a n d O.E. K e n t , J. Chern. S o c . ~ P e r k i n T r a n s . 1 1 1986, 913. U a m i l ’ c v a n d G . A . Z a ~ t s e v a , Zh. Obshch. K h i n . , 1986, 3 ,949. P o l e z h a e v a a n d R . A . C h e r k a o o v ? USD. Khim.1 1985, 54, 1899. Riemta~ Phosphorus S u l f u r ) 1986, 27, 93. Horozovam U.A. P l a t o n o v a n d Yu.N. S i m u l r n , Chern. 4 b e t r . 1 1986, 105,
153310.
G.L. H a t e v o m y a n ~ I.U. C h e z l o v ~ I . Y u . M a t y u s h i c h e v a n d P.H. Z a u l i n ~ z h Obohch. Khim.8 1986 56, 1426. R . C . C a o t e l l s a n d A . : . . N a r d i l l o , An.- C i d e p i n t ~ 1986, 165. G.G. B l i n o v a , CI.N. L a v r e n t ’ e v , L.N. H e l ’ n i k o v a a n d L.A. P a n o v a l z h . Obohch. K h i n . 1 1986, 56s 1280. A . Azzouz, A. B e r r a k , L . S e r r d i a n d M. A t t o u t Chem. A b s t r . , 1987, 106,
138520.
E . I . L e v i t e s , G.S. Zh. Obohch. Khirn.,
S.F.
Gol’din,
1986,
3
1
Kravtsova,
318.
S.G.
F e d e r o v a n d V.F.
Olinay
420
Organophosphorus Chemistry
282
P. P e s c h e r , B. Caude, R . R o s s e t , A .
283 284
M. S asa ki g A g r i c . 8101. Chem.9 1986, 3, 741. H . A . C o l e t t i - P r e v i e r o n M. P u g n i e r e , H . H a t t r a s , J.C. P r e v i e r o , B i o e c i . Re&., 1986, p , 477. J . R . Copper a n d T . H a t s u d a t H e t h o d s Enzvmol., 1986. P t . G 20: J . T . U a n d e r s l i c e and H.H.A. Huangb
285
19851 2 , 621.
189.
Tambute and
L. O l i v e r o s , NOUV.
J . Chem.,
N i c o l a s and A .
m, V i t a m .
Coenzymes,
w.,
286
A.
287
H . T h o rsen ,
288 289 290 29 1 292
U. K a r l s o n a n d W.T. F r a n k e n b e r g e r J r . , Soil Sci. SOL. Am. J.8 1987, 72. A.S. S a n d b e rg a n d R . A h d e r i n n e , J . Food. Sc1.1 1986, 3 ,547. N.H. Dean and J.D. Hoyerm @iochem. J . , 1987, 242, 361. J.J.L. C i l l i e r s and P.J. Van N i e k e r k j J . A g r i c . Food Chem., 1986, 30, 680. T . K a w asa ki , H e thodc Enzvmo1.1 1986, 1221 V i t a m i n . Coenzymes, P t . G , 15: S . Z i m m and J.H. S t r o n g , A n a l . Biochem.t 1987, 160, 1: P. N i e l s e n g P. Rauschenbach a n d A . B a c h e r , H e t h o d s Enzyrnol.0 1986, 122- V i t a m i n . Coenzymes, P t . G I 209; T.T. Nguyen, P. Spor ne a n d 0. H a d z i y e v , J. C h r o n a t o 3 . r 19863 363) 361: 1. V i c t o r , A . M . J o r d a a n , h . J . B e s t e r and A . L o c h n e r l J. Chromatog., 1987, 389, 339: J . Har m enber g a n d A.H.J. K a r l s s o n l A n a l . Biochem., 1987, 161,2 6 : F. A r e z z o , A n a l . Bioc hem ., 1987, 160,57: W . H u r s t , R.A. M a r t i n J r . and R.B. S h e e l y , J. L i a . Ch r om atogr ., 1986, 2 , 2969. L . B r a c o t C . Abad, A . Campos a n d J.E. F i g u e r u e l o n J. C h r o m a t o g r . , 1986,
293 294 295 296 297 298 299 300 30 1 303 304 305 306
307 308 309 310 31 1 312 313 314
81.
Tambute,
5633.
P. G a r e l l , H. Caude and R . T.P.
Ander son- U. Peder sen and 8. Yde,
353,181. A.H.
H a k a r o v t G.L.
341.
Ya.1.
19868
W.
S.
Hel’nik,
211059.
Rosset, J. Chromatogr.,
Hatevosyan a n d P.H.
0.1. P r o t s g Ya.1.
Zavlin.
Tetrahedron,
Zh Obshch.
K o l o d i i and U . H .
Khlm.,
1985, 41,
an
1986,
S l a v i c h n Zh Obshch.
Uyncker Rev. A g r ~ c . ( B r u s s e l o ) ~ 1986, 39, 177. S t n e l t , F . G u r t u r k r A. E r g u v e n and H . B o z k u r t l l u r k
m . 8
1986,
1986, 4 3 1 23.
56,
Khim.,
H I J . D eney s el B I Y O ~ .
C . P e n c z e k l G. L a p i e n i s and P. K l o s i n s k i , Phoophor us S u l f u r , 19861 = I 153. E . V . B o r i s o v , N.L. I v a n o v a , T.B. Aksenova, L.K. Vasyanar H.K. Gr ac hev , A . R . B ekke r a n d E.E. N i f a n t ’ e v , Zh. Obshch. K h i m . ~ 1985, 2270. E.S. L e w i s a n d B.A. H c C o r t n e y , Can. J. Chem.3 1986, 1156. T. Campino, J.G. S a n t o s a n d F. F e r n a n d o - JL. Chem. SOC., P e r k i n T r ans . 2,
M,
1986, 1021. 302 Y.E. L e e a n d K . Y .
Choo, I n t . J. Chem. K i n e t . , 1986, 2,267. V.I. G a l k i n , I . U . B a k h t i y a r o v a , A . A . Sobanov, R.A. C her k as ov and A.N. P u d o v i k l p o k l . Akad. Nauk SSSR, 1985, 285, 634, Chem. S. T s u c h i y a , S. H i t o m o , H. Kise and H . Senol J . Chem. S O C . ~P e r k i n T r a n s . 2 ,
1986, 245. 0. L a n d i n i , A .
H a i a n d 6 . R a m p o l d i l J. Org. Chem., 19861 ZB 3187. H.T. Hanna, F.H. A b d e l - H a l i m a n d ll. E l - B a t o u t i , Rev. Roum.
F.Y.
Khalil,
N.S. A.N.
I s a a c o an d O.H. Y a r k e v i c h , S.E.
m.,19851
301 571.
1614.
Abed, T e t r a h e d r o n L e t t . , 1986, 11, 1209. Tkachenko and E.N. T o v e t k o v l Zh. Obohch. Khim.,
1986,
N . I . Yanchuk, 3 h . Obohch. Khim., 1986, 5 6 1 1509. N . I . Yanchuk, Zh. Obahch. Khim., 1986, 813. G.F. Lanneau, P h o s p h o r u s S u l f u r , 19861 21, 43. R.D. Cook, S. F a r a h a n d L. Ghawi, Can. J. Chem., 1986, 601 1630. R.D. Cook, W.A. Oaouk, A.N. H a j j , A. K o b b a n i , A. K u r k u ~ H. Samahan F . Shayban an d O . U . T a n i e l i a n , Can. J. Chern., 1986, 64, 213. V.E. B c l ’ s k i i , A.H. Kur guzova and H . U . Efr em ova, I t v . Akad. Nauk SSSRl S e r . -.I
1986, 310.
789. 315 K. Uang, Kexue Tongbpd ( F o r e i g n Lans. E d . ) * 1986, 316 S. I v a n o v , N. Shopova a n d Kh. A n g e l o v , Phomphoruo S u l f u r , 19861 2 4 1 105. 317
B.I.
K a s p r u k l V eotn.
L’vov.
Politekh.
Inot.9
1985,
191, 132.
9: Physical Methods
318 319 320 321
322 323 324 325 326
42 1
R . J . P . C o r r i u g P h o s p h o r u s S u l f u r , 1 9 8 b 9 27, 1. K . T a i r a ? K . L a i a n d D.G. G o r e n s t e i n . T e t r a h e d r o n , 1 9 8 6 - 42, 2-79. N.A. S u k h o r u k o v a , V . A . B a r a n s k i 1 and A . V . K a l a t a i n a , Z h . Obshch. K h i m . , 1785, 559 1 8 7 9 . G.R.J. T h a t c h e r ! D i s s . A b s t r . I n t . B V 1 9 8 6 , 471 2 4 4 2 . S . M . L u d e m a n ~ V . L . B o y d , J.B. R e g a n t k . A . G a l l o , G . Zon a n d I<. I s h i i , m s E X D . C l i n . R e s . , 1 9 8 6 , 2,5 2 7 . N.N. L e b e d e v , A.N. K l o c h k s v a n d U . P . : ; a v e l ’ # a n o v 3 Zh. O b s h c h . K h i m . , 1 7 8 6 , 56, 3f5. L . F . K a s u k h i n a n d U.P. K u k h a r ~ 2 h . O b s h c h . Kh1rn.B 19869 56, 9 7 0 . W.G. B e n t r u d e , 1 . K a w a s h i m a , B . A . K e y s , f l . G a r r ~ u s s i a n W~. H e i d e a n d [ I . A . W e d e g a e r t n e r , J . Am. Chem. S o c . . 1 9 8 7 , 109, 1 2 2 7 . F.M. 4 k h m e t k h a n o v a l L . Z . R o l ’ n i k . E . V . P a s t u s h e n k u , M . W . P r o s k u r n i n a . S.’;. Z l o t - s k i 1 a n d D.L. Rakhmankulov, Zh. Obshch. K h i m . ~ 1985, 2039.
s7
Author Index I n t h i s i n d e x t h e number g i v e n i n p a r e n t h e s i s is t h e C h a p t e r number o f t h e c i t a t i o n and t h i s i s f o l l o w e d b y t h e r e f e r e n c e number or numbers o f t h e relevant c i t a t i o n s w i t h i n t h a t chapter
Abad, C. ( 9 ) 293 A b e l - H a l i m , F.M. ( 9 ) 306 Abdel-Magid, A . ( 5 ) 182 Abdou, W.M. ( 2 ) 22 ( 9 ) 66 Abdulganeeva, S . A . ( 5 ) 61 Abed, O.H. ( 9 ) 307 A b e i j o n , C . ( 6 ) 248 A b i c h t , H.P. ( 1 ) 3, 4, 61 Aboujaoude, E.E. ( 5 ) 8 0 ,
8 1 , 153: ( 7 ) 79; ( 9 ) 117 Abuaf, P . ( 9 ) 12 A b u r a t a n i R . ( 1 ) 284 Acheson, D.M. ( 5 ) 140 Acheson, R.M. ( 4 ) 14
Achiwa, K . ( 1 ) 30 Ackermann, E . ( 8 ) 21:
( 9 ) 191
Ackermann, K.E.
262
(9)
Adam, S. 405 Adams, R.J., Jr. ( 8 ) 81, 8 2 , 84 Adamek, C . ( 1 ) 40 Adamova, G.M. ( 9 ) 124 Ades, C . ( 9 ) 143 A d l i n g t o n , R.M. ( 7 ) 54 Aebi, M. ( 6 ) 343 A f a n a s ' e v a , A.N. ( 8 )
136
Afanasov, A.F. ( 2 ) 25 Agafonov, S . V . ( 5 ) 56 Agarwal, K. ( 6 ) 32 Agashkin, O . V . ( 9 ) 116 Agrawal, S. ( 6 ) 156 Ahderinne, R . ( 9 ) 289 Ahlehelm, A . ( 7 ) 38 A h l r i c h s , R. ( 3 ) 18:
( 4 ) 85
A h l u w a l i a , G.S.
101
(6)
Ahmed, R . ( 7 ) 136 Ahrned, Z . A . (Y) 245 Aladzheva, I.M. ( 1 )
227
A l a p i s h v i l i , M.G.
(8)
102
A l b e c k , A. ( 7 ) 91 A l b e r t i , A. ( 9 ) 129 Albrecht, S. ( 5 ) 63; ( 8 ) 22 A l c o c k , N.W. ( 1 ) 1 2 9 , 737; ( 3 ) 38 A l e i n i k o v , S.F. ( 5 )
9 7 , 98: ( 9 ) 144
Aleksandrov,
84
A.M.
(1)
Aleshnikova, T.V.
(5) 49: ( 9 ) 252 Alewood, P . F . ( 4 ) 59 V.A. ( 1 ) 178; ( 4 ) 8 , 19;
Al'fonsov,
( 5 ) 159
Al-Hakim,
A.H.
265
(6)
A l i , R . ( 9 ) 133 A l i g , 8. 19) 248 Alikhanova, N.O. ( 8 )
165
(8) 71, 72: ( 9 ) 4 6 , 225 A l l c o c k , H.R. ( 8 ) 6 5 , 8 1 , 8 5 , 118, 120, 1 2 1 , 122, 1 2 4 , 160, 161, 168, 173, 1 7 8 , 1 8 8 , 200; ( 9 ) 215, 216, 217 A l l e n , C.A. ( 8 ) 206 A l l e n , C.W. ( 8 ) 6 4 , 6 7 , 90, 100, 115, 116, 117; ( 9 ) 8 2 , 112 A l k n b a i s i , A.H.
422
( 1 ) 2 2: ( 3 ) 21: ( 9 ) 5 3 A l l e n , T.L. ( 1 ) 2 4 A l l e n d e , J . E . ( 6 ) 103 Al-Madfa, H.A. ( 8 71 9 111: ( 9 ) 225 Almond, H . R . ( 9 ) 83 Almond, H.R., Jr. ( 2 ) 16: ( 7 ) 12 A l o n i , Y . ( 6 ) 218 Alonso, R . ( 7 ) 137 A l l e n , D.W.
Alonso, A . A . ( 1 ) 1 3 A l p a r o v a , M.V. ( 9 ) 108 Al-Rawi, J.M.A. ( 9 ) 111 Al-Razzak, L.A. ( 6 ) 9 Al-Resayes, S . I . ( I )
294
A l s t e r , D. Altenbrimn, Altman, S . A l u n n i , S.
2
(6) 8. (6) (1)
221, 212 ( 1 ) 144 243 219: ( 7 )
Ajrnera, S. ( 6 ) 310 Akhmetkhanova, F.M.
326
(9)
Akhmetova, G.M. ( 1 ) 70 A k i b a , K. ( 3 ) 25 A k i b a , K i n - y a ( 2 ) 32 Akkerrnann, 0 . 5 . ( 7 ) 66 Aksenova, T.B. ( 9 ) 299 Aksnes, G . ( 9 ) 247 Akutagawa, K. ( 4 ) 105 Ambrose, B . J . B . ( 6 ) 294 Arnes, A., I 1 1 ( 6 ) 55 Arnouroux, R. ( 7 ) 75 Amrani, V . ( 1 ) 21 Arnrute, S.B. ( 6 ) 109 Aoyarna, T . ( 5 ) 181 Aoyama, Y. ( 6 ) 132 An, S.H. ( 6 ) 113 Anan'eva. L . G . ( 8 ) 176 Anastropoulos, A. ( 1 ) 2 2 8 : ( 9 ) 242
423
Author Index
A n c h i s i , C. ( 8 ) 110 Anderson, T.P. ( 9 )
287
Ando, T . ( 5 ) 89 Andrade, J. ( 1 ) 28 A n d r i a n a r i s o n M. ( 1 )
298, 301, 302 ( 9 ) 19c A n g e l e t t i , E. ( 7 ) 78 Angelov, Kh. ( 9 ) 316 A n s e l l , P.J. ( 4 ) 14 ( 5 ) 140 Ansorge, W. ( 6 ) 298 A n t i p i n , I.S. ( 9 ) 2 6 6 A n t i p i n , M.Yu. ( 1 ) 195; ( 4 ) 4 0 , 9 0 , 93: ( 5 ) 150: ( 8 ) 31: ( 9 ) 1 2 7 , 166 A n z a i , S. ( 8 ) 143 Appel, R . ( 1 ) 1 0 9 , 1 5 1 , 259, 261, 266, 267, 268, 269, 283, 285, 339, 343: ( 8 ) 39; ( 9 ) 19b, 6 9 , 70, 157, 159, 160, 1 6 2 , 163, 1 6 8 , 171, 180 Appelhans, A.D. ( 8 ) 206 A p p e l t , A. ( 1 ) 51, 52, 53, 54, 55, 56 A p p l e b u r y , M.L. ( 6 ) 2 A r a b s h a h i , A . ( 6 ) 75 Arakawa, Y. ( 5 ) 29 Arbuzov, B.A. ( 1 ) 145, 1 4 6 , 147, 361, 362, 363; ( 4 ) 88; ( 5 ) 1 3 0 , 164; ( 9 ) 1 0 , 71 8 4 , 139, 218, 220, 238 Arbuzova, M.V. ( 5 ) 49; (9) 252 Arduengo, A.J., I11 ( 2 ) 31; ( 4 ) 4 Arenas, J . (6) 344 Arenz, T. ( 7 ) 57 Arezzo, F. ( 9 ) 292 A r g y r o p o u l o s , N.G. ( 7 ) 58 A r i a s - P e r e z , M.S. ( 9 ) 109, 141 A r i f , A. ( 2 ) 38 A r i f , A.M.. ( 1 ) 59, 279, 306, 327, 328, 332; (4) 98: ( 9 ) 176, 202 A r m s t r o n g , D.R. ( 1 ) 10 A r n d t , V . ( 1 ) 39 A r s h i n o v a , R.P. ( 9 ) 1 0 , 139, 238 A r t y u s h i n , 0.1. ( 1 ) 194
H. ( 7 ) 61; ( 9 ) 188 Asaka, M. ( 6 ) 171 Asato, A.E. ( 7 ) 90 A s c o l i , M. ( 6 ) 58 Ashby, E . C . ( 1 ) 11 Ashe, A.J. 111 ( 1 ) 150, 336 A s h l e y , G.W. ( 6 ) 99 Ashton, P.R. ( 1 ) 212 A s s e l i n e , U. ( 6 ) 117 Assercq, J.-M. (5) 25
Arzoumanian,
Astrina, V.I.
(8)
101
A t k i n s , J.F. ( 6 ) 271 A t k i n s o n , T . ( 6 ) 380 Atovmyan, L.O. ( 9 )
209
A t t a l i , S. ( 1 ) 254 A t t o u , M. ( 9 ) 280 Atwood, J . L . ( 1 ) 99 A u b e r t , F . ( 7 ) 97 Auch, K . ( 1 ) 307 A u s t i n , P.E. ( 8 )
124, 200, 201, 202 Ayed, N. ( 9 ) 111 Azadani, M.N. ( 1 ) 140 Azuhata, T . ( 5 ) 125 Azzouz, A. ( 9 ) 280
Baba, A. ( 1 ) 216 Baba, Y. ( 3 ) 39, 40 B a b i c , D. ( 8 ) 189 B a b i n , F . ( 6 ) 391 B a b k i n a , G.T. ( 6 )
2 56
B a c c o l i n i , C.
(I )
Baccolini, G.
(4)
184 46
( 1 ) 174 275, 319, 321; ( 4 ) 20; (8) 4 , 5; ( 9 ) 36, 37 Bacher, A. ( 9 ) 292 Bachmeier. A. ( 6 ) 370 Badanyan, Sh. 0 ( 5 ) 169 B a h l , C. ( 6 ) 87 B a d i a , M.C. ( 5 ) 106 Bahrmann, H . ( 1 149 B a i l e y , J.M. ( 6 249 B a k a r , M.A. ( 1 ) 291 Baker, R. ( 7 ) 1 7
B a c e i r e d o , A.
B a k h t i y a r o v a , I.V.
( 9 ) 303
Bakkas, S. ( 4 ) 22 Bakker, C.G. ( 6 )
106
Bakos, J. ( 9 ) 77 Bakuradze, R.Sh. ( 8 )
166
Balanescu, M.
128
B a l c h , A.L.
58
(8)
( 1 ) 57, (3)
Balczewski, P.
19
(7)
B a l d w i n , J.E.
54
B a l d y , A . ( 9 ) 188 B a l g o b i n , N. ( 5 ) 30 B a l l , R.G. ( 2 ) 41 B a l s z u w e i t , A. ( 9 )
50
B a l t h a z o r , T.M.
(4)
26
B a l t u s i s , L . ( 3 ) 37 Balzarini, J. (6)
9 , 1 3 , 48
Banmohamed, N. ( 8 )
156
Bannard, R.A.B.
39
Bannwarth, W.
50; ( 6 ) 295
(9) (4)
(6) 393, 394, 395, 396 Bao, J. ( 6 ) 273 Barad, M. ( 6 ) 55 B a r a n s k i i , V.A. ( 5 ) 171; ( 9 ) 320 Bard, A.J. ( 1 ) 250 Bare, L.A. ( 6 ) 272 B a r e n d t , J.M. ( 4 ) 43; ( 9 ) 636, 88 B a r l u e n g a , J. ( 1 ) 372; ( 7 ) 52; ( 8 ) 53, 54 B a r r a n s , J . ( 1 ) 365 ( 8 ) 19
Banville,’ D.L.
B a r r i o l a , A.
(8)
201
B a r r o s , A.A. ( 9 ) 243 B a r r y , D.W. ( 6 ) 92 Barsegyan, S.K. ( 1 )
105
E a r t h , V. ( 9 ) 69 Bartholemew, B. ( 6 )
260
B a r t l e t t , R.A.
1 6 4 , 304
(1)
Organophosphorus Chemistry
424
( 1 ) 120: ( 2 ) 3: ( 4 ) 106 B a r t o n , J.K. ( 6 ) 322, 364, 365 B a r t s c h , R . ( 2 ) 23 Bass, B.L. ( 6 ) 3 3 1 B a s s i , B. ( 6 ) 18 Bastow, K . F . ( 6 ) 93 Basu, A . K . ( 6 ) 276 B a t h l a , H.K. ( 3 ) 22 B a t r a , S . P . ( 6 ) 250 B a t y e r a , E.S. ( 1 ) 178: ( 4 ) 8 , 1 9 , 23; ( 5 ) 159 B a u d l e r , M. ( 1 ) 36, 3 7 , 38, 39, 4 0 , 41, 48: ( 3 ) 16: ( 9 ) 24, 25, 26, 152 Bauer, J . ( 5 ) 30 Bauer, W. ( 1 ) 47 Bax, A . ( 6 ) 388, 389 B a x t e r , J . E . ( 3 ) 26 B a x t e r , S.C. ( 4 ) 9 7 , 98 B a x t e r , 5 . G . ( 1 ) 332, 333: ( 9 ) 202 Bay, W.E. ( 1 ) 64 Baynard, B. ( 6 ) 205, 216 B a y e r , € . A . ( 6 ) 264 Baze, M.E. ( 7 ) 104 Bazhanova, Z . G . ( 9 ) 151 B e a b e a l a s h v i l l i , R.S. ( 6 ) 9 5 , 96 Beak, P . ( 1 ) 139: ( 3 ) 4 B e a u c o u r t , J . P . ( 7 ) 97 Beautement, K. ( 7 ) 139 Beccard, B. ( 9 ) 126 Becher, R . ( 1 ) 38 Becherer, R . ( 3 ) 18; ( 4 ) 85 B e c k e r , G. ( 1 ) 290: ( 9 ) 1 6 9 , 214, 234, 235 ( 2 ) 31 B e c k e r , J.V (4) 4 B e c k e r , J.Y 9 ) 235 Becker, V . Beckh, H.J. ( 1 ) 367: ( 9 ) 29 B e g l e y , M.J. ( 5 ) 133 B e k k e r , A . R . ( 9 ) 299 Belakhov, V . V . ( 5 ) 104, 116; ( 9 ) 117 B e l e n k o v , V.N. ( 1 ) 221 B e l e t s k i i , I . P . ( 5 ) 35 B e l f o r t , N.M.-T. (6) B a r t o n , D.H.R.
108 Beu, A .
( 1 ) 17
Beu, A . T . ( 8 ) 170 B e l l , G . A . ( 1 ) 186 Bellan, J. ( 1 ) 249;(4) 102; ( 8 ) 13: ( 9 ) 25 B e l l a n a t o , J . ( 9 ) 109,
141
B e l ' s k i i , V.E. B e l y a e v , Yu.P. Belyaeva, T . N .
( 9 ) 314 ( 8 ) 218 ( 1 ) 167,
Belyakov, V . N .
( 8 ) 93,
170
9 4 , 95 Belykh, O.A. 163 Bendayan, A . Benefiel, A. Benn, R . ( 1 )
( 5 ) 162,
( 1 ) 179 (1) 5 245 B e n t r u d e , W.G. ( 4 ) 105; ( 6 ) 48; ( 9 ) 4 8 , 6 4 , 325 Benziman, M. ( 6 ) 218 Berchadsky, Y . ( 9 ) 126 B e r d e l , W.E. ( 6 ) 113 B e r d n i k o v , E.A. ( 5 ) 180 B e r e s , J. ( 6 ) 4 8 , 52 Beresenev, E.N. ( 8 ) 150 B e r g a m i n i , P. ( 1 ) 137: ( 3 ) 38 B e r g e r , R . A . ( 9 ) 262 B e r g e r , S.L. ( 6 ) 305 B e r g e r e t , W. ( 9 ) 58 B e r g t o l d , D.S. ( 6 ) 289 B e r h a r d , S.L. ( 6 ) 259 Berman, C.B. ( 5 ) 10 B e r n a r d i n e l l i , G. ( 9 ) 125 B e r n e t , B. ( 9 ) 208 B e r n h a r d t , F.C. ( 1 ) 81, 8 2 ; ( 3 ) 24; ( 9 ) 9 9 , 106 B e r n i e r , J.L. ( 1 ) 210 B e r r a k , A . ( 9 ) 280 B e r r i e r , A . ( 1 ) 88 Berry-Lowe, S. ( 6 ) 4 B e r t i n o , J.R. ( 6 ) 411 B e r t r a n d , G . ( 1 ) 275, 319, 321; ( 4 ) 80: ( 8 ) 4 , 5 , 1 4 , 32; ( 9 ) 3 6 , 37 B e r t r a n d , J.R. ( 6 ) 173 B e r t r a n d , M.J. ( 6 ) 361 B e r z i n , V.A. ( 6 ) 256 B e s t e r , A.J. ( 9 ) 292 Bestmann, J . J . ( 7 ) 39, 40, 5 0 , 57 Betheu, R . C . ( 6 ) 76 B e t t e r m a n n , G . ( 1 ) 187: ( 4 ) 27; ( 9 ) 181, 212 Beuster, A. ( 8 ) 15
Bel'tsova, T.G. ( 8 ) 113, 1 5 3 Bhattacharyya, A.
( 6 ) 91
Bhowmick, A . K .
(8)
208
(1) 282, 299: ( 7 ) 66 Bickle. T.A. (6) 192 B i d d l e s t o n , M. ( 9 ) 92 B i e r n a t , J . ( 6 ) 129
B i c k e l h a u p t , F.
B i e s h e u v e l , P.L.
( 7 ) 89
B i l k e , 5. ( 9 ) 11 B i n d e r , D. ( 1 ) 253,
252
B i n d e r , J . ( 5 ) 149:
( 7 ) 82
B i n g e r , R . ( 1 ) 295 B i n n e w i e s , M. (3) 18; ( 4 ) 85 B i s b a l , C. ( 6 ) 216 Bischofberger, N.
( 6 ) 307
Bischoff, R.
( 6 ) 156
( 4 ) 55:
(7)
B l a c k b u r n , B.K.
87
B l a c k b u r n , G.M. ( 5 ) 87, 88, 156: ( 6 )
62; ( 7 ) 83, 8 4 , 85; ( 9 ) 272 (6) 329 B l a k e , K . R . ( 6 ) 204, 203 B l a n c , A . ( 7 ) 75 B l a t t e r , K . ( 1 ) 366; ( 9 ) 31 Blinova, G.G. (9) 40, 279 B l o c h . G . ( 6 ) 391 B l o i s , F . ( 6 19 B l a c k e r , A.J.
Blonsky, P.M
(8)
200, 201, 202, 205 Blum, H. ( 5 ) 129 6 ) 10, Bobst, A.M. 89 Boche, G. ( 5 185 Bock, H . ( 9 ) 240 B o d a l s k i , R. ( 7 ) 70 Boeckh, D. ( 3 ) 28 Boeckman, R . K . ,
Jr.
( 7 ) 1 2 5 , 127 Boedecker, J . ( 8 ) 10 ( 9 ) 38
425
Author Index
Boehm, M.F. Boere, R.T.
( 7 ) 121 ( 8 ) 146,
148, 223 ( 1 ) 162, 243, 245, 247, 281 ( 5 ) 138; ( 9 ) 110, 197, 198 Bogachev, V.S. ( 6 ) 197 Boggs, J . E . ( 1 ) 306: ( 9 ) 177 Bohle, I . ( 5 ) 91 B o h l e n , R . ( 9 ) 52, 6 4 , 230 Boisdon, M . - T . (1) 365: ( 8 ) 19 B o l d e s k u l , A.E. ( 9 ) 270 B o l d e s k u l , E . T . ( 9 ) 127 B o l d e s k u l , I . E . ( 1 ) 271; ( 9 ) 1 3 4 , 166 B o l o g n e s i , A. ( 8 ) 187, 197 B o l o g n e s i , O.P. ( 6 ) 92 Bone, R . ( 6 ) 111 Bonnet, J.-J. ( 1 ) 135, 275 Bookham, J . L . ( I ) 67; ( 9 ) 90 Books, J.T. ( 8 ) 209 B o o s a l i s , M.S. ( 6 ) 190 Borah, 8. ( 6 ) 225 B o r d i e u , C . ( 1 ) 370 B o r i s e n k o , A.A. ( 4 ) 4 0 ; ( 9 ) 114 B o r i s o v , E.V. ( 9 ) 299 B o r n a n c i n i , E.R.N. ( 1 ) 13 Borowy-6orowski, H. ( 6 ) 195 Borrmann, H. ( 3 ) 18: ( 4 ) 85 Bortun, A . I . ( 8 ) 93, 94, 95 Bose, R.N. ( 6 ) 367 Boske, J . ( 1 ) 320: ( 4 ) 80; ( 8 ) 1 4 , 32 Bosma, E . ( 9 ) 228 B o so l d , F . ( 5 ) 185 Bosyakov, Yu. G . ( 9 ) 116 B o t e l h o , L.H.P. (6) 56, 57 B o t t , S.G. ( 1 ) 99 B o t t a , M. ( 7 ) 94 Bouaoud, 5.-E. (1) 8 B o u r d i e u , C . ( 4 ) 44 Bourque, K. ( 9 ) 102 B o u r t a y r e , P. ( 6 ) 405 Bower, M. ( 6 ) 390 Bowmer, T.N. ( 8 ) 179 Boyd, B.A. (8) 44 Boyd, V . A . ( 9 ) 322
Boese, R .
B a y e r , H.W. ( 6 ) 407 Bozyakov, Y u . G . ( 3 ) 20 Braco, L . ( 9 ) 293 B rady , A . ( 7 ) 61 Braga, D. ( 1 ) 204 B r a u e r , O . J . ( 1 ) 185;
B u l a i , A.Kh. ( 9 ) 259 Buncel, E. ( 9 ) 39 Bundel, Yu. G . ( 7 )
119
Bungar dt, D. ( 1 ) 243
280, 281
( 4 ) 4 1 ; ( 9 ) 173 B raun, S . ( 6 ) 218 B r a u n s t e i n , P. ( 1 ) 8
Buono, G . ( 4 ) 82 B u r d s a l l , D.C. ( 5 )
B r e d i k h i n a , Z.A.
B u r f o r d , N. Burgada, R .
184
(5)
B r e l ' , V . K . ( 5 ) 150 Brennan, C . A . ( 6 ) 184 Brennan, D . J . ( 8 ) 118; ( 9 ) 216 B r i d o n , 0 . ( 4 ) 106 B r i x n e r , 0.1. ( 6 ) 52 B r o c k , C.P. ( 6 ) 358 B r o d e r , S . ( 6 ) 92 B rody , R.S. ( 6 ) 75 B r o n s k i l l , P.M. ( 6 )
239
B rook s , D.W. ( 1 ) 113 B rook s , P. ( 1 ) 14 B ros s as , J. ( 8 ) 127 B r o s t , R . D . ( 1 ) 138 Brousseau, R . ( 6 ) 237 B r o v a r e t s , V . A . ( 1 ) 222 Brown, D . ( 5 ) 87: ( 7 )
83
Brown, D.E.
( 9 ) 82
( 8 ) 100;
( 4 ) 58; ( 6 ) 159 Brown, J.M. ( 1 ) 22, 2 3 , 24, 7 9 , 129 Brown, K.L. ( 6 ) 382 Brown, S.J. ( 1 ) 215 B roz da, 0. ( 6 ) 211 B ruc k , T . ( 1 ) 353 B ruc e, A.G. ( 6 ) 271 B ruc e, G.C. ( 1 ) 138 B ruc he, L. ( 8 ) 61 B r u c k , B. ( 1 ) 151 B r u e c k , B. ( 9 ) 70 B r u e n i n g , G. ( 6 ) 346 B runner, H. ( 1 ) 2 Bube, T . ( 7 ) 113 Bubnov, N.N. ( 9 ) 127 Buchanan, G.W. (9) 102 Buchheit, D.J. ( 6 ) 113 Buck, H.M. ( 2 ) 2 1 , 30: ( 6 ) 24; ( 9 ) 41, 128 B uc k land, S . J . ( 5 ) 173 B udat, 0 . ( 8 ) 51 Bukachuk, O.M. ( 1 ) 211, 221 B u k r i n s k a y a , A.G. ( 6 ) 253
Brown, E.L.
127
( 2 ) 40 ( 2 ) 24: ( 5 ) 160; ( 9 ) 105 B u r g e r , R.M. ( 6 ) 312 B u r g e t , G . ( 8 ) 30 Burghardt, R . ( 1 ) 75, 77; ( 3 ) 5 Burik, A. ( 4 ) 68: ( 6 ) 126 B u r i n , S . V . ( 8 ) 104, 105 Bur ke, S.D. ( 1 ) 131 Burnaeva, L.A. ( 1 ) 199; ( 2 ) 2 5 , 35: (4) 6 Bur ns, H.D. ( 1 ) 205 Burova, O.N. ( 9 ) 40 Bur r ow s, C.J. ( 6 ) 6 3 B u r s k i c , J . ( 9 ) 73 B u r t o n , D.J. ( 7 ) 49 Bur yakova, A.A. ( 6 ) 138 B u s i , C. ( 6 ) 18 B u s y g i n , I.G. ( 5 ) 137: ( 9 ) 213 B u t i n , B.M. ( 1 ) 70, 220; ( 9 ) 60 B u t i n , M.B. ( 1 ) 148 B u t l e r , I.R. ( 1 ) 62 B u t o u r , J.-L. (6) 375 Buwalda, P.L. ( 8 ) 86, 119 Buxton, S.R. ( 7 ) 8 6 Buzayan, J.M. ( 6 ) 346 Bychkov, V . T . ( 9 ) 229 B y r d , R.A. ( 6 ) 202 C a b r a l , J.O. ( 9 ) 243 Cadogan, J . I . G . ( 4 )
103
Caesar, J.C.
( 2 ) 26;
( 3 ) 12
C a i r n s , S.M. ( 9 ) 3 C aloger opoulou, T ( 5 )
92; (7) 74
.
Camellini, M.T.
136
Cameron, T.S.
(1)
( 8 ) 76
Organophosphorus Chemistry
426
Caminade, A.-M. (1) 174, 254, 263, 286; (4) 20; (9) 143 Campino, T. (1) 107; (9) 301 Campos, A. (9) 293 Canales, 3. (6) 107 Cao, W . (7) 51 Capasso, J.M. ( 6 ) 248 Capdevila, J. (7) 99, 101, 102 Capozzi, G. (1) 335 Capuano, L. (7) 38, 45; (9) 190 Caputo, R. (1) 116 Carbon, P. (6) 269 Cardemil, E . (6) 78 Carlson, R.K. (7) 122 Carmona, E. (1) 108 Carpenter, L.E., 1 1 1 ( 2 ) 30: (9) 41, 54 Carr, L.J. ( 8 ) 107 Carretero, J.C. (7) 76 Carrie, R . (1) 255, 264: (7) 26: ( 8 ) 21; (9) 172, 191 Carty, A.J. (1) 136 Caruthers, M.H. (4) 66; 164, 180 Carvallo, P. (6) 103 Casasempere, M. A. (1 ) 345 Casser, C. (1) 261, 339; (9) 159, 171 Castells, R.C. (9) 278 Castedo, L . (7) 137 Caster, K.C. ( 8 ) 18; (9) 113 Castera, P. ( 8 ) 98 Castro, C.A. (6) 362 Castro, M.M. (6) 294 Catellani, M. ( 8 ) 187 Cates, L.A. ( 8 ) 154 Cattani-Lorente, M. (9) 125 Caude, M. (3) 7; (9) 282, 286 Cava, M.P. (7) 135 Cavell, R.G. ( 2 ) 40, 41; (9) 93 Cavell, R.G. (9) 93 Cech, D. (6) 181 Cech, T.R. (6) 331, 332, 335, 338, 339, 340 Ceolin, F. (6). 391 Cerny, R.L. (6) 401 Certa, U. (6) 295 Cesartotti, E. (4) 83 Cha, J.K. (7) 95 Chabane, A. (1) 365: ( 8 ) 19
Chadha, R.K. ( 5 ) 16, 17 Chai, W. (9) 257 Chaikovskaya, A . Ya. (9) 137 Chakhmakhcheva, 0.G . (6) 137, 138 Chakraborty, T.K. (7) 114 Chakrovary, P.K. (5) 114 Chakravarty, R . (6) 112 Chambers, R.W. (6) 195 Chandrasekaran, S. (9) 54 Chandrasekhar, V. ( 2 ) 5, 7 Chang, A. (2) 18; (5) 37 Chang, L.-H. (6) 315 Chang, S.B. (5) 23 Chanon, M . (4) 22 Chapman, T.L. (6) 72 Charbonnel, Y. ( 4 ) '105 Charczuk, R. ( 6 ) 192 Charette, A.B. (7) 125 Charrier, C. (1) 345 Charubala, R. (6) 211 Chasar, D.W. (4) 35: ( 9 ) 34 Chassignol, M. (6) 328 Chastrette, F. (7) 75 Chastrette, M. (7) 75 Chatani, Y. ( 8 ) 190 Chattopadhyaya, J. ( 5 ) 30; ( 6 ) 35, 36, 37, 402 Chekhlov, A.N. (5) 150 Chen, C.S. (1) 7 Chen, K. (9) 62 Chen, 4. (5) 19 Cheng, C.Y. (5) 20: ( 9 ) 223 Cheng, Y.-C. ( 6 93 111 Cherches, G. Kh ( 8 ) 221 Cherepinskii, V D. (9) 218 Cherezev, S . V . 5) 95 Cherkasov, R.A. ( 5 ) 52, 94. 95. 136. 176, 180; ( 9 ) 274, 303 Chernega, A.N. (1) 195; ( 4 ) 40, 90, 93; ( 5 ) 150: (8) 31; (9) 127, 166 Chernov, A.N. (1) 169 Chernov, P.P. (1) 362 Chernova, A.V. (9) 132 Chernova, T.M. (9) 270 Chervin, 1.1. (5) 145 Chezlov, I . V . (9) 277 Chiba, M. (1) 30 Chichester-Hicks, S.V. ( 8 ) 179 1
Chidgeavadze, Z.G. ( 6 ) 95, 96 Chiesa, A. (4) 83 Chikugo, T . (1) 225; (3) 1; ( 5 ) 155: (7) 73 Chino, Y. (6) 172 Chiong, K.N. ( 8 ) 219 Chiriac, C. (4) 45 Chiti, L. (1) 335 Chistokletov, V.N. ( 2 ) 25 Chiu, K.W. ( 9 ) 192 Chivers, T . ( 8 ) 144, 145 Chizhov, V.M. (5) 56 Chocron, S. (1) 132, 134 Chojnowski, J. (5) 33 Choo, K.Y. (9) 302 Chottard, G. (6) 372 Chottard, J.-C. ( 6 ) 372 Chou, T.-S. (1) 15 Chou, W.N. ( 8 ) 9, 9 Chowdary, 0. (6) 277, 278 Christodoulou, A. (1) 228; (9) 242 Christodoulou, C. (6) 156 Chu, B.C.F. (6) 226 Chu, F . K . (6) 345 Chu, G. ( 6 ) 410 Chuan, H. (6) 251 Chukbar, T.G. (4) 36 Chupp, J . P . ( 8 ) 17 Church, J.S. (9) 7 38 Churusova, S.G. (5) 13; (9) 118 Ciampolini, M. (1) 128 Cibiskova, N . T . (9) 222 Cielens, J.E. (6) 256 Cilliers, J.J.L.(9) 291 Clancy S. ( 8 ) 205 Clark, J.H. ( 1 ) 215, 299 Clavel, J.-L. (4) 25 Cleave, C. (9) 30 Clegg, W . (I) I0
427
Author Index
C l e l a n d , W.W. ( 6 ) 82 Clement, I . ( 6 ) 66 C l e ve , C . ( 1 ) 188; ( 4 )
86
C l o u e t , G. ( 8 ) 127 Clough, J.M. ( 7 ) 139 Cobb, J.E. ( 1 ) 131 Coburn, M.D. ( 8 ) 29 Cohen, E.A. ( 9 ) 142 Cohen, J.S. ( 6 ) 225 Cohen, S. ( 4 ) 24 Cohrs, M.P. ( 6 ) 282 C o l e , W.M. ( 8 ) 172, 185 Coleman, J . P . ( 6 ) 114 C o l e t t i - P r e v i e r o , M.A.
( 9 ) 284
C o l l i g n o n , L . ( 9 ) 117 C o l l i g n o n , N. ( 5 ) 80,
8 1 , 153; ( 7 ) 79 C o l l i n s , L.J. ( 6 ) 363 C o l l i n s , M . ( 4 ) 58; ( 6 ) 159 Colman, R.F. ( 6 ) 249, 2 50 Colombo, L . ( 4 ) 83 Colquhoun, I . J . ( 1 ) 6 7 , 124; ( 9 ) 59, 90 Combs, P. ( 5 ) 114 Cornrnenges, G. ( 9 ) 263 C o n o l l y , B.A. ( 4 ) 54, 56 ( 6 ) 1 5 3 , 155 C o n n e l l y , P.A. ( 6 ) 56 C o n t r a c t o r , S.R. ( 8 ) 73; ( 9 ) 226 Cook, R.D. ( 5 ) 172; ( 9 ) 312, 313 Cook, S . J . ( I ) 23, 24 Cooke, A.M. ( 4 ) 28 Cooke, M.P., J r . ( 7 ) 59 Cooney, D.A. ( 6 ) 101 Coons, D.E. ( 1 ) 262 Cooper, G.R. ( 1 ) 130 Copper, J.R. ( 9 ) 285 Corda, L . ( 8 ) 110 Cordes, A.W. (8) 148 Cordes, R.E. ( 8 ) 76 C o r d i e r o , M.L. ( 5 ) 144 Corey, E.J. ( 7 ) 103 C o r n e l i u s , R.D. ( 6 ) 167 Cornforth, S i r J. (1) 340, 341 C o r n i l s , B. ( 1 ) 149 Corrado, E. ( 1 ) 116 C o r r i u , R.J.P. ( 2 ) 2: ( 5 ) 39, 41: ( 9 ) 318 C o r s e t , J . ( 7 ) 69 Cosquer, P . ( 1 ) 264 C o st e ro , A.A. ( 7 ) 33 C o st e ro , A.M. ( 1 ) 112
Costisella, 6 . ( 1 ) 181;(43 84: ( 5 ) 90, 146 C o t t o n , F.A. ( 1 ) 111 C o u l l , J.M. ( 4 ) 55; ( 6 )
156
Couret, C.
302
( 1 ) 298, 301,
C o u r e t , H . ( 9 ) 19c C o u t r o t , P . ( 5 ) 78, 85 Coward, J . K . ( 6 ) 115 Cowie, M. ( 2 ) 41 Cowley, A.H. ( 1 ) 59, 223,
248, 250, 279, 306, 327, 328, 332: (2) 38: ( 4 ) 9 8 , 101, 103; ( 9 ) 177, 202 Cox, D.G. ( 7 ) 49 C o y l e - M o r r i s , J.F. ( 6 ) 410 C r a i g , D.C. ( 1 ) 14 C r a i n , P.F. ( 6 ) 4 5 , 46 C r e a r y , X . ( 5 ) 179; ( 9 ) 44 Cremlyn, R.J. ( 8 ) 23 C r e s s w e l l , C.J. ( 1 ) 161; ( 5 ) 138 Crisp, G . T . ( 1 ) 90 Crocco, G.L. ( 7 ) 67 Crook, P . E . (2) 14 Cropper, P . E . ( 1 ) 212 C r o t h e r s , D.M. ( 6 ) 330 Cudat, D. ( 4 ) 95 C u l l e n , W.R. ( 1 ) 62 C u l l e y , S.A. ( 2 ) 31. (4) 4 C u l l i s , P.M. ( 5 ) 1 1 , 36: ( 9 ) 45 Curnrnins, J.H. ( 6 ) 22, 34 Curnrnings, D.G. ( 8 ) 206 Cz i s c h, P. ( 7 ) 66 Dabis c h, T .
123
( 1 ) 330: ( 9 )
Dabrowiak, J.C.
327, 378
Dabkowski, W .
(5) 8
Dahl, B.H.
127
( 6 ) 316,
( 4 ) 21;
( 4 ) 49: ( 6 )
Dahl, 0. ( 4 ) 49, 6 4 ,
6 5 , 6 8 ; ( 6 ) 123, 124, 125, 126, 127 Dahm, 0 . ( 7 ) 45; ( 9 ) 190 Dahmus, M.E. ( 6 ) 260 Daimon, M. ( 8 ) 214 Dai nes , R.A. ( 7 ) 114 D a k t e r n i e k s , 0. ( 9 ) 63a
D a l a l , M. ( 6 ) 101 D a l l e y , N.K. ( 6 ) 8 D alpozzo, R. ( 1 )
184: ( 4 ) 46 ( 1 ) 183 ( 4 ) 79; ( 6 ) 20, 152, 167
Dernha, M.J.
(1)
Danchenko, E.A.
72; ( 9 ) 32, 91
(5)
Oanchenko, M.N.
139
Dangyan, Yu.M.
169
(5)
( 1 ) 96: ( 7 ) 1 5 , 55
D a n i e l , H.
Danion, D. ( 8 ) 21;
( 9 ) 191
D annals, R.F.
(1)
205
Daouk, W.A. ( 9 ) 313 Daran, J.-C. ( 1 )
286
D a r d o i s e , F. ( 9 ) 58 Darensbourg, D.J.
( 8 ) 35
D a r r , E. ( 1 ) 39 Dartiguenave, Y.
(1)
275
( 1 ) 237, 258, 312; ( 4 ) 9 5 , 100; ( 9 ) 1 9 a , 161, 193 D avidson, F. ( 2 ) 31: (4) 4 D avidson, R.S. ( 3 ) 26: ( 5 ) 173 D avies, R.J.H. ( 6 ) 281 D a v i s , D.R. ( 6 ) 4 5 , 59 D a v i s , R.W. ( 6 ) 410 D avisoon, V.J. ( 5 ) 6 ; ( 6 ) 59 Dartrnan, M.
Davydochkina, O . V .
( 5 ) 102
Dawkins, H. J.S.
408
Day, R.O.
7
(6)
(2) 5, 6 ,
D a y r i t , F.M. ( 1 ) 22 Dean, N.M. ( 9 ) 290 de Boer , H.J.R. ( 7 )
66
de Brosse, C.W.
67
(6)
Decedue, C.J. ( 6 ) 9 de C l e r c q , E. ( 6 ) 9 ,
1 3 , 48
Organophosphorus Chemistry
428
J.-P. ( 1 ) 144, 302; ( 9 ) 78, 170 Degener, H.J. ( 9 ) 174, 175 D e g e n h a r d t , C.R. ( 5 ) 127 detlaseth , P.L. (6) 18ODe J a e g e r , R . (8) 36, 169 D e l e p i e r r e , M. ( 6 ) 388 D e l l a r i a , J . F . ( 7 ) 32 Delrnas, M. ( 7 ) 17 Demande, F r . (8) 127 Demidov, V . V . ( 6 ) 43 Dernko, D.M. ( 7 ) 125 Dernuth, A.A. M. ( 1 ) 47 den H a r t o g , J . A . J . ( 6 ) 100 D e n i s , J.-M. ( 1 ) 255 Denmark, S.E. ( 7 ) 19 Denny, M. ( 7 ) 90 Depezay, J.C. ( 7 ) 98 D e p p i s c h , B. ( 1 ) 253 De Riese-Meyer, L . ( 9 ) 26 de R u i t e r , B. ( 2 ) 30; ( 9 ) 4 1 , 228 Dervan, P.B. ( 6 ) 300, 323, 324 de S a r l o , F . ( 9 ) 172 D e s b o i s , M. ( 1 ) 97 Deschenaux, R . ( 1 ) 20 D e s o r c i e , J.L. (8) 65 D e s t r i , 5 . ( 8 ) 187 D e t l o f f , B.S. ( 7 ) 112 D e t t l o f f , M.L. ( 8 ) 138 D e u t s c h , J. ( 4 ) 24 D e u t s c h , F.W. (8) 112 D e u t s c h , W.F. (8) 71, 72, 8 0 ; ( 9 ) 4 6 , 225, 241 Devanesan, P. ( 6 ) 89 Devanesan, P.D. ( 6 ) 10 Devchand, D.K. ( 3 ) 32 D e v i n e , K . G . ( 6 ) 135 D e V i s s e r , A.C. ( 8 ) 183, 184 de Vroorn, E. ( 4 ) 6 1 , 77 : ( 6 ) 163, 218 D e x i a n , W. ( 7 ) 9 Declercq,
D h a t h a t h r e y a n , K.S.
L1
34; ( 9 ) 225, 228, 232 Dhawan, 8. ( 5 ) 31 D i a n o v a , E.N. ( 1 ) 36 , 362, 363: ( 4 ) 88 D i e m e r t . K . ( 9 ) 246 D i e t l , 5. ( 1 ) 287: ( 9 ) 18 D i Giacorno, R. ( 9 ) 63a D i u o n , K.B. ( 9 ) 133 D i Marco, P . ( 8 ) 181
D i n g , W . ( 7 ) 51 D i r k s e n , M.-L. ( 6 ) 288 D i t r i c h , K. ( 7 ) 1 1 3 D i V a i r a , M. ( 1 ) 335 D i x , D.B. ( 6 ) 270 D i x i t , V . M . ( 6 ) 59 D i x o n , D.A. ( 2 ) 3 1 : ( 7 ) 1;
(9) 8
D i z d a r o g l u , M.
288, 289
( 6 ) 287,
DJUTlC, S.W. ( 7 ) 123 D r n i t r i c h e n k o , M.Yu. ( 5 )
74
D r n i t r i e v , V . I . ( 9 ) 154 D o c k n e r , T . ( 1 ) 86 D o g a d i n a , A.V. ( 1 ) 1 6 6 ,
167, 170; ( 5 ) 75, 141, 162, 163; ( 9 ) 100 D o l e n c e , E.K. ( 7 ) 122 D o l e n k o , G . N . ( 9 ) 154, 155 D o l i n n a y a , N . G . ( 6 ) 198 Dornbrowski, B . A . ( 6 ) 326 Dorninguez, D . ( 7 ) 137 D o n a t h , C h . ( 9 ) 222 Dong, L . ( 6 ) 49 D o n s k i k h , V . I . ( 5 ) 71, 72, 74 Donxia, L. ( 7 ) 9 D o r f r n e i s t e r , G. ( 1 ) 356, 357, 371 D o r o n i n , S.V. ( 6 ) 258 Doroshenko, V . V . ( 2 ) 36 D o u g h e r t y , J . P . ( 4 ) 58: ( 6 ) 159, 160 Drach, B.S. (1) 222 Dragland-Meserve, C.J. ( 6 ) 57 D r a k e J.E. ( 5 ) 1 6 , 17 D r a p a i l q , 4.a. (1)' 300, 311: ( 4 ) 93: ( 8 ) 31: ( 9 ) 21 D r e e f , C.E. ( 4 ) 29, 77 D r e s l e r , S . L . ( 6 ) 98 D r e s s l e r , U. ( 1 ) 374; ( 4 ) 91 D r i t i n a , G.J. ( 7 ) 77 D u b e n d o r f f , J.W. ( 6 ) 180 Dubenko, L.G. ( 8 ) 55, 56 Dubey, I.Y. ( 6 ) 138 D u B o i s , D.A. (8) 44 Duborg, A . ( 1 ) 302 D u b r e u i l , Y.L. ( 6 ) 261 Dudchenko, T.N. ( 2 ) 28 Duddeck, H. ( 9 ) 80, 255 D u e r s t , R.W. ( 3 ) 36 D u e s l e r , E.N. ( 1 ) 152 D u f o u r , J . - P . ( 6 ) 355 Du Mont, W.W. ( 9 ) 87 Dunaway-Mariano, D, ( 6 ) 353
Dunn, E.J. Dupont, Y. D q r i g , J.R. D G s t e r , 0. Dutschrnan,
93
( 9 ) 39 ( 6 ) 355 ( 9 ) 138 ( 1 ) 37 G.E. ( 6 )
D u t u s t a , J.P. ( 9 ) 78 D u r a n , H.L. ( 6 ) 230 D y a t k i n a , N.B. ( 6 )
97
D y r b u s c h , M.
( 9 ) 232
( 2 ) 34:
Dzhandzugazyan, K . N .
( 6 ) 255
Dziegielewski,
( 9 ) 122
J.O.
Eastman, A. ( 6 ) 376 6 ) 269 E b e l , J.P. E c k e r t , W.A (6)
333
( 1 342 ; ( 9 ) 248 E c k s t e i n , F. ( 6 ) 58, Eckl, E.
102 Edrnonds, C.G.
4 5 , 46
Edwardson,
( 6 ) 380
(6)
P.A.D.
A.I.
(9)
Efrernov, M.V.
(9)
Efrernov,
132 31 4
E f r e m o v , Ya.Ya.
(4)
Efrernov,
(5)
18
Yu.Ya.
120, 184
E f i n o v , V.A.
'137, 138
(6)
Egan, W . ( 6 ) 202 E g e r t , E. ( 8 ) 47 E g e s t a d , 6. ( 6 ) 114 E i s e n s t e i n , 0. ( 7 ) 8
(9) 7
E j i r i , E. ( 7 ) 138 E l - B a t o u t i , M. ( 9 )
306
E l - D i n , G.N. ( 7 ) 36 E l e f r i t z , R.A. (8)
185
Elgarnal, A . ( 9 ) 80 E l g a m a l , M.H.A. (9)
255
E l G h a r b i , R. ( 7 ) 17 E l i a s , A . J . ( 8 ) 147 E l i e , C.J.J. ( 4 ) 61 E l i e l , E . E . ( 9 ) 54 E l - K a t e b , A.A. ( 7 )
42
Author Index
429
E l K h a t i b , F . ( 4 ) 20:
( 9 ) 143
E l l e n b e r g e r , T.E. ( 6 ) 321 E l l e r m a n , J. ( 1 ) 47 E l - M a l e k , H.A.A. ( 7 ) 42 e l Manouni, D. ( 5 ) 160 E l s c h e n b r o i c h , C. ( 1 ) 336 Endo, M. (8) 58 Endoh, D. ( 6 ) 284 E n g e l h a r d t , L.M. (I) 9 Enholrn, E.J. ( 7 ) 125 E n i i s , M.D. ( 7 ) 104 Eperson, I . C . ( 6 ) 74 E r i t j a , R . ( 6 ) 187,
190, 196 Erker, G . ( 7 ) 65 E r n s t , L . ( 6 ) 386: 9 ) 21 2 E r r a n i , E. ( 1 ) 184: ( 4 ) 46 E r y a n , M.A. ( 8 ) 104 105 Erzhanov, K.B. ( 1 ) 70, 148, 220: ( 9 ) 6 3 Erzhanova, K.B. ( 5 ) 61 E r a 3 t o v , O.A. ( 1 ) 145, 146, 147: ( 9 ) 71, 84 Essignmann, J.M. ( 6 ) 276, 373 E s c u d i e , J . ( 1 ) 298, 301, 332; ( 9 ) 19c Etemad-Moghadharn, G. ( 1 ) 160, 249; ( 4 ) 102: ( 9 ) 25 E t l i s , V . A . ( 5 ) 122 E t o , M. ( 5 ) 167 E t t e r , M.C. ( 3 ) 36 Evans, F.E. ( 6 ) 276 Evans, R.K. ( 6 ) 245, 246 Evans, S . A . ( 1 ) 115: ( 2 ) 1 2 , 13 Evertz, K. 1 ) 322 E v s t i g n e e v a R.P. ( 7 96 Ewig, C.S. ( 9 ) 236
Fabre, J.M. ( 7 ) 56 F a c z h i n , G. ( 1 ) 2Q4 F a c k l e r , J.P. ( 4 ) 35;
( 9 ) 34
F a l c k , J.R.
( 7 ) 9 9 , 101,
102
F a n n i , T. ( 2 ) 17; ( 5 ) 38 F a r a h , S. ( 5 ) 172; ( 9 )
31 2
F a r r i s , C.L.
(8) 215
Fassbender, F.J.
39
( 8 ) 38,
F a t h i , R . ( 9 ) 43 Faulhammer. H.G. ( 6 )
268
F a u l s t i c h , H ( 6 ) 18 Fauq, A . ( 7 ) 109 F a u r e , R. ( 1 179 F a v r e , A . ( 6 261 F a w c e t t , J. 9 ) 192 F a w z i , R . ( 1 307 F e d e r o v , S.G ( 8 ) 78;
( 9 ) 281
( 5 ) 119: ( 8 ) 176 Feng, H. ( 1 ) 34 Feng. W.M. ( 5 ) 24 Feng, X. ( 1 ) 303, 304: ( 9 ) 182 Ferguson, G. (8) 222 F e r i n g a , B.L. ( 9 ) 74 Fedorova, G . K .
F e r n a n d e z - I b a n e z , M.
( 9 ) 1 0 9 , 141 ( 9 ) 301 ( 8 ) 108, 198 F-erraboschi, P . ( 1 ) 140 F e r r e r , P. ( 1 ) 112: ( 7 ) 33 F e r r e r i , C . ( 1 ) 116 F e r r i e r , D.J. ( 6 ) 408 Feshchenko, N.G. ( 1 ) 195, 196: ( 8 ) 176 F e r s h t , A.R. ( 6 ) 44 F e t t e r , A.P. ( 9 ) 117 F e u e r s t e i n , J . ( 6 ) 351 F i d d e r , A. ( 6 ) 163 F i e l d h o u s e , J.W. ( 8 ) 171 F i g u e r u e l o , J.E. ( 9 ) 293 F i l i p p e s c h i , 5. ( 8 ) 99 F i l i p p o v a , E . A . ( 9 ) 140 Fincharn, J.K. ( 8 ) 74, 75, 109; ( 9 ) 224 F i n e t , J.-P. ( 2 ) 3 F i n k , G . ( 8 ) 62 F i n k , J. ( 1 ) 366 F i n k e l m a n n , H. ( 8 ) 77 F i s c h , J. ( 6 ) 160 F i s c h e r , J . ( 1 ) 326 F i s c h e r , M. ( 9 ) 191 F i s h e r , M . ( 8 ) 27 F i t z , T. ( 7 ) 122 F i t z p a t r i c k , N.J. ( 8 6 Fernando, F. Ferrar, W.T.
F i t z p a t r i c k , R.J. ( 8 ) 188 Fiurne, L . ( 6 ) 18 F l i e s s , A. ( 6 ) 263 F l o d , E.C. (8) 198 F l o r e n t j e v , V.A. ( 6 )
95
F l o r i n , N. ( 8 ) 128 F l o y d , R . A . ( 6 ) 285 F l u c k , E . ( 1 ) 98,
172, 218, 290: ( 4 ) 31; ( 7 ) 6: ( 9 ) 1 0 1 , 1 7 8 , 200, 214 F o e l l i n g , P . ( 9 ) 160 Fogg, A.G. ( 9 ) 243 F o h l e n , G. (8) 135 F o l c h e r , G. ( 8 ) 97 F o l e s t , J.C. ( I ) 35 Fornakhin, E.V.
(5)
5 0 , 51
F o n t a i n , E. ( 5 ) 30 F o n t a i n e , C. ( 6 ) 175 F o r d , R . (8) 4 0 , 175,
186
F o r m a k h i n , E.V.
72
(9)
Foss, V.L. ( 8 ) 57 Fossey, J . ( 9 ) 126 Foucaud, A . ( 1 ) 370:
( 4 ) 44: ( 7 ) 18 (6) 175
F o u r r e y , J.L.
Frankenberger, W.T. ( 9 ) 288 F r a t t i n i , M.G. ( 6 )
98
F r e d e r i c k , C.A.
407
Freedman, L.D.
126: ( 5 ) 55
Freeman, G . A . Freeman, H.S.
126: ( 5 ) 55
(6) (1)
( 6 ) 92 (1)
Freeman, S . ( 5 ) 189 F r e i e r , S.M. ( 4 ) 66:
( 6 ) 164, 236 ( 6 ) 73, 7 5 , 79 F r e y e r , G.A. ( 6 ) 344 F r i d l a n d , S.V. ( 1 ) 168; ( 9 ) 132 Friedman, N. ( 7 ) 91 F r i t z , G . ( 1 ) 4 2 , 43, 4 4 , 45 F r i t z , H. ( 9 ) 98 F r o e h l e r , B.C. ( 4 ) 74: ( 6 ) 29, 116 F r e y , P.A.
Organophosphorus Chemistry
430
Frornent, F . ( 7 ) 69 Frost, J.W. ( 5 ) 144 Frye, J.S. ( 3 ) 37 Fu, J.M. ( 9 ) 12 Fuchigarni, T . ( 1 ) 7 Fuchs, P.L. ( 5 ) 83: ( 7 ) 31
Fujii, K. ( 1 ) 10 Fujii, M. ( 4 ) 72, 73;
( 6 ) 30, 142, 143 Fujii, T . ( 6 ) 94 Fujirnoto, K . ( 6 ) 132 Fujino, K. ( 6 ) 166 Fujino, K.-I. ( 4 ) 69 Fujita, K . ( 5 ) 158 Fujiwara, 1. ( 9 ) 207 Fukui, T. ( 6 ) 381 Fukukawa, K . ( 6 ) 16 Fukumrnot, H. ( 7 ) 41 Fukuyama, K . ( 1 ) 78: ( 7 ) 41 Fukyarna, S. (8) 216, 217 Fuller, R.W. ( 6 ) 101 Furlong, E.A. ( 6 ) 283 Furrnan, P.A. ( 6 ) 92 Furneaux, H.M. ( 6 ) 344 Furubayashi, K. ( 9 ) 115 Furukawa, A. ( 8 ) 117 Furusawa, K. ( 6 ) 80 Fyfe, J.A. ( 6 ) 92
Gafurov, E.K. ( 1 ) 209 Gaines, D.F. ( 1 ) 262 Gait, M.J. ( 6 ) 156 Gaitzsch, T. (9) 180 Gajewski, E . ( 6 ) 64 Galiaskarova, R.T. ( 1 ) 361, 362; ( 4 ) 88
Galindo, A. ( 1 ) 108 Galkin, V . I . ( 9 ) 303 Gallagher, M.J. ( 1 ) 14 Galle, K. ( 2 ) 38 Gallo, K.A. ( 4 ) 71: ( 6 ) 200, 399:
( 9 ) 322
Gallos, J.K. ( 7 ) 58 Galvez-Ruano, E. ( 9 ) 109, 141
Garnbero, C . ( 1 ) 140 Garnper, H. ( 6 ) 27A, 275 Ganapathiappan, S. (8) 87 85, 89
Gandru, K. (1) 106 Gangola, P. ( 6 ) 354 Garanti, L. ( 8 ) 61 Garcia, J.L. ( 9 ) 150 Gardiner. K.J. ( 6 ) 348
Gareev, R.D. ( 4 ) 5 ( 7 )
Gilson, G.J.P. ( 6 )
Gareev, R.F. ( 9 ) 266 Garegg, P . 3 . ( 1 ) 114:
Giral, L . ( 7 ) 56 Girault, J.-P. ( 6 )
119
( 4 ) 34, 75, 76: ( 6 ) 26, 120, 121, 122 Gareil, P. ( 3 ) 7; ( 9 ) 286 Garia-Ochoa, S . ( 7 ) 16 Garibina, V . A . ( 5 ) 141: ( 9 ) 100 Garland, M.T. ( 1 ) 345 Garriga, G . ( 6 ) 335 Garrison, J.C. ( 6 ) 56 Garroussian, M. ( 9 ) 325 Gaset, A . ( 7 ) 17 Gasparyan, G.Ts. ( 1 ) 105 G w t i e r , J.C. ( 9 ) 58 Gavina, F. ( 1 ) 112: ( 7 )
33
Gebert, P.H. ( 8 ) 215 Gebeyehu, G. ( 6 ) 101, 233
Gebura, M . ( 8 ) 188 Geiduschek, E.P. ( 6 ) 297
Gemrnill, R.M. ( 6 ) 410 Geoffroy, M. ( 9 ) 125 Geraldes, C.F.G.C. ( 6 ) 362
Gerlach, W.L. ( 6 ) 346 Gerlt, J.A. ( 6 ) 314 Gerrna, H. ( 9 ) 55 Gerrnain, G . ( 1 ) 144; ( 9 ) 78, 170
German, G. ( 6 ) 97 Germeshausen, J. ( 1 ) 38, 41: ( 3 ) 16
Gerry, M.C.L. ( 9 ) 142 Gesteland, R.F. ( 6 ) 271
Gettleman, L. (8) 215 Getz, G.S. ( 6 ) 299 Gevaza, Yu. I. ( 5 ) 115 Ghawi, L. ( 5 ) 172; ( 9 ) 31 2
Ghosez, L . ( 7 ) 76 Ghribi, A . ( 5 ) 78 Gibbons, I . ( 6 ) 87 Gigg, R . ‘ ( 4 ) 28 Gieren, A . ( 9 ) 174, 175 Gilbert, J.C. ( 7 ) 87 Gilbert, W. ( 6 ) 290, 414
Gillarn, I.C. Gillard, R.D. Gilrnore, W.F. Gilpin, M.L.
( 6 ) 233 ( 3 ) 36 ( 7 ) 81 ( 7 ) 133
108
372
Giro, G. ( 8 ) 181 Gish, B.G. ( 9 ) 262 Gladysz, J.A. ( 7 ) 67
Glase, S . A . ( 5 ) 25 Gleason, W.B. ( 3 ) 36 Gleiter, A . ( 1 ) 40; ( 9 ) 152
Gleria, M. (8) 110, 187, 197
Gloede, J.
2 ) 11. ( 5 ) 59 Gobel, K. ( ) 318: ( 8 ) 50 Godguadze, s.A. ( 8 ) 165 Godovika, T S. ( 6 ) 38 Godovikov, N.N. ( 5 ) 168 Godovikova, T.S. ( 6 ) 39 Goetz, J. ( 5 ) 30 Gol, F. ( 1 ) 185: ( 4 ) 41; ( 9 ) 173 Gold, G.H. ( 6 ) 3 Goldberg, I . H . ( 6 ) 321 Goldberg, N.D. ( 6 ) 55 Goldberg, R.N. ( 6 ) 64 Gol’dfarb, E . I . ( 9 ) 72 Gol’din, G.S. (8) 78: ( 9 ) 281 Goldkorn, T . ( 6 ) 241 Goldwhite, H. ( 1 ) 235 Gololobov, Yu.G. ( 8 ) 24 Golovanov, A.N. ( 5 ) 97, 98 Golovanov, A . V . ( 1 ) 190 Golubov, M . I . ( 9 ) 270 Gomelya, N.D. ( 1 195 Gonbeau, D. ( 9 ) 50 Gong, P. ( 6 ) 273 Goodchild, J. ( 6 206 Goodman, M.F. ( 6 187, 190, 196
43 1
Author Index
G o o d r i d g e , R.J. ( 9 ) 47 Goody, R . S . ( 6 ) 71, 351,
384
Goppert, K . E . ( 8 ) 198 G o r d i l l o , 6. ( 9 ) 269 G o r e n s t e i n , D . G . (2) 1 7 ,
1 8 , 20; ( 5 ) 37, 38, 170: ( 9 ) 1 2 , 319 Gorvunov, N.1. ( 8 ) 218 Goryunov, E . I . ( 5 ) 28 Gosney, I . ( 4 ) 104 L o s s e l i n , G. ( 6 ) 176, 21 2 Gouasmia, A . ( 7 ) 56 Gough, S . ( 6 ) 4 Gouygou, M. ( 1 ) 160 Goyne, T . ( 6 ) 320 Goyne, T . E . ( 6 ) 319 Graaskamp, J . M . ( 8 ) 118, ( 9 ) 216 G r a b l e , J . ( 6 ) 407 Grabowski, P . J . ( 6 ) 244 Gracher, M.A. ( 6 ) 254 Gracher, M.K. ( 9 ) 299 Graczyk, P. ( 5 ) 19 Gradov, V . A . ( 1 ) 158 G r a e f f , R.M. ( 6 ) 55 G r a f f e u i l , M. ( 8 ) 98 Graham, J.B. ( 8 ) 148 Grand, A. ( 2 ) 33 G r a n d j e a n , 0 . (1) 8 Grapov, A.F. ( 5 ) 1 3 ; ( 9 ) 118 G r a v i e r , r . ( 7 ) 98 Grayson, J . I . ( 3 ) 33 Gree, R . ( 7 ) 26, 101 G r e e l e e , W.J. ( 5 ) 114 Greene, P . ( 6 ) 407 Gregory, P . R . ( 6 ) 84 Gren, E.J. ( 6 ) 256 Grey, A.E. ( 8 ) 206 G r i b o v , L.A. ( 9 ) 2 G r i e n d , L.V. ( 2 ) 40 G r i f f i n , J.H. ( 6 ) 323 G r i f f i t h s , A.D. ( 6 ) 74 G r i f f i t h s , D . V . ( 2 ) 26; ( 3 ) 12: ( 5 ) 161; ( 9 ) 86 G r i q o r y a n , N.Yu. ( 1 ) 68 G r i l l e r , 0. ( 9 ) 129 G r i m , 5.0. ( 1 ) 124: ( 9 ) 59 G r i m a l d o Moron, J.T. ( 1 ) 202 Grison, C . ( 5 ) 85 Grobe, J , ( 7 ) 272, 273, 274: ( 9 ) 16 Grolleman, C.W.J. ( 8 ) 183, 184 Gross, H. ( 5 ) 146
Gross, M . L .
( 6 ) 401 Grossrnann, G.Z. ( 9 ) 96 Grot.iahn, L . ( 6 ) 399,
401
Gruys, K.J. ( 6 ) 8 4 , 85 Gryaznov, S.M. ( 6 ) 240 Gryaznova, 0 . 1 . ( 6 ) 198 Gryaznova, T . V . ( 1 ) 191,
1 9 2 , 193
Guaglianone, P . ( 6 ) 88 Gubanov, V . A . ( % ) 166 Gudat, D. ( 1 ) 258, 260,
312, 313, 315: ( 9 ) 161 Guedon, G.F. ( 6 ) 108 Guenchg, G . ( 8 ) 97 GuCron, M. ( 6 ) 357 Guqa, P . ( 6 ) 21 G u i t t e t , E. ( 6 ) 175, 372 G u l i e v , A.N. ( 5 ) 84 Gumport, R . I . ( 6 0 184 Gunduz, N. ( 8 ) 79, 8 0 , 112: ( 9 ) 225, 241 Gundur, T . ( 8 ) 79, 80, 112; ( 9 ) 2 2 5 , 241 Guo, H. ( 3 ) 6 Gupta, R . ( 6 ) 46 Gupta, S.V. ( 6 ) 226 G u r a r i i , L . I . ( 9 ) 218, 220 G u r e v i c h , I.E. ( 5 ) 163 G u r e v i c h , P.A. ( 4 ) 9 G u r s k i i , M. ( 9 ) 185 Guseinova, F . I . ( 1 ) 141 Gutierrez-Puebla, E. ( 1 ) 108 G v o z d e k s k i i , A.N. ( 2 ) 29
Hahn, J . ( 1 ) 3 9 ;
( 5 ) 1 3 4 , 135 ( 5 ) 133 ( 6 ) 160 ( 8 ) 44 E. ( 6 ) 261 H a j j , A.N. ( 9 ) 313
Haiduc, I . Haines, L . H a i n i , R. Hajnsdorf,
(8)
H a l a s a , A.F.
171
H a l e , K.J. ( 1 ) 121 H a l e y , B.E. ( 6 ) 245,
246, 247
H a l l , C.D. H a l l , T.J.
( 9 ) 239
(2) 14
( 1 ) 198:
H a l t i w a n q e r , R.C.
( 4 ) 4 2 , 43; ( 9 ) 63a, 88, 179 ( 7 ) 107, 108 Hamada, Y . ( 9 ) 206 Harnamoto, 5. ( 4 ) 70; ( 6 ) 146 Hambley, T . W . ( 9 ) 47 Harnblin, M.R. ( 6 ) 34 Hamelin, J . ( 1 ) 165, 264
Hamada, T.
H a m i l l , B.J.
136
Hammerschrnidt, F. ( 5 ) 32: ( 9 ) 205 Hammond, G.B. ( 5 )
70, 92: ( 7 ) 74
Hampel, A. ( 6 ) 346 Hanamoto, T . ( 1 )
225; ( 3 ) 1
Handoo, H.L.
106
Hanessian, S. Haase, D. ( 1 ) 217 H a c k e t t , M. ( 1 ) 1 H a c k l i n , H. ( 9 ) 64 Hackney, D.D. ( 6 ) 70 Haddon, R.C. ( 8 ) 179 H a d z i y e v , D . ( 9 ) 292 Haegele, G. ( 5 ) 138;
( 9 ) 76, 8 3 , 110, 1 9 7 , 198 Haenni, A.L. ( 6 ) 268 Haenel, P . ( 9 ) 240 H a e r t l e , T. ( 6 ) 219 H a f e z , T.S. ( 2 ) 22 H a f n e r , A. ( 4 ) 13 H s g e l e , G . ( 1 ) 1 6 1 , 162 Hageman, H.J. ( 3 ) 26 Hagnauer, G.L. ( 8 ) 174, 189
(6)
94
(1) (7)
Hanqzhou, G. ( 9 ) 260 H a n i , M. ( 9 ) 80 H a n i , R. ( 1 ) 118;
( 8 ) 41, 1 7 4 , 175
H a n i k a , G. ( 1 ) 54 Hanke, W . ( 1 ) 95 Hanna, A.G. ( 9 ) 80,
255
Hanna, M.T. ( 9 ) 306 Hara, M. ( 8 ) 203 H a r b r i d g e , J.B. ( 7 )
133
Hzrd, H. ( 6 ) 366' Hardy, L . C . ( 8 ) 205 H a r g e r , M.J.P. (5)
186, 187, 1 8 8 ,
432
189 H a r g i s , J.H. ( 1 ) 198: ( 9 ) 239 H a r i c h , K.C. ( 8 ) 77 H a r l a n d , J.J. ( 2 ) 5 Harmenberg, J. ( 9 ) 292 Haromy, T.P. ( 6 ) 353 H a r r i s , G. ( 6 ) 99 H a r r i s , J . ( 6 ) 285 H a r r i s , P.J. ( 8 ) 77 H a r r i s , R.K. ( 1 ) 161: ( 5 ) 138 H a r r i s , S.M. ( 7 ) 29 H a r r i s o n , B. ( 6 ) 238 H a r t l e y , J.A. ( 6 ) 293 Hartmann, C. ( 7 ) 64 Hartman, K.A. ( 6 ) 406 Hartman, H. ( 7 ) 38 Hartmann, W. ( 5 ) 59 H a r u i , N. ( 1 ) 224: ( 7 ) 28 Harusawa, S. ( 5 ) 26, 27 Hatakeyama, '5. ( 7 ) 112 Hashida, T . ( 1 ) 251 Hashirnoto, H. ( 1 ) 50 Hashirnoto, Y . ( 6 ) 317 Hashizume, T . ( 6 ) 46 Hasim, H.A. ( 8 ) 49 Hata, T. ( 4 ) 67, 72, 73; ( 6 ) 30, 133, 134, 139, 140, 141, 142, 143, 149, 170 Hatano, H. ( 6 ) 381 H a t t o r i , M. ( 1 ) 29 Haug, B.L. ( 6 ) 226 Haug, W. ( 1 ) 330: ( 9 ) 123 Haupt, E.T.K. ( 9 ) 79 Havranek, M. ( 6 ) 90 Hayakawa, Y . ( 4 ) 60: ( 6 ) 7, 128, 147, 177 Hayase, Y. ( 6 ) 171, 301 H a ya s h i , K . ( 6 ) 238 Hayatsu, H. ( 6 ) 229 Hayes, J.E. ( 1 ) 223; ( 7 ) 46 Haynes, R.K. ( 3 ) 34,35 H e a r s t , J.E. ( 6 ) 274, 275 Heath, G.A. ( 1 ) 250 Heathcock, C.H. ( 7 ) 128 Hecht, S.M. ( 6 ) 309, 315 Hecker, S . J . ( 7 ) 128 Heckmann, G. ( 1 ) 98, 290: ( 9 ) 214 H e g a r t y , A.F. ( 1 ) 276: ( 3 ) 17; ( 8 ) 7 Heide, W. ( 9 ) 325 H e i k k i l a e , .I.( 6 ) 37 H e i l , B. ( 9 ) 77
Organophosphorus Chemistry
Heine, 3. ( 9 ) 64 H e i n i c h a r t , J.P. ( 1 ) 210 H e i n i c k e , J. ( 1 ) 63, 354, 355; ( 4 ) 81: ( 5 ) 91: ( 9 ) 147 Hei nz e, J. ( 7 ) 27 H'elzne, C. ( 6 ) 117, 328 H e l l e r , J. ( 8 ) 182 Hellman, M.Y. ( 8 ) 179 Henderson, R.A. ( 1 ) 153 Hennawy, I . T . ( 7 ) 42 Henner, W.D. ( 6 ) 283 Henri c hs on, C. ( 6 ) 120, 122 H e r b s t , R . ( 8 ) 47 Herc ouet, A. ( 1 ) 200 H e r d e r i n g , W. ( 6 ) 33 H e r g e n r o t h e r , W.L. ( 8 ) 171 H e r i n g , G . ( 5 ) 30 Herman, F. ( 6 ) 372 Herman, T.M. ( 6 ) 88 Herrnans, J.P.G. ( 4 ) 61 Herradon, 6. ( 1 ) 208; ( 7 ) 16 Herrmann, E . ( 5 ) 44, 63: (8) 22, 37 Herrmann, T.P. ( 6 ) 354 Heubel, J . ( 8 ) 36 Heuer, L . ( 1 ) 173 Hey, E. ( 1 ) 9, 99 Heydt, H. ( 1 ) 308, 309 Heyman, R.A. ( 6 ) 55 Hietkarnp, S. ( 1 ) 18, 65, 185: ( 4 ) 41 H i g g i n s , S . J . ( 1 ) 49 H i g u c h i , T. ( 9 ) 164, 165 H i l l , T . G . ( 9 ) 61, 63a H i l l e r , W. ( 1 ) 307 Himes, R.H. ( 6 ) 81 H i r a o k a , H. ( 8 ) 219 H i r a o k a , N. ( 6 ) 238 H i r o o k a , S. (7) 138 H i r o t a , S. ( 1 ) 78 H i r o t s u , K . ( 9 ) 164, 165 H i r s c h b e r g , C.B. ( 6 ) 248 H i t c h c o c k , P.B. ( 1 ) 291, 293, 294, 296, 316, 317; ( 4 ) 89; ( 8 ) 49 Ho, C.K. ( 6 ) 44 Hobbs, J.B. ( 6 ) 25 Hodge, P. ( 1 ) 104 Hoeve, W. ( 9 ) 225 Hoffmann, M. ( 5 ) 110 Hoffmann, R . ( 8 ) 68 Hoffmann, R.W. ( 7 ) 113 Hogg, A.M. ( 6 ) 400 Holand, 5. ( 1 ) 337, 338 Hol brook , S.R. ( 6 ) 275
H ole, E.O. ( 9 ) 131 H o l l e r , E. ( 6 ) 370, 2 74 Holm, K.H. ( 7 ) 86 Holmes, J.M. ( 2 ) 5, 7 Holmes, K . C . ( 6 ) 384 Holmes, R.R. ( 2 ) 5, 6, 7 H o l t z c l a w , J.R. ( 9 ) 253 H oly, A. ( 6 ) 13 H z l z l , W. ( 1 ) 177 Hong, C.I. ( 6 ) 113 Honjo, M. ( 9 ) 207 H iinle, W. ( 1 ) 45 Honnens, J. ( 6 ) 123 Hope, E.G. ( 1 ) 25 Hopf, H. ( 7 ) 92 H o r i c h i , T . ( 8 ) 140 Horn, T . ( 4 ) 51, 53: ( 6 ) 154 H o r n i g , H. ( 6 ) 343 H o r o w i t z , D.M. ( 6 ) 190 H o r w i t z , 5.6. ( 6 ) 31 2 Hosang, 0. ( 9 ) 98 H oskins, J. ( 6 ) 390 H o s s e i n i , H.E. ( 9 ) 16 H o s s e i n i , M.W. ( 6 ) 61, 62 Hosoda, A. ( 7 ) 93 Hotoda, H. ( 6 ) 133, 134 H oussin, R. ( 1 ) 210 H o v a t t e r , K.R. ( 6 ) 232 Howard, F.B. ( 6 ) 225 Howarth, T . T . ( 7 ) 133 Hoz, S. ( 9 ) 39 Huaming, Z . ( 7 ) 9 Huang, D.-D. ( 6 ) 4 Huang, M.H.A. ( 9 ) 285 Huang, Y . ( 6 ) 249: ( 7 ) 105 (7) Huang, Y.-Z. 24, 25 Huber, 5. ( 9 ) 23 Hubner, T. ( 9 ) 174, 175 Huch, V. (8) 45: ( 9 ) 187, 189 Hudson, H.R. ( 4 ) 15
Author Index
Huguenin, L.M. ( 1 ) 341 Huisgen, R. ( 3 ) 28 Hull, R. ( 6 ) 265 Hulst, A.G. ( 9 ) 254, 256
Hunerbein, J. ( 1 ) 151; ( 9 ) 70
Hung, S.C. ( 1 ) 15 Hunt, T . ( 6 ) 306 Hunter, W.N. ( 6 ) 404 Huong, G. ( 5 ) 67 Hurst, W . ( 9 ) 292 Hursthouse, M.B. ( 1 )
133; ( 8 ) 70, 71, 72, 73, 74, 75, 109, 111, 112; ( 9 ) 4 6 , 56, 1 2 0 , 224, 225, 226 Hurwitz, J. ( 6 ) 344 HUSS, S . ( 6 ) 1 7 6 , 212 Hussain, W. ( 1 ) 153 Hussong, R. ( 1 ) 308, 309 Hutchins, R.O. ( 5 ) 182 Hutchinson, D.W. ( 5 ) 157 Huttner, G. ( 1 ) 322, 323, 329: ( 8 ) 45 Huy, N.H.T. ( 1 ) 325, 326 Huynh-Dinh, T . ( 6 ) 372, 39 1 Hylemon, P.B. ( 6 ) 114
Iagrossi, A. ( 5 ) 1 1 , 36 Ibrahim, E.H. ( 9 ) 56 Ibsn’ez, F . ( 1 ) 107 Ide, H. ( 6 ) 86 Igau, A. ( 1 ) 275 Ignat’ev, S.N. ( 9 ) 84 Ignat’ev, Yu.A. ( 5 ) 5 Ignatov, M.E. ( 8 ) 125 Iqolen, J. ( 6 ) 372, 388, 391
Iio, H. ( 7 ) 22, 23 Iino, Y . ( 8 ) 52 Iijimo, H. ( 6 ) 317 Ikedo, M. ( 5 ) 167 Jkeda, N. ( 3 ) 27: ( 7 ) 14
Ikeda, S. ( 6 ) 112 Ikeda, Y. ( 3 ) 27: ( 7 ) 14
Ikemura, T. ( 6 ) 280 Iksanova, S.V. ( 1 ) 239; ( 2 ) 8: ( 9 ) 6 5 , 94
Ikehara, M. ( 4 ) 69; ( 6 )
131, 132, 144, 145, 157, 1 6 1 , 165 166, 182
433
Ilamov, R . G . ( 9 ) 72 Ilves, H. ( 6 ) 296 Il’yasov, R.N. ( 1 ) 70 Imai, J. ( 6 ) 176, 207 Imai, K . ( 6 ) 168, 169 Imamoto, T . ( 1 ) 80; ( 3 ) 8
Imamura, S. ( 6 ) 16 Imao, K . ( 6 ) 15 Imbach, J.-L. ( 4 ) 25: ( 6 ) 173, 176, 212
Imura, A. ( 6 ) 131 Inamoto, N. ( 1 ) 251,
284, 288: ( 5 ) 123: ( 9 ) 164, 165 Inanarni, 0 . ( 6 ) 284 Inaoka, T . ( 6 ) 32 Indzhikyan, M.A ( 5 ) 64 Indzhikyan, M.G ( 1 ) 68, 9 1 , 1 0 5 , 206 ( 8 ) 103 Inners, R.E. ( 7 12 Inners, R.R. ( 2 1 6 ; ( 9 ) 183 Inocencio, P.A. ( 5 ) 1 9 ( 9 ) 44 Inokawa. 5 . ( 5 ) 158 Inoue, H. ( 6 ) 1 3 0 , 13 1 7 1 , 186, 1 9 3 , 301 302 Inoue, I. ( 6 ) 332 Inoue, K . ( 3 ) 39, 40 Inoue, T . ( 6 ) 334, 336 Inoue, T . I . ( 6 ) 335 Inoue, Y. ( 6 ) 131 Inshakova, V.T. ( 1 ) 159 Iogrossi, A. ( 9 ) 45 Ionin, €3.1. ( I ) 166, 167, 170 ( 5 ) 75, 1 0 4 , 116, 141, 1 5 0 , 162, 163; ( 9 ) 1 0 0 , 117 Ionkin, A.S. ( 1 ) 147: ( 9 ) 84 Ireland, R.E. ( 7 ) 131 Irie, M . ( 5 ) 167 Isaacs, N.S. ( 7 ) 36; ( 9 ) 307 Isaev, V.B. ( 8 ) 104, 105 Isaeva, G.M. ( 1 ) 148, 220; ( 9 ) 60 Isakov, M. ( 6 ) 71 Ishibashi, H. ( 5 ) 167 Ishida, M. ( 7 ) 4 Ishihara, T . ( 5 ) 89 Ishii, K . ( 9 ) 322 Ishizaki, Y. ( 6 ) 238 Ishmaeva, €.A. ( 3 ) 23: ( 9 ) 234, 235, 237 Islamov, R.G. ( 5 ) 51 Ismailov, V.M. ( 1 ) 141; ( 5 ) 73, 84
Isono. J. ( 6 ) 51 Issleib, K. ( 1 ) 3 , 256
Itakura, K. ( 6 ) 190 Itani, A. ( 5 ) 172 Ito,
s.
( 8 ) 213
Ito, T . ( 6 ) 169 Itzstein, M.V. ( 7 ) 80
Ivanov, S. ( 9 ) 316 Ivanov, S.K. ( 9 ) 78 Ivanova, N.L. ( 9 ) 299
Iverson, B.L. ( 6 ) 300 Ives, D.H. ( 6 ) 112 Iwai, S . ( 6 ) 1 3 1 ,
132, 161, 171, 186, 1 9 3 , 301 Iwamoto, N. ( 5 ) 1 4 2 , 143 Iwata, Y . ( 6 ) 94 Iyengar, R. ( 6 ) 7 3 , 78 Izba, W . G . ( 8 ) 129 Izhboldina, L . P . ( 5 ) 71
Jablonski, J.-A. ( 6 ) 150
Jackson, L.A. ( 8 ) 77 Jacobs, K . ( 6 ) 160 Jageland, P.T. ( 5 ) 138
Jakob, P. ( 5 ) 30 Jakobi, U. ( 1 ) 342 Jamali, H.A.R. ( 5 ) 161
James, T.L. ( 6 ) 199 James Privett, J.A. ( 8 ) 148
Jamoulle, J.C. ( 6 ) 207, 213, 214
Jankowski, K . ( 6 ) 399
Jannakoudakis, 0. ( 1 ) 228: ( 9 ) 242
Janssen, R.A.J. ( 9 ) 128
Jasim, H.A. ( 1 ) 317 Jastreboff, M.M. ( 6 ) 41 1
Jawad, H. ( 1 ) 75 Jay, D.G. ( 6 ) 414 Jazwinski, J. ( 6 ) 329
Jeong, I.H. ( 7 ) 49 Jenkins, 1.0. ( 9 ) 103
Organophosphorus Chemistry
434
Jensen, D.E. ( 6 ) 234 J h u r a n i , P . ( 6 ) 231 J i a n g , H. ( 6 ) 288 J i b r i l , I . ( 8 ) 46 J i n , X. ( 5 ) 67: (9) 81 J i n , Y . ( 6 ) 273 J i n g , G . ( 6 ) 235 J i r i c n y , J. ( 6 ) 189 John, J. ( 6 ) 351 Johns, D.G. ( 6 ) 101 Johnson, C . R . ( 1 ) 80:
( 3 ) 8 . ( 8 ) 172, 185 Johnson, E.C. (6) 2 Johnson, J.D. ( 6 ) 54, 246 Johnson, N.P. ( 6 ) 375 Johnson, R.B. ( 3 ) 36 Johnson, R.D. ( 9 ) 138 Johnson, T.B. ( 6 ) 115 Jones, A.S. ( 6 ) 11. ( 9 ) 219 Jones, C . R . ( 9 ) 12 Jones, R . A . ( 1 ) 59 Johns, R.B. ( 4 ) 52, 59 Jones, R . J . ( 7 ) 135 Jones, R . L . ( 6 ) 395, 396 Jordaan, A.M. (9) 292 Jordan, A.D., J r . ( 7 ) 13 Jordan, F. ( 9 ) 4 3 Jorgensen, T.J. ( 6 ) 283 J o s h i , R.L. ( 6 ) 268 J o s t , K.H. ( 9 ) 222 Joussen, R . ( 3 ) 29 J u a r i s t i , E. ( 9 ) 269 J u i l l a r d , M. ( 4 ) 22 J u l i a , M. ( 5 ) 7 Juneau, M.K. ( 8 ) 82, 84 Jung, S.H. ( 1 ) 103: ( 7 ) 20, 21 J u r k s c h a t , K. ( 1 ) 4 , 6 1 , 144: ( 9 ) 78, 170 J u s t , G. ( 6 ) 370; ( 7 ) 100, 120 J u t z i , P. ( 1 ) 127, 236, 2 5 7 ; ( 4 ) 100: ( 9 ) 19a J y - S h i h Wang ( 5 ) 21
Kaba, L . ( 6 ) 261 Kabachnik, M . I . ( 1 ) 227: ( 2 ) 39: ( 5 ) 168: ( 9 )
127
( 1 ) 207: ( 4 ) 32, 40: ( 5 ) 28; ( 9 ) 89 Kachensky, D.F. ( 7 ) 129 Kachkovskaya, L.S. ( 1 ) 265, 277 Kabachnik, M.M.
Karpova. G . G .
K a d e d i i , L . I . ( 5 ) 165 K a d l u b a r , F . F . ( 6 ) 276 Kadonga, J.T. ( 6 ) 242 Kadyrov, R . A . ( 9 ) 10,
255, 256
( 1 ) 51, 52, 53, 54, 55,
Karsch, H.H.
56 Karsen, W.E. ( 6 ) 67 Karwan, R . ( 6 ) 303 K a r w a t z k i , A . ( 8 ) 15 Kasaharn, M. ( 8 ) 6’3 K a s a i , H. ( 6 ) 193,
2 38
Kaga, K . ( 7 ) 4 K a i s e r , K . ( 4 ) 57: ( 6 )
196
K a i s e r , M . ( 9 ) 80 K a j i n o , 11. ( 6 ) 147 K a j i w a r a , M . ( 8 ) 180,
286
K a j i w a r a , N. ( 8 ) 137 K a k i u c h i , H. ( 1 ) 231 K a l a b i n a , A.V. ( 5 ) 171:
( 9 ) 320
350, 351
(6)
K a l ’ c h e n k o , V.I. ( 9 ) 67 Kalibabchuk, N . N . ( 1 ) 110: ( 9 ) 35 K a l i n i c h e n k o , E.N. ( 6 )
210
Kamaike, K. ( 6 ) 168 Kamal, M.M. ( 9 ) 245 Karnalov, A.M. ( 5 ) 2 K a m i n s k i , J. ( 1 ) 235 K a m i n s k i , R . ( 9 ) 261 K a n a i , H. ( 7 ) 126 Kanaya, E. ( 6 ) 221 K a n d i l , A . A . ( 5 ) 68 K a n j o l i a , R.K. ( 9 )
Katsyuba, S . A .
140
249
K a p l a n , B.E.
Katzurina, V.P.
220
Kaub, J.
( 6 ) 187,
50
1 9 0 , 196
30, 31
(8)
( 1 ) 318: ( 8 )
Kauffmann,
K a p l a n , M.L. Kapoor, P.N. Kappen, L.S. Karaghiosoff,
( 8 ) 179 ( 1 ) 19 ( 6 ) 321 K. (1) 188. 364; ( 4 ) 8 6 , 87; ( 9 ) 30, 167 Karanewsky, D.S. (5) 106 K a r a s i k , A.A. ( 1 ) 145 Kardanov, N.A. ( 5 ) 168 Karelov, A.A. ( 9 ) 4 K a r g i n , Yu.M. ( 5 ) 5 K a r i m , A . ( 1 ) 180; ( 4 ) 82 K a r i m u l l i n , 5h.A. ( 4 ) 23 Karkozov, V . G . ( 8 ) 136 K a r l , R. ( 5 ) 30 K a r l s o n , U. ( 9 ) 288 K a r l s s o n , A.H.J. ( 9 ) 292 Karolak-Wojciechowska, (9) 5
(9)
( 8 ) 47, 158, 159: ( 9 ) 264 K a t t i , S.B. ( 6 ) 32 K a t z h e n d l e r , J. ( 4 ) 24 K a t t i , K.V.
K a n n a n j a r a , C.G. ( 6 ) 4 K a n n e r t , G. ( 1 ) 132,
134
(5) 128, 145, 165 K a s h k i n , A . V . ( 5 ) 28 Kashtanova, N.M. ( 2 ) 35 KasDruk, 6 . 1 . ( 9 ) 317 K a s s a v e t i s , G.A. ( 6 ) 297 K a s u k h i n , L . F . (8) 24, 25: ( 9 ) 324 Katoaka, 5 . ( 6 ) 51 K a t o , H. ( 6 ) 147 K a t o , M. ( 6 ) 51 K a t o , 5. ( 7 ) 4 K a t o , T . ( 7 ) 138 K a t s i f i s , A.G. ( 3 ) 35 Kashernirov, B.A.
207
K a l b i t z e r , H.R.
(6)
T.
( 3 ) 29,
Kavsan, V . M . ( 6 ) 95 Kawasaki, T . ( 9 ) 292 Kawase, Y. ( 6 ) 186 Kawashima, T . ( 1 ) 288-
( 5 ) 123; ( 9 ) 325
Kawazoe, Y . ( 6 ) 286 Kay, P.B. ( 9 ) 104 Kay, P.S. ( 6 ) 334,
336
(1) 1 7 1 , 194: ( 9 ) 107 Kazantsev, A.V. ( 1 ) 6 , 209 Kazimierczuk, Z. ( 6 ) 53 Kazmierczak, K . (1 ) 39 Kaznetsova, S.Ya. ( 9 ) 258 K e a t , R. ( 8 ) 75; ( 9 ) 9 2 , 224 Kazankova, M.A.
,J .
435
Author Index
Keck, G.E. ( 7 ) 129 Keck, H. ( 9 ) 251 Keglevich, G . ( 1 ) 175:
( 3 ) 14: ( 4 ) 1 5 , 4 7 ; (8) 18; ( 9 ) 33 Kehne, A . ( 6 ) 33, 191 Keitel, 1. ( 5 ) 90 Kell, B . ( 6 ) 390 Kelland, J.G. ( 6 ) 400 Keller, H. ( 9 ) 200 Keller, K. (8) 26 Keller, P.B. ( 6 ) 406 Kelley, J.A. ( 6 ) 101 Kellner, K. ( 1 ) 95 Kellogg, R.M. ( 9 ) 74 Kelly, J.W. ( 1 ) 115; ( 2 ) 12, I 3 Kemmitt, R.S.W. ( 9 ) 192 Kernmitt, T . ( 1 ) 25 Kemp, T . J . ( 1 ) 137: ( 3 ) 38 Kennard, 0. ( 6 ) 404 Kennepohl, D. ( 2 ) 41 Kent, A.G. ( 1 ) 23 Kent, D . E . ( 9 ) 272 Kerschl, S . ( 1 ) 360 Kessler, H. ( 9 ) 76 Keys, B.A. ( 9 ) 325 Khachatryan. R . A . ( 1 ) 6 8 , 9 1 , 206: ( 5 ) 64 Khairullin, V.K. ( 1 ) 169 Khalil, F.Y. ( 9 ) 306 Khalil, Kh.M. ( 7 ) 43 Khalimskaya, L.M. ( 6 ) 38
Khamsi, J. (2) 3 Khanna, R.J. ( 1 ) 124 Khanna, R.K. 9 1 ) 12 Khaskin, B.A. ( 5 ) 147: ( 9 ) 259
Khatib, F.E1. ( 1 ) 174 Khawli, L . A . ( 5 ) 105 Khokhlov, P.S. ( 5 ) 1 2 8 , 1 4 5 , 165
Khoshdel, E. ( 1 ) 104 Khusainova, N.G. (5) 1 8 0 , 184
Kibala, P . A . ( 1 ) 111 Kibardin, A.M. ( 1 ) 191, 192, 193
Kido, M . ( 9 ) 206 Kielbasinski, P. ( 5 ) 53
Kieper, G . ( 3 ) 30 Kierzek, R . ( 4 ) 6 6 ; ( 6 ) 164, 236
Kigoshi, H. ( 7 ) 130
Kilduff, J . E . ( 1 ) 248,
250: ( 4 ) 101 Kilic, E. ( 8 ) 79, 8 0 , 112: ( 9 ) 225, 241 Kilkuskie, R.E. ( 6 ) 31 5 Kim, C . (8) 178 Kim, S. ( 5 ) 2 3 Kim, T . V . ( 8 ) 25 Kimbro, K.S. ( 6 ) 98 Kinoyan, F.S. ( 7 ) 206 Kinzel, E . ( 1 ) 28 Kirisits, A.J. ( 6 ) 113 Kirch, U . ( 6 ) 83 Kireev, V . V . ( 8 ) 1 0 1 , 1 0 2 , 104, 105, 106, 113, 167, 195 Kirk, K . ( 9 ) 1 4 Kise, H. ( 9 ) 304 Kishikawa, H. ( 6 ) 316 Kisilenko, A.A. ( I ) 196 Kister, K.-P. ( 6 ) 333 Kitade, Y . ( 6 ) 211 Kitaev, Yu. P . ( 9 ) 151 Kitajima, Y. ( 5 ) 155. ( 7 ) 73 Klas, N. ( 3 ) 30 Klaus, W. ( 6 ) 384
Klebanskii, E.O.
(1)
238, 239, 240, 241. ( 4 ) 90: ( 9 ) 2 2 , 9 4 , 166 Klein, J . A . (8) 170 Klein, L . L . ( 7 ) 132 Klein, T . M . ( 6 ) b12 Kleiner, H.J. ( 1 ) 156 Klevan, L . ( 6 ) 233 Kliebisch, U . ( 8 ) 26 Klimentova, G.Yu. ( 4 ) 9
Klingebiel, U . ( 8 ) 26 Klobuear, W.D. (8) 84 Klochkov, A.N. ( 9 ) 323 Klose, G .
( 9 ) 11 Klosinski, P . ( 5 ) 42: ( 9 ) 298 Kluge, A.F. ( 5 ) 124 Kluger, R . ( 2 ) 1 9 a , 1% Knebl, A. ( 9 ) 214 Knight, W.8. ( 6 ) 82, 353 Kniper, M. ( 8 ) 127 Knebl, A . ( 1 ) 290 Knoch, F. ( 1 ) 151, 261, 266, 267, 268, 269, 283, 285, 339: ( 8 ) 3 9 ( 9 ) 196, 6 9 , 70, 157, 158, 159, 160, 162, 163, 168, 171, 180 Knockel, P. ( 5 ) 117 Knoebel, R. ( 9 ) 234, 235
Knorrie, D.G.
253
(6)
KO, Y . Y . C . ( 9 ) 172 Kobayashi, 5 . ( I ) 232
Kobayashi, T . (8) 52, 155
Kobayshi, Y. ( 7 ) 93 Kobbani, A. ( 9 ) 313 Kobets, N.D. ( 6 ) 253 Kochta, J . ( 1 ) 268: ( 9 ) 158
Kodera, H. ( 8 ) 63 Koeckritz, A . (8) 10: ( 9 ) 38
Koeckritz, P . ( 9 ) 38 Koeckkritz, P. (8) 1 0 Koelle, P . ( 9 ) 176 Koenig, M. ( 1 ) 160, 1 7 4 , 249: (4) 2 0 , 102: ( 9 ) 2 5 , 143
Koerwitz, F.L. ( 7 ) 77 Koester, H. ( 6 ) 129 Kohda, K. ( 6 ) 286 Kohn, K.W. ( 6 ) 293 Koizumi, M. ( 6 ) 161 Kojima, M. ( 8 ) 1 9 2 , 193
Kolbina, V.E. ( 5 ) 72 Kolesnik, N.P. ( 2 ) 8 ( 9 ) 65
Kolesova, V . A .
( 5 ) 49: ( 9 ) 252 r Koll, 8. ( 1 ) 39, 40 KGlle, P. ( 1 ) 305 Kolling, E . ( 7 ) 92 Kolocheva, T . I . ( 6 ) 254 Kolodii, Ya. I. ( 9 ) 295 Kolodny, N.H. ( 6 ) 363
Kolodyazhnyi, 0.1.
( 1 ) 110, 117, 271, 278: ( 2 ) 15: ( 9 ) 1 7 , 25, 35, 51 Komlev, I . V . ( 9 ) 149 Komoroski, R . A . ( 4 ) 35; ( 9 ) 34 K6nig, T . ( 4 ) 104 Konno, H . ( 7 ) 65: ( 9 ) 153 Konovalova, I . v. (1 ) 199; (2) 25, 35; (4) 6 Koole, L.H. (2) 21: ( 6 ) 24 Kormachev, V . V . ( 1 ) 158 Korneeva, G.A. ( 6 ) 347
Organophosphorus Chemistry
436
( 5 ) 136,
K o r o l e v , O.S.
176
K o r o l e v a , O.N. ( 6 ) 240 Korshak, V . V . ( 8 ) 165,
167
(2) 27; ( 4 ) 18; ( 5 ) 120 Korshunov, R.L. ( 4 ) 18; ( 5 ) 120, 184 Koshman, D . A . ( 1 ) 211 K o s l o v , E.S. ( 8 ) 55, 56 Kostin, V.P. ( 4 ) 23 K o t t w l t z , B. ( 9 ) 246 K o v k s , T . ( 6 ) 227 K o z a r i c h , J.W. ( 6 ) 310, 311, 314 K o z i a r a , A . ( 8 ) 16 Kosova, G.N. ( 8 ) 167 Kotovych, G. ( 6 ) 388 K o w a l s k i , J. ( 5 ) 33
K o r s h i n , E.E.
Kozenasheva, L . Ya.
( 5 ) 12 Kozhushko, B.N.
36
(2)
(1) 103, ( 7 ) 20, 21, 110 K o z i o l k i e w i c z , M. ( 4 ) 71; ( 6 ) 200 K o z l o v , E.S. ( 9 ) 127 K o r o l e v , O.S. ( 9 ) 135 K o z l o v , V.A. ( 5 ) 13; ( 9 ) 118 K r a a i j k a m p , J.G. ( 1 ) Kozikowski, A.P.
282
Kraemer, R . ( 9 ) 111 Kraevskll, A.A. (6)
97
Kramer, F.R. Kramer, J.B.
(6) 14
( 6 ) 266 ( 4 ) 12:
K r a n n i c h , L.K.
249
(9)
Krasnomolova, L.P.
116 74
Krause, N. ( 7 ) 92 K r a v t s o v a , S.F. ( 8 ) 78;
( 9 ) 281
208
( 9 ) 73,
K r a w i e c k a , B. ( 5 ) 177 Krayevsky, A . A . ( 6 ) 95,
96
( 1 ) 237, 258, 312 ( 4 ) 9 5 , 100; ( 9 ) 1 9 a , 1 6 1 , 193
Krebs, B.
Kudryavtsev, A.A.
28
(8)
Kudrya, T.N. ( 9 ) 137 Kudryova, T.N. ( 9 ) 209 Kudyakov, N.M. ( 1 ) 66 Kudyakov, N . V . ( 9 ) 155 Kueckelhaus, W. ( 9 ) 7 6 ,
8 3 , 110, 197, 198
K u h l b o r n , S. ( 9 ) 251 Kuhm, P. ( 1 ) 98 Kuhn, N. ( 9 ) 42 Kuhn, R . ( 9 ) 193 Kuhn, W . ( 9 ) 64 Kukalenko, S.S. ( 5 ) 128 Kukhareva, T.S. ( 4 ) 36;
( 5 ) 102
(9)
K r a t i k o v , V . I . ( 9 ) 144 K r a t z e r , R.H. ( 1 ) 7 3 ,
Krawczyk, E.
J.N. ( 4 ) 58: ( 6 ) 159, 160 K r i l o v , M. ( 9 ) 7 9 K r i s h n a m u r t h y , S.S. ( 8 ) 6 6 , 8 7 , 88, 89: ( 9 ) 264 K r i t z y n , A.M. ( 6 ) 95 K r i v c h u n , M . N . ( 1 ) 170 Kroenke, W.J. ( 4 ) 35: ( 9 ) 34 K r o t o , H.W. ( 9 ) 16 K r u e g e r , W. ( 9 ) 204 K r u g e r , C . ( 7 ) 66 Krupp, G. ( 6 ) 4 K r u t i k o v , V.1. ( 5 ) 97, 98 K r y a k , D. ( 6 ) 89 K r y n e t s k a y a , N.F. ( 6 ) 162 K u b j a c e k , M. ( 9 ) 265 K u c h e l , P.W. ( 9 ) 14 Kuchen, W. ( 9 ) 246, 251 K u c h i n o , Y . ( 6 ) 193 Kuchkovskaya, L.S. ( 9 ) 20 K u c k e l l h a u s , W. ( 1 ) 1 6 1 , 162; ( 5 ) 138 Kremsky,
Kukhanova, M.K.
96
( 6 ) 95,
Kukhar, V . P . ( I ) 8 4 , 271, 278; ( 8 ) 25, 34. ( 9 ) 1 7 , 25, 136, 1 9 6 ,
324
Kulak, Kurnar, Kumar, Kumar, Kumara
89
T . I . ( 6 ) 210 A.' ( 9 ) 219 D. ( 8 ) 135 S. ( 6 ) 281 Swamy, K . C . ( 8 )
Kumarev, V.P. ( 6 ) 197 Kume, A . ( 6 ) 30 Kunze, U. ( 1 ) 75, 76,
77: ( 3 ) 5 Kuo, F. ( 5 ) 83
K - J p a r a t , G. ( 9 ) 24, 25 K u p r i y a n o v , V.V. (6)
385
Kurchenko, L.P. ( 8 ) 92 Kurguzova, A.M. ( 9 ) 314 K u r i h a r a , T . ( 5 ) 26, 27 K u r k i n , A.N. (51 14 K u r k u , A . ( 9 ) 313 Kuroda, S . ( 7 ) 138 Kusmierek, J . T . ( 6 ) 2 3 3 Kusnetsov, A.L. ( 1 ) 66 K u r t z , A.L. ( 7 ) 119 Kusnezova, S.A. ( 6 ) 181 K u t a t e l a d z e , T . V . ( 6 ) 95 Kutrev, G.A. ( 9 ) 135 K u t y r e v , A . A . ( 5 ) 45 K u t y r e v , G . A . ( 5 ) 136,
176
Kuwabara, M.
320
( 6 ) 284,
Kuyl-Yeheskiely,
63; ( 6 ) 27, 31
E. ( 4 )
Kuznetsova, S.Yu. ( 5 ) 12 Kvashenko, A . P . ( 8 ) 9 3 ,
95
Kvasyuk, E . I . ( 6 ) 210 Kwon, S. ( 8 ) 188, 201 K y p r , J. ( 6 ) 392
L a 5 a r r e , J.F.
( 8 ) 96, 97 99, 123; ( 9 ) 263
L a b a u d i n i e r e , L . ( 2 ) 24;
( 9 ) 105
Lacapere, J.J. ( 6 ) 355 L a c a t u s , S. ( 8 ) 128 L a F a i l l e , L. ( 8 ) 96; ( 9 )
263
L a f o n t , D. ( 1 ) 21 L a i , K. ( 9 ) 319 L a i , R . ( 7 ) 6 1 ; ( 9 ) 188 L a k e n b r i n k , M. ( 3 ) 18: ( 4 )
85
L a l l e m a n d , J.-Y. ( 6 ) 372 Lambowitz, A.M. ( 6 ) 335 L a n d g r a f , B. ( 5 ) 30 L a n d i n i , D. ( 1 ) 230; ( 9 )
305
Langen, P. ( 6 ) 97 L a n g e r b e i n s , K. ( 9 ) 26 Langlois d'Estaintot, B . ( 6 ) 388 Languin-Micas, D. ( 7 ) 98 Lanneau, G.F. ( 5 ) 40, 41; ( 9 ) 311 L a p i e n i s , G. ( 5 ) 42; ( 9 )
298
LaPlanche, L.A. ( 6 ) 199 Lappe, P . ( 1 ) 149
437
Author Index
( 1 ) 99, 235, 316, 317; ( 4 ) 89; ( 8 ) 49 L a p t e r a , L . I . ( 9 ) 132 L a r i n a , N . I . ( 8 ) 210 L a r o c k , R . C . ( 7 ) 122 L a r t e y , P.A. ( 4 ) 12: ( 6 ) 14 Lasko, D.D. ( 6 ) 276 Lasne, M.-C. ( 1 ) 85 L a s s o t a , P. ( 6 ) 53 Latharn, I . A . ( 8 ) 46 L a t i m e r , L.J.P. ( 6 ) 226 L a t s c h a , H.P. ( 1 ) 197 L a v i g n e , G . ( 1 ) 135 L a v k i n , K.D. ( 8 ) 1 2 1 , 173
L a p p e r t , M.F.
L a v r e n t ' e r , A.N.
(1)
190; ( 5 ) 9 7 , 98; ( 9 ) 40, 279 L a v r i k , 0.1. ( 6 ) 257, 258 L a v r o v a , E.E. ( 1 ) 89 Lawesson, S . O . ( 5 ) 5 4 , 174 Lawson, J . P . ( 7 ) 118 Lay, J.O., J r . ( 6 ) 276 L a z e r e t t i , P . ( 9 ) 28 Lazhko, E.I. ( 1 ) 194; ( 9 ) 107 Lebbe, T . ( 1 ) 65 Lebedev, A . V . ( 6 ) 39 Lebedev, N.N. ( 9 ) 323 Lebedev, V.A. ( 9 ) 229 Lebedeva, O.E. ( 5 ) 136 Le B i g o t , Y. ( 7 ) 17 L e b l e u , B. ( 6 ) 205, 216 LeBoeuf, R.J., Jr. ( 8 ) 21 5 Le B o t , S. ( 7 ) 61 Lechner-Knoblauch, U.
( 9 ) 240
L e c l e r q , D. ( 5 ) 41 Le Corre, M. ( 1 ) 9 6 ,
200; ( 7 ) 1 5 , 55
L e Doan, T . ( 6 ) 328 Lee, J.-G. ( 1 ) 306;
( 9 ) 177
Lee, J.S. ( 6 ) 226 Lee, M.S. ( 6 ) 279 Lee, S.-G. ( 4 ) 105 Lee, Y.C. ( 6 ) 52 . Lee, Y.E. ( 9 ) 302 L e i b n i t z , P. ( 8 ) 157 L e i g h , G.J. ( 1 ) 153,
291
L e i g h , J.G. ( 8 ) 46 L e i s s r i n g , E. ( 1 ) 9 4 ,
256
L e i v a , A . M . (1) 345 L e f e u v r e , M . ( 7 ) 44 L e f e v e r , E . ( 6 ) 88 Le F l o c ' h Y. ( 7 ) 44 Lehn, J.-M. ( 6 ) 6 1 ,
62
Lehn, T.-M. ( 6 ) 329 Lehrman, S.N. ( 6 ) 92 L e l a n d , J.K. (1) 250 L e l l o u c h e , J.D. ( 7 )
97
L e m a i t r e , M. ( 6 ) 205 L e M a r o u i l l e , J.Y. ( 1 ) 345 L e M e r r e r , Y . ( 7 ) 98 Lemrnen, P. ( 5 ) 30 Leng, M. ( 6 ) 377 L e n g y e l , P. ( 6 ) 208 Lenz, G . ( 9 ) 180 Leon, 0 . ( 6 ) 262 Leone-Bay, A. ( 7 ) 30 Leonov, A . A . ( 5 ) 141; ( 9 ) 100 L e o n t ' e v a , I.V. ( I )
227
L e q u i t t e , M. ( 5 ) 96 L e r o y , J . L . ( 6 ) 357 L e s i a k , K . ( 6 ) 207,
213, 215
L e s k e l a , M. ( 8 ) 164 L e s n i k o w s k i , Z.J. ( 6 )
23
Leung, P.H. ( 1 ) 31 Leung, W.-C. ( 6 ) 235 L e Van, D. ( 1 ) 273, 274: ( 9 ) 16 Levason, W. ( 1 ) 25 L e v i n , B.V. ( 8 ) 125 L e v i n , M.L. ( 8 ) 124 L e v i n , Ya. A . ( 9 ) 145 L e v i n a , A.S. ( 6 ) 257 L e v i n s k a y a , O.A. ( 8 )
210
( 8 ) 78; ( 9 ) 281 Levy, H.M. ( 6 ) 69 L e w i n , R . ( 1 ) 69 L e w i s , E.S. ( 4 ) 7 ; ( 5 ) 152; ( 9 ) 300 Ley, S.V. ( 5 ) 60; ( 7 ) 115 L e y e r e r , H. ( 1 ) 2 L i , B.F.L. ( 6 ) 194 L i , J . ( 7 ) 105 L i , R . ( 1 ) 34 L i , V.S. (8) 154 L i , W. ( 6 ) 273
Levites, E.I.
L i , W.S. ( 7 ) 114 L i a o , A. ( 5 ) 152 Liebrnan, P . A . ( 6 ) 2 L i g t j d , S. ( 5 ) 81; ( 9 )
117
L i g t v o e t , G.J. ( 6 ) 371 L i k h t e r o v , V . R . ( 5 ) 122 L i l l e y , D.M.J. ( 6 ) 325 L i n d , A . ( 6 ) 296 Lindermann, R . J . ( 7 ) I 1 8 L i n d h , 1 . ( 4 ) 75, 76; ( 6 )
1 2 0 , 122
L i n g Kang L i u ( 5 ) 21 L i n d n e r , E. ( 1 ) 33, 307
3 34
L i o r b e r , B.G. ( 5 ) 164 Liprnan, R . ( 6 ) 277, 278,
279
S.J. ( 1 ) 1 7 ; ( 6 ) 373 L i p p s , W . ( 1 ) 149 L i q u i e r , J . ( 6 ) 405 Lisman, J.E. ( 6 ) 2 L i s t v a n , V.N. ( 1 ) 203; ( 9 ) 148 L i t v i n o v , I . A . ( 9 ) 220 L i u , A. ( 6 ) 234 L i u , D.K. ( 6 ) 217 L i u , H.-J. ( 5 ) 24 L i u , L.K. ( 9 ) 221 L i u , R.S.H. ( 7 ) 90 L i u , X.-Y. ( 6 ) 47 L i , D. ( 5 ) 144 L i v a n t s o v , M.V. ( 1 ) 189; ( 5 ) 62 L i v i n g s t o n , D.C. ( 6 ) 201 L l ' i n , E . G . ( 8 ) 125 Lobanov, D.I. ( 2 ) 39 L o c h n e r , A . ( 9 ) 292 Lochschrnidt, S . ( 9 ) 2 3 L o d a t o , D.T. ( 6 ) 352 Loganov, A.P. ( 9 ) 116 Logunov, A.P. ( 3 ) 20 Logusch, E.W. ( 4 ) 1 1 ; ( 5 ) 57 Loh, J . - P . ( 5 ) 25 Loktionova,.R.A. ( 4 ) 38 L o n g f e l l o w , C . E . ( 4 ) 66; ( 6 ) 164 Loo, D. ( 3 ) 4 Loo, D e k a i , ( 1 ) 139 Loo, 5 . ( 5 ) 144 Lopez, F. (1) 372; ( 7 ) 52; ( 8 ) 53, 54 Lopez, L . ( 1 ) 365; ( 8 ) 1 9 L o p u s i h k s i , A. (51 9 L o r a , S . ( 8 ) 181 L o r e n z , S. ( 6 ) 304 Lowe, C.R. ( 6 ) 380 Lippard,
Organophosphorus Chemistry
438
Lo'tte, G . ( 6 ) 76 Lown, J.W. ( 6 ) 316, 388 L o w t h e r , N. (2) 14 Lu, w. ( 9 ) 85 Lu, X . ( 5 ) 6 6 , 9 3 , 154 Lucy, A.R. ( 1 ) 79 Ludernan, S.M. ( 9 ) 322 Ludwig, E.G. ( 1 ) 150 Lugan, N. ( 1 ) 135 L u g te n b u r g , J . ( 7 ) 89 L u i s , S . V . ( I ) 112; ( 7 )
33
Lukacs, A. I I I ( 8 ) 131 Lukashev, N . V . ( 1 ) 194 Lukhtanov, E.A. ( 6 ) 254 L u k i n , M.G. ( 5 ) 76 L u l y , J.R. ( 7 ) 32 L u l u ky a n , R.K. ( 5 ) 64 Lumin, S. ( 7 ) 9 9 , 101,
102
L u s s e r , M. (1) 60 L u t s e n k o , I . F . ( 1 ) 171,
189, 1 9 4 , 207; ( 4 ) 3 2 , 40; ( 5 ) 1 4 , 62 L u ts e n k o , S . V . ( 6 ) 255 Lynch, M. ( 1 ) 136 Lysek, M. ( 4 ) 94 L y u l i n a , N.V. ( 6 ) 385
Ma, L . ( 6 ) 49 Ma, L.-1. ( 6 ) 315 Maah, M.J. ( 1 ) 291,
293, 296
Maartrnann-Moe,
203
K. ( 9 )
McAtee, R.E. ( 8 ) 206 M c C a f f re y , R.R. ( 8 )
206
M c C l a r i n , J.A. ( 6 ) 407 M c C l e l l a n , J.A. (6)
325
(6) 4 5 , 4 6 , 281 Macho, C. ( 2 ) 9 M a c i e l , G.E. ( 3 ) 37 McCortney, B.A. ( 4 ) 7 ; ( 9 ) 300 McDowell, R.S. ( 9 ) 6 McEwan, D.M. ( 1 ) 130 McFarlane, W. ( 1 ) 6 7 , 124; ( 9 ) 59, 90 McGall, G.H. ( 6 ) 311 McGinn, M.A. ( 1 ) 276 MacKay, J.A. ( 8 ) 90 McKenna, C.E. ( 5 ) 105 McKernan, P.A. ( 6 ) 8,
McCloskey, J.A.
12
McLaughlan, K.A. M c Laughli n, L.W.
379
M ac Laughli n, S.A.
136
( 3 ) 26
(6)
(1)
McLennan, A.G. ( 6 ) 108 McMsnus, N.T. ( 5 ) 17 McManus, S.P. ( 1 ) 100 McPeek, F.D. 3 f . ( 6 )
41 0
( 1 ) 123: ( 3 ) 10; ( 5 ) 183: ( 9 ) 106, 201 M ac quarrie, D. J. ( 1 ) 229 McRae, G.A. ( 9 ) 142 M.addox, P.J. ( 1 ) 129 Mzding, P. ( 1 ) 87 Maekawa, T . (5) 89 M a e r k l , G. ( 9 ) 1 8 , 29, 248 Magdeeva, R.K. ( 9 ) 117 Maggiora, L. ( 6 ) 61 M a g i l l , J.H. ( 8 ) 192, 193, 196 Magnusson, E. ( 9 ) 1 Mahmood, T . ( 5 ) 3, 4 , 126 Mahmoud, S . ( 1 ) 336 Mahran, M.R. ( 7 ) 42: ( 9 ) 66 Mahran, M.R.H. ( 2 ) 22 Maia, A. ( 1 ) 230; ( 9 ) 305 M a i e r , A. ( 1 ) 172; ( 4 ) 31 M aj ews k i , P. (1) 93, 143: ( 4 ) 16: ( 5 ) 103; ( 9 ) 247 M a j o r a l , J.-P. ( 1 ) 254, 263, 286, 319, 321, 331; ( 4 ) 80, 99; ( 8 ) 4 , 5 , 1 4 , 32; ( 9 ) 37 Makarov, A.M. ( 9 ) 294 Makino, K . ( 6 ) 381 Maksimov, A.S. ( 8 ) 104, 105 Maksirnova, S . I . ( 9 ) 222 Makowka, B. ( 9 ) 26 Malavand, C. ( 8 ) 19 Malavaud, C. ( 1 ) 365 Malenko, D.M. ( 4 ) 3 8 , 39; , ( 5 ) 178 Maley, F. ( 6 ) 345 Maley, G.F. ( 6 ) 345 M al inge, J.-M. ( 6 ) 377 M a l l i s , L.M. ( 6 ) 403 M a l v i , C . ( 6 ) 173 Mamesh, R. (8) 126
MI-Phail, A.T.
Mang, M.N. ( 8 ) 122 Marchenko, A.P. ( 8 ) 28 Marco, J.A. ( 1 ) 112:
(7) 33
Marecek, J.F.
69
( 6 ) 63,
M a r g a r i d a , M. ( 6 ) 362 M z r k l , G . ( 1 ) 177, 287,
342, 356, 357, 358, 359, 367, 371 M a r k o v s k i i , L.N. ( 1 ) 72, 238, 239, 240, 241, 257, 265, 277, 300, 311; ( 2 ) 8; ( 4 ) 90; ( 8 ) 31: ( 9 ) 1 5 , 1 7 , 20, 21, 22, 25, 32, 6 5 , 6 7 , 9 1 , 94 Marks, T.J. ( 6 ) 358 Marquez, V.E. ( 6 ) 101 Mar r e- Mazier es, M.R. ( 8 ) 13 Marsh, T.L. ( 6 ) 348 M a r s h a l l , A.S. ( 8 ) 108, 198 M a r s h a l l , J.A. ( 7 ) 111 M a r s h a l l , J.H. ( 8 ) 179 M a r t h , C . ( 7 ) 11 M a r t i n , D. ( 6 ) 189 M a r t i n , J.W.L. ( 1 ) 31 M a r t i n , R.A. Jr. ( 9 ) 292 M a r t i n , S.J. ( 5 ) 87; (7) 83 M a r t in-Lomas, M. ( 1 ) 208; ( 7 ) 1 6 M a r t i n s o n , H.G. ( 6 ) 232 Marugg, J.E. ( 4 ) 6 5 , 68; ( 6 ) 123, 1 2 5 , 126, 163 Maruyama, T. ( 9 ) 207 Mar yanoff, 8. ( 9 ) 57 Maryanoff, B.E. ( 2 ) 16; ( 7 ) 1 0 , 1 2 , 13: ( 9 ) 183 M a r z i l l i , L.G. ( 6 ) 368, 369, 393, 394, 395, 396 Maslennikov, I . G . ( 1 ) 190 Maslennikova, V . I .
117
(9)
M a s o t t i , H. ( 1 ) 179 M a s t a l e r z , P. ( 5 ) 113 Mastr yukova, T.A. ( 1 )
227
Masuko, H.
88
( 5 ) 112; ( 7 )
Masuko, T . (8) 194 M a t e s i c , D. (6) 2 Matevosyan, G.L. ( 9 )
Author Index
439
277, 294 ( 1 ) 324, 325, 326, 337, 338, 345 M a t h i e s , R . A . ( 7 ) 89 M a t h i e u , R . ( 1 ) 254, 263, 286, 292 M a t h i s , R. ( 1 ) 365 Mathey, F.
M a t n i s h y a n , A.A.
(8)
103
M a t r o s o v a , N.V. ( 2 ) 39 Matsudarn A. ( 6 ) 16 Matsuda, H . ( 1 ) 216 Matsuda, I . ( 1 ) 251 Matsuda, T. ( 9 ) 285 M a t s u g i , J . ( 6 ) 132 Matsurnoto, T . ( 6 ) 381 M a t s u r a , A . ( 8 ) 216 Matsuura, T. ( 6 ) 313 M a t s u z a k i , J . ( 6 ) 133 Matt, 0 . (1) 8 Mateeva, E . D . ( 7 ) 119 M a t t e r n , G. ( 1 ) 253 M a t t e s , W.B. ( 6 ) 293 M a t t e u c c i , M.D. ( 4 ) 74:
( 6 ) 1 1 9 , 178, 1 7 9 ,
307
M a t t i o d a , G. ( 7 ) 75 M a t t i o l o , A. ( 6 ) 18 M a t t r a s , H. ( 9 ) 284 Matyushecheva, G . I .
( 2 ) 10; ( 5 ) 132
Matyushichev, I.Yu.
277
(9)
Maudgal, P.C. ( 6 ) 1 3 Mavarez, E . O . ( 1 ) 319; ( 8 ) 5 ; ( 9 ) 37 Maxam, A.M. ( 6 ) 290 Mayer, K.K. ( 1 ) 367:
M e i , H.-Y. ( 6 ) 365 M e i c h s n e r , G. ( 7 ) 34 M e i d i n e , M.F. ( 1 ) 292 Meijboom, N . ( 1 ) 69 M e i l l e , S . V . ( 8 ) 197 Meirarnov, M.G. ( 1 ) 6 M e i s e l , M. ( 8 ) 157; ( 9 )
222
M e i s t e r , J . J . ( 8 ) 174 M e j i l l a n o , M . R . ( 6 ) 81 Melamede, R . I . ( 6 ) 86 M e l ' n i c h u k , E.A. ( 1 )
196
Mel'nik,
Ya. I. ( 9 )
295 M e l ' n i k o v , N.N.
( 9 ) 118
( 5 ) 13: (9)
M e l ' n i k o v a , L.N.
4 0 , 279
Mendel, D. ( 6 ) 324 Menu, M.J. ( 1 ) 275 Menzel, J. ( 9 ) 163 M e r r i e r , F. ( 1 ) 338 M e r t e s , K.B. ( 6 ) 61 M e r t e s , M.P. ( 6 ) 9 , 61 M e t e l e r , V.G. ( 6 ) 240 Metz, J.T. ( 9 ) 12 M e t z g e r , J. ( 9 ) 188 Mestdagh, H . ( 5 ) 7 Meyer, H.J. ( 5 ) 54 Meyer, U. ( 1 ) 236,237; ( 4 ) 100; ( 9 ) 19a Meyers, A . I . ( 7 ) 118 Meyers, D.Y. ( 8 ) 198 Meyers, R . E . (4) 58;
( 6 ) 159
(9)
Mezentseva, G.A.
149
( 9 ) 29
Mhaskar, D. ( 6 ) 187 M i c h a l s k i , J . ( 4 ) 21;
( 9 ) 34
M i c h a e l i , D. ( 6 ) 218 M i c h e l i n , R . A . ( 1 ) 204 Michman, M. ( 1 ) 132, 134 M i d u r a , W . ( 5 ) 86 M i f t a k h o v , M.N. ( 1 )
Mayer, R. ( 6 ) 218 Mazany, A.M. ( 4 ) 35:
( 1 ) 331;
M a z i e r e s , M.R.
( 4 ) 99
Mazo, A.M. ( 6 ) 95 Mazzah, A . ( 8 ) 36 Meares, C.F. ( 6 ) 259,
260
Medvedeva, L.Ya.
(8)
150
Meek, T.D. ( 6 ) 67 Meerssche, M.V. ( 9 )
78
Meetsma, A.
( 9 ) 227
( 8 ) 8 6 , 91:
( 5 ) 8 , 9 , 177
168
Mikhailopulo,
210
(6)
I.A.
M i k h a i l o v , B.M.
185
M i k h a i l o v , G.Yu.
171
(9) (1)
M i k h a i l o v , Yu. 6. ( 1 )
191, 1 9 2 , 193
M e g i t z , M. ( 4 ) 96 M e h r o t r a , M.M. ( 7 )
Mikhailyuchenko, N.K.
M e h r o t r a , R.C.
M i k i , M.
103
( 5 ) 15
( 2 ) 36
( 5 ) 26, 27
h i k i , Y . ( 1 ) 288; ( 5 ) 123 M i k i t y u k , A.D. ( 5 ) 128 145 M i k o l a j c z y k , M. ( 3 ) 1 9 ( 5 ) 53, 86 M i l a s h v i l i , M.V. ( 8 ) 167 M i l c z a r e k , W. ( 1 ) 295 M i l e s , H . T . ( 6 ) 225, 388 M i l l e r , A . ( 5 ) 86 M i l l e r , D. ( 6 ) 108 M i l l e r , E.J. ( 9 ) 204 M i l l e r , P . S . ( 6 ) 203, 204 M i l l h a u s e r , G. ( 1 ) 235 M i l l s , J.S. ( 6 ) 54 Minarni, T. ( 1 ) 78, 244, 225: ( 3 ) 1: ( 5 ) 155; ( 7 ) 28, 73 M i n k w i t z , R. ( 2 ) 9 Minsek, D. ( 5 ) 152 M i n t o , F. ( 8 ) 181 M i n s h u l l , J . ( 6 ) 306 M i r s k o v , R.G. ( 1 ) 66 M i r o n o v , B.S. ( 5 ) 5 M i s h r a , R.K. ( 6 ) 148 M i s h r a , S.P. ( 9 ) 125 M i s r a , K. ( 6 ) 148 Mitorno, S. ( 9 ) 304 M i t r a n o , J.R. ( 8 ) 84 M i t r o p o l ' s k a y a , G.I. ( 8 ) 8 3 , 1 6 7 , 220 M i t s u y a , H . ( 6 ) 92 M i u r a , K . ( 6 ) 1 3 0 , 131, 1 8 6 , 193 Miyagawa, M. ( 8 ) 216, 217 Miyano, M. ( 7 ) 123 M i y a s a k i , M. ( 9 ) 12 M i y a s h i r o , H . ( 6 ) 388 Mizen, M.B. ( 2 ) 31; (4) 4 M i z h i r i t s k i i , M.D. ( 5 ) 22 M i z o b u c h i , T . ( 7 ) 22, 23 M i z r a k h , L . I . ( 2 ) 29 M k r t c h y a n , G.A. ( 1 ) 206 Modak, M.J. ( 6 ) 109, 110 Modro, T . A . ( 5 ) 34 Modyanov, N.N. ( 6 ) 255 M o e g e l i n , W . ( 9 ) 50 Moenius, T . (7) 50 M b h r i n g , V.M. (8) 62 Mohtacherni, R . ( I )
Organophosphorus Chemistry
440 132, 134
Moison, H. (7) 18 MJkhov, V.M. ( 8 ) 136 Mokva, V . V . (5) 73 Molko, D. (6) 150, 151 M o l o s t o v , V . I . (9) 4 Monoe. A . (1) 108 Monin, E.A. 91) 207; (4) >
I
4 0 ; (9) 89
Monteleone,
409
D.C (6)
4) 25 Montero, J.-L. Moody, H.M. (2) 21: ( 6 ) 24
7) 71 M 3 o r h o f f , C.M. Moors, R : ( 1 ) 343 M o r i , F . ( 6 ) 193 M o r i , S. (5) 181 M o r i i , T . (6) 313 Morirnoto, T . ( 8 ) 139, 141
Morisawa, H. (6) 302 M o r i t a , H.(7) 122 M o r i t a , Y . ( 1 ) 27 M o r i z a n e , (5) 158 M 3 r k o v n i k , Z.S. (9) 184 Morokovnik , Z S . ( 1 21 3 Miron, J.T.G. (3) 2 M o r r i s , J.C. ( 6 ) 297 Mortensen, 3. ( 7 ) 27 M o r t r e u x , A . (1) 180:
.
(4) 82
Morvan, F. (6) 173 Moskva, V . V . (1) 141;
(4) 9; (5) 45, 84; (9) 1 0 8 Mosset, P. (7) 99, 101, 102
M o t h e r w e l l , W.B. (1) 120: (2) 3 M o t o k i , H. ( 3 ) 15 M o t o k i , S. (1) 368, 369: ( 8 ) 58 Morozova, N.Yu. (9) 276 M o t s a r e v , G . V . (1) 159 Moyer, J.D. (9) 290 Mueqge, C. (1) 144; ( 9 )
170
Muehlbacher, M. (5) 6 M u e l l e r , D.M. ( 6 ) 299 M u e l l e r , E.P. ( 8 ) 20 M i l e l l e r , G. (9) 2 3 , 211 M u e l l e r , W.B. ( 8 ) 211 Mugavero, J.H. ( 6 ) 409 Mugge, C. (9) 78 M u j i c a , C . (1) 46 Mukai, S. ( 6 ) 302 Mukhametov, F.S. (2) 27;
(4) 18; (5) 120
Mukmenev, E.T.
220
Mullen, Mfiller, Muller, MGller,
(9) 218,
K . (7) 27 B.C. ( 6 ) 322 E.P. (9) 231
G. ( 1 ) 52, 53, 55, 214; ( 7 ) 5, 62, 63: ( 9 ) 186 M u l l i e z , M. (5) 18 Mulvey, R.E. (1) 10 Munson, K.B. (6) 252 MGnstedt, R . ( 8 ) 59 Murakami, A . ( 6 ) 203 M u r r a y , A.W. ( 3 ) 32 M u r r a y , J.R. (4) 14 M u r r a y , W.T. (1) 115 Musaev, S h . A . (5) 73 MlJshtakova, S.P. (9)
2
Mustaev, A . A .
255
( 6 ) 254,
( 2 ) 16; (7) 12, 13; (9) 183 Myagkova, G.I. (7) 96 Myasoedov, E.M. ( 8 113 Mylona A . (7) 134 M y n o t t , R. (1) 295 297 : ( 7 ) 66
M J t t e r , M.S..
..
Nagabhushan, T L
68
(5)
Nagahara, Y . (1) 78 Nagai, H. (4) 72, 73:
(6) 142, 143 Nagarajan,K. (9) 98 Nagasawa, K . ( 8 ) 130 Nagase, 5. ( 9 ) 165 Nagashima, N. (6) 388, 397 N e g e l , A . ( 8 ) 15 N a g e l , U. (1) 28 Naim, A.a. (1) 104 Nakacho, Y. ( 8 ) 142 Nakada, C. ( 8 ) 130 Nakahara, J.H. ( 1 ) 73, 74 Nakajima, N. (7) 108 Nakarnura, M. (7) 138 Nakamura, T . ( 6 ) 3 Nakamura, Y. (1) 27, 50 Nakane, H. (6) 94 Nakane, M. (8) 58 N a k a n i s h i , K. ( 6 )
278, 279
N a k a t a n i , K. Nakazawa, M.
(5) 158 (6) 238
Narayanan, K .
(7)
Narayanan, R .
(6)
122
411
Narayana Swamy, P.Y. ( 8 ) 89 N a r d i l l o , A.M. ( 9 )
278
N a r u l a , C. K . Nasakin, O.E.
259
(1) 152 (9)
Naser, L . J . (6) 373 Naskanaga, 1. ( 8 )
141
Nataniel, T.
(5)
Naumov, V . A .
(9) 156,
134, 135
233
Navech, J. ( 9 )
111
55,
Nazran, A.S. (9) 129 N e a l , T.R. (5) 6 Neamati-Mazraeh, N.
(1)
loo
Nechaev, A . (6) 113 Nedelec, J.Y. (1)
35
N s e l s , J. ( 8 ) 157 Naganova, E.G. (4) 32: ( 8 ) 57 N e g i s h i , K . (6) 229 Negrebetskii, V.V.
(9) 67
N e i c k e , E. ( 8 ) 51 N e i d l e i n , R. ( 9 ) 174,
175
( 8 ) 41, 42, 43, 44 N e l s o n , P.S. (6) 87 N z s t e r o v , V.Yu. (9)
N e i l s o n , R.H.
233
Neugebauer, D.
186
Neurnann,
391
(9)
J.M. ( 6 )
(1) 218; (7) 6; ( 9 ) 214 N e u m f i l l e r , B.B. (1)
N e u r n c l l e r , 8.
"() N e v i n s k y , G.A.
257, 258
Nevstad, G.O.
203
Ng. K.E. Ng. P.G.
(6) (9)
( 6 ) 60
(4) 70: (6) 119, 231, 307
Nyguyen, M . T . ( 1 ) 276 (3) 1 7 ; ( 8 ) 6, 7
441
Author Index Nquyen, T . T . ( 9 ) 232 Nichols, G.M. ( 8 ) 107 Nickell, D.G. ( 7 ) 127 Nicolaides, D.N. ( 7 ) 58 Nicolaou, K,C. ( 7 ) 114 Nicolas, J.C. ( 9 ) 284 Niecke, E. ( 1 ) 258, 260,
270, 312, 313, 314, 315, 320, 330: ( 4 ) 80, 9 1 , 9 4 , 95; ( 8 ) 1 4 , 32; ( 9 ) 1 2 3 , 161 Nielsen, 3 . ( 4 ) 4 9 , 6 4 , 6 5 , 6 8 ; ( 6 ) 123, 124, 725, 126, 127 Nielsen, P. ( 9 ) 292 Nielsen, R.H. ( 8 ) 174, 1 7 5 , 186 Niemann, B. ( I ) 339: ( 9 ) 19b Niemann, J . ( 1 ) 330- ( 9 ) 123 Nietzschmann, E. ( 1 ) 63; ( 4 ) 81 Nifant'ev, E.E. ( 4 ) 36; ( 5 ) 102; ( 9 ) 114, 1 1 7 , 299 Niitsu, T. ( 1 ) 251, 284 Nikiforova, T.P. ( 8 ) 113 Nikitin, E.V. ( 5 ) 5 Nikogosyan, L . L . ( 8 ) 103 Nikokavouras, J . ( 7 ) 134 Nikolaev, A.F. ( 8 ) 136 Nikolaev, E.G. ( 9 ) 259 Nikonov, G.N. ( 1 ) 1 4 5 , 146: ( 9 ) 71 Nikula, M.G. ( 1 ) 221 Nisbet, E.G. ( 6 ) 341 Nishihara, T. ( 6 ) 302 Nishii, K . ( 8 ) 216, 217 Nishimura, S . ( 6 ) 193, 286 Nishimura, Y . ( 6 ) 388, 397 Nishiuchi, K. ( 8 ) 139 Nishiyama, S. ( 7 ) 126 Nitta, M. ( 8 ) 52, 155 Nitta, Y . ( 5 ) 29
Niwa, H. ( 7 ) 130 Niwas, S. ( 6 ) 11 Nixon, O.A. ( 4 ) 4 Nixon, J . F . ( 1 ) 291,
292, 293, 296, 294: ( 9 ) 16 Nizamov, I . S . ( 1 ) 1 7 8 , 159; ( 4 ) 19 N3be1, D. ( 1 ) 8 Nobori, T . ( 4 ) 60; ( 6 ) 7 , 177 Noeth, H. ( 9 ) 176 Nogami, I . ( 8 ) 132 Noltemeyer, M. ( 2 ) 34
( 8 ) 26, 156
Noltmeyer, V.A. ( 9 ) 232 Nomura, R . ( 1 ) 78 Nonaka, T. ( 1 ) 7 Norbeck, D.W. ( 4 ) 1 2 ; (6) 14
Nord, L.D. ( 6 ) 8 NDrddn, B. ( 6 ) 366 Norman, A.D. ( 4 ) 4 2 , 43; ( 9 ) 636, 179
Norman, N.C. ( 1 ) 233,
248, 250, 327; ( 4 ) 101 Normant, J.F. ( 5 ) 117 Normsnton, F . B . ( 1 ) 153 Nortey, S.O. ( 7 ) 1 3 NEth, H. ( 1 ) 1 5 2 , 305;
( 3 ) za Nouvel, J. ( 1 ) 97 N3vikova, T.I. ( 8 ) 8 3 Novikova, Z.S. ( 1 ) 207: ( 4 ) 32, 40: ( 5 ) 14: ( 9 ) 89 Novruzov, S.A. ( 5 ) 73 Nowell, I.W. ( 9 ) 53 NcJyori, R . (4) 6 0 ; ( 6 ) 7 , 1 2 8 , 1 4 7 , 177 Nozaki, T. ( 1 ) 216 Nozaki, Y . ( 6 ) 317 Nuber, B. ( 1 ) 287, 342 ( 9 ) 18 Nuretdinova, O.N. ( 9 ) 140 Nussbaurn, S . ( 1 ) 132
Oakley, R . T .
(8) 146, 1 4 8 , 222; ( 9 ) 130
Ojayashi, A. ( 6 ) 238 Ojerhammer, H. ( 1 ) 274; ( 2 ) 9
Ocando-Mavarez, E . ( 1 )
320, 321; ( 4 ) 80 O'Connor, B. ( 7 ) 120 Odreman, A . ( 9 ) 188 Oeberg, 6. ( 6 ) 37 Oesterhelt, D. ( 7 ) 92 Offermann, W. ( 9 ) 64 Ogasawara, M. ( 6 ) 9 4 Ogawa, K . ( 9 ) 207 Ogilvie, K . K . ( 1 ) 183: ( 4 ) 79; ( 6 ) 20, 152, 167 Ohannesian, L . ( 1 ) 88 Ohashi, M. ( 8 ) 143 Onashi, 0 . ( 9 ) 1 6 Ohkata, K . ( 2 ) 32; ( 3 ) 25 Ohms, G. ( 8 ) 37 Ohshima, M. ( 3 ) 39
Ohtsuka, E. ( 6 ) 130,
131, 1 3 2 , 1 6 1 , 171 186, 193, 301, 302 Oikawa, Y. ( 7 ) 106, 1 0 7 , 108 Oishi, H . ( 9 ) 207 Ojima, J . ( 7 ) 138 Okada, K . ( 2 ) 32; ( 3 ) 25 Okada, Y . ( 1 ) 78 Okamaoto, K . ( 8 ) 137 Okamoto, Y . ( 1 ) 284; ( 5 ) 1 2 5 , 142, 143 Okeya, S. ( 1 ) 50 Okruszek, A. ( 6 ) 21 Olah, G.A. ( 1 ) 88 Olenia, V.F. ( 8 ) 78 Olina, V.F. ( 9 ) 281 Oliveiri, M.C. ( 6 ) 57 Oliveros, L . ( 9 ) 282 Olmstead, M.M. ( 1 ) 164, 303; ( 9 ) 182 Ologson, R.A. ( 2 ) 1 6 ; ( 7 ) 12: ( 9 ) 183 Olomucki, A . ( 6 ) 1 9 Olomucki, M. ( 6 ) 19 Olsen, G.J. ( 6 ) 348 Olsen, J . I . ( 6 ) 52 O'Mahony, M.J. ( 7 ) 117 Ong, C.-W. ( 6 ) 316 Ono, A. ( 6 ) 183, 1 8 5 Ono, K . ( 6 ) 9 4 Orahovats, A.S. ( 5 ) 751 Oram D.E. ( 1 ) 57, 58 O'Regan, M.B. ( 8 ) 6
Oretskaya,-T.S. ( 6 ) 162, 240
Orezkaja, T.S. ( 6 ) 181
Orgel, L.E.
( 6 ) 60, 219, 220, 222, 223 266 Orlova, I.E. ( 8 ) 106 Orpen, A.G. ( 1 ) 327 Ortiz, J . ( 1 ) 235 Osapay, G. ( 5 ) 58 Oscando-Marevez, E. ( 8 ) 1 4 , 32 Oshikawa, T . ( 1 ) 163; (3) 9 Oshima, K . ( 1 ) 201 Osipova, T . I . ( 6 ) 105
Otroshchenko, V.A. ( 6 ) 347
Otter, A. ( 6 ) 388 Ottolenghi, M. ( 7 ) 91
442 O t v E s , L . ( 6 4 8 , 227 OJzounis, D . ( 1 ) 37 Ovakirnyan, M Z . ( 1 ) 105 Ovasapyan, L A. ( 8 ) 103 Ovchinnikov, V.V. ( 5 ) 95; ( 9 ) 266 O,dchinnikov, Y u . A . ( 6 ) 138, 255 O v r u t s k i i , D.G. ( 5 ) 45 O v r u t s k i i , V.M. ( 5 ) 47; ( 9 ) 270 Ovsepyan, S . a . ( 5 ) 64 Owens, G . F . ( 6 ) 217 Owens, J . R . ( 6 ) 247 Oyamada, Y . ( 8 ) 58 Ozaki, H . ( 6 ) 381 Ozaki, K . ( 6 ) 30 O z t a s , S . ( 8 ) 79
Paasch, J . ( 8 ) 38 Pace, B. ( 6 ) 348 Pace, N.R. ( 6 ) 348 P a c i o r e k , K . J . L . ( 1 ) 73, 74 P a g n i e z , G . ( 8 ) 169 P a i l o u s , N. ( 9 ) 143 P a i n e , R . T . ( 1 ) 152, 305; ( 9 ) 176 P a k u l s k i , M. ( 1 ) 248, 250, 306, 327, 328: ( 4 ) 101, 103; ( 9 ) 7 3 , 177 P a l , 8.C. ( 6 ) 91 P a l a , M. ( 8 ) 35 P a l a c i o s , F. ( 1 ) 372; ( 7 ) 52: ( 8 ) 5 3 , 54 P a l e c e k , E . ( 6 ) 325 P a l k i n a , K . K . ( 9 ) 222 Palurnbo, G. ( 1 ) 116 Pandey, V. ( 6 ) 110 Pandey, V.N. ( 6 ) 109 P a n e t h , P . ( 9 ) 261 P a n k r a t o v , A.N. ( 9 ) 2 Panosyan, G.A. ( 5 ) 6 4 , 169 Panov, A . M . ( 9 ) 154 Panova, L . A . ( 9 ) 279 P a o l e t t i , C . ( 6 ) 173 P a o l e t t i , J . ( 6 ) 173 Papahatjis, D.P. ( 7 ) 114 P a r a k i n , O.V. ( 5 ) 5 Paramonov, V.I. 158 P a r a r v e z , M. ( 8 ) 8 5 P a r k , J . S . ( 7 ) 81 P a r k e r , J . A . ( 8 ) 135 P a r k e s , H.G. ( 8 ) 7 1 , 72, 73, 74, 7 5 , 1 0 9 , 111, 112; ( 9 ) 46, 56, 9 2 ,
Organophosphorus Chemistry
224, 225, 226 P a r k i n , D.W. ( 6 ) 41 Parrnar, 5.5. ( 3 ) 22 P a r r a t t , M.J. ( 5 ) 8 7 , 88, 156; ( 7 ) 8 3 , 89, 85 P a r r i n e l l o , G . ( 1 ) 20 P a r t y n o v , I.V. ( 5 ) 150 P a r v e z , M. ( 8 ) 118, 120, 121: ( 9 ) 215, 216, 21 7 Pashkovich, K . I . (5) 137: ( 9 ) 213 P a s q u a l i n i , R . ( 1 ) 202: (3) 2 Pastushenko, E.V. ( 9 ) 326 P a t h a k , T. ( 5 ) 30; ( 6 ) 36 P a t s a n o v s k i i , 1.1. ( 3 ) 23; ( 9 ) 234, 235, 237 P a u l e n , W. ( 9 ) 69 P a u l s , H. ( 6 ) 83 P a u l y , G.T. ( 6 ) 89 P a v e l , G.V. ( 5 ’ 118 Pavlenko, N.V. ( 2 ) 10. ( 5 ) 132 Pavlov, B . A . ( 5 ) 164 P a v l o v a , S.S.A. ( 8 ) 165 Pawlak, J . ( 6 ) 278 P a y a r d , M. ( 9 ) 25 Pechkovskii, V.V. ( 8 ) 22 1 P e c o r a r o , V . L . ( 6 ) 82 P e d e r s e n , U. ( 9 ) 287 P z d u l l i , G.F. ( 9 ) 129 P e i f f e r , G . ( 1 ) 179 P e i s a c h , J , ( 6 ) 312 P e l c z e r , I . ( 9 ) 77 P e l l e r i n , B. ( 1 ) 255 P e l l o n , P. ( 1 ) 165, 264 P e l t i g r e w , F.A. ( 8 ) 212 Penczek, S . ( 5 ) 42 Penning, T.W. ( 9 ) 75 P e n n i n g s , Y . ( 4 ) 78 P e n s i o n e r o v a , G A. ( 5 ) 71 P e n t o n , H.R. ( 8 ) 162, 212 P e r e i r a , M.E. ( 6 ) 58 P a r i c h , J.W. ( 4 ) 52, 59 P e r i c h o n , J . ( 1 ) 35 P e r i n g e r , P . ( 1 ) 60; ( 8 ) 20: ( 9 ) 231 P e r k i n s , K.K. ( 6 ) 334 P e r l y , 8. ( 8 ) 97 P e r r i n , P . ( 7 ) 97 P e r r o c h e a u , J . ( 1 ) 255 P e r r o u a u l t , L. ( 6 ) 328 P e r u z z i n i , M. ( 1 ) 335 P e s c h e r , P . ( 9 ) 282 P e t e r , R . ( 5 ) 148; ( 7 ) 80
.
P e t e r s , K . ( 8 ) 21; ( 9 ) 191 P e t i t , F. ( 1 ) 180; ( 4 ) 82 Petnehazy, I . ( 4 ) 15 P e t r a k i s , K.S. ( 5 ) 68 P e t r e n k o , V.S. ( 8 ) 24 Petrov, A.A. ( 1 ) 166, 167, 170: ( 5 ) 7 5 , 7 6 , 150 162; ( 9 ) 100 Petrov, K.A. ( 5 ) 55 P e t r o v a , J . ( 9 ) 79 Petrovskii, P.I. ( 5 ) 168 Petrovskii, P.V. ( 1 ) 105, 227: ( 2 ) 39- ( 5 ) 28; ( 8 ) 166 P e t r u s k a , J. ( 6 ) 1 8 7 , 196 P e t r z e b o w s k i , M. (5) 9 P e t t e r , W . ( 8 ) 20; ( 9 ) 231 P e z z i n , G . ( 8 ) 181 Pfeiffer, G. (4) 82 Pflaurn, S. ( 1 ) 358 359 P f l e i d e r e r , W. ( 6 ) 210, 211 Pharn, T.N. ( 1 ) 11 P h i l l i p s , D.R. ( 6 ) 330 P h i l l i p s , L.R. ( 4 ) 71: ( 6 ) 200, 399 P h i l l i p s o n , D.W. ( 6 ) 45, 4 6 , 281 Piccinni-Leopardi, C. (1) 144; ( 9 ) 7 8 , 170 P i c h l , R . ( 1 ) 214; ( 7 ) 5 , 6 2 , 63: ( 9 ) 211 P i c k , L. ( 6 ) 344 P i r k e n , D.J. ( 6 ) 136 P i e r r o t , M. ( 7 ) 61; ( 9 ) 188 P i e t r u s i e w i c z , K.M. (7) 70 Pinchuk, A.M. ( 8 ) 28; ( 9 ) 209 Pingoud, A . ( 6 ) 263
443
Author Index
P i n t o , A.L. ( 6 ) 373 P i n t o , R.M. ( 6 ) 107 P i o n t e c k , J . ( 4 ) 104 P l a t o n o v , V . A . ( 9 ) 276 P l a t t n e r , 5 . 3 . ( 7 ) 32 P l a t z e r , N. ( 9 ) 58 P l e n i o , H. ( 8 ) 27 P l e s s , R.C. ( 6 ) 294 P l y a m o v a t y i , A.Kh. ( 9 )
9
P l y s h e v s k i i , S . V . ( 8 ) 221 Podda, G . ( 8 ) 110 Podkopaeva, T.L. ( 6 ) 210 Podust, V.N. ( 6 ) 257, 258 P o e c h l a u e r, P . ( 8 ) 20:
( 9 ) 231
P o e t z s c h , M. ( 8 ) 220 P o g a t z k i , V . W . ( 2 ) 34:
( 9 ) 232
Pogosyan, A . A . ( 8 ) 103 P o h l , S. ( 1 ) 217, 314;
( 4 ) 91
P o ka tu n , V.P. ( 5 ) 56 Pokrovskaya, E.N. ( 8 )
113, 133
Pokrovskaya,
169
I.K.
(1)
(5) 164; ( 5 ) 130: ( 9 ) 274 P o l i s s i o u , M. ( 6 ) 356 P o l l o k , T . ( 1 ) 182; ( 3 ) 3 ; ( 4 ) 37 P o l o n s k a y a , L . Yu. ( 2 ) 29 P o l o zo v , A.M. ( 5 ) 130, 164 P o l u s h i n , N.N. ( 6 ) 138 Polezhaeva, N.A.
Polyachenko, L .K.
257; ( 9 ) 1 7 , 25 Pon, R . T . ( 6 ) 152
( 1)
Pomerantz, M. ( 8 ) 8, 9 Popkova, T.N. ( 5 ) 102 Poponova, R . V . ( 9 ) 124 Popova, G . V . ( 8 ) 102 Porkhun, V . I . ( 9 ) 124 Poromarchuk, M.P. ( 8 ) 25 P o r t e , A.L. ( 8 ) 70; ( 9 )
120
P o r t e r , T.M. ( 5 ) 69 P o r z , C. ( 1 ) 269; ( 9 )
157
Porzo, W. ( 8 ) Potaman, V.N. Potapov, V.K. P o t i n , P. ( 8 ) P o t t e r , B.V.L.
197 (6) 43 ( 6 ) 240 169 ( 4 ) 28; ( 6 ) 2 2 , 34, 74 P o u l t e r , C.D. ( 5 ) 6 ; ( 6 ) 59 P o v o l o t s k i i , M.I. ( 1 )
241, 257, 271: ( 4 ) 90; ( 9 ) 1 7 , 25 P o w e l l , C . ( 6 ) 1 9 9 , 202 Power, J.M. ( 1 ) 5 9 , 306: ( 9 ) 177 Power, P.P. ( 1 ) 164, 303, 304; ( 9 ) 182 P r a c e j u s , G. ( 1 ) 181; ( 4 ) 84 P r a c e j u s , H. ( 1 ) 181: ( 4 ) 84 P r a t i , L . ( 4 ) 83 P r e s c h e r , G. ( 1 ) 28 P r e s t w i c h , G . D . ( 7 ) 121 P r e v i e r o , A . ( 9 ) 284 P r i d a n , V . E . ( 9 ) 146 P r i e t o , A . ( 9 ) 141 P r i h o d a , J . ( 5 ) 44 P r i j s , 6. ( 6 ) 360 P r i k h o d ' k o , Yu.V. ( 5 ) 118 P r i n g l e , P.G. ( 1 ) 137: ( 3 ) 38 P r i s h c h e n k o , A.A. ( 1 ) 189; ( 5 ) 62 P r i v i h a d a , J . ( 8 ) 37 P r o j a n , S.L. ( 6 ) 312 P r o k l i n a , N.V. ( 5 ) 119 P r o k o f ' e v , A.I. ( 9 ) 127 P roc k op, D.J. ( 6 ) 241 P r o s k u r n i n a , M.V. ( 9 ) 326 P r o t s , 0.1. ( 9 ) 295 P r o t s e n k o , L.D. ( 5 ) 47 P r o z i o , W. ( 8 ) 187 P r u d n i k o v a , O . G . ( 5 ) 150 P s c h e i d t , R.H. ( 6 ) 267 P udov ik , A.N. ( 1 ) 169, 1 7 8 , 1 9 1 , 192, 193, 199; (2) 25, 35, 37; ( 4 ) 5 . 6 . 8. 19. 23: ( 5 ) 2; 5 ; 50, 51, 52, 94, 95, 136, 159, 176, 1 8 0 , 184; ( 8 ) 153: ( 9 ) 7 2 , 119, 234, 235, 303 P udov ik , M.A.
153
( 2 ) 37: ( 8 )
P u e r t a , C . ( 1 ) 108 P u g n i e r e , M. ( 9 ) 284 P u l w e r , M.J. ( 4 ) 26 Purdon, J.G. ( 9 ) 39 P u r y g i n , P.P. ( 6 ) 105
O i , Y. ( 4 ) 1 7 ; ( 5 ) 108, 109 Quashie, S . ( 1 ) 279
( 7 ) 34: ( 9 ) 83 Qui, M. ( 6 ) 273 Qui, W . ( 1 ) 226: ( 7 ) 4 7 , 48 Quin, L . D . ( 1 ) 8 1 , 8 2 , 1 2 2 , 123, 157, 1 7 5 , 176; ( 3 ) 1 0 , 1 1 , 74, 24: ( 4 ) 4 7 , 48: ( 5 ) 183; ( 8 ) 18: ( 9 ) 33, 9 5 , 9 9 , 106, 1 1 3 , 201 O u i n l a n , B.A. ( 5 ) 17 Quast. H.
Rabanol, R.M. ( 1 ) 208 Rabow, L.E. ( 6 ) 310,
311, 314
Radda, G.K. ( 6 ) 398 R a d e g l i a , R . ( 8 ) 10:
( 9 ) 38
Rademacher, P. ( 1 ) 260 Rae, A.D. ( 1 ) 14 R a e v s k i i , O.A. ( 9 )
137, 209, 210
R a f t o s , J.E. ( 9 ) 14 R a h i l , J . ( 5 ) 172 R a i , A.K. ( 1 ) 316: ( 4 ) 89 R a k h l i n , V . I . ( 1 ) 66 Rakhmankulov, D.L. Ramachandran, K.L. ( 6 )
158
Ramirez, F. ( 6 ) 69 Rampoldi, A , ( 9 ) 305 R a n a i v o n j a t o v o , H. ( 1 )
298: ( 9 ) 19c
R a n d a l l , S.K. ( 6 ) 196 R ankin, D.W.H. ( 1 )
186 ( T ) 123: ( 3 ) 10; ( 9 ) 106 Rao, P.Y. ( 6 ) 233 Rao, R.J. ( 5 ) 1 5 Raphael, A.L. ( 6 ) 322 Rasch, 0 . ( 6 ) 40 R askina, A.D. ( 1 ) 159 Rasmussen, J.K. ( 3 ) 36 Raston, C.L. ( 1 ) 9 R a t o v s k i i , G.V. ( 9 ) 154 Rau, D.N. ( 2 ) 5 Rauchfuss, T.B. ( 1 ) , 310; ( 5 ) 175 Rauschenbach, P. ( 9 ) 292 Raushel, F.M. ( 6 ) 72, 40 3 Rao, N.S.
444
Organophosphorus Chemistry
Ra:iert, H . T ( 1 ) 205 Rawal, V.H. ( 7 ) 135 Rawls, R.H. ( 8 ) 215 Rayner, B. 6 ) 173 Read, G. ( 1 'I25 Reddy, M.P. ( 6 ) 203, 204 9 ) 200 R e d i t z , M. Redmore, D. ( 5 ) 31 Reed, D : ( 1 ) 10 Reed, G.H. ( 6 ) 352 R e e d i j k , J . ( 6 ) 371 Reese, C . B . ( 4 ) 30: ( 6 )
135, 194
Reetz, M.T.
80
Regan, J.B.
( 5 ) 148: ( 7 )
( 4 ) 71; ( 6 ) 200: ( 9 ) 322 Regberg, T . ( 1 ) 114; ( 4 ) 7 5 , 76; ( 6 ) 26, 120, 1 2 1 , 122 R e g i t z , M. ( 1 ) 242, 289, 295, 297, 308, 309, 366 R e i ch , C . ( 6 ) 348 Reid, R.S. ( 6 ) 226 R e i k h s f e l ' d , V.O. ( 5 ) 22 R e i l y , M.D. ( 6 ) 368, 369 Reimschussel, W. ( 9 ) 261 Reineke, K.E. ( 1 ) 64 R e i s f e l d , A . ( 6 ) 264 R e i sn e r, H. ( 6 ) 374 R e i ss e , J . ( 9 ) 78 R e i t z , A.B. ( 2 ) 16: ( 7 ) 1 0 , 1 2 , 13; ( 9 ) 5 7 , 183 R e i z i g , K . ( 1 ) 243, 245, 247, 281 Remy, P.M. ( 6 ) 108 Repina, L . A . ( 4 ) 38 Revenko, G.P. ( 3 ) 20 Revet, B. ( 6 ) 415 R h e i n g o l d , A. ( 1 ) 223: ( 7 ) 46 R h e i n o o l d . A . L . ( 8 ) 35: ( 9 i 204 Richter, H. 9 ) 178 R i c h t e r , W.J ( 9 ) 98 R i d e o u t , J.L ( 6 ) 92 R i d i n g , G.H. ( 8 ) 6 5 , 1 2 0 , 120, 122, 173: ( 9 ) 217 R i d l e y , D.D. ( 9 ) 47 Riede, J. (1 52 Riemer, M. ( 1 ) 94 R i e s e l , L. ( 5 ) 48; ( 8 ) 11, 12, 15 R i e s s , J.G. ( 2 ) 33; ( 9 ) 275 R i f f e l , H. ( 1 ) 218, 290; ( 9 ) 169, 1 7 8 , 200, 214
R i n g e l , I . ( 4 ) 24 R i p o l l , J . - L . ( 1 ) 85 R i v e r o , R.A. ( 1 ) 121 Robbins, J . H . ( 6 ) 288 R o b e r t , J.B. ( 9 ) 78 Roberts , R.J. ( 6 ) 344 Roberts , R.M.G. ( 1 ) 344,
346, 347, 348, 349, 350, 351, 352 Roberts on, A.D. ( 1 ) 340 Robins, M.J. ( 6 ) 99 Robins, R.K. ( 6 ) 8, 12 Robinson, N.G. ( 7 ) 54 Robinson, P.L. ( 2 ) 1 3 Robinson, P.R. ( 6 ) 2 Rochev, V.Ya. ( 8 ) 167 Rodionova, G.N. ( 9 ) 149 Roesch, W. ( 9 ) 31 Roes c henthal er, G . V . ( 9 ) 52, 6 4 , 230 Roesky, H.W. ( 2 ) 34; ( 8 ) 27, 47, 156, 158, 159: ( 9 ) 232 Rogers, M.D. ( 5 ) 121 Rohmann, J. ( 2 ) 9 Rolande, C. ( 5 ) 7 R o l ' n i k , L.Z. ( 9 ) 326 Romakhin, A.S. ( 5 ) 5 Roman, E. ( 1 ) 345 Romanenko, V.D. ( 1 ) 238, 239, 240, 241, 257, 265, 277, 300, 311: ( 4 ) 9 0 , 9 2 , 93: ( 8 ) 31; ( 9 ) 1 5 , 1 7 , 20, 21, 22, 9 4 , 166 Romanov, G . V . ( 5 ) 5 Romming, C . ( 9 1 203 R o n j a t , M. ( 6 ) 355 Roongta, V . ( 9 ) 12 Roques, B.P. ( 6 ) 388 Roques, C. ( 1 ) 331: ( 4 ) 99 Rosch, P . ( 6 ) 384 Rasch, W. ( 1 ) 289, 295, 366 Ros c henthal er , G. - V . ( 1 ) 142 Rose, H. ( 9 ) 92 Rose, S.H. ( 8 ) 107 Rosenberg, I . ( 6 ) 1 3 Rosenberg, J.M. ( 6 ) 407 Rosendahl, M.S. ( 6 ) 180 R o s e n t h a l , A . ( 6 ) 181 Ross, P. ( 6 ) 278 Ros s et, R . ( 3 ) 7; ( 9 ) 282, 286 R o s s i , R.A. ( 1 ) 1 3 Rostovskaya, M.F. ( 1 ) 71: ( 3 ) 13; ( 9 ) 250 Roth, A. ( 5 ) 114
(6)
Rothenberg, J.M.
264
R o u n d h i l l , D.M. ( 1 ) 5 ROUS, A. ( 5 ) 11 ROUS, A.J. ( 9 ) 45 R oussis, V . ( 7 ) 77 Roy, A.K. ( 1 ) 118; ( 8 )
4 1 , 1 7 4 , 175, 186
R oynal, S. ( 9 ) 58 Rozhnov, V.B. ( 9 ) 116 R ozinov, V.G. ( 5 ) 71,
7 2 , 74
Rozozina, I . N . ( 9 ) 144 Ruban, A . V . ( 7 ) 241,
257, 300, 311; ( 4 ) 93; ( 8 ) 31: ( 9 ) 1 7 , 21, 25 Rubio, V. ( 6 ) 66 R udyi, R.B. ( 9 ) 67 RGger, C . ( 4 ) 104 Rumyantseva,
125
Rusch, J.W.
277
Z.G.
(8)
( 8 ) 91:
(9)
R u s s e l l , D.H. ( 6 ) 403 R u s s e l l , D.R. ( 9 ) 192 R u s s e l l , G.A. ( 1 ) 12 R u t t . J.S. ( 8 ) 85; ( 9 )
21 5
Ruzanov, I . A . ( 8 ) 150 Ryabokobylko, Yu.S. ( 9 )
124
Ryabov, B . V . ( 5 ) 163 Rybakov, V.N. ( 6 ) 197 R ybkina, V.V. ( 5 ) 72 R y c r o f t , D.S. ( 8 ) 7 5 -
( 9 ) 9 2 , 224
R y l ' t s e v , E.V. Rymareva, T . G . R yte, A.S. ( 6 ) R yte, V.C. ( 6 )
Saak, W.
( 4 ) 91
( 9 ) 134 ( 5 ) 147 253 39
( 1 ) 217, 314;
S a a l f r a n k , R.W. ( 8 ) 21 S a a l f r a n k , W.R. ( 9 ) 191 Sabatino, P . ( 1 ) 204 Sachs, W. ( 1 ) 260 Sadykov, A.R. ( 5 ) 50 Sadykov, T.S. ( 4 ) 10;
( 5 ) 61
Saegusa, T . Saenger, W. Safiullina, 136; ( 9 ) Sagan, B.L. Sagar, R.V.
( 1 ) 232
( 6 ) 404 N.R. ( 5 )
135 ( 6 ) 383 ( 8 ) 172
Author Index
S n g i , J . ( 6 ) 227 Sagstuen, E. ( 9 ) 131 S t . C l a i r , M.H. ( 6 ) 92 S a i n z - D i a z , C . I . ( 9 ) 109 S a i t o , I . ( 6 ) 313 S a i t o , S . ( 1 ) 27 S a i t o , T . (8) 58 Sakamoto, N. ( 8 ) 137 Sakaya, T . ( I ) 232 Saks, V.A. ( 6 ) 385 S a k u r i , K . ( 7 ) 112 Salem, G . 9 1 ) 90 S a l i y a , H.K. ( 3 ) 22 S a l z e r , A. ( 4 ) 13 Sarnaha, M. ( 9 ) 313 Samanta, H. ( 6 ) 208 Sampson, P . ( 5 ) 70: ( 7 )
77
Samukov, V . V . ( 6 ) 39 Sancar, A . ( 6 ) 274,
275
Sanchez, M.
( 1 ) 254, 331; ( 4 ) 99: (8) 1 3 , 123 Sandakov, V.B. ( 5 ) 147 S a n d a l i , C . ( 4 ) 46 Sandberg, A . S . ( 9 ) 289 Sandstrom, A . ( 6 ) 402 Saneyoshi, M. ( 6 ) 94 Sangokoya, S.A. ( 1 ) 124 S a n t a n i e l l o , E. ( 1 ) 140 Santo, K . ( 5 ) 27 Santos, J.G. ( 1 ) 107; ( 9 ) 301 Sappa, E . ( 1 ) 136 S a r i n , P.S. ( 6 ) 206 S a r k a r , A.B. ( 5 ) 17 Sarkou, A . B . ( 5 ) 16 Sarngadharan, M.G. ( 6 ) 93 S a r r o f f , A. ( 1 ) 14 S a r t o r e l l i , A.C. ( 6 ) 41 1 S a sa ki , M. (5) 131; ( 9 ) 283 Sasakura, T . (8) 213, 214 Sassus, J.L. (8) 98 S a ta v, J.G. ( 6 ) 109 Satge, J . ( 1 ) 298, 301, 302; ( 9 ) 19c S a t o , F . ( 6 ) 284 Sato, H. ( 7 ) 4 S a t o , K . (8) 194 S a to , R . ( 6 ) 172 Sato, T . ( 1 ) 251; ( 5 ) 167 Sato, Y . ( 9 ) 207 Satoh, K . ( 7 ) 112 Sau, A.C. ( 2 ) 6
445
S a u e r h i e r , W. ( 6 ) 308 S a v a l ' y a n o v , V.P. ( 9 ) 3 2 3 Savignac, P . ( 5 ) 7 7 , 7 9 ,
80, 8 1 , 8 2 , 153: ( 7 ) 72 S av i gnac , Ph. ( 7 ) 7 9 : (9) 117 S awadai s hi , K . ( 6 ) 130 Sawai, K . ( 6 ) 94 Sayadyan, S.V. ( 1 ) 6 8 , 91 S c alz o-B rus h, T . ( 6 ) 353 Scamrov, A.V. (6)95 Scarborough, G.A. ( 6 ) 65 S c haefer, H.F. ( 1 ) 234 S c h a e f f e r , A.H. ( 4 ) 63: ( 6 ) 31 S c h z f e r , H. ( 1 ) 252, 253 S z h a f e r , H.-G. ( 1 ) 314, 3 30 S c h a l l e r , W . ( 6 ) 374 Scheide, G.M. (8) 175 S c h e i n e r , A . C . (1) 234 S c h e l l e r , K.H. ( 6 ) 360 Scheller-Krattiger,
v.
( 6 ) 360 Schenk, R . ( 7 ) 27 S c herer, D.J. ( 1 ) 318, 353- (8) 50 S c h e v a l i e r , M. (8) 146 Schlichtling, I. (6) 384 S c h l o v e r , V.E. ( 9 ) 195 Schmidbaur, H. ( 1 ) 1 6 , 1 8 2 , 214: ( 3 ) 3: ( 4 ) 37; ( 7 ) 5 , 6 2 , 6 3 , 6 4 ; ( 9 ) 1 8 6 , 211 S c hm i dpeter, A. ( 1 ) 188, 360, 361, 364; ( 4 ) 3 , 8 6 , 8 7 , 88; (8) 30, 1 5 1 , 152: ( 9 ) 2 3 , 30 167Schmidt, H. ( I ) 3, 256 Schmidt, H.G. (2) 34: ( 9 )
232 Schmidt, M. ( 7 ) 39, 40 Schmidt, S.P. ( 1 ) 113 S c hm utz l er, R . ( 1 ) 142, 173, 187; ( 2 ) 23: ( 4 )
27; ( 9 ) 181, 212
S c h n a t t e r e r , S . ( I ) 16 S c hneider, D.F. ( 7 ) 71 S c hneiders , H. ( 9 ) 198
Schneiderwind-St~cklein, R . ( 5 ) 30
S c hngc k el , H.
( 4 ) 85
( 3 ) 18;
(1) 314, 330; ( 4 ) 91; ( 9 ) 123 S c h G l l k o p f , U. ( 5 ) 111 S c holz , U. (8) 47
Schoeller, W.W.
Schomburg, D. ( I ) 1 7 3 ,
787: ( 4 ) 27; ( 9 ) 5 2 , 1 8 1 , 212, 230 Schgn, A. ( 6 ) 4 Schoner, W. ( 6 ) 8 3 Schramm, V . ( 7 ) 45: ( 9 ) 190 Schramm, V . L . ( 6 ) 41 S c h r e i b e r , E.P. (8) 202 Schr oeder , S.A. ( 9 ) 12 Schuber t, F. ( 6 ) 181 Schuck, R . ( 9 ) 76 Schuhn, W. ( 1 ) 285: ( 9 ) 1 9 6 , 160 S c h u l h o f , J . C . ( 6 ) 150, 151 Schulman, L.H. ( 6 ) 262 Schulze, 3. ( 9 ) 16 Schumann, H. ( 1 ) 132, 134; ( 9 ) 42 Schunck, S. ( 3 ) 18: ( 4 ) 85 S c h u s t e r , S.M. ( 6 ) 8 5 , 86 Schu'tze, R . ( 5 ) 111 Schwager, C . ( 6 ) 298 Schw ar tz, A . W . ( 6 ) 104 Schwarz, R . ( 5 ) 30 Schwartze, P . ( 3 ) 31 Schweizer, E . E .
(1)
Semenii, V.Ya.
(2)
223; ( 7 ) 46 Schweizer, M.P. ( 6 ) 52 S c h e p l e r , D. ( 6 ) 9 Schwesinger, R . (8) 33; ( 9 ) 267 Schwetlick, K . (4) 104 Scopelianos, A . G . (8) 168 S c o t t , E.V. ( 6 ) 396 S c o t t , S.L. (8) 148 Seega, J . ( 1 ) 161, 162; (5) 138; ( 9 ) 76: 197, 198 S e e l , F . ( 9 ) 193 Seela, F . ( 4 ) 57: ( 6 ) 33, 191, 196 Seeley, A . ( 9 ) 102 Seeman, N.C. ( 6 ) 188 Sejpka, H. ( 1 ) 287; ( 9 ) 18 Sekine, M. ( 4 ) 67, 7 2 , 73; ( 6 ) 30, 133, 134, 1 3 9 , 140, 141, 1 4 2 , 1 4 3 , 149, 170 S e l i g e r , ti. ( 6 ) 118 Sell, M . ( 1 ) 173
446
1 9 : (5) 132 Semple, G . ( 5 ) 157 Sendyorev, M . V . ( 1 ) 1 6 6 , 1 6 7 , 170 S m e l t , S . ( 9 ) 297 Sengokoya, S . A . ( 9 ) 59 Seno, M. ( 9 ) 304 Seppala, E. (8) 164 Sera, A. ( 9 ) 115 S e r d o h o v, M . V . ( 9 ) 1 2 4 Seres, J. ( 5 ) 58 S e g a l o f f , D . L . ( 6 ) 58 Sergeeva, N . M . ( 9 ) 117 Sergeeva, M . V . ( 9 ) 185 S e r g i e n k o , L .M. ( 5 ) 7 4 S e r g i o , S . ( 9 ) 268 Seridi, L . ( 9 ) 280 S e r p e r s u , E.H. ( 6 ) 83 Seseke, U. ( 8 ) 4 7 , 1 5 8 , 159 Seto, H. ( 6 ) 280 S e t z e r , W.N. ( 9 ) 48 Seyden-Penne, J . ( 7 ) 67 Shabana, R . ( 5 ) 5 4 , 174 Shabarova, Z . A . ( 6 ) 1 6 2 , 1 8 1 , 1 9 8 , 240 S h a e f e r , H.G. ( 9 ) 123 S h a f e i z a d , 5. ( 2 ) 5 S h a i d u r o v , V . S . (5) 28 Shaqidullin, R.R. ( 1 ) 1 6 9 : ( 9 ) 9 , 1 3 9 , 140 S h a g r a l e e v , F.Sh. ( 9 ) 1 0 8 S h a k i r o v , I . K h . ( 9 ) 140 Shalamov, A . L . ( 9 ) 1 9 4 Shamoo, A . E . ( 6 ) 354 Shao, K . ( 6 ) 200 Shao, K.-L. ( 4 ) 71 Sharma, N.D. ( 6 ) 281 Sharp, P . A . ( 6 ) 2 4 4 , 342 S h a r u t i n , V . V . ( 9 ) 229 Shaw, B.L. ( 1 ) 4 9 , 1 3 0 Shaw, J.C. ( 8 ) 1 1 5 , 1 1 6 , 1 1 7 : ( 9 ) 112 Shaw, L.S. ( 8 ) 7 0 , 7 1 , 7 2 , 73, 74, 7 5 , 79, 80, 109, 111, 112. ( 9 ) 4 6 , 56, 1 2 0 , 2 2 4 , 2 2 5 , 2 2 6 , 241 Shaw, R . A . ( 5 ) 2 0 : ( 8 ) 6 9 , 70, 71, 72, 73, 74, 75, 7 9 , 80, 109, 111, 112: ( 9 ) 4 6 , 56, 9 2 , 120, 121, 2 2 3 , 2 2 4 , 2 2 5 , 2 2 6 , 241 Shayhan, F. ( 9 ) 313 S h c h e r b i n a , T.M. ( 5 ) 28 Sheardy, R . D . ( 6 ) 188 S h e e l y , R.M. ( 9 ) 292 Sheenson, V . N . ( 9 ) 2 S h e l d r i r k , G.M. (2) 3 4 : ( 8 ) 27, 4 7 , 156: ( 9 ) 232
Organophosphorus Chernistr?,
S h e l d r i r k , W.S. ( 1 ) 3 6 4 : ( 4 ) 8 7 : ( 9 ) 167 Shen, Y . ( 1 ) 2 2 6 ; ( 7 ) 4 7 , 4R Shenoy, S.J. ( 9 ) 98 Sherman, W.R. ( 9 ) 262 Shermolovich, Y u . G . ( 1 ) 7 2 : (2) 8. ( 9 ) 3 2 , 6 5 , 91 Sheshina, G.M. (8) 218 Shpvchenko, I . V . ( 1 ) 2 7 1 , 278 Shevchenko, M . V . ( 8 ) 34 Shevchuk, M . I . ( 1 ) 2 1 1 : ( 9 ) 146 Shpvenkn, 1 . V . ( 9 ) 1 7 , 25 Sheves, M. ( 7 ) 91 S h i , I.. ( 7 ) 2 4 , 2 5 , 105 S h i , Y . ( 1 ) 34 S h i h a h a r a , S . ( 6 ) 302 S h i b a s a k i , M. ( 7 ) 1 2 4 S h i h a t a , Y . ( 9 ) 206 Shibayama, K . ( 1 ) 251 S h i b u t a n i , M. ( 7 ) 138 S h i g e h a r a , K . (8) 203 S h i h , Y.E. ( 9 ) 221 Shikhanova, L.N. (8) 218 Shimizu, T . ( 6 ) 80 Shimkus, M.L. ( 6 ) 88 Shimotakahara, S . ( 6 ) 277 Shiornoto, K . ( 8 ) 1 8 0 S h i o r i , T . (5) 181 S h i o z a k i , M. ( 5 ) 1 1 2 : ( 7 ) 88 S h i r n i n a , T . A . ( 8 ) 166 S h i z u r i , Y . ( 7 ) 130 Shade, 0 . (8) 23 S h o k o l , V . A . (2) 36 Shopova, N . ( 9 ) 316 S h o r t e r , A . L . ( 6 ) 353 Shreeve, J.M. ( 5 ) 3 , 4 , 126 S h r i v e r , D.F. ( 8 ) 2 0 0 , 2 0 1 , 2 0 4 , 205 Shudo, K . ( 6 ) 317 Shuqar, D . ( 6 ) 53 Shukla, K . K . ( 6 ) 69 S h u l l , T.B. ( 6 ) 7 2 Shumeiko, A . E . ( 8 ) 9 2 Shurubura, A . K . ( 4 ) 38 Shuto, S . ( 6 ) 1 6 Shvedova, T . A . ( 6 ) 347 Shvedova, Yu. I . (5) 7 5 Sibbele, S . ( 9 ) 173 S i b i n s k a , A. ( 6 ) 23 S i c k i n g e r , A. ( 1 ) 33 S i d k y , M.M. ( 2 ) 2 2 : ( 7 ) 42
S i d o r o v , V . I . ( 8 ) 133 S i d o r o v , V . V . ( 8 ) 113 S i e p a k , 3. ( 9 ) 271 S i g a l o v , M.V. ( 1 ) 6 6 Siqel, G . A . ( 1 ) 1 6 4 Siqel, H. ( 6 ) 4 2 , 3 5 9 , 360 Sigman, D . S . ( 6 ) 3 1 8 , ' 3 1 9 , 320 Silaghi-Dumitrescu, L . ( 9 ) 199 S i l i n a , E.B. (2) 36 S i l l e r o , A . ( 6 ) 107 Sillero, M . A . G . ( 6 ) 107 S i l e r , J. ( 1 ) 3 4 6 , 3 4 7 , 3 4 8 , 3 4 9 , 350 Silver, P . A . ( 8 ) 131 S i l v e s t r u , C. ( 5 ) 1 3 3 ; ( 9 ) 199 Simmonnin, M.-P. ( 7 ) 69 Simmons, 0 . (8) 35 Simms, D . A . ( 6 ) 233 Simon, E . s . ( 1 ) 120 Simon, G . ( 9 ) 193 Simon, J . ( 1 ) 36 Slmova, S.D. ( 5 ) 151 S i r n u l i n . Yu.N. ( 9 ) 276 Sines, 3 . 3 . ( 6 ) 7 0 S i n q e r , B. ( 6 ) 228 Sinqh, G . ( 1 ) 1 0 1 ; ( 7 ) 7 S i n q h , R . K . (5) 121 S i n g l e r , R.E. ( 8 ) 1 7 7 , 189 S i n i t s a , A.D. ( 2 ) 2 8 ; ( 4 ) 3 3 , 3 8 , 3 9 : (5) 1 3 9 , 178 S i n o i l , D. ( 1 ) 2 1 , 22 S i n y a s h i n , O . G . ( 4 ) 23 S i p p e l ' I . (5) 180 S i s k , R.B. ( 6 ) 56 S i t d i k o v a , T.Sh. ( 9 ) 108 S i v , C. ( 1 ) 1 7 9 : ( 4 ) 82 S j o v a l l , J . ( 6 ) 114 S k a t t e h o l , L . ( 7 ) 86 Skheide, G.M. ( 8 ) 4 4 S k l e n a r , V . ( 6 ) 388, 389 , 392 Skorobogaty, A. ( 6 ) 3 1 6 , 327 Skowronska, A . ( 9 ) 7 3 S k r z y p c z y 6 s k i , Z. ( 5 ) 8 S l a v i c h , V.M. ( 9 ) 295 S l a w i n , A.M.Z. ( 3 ) 22 Slessov, K.N. ( 5 ) 6 9
Author Index
447
S l e s s o v , K . N . ( 5 ) 69 S l o a n , U . D . ( 1 ) 133 S l o v ' e r , A.V. ( 9 ) 32 S l u k a , P. ( 5 ) 30 S m a a r d i j k , Ab.A. ( 9 ) 74 Smallwood, A. ( 6 ) 75 Smart, B.E. ( 7 ) 1 : ( 9 )
8
Smeaton, E . ( 3 ) 32 Smerdon, M.J. ( 6 ) 252 Srnirnov, N.N. (8) 218 Srnirnov, V.N. ( 5 ) 50 Smirnova, T.V. ( 5 ) 1 2 ;
( 9 ) 258
S r n i t , C.N. ( 1 ) 299 Srnit, P. ( 6 ) 100 S m i t h , A . ( 5 ) 186, 187 Smith, A.B. ( 1 ) 121 Smith, D . L . ( 6 ) 45 Smith, C.G. (8) 8 , 9 S m i t h , S . J . ( 1 ) 235 S r n i t h u r s t , P.G. ( 1 ) 212 S n a i t h , R . ( 1 ) 10 S n e l , J.J.M. ( I ) 8 3 Snyder, J.D. ( 7 ) 123 Sobanov, A.A. ( 9 ) 303 S o d e r q u i s t , J . L . ( 7 ) 32 S o e l e r , F. ( 6 ) 399 Sohar, P . ( 9 ) 77 S o k o l o s k i , J.A. ( 6 ) 411 S o k o l o v , V.V. ( 1 ) 170 Sokolova, N . I . ( 6 ) 198 S o k o l ' s k a y a , I . B . (8) 195 S o l d a t o v a , I . A . ( 4 ) 36 Soliman, F.M. ( 7 ) 43 S E l l , D. ( 6 ) 4 Solodovnikov, S . P . ( 9 )
127
S o l o t n o v , A . F . ( 9 ) 137 S o l o v e t s k a y a , L.A. ( 9 )
117
S o l o v ' e v , A.V.
( 9 ) 91
Somrnerlade, R . H .
185
( 1 ) 72; (5)
Sondhi, S.M. ( 6 ) 316 Songstad, J. (8) 13; ( 9 )
203
S.onnemans, M.H.W. ( 9 ) 128 Sonveaux, E . ( 6 ) 116 SooChan, P. ( 6 ) 233 Soonq, D.S. ( 8 ) 170 S o p c h i k , A.E. ( 9 ) 48 S o r o k i n a , S.F. ( 9 ) 114 S o u r n i e s , F . ( 8 ) 97, 99 S o u v e r a i n , D. (8) 189 Sowerby, D.B. ( 5 ) 133 Sowers, L . C . ( 6 ) 187 Spears, L . G . ( 5 ) 152 Speckhard, D.C. ( 6 )
82
Speek, M. ( 6 ) 296 Spencer, T . L . ( 6 ) 408 S p e n g l e r , S . J . ( 6 ) 234 S p i e g e l , G.U. ( 1 ) 26, 65 S p i e r e n b u r g , M.L. ( 4 ) 7 7 ; ( 6 ) 27 Spinosa, G. ( 6 ) 18 Sporns, P. ( 9 ) 292 S p r e a f i c o , F . (8) 99 S p r i n g e r , H. ( 1 ) 149 S p r i n z l , M. ( 6 ) 268 S p r o a t , B . ( 6 ) 298 S q u i r e , D.R. (8) 189 S r i n i v a s a n , M. (8) 126 S r i v a s t a v a , G. ( 5 ) 15 S t a l l a r d , R.L. ( 6 ) 295 Stam, C.H. ( 1 ) 282 S t a m b o u l i , A . ( 7 ) 75 Stamos, I.K. ( 5 ) 166 Stanforth, S.P. ( 2 ) 3 Staninets, V . I . ( 5 ) 115 S t a n k e v i c h , I . V . (8) 166 S t a n n e t t , V.T. (8) 189 S t a r r e t t , J . E . Jr. ( 7 )
127
S t a r t s e v , V.V. ( 5 ) 76 Starzewski, K.A.O. ( 7 ) 68 S t a w i n s k i , J. ( 1 ) 114; ( 4 ) 34, 75, 6 ; ( 6 ) 26, 120,
121, 122
4 ) 71; ( 6 ) 21, 399 S t e c k l e r , D. K . ( 6 ) 64 S t e e l e , D.L. ( 8 ) 138 S t e i n , S.M. ( 8 ) 179 S t e i n k e , W. ( 5 ) 59
S t e c , W.J.
199, 200
S t e i n s c h n e i d e r , A.Ya. ( 6 ) 385 Stegemann, J . ( 6 ) 298 S t e g e r , B . ( 1 ) 274;
(2) 9
S t e l t e n , J . ( 9 ) 64 S t e l z e r , 0. ( 1 ) 1 8 , 2 6 ,
6 5 , 185; ( 4 ) 4 1 ; ( 9 ) 173
Stepanova, Yu.2.
234, 235
(9)
Stephens, F.S. ( 1 ) 90 S t e r c h o , Y.P. ( 5 ) 182 Sterrn, 0. (8) 1 1 , 12 S t e r n b e r g , J . A . ( 7 ) 19 S t e t t e r , K . O . ( 6 ) 46 S t e v e n s , D.G. ( 3 ) 26 S t e w a r t , C.A. ( 2 ) 31:
(4) 4
Stezowski,
J.J.
172; ( 4 ) 31
(1)
S t r e i t w i e s e r , A. J r . (9) 6 S t r ; ' t v e e n , B. ( 9 )
72
S t i l l e , J.K. ( 1 ) 20, 92 S t i n n e t t , S . J . (8) 81 S t i t t , B . L . ( 6 ) 77 S t o b a r t , S.R. ( 1 )
138
S t o j a o r a , D. ( 9 ) 79 S t o l a r s k i , R . ( 6 ) 53,
2 34
S t o l l , K.
4 4 , 45
( 1 ) 42, 43,
S t o p p i o n i , P.
335
(I)
S t o r k , G.A. ( 6 ) I00 S t r a e h l e , J . ( 8 ) 68 S t r e r n l e r , K.E. ( 5 ) 6 Strepikeev, Yu.A. ( 5 )
49: ( 9 ) 252
Streusland, 8.3.
(9)
S t r i c k l a n d , J.A.
(6)
138
394
S t r i d h , S. ( 6 ) 37 S t r i t t , H.-P. (1)
197
( 1 ) 114; ( 4 ) 34, 76: ( 6 ) 26, 120, 1 2 1 , 122 S t r o n g , J.M. ( 9 ) 292 S t r u c h k o v , Yu.T. ( 1 ) 195, 213; ( 4 ) 4 0 , 9 0 , 93; ( 5 ) 137, 150; (8) 31: ( 9 ) 127, 166, 184, 185, 194, 195, 213, 218, 220
Strzrnberg, R .
S t r u s z c z y k , H.
114, 129
(8)
S t r y e r , L . ( 6 ) 102 S t r z a l k o , T . ( 7 ) 69 S t u a r t , A.L. ( 6 ) 226 Stubbe, J. ( 6 ) 9 9 ,
310, 311, 314 ( 5 ) 48; (8) 15 S t u r m e r , R . ( 7 ) 113 Sudheendra Rao, M . N . ( 8 ) 147 Sugimoto, N. ( 6 ) 2 36 Sugiyama, H. ( 6 ) 315 Sturm, D.
Sukhorukova, N.A.
( 9 ) 320
Sukorukhova, N.A.
171
(5)
Sukuma, 1. ( 6 ) 13 Sulaiman, 5 . 7 . ( 9 )
244
S u l l i v a n , F.X.
332
(6)
448
Organophosphorus Chemistry
S u l z e r , G.M. ( 8 ) 82 Sum, P.E. ( 7 ) 127 Summers, M.F. ( 6 ) 799,
202, 390
Sundaralingam, M.
353
(6)
( 3 ) 23; ( 9 ) 237 Suri, 8. ( 6 ) 192 S u r p i n a , N.Ya. ( 8 ) 136 SGss-Fink, G . ( 8 ) 60 Sut, A . ( 5 ) 53 S u t h e r l a n d , J.C. ( 6 ) 409 Suvorov, N.N. ( 8 ) 702 S u zu k i , K. ( 6 ) 15 S u zu k i , M. ( 1 ) 232 Svara, J. ( I ) 172, 218; ( 4 ) 31; ( 9 ) 101, 200 S v i r i d o v , D.B. ( 9 ) 124 Swain, C . J . ( 7 ) 117 Swamy, 8. ( 1 ) 32 Swann, P.F. ( 6 ) 194 Swinbourne, F . J . ( 8 ) 23 Swinton, D. ( 4 ) 66: ( 6 ) 164 S ym a l l a , E . ( 1 ) 270, 315; ( 4 ) 9 4 ; ( 8 ) 51 S z a l o n t a i , G . ( 9 ) 77 S za m e i t a t , J . ( 1 ) 272; ( 9 ) 16 Szewczyk, J . ( 1 ) 122, 157, 176; ( 3 ) 11: ( 5 ) 183: ( 9 ) 9 5 , 201 Szewczyk, K.M. ( 5 ) 183; ( 9 ) 201 S z i l s g y i , I . ( 5 ) 58 Szostak, J.W. ( 6 ) 337 Sundukova, E.N.
( 4 ) 65: ( 6 ) 123, 125 Taboury, J.A. ( 6 ) 405 Tachon, C . ( 1 ) 249; ( 4 ) 102 Tada, M. ( 6 ) 286 Tada, Y. ( 8 ) 141, 142 T a g u c h i , T. 9 7 ) 9 3 Taguchi, Y . ( 6 ) 206 T a i l l a n d i e r , E. ( 6 ) 405 T a i r a , K. ( 2 ) 17: ( 5 ) 38; ( 9 ) 319 T a j m i r - R i a h i , H.A. ( 6 ) 361 Takahashi, A . ( 7 ) 124 Takahashi, H. ( 1 ) 29 Takahashi, M. ( 6 ) 229 Takahashi, S. ( 6 ) 338, 397
Taagaard, M.
Tak ak i s , I . M . ( 7 ) 134 Takaku, H. ( 4 ) 70: ( 6 )
146, 168, 169, 209 5. ( 5 ) 142, 143 Takano, 5 . ( 7 ) 112 Takeda, A . ( 7 ) 41 Takeda, H. ( 8 ) 213 Takesue, T. ( 6 ) 280 Takeuchi, 1. ( 9 ) 206 Takeuchi, T . ( 6 ) 381 T a l , D. ( 6 ) 248 T a l l e y , J . J . ( 5 ) 10 Tarnatsukuri, S . ( 4 ) 6 9 ; ( 6 ) 157, 165, 166, 182 Tambute, A . ( 3 ) 7: ( 9 ) 282, 286 Tamrn, C . ( 6 ) 1 9 1 , 400 Tamura, S . ( 8 ) 214 Tanaka, H. ( 1 1 368, 369: ( 3 ) 15; ( 6 ) 11 Tanaka, K . ( 8 ) 191 Tanaka, T . ( 4 ) 69; ( 6 ) 144, 145, 157, 165, 1 6 6 , 182: ( 7 ) 1 0 6 , 107, 208 T a n i e l i a n . O.V. 1 9 ) 313 Taniguc hi, Y. ( 1 ) 224; ( 7 ) 28 Tanimura, H. ( 4 ) 67; ( 6 ) 141 Taqui, M.M. ( I ) 32 T a r a s s o l i , A . ( 4 ) 42: ( 9 ) 179 Tarusova, N.B. ( 6 ) 105 T a r z i v o l a , T.A. ( 5 ) 164 Tashma, Z . ( 4 ) 24 Tatsuoka, T. ( 6 ) 15 Taudien, 5. ( 8 ) 15 Tay, M . K . ( 7 ) 79 T a y l o r , B.F. ( 1 ) 212; ( 3 ) 21; (9) 53 T a y l o r , J.-5. ( 6 ) 282 T a y l o r , R . ( 1 ) 49 Tebby, J.C. ( 2 ) 26; ( 3 ) 12: ( 5 ) 161: ( 9 ) 86 Tedder, J.B. J r . ( 8 ) 81, 82 Teoule,. R . ( 6 ) 150, 151 Temerk, Y.M. ( 9 ) 245 Tener, G.M. ( 6 ) 233 T e r e n t ' e v , P.B. ( 9 ) 259 Takamuku,
T e r e n t ' e v a , E.A.
(8)
T e r e n t ' e v a , S.A.
(2)
210 37
T e s s i e r , D.C.
237
(6)
Teulade, M.P.
(5) 77, 7 9 , 8 0 , 8 1 , 8 2 , 153; ( 7 ) 72; ( 9 ) 117
Texier-Boullet,
F.
( 5 ) 9 6 ; ( 7 ) 18 Thanappan, A . ( 5 ) 46 T hatcher , G.R. J . ( 2 ) 1 9 a , 19b; ( 6 ) 62: ( 9 ) 321 Thederahn, T. ( 6 ) 320 Thenet, S. ( 6 ) 173 Theophanides,
T.
( 6 ) 356, 361 Theveny, B. ( 6 ) 415 T h i e l , A. ( 2 ) 34: ( 9 ) 232 Thiern, J . ( 6 ) 1 7 , 40 T h i j s , L . ( 7 ) 116 Thomas, B. ( 8 ) 1 1 , 12; ( 9 ) 96 Thomas, C . J . ( 8 ) 147 Thomas, G.J. ( 1 ) 328 Thorn;, F. ( 6 ) 18 Thompson, M.L. ( 4 ) 42: ( 9 ) 179 T hor nton, P. ( 1 ) 133 Thorsen, M. ( 9 ) 287 T h u i l l i e r , A. (1) 85 Thuong, N.T. 9 6 ) 117, 328 Thurn, H. ( 1 ) 218 Tien, H.J. ( 1 ) 7 T i l i c h e n k o , M.N.
(5)
118
Timmerman, H. ( 8 )
183, 184
Timofeev, A.M.
168
Timofeeva, G . I .
165
Timokhin, B.V.
1
(5) (8)
(5)
Ting, R.Y.C. ( 6 ) 93 T i r i p i c c h i o , A. (1)
136
T i t s k i i , G.D.
92
(8)
T i t t m a n , R. ( 1 ) 76 T i u s , M.A. ( 7 ) 109 T j i a n , R. ( 6 ) 242 Tkachenko, S.E. ( 9 )
308
Tkachev
V.V. ( 9 )
209, ' 21 0
Author Index
449
T o c h i l k i n a , L.N. ( 9 ) 137 TGke, L . ( 4 ) 15 T o k i , S. ( 5 ) 142 Tokoroyama, T . ( 7 ) 23 Tokumaga, T . ( 6 ) 131 Tokunaga, T . ( 6 ) 132 Tolman. R . L . ( 6 ) 99 Tomasz, M. ( 6 ) 277, 278,
279
tom D i e c k , H. 9 ) 79 Tomita, K . ( 9 ) 207 Tomita, T . ( 5 ) 123 Toney, J.H. ( 6 358 Tonge, 3.5. ( 8 201.
204
Toppin, C.R. ( 6 ) 89 Topping, R.J. ( 1 ) 123:
( 3 ) 10: ( 9 ) 106 Tordom P. ( 9 ) 126
T o r o c h e s c h i n i k o v , V.N. ( 8 ) 57 T o r r e n c e , P.F. ( 6 ) 207,
211, 212, 213, 214, 21 5 Toshima, H. ( 7 ) 126 T o s s e l l , J . A . ( 9 ) 28 T o s s i n g , G. ( 1 ) 161, 162: ( 5 ) 138; ( 9 ) 7 6 , 1 1 0 , 197, 198 T o t h , 1. ( 9 ) 77 Toube, T.P. ( 7 ) 136 Toupet, L . ( 9 ) 172 Tourbah, H . ( 7 ) 26 Toyota, K. ( 1 ) 251, 284, ( 9 ) 164, 165 T r a c h e v s k i i , V.V. ( 2 ) 8: ( 9 ) 6 5 , 91 T a l d i , P . ( 8 ) 110 Tran-Dinh, S. ( 6 ) 391 T r e d e r , W. ( 6 ) 17 T r e n t ' e v a , S.A. ( 8 ) 153 T r i b o l e t , R . ( 6 ) 42 T r i f o n o v , L . S . ( 5 ) 151 T r i p p e t t , S . ( 9 ) 104 T r i s h i n , Yu. G . ( 2 ) 25 T r i z n o , M.S. ( 8 ) 199, 218 T r o m e t i n , A. ( 5 ) 160 Tromp, C.M. ( 4 ) 63; ( 6 ) 31 Tromp, M. ( 6 ) 27 T r o s t y a n s k a y a , I.G. ( 9 ) 107 T r o t s c h - S c h a l l e r , I . ( 1) 177 Trostyanskaya, I . G .
171
Trunk, J . ( 6 ) 409 T r z e c i a k , A . ( 4 ) 50 T s a i , T.-C. ( 6 ) 75 Tsao, C.-H. ( 1 ) 1 5
(1)
Tsao, K .
( 9 ) 260 Tse-Dinh, Y . - C . ( 6 ) 34 9 Tseng, C . K . H . ( 6 ) 101 T s ' o , P.O.P. ( 6 ) 204 T s u b o i , A . ( 1 ) 102; ( 7 ) 53 T s u b o i , M. ( 6 ) 388, 397 Tsuboi, 5. ( 7 ) 41 T s u c h i y a , H . ( 6 ) 168 T s u c h i y a , S . ( 9 ) 304 Tsukamoto, M . ( 7 ) 22 T s v e t k o v , E.N. ( 3 ) 23; ( 9 ) 237, 308 Tsymbal, I . F . ( 8 ) 28: ( 9 ) 134 Tuckmantel, W. ( 1 ) 201 Tudose, A. ( 5 ) 107 T u l l i u s , T.D. ( 6 ) 326 T u m a n s k i i , B . L . ( 9 ) 127 Tundo, P. ( 7 ) 78 Tunney, S.E. ( 1 ) 92 Tupchienko, S.K. ( 2 ) 28 T u r , D.R. ( 8 ) 1 6 5 , 166 Turakyan, M.R. ( 5 ) 169 T u r c a n t , A . ( 7 ) 55 T u r n e r , D.H. ( 4 ) 66; ( 6 ) 1 6 4 , 236 Tuzun, M. ( 8 ) 79, 112; ( 9 ) 225, 241 Tzschach, A . ( 1 ) 63, 144; ( 4 ) 8 1 ; ( 5 ) 91; ( 9 ) 1 4 7 , 170
Ubasawa, A. ( 6 ) 189 Uchiyama, M . ( 6 ) 128,
147
Ueda, 5 . ( 6 ) 16 Ueda, T . ( 3 ) 40; ( 6 ) 1 6 ,
183, 185
U e n i s h i , J . ( 7 ) 114 U e s u g i , 5 . ( 6 ) 132 Ueyama, N. ( 5 ) 29 U g i , I . ( 5 ) 30 U h l , W . ( 9 ) 169 Uhlenbeck. O . C . ( 6 )
270, 272 U k a i , J . ( 3 ) 27; ( 7 ) 14 U k h i n , L,Yu. ( I ) 213: ( 9 ) 184 U l ' m a s o v , T.L. ( 6 ) 43 Umarova, 1.0. ( 9 ) 209, 210 Umezaki, Y . ( 3 ) 40 Urdea, M.S. ( 4 ) 51, 53; ( 6 ) 154 U r g e l l e s , M. ( 1 ) 125
U r p f , F. ( 1 ) 119 Uschmann, J . ( 9 ) 152 Ushakov, A . A . ( 1 ) 159 Usman, N. N. ( 6 ) 152,
167
U s t y n y k , Y.A. ( 9 ) 107 U t i m o t o , K . ( 1 ) 201 U t v a r y , K . ( 2 ) 38; ( 9 )
265
Uyzbaev, K . M . ( 1 ) 209 U z n a n s k i , B. ( 4 ) 71;
( 6 ) 1 9 9 , 200, 399
Vaidyanathawamy, R .
( 2 ) 17; ( 5 ) 38
V a g h e f i , M.M. ( 6 ) 12 Valeeva, T.G. ( 9 ) 145 V a l l e , L . ( 9 ) 269 V a l v e r d e , 5. ( 1 ) 2 0 8 t
( 7 ) 16
Van Aken, D. ( 2 ) 30: ( 9 ) 41 Van B o e c k e l , C . A . A .
( 6 ) 174
van B o l h u i s , F . ( 8 ) 86, 9 1 ; ( 9 ) 225,
227, 228
van Boom, J.H. ( 4 ) 29, 61, 62, 63, 65,
6 8 , 7 7 , 78 ( 6 ) 27, 28, 31, 100, 123, 125, 1 2 6 , 1 6 3 , 174, 218, 315 Van C l e v e , M.D. ( 6 ) 184 van de Grampel, J.C. ( 8 ) 86, 91, 119, 149 ( 9 ) 225, 227, 228 Vande G r i e n d , L . ( 9 ) 93 van den E l s t , H . ( 6 ) 27, 371 van d e r H u i z e n , A . A . ( 8 ) 86, 91; ( 9 )
227
van d e r Goot , H.
1 8 3 , 184
(8)
van d e r Knaap, Th.A.
( 1 ) 282
van d e r M a r e l , G.A.
( 4 ) 29, 6 1 , 6 2 , 6 3 , 6 8 , 77, 78; ( 6 ) 27, 2 8 , 31, 100, 126, 143, 218, 315
van d e r P l a s , H.C. ( 6 ) 100
Organophosphorus Chemistry
V a n d e r s l i c e , J.T. ( 9 ) 285 van d e r Steen, R . ( 7 ) 89 van d e r Veer, J . L . ( 6 ) 371 van d e r Woerd, R . ( 6 ) 104 Van Doorn, J.A. (1) 69 Vandyukova, 1.1. ( 9 ) 9 Van G a s t e l , F . ( 1 ) 135 van Hemelryck, B. ( 6 ) 372 Van Houten B. ( 6 ) 274, 275 Van Koten, G . ( 1 ) 282 Van Meerssche, M. ( 1 ) 144; ( 9 ) 170 Vann, W.F. ( 6 ) 248 Van N i e k e r k , P . J . ( 9 ) 291 Van O o r t , A.B. ( 1 ) 83 Van P e l t , J.E. ( 6 ) 73 Van Wazer, J.R. ( 9 ) 235 van Westrenen , J. ( 6 ) 174 V a p r i o v , V . V . (8) 92 Varenne, J . ( 6 ) 175 Vargaz, M . ( 1 ) 235 Vargo, J.M. (8) 215 V a r r e , C. ( 1 ) 97 V a s e l l a , A. ( 9 ) 208 Vashevka, D.S. (8) 199 V a s i l ' e v , A.M. ( 2 ) 29 V a s i l ' e v , V.P. ( 9 ) 273 V a s i l ' e v a , T.V. ( 1 0 158 Vasyana, L.K. ( 9 ) 299 Vasyanina, M.A. ( 1 ) 169 Vdovenko, S . I . ( 9 ) 135 V e d e js , E. ( 7 ) 3, 1 1 , 31 Vederas, 3 . C . ( 6 ) 400 Veeneman, G.H. ( 4 ) 62, 78 V e i t h , M . (8) 45 V e i t s , Yu. A . ( 8 ) 57 V e i r o , D. ( 6 ) 277 V e i t h , M. ( 9 ) 187, 189 Veniaminova, A.G. ( 6 ) 256 Venkataraman, H . ( 7 ) 95
V enk s tern, T . V . ( 6 ) 347 V e n t u r e l l o , P . ( 7 ) 78 ( 6 ) 277, V erdi ne, G.I.. 278, 279 Verkade, J.G. ( 2 ) 17, 30; ( 5 ) 38; ( 9 ) 41, 54 V e r n e t , T . ( 6 ) 237 V e r r i e r , M. ( 9 ) 143 V e r t a l , L . ( 1 ) 235 V i c t o r , T. ( 9 ) 292 V i d a l , M. ( 1 ) 202 ( 3 ) 2 Vidaud, L . (8) 96, 97 V i e r l i n g , P. ( 2 ) 3 3 V i e r s o n , F.J . ( 9 ) 228 V i l a , F . ( 9 ) 126 V i l a r r a s a , J. ( 1 ) 119 V i l c e a n u , R.(8) 128 V i l k o v , L.V. ( 9 ) 156 V i l l a f r a n c a , J. J. ( 6 ) 68 V i l l e m s , N. ( 9 ) 151 V inc ens , M . ( 1 ) 202; (3) 2 V i n c e n t B.R. (8) 76 V inogradov a, S.V. ( 8 ) 165, 166 V i o l a , R.E. ( 6 ) 367 Vioque, A. ( 6 ) 243 V i s s e r , G.M. ( 6 ) 174 V lad, 2 . ( 5 ) 107 V l a d i m i r o v , S.N. ( 6 ) 256 V las s ov , V.V. ( 6 ) 253 V o e l l e n k l e , H. ( 9 ) 205 Vogelbacher, U.-J. ( 1 ) 366
Volatron,
7
F.
( 7 ) 8: ( 9 )
V olk ov , E.M. ( 6 ) 162 V ol k ov , T.I. (8) 199 V G l l e n k l e , H. ( 5 ) 32 V o l l r a t h , D. ( 6 ) 410 V o l o d i n , A . A . ( 8 ) 104, 135, 106, 113 V o l z , P. ( 9 ) 163 Von A l lwij rden, U . ( 1 ) 142 von d e r S aal, W. ( 6 ) 68 Van I t z s t e i n , M. ( 5 ) 148; ( 9 ) 103 Von J a n t a - L i p i n s k i , M. ( 6 ) 97 von K i e d r o w s k i , G. ( 6 ) 224 von P h i l i p s b o r n , W. ( 4 ) 13 v m S c hnerinq, H.G. ( 1 ) 45, 46; ( 8 ) 21; ( 9 ) 191 V o n w i l l e r , S.C. ( 3 ) 34 V o r l i c k o v a , M , ( 6 ) 392 V oronts ov , E.D. (8) 102
Voronkov, M.G. ( 1 ) 66: ( 9 ) 155 Vyncke, W . ( 9 ) 296 Vysotskii, V . I . (1) 71; ( 3 ) 13; ( 5 ) 118: ( 9 ) 250
Waanders, P.P. ( 7 ) 116 Wachter, L. ( 6 ) 158 Wada, A. ( 6 ) 292 Wada, H. ( 7 ) 41 Wada, M. ( 1 ) 102; ( 7 ) 53 Wada, T . ( 6 ) 134 Wade, K. ( 1 ) 10 W:3dsworth, W.S. ( 5 ) 43, 45 Wagner, H.N. ( 1 ) 205 Wagner, M. ( 9 ) 193 Wakabayashi, S. ( 4 ) 60; ( 6 ) 7 Walker , 8.3. ( 7 ) 37 Walker D.J. ( 7 ) 118 Walker, G.T. ( 1 ) 10 Walker, N.P.C. ( 1 )
133
Walker, P.A. ( 6 ) 130 Walker, R . T . ( 6 ) 1 1 , 227: ( 9 ) 219 Walker, V. ( 6 ) 277 Wallace, S . S . ( 6 ) 8s W a l l i s , J.M. ( 7 ) 66 Walmsley, J.A. ( 6 ) 393 Walseth, T.F. ( 6 ) 55 W s l t e r s , J.D. ( 6 ) 54 Wambsgans, A. ( 5 ) 182 Wamhoff, H. (8) 38, 39 Wang, 8.-C. ( 6 ) 407 Wang, C . ( 6 ) 50 Wwig, D. ( 6 ) 273 Wmg, J.H. ( 6 ) 251 Wang, J.S. ( 9 ) 221 Wang, Q. ( 5 ) 67;
45 1
Author Index
( 6 ) 4 9 ; ( 9 ) 81 Wdnq, Q . - S . ( 6 ) 239 Wmg, 0.-W. ( 6 ) 47 Wang, I].-Z. ( 6 ) 47 Waig, W. ( 6 ) 4 Wmg, X . ( 6 ) 4 9 : ( 9 ) 315 W j i g , Y . ( 6 ) 4 7 : ( 7 ) 105 Wang, Z.-W. ( 6 ) 47 Wang, Z . Y . ( 7 ) 100 W m i , A . A . ( 6 ) 230 Wangjian, ( 9 ) 260 Wannagat, U. (8) 59 W3rd, B. ( 6 ) 3 2 7 , 378 Ward, J.A. ( 7 ) 122 Ward, J.G. ( 4 ) 30 Wardle, R.B. ( 7 ) 131 Warner, S . ( 1 ) 17 Warren, S . (3) 53 Waschke, R . ( 2 ) 11 Wasiak, J . ( 5 ) 8 Watanabe, T . ( 6 ) 144 W a t k i n s , C.L. ( 9 ) 249 W a t k i n s , D.a. ( 9 ) 56 Watson, J.J. ( 6 ) 285 Watt, D.S. ( 7 ) 122 Webb, M.R. ( 6 ) 7 7 W?bb, T.R. ( 6 ) 1 7 8 ,
Wt211s, A.S.
Wsber, G . Weber, J . Wc:ber, D. W*?ber L . (
Whiteside, R.C.
1 7 9 , 2 3 1 , 307 ( 9 ) 1 7 4 , 175 ( 9 ) 125 ( 1 ) 46 1 243, 244, 245, 246, 247, 280, 231 Weber, U. ( 9 ) 234 Wedegaertner, D.a. ( 9 )
375 W e f e r l i n g , N. ( 1 ) 159 Wegner, P. ( 1 ) 33 Wei, L . ( 1 ) 17 Wei, X . ( 7 ) 46 w 2 1 , xu. ( 1 ) 223 Weinberg?r-Ohana, P .
( 6 ) 218
W e i n f e l d , M. ( 6 ) 201 Weinhold, K . ( 6 ) 92 W..inhouse, H. ( 6 ) 218 Weiss, 6. (8) 21: ( 9 )
191
Weiss, G.a.
334
( 1 ) 337,
Weiss, J.-V. ( 2 ) 23 Weissmann, C . ( 6 ) 343 Weissmann, S.A. ( 1 )
332, 333. ( 4 ) 9 7 , 9 3 : ( 9 ) 202
Weisz, M. ( 4 ) 24 W e i t h , H.L. 9 4 ) 55; ( 6 ) 156 W..lch, S . C . ( 5 ) 25
( 1 ) 344, 346, 3 4 7 , 348, 349, 350, 3 5 1 , 752 W e l l s , B.D. ( 6 ) 267 Wells, T . N . C . ( 6 ) 44 W e l t r o w s k i , M. (8) 129 Wzn, X . ( 7 ) 24 W?ng, L . (1) 34 Werbelow, L . ( 9 ) 126 W,:solek, D.M. (5) 133 Wessely, H . J . ( 9 ) 169 W r s t , C . R . ( 6 ) 113 W?st, F . G . ( 7 ) 3 West, M. ( 6 ) 285 Wzsterduin, P. ( 4 ) 6 2 , 73 Westheimer, F.H. ( 2 ) 4 ; (6) 1 W e s t k a e m x r , R.B. ( 6 ) 106 W e t t e r m a r k , U.G. ( 8 ) 4 2 , 4 3 , 44, 175 Whanq, C . M . (9) 138 Wheeler, R . A . (8) 68 ( 7 ) 35 W'ieeler, W.J. W h i t e , A.H. ( 1 ) 9 W h i t e , W.B. ( 6 ) 114 W ' i i t e f i e l d , J . ( 8 ) 108
138
Jr. (8)
W ' i i t e s i d e s , G.M. ( 1 ) 1 W h i t t l e , R.R. ( 2 ) 1 6 ; ( 7 ) 12; ( 8 ) 121, 122; ( 9 )
183
Widener, R.K. ( 7 ) 59 Wieczorek ( 5 ) 8 5 Wiemer, D.F. ( 5 ) 9 2 : ( 7 )
7 4 , 77
Wiener, D.F. ( 5 ) 7 0 W i f e , R.L. ( 1 ) 8 3 W i l c h e k , M. ( 6 ) 264 W i l d , S.B. ( 1 ) 3 1 , 90 W i l e n z , R. ( 8 ) 177 W i l h e l m , F.X. ( 6 ) 329 W i l l h a l m , A . ( 1 ) 360 W i l l i a m s , A . ( 5 ) 188 W i l l i a m s , D.J. ( 3 ) 22 W i l l i a m s , H.D. ( 1 ) 3 1 6 , 317: ( 4 ) 8 7 : ( 8 ) 4 9 W i l l i a m s , I . D . ( 1 ) 17 W i l l i n g h a m , R.A. ( 8 )
177
W i l l s o n , M.
( 9 ) 263
Wils,
2 56
E.R.J.
( 8 ) 9 6 , 123;
( 9 ) 254,
W i l s o n , A.W. ( 1 ) 205 W i l s o n , J.R.H. ( 1 ) 341 W i l s o n , W.D. ( 6 ) 1 9 9 ,
202, 390, 393, 394,
3 9 5 , 396 (6)
Wilson, Y.A.
101
W i l t , M. ( 8 ) 1 5 8 W t l t i n g , T . (8) 86, 91; (9) 227 Winkhaus, V . ( 1 ) 2 6 6 , 2 6 7 , 283 Winkhaus, W . ( 9 :
162
Winkler, F. ( 6 )
265
W i n t e r , H. (8) 149 Winter, N.J. ( 9 1
126
u.
Wintersberger,
( 6 ) 303
Wisian-N,.i l s o n , P . ( 1 ) 118; ( 8 )
40, 4 1 , 4 2 , 174, 1 7 5 , 186
Witczak,
8
M.K. ( 8 )
W i t t e , J. ( 7 ) 6 8 W i t t e n b e r g , W.L. ( 6 ) 270 WiCtinghnfer, A.
( 6 ) 3 5 1 , 384
E.
Wojna-Tadeusiak,
( 5 ) 177
(5)
W o j t o i v i c z , H.
113
R. ( 1 ) 3 3 1 ; ( 4 ) 9 9 : ( 5 ) 18 W a J l f , S.F. ( 6 ) 160
Wolf,
Wolfenden, R . 111 W o l f e s , H. ( 6 )
263
Wo1fs5ergerf W 1 5 5 : (8) 4 8 Wslke, J . G. C
1 8 3 , 184
.
W o l t e r , A. ( 6 ) Wqiltermann, A. 23 Wong, A. ( 6 ) 211 Wong, J.T.F. ( 6 )
239
Wong, P . K . ( 6 ) 285 Wood, G.L. ( 1 ) 152 Wood, S.G. ( 6 ) 189 WJods, M. ( 9 ) 264 Woodside, A . B . ( 5 )
6
Wsodward,
296
Woodward
60;
C. (1
)
P.R.
(5)
( i )115
452
Organophosphorus Chemistry
( 6 ) 247 ( 4 ) 58; ( 6 )
WuDdy, A . Y . M . Wooters, J.L.
159
W $ i r t h , L . J r . ( 6 ) 310 W o i n i a k , L . ( 5 ) 33 Wrackrneyer, 6 . ( 9 ) 97 W r b b l e w z k i , A.E. ( 5 ) 9 9 ,
130, 101: ( 9 ) 49 W c l , J . ( 6 ) 50 Wu, J.C. ( 6 ) 251, 310 W.1, R . ( 6 ) 273 W J , Y. ( 7 ) 105 Wuns-h, M. ( 1 ) 336 Wynb?rg, H. ( 9 ) 74
Xia, Xia, Xia, Xie, Xu, Xu, Xu,
J. ( 3 ) 6 W . ( 7 ) 24 Y . ( 7 ) 110 L . ( 5 ) 19 C . ( 6 ) 49 3.-F. ( 6 ) 47 Y. ( 3 ) 6: ( 5 ) 6 5 ,
6 7 ; ( 9 ) 81 ( 6 ) 47
K ~ J , Y.-Z.
Yadagiri, P.
101, 102
(2) 3
N.
Yagi, T. ( 8 ) 142 Y a g u p o l ' s k i i , L.M.
1 0 ; ( 5 ) 132
(2)
Yakirnova, I . A . ( 6 ) 105 Yaklakov, M.G. ( 8 ) 101 Yakovlev, A.A. ( 5 ) 104 Yaqabe, T. ( 8 ) 191 Yamadea, A . ( 8 ) 203 Yarnada, E. ( 6 ) 171 Yamada, H . ( 9 ) 115 Yarnada, K. ( 7 ) 13;3 Yamada, Y . ( 6 ) 144, 145 YamagiJchi, Y. ( 1 ) 234 YaTarnoto, H. ( 3 ) 27; ( 7 ) 14 Yamaji, N. ( 6 ) 51 Yamanoto, Y . ( 7 ) 6 0 , 65;
( 9 ) 153
Yarnamura, Yamanaka, Yamasaki, Yarnashita, Yaqashita,
158
2 4 , 25 Yang, 3 . T . ( 5 ) 17d Yang, Ji.-C. (2) 1 8 , 29 Yang, L . ( 7 ) 105 Yanq, Z.W. ( 6 ) 175 Y a n o v s k i i , A . I . ( 9 ) 185, 194 Yao, E.-Y. ( 3 ) I 1 Yao, En-Yun ( 1 ) 122, 157 YaIzhong, L. ( 7 ) 9 Y a r k e v i c h , A.N. ( 3 ) 2 3 ; (9) 237, 398 Yarkova, E.G.
(2) 35;
( 5 ) 135, 176
Y a r t s e v a , I . V . ( 6 ) 97 Yaslek, S. ( 4 ) 103 Y a t s i m i r s k i i , K.B. (5)
35
( 7 ) 99,
Yadov-Bhatnagar,
Yamkovoy, V . I . ( 6 ) 256 Yan, L . ( 9 ) 257 Yaiagawa, H . ( 6 ) 221 Yanase, K . ( 6 ) 132 Yanchuk, N . I . ( 9 ) 3 0 9 , 3 10 Yang, J . ( 5 ) 37: ( 7 )
( 7 ) 126 ( 6 ) 102 ( 5 ) 89 ( 1 ) 163 M. ( 3 ) 9: ( 5 )
S. G. Y. K.
Yamashita, S. ( 8 ) 191 Yama,3hjita, H. ( 8 ) 58
Y a t s u y a q a g i , K . (8) 190Yde, B. ( 9 ) 287 Ye, M. ( 9 ) 257 Ye, W.-Z. ( 4 ) 105 Yeh, M.Y. ( I ) 7 Yeung, L . ( 9 ) 172 Yeung Lau KO, Y.Y.C. ( 1 ) 263, 264 Y i , N. ( 7 ) 32 Yilrna, H . (8) 73 Yilrnsz, H. ( 9 ) 226 Y o k o i , M. ( 7 ) 4 Yokoyama, T . ( 8 ) 134 Yoneda, R . ( 5 ) 26, 27 Yonemitzu, 0 . ( 7 ) 106,
107, 108
Yoneda, Y . ( 8 ) 216, 217 Yoon, C . ( 6 ) 320 Yoshida, S . ( 6 ) 239 Y o s h i f u j i , M. ( 9 ) 164,
165
Y o s h i z a k i , Z. ( 9 ) 13 Young, 0 . ( 6 ) 344 Yount, R . G . ( 6 ) 2 5 2 Y o u s i f , N.M. ( 5 ) 174 Y o s h i f u j i , M. ( 1 ) 251,
184
Youssefi-Tabrizi,
(5) 85
M.
( 4 ) 17: ( 5 ) 108, 109 Yddelevich, V . I . ( 5 ) 185; ( 9 ) 117 Y u f i t , D.S. ( 1 ) 213
Yuai, C.
( 5 ) 137: ( 9 ) 134, 213 Yu-Gui, L . ( 9 ) 260 Yun-Er S h i h ( 5 ) 21 Yurchenko, A . G . 83 Yurchenko, L.V.
(1)
(6)
253 Yurzhenko, ( 1 ) 87
Yu.R.
Z a b i r o v , N.G.
52
(5)
Z a b m t i n a , E.Ya.
9.1) 363 ( 1 ) 367; ( 9 ) 27 Zaitseva, G.A. ( 9 ) 173 Zakharkin, L . I . ( 1 ) 6 , 239 Zakharov, L . S . ( 5 ) 2a Zahn, T .
Z a m a l e t d i n o v a , G.U. (4) 8 Zamecnik, P.C. ( 6 )
206
Zank, G . A .
( 1 ) 310
Zard, S . Z .
( 1 ) 120;
( 5 ) 175 ( 4 ) 106
Z a r y t o v a , V.F.
35, 3 9 , 253
(6)
Zaslona, A . T . ( 3 ) 33 Zaug, A.J. ( 6 ) 338, 339 Z a u l i n , P.M. ( 9 )
277
Z a v l i n , P.M.
234
Zayakina, G.V.
162
(9) (6)
(5) 149; ( 7 ) 82 Z e c z h i , G . ( 8 ) 61 Zelenev, Yu.V. ( 8 ) 195 Zeman, A . ( 5 ) 4.i Z b i r a l , E.
Zemlyanoi, V.N. ( 1 ) 84 ( 9 ) 136 Zeng. K . ( 6 ) 273 Zenga, H. ( 0 ) 163 Zenke, M. ( 6 ) 298 Z e n t n e r , P.G. ( 6 )
237
Z h a i , C. ( 9 ) 85 Znang, J . ( I ) 34;
( 5 ) 65: ( 7 ) 25
Author Index
( V ) 62 Zhang, L. ( 6 ) 49, 50 Zhang, P. ( 7 ) 51 Zh m g , 5 . 4 . ( 6 ) 239 Zhao, Y. ( 9 ) 257 Zheleznova, L.V. ( 9 ) 72 Z h i v o g l a z a v a , L.E. ( 9 ) 146 Znong, W. ( 1 ) 34 Zhou, X.-X. ( 5 ) 3~3; ( 6 ) 35 Znu, J. ( 5 ) 66, 93, 154 Z i e g l e r , C.B., Jr. ( 7 ) 23 Z i e g l e r , M.L. ( 1 ) 287, 342, 367; ( 9 ) 18, 2 9 Z i e h l e r - M a r t i n , J.P. (6) 190 Z i e l i n s k i , W.S. ( 6 ) 222, 223 Ziemer, 6. ( 8 ) 157 Z i m i n , M.G. ( 5 ) 2, 53, 51, 9.1, 72 Zimm, 5 . ( 9 ) 232 Zimmerman, 5 . 6 . ( 6 ) 238 Zi n b o , M. ( 9 ) 262 Z l o t - s k i i , 5 . 5 . ( 9 ) 326 Zon, G. ( 4 ) 71; ( 6 ) 199, 290, 202, 388, 389, 390, 394, 395, 396, 397:(9)
322
Zora, J.A. 91) 291 Zozensheva, L.Ya. ( 9 ) 258 Zschunke, A. ( 1 ) 144; ( 8 ) 11, 12; ( 9 ) 78, 170 Zubareva, V.E. ( 9 ) 137 Z u b r i t s k i i , L.M. ( 5 ) 76 Z u c h i , Gh. ( 5 ) 107 Zueva, M.Yu. ( 6 ) 385 Zurrnklhlen, F . ( 1 ) 242; ( 4 ) 9.5 Z v e r e v , V . V . ( 9 ) 151 Zwanenburg, 6. ( 7 ) 116 Zw i e r z a k , A. ( 8 ) 16 Z y a b l i k o v a , T . A . ( 4 ) 18: ( 5 ) 120 Z y b i l l , C . ( 9 ) 186 Zykova, T . V . ( 1 ) 141
453