THE EFFECT OF TEMPERATURE AND OTHER FACTORS ON PLASTICS AND ELASTOMERS
Mckeen_Prelims.indd i
12/11/2007 5:54:35 PM
...
570 downloads
3260 Views
8MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
THE EFFECT OF TEMPERATURE AND OTHER FACTORS ON PLASTICS AND ELASTOMERS
Mckeen_Prelims.indd i
12/11/2007 5:54:35 PM
Mckeen_Prelims.indd ii
12/11/2007 5:54:35 PM
THE EFFECT OF TEMPERATURE AND OTHER FACTORS ON PLASTICS AND ELASTOMERS Second Edition
Laurence W. McKeen
Mckeen_Prelims.indd iii
12/11/2007 5:54:36 PM
Copyright © 2008 by William Andrew Inc. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the Publisher. Plastics Design Library and its logo are owned by William Andrew Inc. ISBN: 978-0-8155-1568-5 Library of Congress Cataloging-in-Publication Data McKeen, Laurence W. The effect of temperature and other factors on plastics and elastomers/Laurence W. McKeen. — 2nd ed. p. cm. ISBN 978-0-8155-1568-5 1. Plastics–Thermal properties. 2. Plastics–Testing. 3. Elastomers–Thermal properties. 4. Elastomers–Testing. I. Title. TA455.P5M3445 2007 620.1’9231–dc22 2007037328 Printed in the United States of America This book is printed on acid-free paper. 10 9 8 7 6 5 4 3 2 1 Published by: William Andrew Inc. 13 Eaton Avenue Norwich, NY 13815 1-800-932-7045 www.williamandrew.com NOTICE To the best of our knowledge the information in this publication is accurate; however the Publisher does not assume any responsibility or liability for the accuracy or completeness of, or consequences arising from, such information. This book is intended for informational purposes only. Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the Publisher. Final determination of the suitability of any information or product for any use, and the manner of that use, is the sole responsibility of the user. Anyone intending to rely upon any recommendation of materials or procedures mentioned in this publication should be independently satisfied as to such suitability, and must meet all applicable safety and health standards.
Mckeen_Prelims.indd iv
12/11/2007 5:54:36 PM
Dedicated to my wife Linda
Mckeen_Prelims.indd v
12/11/2007 5:54:36 PM
Mckeen_Prelims.indd vi
12/11/2007 5:54:36 PM
Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 1
Introduction to Plastics and Elastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Plastics and Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Copolymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Linear, Branched, and Cross-linked Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.4 Molecular Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.5 Thermosets vs. Thermoplastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.6 Crystalline vs. Amorphous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.7 Blends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.8 Elastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.9 Additives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.9.1 Fillers and Reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.9.2 Combustion Modifiers, Fire and Flame Retardants, and Smoke Suppressants . 5 1.1.9.3 Release Agents, Lubricants, Slip, and Antiblocking Agents . . . . . . . . . . . . . . . 5 1.1.9.4 Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.9.5 Impact Modifiers and Tougheners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.9.6 UV Stabilizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.9.7 Antistatic Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.9.8 Plasticizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.9.9 Pigments, Extenders, Dyes, Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.9.10 Coupling Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.9.11 Thermal Stabilizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Testing of Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 Mechanical Property Testing of Plastics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1.1 Tensile Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1.2 Compressive Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.1.3 Shear Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.1.4 Flexural Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.2 Impact Property Testingof Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.2.1 Izod Impact Strength and Charpy Impact Strength . . . . . . . . . . . . . . . . . . . . . 14 1.2.2.2 Gardner and Falling Dart Impact Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2.3 Thermal Property Testingof Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.2.3.1 Heat Deflection Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.2.3.2 Vicat Softening Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.2.3.3 Melt Flow Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.3.4 Glass Transition Temperature (Tg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.3.5 Melting Point Tm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.2.3.6 Coefficient of Thermal Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3 Principles of Plastic Product Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3.1 Rigidity of Plastics Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.3.2 The Assessment of Maximum Service Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 vii
Mckeen_Prelims.indd vii
12/11/2007 5:54:36 PM
viii
Contents
1.3.2.1 Assessment of Thermal Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.3.1 The Assessment of Impact Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.3.2 Time Dependent Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.3.3 Selection Guides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27 29 30 33 33 35 39
2
Styrenic Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 Polystyrene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.2 Acrylonitrile-Styrene-Acrylate (ASA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.3 Styrene-Acrylonitrile (SAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.4 Acrylonitrile-Butadiene-Styrene (ABS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.5 Styrene-Maleic Anhydride (SMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.6 Styrenic Block Copolymers (SBCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.7 Blends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Polystyrene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Acrylonitrile-Styrene-Acrylate (ASA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Styrene-Acrylonitrile (SAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Acrylonitrile-Butadiene-Styrene (ABS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Styrene-Maleic-Anhydride (SMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 Styrenic Block Copolymers (SBCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8 Styrenic Blends and Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41 41 41 41 42 42 42 42 43 44 51 55 61 78 83 85
3
Polyether Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.1.1 Polyoxymethylene (POM or Acetal Homopolymer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.1.2 Polyoxymethylene Copolymer (POM-Co or Acetal Copolymer) . . . . . . . . . . . . . . . . . . 97 3.1.3 Modified Polyphenylene Ether/Polyphenylene Oxides (PPE or PPO) . . . . . . . . . . . . . . 98 3.2 Acetals—Polyoxymethylene POM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.3 Acetal-Copolymer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.4 Modified PolypropyleneEther (PPE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4
Polyesters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 Polycarbonate (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 Polybutylene Terephthalate (PBT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.3 Polyethylene Terephthalate (PET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.4 Liquid Crystalline Polymers (LCPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.5 Polycyclohexylene Dimethylene Terephthalate (PCT) . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.6 Polyester Blends and Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Polycarbonate (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Polybutylene Terephthalate (PBT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Polyethylene Terephthalate (PET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Liquid Crystalline Polymers (LCPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Polycyclohexylene Dimethylene Terephthalate (PCT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
149 149 149 150 150 150 150 151 152 160 184 194 203
5
Polyimides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.1 Polyetherimide (PEI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.2 Polyamide-Imide (PAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
213 213 213 213
1.3.3
Mckeen_Prelims.indd viii
12/11/2007 5:54:36 PM
ix
Contents
5.1.3 Polyimide (PI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.4 Imide Polymer Blends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Polyetherimide (PEI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Polyamide-Imide (PAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Polyimide (PI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
216 216 217 226 229
6
Polyamides (Nylons) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 Nylon 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.2 Nylon 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.3 Nylon 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.4 Nylon 66v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.5 Nylon 610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.6 Nylon 612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.7 Nylon 666 or 66/6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.8 Amorphous Nylon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.9 Nylon 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.10 Polyphthalamide/High-Performance Polyamide(PPA) . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.11 Polyarylamide (PAA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Nylon 6 (PA6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Nylon 11 (PA11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 Nylon 12 (PA12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 Nylon 66 (PA66) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6 Nylon 610 (PA610) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.7 Nylon 612 (PA612) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.8 Nylon 6/66 (PA666) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.9 Nylon Amorphous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.10 Nylon 46 (PA46) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.11 Polyphthalamide (PPA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.12 Polyarylamide (PAA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.13 Polyamide Blend (PPA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
243 243 244 245 245 245 246 246 247 247 247 248 248 249 257 264 269 312 316 328 335 344 346 362 372
7
Polyolefins and Acrylics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.1 Polyethylene (PE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.2 Polypropylene (PP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.3 Polytrimethyl Pentene (PTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.4 Ultra High Molecular Weight Polyethylene (UHMWPE) . . . . . . . . . . . . . . . . . . . . . . . 7.1.5 Rigid Polyvinyl Chloride (PVC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.6 Cyclic Olefin Copolymer (COC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.7 Polyacrylics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.8 Other Olefin/Acrylic Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Polyethylene (PE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Polymethylpentene (PMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 Ultra High Molecular Weight Polyethylene (UHMWPE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6 Rigid Polyvinyl-Chloride (PVC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7 Cyclic-Olefin-Copolymer (COC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8 Polyacrylics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
379 379 379 381 381 382 382 382 382 383 383 396 401 405 409 412
8
Thermoplastic Elastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 8.1.1 Thermoplastic Polyurethane Elastomers (TPUs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
5.2 5.3 5.4
Mckeen_Prelims.indd ix
12/11/2007 5:54:36 PM
x
Contents
8.1.2 Thermoplastic Copolyester Elastomers (TPE-Es or COPEs) . . . . . . . . . . . . . . . . . . . . 8.1.3 Polyether Block Amide (PEBA) Thermoplastic Elastomers . . . . . . . . . . . . . . . . . . . . . Thermoplastic Polyurethane Elastomers (TPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermoplastic Copolyester Elastomers (TPE-Es or COPEs) . . . . . . . . . . . . . . . . . . . . . . . . . . . Polyether Block Amide (PEBA) Thermoplastic Elastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . .
420 420 421 432 443
9
Fluoropolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.1 Polytetrafluoroethylene (PTFE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.2 Polyethylene Chlorotrifluoroethylene (ECTFE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.3 Polyethylene Tetrafluoroethylene (ETFE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.4 Fluorinated-Ethylene-Propylene (FEP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.5 Perfluoro-Alkoxy (PFA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.6 Polychlorotrifluoroethylene (PCTFE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.7 Polyvinylidene-Fluoride (PVDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.8 THV™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.9 HTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.10 Fluoroplastic Melting Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 Polytetrafluoroethylene (PTFE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3 Ethylene Chlorotrifluoroethylene (ECTFE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4 Ethylene Tetrafluoroethylene (ETFE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5 Fluorinated-Ethylene-Propylene (FEP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6 Perfluoro Alkylvinylether (PFA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.7 Polychlorotrifluoroethylene (PCTFE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.8 Polyvinylidene Fluoride (PVDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
447 447 447 448 448 448 449 449 449 450 450 450 451 455 461 467 474 481 489
10
High Temperature Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.1 Polyetheretherketone (PEEK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.2 Polyethersulfone (PES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.3 PolyphenyleneSulfide (PPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.4 Polysulfone (PSU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.5 Polybenzimidazole (PBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 Polyetheretherketone (PEEK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 Polyether Sulfone (PES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4 Polyphenylene Sulfide (PPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 Polysulfone (PSU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
503 503 503 503 503 504 504 505 513 523 537
11 Tables of Selected ISO 10350 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.7 Polyolefins and Acrylics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.8 Thermoplastics Elastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.9 Fluoropolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.10 Miscellaneous High Temperature Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
551 551 658 666 671 680
12 Tables of Selected Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2 Styrenic Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3 Polyethers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4 Polyesters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5 Polyimides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
687 687 688 697 705 729
8.2 8.3 8.4
Mckeen_Prelims.indd x
12/11/2007 5:54:36 PM
Contents
12.6 Polyamides (Nylons) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.7 Polyolefins and Acrylics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.8 Thermoplastic Elastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.9 Fluoropolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.10 Miscellaneous High Temperature Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xi
731 749 756 759 760
Appendix 1: Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765 Appendix 2: Trade Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767 Appendix 3: Unit Conversion Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777
Mckeen_Prelims.indd xi
12/11/2007 5:54:37 PM
Mckeen_Prelims.indd xii
12/11/2007 5:54:37 PM
Preface This book is an update to an “authorless” work of the same title, published in 1990. A lot has changed in the field since 1990 and a lot has not changed. There are new plastic materials. There has been a huge turnover in ownership of the plastic producing companies. There has been a lot of consolidation, which of course means discontinued products. Thus, this update is much more extensive than the usual “next edition.” It has been reorganized from a chemistry point of view. Plastics of similar polymer types are grouped into nine chapters. Each of these chapters includes an introduction with a brief explanation of the chemistry of the polymers used in the plastics. An extensive first chapter had been added. It is an introductory chapter that summarizes the chemistry of making polymers, the formulation of plastics, testing and test methods, and plastic selection. Most plastic products and parts are expected to be used in environments other than room temperature and standard humidity conditions. Chapters 2–10 are a databank that serves as an evaluation of plastics as they are exposed to varying operating conditions at different temperatures, humidity, and other factors. Over 900 uniform graphs for more than 45 generic families of plastics are contained in these chapters. The following types of graphs may be included:
(A) Properties as functions of temperature (1) Flexural modulus/strength (2) Tensile modulus/strength (3) Shear modulus/strength (4) Impact strength (5) Hardness (6) Torsional modulus (7) Coefficient of thermal expansion (8) Dielectric constant (9) Dissipation factor (10) Water absorption
(11) Specific volume/heat (12) Pressure-volume-temperature plots
(B) Stress vs. strain curves at various temperatures (1) Strain rates (2) Humidity levels
(C) Mechanical properties as a function of (1) Strain rate (2) Humidity level
(D) Electrical properties as a function of (1) Humidity level (2) Frequency
(E) Also included (1) Properties vs. thickness (2) Dimensions vs. moisture (3) Properties vs. glass content and other formulation factors Chapter 11 contains extensive mechanical and electrical data in tabular form. These tables contain data on several thousand plastics. Similarly, Chapter 12 contains thermal data on several thousand plastics. Data from the first edition have only been removed if those products were discontinued, and many products were. Product names and manufacturers have been updated. Larry McKeen 2007 xiii
Mckeen_Prelims.indd xiii
12/11/2007 5:54:37 PM
Mckeen_Prelims.indd xiv
12/11/2007 5:54:37 PM
Acknowledgments This book is an update to an “authorless” work by the same title. It was published in 1990. Of course it was not really “authorless.” This was one of the first books published by the cofounder of William Andrew Publishing, William Woishnis. Bill Woishnis assembled this book and it was originally offered in loose leaf and binder form. His support and feedback on the content are greatly appreciated. A number of teachers have greatly impacted my education and deserve special thanks. Ms. Anna Kruse was my high school chemistry teacher (Lyman Hall High School, Wallingford, CT) who not only was a great educator but also motivated this particular young student to study chemistry beyond the classroom. That included writing articles for an educational chemistry magazine while in high school and after school projects, one that eventually led to the 1969 International Science Fair. The many outstanding chemistry teachers at Rensselaer Polytechnic Institute (RPI) provided the best and most thorough undergraduate chemistry education in the country. RPI continues to do so in nearly all fields of science and engineering. Finally,
my major professor at the University of Wisconsin, Professor James W. Taylor was a great educator and ultimately developed my teaching abilities. The author is especially appreciative of the confidence, support, and patience of my friend and editor Sina Ebnesajjad. He was also the primary proofreader of the manuscript. I would not have been given the opportunity to do this work had it not been for the support of Martin Scrivener, President of William Andrew. My family has been particularly supportive through the long hours of writing and research from my home office. My wife, Linda, has been behind this work 100 percent. My daughter Lindsey graduates shortly from Rensselaer Polytechnic Institute with a Bachelor of Science in Biomedical Engineering. We talked often about polymers, plastics, and materials, as she has been studying those subjects. She will be entering the PhD program in Biology after graduation.
xv
Mckeen_Prelims.indd xv
12/11/2007 5:54:37 PM
Mckeen_Prelims.indd xvi
12/11/2007 5:54:37 PM
1 Introduction to Plastics and Elastomers 1.1 Plastics and Polymers The most basic component of plastic and elastomer materials is polymers. The word polymer is derived from the Greek term for “many parts.” Polymers are large molecules comprising many repeat units called monomers that are chemically bonded into long chains. Since World War II, the chemical industry has developed a large quantity of synthetic polymers to satisfy the need for a diverse range of products, including paints, coatings, fibers, films, elastomers, and structural plastics. Literally thousands of materials can be called “plastics,” although the term today is typically reserved for polymeric materials, excluding fibers, which can be molded or formed into solid or semisolid objects. As of the beginning of 2007, IDES The Plastics Web® (http://www.ides. com) listed over 65,900 different grades of plastic from over 560 suppliers.
1.1.1 Polymerization Polymerization is the process of chemically bonding monomer building blocks to form large molecules. Commercial polymer molecules are usually thousands of repeat units long. Polymerization can proceed by one of several methods. The two most common methods are addition and condensation polymerization.
In addition polymerization, a chain reaction adds new monomer units to the growing polymer molecule one at a time through double or triple bonds in the monomer. Each new monomer unit creates an active site for the next attachment. The net result is shown in Fig. 1.1. Many of the plastics discussed in later chapters of this book are formed in this manner. Some of the plastics made by addition polymerization include polyethylene, polyvinyl chloride (PVC), acrylics, polystyrene, and polyoxymethylene (acetal). The other common method is condensation polymerization in which the reaction between monomer units and the growing polymer chain-end group releases a small molecule, often water as shown in Fig. 1.2. This reversible reaction will reach equilibrium and halt unless this small molecular by-product is removed. Polyesters and polyamides are among the plastics made by this process. Understanding the polymerization process used to make a particular plastic provides insight into the nature of the plastic. For example, plastics made via condensation polymerization, in which water is released, can degrade when exposed to water at high temperature. Polyesters such as polyethylene terephthalate (PET) can degrade by a process called hydrolysis when exposed to acidic, basic, or even some neutral environments severing the polymer chains. As a result the polymer’s properties are degraded.
Figure 1.1. Addition polymerization.
Figure 1.2. Condensation polymerization.
1
Mckeen_Ch01.indd 1
12/11/2007 5:55:36 PM
2
The Effect of Temperature and Other Factors on Plastics and Elastomers
1.1.2 Copolymers A copolymer is a polymer formed when two (or more) different types of monomers are linked in the same polymer chain, as opposed to a homopolymer where only one monomer is used. If exactly three monomers are used, it is called a terpolymer. Monomers are only occasionally symmetric; the molecular arrangement is the same regardless of which end of the monomer molecule you are looking at. The arrangement of the monomers in a copolymer can be head-to-tail, head-to-head, or tail-to-tail. Since a copolymer consists of at least two types of repeating units, copolymers can be classified based on how these units are arranged along the chain. These classifications include: • Alternating copolymer • Random copolymer (statistical copolymer) • Block copolymer • Graft copolymer When the two monomers are arranged in an alternating fashion, the polymer is called an alternating copolymer: –A–B–A–B–A–B–A–B–A–B–A–B–A–B–A–B–A–B–
When chains of a polymer made of monomer B are grafted onto a polymer chain of monomer A we have a graft copolymer: | | B B | | B B | | B B | | B B | | –A–A–A–A–A–A–A–A–A–A–A–A–A–A–A–A–A–A–A– | B | B | B | B | Branched/Grafted Copolymer
High-impact polystyrene (HIPS) is a graft copolymer. It is a polystyrene backbone with chains of polybutadiene grafted onto the backbone. Polystyrene gives the material strength, but the rubbery polybutadiene chains give resilience to make it less brittle.
Alternating Copolymer
In the following examples A and B are different monomers that do not have to be present in a one-toone ratio. In a random copolymer, the two monomers may follow in any order –A–A–B–A–B–B–A–B–A–A–B–B–B–A–B–A–A– Random Copolymer
In a block copolymer, all monomers of one type are grouped together and all monomers of the other type are grouped together. A block copolymer can be thought of as two homopolymers joined together at the ends –A–A–A–A–A–A–A–A–A–B–B–B–B–B–B–B–B–B– Block Copolymer
A polymer that consists of large grouped blocks of each of the monomers is also considered a block copolymer: –A–A–A–A–A–A–B–B–B–B–B–B–B–A–A–A–A–A– Block Copolymer
Mckeen_Ch01.indd 2
1.1.3 Linear, Branched, and Cross-linked Polymers Some polymers are linear—a long chain of connected monomers. Polyethylene, PVC, nylon 66, and polymethyl methacrylate are some of the commercial linear polymers found in this book. Branched polymers can be visualized as a linear polymer with side chains of the same polymer attached to the main chain. While the branches in turn may be branched and they do not connect to another polymer chain. The ends of the branches are not connected to anything. A cross-linked polymer, sometimes called a network polymer, is one in which different chains are connected. Essentially the branches are connected to different polymer chains at the ends. These three polymer structures are shown in Fig. 1.3.
1.1.4 Molecular Weight A polymer’s molecular weight is the sum of the atomic weights of individual atoms that comprise a molecule. It indicates the average length of the bulk
12/11/2007 5:55:37 PM
1: Introduction to Plastics and Elastomers
Figure 1.3. Linear, branched, and cross-linked polymers.
resin’s polymer chains. All polymer molecules of a particular grade do not have exactly the same molecular weight. There is a range or distribution of molecular weights. The average molecular weight can be determined by several means, but this subject is beyond the scope of this book. Low molecular weight polyethylene chains have backbones as small as 1,000 carbon atoms long. Ultrahigh molecular weight polyethylene chains can have 500,000 carbon atoms along their length. Many plastics are available in a variety of chain lengths, or different molecular weight grades. These resins can also be classified indirectly by a viscosity value, rather than molecular weight. Within a resin family, such as polycarbonate, higher molecular weight grades have higher melt viscosities. For example, in the viscosity test for polycarbonate, the melt flow rate (MFR) ranges from approximately 4 g/10 min for the highest molecular weight, standard grades to more than 60 g/10 min for lowest molecular weight, high flow specialty grades. Selecting the correct molecular weight for your injection molding application generally involves a balance between filling ease and material performance. If your application has thin walled sections, a lower molecular weight/lower viscosity grade offers better flow. For normal wall thicknesses, these resins also offer faster mold cycle times and fewer molded-in stresses. The stiffer flowing, high molecular weight resins offer the ultimate material performance, being tougher and more resistant to chemical and environmental attack.
3
thermosets. Thermoplastics soften and melt when heated and harden when cooled. Because of this behavior, these resins can be injection-molded, extruded, or formed via other molding techniques. This behavior also allows production scrap runners and trimmings to be reground and reused. Unlike thermoplastics, thermosets react chemically to form crosslinks, as described earlier, which limit chain movement. This network of polymer chains tends to degrade, rather than soften, when exposed to excessive heat. Until recently, thermosets could not be remelted and reused after initial curing. Recent advances in recycling have provided new methods for remelting and reusing thermoset materials.
1.1.6 Crystalline vs. Amorphous Thermoplastics are further classified by their crystallinity, or the degree of order within the polymer’s overall structure. As a crystalline resin cools from the melt, polymer chains fold or align into highly ordered crystalline structures as shown in Fig. 1.4. Some plastics can be completely amorphous or crystalline. Often plastics specifications will report the percentage of its crystallinity (e.g., 73% crystallinity). Generally, polymer chains with bulky side groups cannot form crystalline regions. The degree of crystallinity depends on both the polymer and the processing technique. Some polymers such as polyethylene crystallize quickly and reach high levels of crystallinity. Others, such as PET polyester, require slow cooling to crystallize. If cooled quickly, PET polyester remains amorphous in the final product.
1.1.5 Thermosets vs. Thermoplastics A plastic falls into one of the two broad categories depending on its response to heat: thermoplastics or
Mckeen_Ch01.indd 3
Figure 1.4. Plastics with crystalline and amorphous regions.
12/11/2007 5:55:38 PM
4
The Effect of Temperature and Other Factors on Plastics and Elastomers
Crystalline and amorphous plastics have several characteristic differences. Amorphous polymers do not have a sharp melting point, but do have what is called a glass transition temperature (Tg). The glass transition temperature is the temperature at which a polymer changes from hard and brittle to soft and pliable. The force required to generate flow in amorphous materials diminishes slowly as the temperature rises above the glass transition temperature. In crystalline resins, the force requirements diminish quickly as the material is heated above its crystalline melt temperature. Because of these easier flow characteristics, crystalline resins have an advantage in filling thin walled sections of a mold. Crystalline resins generally have superior chemical resistance, greater stability at elevated temperatures and better creep resistance. Amorphous plastics typically have better impact strength, less mold shrinkage, and less final part warping than crystalline materials. End use requirements usually dictate whether an amorphous or crystalline resin is preferred.
1.1.7 Blends Polymers can often be blended. Occasionally, blended polymers have properties that exceed those of either of the constituents. For instance, blends of polycarbonate resin and PET polyester, originally created to improve the chemical resistance of polycarbonate, actually have fatigue resistance and low temperature impact resistance superior to either of the individual polymers. Sometimes a material that has some of the properties of one polymer and some of another is needed. Instead of going back to the lab and trying to synthesize a brand new polymer with all the required properties, two polymers can be melted together to form a blend, which will hopefully have some properties of both. Two polymers that do actually mix well are polystyrene and polyphenylene oxide. A few other examples of polymer pairs that will blend are:
Polystyrene and polybutadiene are immiscible. When polystyrene is mixed with a small amount of polybutadiene, the two polymers do not blend. The polybutadiene separates from the polystyrene into little spherical blobs. Figure 1.5 illustrates the picture that would be seen if this mixture is viewed under a high power microscope. Multiphase polymer blends are of major economic importance in the polymer industry. The most common examples involve the impact modification of a thermoplastic by the microdispersion of a rubber into a brittle polymer matrix. Most commercial blends consist of two polymers combined with small amounts of a third, compatibilizing polymer—typically a block or graft copolymer. Multiphase polymer blends can be easier to process than a single polymer with similar properties. The possible blends from a given set of polymers offer many more physical properties than the individual polymers. This approach has shown some success but becomes cumbersome when more than a few components are involved. Blending two or more polymers offers yet another method of tailoring resins to a specific application. Because blends are only physical mixtures, the resulting polymer usually has physical and mechanical properties that lie somewhere between the values of its constituent materials. For instance, an automotive bumper made from a blend of polycarbonate resin and thermoplastic polyurethane elastomer gains rigidity from the polycarbonate resin and retains most of the flexibility and paintability of the polyurethane elastomer. For business machine housings, a blend of polycarbonate and acrylonitrile-butadiene-styrene (ABS) resins offers the enhanced performance of polycarbonate flame retardance and UV stability at a lower cost.
• Polyethylene terephthalate with polybutylene terephthalate • Polymethyl methacrylate with polyvinylidene fluoride Phase-separated mixtures are obtained when one tries to mix most polymers. But strangely enough, the phase-separated materials are often rather useful. They are called immiscible blends.
Mckeen_Ch01.indd 4
Figure 1.5. Immiscible blend of polystyrene and polybutadiene.
12/11/2007 5:55:39 PM
1: Introduction to Plastics and Elastomers
Additional information on the subject of polymer blends is available in the literature.1, 2, 3
5
shrinkage. Particulate fillers typically reduce shrinkage by a percentage roughly equal to the volume percentage of filler in the polymer—an advantage in tight tolerance molding.
1.1.8 Elastomers Elastomers are a class of polymeric materials that can be repeatedly stretched to over twice the original length with little or no permanent deformation. Elastomers can be made of either thermoplastic or thermoset materials and generally are tested and categorized differently than rigid materials. They are commonly selected according to their hardness and energy absorption characteristics—properties rarely considered in rigid thermoplastics. Elastomers are found in numerous applications such as automotive bumpers and industrial hoses.
1.1.9 Additives Additives encompass a wide range of substances that aid processing or add value to the final product.4, 5 Found in virtually all plastics, most additives are incorporated into a resin family by the supplier as part of a proprietary package. For example, you can choose standard polycarbonate resin grades with additives for improved internal mold release, UV stabilization, and flame retardance; or nylon grades with additives to improve impact performance. Additives often determine the success or failure of a resin or system in a particular application. Many common additives are discussed in the following sections. Most additives are added in very small amounts.
1.1.9.1 Fillers and Reinforcement Reinforcing fillers can be added in large amounts. Some plastics may contain as much as 60% reinforcing fillers. Often, fibrous materials, such as glass or carbon fibers, are added to resins to create reinforced grades with enhanced properties. For example, adding 30% short glass fibers by weight to nylon 6 improves creep resistance and increases stiffness by 300%. These glass-reinforced plastics usually suffer some loss of impact strength and ultimate elongation, and are more prone to warping because of the relatively large difference in mold shrinkage between the flow and cross-flow directions. Plastics with nonfibrous fillers such as glass spheres or mineral powders generally exhibit higher stiffness characteristics than unfilled resins, but not as high as fiber-reinforced grades. Resins with particulate fillers are less likely to warp and show a decrease in mold
Mckeen_Ch01.indd 5
1.1.9.2 Combustion Modifiers, Fire and Flame Retardants, and Smoke Suppressants Combustion modifiers are added to polymers to help retard the resulting parts from burning. Generally required for electrical and medical housing applications, combustion modifiers and their amounts vary with the inherent flammability of the base polymer. Polymers designed for these applications are often rated using an Underwriters Laboratories rating system. Use these ratings for comparison purposes only, as they may not accurately represent the hazard present under actual fire conditions.
1.1.9.3 Release Agents, Lubricants, Slip, and Antiblocking Agents External release agents are lubricants, liquids, or powders, which coat a mold cavity to facilitate part removal. Internal release agents can accomplish the same purpose. The composition of the release agent is rarely disclosed, but frequently they are fine fluoropolymer powders, called micropowders, silicone resins, or waxes.
1.1.9.4 Catalysts Catalysts—substances that initiate or change the rate of a chemical reaction—do not undergo a permanent change in composition or become part of the molecular structure of the final product. Occasionally used to describe a setting agent, hardener, curing agent, promoter, etc., they are added in minute quantities, typically less than 1%.
1.1.9.5 Impact Modifiers and Tougheners Many plastics do not have sufficient impact resistance for the use for which they are intended. Rather than changing to a different type of plastic, they can be impact-modified in order to fulfill the performance in usage requirements. Addition of modifiers called impact modifiers or tougheners can significantly improve impact resistance. This is one of the most important additives. There are many suppliers and chemical types of these modifiers.
12/11/2007 5:55:40 PM
6
The Effect of Temperature and Other Factors on Plastics and Elastomers
General-purpose impact modification is a very low level of impact modification. It improves room temperature impact strength but does not take into account any requirements for low temperature (below 0°C) impact strength. For most of these types of applications only low levels of impact modifier will be required (<10%). Low temperature impact strength is required for applications that require a certain level of low temperature flexibility and resistance to break, for example, in the case of many applications in the appliance area. For this purpose, modifier levels between 5% and 15% of mostly reactive modifiers will be necessary. Reactive modifiers can bond chemically to the base polymer. Super tough impact strength may be required for applications that should not lead to a failure of the part even if hit at low temperatures (−30 to −40°C) under high speed. This requirement can only be fulfilled with high levels (20%–25%) of reactive impact modifier with low glass transition temperature. Figure 1.6 shows the effect of one toughener on the izod performance of a common nylon 6 plastic. The toughener used in this graph is DuPont’s Fusabond®N MN-493D. The graph shows the improvement in notched izod performance vs. temperature with differing levels of toughener additive. As shown in this figure, the performance can be dramatically improved.
1.1.9.6 UV Stabilizers Sunshine and its UV radiation have a deteriorating effect on many polymers. UV stabilizers play an important role in plastics for external uses by counteracting the effects of the sun. UV stabilizers are used in plastic items such as greenhouse film, outdoor furniture, and automotive plastic parts. The amounts added are very small and generally less than 1%.
1.1.9.7 Antistatic Agents Antistatic additives are capable of modifying properties of plastics in such a way that they become antistatic, conductive, and/or improve electromagnetic interference (EMI) shielding. Carbon fibers, conductive carbon powders, and other electrically conductive materials are used for this purpose.
1.1.9.8 Plasticizers Plasticizers are added to help maintain flexibility in a plastic. Various phthalates are commonly used for this purpose. Since they are small molecules they may extract or leach out of the plastic causing a loss of flexibility with time.
Figure 1.6. Notched izod of BASF Ultramid® B-3nylon 6 modified with various levels of DuPont Fusabond® NNM-493D toughener.
Mckeen_Ch01.indd 6
12/11/2007 5:55:40 PM
1: Introduction to Plastics and Elastomers
1.1.9.9 Pigments, Extenders, Dyes, Mica Pigments are added to give color to plastic, but they may also affect the physical properties. Extenders are usually cheap materials added to reduce the cost of plastic resins. Dyes are colorants that are chemically different from pigments. Mica is a special pigment added to impart sparkle or metallic appearance.
1.1.9.10 Coupling Agents The purpose of adding fillers is either to lower the cost of the polymer, make it tougher or stiffer, or to make it flame retardant so that it does not burn when it is ignited. Often the addition of the filler will reduce the elongation at break, the flexibility, and in many cases the toughness of the polymer because the fillers are added at very high levels. One reason for the degradation of properties is that the fillers in most cases are not compatible with the polymers. The addition of coupling agents can improve the compatibility of the filler with the polymer. Consequently, the polymer will be more compatible with the filler, the filler will adhere better to the polymer matrix, and the properties of the final mixture (e.g. elongation, flexibility) will be enhanced.
1.1.9.11 Thermal Stabilizers The limiting factors in the use of plastics at high temperatures are their tendency to become softer and also to thermally degrade. Thermal degradation can present an upper limit to the service temperature of plastics. Thermal degradation can occur at temperatures much lower than those at which mechanical failure is likely to occur. Plastics can be protected from thermal degradation by incorporating stabilizers into them. Stabilizers can work in a variety of ways but discussion of these mechanisms is beyond the purpose of this book. There are other additives used in plastics, but the ones discussed above are the most common.
1.2 Testing of Plastics The bulk of this book contains tables and plots of the change of various properties of plastics as a function of temperature, strain, humidity, frequency, etc. The following sections of this chapter will summarize the standard tests. Details on some of the more common test methods will follow.
Mckeen_Ch01.indd 7
7
Standard plastics tests are generally specified primarily by two standard organizations. ASTM International, originally known as the American Society for Testing and Materials (ASTM) is one organization; its standards are the well-known ASTM standards. The second organization is the International Organization for Standardization (ISO), which is also well known. These organizations do not specify just plastics tests, but they both develop technical standards in the fields that need them. They are both well accepted, but unfortunately they do not always agree exactly. While there is often one-to-one correlation of ASTM and ISO standards, they may differ in procedure and conditions, which may lead to slightly different measures. For example, tensile modulus can be measured by ASTM D638 or ISO 527-1. While reported values are similar, they are rarely exactly the same. These standard tests are listed in Tables 1.1–1.6. Many plastics families have their own ASTM and ISO guidelines for testing. These guidelines provide standard testing procedures including sample preparation and often define the subclassification of the plastic products. Some of these standards are given in Table 1.7.
1.2.1 Mechanical Property Testing of Plastics 1.2.1.1 Tensile Properties Tensile testing is performed by elongating a specimen and measuring the load carried by the specimen. This is done using a test machine known as the Instron Universal Materials Testing Machine. Using the specimen dimensions, the load and deflection data can be translated into a stress–strain curve. A variety of tensile properties can be extracted from the stress– strain curve. The standard tests are • ASTM D638-03—Standard Test Method for Tensile Properties of Plastics • ISO 527-1:1993 Plastics—Determination of tensile properties—Part 1: General principles • ISO 527-2:1993 Plastics—Determination of tensile properties—Part 2: Test conditions for molding and extrusion plastics • ISO 37 Rubber, vulcanized, or thermoplastic— Determination of tensile stress–strain properties • ASTM D412-98a(2002)e1—Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension
12/11/2007 5:55:41 PM
8
The Effect of Temperature and Other Factors on Plastics and Elastomers
Table 1.1. Standard Mechanical Tests Measurement
ASTM
ISO
Apparent bending modulus
ASTM D747
–
Coefficient of friction
ASTM D1894
–
Compressive modulus
ASTM D695
ISO 604
Compressive strength
ASTM D695
ISO 604
Deformation under load
ASTM D621
–
Flexural creep
ASTM D2990
–
–
ISO 6602
Flexural modulus
ASTM D790
ISO 178
Flexural strength
ASTM D790
ISO 178
Flexural strength at break
ASTM D790
–
Flexural strength at yield
ASTM D790
–
–
ISO 527-1, -2
Poisson’s ratio
ASTM E132
–
Shear modulus
ASTM D732
Shear strength
ASTM D732
–
Flexural creep modulus
Nominal tensile strain at break
Tensile creep modulus
–
ISO 527-1, -2
Tensile elongation at break
ASTM D638
ISO 527-1, -2
Tensile elongation at yield
ASTM D638
ISO 527-1, -2
Tensile modulus
ASTM D638
ISO 527-1, -2
Tensile strength
ASTM D638
–
Tensile strength at break
ASTM D638
ISO 527-1, -2
Tensile strength at yield
ASTM D638
ISO 527-1, -2
Tensile strength, ultimate
ASTM D638
ISO 527-1, -2
Table 1.2. Standard Elastomer Tests Measurement
Mckeen_Ch01.indd 8
ASTM
ISO
Compression set
ASTM D395
ISO 37
Elongation at break
ASTM D412
–
Elongation at yield
ASTM D412
–
Elongation set after break ASTM D412
–
Tear strength
ASTM D624 ISO 34-1
Tear strength, split
ASTM D412
–
Tensile set
ASTM D412
–
Tensile strength at break
ASTM D412
ISO 37
Tensile strength at yield
ASTM D412
ISO 37
Tensile stress at 100%
ASTM D412
ISO 37
Tensile stress at 200%
ASTM D412
ISO 37
Tensile stress at 300%
ASTM D412
ISO 37
Tensile stress at 50%
ASTM D412
–
12/11/2007 5:55:41 PM
1: Introduction to Plastics and Elastomers
9
Table 1.3. Standard Impact Tests Measurement
ASTM
ISO
ASTM D256
ISO 179
–
ISO 179
ASTM D4226
–
ASTM D5420 & D5628
–
ASTM D3763
–
Multi-axial instrumented impact energy
–
ISO 6603-2 MAII
Multi-axial instrumented impact peak force
–
ISO 6603-2 MAII
Notched izod impact strength
ASTM D256
ISO 180
Reverse notch izod impact strength
ASTM D256
–
Tensile impact strength
ASTM D1822
ISO 8256
Unnotched izod impact strength
ASTM D256
ISO 180
Charpy notched impact strength Charpy unnotched impact strength Drop impact resistance Gardner impact Instrumented dart impact
Table 1.5. Standard Electrical Tests
Table 1.4. Standard Hardness Tests Measurement
ASTM
Ball indentation hardness
–
ISO
Electrical
ASTM
ISO 2039-1
Dielectric constant
ASTM D150
IEC 60250
Dielectric strength
ASTM D149
IEC 60243-1
Dissipation factor
ASTM D150
IEC 60250
Surface resistivity
ASTM D257
IEC 60093
Volume resistivity
ASTM D257
IEC 60093
Durometer (shore) hardness
ASTM D2240
ISO 868
Rockwell hardness
ASTM D785
ISO 2039-2
ISO
Table 1.6. Standard Thermal Tests Thermal
ASTM
ISO
ASTM D746
ISO 812 & ISO 974
Coefficient of linear thermal expansion (CLTE)
ASTM D696 & ASTM E831
ISO 11359-1, -2
Heat deflection temperature (HDT) at 8.0 MPa
–
ISO 75 Method C
HDT at 1.80 MPa
ASTM D648
ISO 75 Method A
HDT 0.45 MPa
ASTM D648
ISO 75 Method B
–
ISO 6603-2 Ductile Brittle
ASTM E1356
–
–
ISO 3146
Specific heat
ASTM C351
–
Thermal conductivity
ASTM C177
ISO 8302
Vicat softening temperature
ASTM D1525
ISO 306
Melt flow rate (MFR)/Melt flow index (MFI)
ASTM D1238
ISO 1133
Brittleness temperature
Ductile/brittle transition temperature Glass transition temperature Melting temperature (DSC)
Mckeen_Ch01.indd 9
12/11/2007 5:55:41 PM
10
The Effect of Temperature and Other Factors on Plastics and Elastomers
Table 1.7. ISO and ATSM Standards for Common Polymer Families ISO Standardsa
ASTM Standards
DIS 2580-1&2: 2003
D4673-02
Styrene-acrylonitrile resin (SAN)
4894-1&2: 1997
D4203-07
Polystyrene (PS)
1622-1&2: 1994
D4549-03
Polystyrene, impact (PS-I)
2897-1&2: 2003
D4549-03
Polypropylene (PP)
1873-1&2: 1997
D4101-06b D5857-05a
Polyethylene (PE)
1872-1&2: 2007
D4976-06
Polyvinyl chloride, plasticized (PVC-P)
2898-1&2: 1997
D2287-96
Polyvinyl chloride, unplasticized (PVC-U)
1163-1&2: 1995
D1784-06a
Polymethylmethacrylate (PMMA)
8257-1&2: 2001
D788-06
Polycarbonate (PC)
7391-1&2: 2006
D3935-02
Acetals (POM)
9988-1&2: 2006
D6778-06
Polyamides (PA)
1874-1&2: 2006
D4066-01a
Thermoplastic polyester
7792-1&2: 1997
D5927-03
Polyketone (PK)
15526-1&2: 2000
D5990-00
Polyphenylether (PPE, PPO)
15103-1&2: 2000
D4349-96
Thermoplastic polyester elastomer
14910-1&2: 1997
D6835-02
Polymer Family Acrylonitrile-butadiene-styrene resin (ABS)
E-CTFE
D3275-06
Poly (vinylidene fluoride) (PVDF)
D3222-05
Polytetrafluoroethylene (PTFE)
D4894-04
Ethylene-tetrafluoroethylene copolymer (ETFE)
D3159-06
Perfluoroalkoxy (PFA)
D3307-06
Tetrafluoroethylene-hexafluoropropylene copolymer (FEP)
D2116-02
aPart 1 of each ISO material standard addresses the “Designatory Properties” and part 2 describes specific tests, test specimens, and test conditions.
Figure 1.7 shows a picture of the Instron® Universal Materials Testing Machine (http://www.instron. com) and a diagram of the test plaque and details of the test configuration. The instrument can provide a stress– strain curve as shown in Fig. 1.8. Analysis of this curve leads to several useful mechanical measurements. Figure 1.8 has several labeled points on the curve. These are called
• “A,” the “Proportional Limit,” which is the end of the region in which the resin exhibits linear stress–strain behavior; • “B,” the “Elastic Limit” after which the part is permanently deformed when the strain is removed;
Mckeen_Ch01.indd 10
• “C,” the “Yield Point” after which the material will deform without a further increase in strain; • “D,” the “Ultimate Strength,” which is the maximum stress on the curve; and • “E,” the “Breakpoint.” Table 1.8 shows how some of the tensile measurements are made from the stress–strain curve in Fig. 1.8. Most plastics when tested will show one of the four basic types of stress–strain behavior. These are shown in Fig. 1.9. The slopes of the curves and the actual measures of stress and strain may differ, but as the multipoint curves in the subsequent chapters of this book are viewed, the reader will recognize these forms. Table 1.9 lists several plastics that fit each of these behavior types.
12/11/2007 5:55:41 PM
1: Introduction to Plastics and Elastomers
Instron® 3300 Floor Model
11
Diagram of Test Specimen and Mounting Jaws
Figure 1.7. Instron Universal Materials Testing Machine (Photo Courtesy of Instron® Corporation).
Figure 1.8. Typical stress–strain curve showing some important measurement points.
Mckeen_Ch01.indd 11
12/11/2007 5:55:41 PM
12
The Effect of Temperature and Other Factors on Plastics and Elastomers
Table 1.8. Tensile Properties Determined from a Stress–Strain Curve per ASTM D638 Property
Definition
Tensile elongation at break
Tensile elongation corresponding to the point of rupture, “J” in Fig. 1.8
Tensile elongation at yield
Tensile elongation corresponding to the yield (an increase in strain does not result in an increase in stress), “G” in Fig. 1.8
Tensile strength at break
Tensile stress corresponding to the point of rupture, “K” in Fig. 1.8
Tensile strength at yield
Tensile stress corresponding to the yield point (an increase in strain does not result in an increase in stress), “F” in Fig. 1.8
Tensile strength
Tensile stress at a specified elongation
Tensile strength, ultimate
The highest tensile stress a material can support before failing, “H” in Fig. 1.8
Tensile modulus
The ratio of tensile stress to tensile strain of a material in the elastic region (from no strain to point “B” in Fig. 1.8) of a stress–strain curve. A “Tangent” tensile modulus value is the slope of the elastic region of the stress–strain curve and is also known as Young’s Modulus, or the Modulus of Elasticity. A “Secant” tensile modulus value is the slope of a line connecting the point of zero strain to a point on the stress–strain curve at a specified strain
Figure 1.9. The range of stress vs. strain behaviors.
1.2.1.2 Compressive Properties
1.2.1.3 Shear Properties
Compressive testing is similar to tensile testing except the strain is applied in the opposite direction. This is also done on the Instron® Universal Materials Testing Machine. Using the specimen dimensions, the load and deflection data can be translated into a stress– strain curve. A variety of compressive properties can be extracted from the compressive stress–strain curve. The standard test is the ASTM D695-02a Standard Test Method for Compressive Properties of Rigid Plastics.
Measurement of properties under shear conditions is described in the standard “ASTM D732-02 Standard Test Method for Shear Strength of Plastics by Punch Tool.” The primary measures are shear strength and shear modulus. Shear strength is the maximum load required to completely shear a specimen divided by the sheared area. Shear modulus is the ratio of shear stress to shear strain.
Mckeen_Ch01.indd 12
12/11/2007 5:55:43 PM
1: Introduction to Plastics and Elastomers
13
Table 1.9. Examples of Tensile Responses Exhibited by Various Plastics Behavior
Examples
Brittle
Polystyrene, acrylics, SAN, highly reinforced material
Stiff and strong
ABS, polycarbonate, polyamides, highly filled resin
Stiff and tough
Impact modified polyamides, impact polystyrene
Soft and tough
Elastomers, low density
These tests are often done in the Instron® Universal Materials Testing Machine. The sample is a typically molded sheet that has been cut into a disk. The diagram of the apparatus used is shown in Fig. 1.10. The test specimen, disk or plaque, is placed in a clamp such that its upper and lower surfaces are securely supported. The specimen thickness should be between 0.127 mm (0.005 in) and 12.7 mm (0.5 in). A punch-type shear tool with a 25.4 mm (1 in) diameter is bolted to the specimen through a hole drilled in the center and a load is applied to the punch. The shear strength is calculated as the maximum force encountered during the test divided by the area of the sheared edge (circumference of the punched circle multiplied by the specimen thickness, as indicated by the dotted line in Fig. 1.10).
1.2.1.4 Flexural Properties The measurement of flexural properties is described in the following standards:
Figure 1.10. Apparatus used for shear property measurements.
• ASTM D790-03 Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials • ISO 178:2001 Plastics—Determination of flexural properties A test specimen is held as a simply supported beam and is subjected to three-point bending as shown in Fig. 1.11. Typically, the Instron® is used. Maximum stress and strain occurs at the underside of the test specimen, directly under the applied force. The
Figure 1.11. Principle used for flexural property measurements.
Mckeen_Ch01.indd 13
12/11/2007 5:55:44 PM
14
The Effect of Temperature and Other Factors on Plastics and Elastomers
preferred test specimen is 80 mm long, 10 mm wide, and 4 mm thick. Other specimens may be used if the length to thickness ratio is equal to 20.
• ISO 180:2000 Plastics—Determination of Izod impact strength
1.2.2 Impact Property Testing of Plastics
• ISO 179-1:2000 Plastics—Determination of Charpy impact properties—Part 1: Noninstrumented impact test
Table 1.3 listed a number of tests used to measure the impact resistance of plastics. Impact tests allow designers to compare the relative impact resistance. The tests are often used for quality control. However, these tests generally do not translate into explicit design parameters. While there are many measurements listed, the measurements use test apparatus that fall under two types: based on a pendulum or a falling object. The main differences are sample preparation and measurement units.
1.2.2.1 Izod Impact Strength and Charpy Impact Strength The standard tests for Izod impact strength are given below:
• ASTM D256-06a Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics
Both Izod and Charpy tests are based on a swinging pendulum, as shown in Fig. 1.12 Basically, the pendulum is raised to a measured point and then released. The weighted end of the pendulum gains speed as it swings towards a mounted molded bar of the test plastic. It strikes the bar and breaks it; the pendulum loses energy while breaking the plastic bar. Therefore it does not swing high. The energy lost by the pendulum is equated with the energy absorbed by the test specimen during the breaking process. There are different ways to mount the test specimen, and there are different specimen sizes and preparation methods. The different sample mounting configurations for the Izod and Charpy tests are shown in Fig. 1.13. Figure 1.14 shows the details of the notch. The
Figure 1.12. Pendulum type impact strength tester.
Mckeen_Ch01.indd 14
12/11/2007 5:55:44 PM
1: Introduction to Plastics and Elastomers
15
Figure 1.13. Izod and Charpy impact tests’ sample configurations.
sharpness of the bottom of the notch affects the test results. Table 1.10 shows the different notch radii possible. The impact resistance is usually reported at energy per unit length or per unit area.
1.2.2.2 Gardner and Falling Dart Impact Strength
Figure 1.14. Izod and Charpy impact tests’ notch details.
Another impact strength test that uses gravity is the Gardner impact or the falling dart tests. These are described by the following standards: Table 1.10. Izod and Charpy Impact Notch Radii Options Notch
Izod Notch Radius (mm)
Charpy Notch Radius (mm)
A
0.25
0.25
B
1.00
1.00
C
Mckeen_Ch01.indd 15
0.10
• D5420-04 Standard Test Method for Impact Resistance of Flat, Rigid Plastic Specimen by Means of a Striker Impacted by a Falling Weight (Gardner Impact) • D5628-06 Standard Test Method for Impact Resistance of Flat, Rigid Plastic Specimens by Means of a Falling Dart (Tup or Falling Mass)
12/11/2007 5:55:45 PM
16
The Effect of Temperature and Other Factors on Plastics and Elastomers
• ISO 974:2000 Plastics—Determination of the brittleness temperature by impact • ASTM D696-03 Standard Test Method for Coefficient of Linear Thermal Expansion of Plastics Between -30 and 30°C with a Vitreous Silica Dilatometer • ASTM E831-06 Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis • ISO 11359-1: Plastics—Thermomechanical analysis (TMA)—Part 1: General principles • ISO 11359-2: Plastics—Thermomechanical analysis (TMA)—Part 2: Determination of coefficient of linear thermal expansion and glass transition temperature • ISO 75-1: Plastics—Determination of temperature of deflection under load—Part 1: General test method
Figure 1.15. Gardner impact test apparatus.
• D3763-06 Standard Test Method for High Speed Puncture Properties of Plastics Using Load and Displacement Sensors • ISO 7765-2:1994 Plastics film and sheeting— Determination of impact resistance by the freefalling dart method—Part 2: Instrumented puncture test The Gardner test uses a piece of equipment similar to that shown in Fig. 1.15. A weight is lifted to a given height and dropped onto a test plaque. The falling dart is based on the same principle, but the weight is free falling rather than guided through a tube as in the Gardner equipment.
1.2.3 Thermal Property Testing of Plastics The standard tests for various thermal properties are given below: • ASTM D746-04 Standard Test Method for Brittleness Temperature of Plastics and Elastomers by Impact • ISO 812:2006 Rubber, vulcanized, or thermoplastic—Determination of low-temperature brittleness
Mckeen_Ch01.indd 16
• ISO 75-2: Plastics—Determination of temperature of deflection under load—Part 2: Plastics and ebonite • ISO 75-3: Plastics—Determination of temperature of deflection under load—Part 3: Highstrength thermosetting laminates and long-fiber-reinforced plastics • ISO 6603-2: Plastics—Determination of puncture impact behavior of rigid plastics—Part 2: Instrumented impact testing • ASTM E1356-03 Standard Test Method for Assignment of the Glass Transition Temperatures by Differential Scanning Calorimetry (DSC) • ISO 3146:2000 Plastics—Determination of melting behavior (melting temperature or melting range) of semicrystalline polymers by capillary tube and polarizing-microscope methods • ASTM C351-92b (1999) Standard Test Method for Mean Specific Heat of Thermal Insulation • ASTM C177-04 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus • ISO 8302:1991 Thermal insulation—Determination of steady-state thermal resistance and related properties—Guarded hot plate apparatus • ASTM D1525-06 Standard Test Method for Vicat Softening Temperature (VST) of Plastics • ISO 306:2004 Plastics—Thermoplastic materials—Determination of VST
12/11/2007 5:55:46 PM
1: Introduction to Plastics and Elastomers
• ASTM D1238-04c Standard Test Method for MFR of Thermoplastics by Extrusion Plastometer • ISO 1133:2005 Plastics—Determination of the melt mass-flow rate and the melt volume-flow rate (MVR) of thermoplastics
1.2.3.1 Heat Deflection Temperature The heat deflection temperature is a measure of a polymer’s resistance to distortion under a given load at elevated temperatures. Other terms for this measurement include deflection temperature under load (DTUL) or heat distortion temperature (HDT). The test is performed using an apparatus diagramed in Fig. 1.16. A test bar is molded to a specific thickness and width. The test sample is submerged in oil that is gradually heated. The load is applied to the midpoint of the test bar that is supported near both ends. The temperature at which the bar is deformed by 0.25 mm is recorded as the HDT. The ASTM test is ASTM D648 while the analogous ISO test is ISO 75. The test using a 1.8 MPa load is performed under ISO 75 Method A, while the test using a 0.46 MPa load is performed under ISO 75 Method B. The test using an 8 MPa load performed under ISO 75 Method C is less common. The HDT value obtained for a specific polymer grade will depend on the base resin and on the presence of reinforcing agents. Deflection temperatures of glass fiber or carbon fiber reinforced engineering
17
polymers will often approach the melting point of the base resin. The HDT test results are a useful measure of relative service temperature for a polymer when used in load-bearing parts. However, the deflection temperature test is a short-term test and should not be used alone for product design. Other factors such as the duration of exposure to elevated temperatures, the rate of temperature increase, and the part geometry all affect the performance.
1.2.3.2 Vicat Softening Temperature The Vicat softening temperature (VST) is the temperature at which a flat-ended needle penetrates the specimen to a depth of 1 mm under a specific load. The temperature reflects the point of softening to be expected when a material is used in an elevated temperature application. A test specimen is placed in the testing apparatus as diagramed in Fig. 1.17. The penetrating needle rests on its surface. A load of 10 or 50 N is applied to the specimen. The specimen is then lowered into an oil bath at 23°C. The bath is raised at a rate of 50 or 120°C/h until the needle penetrates 1 mm. The temperature at that moment is called the Vicat softening temperature. The relevant standards are ISO 306 and ASTM D1525. ISO 306 describes two methods: method A with a load of 10 N and method B with a load of 50 N, each with two possible rates of temperature rise, 50 and 120°C/h. This results in ISO values reported as A50, A120, B50, or B120.
Figure 1.16. Heat deflection temperature (HDT) test apparatus.
Mckeen_Ch01.indd 17
12/11/2007 5:55:46 PM
18
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 1.17. Vicat softening temperature test apparatus.
Figure 1.18. Melt flow index test apparatus.
Mckeen_Ch01.indd 18
12/11/2007 5:55:46 PM
1: Introduction to Plastics and Elastomers
1.2.3.3 Melt Flow Index The MFI is a measure of the ease of flow of the melt of a thermoplastic polymer. It is defined as the weight of a polymer in grams flowing in 10 min through a die of specific diameter and length by a pressure applied by a given weight at a given temperature. The method is given in ASTM D1238 and ISO 1133. The test equipment is diagramed in Fig. 1.18. The conditions of the test depend on the type of the polymers, some of which are shown in Table 1.11. The temperature should not be so high that the polymers in the plastic decompose. The MFR is an indirect measure of molecular weight, with high MFR corresponding to low molecular weight. Synonyms of MFI are melt flow rate and melt index, which are commonly abbreviated as MFI, MFR, and MI.
1.2.3.4 Glass Transition Temperature (Tg) The glass transition temperature, often called Tg (or “T sub g”), is an important property when considering polymers for a particular end-use. The glass transition temperature is the temperature below which the physical properties of plastics change in a manner similar to those of a glassy or crystalline state and above which they behave like rubbery materials. A plastic’s Tg is the temperature below which molecules
19
have little relative mobility. Tg is usually applicable to wholly or partially amorphous plastics. A plastic’s properties can be dramatically different above and below its Tg. The next sections show a number of ways to measure or estimate Tg. These methods will indicate how some of the properties change around Tg. The value of the glass transition temperature depends on the strain rate and cooling or heating rate, and so there cannot be an exact value for Tg.
1.2.3.4.1 Mechanical Methods of Estimating Tg It is possible to calculate a value for the glass transition temperature by measuring the elastic (or Young’s) modulus of the plastic as a function of the temperature, for example, by using a torsion pendulum. Around Tg, there is a large fall in the value of the modulus as shown in Fig. 1.19. The frequency of the oscillation is important, since the value of Tg depends on the time allowed for chain segment rotation. While this approach is not commonly used, as there are better methods, it does demonstrate one way in which a plastic’s physical properties change above and below the Tg. A more common mechanical method is dynamic mechanical thermal analysis (DMTA). DMTA is also called dynamic mechanical analysis (DMA) or dynamic thermomechanical analysis. An oscillating force is applied to a sample of material and the resulting
Figure 1.19. Tg estimate from an elastic modulus vs. temperature study.
Mckeen_Ch01.indd 19
12/11/2007 5:55:47 PM
20
The Effect of Temperature and Other Factors on Plastics and Elastomers
Table 1.11. Recommended Conditions for Determination of MFR and MVR for Common Materials According to ISO and ASTM Guidelines (ex. 190/2.16 = 190°C with 2.16 kg weight) Plastic/Polymer Acetals (copolymer and homopolymer) Acrylics Acrylonitrile-butadiene-styrene (ABS) Acrylonitrile/butadiene/styrene/ polycarbonate blends Cellulose esters Ethylene-chlorotrifluoroethylene copolymer (ECTFE)
ASTM Standard Conditions (°C/kg)
ISO Standard Conditions (°C/kg)
190/2.16, 2.16, 1.05
190/2.16
230/1.2, 230/3.8
230/3.8
200/5.0, 230/3.8, 220/10
220/10
230/3.8, 250/1.2, 265/3.8, 265/5.0 190/0.325, 190/2.16, 190/21.60, 210/2.16 271.5/2.16
ETFE)
297/5.0
Nylon
275/0.325, 235/1.0, 235/2.16, 235/5.0, 275/5.0
Perfluoro(ethylene-propylene) copolymer (FEP)
372/2.16
Perfluoroalkoxyalkane (PFA)
372/5.0
Polycaprolactone Polychlorotrifluorethylene (PCTFE) Polyether sulfone (PES)
125/2.16, 80/2.16 265/12.5 380/2.16, 360/10, 343/2.16, 125/0.325, 125/2.16, 250/1.2, 190/0.325, 190/2.16, 190/21.60, 190/10, 310/12.5
190/2.16, 190/21.6, 190/0.325, 190/5
Polycarbonate (PC)
300/1.2
300/1.2
Polypropylene (PP)
230/2.16
230/2.16
Polyethylene (PE)
Polyphenyl sulfone (PPSU) Polystyrene (PS)
365/5.0, 380/2.16 200/5.0, 230/1.2, 230/3.8, 190/5.0
Polysulfone (PSU)
343/2.16, 360/10
Polyterephthalate
250/2.16, 210/2.16, 285/2.16
Poly(vinyl acetal)
150/21.6
Poly(vinylidene fluoride) (PVF)
230/21.6, 230/5.0,
Poly(phenylene sulfide) (PPS)
315/5.0
Styrene acrylonitrile (SAN) Styrenic thermoplastic elastomer Thermoplastic elastomer-ether-ester Thermoplastic elastomers (TEO) Vinylidene fluoride copolymers
Mckeen_Ch01.indd 20
220/10, 230/10, 230/3.8,
200/5
220/10
190/2.16, 200/5.0 190/2.16, 220/2.16, 230/2.16, 240/2.16, 250/2.16 230/2.16 230/21.6, 230/5.0
12/11/2007 5:55:48 PM
1: Introduction to Plastics and Elastomers
displacement of the sample is measured. From this the stiffness of the sample can be determined and the sample modulus can be calculated. A plot of loss modulus as a function of temperature shows a maximum at Tg, as shown in Fig. 1.20. Figure 1.20 shows a series of blends of HIPS and polyphenylene oxide (PPO). As the amount of PPO is increased the Tg increases. The single Tg indicates that these blends are miscible.
1.2.3.4.2 Thermal Methods of Estimating Tg Thermal methods of measuring Tg are based on DSC. In DSC, the thermal properties of a sample are compared against a standard reference material, typically inorganic, which has no transition such as a melting point in the temperature range of interest. The common reference material is powdered alumina. The sample and reference are each contained in a small holder within an adiabatic enclosure as illustrated in Fig. 1.21. The temperature of each holder is monitored by a thermocouple and heat can be supplied electri-
21
cally to each holder to keep the temperature of the two equal. The difference in the amount of heat required to maintain equal temperature is recorded. A plot of the difference in energy supplied against the average temperature is recorded. As the temperature is slowly increased, thermal transitions may be identified. The glass transition process for a glassy polymer that does not crystallize and is slowly heated from below Tg is illustrated in Fig. 1.22. Here, the drop marked Tg at its midpoint represents the increase in energy supplied to the sample to maintain it at the same temperature as the reference material, due to the relatively rapid increase in the heat capacity of the sample as its temperature is raised through Tg. The addition of heat energy corresponds to this endothermal direction. The specific heat or specific heat capacity (Cp) can be measured using DSC. It can change dramatically at Tg, as shown in Fig. 1.23. The value of Tg depends on the heating or cooling rate of the calorimetry experiment.
Figure 1.20. Tg estimate from dynamic mechanical thermal analysis (DMTA) study.
Mckeen_Ch01.indd 21
12/11/2007 5:55:48 PM
22
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 1.21. Diagram of a DSC sample and reference cell.
Figure 1.22. Schematic of a DSC showing a Tg.
1.2.3.4.3 Volume Methods of Determining Tg The changes in conformation that occur above Tg require more volume; hence, plotting a graph of specific volume or thermal expansion coefficient vs. temperature will provide a value for Tg as shown in Fig. 1.24.
1.2.3.4.4 Electrical Methods of Determining Tg Dielectric Constant: If a varying electric field is applied to a polymeric material, any polar groups will align with the field. Below Tg, rotation of the bonds is not possible, so the permittivity will be low, with a large increase around Tg. At higher temperatures, the increased thermal vibrations cause the per-
Mckeen_Ch01.indd 22
mittivity to drop again. If the frequency of the field is increased, the polar groups have less time to align; hence, the glass transition occurs at a higher temperature. This is shown in Fig. 1.25.
1.2.3.5 Melting Point Tm A melting process for the case of PET polymer is also illustrated in Fig. 1.26, which is slowly heated through its melting temperature, besides two other thermal transitions. Again, as the melting temperature is reached, an endothermal peak appears because heat must be preferentially added to the sample to continue this essentially constant temperature process. The peak
12/11/2007 5:55:49 PM
1: Introduction to Plastics and Elastomers
23
Figure 1.23. Tg estimate from the change in specific heat capacity vs. temperature for a commercial polysulfone.
Figure 1.24. Tg estimate from the change in specific volume vs. temperature for a commercial polyethersulfone.
Mckeen_Ch01.indd 23
12/11/2007 5:55:50 PM
24
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 1.25. Tg estimate from the change in dielectric constant (relative permeability).
Figure 1.26. Melting point estimation from a DSC of PET.
Mckeen_Ch01.indd 24
12/11/2007 5:55:51 PM
1: Introduction to Plastics and Elastomers
breadth is primarily related to the size and degree of perfection of the polymer crystals. This DSC also provides additional information, the glass transition temperature and a crystallization temperature. Note that if the process was reversed so that the sample was being cooled from the melt, the plot would be approximately inverted at the melt point and glass transition temperature. This corresponds to an exothermal process.
1.2.3.6 Coefficient of Thermal Expansion The change in length per unit length of a material per degree of temperature change is called the coefficient of linear thermal expansion (CLTE). The measurement of CLTE is covered by several ASTM and ISO methods: • ASTM D696-03 Standard Test Method for Coefficient of Linear Thermal Expansion of Plastics Between -30 and 30°C With a Vitreous Silica Dilatometer • ASTM E228-06 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push-Rod Dilatometer • ASTM E831-06 Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis • ISO 11359-2:1999 Plastics—Thermomechanical analysis (TMA)—Part 2: Determination of coefficient of linear thermal expansion and glass transition temperature CLTE is commonly measured using a silica dilatometer. A plastic specimen is placed inside a silica tube and a silica rod is inserted into the tube. A dial gage or similar device is attached to the rod. The end of the tube containing the test material is placed in a –30°C constant temperature bath. When the gage no longer changes, the test specimen has reached a temperature of –30°C. The constant temperature bath is replaced by a 30°C constant temperature bath. After the specimen has reached a temperature of 30°C, the 30°C bath is replaced by the –30°C bath. After the specimen has reached a temperature of –30°C, the specimen is removed and measured at room temperature. ASTM D696 covers temperatures between –30 and 30°C. The CLTE (α) is calculated using the formula:
25
where ∆L is the change in length of the specimen; Lo the original length of the specimen; and ∆T is the temperature change during the test. Further information on polymer testing is available.6, 7, 8
1.3 Principles of Plastic Product Design Successful product design requires knowledge about the end-use and the materials that can be used. The knowledge requirement may be subdivided into: (1) requirements of the product, including usage environment, exposure conditions, performance needs; (2) knowledge of the behavior of plastic materials; (3) plastics processes and processing; and (4) economic constraints. Experience and training is required to relate this knowledge to meet the product needs. This book is loaded with extensive data on the behavior of plastics as a function of temperature and other factors. But how does one make use of all this data? Some discussion on mechanical and thermal properties relevant to design will help the inexperienced engineer get started. For successful use, a plastic must have appropriate (1) rigidity; (2) toughness; (3) resistance to long-term deformation also called creep (creep is the subject of another work); (4) recovery from deformation on release of stress; and (5) resistance to thermal degradation, adversely affecting properties. These must be at room temperature and over the range of operating conditions likely to be encountered. Other considerations depending on intended use and function include: (1) elasticity or flexibility;
α = ∆L/(LO*∆T)
Mckeen_Ch01.indd 25
(2) odor and taste;
12/11/2007 5:55:52 PM
26
The Effect of Temperature and Other Factors on Plastics and Elastomers
(3) flame/fire resistance; (4) electrical properties; (5) radiation/light resistance and weathering; (6) transparency and color, paintability; (7) moisture absorption; (8) chemical resistance; (9) wear resistance and slip; (10) permeability; and (11) dimensional stability.
1.3.1 Rigidity of Plastics Materials The rigidity of a plastic is determined by the ease with which the plastic is deformed under load. Modulus is the measure that corresponds to rigidity in plastics. In amorphous plastics at temperatures well below the glass transition temperature, all load is taken by bond bending and stretching of the polymers making up the plastic. The change in rigidity at Tg in an amorphous polymer is considerable. The modulus may drop more than three orders of magnitude. Further heating of a low to moderate uncross-linked plastic past its Tg would rapidly cause a drop of the modulus towards zero. However, in a high molecular weight plastic, such as cast poly(methyl methacrylate), the polymer chain entanglements would enable the material to maintain a significant rubbery modulus up to its decomposition temperature. Similar maintenance of the modulus above zero is achieved when the polymer is cross-linked. The more the cross-linking, the higher the modulus. Crystallinity can also restrict molecular movement of the polymer chains above Tg, raising the modulus. The higher the crystallinity, the more rigid the polymer. Some polymers tend to melt over a wide temperature range, in which case the modulus may fall over a range of temperatures leading up to the melting point Tm. The above effects are summarized in Fig. 1.27, where A is an amorphous polymer of moderate molecular weight, B is of such a high molecular weight that entanglements inhibit flow, C is lightly cross-linked, D is highly cross-linked, E has some crystallinity, and F has higher crystallinity. Curves A, B, and C of Fig. 1.27 show the “softening point” of an amorphous polymer, i.e., the temperature at which the modulus drops catastrophically is closely associated with Tg. Such softening does not occur in highly cross-linked polymers, as in curve D, unless degradation also takes place.
Mckeen_Ch01.indd 26
In the case of crystalline polymers, such as curves E and F of Fig. 1.27, the situation is more complex. There is some change in modulus around Tg, which decreases with increasing crystallinity and a catastrophic change around Tm. Furthermore, there are many polymers that soften progressively between Tg and Tm due to the wide melting range of the crystalline structures, and the value determined for the softening point can depend considerably on the test method used. Plastic materials, in general, are blends of polymers with additives and fillers. All the components may well affect the modulus. In practice, one is basically concerned with the rigidity of the product and this involves not only the modulus of the material but also the shape and size of the product. From the points of view of weight saving, economy of the material, and ease of processing, it is important to keep section thicknesses at a minimum required to achieve performance targets. Since flat or singly curved surfaces have a minimum rigidity the designer may wish to incorporate domed or other doubly curved surfaces or ribbing into the product in order to increase stiffness. Corrugation can also enhance stiffness, but in this case the enhancement varies with position, being greatest when measured at right angles to the corrugation.
1.3.2 The Assessment of Maximum Service Temperature The design engineer often must know the maximum temperature for which a polymer can be used in a given application. This depends largely on two independent factors: (1) The thermal stability of the polymer, particularly in air. (2) The softening behavior of the polymer. First, consider two polymers A and B. Let A “soften” at 120°C but have long-term thermal stability up to 200°C. On the other hand, polymer B softens at 200°C but degrades “at a measurable rate” above 90°C. Consideration of these figures, even allowing for the loose terminology, indicates that material A cannot be used much above 90°C for either long or short periods. In the case of polymer B, short-term service might be possible up to about 160–170°C but it cannot be used for prolonged periods much above 70–80°C.
12/11/2007 5:55:52 PM
1: Introduction to Plastics and Elastomers
27
Figure 1.27. Schematic illustration of dependence of the modulus of a polymer on a variety of factors.
1.3.2.1 Assessment of Thermal Stability Over the years many attempts have been made to provide some measure of the maximum service temperature at which a material will be able to withstand without thermal degradation that would render it unfit for service. Quite clearly any figure will depend on the duration of likely exposure of the material to elevated temperatures. One assessment that is being increasingly quoted is the UL 746B Relative Temperature Index Test of the Underwriters Laboratories. This measure was previously known as the Continuous Use Temperature Rating or Index. In order to obtain a temperature index rating, a large number of samples are subjected to oven aging at a variety of temperatures for periods up to a year. During the course of this time, samples are periodically withdrawn from the oven and tested. A plot is then made of the percentage retention in the value of the property measured (compared to its original control value) against time. The time and temperature that gives a 50% reduction in value of the property is noted. Somewhat arbitrarily this is taken as the failure time at that temperature. Using the data from experiments carried out after aging at several temperatures, the logarithm of the “50%” failure time is plotted against 1/°K. This type of plot is called an Arrhenius plot. The resulting linear line is then extrapolated to
Mckeen_Ch01.indd 27
the arbitrary time of 10,000 h. The temperature at which the failure time (as defined above) is 10,000 h is known as the relative temperature index (RTI). An RTI plot for a commercial polyphthalamide is shown in Fig. 1.28, which shows four data points. The log of hours of exposure is the Y-axis. The X-axis is plotted in °Kelvin (Kelvin equals °C + 273.15), and it is actually not linear but the inverse. This long-term thermal performance of a material is tested alongside a control material that already has an established RTI and exhibits a good performance. Such a control is necessary because thermal degradation characteristics are sensitive to variables in the testing program. The control is not shown in Fig. 1.28. Since the control material may also be affected by the same unique combination of these factors during the tests, there is a valid basis for comparison of test and control materials. It is to be expected that the RTI obtained would depend on the property assessed and three properties are assessed in UL 746B. (1) “Mechanical with impact” by measuring tensile impact strength. (2) “Mechanical without impact” by measuring tensile strength. (3) “Electrical” by measuring dielectric strength.
12/11/2007 5:55:52 PM
28
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 1.28. A relative temperature index plot for a commercial polyphthalamide.
A value for the RTI is provided for each of these tests although in common experience it is found that similar numerical values are obtained. In addition, the RTI may be affected by the thickness of the sample, so this should be given in any RTI specification. Such a value for RTI will be specific to a particular grade of a polymer—sometimes even to a specific color. The difference between grades of a particular species of polymer can be substantial, depending both on the variation in the inherent stability of a material between differing manufacturing methods and on the type and amount of additives used. It is possible to obtain a Generic Temperature Index from the laboratory to cover a species of material but this will usually be considerably lower than that for many of the individual grades within that species. Some collected values for RTI taken from the literature are given in Table 1.12. (These are given for guidance only and should not be taken to imply official UL ratings.) Two particular test methods have become very widely used. They are the VST test and the HDT test (which is also widely known by the earlier name of heat distortion temperature test). These two tests were discussed earlier in Sections 1.2.3.1 and 1.2.3.2. While the Vicat test usually gives the higher values, the differences are quite modest with many poly-
Mckeen_Ch01.indd 28
mers (e.g. those of curves A, B, and C in Fig. 1.27). For example, in the case of the polycarbonate of bisphenol A the heat distortion temperatures are 135– 140°C and 140–146°C for the high and low stress levels, respectively, and the Vicat softening point is about 165°C. In the case of an acetal homopolymer the temperatures are 100, 170, and 185°C, respectively. With nylon 66, the two ASTM heat distortion tests give values as different as 75 and 200°C. A lowdensity polyethylene may have a Vicat temperature of 90°C but a heat distortion temperature below normal ambient temperatures. The differences in the assessment of softening point between the tests are clearly largely a matter that the “end-point” of the test measures a different modulus. Reference to Fig. 1.27 shows that with some materials (e.g. of curve A in Fig. 1.27) this will not be of great importance but with other types (e.g. curves E or F in Fig. 1.27) the difference could be very large. Simply, it might be said that the Vicat test gives a measure of the temperature at which a material loses its “form stability” while the higher stress level heat distortion temperature (1.82 MPa) test provides a measure of the temperature at which a material loses its load-bearing capacity. The lower stress (0.45 MPa) heat distortion temperature test gives some rather intermediate figures, and it is perhaps not surprising that it is less often quoted than the other two tests.
12/11/2007 5:55:53 PM
1: Introduction to Plastics and Elastomers
29
Table 1.12. Some Collected Values for Relative Temperature Index (RTI) (Unless Otherwise Stated, Data are for “Mechanical Without Impact” and for Unreinforced Grades) Plastic
Sample
RTI (°C)
ABS
60–80
Nylons
75
Polyacetal
Homopolymer and copolymer
90
Styrenic PPO
Noryl 731
105
Polycarbonate (PC)
Lexan 101
125
Lexan 3414R (40% glass filled)
130
Polyarylate
Ardel D100
130
Poly(butylene terephthalate)
Pocan 81305
140
Pocan 83235 (30% g/f)
140
Petlon 4630 (30% g/f)
150
Poly(ethylene terephthalate) Polysulfone (PSU)
160
Polyetherimide
Ultem 1000
170
Polyphthalamide
Amodel A1133HS
180
Polyethersulfone
Victrex 200P
180
Poly(phenylene sulfide)
Supec G401 (40% g/f)
200
Aromatic polyester
Ekkcel 1-2000
220
Liquid crystal polyester Polyether ether ketone
220 Victrex PEEK
Some interesting differences are noted between amorphous and crystalline polymers when glass fiber reinforcement is incorporated into the polymer. In Fig. 1.29, it will be seen that incorporation of glass fiber has a minimal effect on the HDT of amorphous polymers (polystyrene, ABS, polycarbonate, and polysulfone) but large effects on crystalline polymers. It is particularly interesting, as well as being technically important, that for many crystalline polymers the unfilled polymer has a HDT (at 1.82 MPa stress) similar to Tg, whereas the filled polymers have values close to Tm (Table 1.13). Note that incorporation of glass fiber has a much greater effect with crystalline polymers than with amorphous ones.
1.3.3 Toughness Toughness is complex to define and difficult to understand. Tough thermoplastic resins are usually described as having high elongation to failure or ones that require a large amount of energy to cause failure. If the plastics are reinforced then they need high strength with low elongation. In many applications, the resistance to impact is the most important property
Mckeen_Ch01.indd 29
240
of a plastic material. It is also notoriously one of the most difficult to assess. If a rigid polymer is struck a blow at a temperature well below its glass transition temperature, deformation will be small before break occurs. Nevertheless, because of the high modulus, quite high tensile strengths will be recorded. But the energy required to cause the break will be given by the area under the stress–strain curve and it will not be very large as shown in Fig. 1.30A. On the other hand, if an amorphous polymer is struck above Tg, i.e., in the rubbery state, large extensions are possible before fracture occurs and, although the tensile strength will be much lower, the energy to break (the area under the curve as shown in Fig. 1.30B) will be much more, so that the material will be regarded as tough for many purposes. A common material performance need is a rigid plastic with the toughness of rubber. This can be achieved in a number of ways. (1) By the use of a moderately crystalline polymer with a Tg well below the expected service temperature (e.g. polyethylene).
12/11/2007 5:55:54 PM
30
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 1.29. Heat deflection temperature under a load of 1.82 MPa for selected polymers showing the effect of added filler (30% glass fiber).
(2) By block copolymerization so that one component of the block copolymer has a Tg well below the expected service temperature range (e.g. polypropylene with small blocks of polyethylene or preferably polypropylene with small amorphous blocks of ethylene– propylene copolymer). (3) By blending with semicompatible materials that have a Tg well below the expected service temperature range (e.g. HIPS). (4) By the use of a polymer that has effective transitions at or below the expected service temperature range and is able to respond to stress by extensive deformation (e.g. polycarbonates). (5) By plasticization. This in effect reduces the Tg and in the case of nylon, which has absorbed small quantities of water, the toughening effect can be quite substantial. In terms of a stress–strain curve, a brittle material may be considered to be one that breaks without a yield while a tough material yields to give a substantial energy to break. Note that if a material has not broken
Mckeen_Ch01.indd 30
after being struck simply because it yielded to an unrecoverable extent the product may still be useless. Toughness is not simply a function of polymer structure or the mode of stressing. It will also depend on the temperature and the rate of striking but more important it will depend on the product design and method of manufacture. Stress tends to concentrate at defects such as the presence of notches, sharp angles, holes, voids, particle inclusions, or small inserts. Different polymers vary in their “notch sensitivity” and this is presumably a reflection of how close they are to their tough–brittle transitions. The aim of the designer and the processor must be to reduce such stress concentration to a minimum.
1.3.3.1 The Assessment of Impact Strength It is probably most useful to consider toughness as a property of a plastics part under some specified conditions of service. It is possible to devise impact tests and to rank a series of plastics materials according to the results obtained. However, it remains almost impossible to use such tests to try to predict
12/11/2007 5:55:54 PM
1: Introduction to Plastics and Elastomers
31
Table 1.13. Comparison of Tg, Tm and Various Heat Performance Temperatures of Polymers With and Without Glass Fiber Reinforcement (All Values in °C) Tm
Tg
Max Service
HDT .46
HDT 1.8
PPS unfilled
285
85
190
149
120
PPS 10% glass fiber
285
85
230
220
210
PPS 20% glass fiber
285
85
260
260
260
PPS 30% glass fiber
285
85
250
270
260
190
PPS 40% glass fiber
285
85
240
280
260
200
PPS 50% glass fiber
285
85
260
270
260
PPS 60% glass fiber
285
85
260
PPS 10% carbon fiber
285
85
250
260
249
PPS 20% carbon fiber
285
85
260
270
260
PPS 30% carbon fiber
285
85
260
260
260
PPS 40% carbon fiber
285
85
260
260
260
PPS 50% carbon fiber
285
85
260
260
260
PPS 60% carbon fiber
285
85
260
260
260
PBT unfilled
225
23–43
70
150
61
160
110
PBT 10% glass fiber
225
23–43
150
190
170
210
100
PBT 20% glass fiber
225
23–43
170
210
180
190
130
PBT 30% glass fiber
225
23–43
190
220
200
190
130
PBT 40% glass fiber
225
23–43
190
220
210
PBT 50% glass fiber
225
23–43
190
220
210
210
130
ABS unfilled
100
105
86
96
91
100
63
ABS 10% glass fiber
100
105
100
104
100
ABS 20% glass fiber
100
105
100
110
100
100
110
ABS 30% glass fiber
100
105
110
110
100
ABS 40% glass fiber
100
105
110
110
110
Plastic
whether an article made from a specific material will or will not be satisfactory in service. Some of the factors that will influence service performance are given below: (1) The effect of additives and impurities; (2) Temperature; (3) Geometric size and shape; (4) Orientation and morphology; (5) Surface condition; (6) Energy and speed of any impacting blow; (7) The shape of the impacting instrument; (8) The environment; and (9) Strains in the article due to external loads.
Mckeen_Ch01.indd 31
Vicat
RTI
260
For this reason it is desirable, but not always feasible, to test prototype articles under conditions as close to service conditions as possible. Impact tests are, however, used to try to compare the impact strength of different materials. Of these tests, four merit specific mention. These are the Izod test, the Charpy test, the falling weight tests, and the tensile impact test. Of these, the most well known is the Izod test. This test is discussed in detail in Section 1.2.2.1. Because of the stress concentrations around the notch, much lower impact strengths are recorded with notched specimens than with unnotched specimens. While Izod tests are generally reproducible, it has been found impossible to scale up the results and predict the energy required to break a bar of large crosssection from results obtained with a bar of smaller
12/11/2007 5:55:54 PM
32
The Effect of Temperature and Other Factors on Plastics and Elastomers
A) Rigid polymer, below Tg has very high tensile strength, but less area under the curve = less energy to break
B) Rigid polymer, above Tg has lower tensile strength, but more area under curve = more energy to break Figure 1.30. Stress vs. strain curves for two plastics.
cross-section. This has led to some uncertainty in the method of quoting results and the following approaches are used:
has been found that on reducing the notch width from 1/2” to 1/8” the impact strength of a polycarbonate increased by a factor of 5.4.
(1) Energy to break. This is quoted usually in joules. The result will only apply to one set of sample dimensions. It is not possible to allow for any change in specimen dimensions.
(3) The energy to break per fractured area. This will be the cross-sectional area of the sample less the area of the notch (as projected on the cross-section). The units used in this method are most commonly kJ/m2.
(2) Energy to break per unit width of sample. In notched specimens, this is taken as the energy to break per unit width of notch. In this case the results are quoted in such units as joules per millimeter of notch. The values obtained depend on the notch width. For example, it
Mckeen_Ch01.indd 32
A related alternative to the Izod test is the Charpy test (preferred in ISO standards) in which a sample supported (not gripped) at each end is subjected to an impact at the center. According to the test, a notch
12/11/2007 5:55:54 PM
1: Introduction to Plastics and Elastomers
may be present in the center of the sample on the face opposite to that subjected to impact. Because of the diversity of the sources of data for this book, the Izod and Charpy data frequently referred to are expressed in a variety of units according to the test method used and little attempt has been made to convert the data to the use of a common unit except to convert to metric units. The presence of notches, sharp angles, voids, particle inclusions, and small inserts tends to concentrate stress on impact. One way of studying the sensitivity of a polymer or polymer compound to stress concentration is to carry out a series of tests with different notch angles or notch tip radii. Materials vary enormously in their notch sensitivity as shown in Fig. 1.31. Materials like unplasticized PVC, nylon, polyacetals, and polycarbonates (not shown in the diagram) are very sensitive to sharp notches. ABS, although good at high stress concentrations, does not perform so well relative to PVC, nylon, and polyacetal at the blunter notch radii. Other impact tests widely used are the falling weight tests, in which a weight is allowed to fall onto a supported flat or domed surface and the tensile impact tests in which a sample is subjected to a sudden shock in tension. While the last named test provides results more amenable to theoretical study, plastics products are not commonly subjected to this type of impact and producer data are limited.
33
1.3.3.2 Time Dependent Behavior Plastics are affected by stress, impact, temperature, and environmental conditions and these are all timedependent. Long-term behavior is the subject of another book in this series and is not discussed further here.
1.3.3.3 Selection Guides Selection and evaluation of materials can be very complex. The following series of questions is based on material from the San Diego Plastics website. It shows the wide variety of considerations one must take when selecting a plastic material for an application. It may be necessary to ask some or all of the following questions to define the performance needs of a plastic material for a particular application. (1) WHAT LOAD WILL THE PLASTIC PART HAVE TO CARRY? (a) Will it carry high loads? (b) What will the highest load be? (c) What is the maximum stress in the part? (d) What kind of stress is it (tensile, flexural, torsional, etc.)? (e) How long will the load be applied? (f) What is the projected life of the part?
Figure 1.31. Impact strength vs. notch radius for various plastics.
Mckeen_Ch01.indd 33
12/11/2007 5:55:55 PM
34
The Effect of Temperature and Other Factors on Plastics and Elastomers
Thermosets often perform well under high continuous loads. Reinforced thermoplastics, such as thermoplastic polyester, may also perform satisfactorily. (2) WILL THE PART HAVE TO WITHSTAND IMPACT? (a) Will the part be subjected to impact?
(f) Will the material be submerged or wiped with solvents or other chemicals? If so, which ones? (g) Will the material be exposed to chemical or solvent vapors? If so, which ones and at what temperature?
(b) Which impact test/data closely duplicates the impact occurring in this application?
(h) Will the material be exposed to other materials that can outgas or leach detrimental materials, such as plasticizers?
Reinforced plastics, such as glass-reinforced thermosets like epoxy, melamine, or phenolic, generally have good impact strength. Polycarbonate and UHMW polyethylene also exhibit excellent impact resistance.
Fluoroplastics, crystalline, and thermoset materials generally exhibit good chemical resistance. Chemical resistance is the subject of other books and databases in this series.
(3) WILL THE PART BE SUBJECTED TO CYCLIC LOADING (FATIGUE)? (a) Will the part be subjected to a variable load? (b) Is the load alternating compressive/tensile? (c) What will the stress levels be? (d) What is the thickness of the part being flexed? (e) How much will the part be deflected? Fatigue is the subject of another book in this series and is not discussed in this book. However, materials like acetal and nylon are generally good candidates for cyclic loading. (4) WHAT TEMPERATURES WILL THE PART BE SUBJECTED TO AND FOR HOW LONG? (a) What is the maximum temperature the material will withstand while in use? (b) What is the minimum temperature the material will withstand while in use? (c) How long will the material be at these temperatures? (d) Will the material have to withstand impact at the low temperature? (5) WILL THE MATERIAL BE EXPOSED TO CHEMICALS OR MOISTURE? (a) Will the material be exposed to normal relative humidity? (b) Will the material be submerged in water? If so, at what temperature? (c) Will the material be exposed to steam? (d) Will the material be autoclaved? (e) Will the material be painted?
Mckeen_Ch01.indd 34
(6) WILL THE MATERIAL BE USED IN AN ELECTRICAL APPLICATION? (a) What voltages will the part be exposed to? (b) Alternating (AC) or direct (DC) current? (c) If AC, what frequencies? (d) Where will the voltage be applied (opposite side of the material, on one surface of the material, etc.)? Enough carbon reinforcement can make a plastic conductive. Temperature can also dramatically affect electrical properties. (7) WILL THE MATERIAL BE USED AS A BEARING OR NEED TO RESIST WEAR? (a) Will the material be expected to perform as a bearing? (b) If so, what will the load, shaft diameter, shaft material, shaft finish, and rpm be? (c) What wear or abrasion conditions will the material withstand? (d) Will a lubricant be used? Materials with friction reducers added, such as PTFE, molybdenum disulfide, or graphite, generally exhibit less wear in rubbing applications. Tribology is the subject of another book in this series. (8) DOES THE PART HAVE TO RETAIN ITS DIMENSIONAL SHAPE? (a) What kind of dimensional stability is required? An application requiring a very high level of dimensional stability may not be suitable for plastic materials. Remember that plastic materials generally
12/11/2007 5:55:55 PM
1: Introduction to Plastics and Elastomers
expand and contract more with changes in temperature than metals. They may also expand and contract to different extents in different directions (flow and cross-flow). The most stable plastics are reinforced with glass, minerals, etc. (9)WILL THE MATERIAL HAVE TO STRETCH OR BEND A LOT? (a)Are rubber-like properties needed? (b)Does the material have to stretch? A flexible material like flexible vinyls, urethanes, rubber, or a thermoplastic elastomer may be used. (10) WILL THE PART HAVE TO MEET ANY REGULATORY REQUIREMENTS? (a) Is an Underwriter’s Laboratories (UL) listed material required? If so, which rating?
35
(b) Does it have to match anything else? (c) Is a textured surface needed? (14) DOES THE PART HAVE ANY OPTICAL REQUIREMENTS? (a) Does the material need to be transparent? (b) Does the material need to transmit any particular wavelengths? If so, which ones? Acrylics, polycarbonates, and amorphous polymers (such as amorphous nylon) in general have excellent optical properties. (15) WILL THE PART BE USED OUTDOORS? Acrylics have excellent weatherability. UV-stabilized compounds are often used. The effects of UV light and weather are the subject of another book in this series.
(b) Is a UL yellow card required? (c) Is a low smoke generating material required (FAA)?
(16) CAN THE MATERIAL GIVE OFF ANY VOLATILES?
(d) Is an FDA-approved material required?
This is often referred to as outgassing and usually occurs at elevated temperatures. The remainder of this section contains several general selection guides in Figs. 1.32–1.36 in graphical form. There are plastics in these guides that are not discussed in this book. These are generally thermosets. More detailed guides on material selection and product design are available from many of the large plastics manufacturers and the literature.9, 10, 11
(e) Does the material have any taste or odor? Make sure the supplier has approval from the desired agency and not just its own lab. Obtain written proof of approval. (11) DOES THE MATERIAL OR FILM HAVE TO PREVENT CERTAIN GASES OR LIQUIDS FROM PASSING THROUGH? (a) Does the material have to be impermeable to gases and/or liquids? If so, which ones? Permeability is the subject of another book in this series. This is important for packaging foods and some medical applications. (12) WILL THE PART BE EXPOSED TO ANY RADIATION? (a) Will the material be exposed to radiation? If so, how much and how long? This requirement could occur for military, utility (atomic power plants), or medical applications. The effects of radiation and sterilization methods are the subjects of another book in this series. (13) DOES THE MATERIAL HAVE TO HAVE A SPECIAL COLOR AND/OR APPEARANCE? (a) What color material is desired?
Mckeen_Ch01.indd 35
1.4 Summary The rest of this book consists of property data on many plastics and elastomers. Chapters 2 through 10 contain multipoint data in the form of plots. The plastics are grouped by the basic chemical structures of the plastics. Each of these chapters contains a short introduction that describes the basic chemical structures of the plastics in that chapter. The figures that follow contain the multipoint data. They are grouped by the type of data. Generally, the chapter begins with the stress versus strain curves , followed by various modulus measurements, strength measures, other physical properties, and electrical properties. These properties are measured by the appropriate ISO or ASTM standards. Chapter 11 contains mechanical and electrical data on hundreds of plastics in tabular form. This data is described in the standard ISO 10350-1:1998, which
12/11/2007 5:55:55 PM
36
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 1.32. Selection guide based on mechanical properties.
Figure 1.33. Selection guide based on chemical resistance.
Mckeen_Ch01.indd 36
12/11/2007 5:55:55 PM
1: Introduction to Plastics and Elastomers
37
Figure 1.34. Selection guide based on continuous operating temperature.
Figure 1.35. Heat deflection data on generic family of plastics.
Mckeen_Ch01.indd 37
12/11/2007 5:55:57 PM
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 1.36. Selection guide based on other properties.
38
Mckeen_Ch01.indd 38
12/11/2007 5:56:01 PM
1: Introduction to Plastics and Elastomers
is titled: Plastics—Acquisition and presentation of comparable single-point data—Part 1: Molding materials. This standard ISO 10350 identifies specific test procedures for the acquisition and presentation of comparable data for many basic properties of plastics. The properties included are often in the manufacturers’ technical data sheets. All the data are defined by ISO standards rather than ASTM standards. Part 1 applies to unreinforced and reinforced thermoplastic and thermosetting materials. While similar ASTM standard based data may be available, these tables do not include those data. Chapter 12 contains thermal data in tabular form similar to that in Chapter 11.
39
5.
6.
7.
References 1. Utracki, L.A. (2002). Polymer Blends Handbook, Volumes 1–2. Springer-Verlag. Online version available at: http://www.knovel.com/knovel2/Toc. jsp?BookID=1117&VerticalID=0. 2. Utracki, L.A. (1998). Commercial Polymer Blends. Springer-Verlag. Online version available at: http://www.knovel.com/knovel2/Toc. jsp?BookID=878&VerticalID=0. 3. Utracki, L.A. (1994). Encyclopaedic Dictionary of Commercial Polymer Blends. ChemTec Publishing. Online version available at: http://www. knovel.com/knovel2/Toc.jsp?BookID=285&Ver ticalID=0. 4. Flick, E.W. (1993). Plastics Additives—An Industrial Guide (2nd Edition). William Andrew
Mckeen_Ch01.indd 39
8.
9.
10.
11.
Publishing/Noyes. Online version available at: http://www.knovel.com/knovel2/Toc.jsp?BookI D=353&VerticalID=0. Pritchard, G. (1998). Plastics Additives—An AZ Reference. Springer-Verlag. Online version available at: http://www.knovel.com/knovel2/ Toc.jsp?BookID=335&VerticalID=0. Shah, V.(1998). Handbook of Plastics Testing Technology (2nd Edition). John Wiley & Sons. Online version available at: http://www.knovel.com/knovel2/Toc.jsp?BookID=970&VerticalID=0. Berins, M.L. (1991). SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc. (5th Edition). (pp. 801–819). SpringerVerlag. Online version available at: http://www. knovel.com/knovel2/Toc.jsp?BookID=347&Ver ticalID=0. Rosato, D.V., Rosato D.V., Rosato M.G. (2001). Plastics Design Handbook. (pp. 296–334). Springer-Verlag. Online version available at: http://www.knovel.com/knovel2/Toc.jsp?BookID =539&VerticalID=0. Campo, E.A. (forthcoming). Selection of Polymeric Materials: How to Select Design Properties from Different Standards. Plastics Design Library. William Andrew Publishing. MacDermott, A.V. et al. (1997). Selecting Thermoplastics for Engineering Applications (Plastics Engineering, 42). CRC. Rosato, D.V. et al. (2005). Plastic Product Material and Process Selection Handbook. Elsevier Science.
12/11/2007 5:56:02 PM
Mckeen_Ch01.indd 40
12/11/2007 5:56:02 PM
2 Styrenic Plastics 2.1 Background This chapter on styrenic plastics covers a broad class of polymeric materials of which an important part is styrene. Styrene, also known as vinyl benzene, is an organic compound with the chemical formula C6H5CH=CH2. Its structure is shown in Fig. 2.1. It is used as a monomer to make plastics such as polystyrene, acrylonitrile-butadiene-styrene (ABS), styrene-acrylonitrile (SAN), and other polymers discussed in this chapter.
2.1.1 Polystyrene Polystyrene is the simplest plastic based on styrene. Its structure is shown in Fig. 2.2. Pure solid polystyrene is a colorless, hard plastic with limited flexibility. Polystyrene can be transparent or can be made in various colors. It is economical and is used for producing plastic model assembly kits, plastic cutlery, CD “jewel” cases, and many other objects where a fairly rigid, economical plastic is desired. Polystyrene’s most common use, however, is as expanded polystyrene (EPS). EPS is produced from a mixture of about 5%–10% gaseous blowing agent (most commonly pentane or carbon dioxide) and 90%–95% polystyrene by weight. The solid plastic beads are expanded into foam by using heat (usually steam). The heating is carried out in a large vessel having a capacity of 200–2,000 liters. An agitator is used to keep the beads from fusing together. The expanded beads being lighter than the unexpanded beads are forced to the top of the vessel and removed. This expansion process lowers the density of the beads to 3% of their original value and yields a smooth-skinned, closed cell structure. Then, the pre-expanded beads are usually “aged” for at least 24 h in mesh storage silos. This allows air to diffuse into the beads, cooling them,
Figure 2.1. Chemical structure of styrene.
and making them harder. These expanded beads are excellent for detailed molding. Extruded polystyrene (XPS), which is different from EPS, is commonly known by the trade name Styrofoam™. All these foams are not of interest in this book. One of the most important plastics is high-impact polystyrene (HIPS). This is a polystyrene matrix that is imbedded with an impact modifier, which is basically a rubber-like polymer such as polybutadiene. This is shown in Fig. 2.3.
2.1.2 Acrylonitrile-StyreneAcrylate (ASA) ASA is the acronym for acrylate rubber modified styrene-acrylonitrile copolymer. ASA is a terpolymer that can be produced either by a reaction process of all three monomers or by a graft process. ASA is
Figure 2.2. Chemical structure of polystyrene.
Figure 2.3. The structure of high-impact polystyrene.
41
Mckeen_Ch02.indd 41
12/12/2007 2:13:23 PM
42
The Effect of Temperature and Other Factors on Plastics and Elastomers
usually prepared by introducing a grafted acrylic ester elastomer during the copolymerization of styrene and acrylonitrile, known as SAN. SAN is described in the next section of this chapter. The finely divided elastomer powder is uniformly distributed and grafted to the SAN molecular chains. The outstanding weatherability of ASA is due to the acrylic ester elastomer. ASA polymers are amorphous plastics, which have mechanical properties similar to those of the ABS resins described in Section 2.1.4. However, the ASA properties are far less affected by outdoor weathering. ASA resins are available in natural, off-white, and a broad range of standard and custom-matched colors. ASA resins can be compounded with other polymers to make alloys and compounds that benefit from ASA’s weather resistance. ASA is used in many products including lawn and garden equipments, sporting goods, automotive exterior parts, safety helmets, and building materials.
2.1.3 Styrene-Acrylonitrile (SAN) Styrene and acrylonitrile monomers can be copolymerized to form a random, amorphous copolymer that has good weatherability, stress crack resistance, and barrier properties. The copolymer is called styreneacrylonitrile or SAN. The SAN copolymer generally contains 70%–80% styrene and 20%–30% acrylonitrile. It is a simple random copolymer. This monomer combination provides higher strength, rigidity, and chemical resistance than polystyrene, but it is not as clear as crystal polystyrene and its appearance tends to discolor more quickly. The general structure is shown in Fig. 2.4. SAN is used for household goods and tablewares, in cosmetics packaging, sanitary and toiletry articles, writing materials, and office supplies.
2.1.4 Acrylonitrile-ButadieneStyrene (ABS) Acrylonitrile-butadiene-styrene (ABS) is a common thermoplastic used to make light, rigid, molded products such as pipes, automotive body parts, wheel covers, enclosures, protective head gears, etc. SAN copolymers are available since 1940s and while its increased toughness over styrene made it suitable for many applications, its limitations led to the introduction of a rubber, butadiene, as the third monomer producing a range of materials popularly referred to as ABS plastics. These became available in the 1950s and the availability of these plastics and ease of processing led ABS to become one of the most popular of the engineering polymers. The chemical structures of the monomers are shown in Fig. 2.5. The proportions of the monomers typically range from 15% to 35% acrylonitrile, 5%–30% butadiene, and 40%–60% styrene. It can be found as a graft copolymer, in which SAN polymer is formed in a polymerization system in the presence of polybutadiene rubber latex; the final product is a complex mixture consisting of SAN copolymer, a graft polymer of SAN and polybutadiene, and some free polybutadiene rubber.
2.1.5 Styrene-Maleic Anhydride (SMA) Copolymerization of styrene with maleic anhydride creates a copolymer called styrene-maleic anhydride (SMA). This reaction is shown in Fig. 2.6. SMA has a higher glass-transition temperature than polystyrene and is chemically reactive because of active functional groups. Thus, SMA polymers are often used in blends or composites where interaction or reaction of the maleic anhydride causes desirable interfacial effects. The anhydride reaction with primary amines is particularly potent.
2.1.6 Styrenic Block Copolymers (SBCs)
Figure 2.4. Chemical structure of styrene-acrylonitrile (SAN).
Mckeen_Ch02.indd 42
SBC is a commercially important thermoplastic elastomer. The polymer is made of three separate polymeric blocks (see Section 1.1.2 for an explanation of block copolymers). At one end is a hard polystyrene block, in the middle a long polybutadiene (or other elastomeric) block, followed by a second hard block of polystyrene. These blocks are immiscible, so they
12/12/2007 2:13:24 PM
2: Styrenic Plastics
form discrete domains of polystyrene within a polybutadiene matrix. The separate domains are chemically connected. This is shown in Fig. 2.7, and it is similar to HIPS, except that the continuous phase and hard discrete phase are switched in SBC and the domains are connected. One additional property of interest is that some SBCs blend well with general purpose polystyrene, allowing customization of properties.
2.1.7 Blends While the number of styrenic blends might seem limitless, compatibility and morphology limit blend
43
types. Styrenic blends are numerous but most are limited only to a couple of types. The most important blend is ABS and polycarbonate (PC). The next important blend is ABS and polyamide (or nylon, PA). Polystyrene and polyethylene are often used in expandable foams. Polystyrene and polyphenylene ether (PPE or PPO) are commercially important blends which are covered in later chapters. The other classes of the styrenic blends are not major product lines but can be very important in some applications. Graphs showing the properties of styrene-based plastics as a function of temperature, moisture, and other factors are illustrated in Sections 2.2–2.8.
Figure 2.5. Chemical structure of acrylonitrile-butadiene-styrene (ABS) raw materials.
Figure 2.6. The production of styrene-maleic anhydride (SMA).
Figure 2.7. The “microscopic” structure of styrenic block copolymers (SBC).
Mckeen_Ch02.indd 43
12/12/2007 2:13:24 PM
44
The Effect of Temperature and Other Factors on Plastics and Elastomers
2.2 Polystyrene
Figure 2.8. Stress vs. strain at various temperatures for BASF Polystyrene 158 K—general purpose, heat resistant polystyrene resin.
Figure 2.9. Stress vs. strain at various temperatures for BASF Polystyrene 454 C—impact resistant polysty-
rene resin.
Mckeen_Ch02.indd 44
12/12/2007 2:13:25 PM
2: Styrenic Plastics
45
Figure 2.10. Stress vs. strain at various temperatures for Dow Styron™ 457—high-impact polystyrene resin.
Figure 2.11. Stress vs. strain at various temperatures for Dow Styron™ 648—general purpose polystyrene resin.
Mckeen_Ch02.indd 45
12/12/2007 2:13:26 PM
46
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.12. Tensile modulus vs. temperature for two BASF Polystyrene resins.
Figure 2.13. Tensile modulus vs. temperature for Dow Styron™ 6075—ignition resistant polystyrene resin.
Mckeen_Ch02.indd 46
12/12/2007 2:13:27 PM
2: Styrenic Plastics
47
Figure 2.14. Young’s modulus vs. temperature for two BASF Polystyrene resins.
Figure 2.15. Tensile strength vs. temperature for Dow Styron™ 6075—ignition resistant polystyrene resin.
Mckeen_Ch02.indd 47
12/12/2007 2:13:29 PM
48
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.16. Notched Izod impact vs. temperature for Dow Styron™ 6075—ignition resistant polystyrene
resin
Figure 2.17. Specific volume as a function of temperature and pressure (PVT diagram) for BASF Polystyrene 454 C—impact resistant polystyrene resin.
Mckeen_Ch02.indd 48
12/12/2007 2:13:30 PM
2: Styrenic Plastics
49
Figure 2.18. Linear thermal expansion vs. temperature for two BASF Polystyrene resins.
Figure 2.19. Dielectric constant vs. frequency for two Dow Styron™ Polystyrene resins.
Mckeen_Ch02.indd 49
12/12/2007 2:13:31 PM
50
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.20. Dissipation factor vs. frequency for two Dow Styron™ Polystyrene resins.
Figure 2.21. Enthalpy (heat content) vs. temperature for Dow Styron™ Polystyrene resins.
Mckeen_Ch02.indd 50
12/12/2007 2:13:32 PM
2: Styrenic Plastics
51
2.3 Acrylonitrile-Styrene-Acrylate (ASA)
Figure 2.22. Tensile stress vs. strain for BASF Luran® S 757 R—general purpose molding grade ASA resin.
Figure 2.23. Tensile stress vs. strain for BASF Luran® S 757 S—tough and strong ASA resin.
Mckeen_Ch02.indd 51
12/12/2007 2:13:34 PM
52
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.24. Tensile stress vs. strain for BASF Luran® S 778 T—tough and heat resistant ASA resin.
Figure 2.25. Stress vs. strain in compression for SABIC Innovative Plastics Geloy® CR7520—high impact automotive ASA resin.
Mckeen_Ch02.indd 52
12/12/2007 2:13:35 PM
2: Styrenic Plastics
53
Figure 2.26. Shear modulus vs. temperature for BASF Luran® ASA resins.
Figure 2.27. Flexural modulus vs. temperature for SABIC Innovative Plastics Geloy® ASA resins.
Mckeen_Ch02.indd 53
12/12/2007 2:13:36 PM
54
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.28. Specific volume as a function of temperature and pressure (PVT) for BASF Luran® S 757 R— general purpose molding grade ASA resin.
Figure 2.29. Falling dart impact vs. temperature for BASF Luran® ASA resins.
Mckeen_Ch02.indd 54
12/12/2007 2:13:37 PM
2: Styrenic Plastics
55
Figure 2.30. Penetration energy vs. temperature for BASF Luran® ASA resins.
2.4 Styrene-Acrylonitrile (SAN)
Figure 2.31. Tensile stress vs. strain for BASF Luran® 368 R—general purpose SAN resin.
Mckeen_Ch02.indd 55
12/12/2007 2:13:39 PM
56
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.32. Tensile stress vs. strain for BASF Luran® 378P—easy flow, chemical resistant grade SAN resin.
Figure 2.33. Tensile stress vs. strain for BASF Luran® 378P G7—glass reinforced grade SAN resin.
Mckeen_Ch02.indd 56
12/12/2007 2:13:40 PM
2: Styrenic Plastics
57
Figure 2.34. Tensile stress vs. strain for BASF Luran® 388S—high mechanical strength, chemical resistant grade SAN resin.
Figure 2.35. Tensile stress vs. strain for Dow Chemical Tyril™ 790—general purpose grade SAN resin.
Mckeen_Ch02.indd 57
12/12/2007 2:13:41 PM
58
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.36. Tensile stress vs. strain for Dow Chemical Tyril™ 905—general purpose grade SAN resin.
Figure 2.37. Tensile stress vs. strain for Polimeri Europa Kostil® B 265—general purpose SAN resin.
Mckeen_Ch02.indd 58
12/12/2007 2:13:43 PM
2: Styrenic Plastics
59
Figure 2.38. Shear modulus vs. temperature for BASF Luran® SAN resins.
Figure 2.39. Shear modulus vs. temperature for Dow Chemical Tyril™ SAN resins.
Mckeen_Ch02.indd 59
12/12/2007 2:13:44 PM
60
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.40. Shear modulus vs. temperature for Polimeri Europa Kostil® SAN resins
Figure 2.41. Tensile modulus vs. temperature for BASF Luran® SAN resins.
Mckeen_Ch02.indd 60
12/12/2007 2:13:45 PM
2: Styrenic Plastics
61
Figure 2.42. Specific volume as a function of temperature and pressure (PVT) for BASF Luran® 368 R—general purpose SAN resin.
2.5 Acrylonitrile-ButadieneStyrene (ABS)
Figure 2.43. Tensile stress vs. strain for SABIC Innovative Plastics Cycolac® EX39—high impact extrusion ABS resin.
Mckeen_Ch02.indd 61
12/12/2007 2:13:48 PM
62
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.44. Tensile stress vs. strain for SABIC Innovative Plastics Cycolac® KJB—medium impact, wide processing range ABS resin.
Figure 2.45. Tensile stress vs. strain for SABIC Innovative Plastics Cycolac® MGABS01—high impact, high gloss, good flow injection molding ABS resin.
Mckeen_Ch02.indd 62
12/12/2007 2:13:49 PM
2: Styrenic Plastics
63
Figure 2.46. Tensile stress vs. strain for SABIC Innovative Plastics Cycolac® Z48—high heat resistant, medium impact, good strength ABS resin.
Figure 2.47. Tensile stress vs. strain for Dow Chemical Magnum™ 1040—high impact automotive ABS resin.
Mckeen_Ch02.indd 63
12/12/2007 2:13:51 PM
64
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.48. Tensile stress vs. strain for Dow Chemical Magnum™ 2620—healthcare ABS resin.
Figure 2.49. Tensile stress vs. strain for LANXESS AG Novodur® P2H-AT—standard impact, easy flow, high gloss, antistatic ABS resin.
Mckeen_Ch02.indd 64
12/12/2007 2:13:52 PM
2: Styrenic Plastics
65
Figure 2.50. Tensile stress vs. strain for LANXESS AG Novodur® P3H-AT—improved chemical resistant, high gloss, antistatic ABS resin.
Figure 2.51. Tensile stress vs. strain for Terluran® GP-22—general purpose ABS resin.
Mckeen_Ch02.indd 65
12/12/2007 2:13:53 PM
66
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.52. Tensile stress vs. strain for Terluran® GP-35—very high flow, high impact ABS resin.
Figure 2.53. Tensile stress vs. strain for BASF Terluran® HH-106—high heat, high impact ABS resin.
Mckeen_Ch02.indd 66
12/12/2007 2:13:54 PM
2: Styrenic Plastics
67
Figure 2.54. Tensile stress vs. strain for BASF Terluran® HI-10—high impact ABS resin.
Figure 2.55. Tensile stress vs. strain for Toray Plastics Toyolac™ 100—general purpose, high impact strength ABS resin.
Mckeen_Ch02.indd 67
12/12/2007 2:13:56 PM
68
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.56. Tensile stress vs. strain for Toray Plastics Toyolac™ 500—general purpose, high rigidity ABS resin.
Figure 2.57. Flexural modulus vs. temperature for SABIC Innovative Plastics Cycolac® ABS resins.
Mckeen_Ch02.indd 68
12/12/2007 2:13:59 PM
2: Styrenic Plastics
69
Figure 2.58. Flexural modulus vs. temperature for Toray Plastics Toyolac™ antistatic ABS resins.
Figure 2.59. Flexural modulus vs. temperature for Toray Plastics Toyolac™ ABS resins.
Mckeen_Ch02.indd 69
12/12/2007 2:14:02 PM
70
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.60. Modulus of bending elasticity vs. temperature for Toray Plastics Toyolac™ ABS resins.
Figure 2.61. Shear modulus vs. temperature for SABIC Innovative Plastics Cycolac® ABS resinss.
Mckeen_Ch02.indd 70
12/12/2007 2:14:04 PM
2: Styrenic Plastics
71
Figure 2.62. Shear modulus vs. temperature for Dow Chemical Magnum™ ABS resins.
Figure 2.63. Shear modulus vs. temperature for LANXESS AG Novodur® ABS resins.
Mckeen_Ch02.indd 71
12/12/2007 2:14:05 PM
72
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.64. Tensile modulus vs. temperature for BASF Terluran® ABS resins.
Figure 2.65. Flexural strength vs. temperature for Toray Plastics Toyolac™ ABS resins.
Mckeen_Ch02.indd 72
12/12/2007 2:14:08 PM
2: Styrenic Plastics
73
Figure 2.66. Tensile strength at break vs. temperature for Toray Plastics Toyolac™ antistatic ABS resins.
Figure 2.67. Tensile strength at yield vs. temperature for Toray Plastics Toyolac™ ABS resins.
Mckeen_Ch02.indd 73
12/12/2007 2:14:09 PM
74
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.68. Izod impact strength vs. temperature for Toray Plastics Tyolac™ ABS resins.
Figure 2.69. Izod impact strength vs. temperature for Toray Plastics Toyolac™ antistatic ABS resins.
Mckeen_Ch02.indd 74
12/12/2007 2:14:11 PM
2: Styrenic Plastics
75
Figure 2.70. Izod impact strength vs. temperature for Toray Plastics Toyolac™ transparent ABS resins.
Figure 2.71. Rockwell hardness vs. temperature for Toray Plastics Toyolac™ ABS resins.
Mckeen_Ch02.indd 75
12/12/2007 2:14:12 PM
76
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.72. Specific volume as a function of temperature and pressure (PVT) for SABIC Innovative Plastics Cycolac® Z48—high heat resistant, medium impact, ABS resin.
Figure 2.73. Coefficient of thermal expansion vs. temperature for SABIC Innovative Plastics Cycolac® ABS resins.
Mckeen_Ch02.indd 76
12/12/2007 2:14:14 PM
2: Styrenic Plastics
77
Figure 2.74. Dielectric constant vs. frequency for Dow Chemical Magnum™ ABS resins.
Figure 2.75. Dissipation factor vs. frequency for Dow Chemical Magnum ABS resins.
Mckeen_Ch02.indd 77
12/12/2007 2:14:15 PM
78
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.76. Surface resistivity vs. relative humidity for Toray Plastics Toyolac™ antistatic ABS resins.
2.6 Styrene-Maleic-Anhydride (SMA)
Figure 2.77. Tensile stress vs. strain for SABIC Innovative Plastics Prevex® IP-16 SMA resin.
Mckeen_Ch02.indd 78
12/12/2007 2:14:18 PM
2: Styrenic Plastics
79
Figure 2.78. Tensile stress vs. strain in compression for SABIC Innovative Plastics Prevex® IP-16 SMA resin.
Figure 2.79. Flexural modulus vs. temperature for Dow Chemical Dylark® SMA resins.
Mckeen_Ch02.indd 79
12/12/2007 2:14:20 PM
80
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.80. Tensile modulus vs. temperature for Dow Chemical Dylark SMA resins.
Figure 2.81. Tensile strength vs. temperature for Bayer Cadon® SMA resins.
Mckeen_Ch02.indd 80
12/12/2007 2:14:22 PM
2: Styrenic Plastics
81
Figure 2.82. Notched Izod impact strength vs. temperature for Dow Chemical Dylark® SMA resins.
Figure 2.83. Notched Izod impact strength vs. temperature for Bayer Cadon® SMA resins.
Mckeen_Ch02.indd 81
12/12/2007 2:14:23 PM
82
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.84. Notched Izod impact strength vs. temperature for Nova Chemicals Dylark® SMA resins.
Figure 2.85. Specific volume as a function of temperature and pressure (PVT) for SABIC Innovative Plastics Prevex® IP-16 SMA resin.
Mckeen_Ch02.indd 82
12/12/2007 2:14:24 PM
2: Styrenic Plastics
83
2.7 Styrenic Block Copolymers (SBCs)
Figure 2.86. Stress vs. strain at 23°C for BASF Styrolux® SBC resins.
Figure 2.87. Young’s modulus vs. polystyrene content for BASF Styrolux® 3G55—Sheet extrusion SBC
resin.
Mckeen_Ch02.indd 83
12/12/2007 2:14:25 PM
84
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.88. Penetration energy (ISO 6603-2) vs. polystyrene content for BASF Styrolux® 684D—general purpose SBC resin.
Figure 2.89. Vicat softening temperature vs. polystyrene content for BASF Styrolux® 684D—general purpose
SBC resin.
Mckeen_Ch02.indd 84
12/12/2007 2:14:26 PM
2: Styrenic Plastics
85
Figure 2.90. Specific volume as a function of temperature and pressure (PVT diagram) for BASF Styrolux®
656 C—high flow SBC resin.
2.8 Styrenic Blends and Alloys
Figure 2.91. Stress vs. strain at various temperatures for Bayer MaterialScience Bayblend® T85—general purpose injection molding grade ABS/PC resin.
Mckeen_Ch02.indd 85
12/12/2007 2:14:28 PM
86
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.92. Stress vs. strain at various temperatures for Bayer MaterialScience Bayblend® T88-2N—10% glass fiber filled ABS/PC resin.
Figure 2.93. Stress vs. strain at various temperatures for Bayer MaterialScience Bayblend® T88-4N—20% glass fiber filled ABS/PC resin.
Mckeen_Ch02.indd 86
12/12/2007 2:14:30 PM
2: Styrenic Plastics
87
Figure 2.94. Stress vs. strain at various temperatures for SABIC Innovative Plastics Cycoloy C1000HF— general purpose, high flow ABS/PC resin.
Figure 2.95. Stress vs. strain at various temperatures for SABIC Innovative Plastics Cycoloy C1200HF— general purpose, high heat, high flow ABS/PC resin.
Mckeen_Ch02.indd 87
12/12/2007 2:14:32 PM
88
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.96. Stress vs. strain at various temperatures for SABIC Innovative Plastics Cycoloy EHA—platable, high heat ABS/PC resin (plated for test).
Figure 2.97. Stress vs. strain at various temperatures for SABIC Innovative Plastics Cycoloy EHA—platable, high heat ABS/PC resin (unplated for test).
Mckeen_Ch02.indd 88
12/12/2007 2:14:33 PM
2: Styrenic Plastics
89
Figure 2.98. Stress vs. strain at various temperatures for BASF Terblend® N NG04—20% glass fiber ABS/PA resin.
Figure 2.99. Stress vs. strain at various temperatures for LANXESS Triax® 1120—standard injection molding grade ABS/PA resin.
Mckeen_Ch02.indd 89
12/12/2007 2:14:35 PM
90
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.100. Shear modulus vs. temperature for several Bayer MaterialScience Bayblend® ABS/PC resins.
Figure 2.101. Shear modulus vs. temperature for two LANXESS Triax® ABS/PA resins.
Mckeen_Ch02.indd 90
12/12/2007 2:14:36 PM
2: Styrenic Plastics
91
Figure 2.102. Tensile modulus vs. temperature for SABIC Innovative Plastics Cycoloy EHA—platable, high heat ABS/PC resin.
Figure 2.103. Tensile modulus vs. temperature for BASF Terblend® ABS/PA resins.
Mckeen_Ch02.indd 91
12/12/2007 2:14:37 PM
92
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.104. Tensile strength at yield vs. temperature for SABIC Innovative Plastics Cycoloy EHA—platable, high heat ABS/PC resin.
Figure 2.105. Charpy impact strength vs. temperature for SABIC Innovative Plastics Cycoloy ABS/PC resins.
Mckeen_Ch02.indd 92
12/12/2007 2:14:39 PM
2: Styrenic Plastics
93
Figure 2.106. Charpy impact strength vs. temperature for SABIC Innovative Plastics Cycoloy ABS/PC resins.
Figure 2.107. Notched Izod impact strength vs. temperature for SABIC Innovative Plastics Cycoloy C1100HF—general purpose medium heat ABS/PC resin.
Mckeen_Ch02.indd 93
12/12/2007 2:14:40 PM
94
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 2.108. Puncture impact test (ISO 6603-2) vs. temperature for SABIC Innovative Plastics Cycoloy C1200HF—general purpose high heat ABS/PC resin.
Figure 2.109. Pressure–volume–temperature (PVT) for Bayer MaterialScience Bayblend® T88-2N—10% glass fiber filled ABS/PC resin.
Mckeen_Ch02.indd 94
12/12/2007 2:14:41 PM
2: Styrenic Plastics
95
Figure 2.110. Pressure–volume–temperature (PVT) for SABIC Innovative Plastics Cycoloy C1200HF—general purpose, high heat ABS/PC resin.
Mckeen_Ch02.indd 95
12/12/2007 2:14:43 PM
Mckeen_Ch02.indd 96
12/12/2007 2:14:43 PM
3 Polyether Plastics 3.1 Background This chapter covers polymers in which the most important linking group is the ether moiety, which is –O–.
3.1.1 Polyoxymethylene (POM or Acetal Homopolymer) Acetal polymers, also known as polyoxymethylene (POM) or polyacetal, are formaldehyde-based thermoplastics that have been commercially available since the 1960s. Polyformaldehyde is thermally unstable. It decomposes on heating to yield formaldehyde gas. Two methods of stabilizing polyformaldehyde for use as an engineering polymer were developed and introduced by DuPont, in 1959, and Celanese in 1962 (now Ticona). DuPont’s method for making polyacetal yields a homopolymer through the condensation reaction of polyformaldehyde and acetic acid (or acetic anhydride). The acetic acid puts the acetate groups (CH3COO–) at the ends of the polymer as shown in Fig. 3.1 which provide thermal protection against decomposition to formaldehyde. Further stabilization of acetal polymers also includes the addition of antioxidants and acid scavengers.
Figure 3.1. Chemical structure of acetal homopolymer.
Polyacetals are subject to oxidative and acidic degradation, which leads to molecular weight decline. Once the chain of the homopolymer is ruptured by such an attack, the exposed polyformaldehyde ends may decompose to formaldehyde and acetic acid.
3.1.2 Polyoxymethylene Copolymer (POM-Co or Acetal Copolymer) The Celanese method for the production of polyacetal yields a more stable copolymer product via the reaction of trioxane, a cyclic trimer of formaldehyde, and a cyclic ether, such as ethylene oxide, or 1,3-dioxolane. The structures of these monomers are shown in Fig. 3.2. The polymer structure is given in Fig. 3.3. .The improved thermal and chemical stability of the copolymer versus the homopolymer is a result of randomly distributed oxyethylene groups, which is circled
Figure 3.2. Chemical structure of polyoxymethylene copolymer monomers.
Figure 3.3. Chemical structure of acetal copolymer.
97
Mckeen_Ch03.indd 97
12/11/2007 5:59:23 PM
98
The Effect of Temperature and Other Factors on Plastics and Elastomers
in Fig. 3.3. All polyacetals are subject to oxidative and acidic degradation which leads to molecular weight reduction. However, degradation of the copolymer ceases, when one of the randomly distributed oxyethylene linkages is reached. These groups offer stability to oxidative, thermal, acidic, and alkaline attack. The raw copolymer is hydrolyzed to an oxyethylene end cap to provide thermally stable polyacetal copolymer. The copolymer is also more stable than the homopolymer in an alkaline environment. Its oxyethylene end cap is stable in the presence of strong bases. The acetate end cap of the homopolymer, however, is readily hydrolyzed in the presence of alkalis, causing significant polymer degradation. The homopolymer is more crystalline than the copolymer. The homopolymer provides better mechanical properties, except elongation. The oxyethylene groups of the copolymer provide improved long-term chemical and environmental stability. The copolymer’s chemical stability results in better retention of mechanical properties over an extended product life. Due to their toughness, abrasion resistance, and ability to withstand prolonged stresses with minimal creep, acetal polymers have been particularly successful in replacing cast and stamped metal parts. Polyacetals are inherently self-lubricating. Their lubricity allows them to be incorporated in a variety of metal-to-polymer and polymer-to-polymer interface applications such as bearings, gears, and switch plungers. These properties of polyacetals have permitted the material to meet a wide range of market requirements. The properties of polyacetals can be summarized as follows:
3.1.3 Modified Polyphenylene Ether/Polyphenylene Oxides (PPE or PPO) Polyphenylene (PPE) plastics are also referred to as polyphenylene oxide (PPO). The structure of the polymer is shown in Fig. 3.4. The PPE materials are always blended or alloyed with other plastics, so they are called modified PPE or PPO. PPE is compatible with polystyrene (PS) and is usually blended with high-impact PS over a wide range of ratios. Since both PPE and PS plastics are hydrophobic, the alloys have very low water-absorption rates and high dimensional stability. They exhibit excellent dielectric properties over a wide range of frequencies and temperatures. PPE or PS alloys are supplied in flame-retardant, filled, and reinforced structural foam molding grades. PPE can also be alloyed with polyamide (nylon) plastics to provide increased resistance to organic chemicals and better high-temperature performance. End-uses of PPE include automotive electrical applications, water pump impellers, HVAC equipment, solar heating systems, packaging, and circuit breakers. Graphs showing the properties of polyether-based plastics as a function of temperature, moisture, and other factors are illustrated in Sections 3.2–3.4.
• Excellent wear resistance • Very good strength and stiffness • Good heat resistance • Excellent chemical resistance • Opaque • Moderate to high price • Restricted processing
Mckeen_Ch03.indd 98
Figure 3.4. Chemical structure of polyphenylene ether/polyphenylene oxides (PPE or PPO).
12/11/2007 5:59:24 PM
3: Polyether Plastics
99
3.2 Acetals—Polyoxymethylene POM
Figure 3.5. Stress vs. strain for DuPont Engineering Polymers Delrin® 100P NC010—general purpose, high viscosity with improved processing acetal resin.
Figure 3.6. Stress vs. strain for DuPont Engineering Polymers Delrin® 500MP NC010—general purpose, medium viscosity, containing Teflon® PTFE micropowder acetal resin.
Mckeen_Ch03.indd 99
12/11/2007 5:59:24 PM
100
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.7. Stress vs. strain for DuPont Engineering Polymers Delrin® 525GR NC000—25% glass fiber reinforced acetal resin.
Figure 3.8. Stress vs. strain for DuPont Engineering Polymers Delrin® 570—medium viscosity, 20% glass fiber reinforced, high stiffness acetal resin.
Mckeen_Ch03.indd 100
12/11/2007 5:59:26 PM
3: Polyether Plastics
101
Figure 3.9. Stress vs. strain in tension and compression for DuPont Engineering Polymers Delrin® acetal resin at 23°C.
Figure 3.10. Flexural modulus vs. temperature for various DuPont Engineering Polymers Delrin® acetal resins.
Mckeen_Ch03.indd 101
12/11/2007 5:59:28 PM
102
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.11. Shear modulus vs. temperature for DuPont Engineering Polymers Delrin® 100, 500, 900––acetal resins.
Figure 3.12. Young’s modulus vs. temperature for DuPont Engineering Polymers Delrin® 100, 500T, 100ST––acetal resins (at 5 mm/min).
Mckeen_Ch03.indd 102
12/11/2007 5:59:29 PM
3: Polyether Plastics
103
Figure 3.13. Tensile strength vs. temperature for DuPont Engineering Polymers Delrin® acetal resins (at 5.1 mm/min crosshead speed).
Figure 3.14. Tensile yield strength vs. temperature for DuPont Engineering Polymers Delrin® acetal resins (at 5.1 mm/min crosshead speed).
Mckeen_Ch03.indd 103
12/11/2007 5:59:30 PM
104
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.15. Notched Izod impact strength vs. humidity for DuPont Engineering Polymers Delrin® 500— medium viscosity acetal resin at 23°C.
Figure 3.16. Notched Izod impact strength vs. temperature for DuPont Engineering Polymers Delrin® 100— high viscosity general purpose acetal resin.
Mckeen_Ch03.indd 104
12/11/2007 5:59:32 PM
3: Polyether Plastics
105
Figure 3.17. Notched Izod impact strength vs. temperature for DuPont Engineering Polymers Delrin® 500— medium viscosity acetal resin.
Figure 3.18. Specific volume as a function of temperature and pressure (PVT) for DuPont Engineering Polymers Delrin® 107 NC010—high viscosity, UV stabilized acetal resin.
Mckeen_Ch03.indd 105
12/11/2007 5:59:33 PM
106
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.19. Change in length vs. temperature and humidity for DuPont Engineering Polymers Delrin® 100 and 500—acetal resins.
Figure 3.20. Change in length vs. temperature and humidity for DuPont Engineering Polymers Delrin® 100P, 500P, and 900P—acetal resins.
Mckeen_Ch03.indd 106
12/11/2007 5:59:34 PM
3: Polyether Plastics
107
Figure 3.21. Dielectric constant vs. frequency at 50% relative humidity after immersion in water at 23°C for DuPont Engineering Polymers Delrin® 500P—medium viscosity with improved processing acetal resin.
Figure 3.22. Dielectric constant vs. moisture content at 23°C for DuPont Engineering Polymers Delrin® 500 NC010—medium viscosity acetal resin.
Mckeen_Ch03.indd 107
12/11/2007 5:59:36 PM
108
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.23. Dielectric constant vs. temperature for Delrin® 100 and 500 NC010—acetal resins.
Figure 3.24. Dielectric strength vs. thickness at 23°C for DuPont Engineering Polymers Delrin® 500 NC010— medium viscosity acetal resin.
Mckeen_Ch03.indd 108
12/11/2007 5:59:37 PM
3: Polyether Plastics
109
Figure 3.25. Dissipation factor vs. frequency at 50% relative humidity at 23°C for DuPont Engineering Polymers Delrin® 500—medium viscosity acetal resin.
Figure 3.26. Dissipation factor vs. moisture content at 23°C for DuPont Engineering Polymers Delrin® 500 NC010—acetal resin.
Mckeen_Ch03.indd 109
12/11/2007 5:59:39 PM
110
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.27. Dissipation factor vs. temperature for DuPont Engineering Polymers Delrin® 500 NC010— medium viscosity acetal resin.
3.3 Acetal-Copolymer
Figure 3.28. Stress vs. strain for Ticona Celcon® M25—high molecular weight, high toughness, high impact acetal copolymer resin.
Mckeen_Ch03.indd 110
12/11/2007 5:59:41 PM
3: Polyether Plastics
111
Figure 3.29. Stress vs. strain for Ticona Celcon® M90—medium viscosity, general purpose acetal copolymer resin.
Figure 3.30. Stress vs. strain for Ticona Celcon® M270—low molecular weight, high flow acetal copolymer resin.
Mckeen_Ch03.indd 111
12/11/2007 5:59:47 PM
112
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.31. Stress vs. strain for Ticona Hostaform® C 9021—general purpose grade acetal copolymer resin.
Figure 3.32. Stress vs. strain for Mitsubishi Engineering-Plastics Iupital F20-02—medium viscosity, general purpose acetal copolymer resin.
Mckeen_Ch03.indd 112
12/11/2007 5:59:50 PM
3: Polyether Plastics
113
Figure 3.33. Stress vs. strain for BASF Ultraform® H 2320 006—high molecular weight injection molding grade acetal copolymer resin.
Figure 3.34. Stress vs. strain for BASF Ultraform® H 4320—high molecular weight, extrusion grade acetal copolymer resin.
Mckeen_Ch03.indd 113
12/11/2007 5:59:52 PM
114
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.35. Stress vs. strain for BASF Ultraform® N 2200 G53—25% glass fiber reinforced, injection molding with enhanced stiffness and toughness acetal copolymer resin.
Figure 3.36. Flexural modulus vs. temperature for Ticona Celcon® M25/M90/M270—acetal copolymer resins.
Mckeen_Ch03.indd 114
12/11/2007 5:59:55 PM
3: Polyether Plastics
115
Figure 3.37. Modulus of elasticity vs. temperature for BASF Ultraform® acetal copolymer resins.
Figure 3.38. Shear modulus vs. temperature for Ticona Hostaform® acetal copolymer resins with different amounts of glass fiber reinforcement.
Mckeen_Ch03.indd 115
12/11/2007 5:59:57 PM
116
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.39. Shear modulus vs. temperature for Ticona Hostaform® acetal copolymer resins.
Figure 3.40. Shear modulus vs. temperature for several BASF Ultraform® acetal copolymer resins.
Mckeen_Ch03.indd 116
12/11/2007 5:59:58 PM
3: Polyether Plastics
117
Figure 3.41. Tensile modulus vs. temperature for Ticona Celcon® M25/M90/M270—acetal copolymer resins.
Figure 3.42. Tensile modulus vs. temperature for Ticona Hostform® C 9064 and S 9240—acetal copolymer resins.
Mckeen_Ch03.indd 117
12/11/2007 6:00:03 PM
118
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.43. Tensile modulus vs. temperature for BASF Ultraform® acetal copolymer resins.
Figure 3.44. Yield stress vs. temperature for Ticona Hostaform® acetal copolymer resins.
Mckeen_Ch03.indd 118
12/11/2007 6:00:04 PM
3: Polyether Plastics
119
Figure 3.45. Tensile yield strength vs. temperature for Ticona Celcon® M90—medium viscosity, general purpose acetal copolymer resin.
Figure 3.46. Izod notched impact strength vs. temperature for Ticona Hostaform® acetal copolymer resins after 1,000 h storage in air at temperature.
Mckeen_Ch03.indd 119
12/11/2007 6:00:05 PM
120
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.47. Charpy notched impact strength vs. temperature for Ticona Hostaform® S acetal copolymer resins.
Figure 3.48. Charpy notched impact strength vs. temperature for additional Ticona Hostaform® S acetal copolymer resins.
Mckeen_Ch03.indd 120
12/11/2007 6:00:07 PM
3: Polyether Plastics
121
Figure 3.49. Work to damage (penetration test ISO 6603-2) vs. temperature for Ticona Hostaform® acetal copolymer resins.
Figure 3.50. Work to damage (penetration test ISO 6603-2) vs. temperature for additional Ticona Hostaform® acetal copolymer resins.
Mckeen_Ch03.indd 121
12/11/2007 6:00:08 PM
122
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.51. Deformation (penetration test ISO 6603-2) vs. temperature for Ticona Hostaform® acetal copolymer resins.
Figure 3.52. Deformation (penetration test ISO 6603-2) vs. temperature for additional Ticona Hostaform® acetal copolymer resins.
Mckeen_Ch03.indd 122
12/11/2007 6:00:09 PM
3: Polyether Plastics
123
Figure 3.53. Ball indentation hardness vs. temperature for BASF Hostaform® C 9021—General purpose acetal copolymer resin (ISO 2039, Part 1).
Figure 3.54. Specific volume as a function of temperature and pressure (PVT) for Ticona Hostaform® C 9021—general purpose grade acetal copolymer resin.
Mckeen_Ch03.indd 123
12/11/2007 6:00:11 PM
124
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.55. Specific volume as a function of temperature and pressure (PVT) for BASF Ultraform® H 2320 006—high molecular weight injection molding grade acetal copolymer resin.
Figure 3.56. Specific volume as a function of temperature and pressure (PVT) for BASF Ultraform® N 2200 G53—25% glass fiber reinforced, injection molding with enhanced stiffness and toughness acetal copolymer resin.
Mckeen_Ch03.indd 124
12/11/2007 6:00:12 PM
3: Polyether Plastics
125
Figure 3.57. Elongation at break vs. temperature for Ticona Celcon® M90—general purpose acetal copolymer resin.
Figure 3.58. Elongation at break vs. temperature for BASF for Hostaform® C 2521—standard for sheet and tube acetal copolymer resin.
Mckeen_Ch03.indd 125
12/11/2007 6:00:13 PM
126
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.59. Change in length vs. water absorption for Hostaform® C 9021—general purpose acetal copolymer resin.
Figure 3.60. Linear thermal expansion vs. temperature for Ticona Celcon® M90—general purpose acetal copolymer resin.
Mckeen_Ch03.indd 126
12/11/2007 6:00:15 PM
3: Polyether Plastics
127
Figure 3.61. Water absorption vs. change of dimension for Mitsubishi Engineering Plastics Iupital F20-02— medium viscosity, general purpose acetal copolymer resin.
Figure 3.62. Dielectric constant variation with temperature and frequency for Ticona Celcon® M25/M90/ M270—acetal copolymer resins.
Mckeen_Ch03.indd 127
12/11/2007 6:00:17 PM
128
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.63. Dielectric constant variation with temperature and frequency for Ticona Celcon® M25/M90/ M270—acetal copolymer resins at lower temperatures.
Figure 3.64. Dielectric constant vs. temperature for Mitsubishi Engineering Plastics Iupital F20-02 02—medium viscosity, general purpose acetal copolymer resin.
Mckeen_Ch03.indd 128
12/11/2007 6:00:18 PM
3: Polyether Plastics
129
Figure 3.65. Dissipation factor variation with temperature and frequency for Ticona Celcon® M25/M90/M270— acetal copolymer resins.
Figure 3.66. Dissipation factor variation with temperature and frequency for Ticona Celcon® M25/M90/M270— acetal copolymer resins at lower temperatures.
Mckeen_Ch03.indd 129
12/11/2007 6:00:20 PM
130
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.67. Dissipation factor vs. frequency at 25°C for BASF Hostaform® acetal copolymer resin.
Figure 3.68. Dissipation factor vs. temperature at 105 Hz for BASF Hostaform® acetal copolymer resin.
Mckeen_Ch03.indd 130
12/11/2007 6:00:22 PM
3: Polyether Plastics
131
Figure 3.69. Dielectric strength vs. thickness for Ticona Celcon® M25/M90/M270 acetal copolymer resins.
3.4 Modified Polypropylene Ether (PPE)
Figure 3.70. Stress vs. strain at various temperatures for SABIC Innovative Plastics Noryl® 731—general purpose, UL94 HB rated, PPE and polystyrene blend resin.
Mckeen_Ch03.indd 131
12/11/2007 6:00:24 PM
132
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.71. Stress vs. strain at 23°C for SABIC Innovative Plastics Noryl® PPE and polystyrene blend resins.
Figure 3.72. Stress vs. strain at various temperatures for SABIC Innovative Plastics Noryl® GFN1—10% glass fiber reinforced, PPE and polystyrene blend resin.
Mckeen_Ch03.indd 132
12/11/2007 6:00:26 PM
3: Polyether Plastics
133
Figure 3.73. Stress vs. strain at various temperatures for SABIC Innovative Plastics Noryl® GFN3—30% glass fiber reinforced, PPE and polystyrene blend resin.
Figure 3.74. Stress vs. strain at various temperatures for SABIC Innovative Plastics Noryl GTX® GTX830— 30% glass fiber reinforced, PPE, polystyrene, and polyamide blend resin.
Mckeen_Ch03.indd 133
12/11/2007 6:00:28 PM
134
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.75. Flexural modulus vs. temperature for Mitsubishi Engineering Plastics Iupiace® PPE and polystyrene blend resins.
Figure 3.76. Flexural modulus vs. temperature for additional Mitsubishi Engineering Plastics Iupiace® PPE and polystyrene blend resins.
Mckeen_Ch03.indd 134
12/11/2007 6:00:29 PM
3: Polyether Plastics
135
Figure 3.77. Flexural modulus vs. temperature for Mitsubishi Engineering Plastics Iupiace® NX-9000—heat and chemical resistant, SAE grade PPE and nylon 6 blend resin.
Figure 3.78. Flexural modulus vs. temperature for SABIC Innovative Plastics Noryl® PPE and polystyrene blend resins.
Mckeen_Ch03.indd 135
12/11/2007 6:00:31 PM
136
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.79. Flexural modulus vs. temperature for additional SABIC Innovative Plastics Noryl® PPE and polystyrene blend resins.
Figure 3.80. Tensile modulus vs. temperature for SABIC Innovative Plastics Noryl® PPE and polystyrene blend resins.
Mckeen_Ch03.indd 136
12/11/2007 6:00:34 PM
3: Polyether Plastics
137
Figure 3.81. Tensile modulus vs. temperature for SABIC Innovative Plastics Noryl GTX® PPE, polystyrene, and polyamide blend resins.
Figure 3.82. Flexural strength vs. temperature for Mitsubishi Engineering Plastics Iupiace® PPE and polystyrene blend resins.
Mckeen_Ch03.indd 137
12/11/2007 6:00:35 PM
138
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.83. Flexural strength vs. temperature for additional Mitsubishi Engineering Plastics Iupiace® PPE and polystyrene blend resins.
Figure 3.84. Flexural strength vs. temperature for SABIC Innovative Plastics Noryl® PPE and polystyrene blend resins.
Mckeen_Ch03.indd 138
12/11/2007 6:00:37 PM
3: Polyether Plastics
139
Figure 3.85. Tensile strength vs. temperature for additional Mitsubishi Engineering Plastics Iupiace® PPE and polystyrene blend resins.
Figure 3.86. Tensile strength vs. temperature for Mitsubishi Engineering Plastics Iupiace® PPE and polystyrene blend resins.
Mckeen_Ch03.indd 139
12/11/2007 6:00:39 PM
140
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.87. Tensile strength vs. temperature for additional SABIC Innovative Plastics Noryl® PPE and polystyrene blend resins.
Figure 3.88. Tensile strength vs. temperature for SABIC Innovative Plastics Noryl® PPE and polystyrene blend resins.
Mckeen_Ch03.indd 140
12/11/2007 6:00:41 PM
3: Polyether Plastics
141
Figure 3.89. Tensile strength vs. temperature for SABIC Innovative Plastics Noryl GTX® PPE, polystyrene, and polyamide blend resins.
Figure 3.90. Gardner impact strength vs. temperature for SABIC Innovative Plastics Noryl® PPE and polystyrene blend resins.
Mckeen_Ch03.indd 141
12/11/2007 6:00:44 PM
142
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.91. Izod impact strength vs. relative humidity for SABIC Innovative Plastics Noryl® PPE and polystyrene blend resins.
Figure 3.92. Izod impact strength vs. temperature for Mitsubishi Engineering Plastics Iupiace® PPE and polystyrene blend resins.
Mckeen_Ch03.indd 142
12/11/2007 6:00:48 PM
3: Polyether Plastics
143
Figure 3.93. Izod impact strength vs. temperature for SABIC Innovative Plastics Noryl® PPE and polystyrene blend resins.
Figure 3.94. Izod impact strength vs. temperature for additional SABIC Innovative Plastics Noryl® PPE and polystyrene blend resins.
Mckeen_Ch03.indd 143
12/11/2007 6:00:51 PM
144
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.95. Izod impact strength vs. temperature for SABIC Innovative Plastics Noryl GTX® GTX964— Unreinforced, impact modified PPE, polystyrene and polyamide blend resin.
Figure 3.96. Izod impact strength vs. temperature for SABIC Innovative Plastics Noryl® PPE and polystyrene blend resins.
Mckeen_Ch03.indd 144
12/11/2007 6:00:52 PM
3: Polyether Plastics
145
Figure 3.97. Elongation vs. temperature for Mitsubishi Engineering Plastics Iupiace® PPE and polystyrene blend resins.
Figure 3.98. Pressure-specific volume-temperature (PVT) for SABIC Innovative Plastics Noryl® 731—general purpose, UL94 HB rated, PPE and/polystyrene blend resin.
Mckeen_Ch03.indd 145
12/11/2007 6:00:53 PM
146
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.99. Dielectric constant vs. frequency for Mitsubishi Engineering Plastics Iupiace® PPE and polystyrene blend resins.
Figure 3.100. Dielectric constant vs. temperature for SABIC Innovative Plastics Noryl® PPE and polystyrene blend resins.
Mckeen_Ch03.indd 146
12/11/2007 6:00:54 PM
3: Polyether Plastics
147
Figure 3.101. Dissipation factor vs. frequency and temperature for Mitsubishi Engineering Plastics Iupiace® AV 40—UL94 V-1 rated, HDT 100°C PPE and polystyrene blend resin.
Figure 3.102. Dissipation factor vs. frequency for SABIC Innovative Plastics Noryl® PPE and polystyrene blend resins.
Mckeen_Ch03.indd 147
12/11/2007 6:00:56 PM
148
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 3.103. Dissipation factor vs. temperature at 60 Hz for Mitsubishi Engineering Plastics Iupiace® AV 60—UL94 V-1 rated, HDT 120°C PPE and polystyrene blend resin.
Figure 3.104. Dielectric strength vs. thickness for Mitsubishi Engineering Plastics Iupiace® PPE and polystyrene blend resins.
Mckeen_Ch03.indd 148
12/11/2007 6:00:57 PM
4 Polyesters 4.1 Background
4.1.1 Polycarbonate (PC)
Polyesters are formed by a condensation reaction that is very similar to the reaction used to make polyamide or nylons. A diacid and dialcohol are reacted to form the polyester with the elimination of water as shown in Fig. 4.1. While the actual commercial route of making the polyesters may be more involved, the end result is the same polymeric structure. The diacid is usually aromatic. Polyester resins can be formulated to be brittle and hard, tough and resilient, or soft and flexible. In combination with reinforcements such as glass fibers, they offer outstanding strength, a high strength-toweight ratio, chemical resistance, and other excellent mechanical properties. The three dominant materials in this plastics family are PC, polyethylene terephthalate (PET), and polybutylene terephthalate (PBT). Thermoplastic polyesters are similar in properties to nylon 6 and nylon 66, but have lower water absorption and higher dimensional stability than the nylons.
Theoretically, PC is formed from the reaction of bis-phenol A and carbonic acid. The structures of these two monomers are given in Fig. 4.2. Commercially, different routes are used, but the PC polymer of the structure shown in Fig. 4.3 is the result. PC performance properties include: • High impact resistance, virtually no breakage, and toughness at low temperatures • “Clear as glass” clarity • High heat resistance • Dimensional stability • Resistant to ultraviolet light allowing exterior use • Flame retardancy Applications include glazing, safety shields, lenses, casings and housings, light fittings, microwavable kitchenwares, sterilizable medical apparatus, and CDs.
Figure 4.1. The formation of polyester by the condensation of a diacid and dialcohol.
Figure 4.2. Chemical structures of monomers used to make polycarbonate polyester.
149
Mckeen_Ch04.indd 149
12/11/2007 6:02:22 PM
150
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.3. Chemical structure of polycarbonate polyester.
4.1.2 Polybutylene Terephthalate (PBT) PBT is a semicrystalline, white, or off-white polyester similar to PET in composition as well as properties. It has somewhat lower strength and stiffness than PET, is a little softer but has higher impact strength and similar chemical resistance. As it crystallizes more rapidly than PET, it tends to be preferred for industrial scale molding. Its structure is shown in Fig. 4.4. PBT performance properties include • High mechanical properties • High thermal properties • Good electrical properties • Dimensional stability • Excellent chemical resistance • Flame retardancy
4.1.3 Polyethylene Terephthalate (PET) PET polyester is the most common thermoplastic polyester and is often called just “polyester”. This often causes confusion with the other polyesters in this chapter. PET exists both as an amorphous (transparent), and as a semicrystalline (opaque and white) thermoplastic material. The semicrystalline PET has good strength, ductility, stiffness, and hardness. The amorphous PET has better ductility, but less stiffness and hardness.
It absorbs very little water. Its structure is shown in Fig. 4.5. PET has good barrier properties against oxygen and carbon dioxide. Therefore, it is utilized in bottles for mineral water. Other applications include food trays for oven use, roasting bags, audio/video tapes, and mechanical components.
4.1.4 Liquid Crystalline Polymers (LCPs) LCPs are a relatively unique class of partially crystalline aromatic polyesters based on 4-hydroxybenzoic acid and related monomers shown in Fig. 4.6. LCPs are capable of forming regions of highly ordered structure while in the liquid phase. However, the degree of order is somewhat less than that of a regular solid crystal. Typically, LCPs have outstanding mechanical properties at high temperatures, excellent chemical resistance, inherent flame retardancy, and good weatherability. Liquid crystal polymers come in a variety of forms from sinterable high temperature to injection moldable compounds. LCPs are exceptionally inert. They resist stress cracking in the presence of most chemicals at elevated temperatures, including aromatic or halogenated hydrocarbons, strong acids, bases, ketones, and other aggressive industrial substances. The hydrolytic stability in boiling water is excellent. Environments that deteriorate these polymers are high-temperature steam, concentrated sulfuric acid, and boiling caustic materials. As an example, the structure of Ticona Vectra® A950 LCP is shown in Fig. 4.7.
4.1.5 Polycyclohexylene Dimethylene Terephthalate (PCT) PCT is a high-temperature polyester that possesses the chemical resistance, processability, and dimensional stability of PET and PBT polyesters. However, the aliphatic cyclic ring as shown in Fig. 4.8 imparts
Figure 4.4. Chemical structure of polybutylene terephthalate (PBT) polyester.
Mckeen_Ch04.indd 150
12/11/2007 6:02:22 PM
4: Polyesters
151
added heat resistance. This puts it between the common polyesters and the LCP polyesters described in the previous section. At present, only DuPont makes the PCT plastic under the trade name Thermx®. This material has found use in automotive, electrical, and houseware applications.
4.1.6 Polyester Blends and Alloys There are numerous commercial polymer blends and alloys using polyesters. One important compounded blend is that of polycarbonate and ABS. The PC contributes impact and heat distortion resistance, while the ABS contributes processability and chemical stress resistance, and cost reduction. ASA is often blended with polyesters such as PBT to improve exterior weatherability and impact strength. Blends of different types of polyesters are also very common. These are blended to balance cost, optimize processing and performance properties.
Figure 4.5. Chemical structure of polyethylene terephthalate (PET) polyester.
HBA 4-hydroxybenzoic acid
HNA 6-hydroxynaphthalene-2-carboxylic acid
BP 4-(4-hydroxyphenyl)phenol
HQ benzene-1,4-diol (hydroquinone)
TA benzene-1,4-dicarboxylic acid (terephthalic acid)
NDA Naphthalene-2,6-dicarboxylic acid
IA benzene-1,3-dicarboxylic acid (isophthalic acid)
Figure 4.6. Chemical structures of monomers used to make liquid crystalline polymer (LCP) polyesters.
Mckeen_Ch04.indd 151
12/11/2007 6:02:23 PM
152
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.7. Chemical structure of Ticona Vectra® A950 LCP.
Figure 4.8. Chemical structure of polycyclohexylene dimethylene terephthalate (PCT) Polyester.
4.2 Polycarbonate (PC)
Figure 4.9. Stress vs. strain at various temperatures for Bayer MaterialScience Apec® 1600—high heat polycarbonate (PC) resin.
Mckeen_Ch04.indd 152
12/11/2007 6:02:23 PM
4: Polyesters
153
Figure 4.10. Stress vs. strain at various temperatures for Bayer MaterialScience Apec® 1700—high heat PC resin.
Figure 4.11. Stress vs. strain at various temperatures for LG-Dow Calibre™ 300-10—general purpose 10 melt flow rate (MFR) PC resin.
Mckeen_Ch04.indd 153
12/11/2007 6:02:24 PM
154
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.12. Stress vs. strain at various temperatures for SABIC Innovative Plastics Lexan® 101—general purpose PC resin.
Figure 4.13. Stress vs. strain at various temperatures for SABIC Innovative Plastics Lexan® 500R—10% glass fiber reinforced PC resin.
Mckeen_Ch04.indd 154
12/11/2007 6:02:26 PM
4: Polyesters
155
Figure 4.14. Stress vs. strain at various temperatures for SABIC Innovative Plastics Lexan® 3412R—high viscosity, 20% glass reinforced PC resin.
Figure 4.15. Stress vs. strain at various temperatures for Bayer MaterialScience Makrolon® 2205—general purpose, low viscosity PC resin.
Mckeen_Ch04.indd 155
12/11/2007 6:02:27 PM
156
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.16. Flexural modulus vs. temperature for SABIC Innovative Plastics Lexan® PC resins.
Figure 4.17. Instrumented dart impact vs. MFR for LG-Dow Polycarbonate Calibre™ 300-10—general purpose 10 MFR PC resin.
Mckeen_Ch04.indd 156
12/11/2007 6:02:29 PM
4: Polyesters
157
Figure 4.18. Notched Izod impact strength vs. temperature and MFR for LG-Dow Polycarbonate Calibre™ 300 general purpose PC resin.
Figure 4.19. Notched Izod impact strength vs. MFR and temperature for LG-Dow Polycarbonate Calibre™ 300 general purpose PC resin.
Mckeen_Ch04.indd 157
12/11/2007 6:02:30 PM
158
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.20. Pressure-specific volume-temperature (PVT) for Bayer MaterialScience Makrolon® 2205—general purpose, low viscosity PC resin.
Figure 4.21. Dielectric constant vs. temperature for SABIC Innovative Plastics Lexan® PC resins.
Mckeen_Ch04.indd 158
12/11/2007 6:02:32 PM
4: Polyesters
159
Figure 4.22. Dielectric strength vs. thickness for SABIC Innovative Plastics Lexan® PC resins.
Figure 4.23. Dissipation factor vs. frequency for SABIC Innovative Plastics Lexan® PC resins.
Mckeen_Ch04.indd 159
12/11/2007 6:02:33 PM
160
The Effect of Temperature and Other Factors on Plastics and Elastomers
4.3 Polybutylene Terephthalate (PBT)
Figure 4.24. Stress vs. strain at various temperatures for Ticona Celanex® 2300 GV/30—general purpose, 30% glass fiber reinforced PBT resin.
Figure 4.25. Stress vs. strain at various temperatures for Ticona Celanex® 2500—general purpose, nucleated, easy flow PBT resin.
Mckeen_Ch04.indd 160
12/11/2007 6:02:34 PM
4: Polyesters
161
Figure 4.26. Stress vs. strain at various temperatures for DuPont Crastin® S600F10 NC010—medium viscosity lubricated PBT resin.
Figure 4.27. Stress vs. strain at various temperatures for DuPont Crastin® SO653 NC010—20% glass bead filled, lubricated PBT resin.
Mckeen_Ch04.indd 161
12/11/2007 6:02:36 PM
162
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.28. Stress vs. strain at various temperatures for DuPont Crastin® ST820 NC010—super tough lubricated PBT resin.
Figure 4.29. Stress vs. strain at various temperatures for Lanxess Pocan® B1505—high viscosity, nucleated, heat stabilized PBT resin.
Mckeen_Ch04.indd 162
12/11/2007 6:02:37 PM
4: Polyesters
163
Figure 4.30. Stress vs. strain at various temperatures for Lanxess Pocan® B3225—20% glass fiber reinforced PBT resin.
Figure 4.31. Stress vs. strain at various temperatures for SABIC Innovative Plastics Valox® 310-SEO—unreinforced, UL94 V-0 rated PBT resin.
Mckeen_Ch04.indd 163
12/11/2007 6:02:38 PM
164
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.32. Stress vs. strain at various temperatures for SABIC Innovative Plastics Valox® 325—unreinforced, improved processing PBT resin.
Figure 4.33. Stress vs. strain at various temperatures for SABIC Innovative Plastics Valox® 420—30% glass fiber reinforced, high heat PBT resin.
Mckeen_Ch04.indd 164
12/11/2007 6:02:39 PM
4: Polyesters
165
Figure 4.34. Stress vs. strain at various temperatures for SABIC Innovative Plastics Valox® DR-51—15% glass fiber reinforced PBT resin.
Figure 4.35. Tensile stress at break vs. temperature for Ticona Celanex® general purpose PBT resins.
Mckeen_Ch04.indd 165
12/11/2007 6:02:41 PM
166
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.36. Flexural modulus vs. temperature for Ticona Celanex® general purpose, glass fiber reinforced PBT resins.
Figure 4.37. Flexural modulus vs. temperature for Ticona Celanex® flame retardant, glass fiber reinforced PBT resins.
Mckeen_Ch04.indd 166
12/11/2007 6:02:42 PM
4: Polyesters
167
Figure 4.38. Flexural modulus vs. temperature for Ticona Celanex® high impact, glass fiber reinforced PBT resins.
Figure 4.39. Flexural modulus vs. temperature for Toray Toraycon® PBT resins.
Mckeen_Ch04.indd 167
12/11/2007 6:02:43 PM
168
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.40. Flexural modulus vs. temperature for SABIC Innovative Plastics Valox® PBT resins.
Figure 4.41. Shear modulus vs. temperature for Ticona Celanex® 2300 series—general purpose, glass fiber reinforced PBT resins.
Mckeen_Ch04.indd 168
12/11/2007 6:02:45 PM
4: Polyesters
169
Figure 4.42. Shear modulus vs. temperature for Lanxess Pocan® reinforced PBT resins.
Figure 4.43. Tensile modulus vs. fiber glass reinforcement content for Dupont Crastin® SK glass reinforced, injection molding PBT resins.
Mckeen_Ch04.indd 169
12/11/2007 6:02:46 PM
170
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.44. Tensile modulus vs. temperature for Dupont Crastin® SK glass reinforced, injection molding PBT resins.
Figure 4.45. Tensile modulus vs. temperature for Dupont Crastin® glass reinforced PBT resins.
Mckeen_Ch04.indd 170
12/11/2007 6:02:47 PM
4: Polyesters
171
Figure 4.46. Tensile modulus vs. temperature for Dupont Crastin® high impact/toughened PBT resins.
Figure 4.47. Flexural strength vs. glass fiber content for Dupont Crastin® SK glass reinforced, injection molding PBT resins.
Mckeen_Ch04.indd 171
12/11/2007 6:02:48 PM
172
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.48. Flexural strength vs. temperature for Ticona Celanex® general purpose, glass fiber reinforced PBT resins.
Figure 4.49. Flexural strength vs. temperature for Ticona Celanex® flame retardant, glass fiber reinforced PBT resins.
Mckeen_Ch04.indd 172
12/11/2007 6:02:50 PM
4: Polyesters
173
Figure 4.50. Flexural strength vs. temperature for Ticona Celanex® high impact, glass fiber reinforced PBT resins.
Figure 4.51. Flexural strength vs. temperature for Toray Toraycon® PBT resins.
Mckeen_Ch04.indd 173
12/11/2007 6:02:53 PM
174
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.52. Tensile strength vs. fiber glass reinforcement content for Dupont Crastin® SK glass reinforced, injection molding PBT resins.
Figure 4.53. Tensile strength vs. temperature for Dupont Crastin® glass reinforced PBT resins.
Mckeen_Ch04.indd 174
12/11/2007 6:02:55 PM
4: Polyesters
175
Figure 4.54. Tensile strength vs. temperature for Dupont Crastin® high impact/toughened PBT resins.
Figure 4.55. Tensile strength vs. temperature for Dupont Crastin® SK glass reinforced, injection molding PBT resins.
Mckeen_Ch04.indd 175
12/11/2007 6:02:57 PM
176
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.56. Tensile strength vs. temperature for Toray Toraycon® PBT resins.
Figure 4.57. Tensile strength vs. temperature for BASF Ultradur® standard grade, fiber glass reinforced PBT resins.
Mckeen_Ch04.indd 176
12/11/2007 6:03:00 PM
4: Polyesters
177
Figure 4.58. Tensile strength vs. temperature for SABIC Innovative Plastics Valox® PBT resins.
Figure 4.59. Impact strength vs. fiber glass reinforcement content for DuPont Crastin® SK glass reinforced, injection molding PBT resins.
Mckeen_Ch04.indd 177
12/11/2007 6:03:03 PM
178
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.60. Izod impact strength vs. temperature for Toray Toraycon® PBT resins.
Figure 4.61. Izod impact strength vs. temperature for SABIC Innovative Plastics Valox® PBT resins.
Mckeen_Ch04.indd 178
12/11/2007 6:03:10 PM
4: Polyesters
179
Figure 4.62. Pressure-specific volume-temperature (PVT) for DuPont Crastin® S600LF NC010—PTFE lubricated PBT resin.
Figure 4.63. Elongation at break vs. fiber glass reinforcement content for DuPont Crastin® SK—glass reinforced, injection molding PBT resins.
Mckeen_Ch04.indd 179
12/11/2007 6:03:14 PM
180
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.64. Specific density vs. fiber glass reinforcement content for DuPont Crastin® SK glass reinforced, injection molding PBT resins.
Figure 4.65. Dielectric constant vs. frequency at 23°C for SABIC Innovative Plastics Valox® PBT resins.
Mckeen_Ch04.indd 180
12/11/2007 6:03:17 PM
4: Polyesters
181
Figure 4.66. Dielectric constant vs. temperature for Toray Toraycon® PBT resins.
Figure 4.67. Dissipation factor vs. temperature and frequency for Lanxess Pocan® B3235—30% glass fiber reinforced, high toughness PBT resin.
Mckeen_Ch04.indd 181
12/11/2007 6:03:21 PM
182
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.68. Dissipation factor vs. temperature for Toray Toraycon® PBT resins.
Figure 4.69. Dielectric strength vs. temperature for SABIC Innovative Plastics Valox® PBT resins.
Mckeen_Ch04.indd 182
12/11/2007 6:03:26 PM
4: Polyesters
183
Figure 4.70. Dielectric strength vs. thickness for Ticona Celanex® PBT resins.
Figure 4.71. Dielectric strength vs. thickness for SABIC Innovative Plastics Valox® PBT resins.
Mckeen_Ch04.indd 183
12/11/2007 6:03:30 PM
184
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.72. Volume resistivity vs. temperature for SABIC Innovative Plastics Valox® 420SEO—30% glass fiber, high heat, UL94 V-0 rated PBT resin.
4.4 Polyethylene Terephthalate (PET)
Figure 4.73. Stress vs. strain at various temperatures for Ticona Impet® 2700 GV1/20—20% glass fiber reinforced PET resin.
Mckeen_Ch04.indd 184
12/11/2007 6:03:32 PM
4: Polyesters
185
Figure 4.74. Stress vs. strain at various temperatures for Ticona Impet® 2700 GV1/30—30% glass fiber reinforced PET resin.
Figure 4.75. Stress vs. strain at various temperatures for Ticona Impet® 2700 GV1/45—45% glass fiber reinforced PET resin.
Mckeen_Ch04.indd 185
12/11/2007 6:03:33 PM
186
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.76. Stress vs. strain at 23°C for several Ticona Impet® reinforced PET resins.
Figure 4.77. Stress vs. strain at various temperatures for BASF Petra® 130—30% glass fiber reinforced recycled PET resin.
Mckeen_Ch04.indd 186
12/11/2007 6:03:34 PM
4: Polyesters
187
Figure 4.78. Stress vs. strain at various temperatures for BASF Petra® 30 BK-112—35% mineral/glass fiber reinforced, black, injection molding, recycled PET resin.
Figure 4.79. Stress vs. strain at various temperatures for BASF Petra® 330 FR BK—112%–30% glass reinforced, flame retardant, black, injection molding, UL94 V-0 rated, recycled PET resin.
Mckeen_Ch04.indd 187
12/11/2007 6:03:36 PM
188
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.80. Stress vs. strain at various temperatures for DuPont Rynite® 545—general purpose, 45% glass fiber reinforced PET resin.
Figure 4.81. Stress vs. strain at various temperatures for DuPont Rynite® 555—general purpose, 55% glass fiber reinforced PET resin.
Mckeen_Ch04.indd 188
12/11/2007 6:03:37 PM
4: Polyesters
189
Figure 4.82. Stress vs. strain at various temperatures for DuPont Rynite® 935—low warp, 35% mica/glass reinforced PET resin.
Figure 4.83. Stress vs. strain at various temperatures for DuPont Rynite® FR530L—flame retardant, 30% glass reinforced, higher heat, lubricated PET resin.
Mckeen_Ch04.indd 189
12/11/2007 6:03:39 PM
190
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.84. Stress vs. strain at various temperatures for DuPont Rynite® SST35—super tough, 35% glass reinforced PET resin.
Figure 4.85. Flexural modulus vs. temperature for BASF Petra® reinforced recycled PET resins.
Mckeen_Ch04.indd 190
12/11/2007 6:03:40 PM
4: Polyesters
191
Figure 4.86. Flexural modulus vs. temperature for DuPont Rynite® toughened, reinforced PET resins.
Figure 4.87. Flexural modulus vs. temperature for DuPont Rynite® 500 series of toughened, reinforced PET resins.
Mckeen_Ch04.indd 191
12/11/2007 6:03:42 PM
192
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.88. Flexural modulus vs. temperature for DuPont Rynite® 900 series of low warp PET resins.
Figure 4.89. Flexural modulus vs. temperature for DuPont Rynite® FR500 series of flame retardant PET resins.
Mckeen_Ch04.indd 192
12/11/2007 6:03:43 PM
4: Polyesters
193
Figure 4.90. Flexural modulus vs. temperature for DuPont Rynite® FR900 series of flame retardant, low warp PET resins.
Figure 4.91. Shear modulus vs. temperature for BASF Petra® reinforced recycled PET resins.
Mckeen_Ch04.indd 193
12/11/2007 6:03:45 PM
194
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.92. PVT for DSM Engineering Plastics Arnite® AV2 372—35% glass fiber reinforced PET resin.
4.5 Liquid Crystalline Polymers (LCPs)
Figure 4.93. Stress vs. strain at various temperatures of Ticona Vectra® A130—30% glass fiber reinforced, standard grade LCP.
Mckeen_Ch04.indd 194
12/11/2007 6:03:49 PM
4: Polyesters
195
Figure 4.94. Stress vs. strain at various temperatures of Ticona Vectra® A230—30% carbon fiber reinforced, high stiffness LCP.
Figure 4.95. Stress vs. strain at various temperatures of Ticona Vectra® A530—30% mineral reinforced, standard grade LCP.
Mckeen_Ch04.indd 195
12/11/2007 6:03:52 PM
196
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.96. Stress vs. strain at various temperatures of Ticona Vectra® E130i—30% glass fiber reinforced, easy flow, high temperature LCP.
Figure 4.97. Stress vs. strain at various temperatures of Ticona Vectra® H140—40% glass fiber reinforced, highest temperature LCP.
Mckeen_Ch04.indd 196
12/11/2007 6:03:57 PM
4: Polyesters
197
Figure 4.98. Stress vs. strain at various temperatures of Ticona Vectra® L130—30% glass fiber reinforced, high flow LCP.
Figure 4.99. Stress vs. strain at 23°C of several Ticona Vectra® L130—30% glass fiber reinforced, high flow LCP.
Mckeen_Ch04.indd 197
12/11/2007 6:03:59 PM
198
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.100. Stress vs. strain at various temperatures of DuPont Zenite® 6130L BK010—30% glass reinforced, lubricated LCP.
Figure 4.101. Flexural modulus vs. temperature of Toray Siveras® L204G35—35% glass fiber reinforced, standard grade LCP.
Mckeen_Ch04.indd 198
12/11/2007 6:04:01 PM
4: Polyesters
199
Figure 4.102. Shear modulus vs. temperature of various Ticona Vectra® LCPs.
Figure 4.103. Flexural strength vs. temperature of Toray Siveras® L204G35—35% glass fiber reinforced, standard grade LCP.
Mckeen_Ch04.indd 199
12/11/2007 6:04:03 PM
200
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.104. Flexural strength vs. temperature of various Sumitomo Chemical Sumikasuper® LCPs.
Figure 4.105. Enthalpy vs. temperature of Ticona Vectra® A130—30% glass fiber reinforced, standard grade
LCP.
Mckeen_Ch04.indd 200
12/11/2007 6:04:05 PM
4: Polyesters
201
Figure 4.106. Specific heat vs. temperature of Ticona Vectra® A130—30% glass fiber reinforced, standard grade LCP.
Figure 4.107. Thermal conductivity vs. temperature of various Ticona Vectra® LCPs.
Mckeen_Ch04.indd 201
12/11/2007 6:04:06 PM
202
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.108. Dielectric constant vs. frequency at 23°C of various Ticona Vectra® LCPs.
Figure 4.109. Dielectric constant vs. temperature of Ticona Vectra® E820iPd—easy flow, high temperature, metallizable LCP.
Mckeen_Ch04.indd 202
12/11/2007 6:04:08 PM
4: Polyesters
203
4.6 Polycyclohexylene Dimethylene Terephthalate (PCT)
Figure 4.110. Stress vs. strain at various temperatures for DuPont Thermx® CG033—20% glass reinforced, general purpose PCT resin.
Figure 4.111. Stress vs. strain at various temperatures for DuPont Thermx® CG923—20% glass reinforced, flame retardant PCT resin.
Mckeen_Ch04.indd 203
12/11/2007 6:04:09 PM
204
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.112. Tensile modulus vs. temperature for DuPont Thermx® glass reinforced, flame retardant PCT resins.
Figure 4.113. Pressure–specific volume–temperature for DuPont Thermx® CG923—20% glass reinforced, flame retardant PCT resin.
Mckeen_Ch04.indd 204
12/11/2007 6:04:10 PM
4: Polyesters
205
4.7 Polyester Blends and Alloys
Figure 4.114. Stress vs. strain at 23°C for Ticona Vandar® polyester alloy/blend resins (alloy type unspecified).
Figure 4.115. Stress vs. strain at various temperatures for Ticona Vandar® 2100—unreinforced (alloy type unspecified) polyester alloy/blend resin.
Mckeen_Ch04.indd 205
12/11/2007 6:04:12 PM
206
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.116. Stress vs. strain at various temperatures for SABIC Innovative Plastics Xenoy® 2230— polyethylene terephthalate (PET)/polycarbonate (PC) alloy polyester alloy/blend resin.
Figure 4.117. Stress vs. strain at various temperatures for SABIC Innovative Plastics Xenoy® 6127— polybutylene terephthalate (PBT)/PC alloy, unreinforced polyester alloy/blend resin.
Mckeen_Ch04.indd 206
12/11/2007 6:04:13 PM
4: Polyesters
207
Figure 4.118. Flexural modulus vs. temperature for SABIC Innovative Plastics Enduran® PBT/PET blend polyester alloy/blend resins.
Figure 4.119. Flexural modulus vs. temperature for Ticona Vandar® high stiffness polyester alloy/blend resins.
Mckeen_Ch04.indd 207
12/11/2007 6:04:14 PM
208
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.120. Flexural modulus vs. temperature for Ticona Vandar® low stiffness polyester alloy/blend resins.
Figure 4.121. Flexural modulus vs. temperature for SABIC Innovative Plastics Xenoy® PBT/PC alloy polyester alloy/blend resins.
Mckeen_Ch04.indd 208
12/11/2007 6:04:16 PM
4: Polyesters
209
Figure 4.122. Flexural modulus vs. temperature for SABIC Innovative Plastics Xenoy® polyester alloy/ blend resins.
Figure 4.123. Shear modulus vs. temperature for Ticona Vandar® polyester alloy/blend resins.
Mckeen_Ch04.indd 209
12/11/2007 6:04:17 PM
210
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.124. Tensile modulus vs. temperature for DuPont Crastin® PBT/acrylonitrile-styrene-acrylate (ASA) polyester alloy/blend resins.
Figure 4.125. Tensile strength vs. temperature for DuPont Crastin® PBT/ASA polyester alloy/blend resins.
Mckeen_Ch04.indd 210
12/11/2007 6:04:18 PM
4: Polyesters
211
Figure 4.126. Tensile strength vs. temperature for BASF Ultradur® S4090—low warpage PBT/ASA blend polyester alloy/blend resin.
Figure 4.127. Tensile strength vs. temperature for Ticona Vandar® polyester alloy/blend resins.
Mckeen_Ch04.indd 211
12/11/2007 6:04:19 PM
212
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 4.128. Dielectric constant vs. frequency at 23°C for BASF Ultradur® S4090 G4—low warpage PBT/ ASA blend, 20% glass fiber polyester alloy/blend resin.
Figure 4.129. Dissipation factor vs. frequency at 23°C for BASF Ultradur® S4090 G4—low warpage PBT/ASA blend, 20% glass fiber polyester alloy/blend resin.
Mckeen_Ch04.indd 212
12/11/2007 6:04:21 PM
5 Polyimides 5.1 Background
• Inherent ignition resistance without the use of additives
This chapter covers a series of plastics in which the imide group is an important part of the molecule. The imide group is formed by the condensation reaction of an aromatic anhydride group with an aromatic amine as shown in Fig. 5.1. This group is thermally very stable. Aliphatic imides are possible, but the thermal stability is reduced, and thermal stability is one of the main reasons to use an imide type polymer.
• Good electrical properties with low ion content
5.1.1 Polyetherimide (PEI) Polyetherimide (PEI) is an amorphous engineering thermoplastic. Thermoplastic PEIs provide strength, heat resistance, and flame retardancy of traditional polyimides with the ease of simple melt processing seen in standard injection-molding resins like polycarbonate and acrylonitrile-butadiene-styrene (ABS). The key performance features of PEI resins include: • Excellent dimensional stability at high temperatures under load
There are several different polymer structures that are used as PEI plastics. The structures of these polymers are shown in Figs. 5.2–5.6 with reference to one of the product lines that utilize the 4,4’-bisphenol A dianhydride (BPADA) molecule. The acid dianhydride used to make most of the PEIs is 4,4’-bisphenol A dianhydride, the structure of which is shown in Fig. 5.7. Some of the other monomers used in these PEI are shown in Fig. 5.8.
5.1.2 Polyamide-Imide (PAI) Polyamide-imides (PAI) are thermoplastic amorphous polymers that have useful properties which include: • Exceptional chemical resistance • Outstanding mechanical strength
• Smooth as-molded surfaces
• Excellent thermal stability
• Transparency, though slightly yellow
• Performs from cryogenic up to 260°C
• Good optical properties
• Excellent electrical properties
• Very high strength and modulus • High continuous-use temperature
The monomers used to make PAI resin are shown in Fig. 5.9.
Figure 5.1. Reaction of amine with anhydride to form an imide.
213
Mckeen_Ch05.indd 213
12/11/2007 6:05:00 PM
214
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 5.2. Chemical structure of BPADA-PPD polyetherimide (Ultem® 5000 series).
Figure 5.3. Chemical structure of biphenol diamine PMDA polyetherimide (Aurum®).
Figure 5.4. Chemical structure of BPADA-DDS polyetherimide sulfone (Ultem® XH6050).
Figure 5.5. Chemical structure of BPADA-MPD polyetherimide (Ultem® 1000 series).
Mckeen_Ch05.indd 214
12/11/2007 6:05:01 PM
5: Polyimides
215
Figure 5.6. Chemical structure of BPADA-PMDA-MPD copolyetherimide (Ultem® 6000 series).
Figure 5.7. Chemical Structure of BPADA monomer.
Oxydianiline (ODA)
Pyromellitic Dianhydride (PMDA)
Diamino Diphenyl Sulfone (DDS)
m-Phenylene Diamine (MPD)
Methylene Dianiline (MDA)
p-Phenylene Diamine (PDA)
Biphenol Diamine (BP Diamine)
Figure 5.8. Chemical structures of other monomers used to make polyimides.
Mckeen_Ch05.indd 215
12/11/2007 6:05:02 PM
216
The Effect of Temperature and Other Factors on Plastics and Elastomers
4,4’-diphenyl methane diisocyanate (MDI)
trimellitic anhydride (TMA)
Figure 5.9. Chemical structures of monomers used to make PAI.
When these monomers are reacted carbon dioxide, rather than water, is generated. The closer the monomer ratio is to 1:1, the higher the molecular weight of the polymer shown in Fig. 5.10.
5.1.3 Polyimide (PI) Polyimides (PIs) are high temperature engineering polymers originally developed by the DuPont Company. PIs exhibit an exceptional combination of thermal stability (>500°C), mechanical toughness, and chemical resistance. They have excellent dielectric properties and inherently low-coefficient of thermal expansion. They are formed from diamines and dianhydrides as shown in Fig. 5.11. Many other diamines and several other dianhydrides may be chosen to tailor the final properties of a polymer whose structure is shown in Fig. 5.12.
5.1.4 Imide Polymer Blends
The PEI resins have produced a surprising number of miscible (one-phase) and compatible blends. Compatible blends are phase-separated mixtures having sufficient attraction between phases to provide some level of molecular adhesion, resulting in stable morphology and giving rise to good mechanical properties. PEI forms miscible blends with polyesters such as polybutylene terephthalate (PBT) and polyethylene terephthalate (PET). These blends have a single glass transition temperature between that of the PEI and polyester. However, few of these are commercial products yet. Blends of BPADA-based PIs are also miscible with polyaryl ether ketones such as polyetheretherketone (PEEK). As injection molded, many PEEK-PEI blends are transparent. Graphs showing multipoint properties of these PIbased polymers as a function of temperature, moisture, and other factors are illustrated in Sections 5.2–5.4.
PI based resins, especially PEI and PAI polymers, may also be combined with other polymers.
Figure 5.10. Chemical structure of a typical PAI.
Mckeen_Ch05.indd 216
12/11/2007 6:05:03 PM
5: Polyimides
217
4,4’-diaminodiphenyl ether oxydianiline (ODA)
Pyromellitic Dianhydride (PMDA)
Figure 5.11. Chemical structures of monomers used to make PIs.
Figure 5.12. Chemical structure of a typical polyimide.
5.2 Polyetherimide (PEI)
Figure 5.13. Stress vs. strain at various temperatures of SABIC Innovative Plastics Ultem® 1000—general purpose PEI resin.
Mckeen_Ch05.indd 217
12/11/2007 6:05:03 PM
218
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 5.14. Stress vs. strain at various temperatures of SABIC Innovative Plastics Ultem® 2100—10% glass reinforced PEI resin.
Figure 5.15. Stress vs. strain at various temperatures of SABIC Innovative Plastics Ultem® 2200—20% glass reinforced PEI resin.
Mckeen_Ch05.indd 218
12/11/2007 6:05:05 PM
5: Polyimides
219
Figure 5.16. Stress vs. strain at various temperatures of SABIC Innovative Plastics Ultem® 2300—30% glass reinforced PEI resin.
Figure 5.17. Stress vs. strain at various temperatures of SABIC Innovative Plastics Ultem® 2400—40% glass reinforced polyetherimide resin.
Mckeen_Ch05.indd 219
12/11/2007 6:05:06 PM
220
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 5.18. Stress vs. strain at various temperatures of SABIC Innovative Plastics Ultem® 3452—45% glass/ mineral reinforced PEI resin.
Figure 5.19. Stress vs. strain at various temperatures of SABIC Innovative Plastics Ultem® 4000—wear resistant, 25% glass, 15% PTFE PEI resin.
Mckeen_Ch05.indd 220
12/11/2007 6:05:07 PM
5: Polyimides
221
Figure 5.20. Stress vs. strain at 23°C of several SABIC Innovative Plastics Ultem® PEI resins.
Figure 5.21. Stress vs. strain in compression of SABIC Innovative Plastics Ultem® 1000—general purpose PEI resin.
Mckeen_Ch05.indd 221
12/11/2007 6:05:09 PM
222
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 5.22. Flexural modulus vs. temperature of several SABIC Innovative Plastics Ultem® glass reinforced PEI resins.
Figure 5.23. Shear modulus vs. temperature of several SABIC Innovative Plastics Ultem® glass reinforced PEI resins.
Mckeen_Ch05.indd 222
12/11/2007 6:05:10 PM
5: Polyimides
223
Figure 5.24. Tensile strength vs. temperature of several SABIC Innovative Plastics Ultem® PEI resins.
Figure 5.25. Pressure–specific volume–temperature (PVT) of SABIC Innovative Plastics Ultem® 1000— general purpose PEI resin.
Mckeen_Ch05.indd 223
12/11/2007 6:05:11 PM
224
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 5.26. Moisture absorption vs. relative humidity of SABIC Innovative Plastics Ultem® 1000—general purpose PEI resin.
Figure 5.27. Dielectric constant vs. frequency and temperature of SABIC Innovative Plastics Ultem® PEI resins.
Mckeen_Ch05.indd 224
12/11/2007 6:05:13 PM
5: Polyimides
225
Figure 5.28. Dielectric constant vs. temperature and frequency of SABIC Innovative Plastics Ultem® PEI resins.
Figure 5.29. Dissipation factor vs. temperature and frequency of SABIC Innovative Plastics Ultem® PEI resins.
Mckeen_Ch05.indd 225
12/11/2007 6:05:14 PM
226
The Effect of Temperature and Other Factors on Plastics and Elastomers
5.3 Polyamide-Imide (PAI)
Figure 5.30. Stress vs. strain at 23°C and small stress for Solvay Advanced Polymers Torlon® PAI resins.
Figure 5.31. Stress vs. strain at 23°C for Solvay Advanced Polymers Torlon® PAI resins.
Mckeen_Ch05.indd 226
12/11/2007 6:05:16 PM
5: Polyimides
227
Figure 5.32. Stress vs. strain at 135°C for Solvay Advanced Polymers Torlon® PAI resins.
Figure 5.33. Flexural modulus vs. temperature for Solvay Advanced Polymers Torlon® PAI resins.
Mckeen_Ch05.indd 227
12/11/2007 6:05:19 PM
228
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 5.34. Flexural strength vs. temprature for Solvay Advanced Polymers Torlon® PAI resins.
Figure 5.35. Tensile strength vs. temperature for Solvay Advanced Polymers Torlon® PAI resins.
Mckeen_Ch05.indd 228
12/11/2007 6:05:21 PM
5: Polyimides
229
Figure 5.36. Moisture absorption vs. relative humidity for Solvay Advanced Polymers Torlon® PAI resins.
5.4 Polyimide (PI)
Figure 5.37. Stress vs. strain at 23°C in compression for DuPont Vespel® machined PI.
Mckeen_Ch05.indd 229
12/11/2007 6:05:24 PM
230
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 5.38. Stress vs. strain at 300°C in compression for DuPont Vespel® machined PI.
Figure 5.39. Stress vs. strain at 23°C in compression parallel to forming for DuPont Vespel® direct-formed PI.
Mckeen_Ch05.indd 230
12/11/2007 6:05:25 PM
5: Polyimides
231
Figure 5.40. Stress vs. strain at 260°C in tension parallel to forming for DuPont Vespel® direct-formed PI.
Figure 5.41. Stress vs. strain at 23°C in tension perpendicular to forming for DuPont Vespel® direct-formed PI.
Mckeen_Ch05.indd 231
12/11/2007 6:05:27 PM
232
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 5.42. Stress vs. strain at 23°C in tension perpendicular to forming for DuPont Vespel® machined PI.
Figure 5.43. Stress vs. strain at 260°C in tension for DuPont Vespel® machined PI.
Mckeen_Ch05.indd 232
12/11/2007 6:05:28 PM
5: Polyimides
233
Figure 5.44. Flexural modulus vs. temperature for Mitsui Chemicals Aurum® PI resins.
Figure 5.45. Flexural modulus vs. temperature for DuPont Vespel® direct-formed PI.
Mckeen_Ch05.indd 233
12/11/2007 6:05:29 PM
234
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 5.46. Flexural modulus vs. temperature for DuPont Vespel® machined PI.
Figure 5.47. Flexural modulus vs. temperature Ube Industries Upitol® SA 101 PI.
Mckeen_Ch05.indd 234
12/11/2007 6:05:30 PM
5: Polyimides
235
Figure 5.48. Flexural strength vs. temperature Ube Industries Upitol® SA 101 PI.
Figure 5.49. Tensile strength vs. temperature for DuPont Vespel® direct-formed PI.
Mckeen_Ch05.indd 235
12/11/2007 6:05:32 PM
236
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 5.50. Tensile strength vs. temperature for DuPont Vespel® machined PI.
Figure 5.51. Tensile strength vs. temperature Ube Industries Upitol® SA 101 PI.
Mckeen_Ch05.indd 236
12/11/2007 6:05:33 PM
5: Polyimides
237
Figure 5.52. Dimension change vs. relative humidity at 23°C for DuPont Vespel® direct-formed PI.
Figure 5.53. Dimension change vs. relative humidity at 23°C for DuPont Vespel® machined PI.
Mckeen_Ch05.indd 237
12/11/2007 6:05:34 PM
238
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 5.54. Dimension change vs. temperature perpendicular to forming for DuPont Vespel® direct-formed PI.
Figure 5.55. Dimension change vs. temperature for DuPont Vespel® machined PI.
Mckeen_Ch05.indd 238
12/11/2007 6:05:35 PM
5: Polyimides
239
Figure 5.56. Dielectric constant vs. temperature for DuPont Vespel® SP1 PI.
Figure 5.57. Dielectric strength vs. temperature for DuPont Vespel® SP1 PI.
Mckeen_Ch05.indd 239
12/11/2007 6:05:36 PM
240
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 5.58. Dielectric strength vs. thickness for DuPont Vespel® SP1 PI.
Figure 5.59. Dissipation factor vs. temperature and frequency for DuPont Vespel® SP1 PI.
Mckeen_Ch05.indd 240
12/11/2007 6:05:38 PM
5: Polyimides
241
Figure 5.60. Surface resistivity vs. temperature for DuPont Vespel® SP1 PI.
Figure 5.61. Volume resistivity vs. temperature for DuPont Vespel® SP1 PI.
Mckeen_Ch05.indd 241
12/11/2007 6:05:39 PM
Mckeen_Ch05.indd 242
12/11/2007 6:05:40 PM
6 Polyamides (Nylons) 6.1 Background High-molecular weight polyamides are commonly known as nylon. Polyamides are crystalline polymers typically produced by the condensation of a diacid and a diamine. There are several types and each type is often described by a number, such as nylon 66 or Polyamide 66 (PA66). The numeric suffixes refer to the number of carbon atoms present in the molecular structures of the amine and acid respectively (or a single suffix if the amine and acid groups are part of the same molecule). The polyamide plastic materials discussed in this book and the monomers used to make them are given in Table 6.1. The general reaction is shown in Fig. 6.1. The –COOH acid group reacts with the –NH2 amine group to form the amide. A molecule of water is given
off as the nylon polymer is formed. The properties of the polymer are determined by the R and R’ groups in the monomers. In nylon 66, R’ = 6 carbon alkane and R = 4 carbon alkane, but one also has to include the two carboxyl carbons in the diacid to get the number it designates to the chain. The structures of these diamine monomers are shown in Fig. 6.2, the diacid monomers are shown in Fig. 6.3. Figure 6.4 shows the aminoacid monomers. These structures only show the functional groups, the CH2 connecting groups are implied at the bond intersections. All polyamides tend to absorb moisture which can affect their properties. Properties are often reported as DAM (dry as molded) or conditioned (usually at equilibrium in 50% Relative Humidity at 23°C). The absorbed water tends to act like a plasticizer and can have a significant effect on the plastics’ properties.
Table 6.1. Monomers Used to Make Specific Polyamides/Nylons Polyamide/Nylon Type
Monomers Used to Make
Nylon 6
Caprolactam
Nylon 11
Aminoundecanoic acid
Nylon 12
Aminolauric acid
Nylon 66
1,6-Hexamethylene diamine and adipic acid
Nylon 610
1,6-Hexamethylene diamine and sebacic acid
Nylon 612
1,6-Hexamethylene diamine and 1,12-dodecanedioic acid
Nylon 666
Copolymer based on nylon 6 and nylon 66
Nylon 46
1,4-Diaminobutane and adipic acid
Nylon amorphous
Trimethyl hexamethylene diamine and terephthalic acid
Polyphthalamide
Any diamine and isophthalic acid and/or terephthalic Acid
Figure 6.1. Generalized polyamide reaction.
243
Mckeen_Ch06.indd 243
12/11/2007 6:06:50 PM
244
The Effect of Temperature and Other Factors on Plastics and Elastomers
1,6-hexamethylene diamine
1,4-diaminobutane
Figure 6.2. Chemical structures of diamines used to make polyamides.
Isophthalic Acid
Terephthalic Acid
1,12-Dodecanediotic Acid
Sebacic Acid
Adipic Acid
Figure 6.3. Chemical structures of diacids used to make polyamides.
Aminoundecanoic Acid
Aminolauric Acid
Caprolactam
Figure 6.4. Chemical structures of aminoacids used to make polyamides.
6.1.1 Nylon 6 Nylon 6 begins as pure caprolactam which is a ring structured molecule. This is unique in that the ring is opened and the molecule polymerizes with itself. Since caprolactam has 6 carbon atoms, the nylon that is produces is called nylon 6, which is nearly the same as nylon 66 described in Section 6.1.4. The structure of nylon 6 is shown in Fig. 6.5 below with the repeating unit in the brackets.
Mckeen_Ch06.indd 244
Some of the nylon 6 characteristics include: • Outstanding balance of mechanical properties. • Outstanding toughness in equiliblium moisture content. • Outstanding chemical resistance and oil resistance. • Outstanding wear and abrasion resistance.
12/11/2007 6:06:50 PM
6: Polyamides (Nylons)
245
Figure 6.5. Chemical structure of nylon 6.
• Almost all grades are self-extinguishing. The flame-resistant grades are rated UL 94VO. • Outstanding long-term heat-resistance (at a long-term continuous maximum temperature ranging between 80 and 150°C). • Grades reinforced with glass-fiber and other materials offer superior elastic modulus and strength. • Offers low gasoline permeability and outstanding gas barrier properties. • Highest rate of water absorption and highest equilibrium water content (8% or more). • Excellent surface finish even when reinforced.
6.1.2 Nylon 11 Nylon 11 has only one monomer, aminoundecanoic acid. It has the necessary amine group on one end, and the acid group on the other. It polymerizes with itself to produce the polyamide containing eleven carbons between the nitrogen of the amide groups. Its structure is shown in Fig. 6.6. Some of the nylon 11 characteristics are • Low water absorption for a nylon (2.5% at saturation) • Reasonable UV resistance • Higher strength • Ability to accept high loading of fillers • Better heat resistance than nylon 12 • More expensive than nylon 6 or nylon 6/6 • Relatively low impact strength
6.1.3 Nylon 12 Nylon 12 has only one monomer, aminolauric acid. It has the necessary amine group on one end, and the acid group on the other. It polymerizes with itself to
Mckeen_Ch06.indd 245
produce the polyamide containing 12 carbons between the two nitrogen atoms of the two amide groups. Its structure is shown in Fig. 6.7. The properties of semicrystalline polyamides are determined by the concentration of amide groups in the macromolecules. Polyamide 12 has the lowest amide group concentration of all commercially available polyamides thereby substantially promoting its characteristics. Some of the Polyamide 12 characteristics are • Lowest moisture absorption (~2%): Parts show largest dimensional stability under conditions of changing humidity • Exceptional impact and notched impact strength, even at temperatures well below the freezing point • Good to excellent resistance against greases, oils, fuels, hydraulic fluids, various solvents, salt solutions, and other chemicals • Exceptional resistance to stress cracking, including metal parts encapsulated by injection molding or embedded • Excellent abrasion resistance • Low coefficient of sliding friction • Noise and vibration damping properties • Good fatigue resistance under high frequency cyclical loading condition • High processability • Expensive • Lowest strength and heat resistance of any polyamide unmodified generic
6.1.4 Nylon 66 The structure of nylon 66 is shown in Fig. 6.8. Some of the nylon 66 characteristics are • Outstanding balance of mechanical properties.
12/11/2007 6:06:51 PM
246
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.6. Chemical structure of nylon 11.
Figure 6.7. Chemical structure of nylon 12.
Figure 6.8. Chemical structure of nylon 66.
• Outstanding toughness in equilibrium moisture content. • Outstanding chemical resistance and oil resistance. • Outstanding wear and abrasion resistance. • Almost all grades are self-extinguishing. The flame-resistant grades are rated UL 94V0. • Outstanding long-term heat-resistance (at a long-term continuous maximum temperature ranging between 80°C and 150°C). • Grades reinforced with glass-fiber and other materials offer superior elastic modulus and strength. • Offers low gasoline permeability and outstanding gas barrier properties.
6.1.5 Nylon 610 The structure of nylon 610 is given in Fig. 6.9. Some of the nylon 610 characteristics are • Outstanding suppleness and impact strength at low temperature • Relatively low hygroscopic properties • Outstanding flex fatigue properties
6.1.6 Nylon 612 The structure of nylon 612 is given in Fig. 6.10. Some of the nylon 612 characteristics are
• High water absorption.
• High-impact strength
• Poor chemical resistance to strong acids and bases.
• Very good resistance to greases, oils, fuels, hydraulic fluids, water, alkalis, and saline
Mckeen_Ch06.indd 246
12/11/2007 6:06:51 PM
6: Polyamides (Nylons)
247
Figure 6.9. Chemical structure of nylon 610.
Figure 6.10. Chemical structure of nylon 612.
• Very good stress cracking resistance, even when subjected to chemical attack and when used to cover metal parts
Some of the amorphous nylon characteristics are • Crystal-clear, high optical transparency
• Low coefficients of sliding friction and high abrasion resistance, even when running dry
• High mechanical stability
• Heat deflection temperature (melting point nearly 40°C higher than nylon 12)
• High-impact strength
• High heat deflection temperature
• Tensile and flexural strength
• Good chemical resistance compared to other plastics
• Outstanding recovery at high wet strength
• Good electrical properties • Low-mold shrinkage
6.1.7 Nylon 666 or 66/6 This is the name given to copolyamides made from PA6 and PA66 building blocks. A precise structure cannot be drawn.
6.1.8 Amorphous Nylon Amorphous nylon is designed to give no crystalinity to the polymer structure. One such amorphous nylon is shown in Fig. 6.11. The tertiary butyl group attached to the amine molecule is bulky and distrupts this molecule’s ability to crystallize. This particular amorphous nylon is sometimes designated as nylon 6-3-T. Amorphous polymers can have properties that differ significantly from crystalline types, one of which is optical transparency.
Mckeen_Ch06.indd 247
6.1.9 Nylon 46 The structure of nylon 46 is given in Fig. 6.12. Some of the nylon 46 characteristics are • Higher heat distortion temperature than nylon 6 or nylon 6/6 • Higher crystallinity than nylon 6 or nylon 6/6 • Better chemical resistance, particularly to acidic salts • Similar moisture absorption to nylon 6/6, but dimensional increase is less • High processing temperature • Highest mechanical temperatures
properties
at
high
12/11/2007 6:06:52 PM
248
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.11. Chemical structure of amorphous nylon.
Figure 6.12. Chemical structure of nylon 46.
• Excellent resistance to wear and low friction
• High processing temperatures
• Outstanding flow for easy processing
6.1.11 Polyarylamide (PAA) 6.1.10 Polyphthalamide/ High-Performance Polyamide(PPA) As a member of the nylon family, it is a semicrystalline material composed from a diacid and a diamine. However, the diacid portion contains at least 55% terephthalic acid (TPA) or isophthalic acid (IPA). TPA or IPA are aromatic components which serve to raise the melting point, glass transition temperature and generally improve chemical resistance vs. standard aliphatic nylon polymers. The structure of the polymer depends on the ratio of the diacid ingredients and the diamine used and varies from grade to grade. The polymer usually consists of mixtures of blocks of two or more different segments, four of which are shown in Fig. 6.13. Some of the PPA characteristics are
Another partially aromatic high performance polyamide is polyarylamide (PAA). The primary commercial polymer, PAMXD6, is formed by the reaction of m-xylylenediamine and adipic acid giving the structure shown in Fig. 6.14. It is a semi-crystalline polymer. Some of the PAA characteristics are • Very high rigidity • High strength • Very low creep • Excellent surface finish even for a reinforced product even with a high glass fiber content • Ease of processing • Good dimensional stability • Slow rate of water absorption
• Very high heat resistance • Good chemical resistance • Relatively low moisture absorption • High strength or physical properties over a broad temperature range • Not inherently flame retardant • Requires good drying equipment
Mckeen_Ch06.indd 248
Graphs of multipoint properties of polyamides as a function of temperature, moisture, and other factors are illustrated in Sections 6.2–6.13. Because the polyamides do absorb water, and that affects the properties, some of the data are dry, or better dry as molded. Some of the data are for conditioned specimen; they have reached equilibrium water absorption from 50% relative humidity at 23°C.
12/11/2007 6:06:52 PM
6: Polyamides (Nylons)
249
6T Segment
6I Segment
66 Segment
DT Segment
Figure 6.13. Chemical structures of block used to make PPA.
Figure 6.14. Chemical structure of PAMXD6 PAA.
6.2 Nylon 6 (PA6)
Figure 6.15. Stress vs. strain at various temperatures for BASF Ultramid® B3EG5—stabilized, 25% glass fiber reinforced PA6 resin (conditioned at 50% RH).
Mckeen_Ch06.indd 249
12/11/2007 6:06:52 PM
250
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.16. Stress vs. strain at various temperatures for BASF Ultramid® B3EG5—stabilized, 25% glass fiber reinforced PA6 resin (DAM).
Figure 6.17. Stress vs. strain at various temperatures for SABIC Innovative Plastics LNP Thermocomp® PF-1006—30% glass fiber reinforced PA6 resin (DAM).
Mckeen_Ch06.indd 250
12/11/2007 6:06:54 PM
6: Polyamides (Nylons)
251
Figure 6.18. Shear modulus vs. temperature for several BASF Ultramid® PA6 Resins.
Figure 6.19. Tensile modulus vs. temperature for BASF PA6 resins conditioned at 50% relative humidity.
Mckeen_Ch06.indd 251
12/11/2007 6:06:55 PM
252
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.20. Tensile modulus vs. temperature for BASF PA6 resins (DAM).
Figure 6.21. Tensile modulus vs. temperature for SABIC Innovative Plastics LNP Thermocomp® PF-1006— 30% glass fiber reinforced PA6 resin.
Mckeen_Ch06.indd 252
12/11/2007 6:06:57 PM
6: Polyamides (Nylons)
253
Figure 6.22. Young’s modulus vs. temperature for BASF Ultramid® reinforced PA6 resins.
Figure 6.23. Tensile strength vs. moisture content for custom resins nylene® PA6 resins.
Mckeen_Ch06.indd 253
12/11/2007 6:06:58 PM
254
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.24. Tensile strength vs. moisture content for several BASF Ultramid® PA6 resins.
Figure 6.25. Tensile strength vs. temperature for SABIC Innovative Plastics LNP Thermocomp® PF-1006— 30% glass fiber reinforced PA6 resin.
Mckeen_Ch06.indd 254
12/11/2007 6:07:00 PM
6: Polyamides (Nylons)
255
Figure 6.26. Pressure–specific volume-temperature (PVT) for BASF Ultramid® B3K easy flow, fast cycling PA6 resin.
Figure 6.27. Rockwell hardness vs. temperature for custom resins nylene® PA6 resins.
Mckeen_Ch06.indd 255
12/11/2007 6:07:02 PM
256
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.28. Linear thermal expansion vs. temperature for several BASF Ultramid® PA6 resins.
Figure 6.29. Water absorption vs. relative humidity for several BASF Ultramid® PA6 resins.
Mckeen_Ch06.indd 256
12/11/2007 6:07:03 PM
6: Polyamides (Nylons)
257
6.3 Nylon 11 (PA11)
Figure 6.30. Stress vs. strain at temperatures for Arkema Rilsan® BMN P20—medium flexibility grade PA11 resin (conditioned at 50% RH).
Figure 6.31. Stress vs. strain at various temperatures for Arkema Rilsan® BUM 30 O—rigid grade, 30% glass bead reinforced PA11 resin.
Mckeen_Ch06.indd 257
12/11/2007 6:07:04 PM
258
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.32. Stress vs. strain at various temperatures for Arkema Rilsan® BZM 23 G9—rigid grade, 23% glass and 9% graphite reinforced PA11 resin.
Figure 6.33. Stress vs. strain at various temperatures for SABIC Innovative Plastics LNP Thermocomp® HF–1006—30% glass filled PA11 resin.
Mckeen_Ch06.indd 258
12/11/2007 6:07:06 PM
6: Polyamides (Nylons)
259
Figure 6.34. Elongation at break vs. temperature for several Arkema Rilsan® BMN PA11 resins.
Figure 6.35. Flexural modulus vs. temperature for Arkema several rigid Rilsan® BMZ PA11 resins.
Mckeen_Ch06.indd 259
12/11/2007 6:07:07 PM
260
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.36. Flexural modulus vs. temperature for several Arkema Rilsan® BMN PA11 resins.
Figure 6.37. Shear modulus vs. temperature for several Arkema Rilsan® BESNO PA11 resins.
Mckeen_Ch06.indd 260
12/11/2007 6:07:09 PM
6: Polyamides (Nylons)
261
Figure 6.38. Tensile modulus vs. temperature for SABIC Innovative Plastics LNP Thermocomp® HF-1006— 30% glass filled PA11 resin.
Figure 6.39. Torsional modulus vs. moisture content for several Arkema Rilsan® PA11 resins.
Mckeen_Ch06.indd 261
12/11/2007 6:07:10 PM
262
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.40. Stress at yield vs. moisture content for Arkema Rilsan® BMN PA11 resin.
Figure 6.41. Tensile strength vs. temperature for several Arkema Rilsan® BMN PA11 resins.
Mckeen_Ch06.indd 262
12/11/2007 6:07:11 PM
6: Polyamides (Nylons)
263
Figure 6.42. Tensile strength vs. temperature for SABIC Innovative Plastics LNP Thermocomp® HF-1006— 30% glass filled PA11 resin.
Figure 6.43. Rockwell hardness vs. temperature for several Arkema Rilsan® BMN PA11 resins.
Mckeen_Ch06.indd 263
12/11/2007 6:07:13 PM
264
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.44. Equilibrium water absorption vs. relative humidity for Arkema Rilsan® BMN PA11 resin.
6.4 Nylon 12 (PA12)
Figure 6.45. Stress vs. strain at various temperatures for EMS-GRIVORY Grilamid® L 20 G—Medium viscosity, lubricated PA12 resin.
Mckeen_Ch06.indd 264
12/11/2007 6:07:14 PM
6: Polyamides (Nylons)
265
Figure 6.46. Stress vs. strain at various temperatures for EMS-GRIVORY Grilamid® LV-3H—30% glass fiber, heat stabilized PA12 resin.
Figure 6.47. Stress vs. strain at various temperatures for Degussa Vestamid® L1723 sw (DAM) low viscosity, plasticized, heat stabilized PA12 resin.
Mckeen_Ch06.indd 265
12/11/2007 6:07:15 PM
266
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.48. Stress vs. strain at various temperatures for Degussa Vestamid® L2141 sw (DAM) high viscosity, high heat PA12 resin.
Figure 6.49. Stress vs. strain at various temperatures for SABIC Innovative Plastics Thermocomp® SF—1006 (DAM) 30% glass filled PA12 resin.
Mckeen_Ch06.indd 266
12/11/2007 6:07:16 PM
6: Polyamides (Nylons)
267
Figure 6.50. Shear modulus vs. temperature for several EMS-GRIVORY Grilamid® LV PA12 resins.
Figure 6.51. Tensile modulus vs. temperature for SABIC Innovative Plastics Thermocomp® S—1006 30% glass filled PA12 resin.
Mckeen_Ch06.indd 267
12/11/2007 6:07:18 PM
268
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.52. Tensile strength vs. temperature for SABIC Innovative Plastics Thermocomp® SF—1006 30% glass filled PA12 resin.
Figure 6.53. Pressure-specific volume-temperature (PVT) for Degussa Vestamid® L1723 sw (dry as molded) low viscosity, plasticized, heat stabilized PA12 resin.
Mckeen_Ch06.indd 268
12/11/2007 6:07:19 PM
6: Polyamides (Nylons)
269
Figure 6.54. Thermal expansion vs. temperature for Degussa Several Vestamid® PA12 resins.
6.5 Nylon 66 (PA66)
Figure 6.55. Stress vs. strain in compression at 23°C for several DuPont Minlon® mineral reinforced PA66 resins.
Mckeen_Ch06.indd 269
12/11/2007 6:07:20 PM
270
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.56. Stress vs. strain in compression at various temperatures for DuPont Zytel® 70G-33L—33% glass reinforced, lubricated PA66 resin.
Figure 6.57. Stress vs. strain in compression at 23°C for DuPont Zytel® 101—general purpose PA66 resin.
Mckeen_Ch06.indd 270
12/11/2007 6:07:21 PM
6: Polyamides (Nylons)
271
Figure 6.58. Stress vs. strain in compression at 23°C for DuPont Zytel® ST-801—super tough PA66 resin.
Figure 6.59. Stress vs. strain at various temperatures for DuPont Minlon® 10B140 NC010—40% mineral reinforced PA66 resin (conditioned at 50% RH).
Mckeen_Ch06.indd 271
12/11/2007 6:07:24 PM
272
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.60. Stress vs. strain at various temperatures for DuPont Minlon® 10B140 NC010—40% mineral reinforced PA66 resin (DAM).
Figure 6.61. Stress vs. strain at various temperatures for DuPont Minlon® 11C140 NC010—40% mineral reinforced PA66 resin (conditioned at 50% RH).
Mckeen_Ch06.indd 272
12/11/2007 6:07:25 PM
6: Polyamides (Nylons)
273
Figure 6.62. Stress vs. strain at various temperatures for DuPont Minlon® 11C140 NC010—high impact, 40% mineral reinforced PA66 resin (DAM).
Figure 6.63. Stress vs. strain at various temperatures for DuPont Minlon® 12T—super high impact, 40% mineral reinforced PA66 resin (conditioned at 50% RH).
Mckeen_Ch06.indd 273
12/11/2007 6:07:27 PM
274
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.64. Stress vs. strain at various temperatures for DuPont Minlon® 12T—super high impact, 40% mineral reinforced PA66 resin (DAM).
Figure 6.65. Stress vs. strain at various temperatures for DuPont Minlon® 20B—40% glass/mineral reinforced PA66 resin (conditioned at 50% RH).
Mckeen_Ch06.indd 274
12/11/2007 6:07:29 PM
6: Polyamides (Nylons)
275
Figure 6.66. Stress vs. strain at various temperatures for DuPont Minlon® 20B—40% glass/mineral reinforced PA66 resin (DAM).
Figure 6.67. Stress vs. strain at various temperatures for BASF Ultramid® A3EG6—high stiffness, 30% glass fiber filled PA66 resin (conditioned at 50% RH).
Mckeen_Ch06.indd 275
12/11/2007 6:07:31 PM
276
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.68. Stress vs. strain at various temperatures for BASF Ultramid® A3EG6—high stiffness, 30% glass fiber filled PA66 resin (DAM).
Figure 6.69. Stress vs. strain at various temperatures for BASF Ultramid® A3WG7—heat resistant, 35% glass fiber filled PA66 resin (conditioned at 50% RH).
Mckeen_Ch06.indd 276
12/11/2007 6:07:34 PM
6: Polyamides (Nylons)
277
Figure 6.70. Stress vs. strain at various temperatures for BASF Ultramid® A3WG7—heat resistant, 35% glass fiber filled PA66 resin (DAM).
Figure 6.71. Stress vs. strain at various temperatures for BASF Ultramid® A3EG10—rigid, 50% glass fiber filled PA66 resin (conditioned at 50% RH).
Mckeen_Ch06.indd 277
12/11/2007 6:07:35 PM
278
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.72. Stress vs. strain at various temperatures for BASF Ultramid® A3EG10—rigid, 50% glass fiber filled PA66 resin (DAM).
Figure 6.73. Stress vs. strain at various temperatures for BASF Ultramid® A3K—easy flowing, injection molding PA66 resin (conditioned at 50% RH).
Mckeen_Ch06.indd 278
12/11/2007 6:07:39 PM
6: Polyamides (Nylons)
279
Figure 6.74. Stress vs. strain at various temperatures for BASF Ultramid® A3K—easy flowing, injection molding PA66 resin (DAM).
Figure 6.75. Stress vs. strain at various temperatures for SABIC Innovative Plastics LNP Thermocomp® RC-1006—electrically conductive, 30% carbon fiber filled PA66 resin (DAM).
Mckeen_Ch06.indd 279
12/11/2007 6:07:41 PM
280
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.76. Stress vs. strain at various temperatures for DuPont Zytel® ST811 HS NC010—super tough PA66 resin (conditioned at 50% RH).
Figure 6.77. Stress vs. strain at various temperatures for DuPont Zytel® ST811 HS NC010—super tough PA66 resin (DAM).
Mckeen_Ch06.indd 280
12/11/2007 6:07:43 PM
6: Polyamides (Nylons)
281
Figure 6.78. Stress vs. strain at various temperatures for DuPont Zytel® 70G-13L—13% chopped glass filled, lubricated PA66 resin.
Figure 6.79. Stress vs. strain at various temperatures for DuPont Zytel® 70G-33L NC010—33% chopped glass filled, lubricated PA66 resin (conditioned at 50% RH).
Mckeen_Ch06.indd 281
12/11/2007 6:07:46 PM
282
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.80. Stress vs. strain at various temperatures for DuPont Zytel® 70G-43LNC010—43% chopped glass filled, lubricated PA66 resin (conditioned at 50% RH).
Figure 6.81. Stress vs. strain at various temperatures for DuPont Zytel® 70G-43L NC010—43% chopped glass filled, lubricated PA66 resin (DAM).
Mckeen_Ch06.indd 282
12/11/2007 6:07:49 PM
6: Polyamides (Nylons)
283
Figure 6.82. Stress vs. strain at various temperatures for DuPont Zytel® 71G-33L—toughened, 33% chopped glass filled, lubricated PA66 resin.
Figure 6.83. Stress vs. strain at various temperatures for DuPont Zytel® 101L NC010—lubricated, general purpose PA66 resin (conditioned at 50% RH).
Mckeen_Ch06.indd 283
12/11/2007 6:07:51 PM
284
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.84. Stress vs. strain at various temperatures for DuPont Zytel® 101L NC010—lubricated, general purpose PA66 resin (DAM).
Figure 6.85. Stress vs. strain at various temperatures for DuPont Zytel® 408—toughened PA66 resin (conditioned at 50% RH).
Mckeen_Ch06.indd 284
12/11/2007 6:07:53 PM
6: Polyamides (Nylons)
285
Figure 6.86. Stress vs. strain at various temperatures for DuPont Zytel® 408—toughened PA66 resin (DAM).
Figure 6.87. Yield point vs. temperature and moisture content for DuPont Zytel® 101—general purpose PA66 resin.
Mckeen_Ch06.indd 285
12/11/2007 6:07:54 PM
286
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.88. Flexural modulus vs. relative humidity at 23°C for several DuPont Minlon® mineral filled PA66 resins.
Figure 6.89. Flexural modulus vs. relative humidity at 23°C for several DuPont Zytel® glass filled PA66 resins.
Mckeen_Ch06.indd 286
12/11/2007 6:07:57 PM
6: Polyamides (Nylons)
287
Figure 6.90. Flexural modulus vs. temperature for DuPont Minlon® mineral filled PA66 resins.
Figure 6.91. Flexural modulus vs. temperature at different humidity levels for DuPont Zytel® 71G—33L, toughened, 33% chopped glass filled, lubricated PA66 resin.
Mckeen_Ch06.indd 287
12/11/2007 6:07:59 PM
288
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.92. Flexural modulus vs. temperature at different humidity levels for DuPont Zytel® 101 general purpose PA66 resin.
Figure 6.93. Flexural modulus vs. temperature at different humidity levels for DuPont Zytel® 408, toughened PA66 resin.
Mckeen_Ch06.indd 288
12/11/2007 6:08:02 PM
6: Polyamides (Nylons)
289
Figure 6.94. Flexural modulus vs. temperature at different humidity levels for DuPont Zytel® ST-801, super tough PA66 resin.
Figure 6.95. Flexural modulus vs. temperature and relative humidity for several DuPont Zytel® PA66 resins.
Mckeen_Ch06.indd 289
12/11/2007 6:08:03 PM
290
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.96. Flexural modulus vs. fiber glass content at 23°C for several DuPont Zytel® 70G series PA66 resins.
Figure 6.97. Shear modulus vs. temperature for several BASF Ultramid® PA66 resins.
Mckeen_Ch06.indd 290
12/11/2007 6:08:05 PM
6: Polyamides (Nylons)
291
Figure 6.98. Tensile modulus vs. temperature for SABIC Innovative Plastics LNP Thermocomp® RC-1006— electrically conductive, 30% carbon fiber filled PA66 resin.
Figure 6.99. Tensile modulus vs. temperature for several BASF Ultramid® PA66 resins (conditioned at 50% relative humidity).
Mckeen_Ch06.indd 291
12/11/2007 6:08:07 PM
292
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.100. Tensile modulus vs. temperature for several BASF Ultramid® PA66 resins (DAM).
Figure 6.101. Young’s modulus vs. temperature for several BASF Ultramid® PA66 resins (DAM).
Mckeen_Ch06.indd 292
12/11/2007 6:08:09 PM
6: Polyamides (Nylons)
293
Figure 6.102. Tensile strength vs. humidity at −40°C for several DuPont Minlon® PA66 resins.
Figure 6.103. Tensile strength vs. humidity at 23°C for several DuPont Minlon® PA66 resins.
Mckeen_Ch06.indd 293
12/11/2007 6:08:10 PM
294
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.104. Tensile strength vs. humidity at 93°C for several DuPont Minlon® PA66 resins.
Figure 6.105. Tensile strength vs. humidity at 149°C for several DuPont Minlon® PA66 resins.
Mckeen_Ch06.indd 294
12/11/2007 6:08:12 PM
6: Polyamides (Nylons)
295
Figure 6.106. Tensile strength vs. temperature for several DuPont Minlon® PA66 resins.
Figure 6.107. Tensile strength vs. humidity at various temperatures for DuPont Minlon® 10B40—40% mineral filled, stiffened PA66 resin.
Mckeen_Ch06.indd 295
12/11/2007 6:08:14 PM
296
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.108. Tensile strength vs. humidity at various temperatures for DuPont Minlon® 11C40—40% mineral filled, high impact PA66 resin.
Figure 6.109. Tensile strength vs. humidity at various temperatures for DuPont Minlon® 12T—40% mineral filled, super impact PA66 resin.
Mckeen_Ch06.indd 296
12/11/2007 6:08:16 PM
6: Polyamides (Nylons)
297
Figure 6.110. Tensile strength vs. humidity at various temperatures for DuPont Minlon® 20B—40% glass fiber/ mineral filled, stiffened, strength high PA66 resin.
Figure 6.111. Tensile strength vs. humidity at various temperatures for DuPont Minlon® 22C—40% glass fiber/ mineral filled, low warpage high PA66 resin.
Mckeen_Ch06.indd 297
12/11/2007 6:08:18 PM
298
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.112. Tensile strength vs. humidity at two temperatures for two DuPont Zytel® glass fiber filled PA66 resins.
Figure 6.113. Tensile strength vs. moisture content for several BASF Ultramid® PA66 resins.
Mckeen_Ch06.indd 298
12/11/2007 6:08:20 PM
6: Polyamides (Nylons)
299
Figure 6.114. Tensile strength vs. temperature for SABIC Innovative Plastics LNP Thermocomp® RC-1006— electrically conductive, 30% carbon fiber filled PA66 resin.
Figure 6.115. Tensile strength vs. temperature and moisture content for DuPont Zytel® 70G-33L—33% glass filled, lubricated PA66 resin.
Mckeen_Ch06.indd 299
12/11/2007 6:08:21 PM
300
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.116. Tensile strength vs. temperature and moisture content for DuPont Zytel® 71G-33L—33% glass filled, toughened lubricated PA66 resin.
Figure 6.117. Tensile strength vs. temperature and moisture content for DuPont Zytel® 101—general purpose PA66 resin.
Mckeen_Ch06.indd 300
12/11/2007 6:08:23 PM
6: Polyamides (Nylons)
301
Figure 6.118. Tensile strength vs. fiber glass content of Zytel® 70G series PA66 resins.
Figure 6.119. Shear strength vs. humidity at two temperatures for two DuPont Zytel® PA66 resins.
Mckeen_Ch06.indd 301
12/11/2007 6:08:25 PM
302
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.120. Shear strength vs. temperature for two DuPont Zytel® PA66 resins (DAM).
Figure 6.121. Izod impact strength vs. humidity at –40°C for several DuPont Minlon® PA66 resins.
Mckeen_Ch06.indd 302
12/11/2007 6:08:26 PM
6: Polyamides (Nylons)
303
Figure 6.122. Izod impact strength vs. humidity at 23°C for several DuPont Minlon® PA66 resins.
Figure 6.123. Izod impact strength vs. humidity and temperture for two DuPont Zytel® glass filled PA66 resins.
Mckeen_Ch06.indd 303
12/11/2007 6:08:28 PM
304
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.124. Pressure-specific volume-temperature (PVT) for BASF Ultramid® A3K—high flow, fast cycling, high impact PA66 resin.
Figure 6.125. Dimensional change vs. humidity for DuPont Zytel® 70G-33L—33% glass filled, lubricated PA66 resin.
Mckeen_Ch06.indd 304
12/11/2007 6:08:30 PM
6: Polyamides (Nylons)
305
Figure 6.126. Dimensional change vs. humidity for DuPont Zytel® 71G-33L—33% glass filled, lubricated, toughened PA66 resin.
Figure 6.127. Dimensional change vs. humidity for DuPont Zytel® 101—general purpose PA66 resin.
Mckeen_Ch06.indd 305
12/11/2007 6:08:32 PM
306
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.128. Dimensional change vs. moisture content for DuPont Zytel® 101—general purpose PA66 resin.
Figure 6.129. Linear thermal expansion vs. temperature for BASF Ultramid® PA66 resins.
Mckeen_Ch06.indd 306
12/11/2007 6:08:33 PM
6: Polyamides (Nylons)
307
Figure 6.130. Moisture content vs. relative humidity for DuPont Zytel® PA66 resins.
Figure 6.131. Dielectric constant vs. temperature at 100 Hz for DuPont Zytel® 101—general purpose PA66 resins.
Mckeen_Ch06.indd 307
12/11/2007 6:08:35 PM
308
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.132. Dissipation factor vs. moisture content at 100 Hz and 23°C for DuPont Zytel® 101 general purpose PA66 resin.
Figure 6.133. Dissipation factor vs. temperature at 100 Hz for DuPont Zytel® 101 general purpose PA66 resins.
Mckeen_Ch06.indd 308
12/11/2007 6:08:37 PM
6: Polyamides (Nylons)
309
Figure 6.134. Dielectric strength vs. moisture content and temperature for BASF Ultramid® A3EG6—30% glass fiber, heat stabilized PA66 resin.
Figure 6.135. Dielectric strength vs. temperature for DuPont Zytel® 101—general purpose PA66 resin.
Mckeen_Ch06.indd 309
12/11/2007 6:08:39 PM
310
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.136. Dielectric strength vs. thickness for DuPont Zytel® 101—general purpose PA66 resin.
Figure 6.137. Volume resistivity vs. moisture content for DuPont Zytel® 101—general purpose PA66 resin.
Mckeen_Ch06.indd 310
12/11/2007 6:08:40 PM
6: Polyamides (Nylons)
311
Figure 6.138. Volume resistivity vs. temperature and various moisture levels for BASF Ultramid® A3EG6—high stiffness, 30% glass fiber filled PA66 resin.
Figure 6.139. Volume resistivity vs. temperature and various moisture levels for BASF Ultramid® A3XG6— 30% glass fiber filled PA66 resin.
Mckeen_Ch06.indd 311
12/11/2007 6:08:41 PM
312
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.140. Volume resistivity vs. temperature (DAM) for DuPont Zytel® 101—general purpose PA66 resin.
6.6 Nylon 610 (PA610)
Figure 6.141. Stress vs. strain at various temperatures for SABIC Innovative Plastics LNP Thermocomp® QF-1006—30% glass fiber reinforced PA610 resin (DAM).
Mckeen_Ch06.indd 312
12/11/2007 6:08:44 PM
6: Polyamides (Nylons)
313
Figure 6.142. Tensile modulus vs. temperature for SABIC Innovative Plastics LNP Thermocomp® QF-1006— 30% glass fiber reinforced PA610 resin (DAM).
Figure 6.143. Tensile strength vs. temperature for SABIC Innovative Plastics LNP Thermocomp® QF-1006— 30% glass fiber reinforced PA610 resin (DAM).
Mckeen_Ch06.indd 313
12/11/2007 6:08:45 PM
314
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.144. Tensile yield strength vs. temperature for Toray Resin Company Amilan® CM2001—25% crystallinity, standard grade PA610 resin.
Figure 6.145. Izod impact strength vs. temperature for Toray Resin Company Amilan® CM2001—25% crystallinity, standard grade PA610 resin.
Mckeen_Ch06.indd 314
12/11/2007 6:08:47 PM
6: Polyamides (Nylons)
315
Figure 6.146. Linear thermal expansion vs. temperature for BASF Ultramid® S3 and S4 PA610 resins.
Figure 6.147. Water absorption vs. relative humidity for BASF Ultramid® S3 and S4 PA610 resins.
Mckeen_Ch06.indd 315
12/11/2007 6:08:49 PM
316
The Effect of Temperature and Other Factors on Plastics and Elastomers
6.7 Nylon 612 (PA612)
Figure 6.148. Stress vs. strain at various temperatures for SABIC Innovative Plastics LNP Thermocomp® IF-1006—30% glass fiber reinforced PA612 resin (DAM).
Figure 6.149. Stress vs. strain for DuPont Zytel® 77G33L NC010—general purpose, lubricated, 33% short glass fiber reinforced PA612 resin (DAM).
Mckeen_Ch06.indd 316
12/11/2007 6:08:50 PM
6: Polyamides (Nylons)
317
Figure 6.150. Stress vs. strain at various temperatures for DuPont Zytel® 158 NC010—general purpose, lubricated PA612 resin (DAM).
Figure 6.151. Stress vs. strain for DuPont Zytel® 77G43L—general purpose, lubricated, 43% short glass fiber reinforced PA612 resin.
Mckeen_Ch06.indd 317
12/11/2007 6:08:51 PM
318
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.152. Flexural modulus vs. humidity DuPont Zytel® 77G33L NC010—general purpose, lubricated, 33% short glass fiber reinforced PA612 resin.
Figure 6.153. Flexural modulus vs. temperature and moisture content DuPont Zytel® 158L—general purpose, lubricated PA612 resin.
Mckeen_Ch06.indd 318
12/11/2007 6:08:52 PM
6: Polyamides (Nylons)
319
Figure 6.154. Flexural modulus vs. temperature of DuPont Zytel® 77G33L NC010—general purpose, lubricated, 33% short glass fiber reinforced PA612 resin.
Figure 6.155. Tensile modulus vs. temperature SABIC Innovative Plastics LNP Thermocomp® IF—1006, 33% glass filled PA612 resin.
Mckeen_Ch06.indd 319
12/11/2007 6:08:55 PM
320
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.156. Shear strength vs. relative humidity of DuPont Zytel® 77G33L NC010—general purpose, lubricated, 33% short glass fiber reinforced PA612 resin.
Figure 6.157. Shear strength vs. temperature of DuPont Zytel® 77G33L NC010—general purpose, lubricated, 33% short glass fiber reinforced PA612 resin.
Mckeen_Ch06.indd 320
12/11/2007 6:08:56 PM
6: Polyamides (Nylons)
321
Figure 6.158. Tensile strength vs. relative humidity of DuPont Zytel® 77G33L NC010—general purpose, lubricated, 33% short glass fiber reinforced PA612 resin.
Figure 6.159. Tensile strength vs. temperature SABIC Innovative Plastics LNP Thermocomp® IF—1006, 33% glass filled PA612 resin.
Mckeen_Ch06.indd 321
12/11/2007 6:08:57 PM
322
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.160. Tensile strength vs. temperature of DuPont Zytel® 77G33L NC010—general purpose, lubricated, 33% short glass fiber reinforced PA612 resin.
Figure 6.161. Tensile yield strength vs. temperature of DuPont Zytel® 158 NC010—general purpose, lubricated PA612 resin.
Mckeen_Ch06.indd 322
12/11/2007 6:08:58 PM
6: Polyamides (Nylons)
323
Figure 6.162. Izod notched impact strength vs. relative humidity at 23°C of two DuPont Zytel® PA612 resins.
Figure 6.163. Pressure-specific volume-temperature of DuPont Zytel® 158 NC010—general purpose, lubricated PA612 resin.
Mckeen_Ch06.indd 323
12/11/2007 6:09:00 PM
324
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.164. Equilibrium moisture content vs. relative humidity of two DuPont Zytel® PA612 resins.
Figure 6.165. Dielectric constant vs. moisture content for DuPont Zytel® 151L—general purpose, lubricated PA612 resin.
Mckeen_Ch06.indd 324
12/11/2007 6:09:01 PM
6: Polyamides (Nylons)
325
Figure 6.166. Dielectric constant vs. temperature for DuPont Zytel® 151L—general purpose, lubricated PA612 resin.
Figure 6.167. Dielectric strength vs. temperature for DuPont Zytel® 151L—general purpose, lubricated PA612 resin.
Mckeen_Ch06.indd 325
12/11/2007 6:09:02 PM
326
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.168. Dissipation factor vs. moisture content at 100 Hz for DuPont Zytel® 151L—general purpose, lubricated PA612 resin.
Figure 6.169. Dissipation factor vs. temperature at 100 Hz for DuPont Zytel® 151L—general purpose, lubricated PA612 resin.
Mckeen_Ch06.indd 326
12/11/2007 6:09:03 PM
6: Polyamides (Nylons)
327
Figure 6.170. Volume resistivity vs. moisture content for DuPont Zytel® 151L—general purpose, lubricated PA612 resin.
Figure 6.171. Volume resistivity vs. temperature for DuPont Zytel® 151L—general purpose, lubricated PA612 resin.
Mckeen_Ch06.indd 327
12/11/2007 6:09:05 PM
328
The Effect of Temperature and Other Factors on Plastics and Elastomers
6.8 Nylon 6/66 (PA666)
Figure 6.172. Stress vs. strain at various temperatures for EMS-Grivory Grivory® HT2V-5H—(PA 6T/66) 50% glass fiber, heat stabilized PA666 resin (conditioned at 50% relative humidity).
Figure 6.173. Stress vs. strain at various temperatures for EMS-Grivory Grivory® HT2V-5H—(PA 6T/66) 50% glass fiber, heat stabilized PA666 resin (DAM).
Mckeen_Ch06.indd 328
12/11/2007 6:09:06 PM
6: Polyamides (Nylons)
329
Figure 6.174. Stress vs. strain at various temperatures for EMS-Grivory Grilon® TS V0—heat stabilized, flame retardant PA666 resin (conditioned at 50% relative humidity).
Figure 6.175. Stress vs. strain at various temperatures for EMS-Grivory Grilon® TS V0—heat stabilized, flame retardant PA666 resin (DAM).
Mckeen_Ch06.indd 329
12/11/2007 6:09:07 PM
330
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.176. Stress vs. strain at various temperatures for BASF Ultramid® C3U—general purpose injection molding grade with improved flame retardance PA666 resin (conditioned at 50% relative humidity).
Figure 6.177. Stress vs. strain at various temperatures for BASF Ultramid® C3U—general purpose injection molding grade with improved flame retardance PA666 resin (DAM).
Mckeen_Ch06.indd 330
12/11/2007 6:09:09 PM
6: Polyamides (Nylons)
331
Figure 6.178. Stress vs. strain at various temperatures for DuPont Zytel® 109L—nucleated, lubricated PA666 resin (conditioned at 50% relative humidity).
Figure 6.179. Stress vs. strain at various temperatures for DuPont Zytel® 109L—nucleated, lubricated PA666 resin (DAM).
Mckeen_Ch06.indd 331
12/11/2007 6:09:10 PM
332
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.180. Shear modulus vs. temperature of EMS-Grivory Grivory® HT2V Series of PA666 resins.
Figure 6.181. Shear modulus vs. temperature of EMS-Grivory Grilon® TS Series of PA666 resins (conditioned at 50% relative humidity).
Mckeen_Ch06.indd 332
12/11/2007 6:09:12 PM
6: Polyamides (Nylons)
333
Figure 6.182. Shear modulus vs. temperature of EMS-Grivory Grilon® TS Series of PA666 resins (DAM).
Figure 6.183. Shear modulus vs. temperature for BASF Ultramid® PA666 resins.
Mckeen_Ch06.indd 333
12/11/2007 6:09:13 PM
334
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.184. Tensile modulus vs. temperature of EMS-Grivory Grivory® HT2V series PA666 resins.
Figure 6.185. Tensile modulus vs. temperature for BASF Ultramid® PA666 resins.
Mckeen_Ch06.indd 334
12/11/2007 6:09:15 PM
6: Polyamides (Nylons)
335
Figure 6.186. Pressure-specific volume-temperature (PVT) for BASF Ultramid® C3U-C 3U—general purpose, injection molding, improved flame retardance PA666 resin.
6.9 Nylon Amorphous
Figure 6.187. Stress vs. strain at various temperatures for EMS-Grivory Grilamid® TR55—standard grade amorphous nylon (conditioned at 50% relative humidity).
Mckeen_Ch06.indd 335
12/11/2007 6:09:16 PM
336
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.188. Stress vs. strain at various temperatures for EMS-Grivory Grilamid® Grilamid® TR90—high strength amorphous nylon (conditioned at 50% relative humidity).
Figure 6.189. Stress vs. strain at various temperatures for Degussa Trogamid® T5000—standard grade amorphous nylon.
Mckeen_Ch06.indd 336
12/11/2007 6:09:18 PM
6: Polyamides (Nylons)
337
Figure 6.190. Stress vs. strain at yield at various temperatures for Degussa Trogamid® T5000—standard grade amorphous nylon.
Figure 6.191. Shear modulus vs. temperature for two EMS-Grivory Grilamid® amorphous nylons.
Mckeen_Ch06.indd 337
12/11/2007 6:09:19 PM
338
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.192. Storage modulus vs. temperature for two Degussa Trogamid® amorphous nylons.
Figure 6.193. Tensile modulus vs. temperature for two EMS-Grivory Grilamid® amorphous nylons.
Mckeen_Ch06.indd 338
12/11/2007 6:09:20 PM
6: Polyamides (Nylons)
339
Figure 6.194. Tensile modulus vs. temperature for Degussa Trogamid® amorphous nylon.
Figure 6.195. Charpy notched impact strength vs. temperature for Degussa Trogamid® T5000—standard grade amorphous nylon.
Mckeen_Ch06.indd 339
12/11/2007 6:09:22 PM
340
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.196. Pressure-specific volume-temperature (PVT) for Degussa Trogamid® T5000—standard grade amorphous nylon.
Figure 6.197. Linear expansion vs. moisture content for Degussa Trogamid® amorphous nylon.
Mckeen_Ch06.indd 340
12/11/2007 6:09:23 PM
6: Polyamides (Nylons)
341
Figure 6.198. Linear thermal expansion vs. temperature for Degussa Trogamid® amorphous nylons.
Figure 6.199. Moisture content vs. relative humidity for Degussa Trogamid® amorphous nylon.
Mckeen_Ch06.indd 341
12/11/2007 6:09:24 PM
342
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.200. Dielectric constant vs. frequency and water content for Degussa Trogamid® T5000—standard grade amorphous nylon.
Figure 6.201. Dielectric constant vs. temperature for Degussa Trogamid® T5000—standard grade amorphous nylon.
Mckeen_Ch06.indd 342
12/11/2007 6:09:26 PM
6: Polyamides (Nylons)
343
Figure 6.202. Dissipation factor vs. frequency for Degussa Trogamid® T5000—standard grade amorphous nylon.
Figure 6.203. Dissipation factor vs. temperature for Degussa Trogamid® T5000—standard grade amorphous nylon.
Mckeen_Ch06.indd 343
12/11/2007 6:09:27 PM
344
The Effect of Temperature and Other Factors on Plastics and Elastomers
6.10 Nylon 46 (PA46)
Figure 6.204. Stress vs. strain at various temperatures for DSM Engineering Plastics Stanyl® TE200F6—30% glass fiber reinforced, heat stabilized PA46 resin.
Figure 6.205. Flexural modulus vs. temperature for DSM Engineering Plastics Stanyl® PA46 resins.
Mckeen_Ch06.indd 344
12/11/2007 6:09:28 PM
6: Polyamides (Nylons)
345
Figure 6.206. Shear modulus vs. temperature for DSM Engineering Plastics Stanyl® TE250 Series—fiber glass filled, heat stabilized, fire retardant PA46 resins.
Figure 6.207. Shear modulus vs. temperature and humidity for DSM Engineering Plastics Stanyl® PA46 resins.
Mckeen_Ch06.indd 345
12/11/2007 6:09:30 PM
346
The Effect of Temperature and Other Factors on Plastics and Elastomers
6.11 Polyphthalamide (PPA)
Figure 6.208. Stress vs. strain at various temperatures for Solvay Amodel® A-1133 HS—33% glass reinforced, heat stabilized PPA resin (DAM).
Figure 6.209. Stress vs. strain at various temperatures for Solvay Amodel® A-1145 HS—45% glass reinforced, heat stabilized PPA resin (DAM).
Mckeen_Ch06.indd 346
12/11/2007 6:09:32 PM
6: Polyamides (Nylons)
347
Figure 6.210. Stress vs. strain at various temperatures for Solvay Amodel® AS-1566 HS—65% glass/mineral reinforced, heat stabilized PPA resin (DAM).
Figure 6.211. Stress vs. strain at various temperatures for Solvay Amodel® AT-5001—High impact PPA resin (DAM).
Mckeen_Ch06.indd 347
12/11/2007 6:09:33 PM
348
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.212. Stress vs. strain at various temperatures for Solvay Amodel® ET-1001 HS—Impact-modified, heat stabilized PPA resin (DAM).
Figure 6.213. Stress vs. strain at various temperatures for DuPont Engineering Plastics Zytel® HTN51G35HSL—35% glass reinforced, heat stabilized, lubricated PPA resin (DAM).
Mckeen_Ch06.indd 348
12/11/2007 6:09:34 PM
6: Polyamides (Nylons)
349
Figure 6.214. Stress vs. strain at various temperatures for DuPont Engineering Plastics Zytel® HTN51G35HSL—35% glass reinforced, heat stabilized, lubricated PPA resin (conditioned at 50% RH).
Figure 6.215. Stress vs. strain at various temperatures for DuPont Engineering Plastics Zytel® HTN51G45HSL—45% glass reinforced, heat stabilized, lubricated PPA resin (DAM).
Mckeen_Ch06.indd 349
12/11/2007 6:09:36 PM
350
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.216. Stress vs. strain at various temperatures for DuPont Engineering Plastics Zytel® HTN51G45HSL—45% glass reinforced, heat stabilized, lubricated PPA resin (conditioned at 50% RH).
Figure 6.217. Flexural modulus vs. relative humidity for Solvay Amodel® A-1133 HS—33% glass reinforced, heat stabilized PPA resin.
Mckeen_Ch06.indd 350
12/11/2007 6:09:37 PM
6: Polyamides (Nylons)
351
Figure 6.218. Flexural modulus vs. temperature for Solvay Amodel® A—1000 series glass fiber reinforced, heat stabilized PPA resins.
Figure 6.219. Flexural modulus vs. temperature for Solvay Amodel® glass fiber reinforced PPA resins.
Mckeen_Ch06.indd 351
12/11/2007 6:09:39 PM
352
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.220. Flexural modulus vs. temperature for Solvay Amodel® glass and mineral reinforced, heat stabilized PPA resins.
Figure 6.221. Flexural modulus vs. temperature for DuPont Engineering Plastics Zytel® glass fiber reinforced, heat stabilized PPA resins.
Mckeen_Ch06.indd 352
12/11/2007 6:09:40 PM
6: Polyamides (Nylons)
353
Figure 6.222. Modulus vs. temperature for Solvay Amodel® unreinforced base PPA resins.
Figure 6.223. Tensile modulus vs. temperature for Solvay Amodel® glass fiber reinforced PPA resins.
Mckeen_Ch06.indd 353
12/11/2007 6:09:41 PM
354
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.224. Tensile modulus vs. temperature for Solvay Amodel® A—1000 series glass fiber reinforced, heat stabilized PPA resins.
Figure 6.225. Tensile modulus vs. temperature for Solvay Amodel® glass and mineral reinforced, heat stabilized PPA resins.
Mckeen_Ch06.indd 354
12/11/2007 6:09:42 PM
6: Polyamides (Nylons)
355
Figure 6.226. Compressive modulus vs. temperature for Solvay Amodel® A—1000 series glass fiber reinforced, heat stabilized PPA resins.
Figure 6.227. Flexural strength vs. temperature for Solvay Amodel® A—1000 series glass fiber reinforced, heat stabilized PPA resins.
Mckeen_Ch06.indd 355
12/11/2007 6:09:44 PM
356
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.228. Flexural strength vs. temperature for Solvay Amodel® glass fiber reinforced PPA resins.
Figure 6.229. Flexural strength vs. temperature for Solvay Amodel® glass and mineral reinforced, heat stabilized PPA resins.
Mckeen_Ch06.indd 356
12/11/2007 6:09:45 PM
6: Polyamides (Nylons)
357
Figure 6.230. Tensile strength vs. relative humidity for Solvay Amodel® A-1133 HS—33% glass reinforced, heat stabilized PPA resin.
Figure 6.231. Tensile strength vs. temperature for Solvay Amodel® glass fiber reinforced PPA resins.
Mckeen_Ch06.indd 357
12/11/2007 6:09:46 PM
358
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.232. Tensile strength vs. temperature for Solvay Amodel® A—1000 series glass fiber reinforced, heat stabilized PPA resins.
Figure 6.233. Tensile strength vs. temperature for Solvay Amodel® glass and mineral reinforced, heat stabilized PPA resins.
Mckeen_Ch06.indd 358
12/11/2007 6:09:48 PM
6: Polyamides (Nylons)
359
Figure 6.234. Tensile strength vs. temperature for DuPont Engineering Plastics Zytel® glass fiber reinforced, heat stabilized PPA resins.
Figure 6.235. Tensile elongation at break vs. temperature for Solvay Amodel® glass fiber reinforced PPA resins.
Mckeen_Ch06.indd 359
12/11/2007 6:09:49 PM
360
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.236. Tensile elongation at break vs. temperature for Solvay Amodel® A—1000 series glass fiber reinforced, heat stabilized PPA resins.
Figure 6.237. Compressive strength vs. temperature for Solvay Amodel® A—1000 series glass fiber reinforced, heat stabilized PPA resins.
Mckeen_Ch06.indd 360
12/11/2007 6:09:50 PM
6: Polyamides (Nylons)
361
Figure 6.238. Izod impact strength vs. temperature for Solvay Amodel® PPA resins.
Figure 6.239. Pressure-specific volume-temperature (PVT) for DuPont Engineering Plastics Zytel® HTN51G35HSL—35% glass reinforced, heat stabilized, lubricated PPA resins.
Mckeen_Ch06.indd 361
12/11/2007 6:09:52 PM
362
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.240. Moisture absorption vs. relative humidity for Solvay Amodel® A-1133 HS—33% glass reinforced, heat stabilized PPA resin.
6.12 Polyarylamide (PAA)
Figure 6.241. Stress vs. strain at various temperatures for Solvay IXEF® 1002—30% glass fiber reinforced PAA resin (DAM).
Mckeen_Ch06.indd 362
12/11/2007 6:09:53 PM
6: Polyamides (Nylons)
363
Figure 6.242. Stress vs. strain at various temperatures for Solvay IXEF® 1022—50% glass fiber reinforced PAA resin (DAM).
Figure 6.243. Stress vs. strain at various temperatures for Solvay IXEF® 1032—60% glass fiber reinforced PAA resin (DAM).
Mckeen_Ch06.indd 363
12/11/2007 6:09:55 PM
364
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.244. Stress vs. strain at various temperatures for Solvay IXEF® 2057—45% mineral reinforced PAA resin (DAM).
Figure 6.245. Stress vs. strain at various temperatures for Solvay IXEF® 3006—30% carbon fiber reinforced PAA resin (DAM).
Mckeen_Ch06.indd 364
12/11/2007 6:09:56 PM
6: Polyamides (Nylons)
365
Figure 6.246. Flexural modulus vs. temperature for Solvay IXEF® 1022—50% glass fiber reinforced PAA resin.
Figure 6.247. Tensile modulus vs. relative humidity at 23°C for Solvay IXEF® reinforced PAA resins.
Mckeen_Ch06.indd 365
12/11/2007 6:09:57 PM
366
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.248. Tensile modulus vs. temperature for Solvay IXEF® 1022—50% glass fiber reinforced PAA resin.
Figure 6.249. Flexural strength vs. temperature for Solvay IXEF® 1022—50% glass fiber reinforced PAA resin.
Mckeen_Ch06.indd 366
12/11/2007 6:09:58 PM
6: Polyamides (Nylons)
367
Figure 6.250. Tensile strength vs. relative humidity at 23°C for Solvay IXEF® reinforced PAA resins.
Figure 6.251. Tensile strength vs. temperature for Solvay IXEF® 1022—50% glass fiber reinforced PAA resin.
Mckeen_Ch06.indd 367
12/11/2007 6:10:00 PM
368
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.252. Notched IZOD strength vs. temperature for Solvay IXEF® 1022—50% glass fiber reinforced PAA resin.
Figure 6.253. Unnotched IZOD strength vs. temperature for Solvay IXEF® 1022—50% glass fiber reinforced PAA resin.
Mckeen_Ch06.indd 368
12/11/2007 6:10:01 PM
6: Polyamides (Nylons)
369
Figure 6.254. IZOD strength vs. water content for Solvay IXEF® PAA resins.
Figure 6.255. Pressure-specific volume-temperature (PVT) for Solvay IXEF® 1022—50% glass fiber reinforced PAA resin.
Mckeen_Ch06.indd 369
12/11/2007 6:10:02 PM
370
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.256. Coefficient of linear thermal expansion (COLTE) vs. temperature for Solvay IXEF® 1022—50% glass fiber reinforced PAA resin.
Figure 6.257. Coefficient of linear thermal expansion (COLTE) vs. temperature for Solvay IXEF® 1622—50% glass fiber reinforced, impact modified PAA resin.
Mckeen_Ch06.indd 370
12/11/2007 6:10:04 PM
6: Polyamides (Nylons)
371
Figure 6.258. Coefficient of linear thermal expansion (COLTE) vs. temperature for Solvay IXEF® 2011—42% mineral reinforced PAA resin.
Figure 6.259. Water absorption vs. relative humidity for Solvay IXEF® PAA resins.
Mckeen_Ch06.indd 371
12/11/2007 6:10:05 PM
372
The Effect of Temperature and Other Factors on Plastics and Elastomers
6.13 Polyamide Blend (PPA)
Figure 6.260. Stress vs. strain at various temperatures for EMS-Grivory Grivory GC-4H—PA66/PPA alloy, 40% carbon fiber reinforced PPA resin (conditioned).
Figure 6.261. Stress vs. strain at various temperatures for EMS-Grivory Grivory GC-4H—PA66/PPA alloy, 40% carbon fiber reinforced PPA resin (DAM).
Mckeen_Ch06.indd 372
12/11/2007 6:10:06 PM
6: Polyamides (Nylons)
373
Figure 6.262. Stress vs. strain at various temperatures for EMS-Grivory Grivory GM-4H—PA66/PPA alloy, 40% mineral reinforced PPA resin (conditioned).
Figure 6.263. Stress vs. strain at various temperatures for EMS-Grivory Grivory GM-4H—PA66/PPA alloy, 40% mineral reinforced PPA resin (DAM).
Mckeen_Ch06.indd 373
12/11/2007 6:10:08 PM
374
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.264. Stress vs. strain at various temperatures for EMS-Grivory Grivory GV-5H—PA66/PPA alloy, 50% glass fiber reinforced PPA resin (conditioned).
Figure 6.265. Stress vs. strain at various temperatures for EMS-Grivory Grivory GV-5H—PA66/PPA alloy, 50% glass fiber reinforced PPA resin (DAM).
Mckeen_Ch06.indd 374
12/11/2007 6:10:09 PM
6: Polyamides (Nylons)
375
Figure 6.266. Stress vs. strain at various temperatures for Arkema Orgalloy® RS 6010—PA6 alloy, 10% glass fiber reinforced PPA resin (DAM).
Figure 6.267. Shear modulus vs. temperature for Arkema Orgalloy® PPA resins (DAM).
Mckeen_Ch06.indd 375
12/11/2007 6:10:11 PM
376
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 6.268. Tensile modulus vs. temperature for EMS-Grivory Grivory GC-4H—PA66/PPA alloy, 40% carbon fiber reinforced PPA resin.
Figure 6.269. Tensile modulus vs. temperature for EMS-Grivory Grivory GM-4H—PA66/PPA alloy, 40% mineral reinforced PPA resin.
Mckeen_Ch06.indd 376
12/11/2007 6:10:12 PM
6: Polyamides (Nylons)
377
Figure 6.270. Tensile modulus vs. temperature for EMS-Grivory Grivory GV-5H—PA66/PPA alloy, 50% glass fiber reinforced PPA resin.
Figure 6.271. Pressure-specific volume-temperature (PVT) for Arkema Orgalloy® RS 6010—PA6 alloy, 10% glass fiber reinforced PPA resin.
Mckeen_Ch06.indd 377
12/11/2007 6:10:13 PM
Mckeen_Ch06.indd 378
12/11/2007 6:10:15 PM
7 Polyolefins and Acrylics 7.1 Background In organic chemistry, an alkene, also called an olefin, is a chemical compound containing at least one carbon-to-carbon double bond. The simplest alkenes, with only one double bond and no other functional groups, form a homologous series of hydrocarbons with the general formula CnH2n. The two simplest alkenes of this series are ethylene and propylene. When these are polymerized, they form polyethylene and polypropylene, which are two of the plastics discussed in this chapter. A slightly more complex alkene is 4-methylpentene-1, the basis of poly (methyl pentene), known by the trade name of TPX™. If one of the hydrogens on the ethylene molecule is changed to chlorine, the molecule is called vinyl chloride, the basis of polyvinyl-chloride, (PVC). Acrylic polymers are also polymerized through the carbon-carbon double bond. Methyl methacrylate is the monomer used to make polymethyl methacrylate (PMMA).
The structures of these monomers are shown in Fig. 7.1, and of their polymers are shown in Fig. 7.2. The copolymer structure using the norbornene monomer is shown later in Fig. 7.5.
7.1.1 Polyethylene (PE) PE can be made in a number of ways. The way it is produced can affect its physical properties. It can also have very small amounts of comonomers, which can alter its structure and properties. The basic types or classifications of PE, according to the American Society for Testing and Materials (ASTM) 1248, are as follows: • Ultra low density polyethylene (ULDPE), polymers with densities ranging from 0.890 to 0.905 g/cc, contain comonomer
ethylene
Propylene
4-methylpentene-1
Vinyl chloride
Methyl methacrylate
Norbornene
Figure 7.1. Chemical structures of monomers used to make polyolefins.
379
Mckeen_Ch07.indd 379
12/11/2007 6:10:36 PM
380
The Effect of Temperature and Other Factors on Plastics and Elastomers
• Very low density polyethylene (VLDPE), polymers with densities ranging from 0.905 to 0.915 g/cc, contain comonomer • Linear low density polyethylene (LLDPE), polymers with densities ranging from 0.915 to 0.935 g/cc, contain comonomer • Low density polyethylene (LDPE), polymers with densities ranging from 0.915 to 0.935 g/cc • Medium density polyethylene (MDPE), polymers with densities ranging from 0.926 to 0.940 g/ cc, may or may not contain comonomer
• High-density polyethylene (HDPE), polymers with densities ranging from 0.940 to 0.970 g/cc, may or may not contain comonomer Figure 7.3 shows the differences graphically. The differences in terms of number and length of the branches affect the density and melting points of some of the types. Branching affects the crystallinity. A diagram of a representation of the crystal structure of PE is shown in Fig. 7.4. One can imagine how branching in the polymer chain can disrupt the crystalline regions.
Figure 7.2. Structures of polyolefin polymers.
Figure 7.3. Graphical depictions of PE types.
Mckeen_Ch07.indd 380
12/11/2007 6:10:37 PM
7: Polyolefins and Acrylics
381
Figure 7.4. Graphical diagram of PE crystal structure.
The crystalline regions are the highly ordered areas in the shaded rectangles of Fig. 7.4. A high degree of branching reduces the size of the crystalline regions, and leads to lower crystallinity.
7.1.2 Polypropylene (PP) The three main types of PP generally available are:
• Impact Copolymers (heterophasic copolymers): They are made in a two reactor system where the homopolymer matrix is made in the first reactor and then transferred to the second reactor where ethylene and propylene are polymerized to create ethylene propylene rubber (EPR) in the form of microscopic nodules dispersed in the homopolymer matrix phase. These nodules impart impact resistance both at ambient and cold temperatures to the compound. This type has intermediate stiffness and tensile strength and is quite cloudy. In general, the more the ethylene monomer added, the greater the impact resistance with correspondingly lower stiffness and tensile strength.
• Homopolymers: They are made in a single reactor with propylene and a catalyst. They are the stiffest of the three propylene types and have the highest tensile strength at yield. In the natural state (no colorant added), they are translucent and have excellent see through or contact clarity with liquids. In comparison to the other two types they have less impact resistance, especially below 0°C.
7.1.3 Polytrimethyl Pentene (PTP)
• Random Copolymers (homophasic copolymers): They are made in a single reactor adding a small amount of ethylene (<5%), which disrupts the crystallinity of the polymer, allowing this type to be the clearest. They are also the most flexible with the lowest tensile strength of the three. They have better room temperature impact than homopolymers but share the same relatively poor impact resistance at low temperatures.
4-Methylpentene-1 based polyolefin is manufactured and marketed solely by Mitsui Chemicals, Inc. by the trade name TPX™. This lightweight, functional polymer displays a unique combination of physical properties and characteristics due to its distinctive molecular structure, which includes a bulky side chain as shown in Fig. 7.2. PTP possesses many characteristics inherent in traditional polyolefins such as excellent electrical insulating properties and strong hydrolysis resistance. Moreover, it features
Mckeen_Ch07.indd 381
12/11/2007 6:10:38 PM
382
The Effect of Temperature and Other Factors on Plastics and Elastomers
low dielectric, superb clarity, transparency, gas permeability, heat and chemical resistance and release qualities. It can be used for extruded and film products, injection molded, and blow molded application items, including: • Paper coatings and baking cartons
differs from Type I by having greater impact values, but lower chemical resistance. CPVC has greater high-temperature resistance. These materials are considered ‘unplasticized’, because they are less flexible than the plasticized formulations. PVC has a broad range of applications, from high-volume construction- related products to simple electric wire insulation and coatings.
• Release film and release paper • High frequency films • Microwave cookware • Food packaging such as gas permeable packages for fruit and vegetables • LED molds
7.1.4 Ultra High Molecular Weight Polyethylene (UHMWPE) Thermoplastic UHMWPE is also known as high modulus polyethylene (HMPE) or high performance polyethylene (HPPE). It has extremely long chains, with molecular weight numbering in millions (usually between 3.1 and 5.67 million). The high molecular weight leads to a very good packing of the chains into the crystal structure. This makes UHMWPE a very tough material, with the highest impact strength of any thermoplastic presently made. It is highly resistant to corrosive chemicals, with exception of oxidizing acids. It has extremely low moisture absorption and is highly resistant to abrasion. Its coefficient of friction is significantly lower than nylon and acetal.
7.1.5 Rigid Polyvinyl Chloride (PVC) PVC is a flexible or rigid material that is chemically nonreactive. Rigid PVC is easily machined, heat formed, welded, and even solvent cemented. PVC can also be machined using standard metal working tools and finished to close tolerances and finishes without great difficulty. PVC resins are normally mixed with other additives such as impact modifiers and stabilizers, providing hundreds of PVC based materials with a variety of engineering properties. There are three broad classifications for rigid PVC compounds: Type I, Type II, and CPVC. Type II
Mckeen_Ch07.indd 382
7.1.6 Cyclic Olefin Copolymer (COC) COC is an amorphous polyolefin made by reaction of ethylene and norbornene in varying ratios. Its structure is given in Fig. 7.5. The properties can be customized by changing the ratio of the monomers found in the polymer. Being amorphous it is transparent. Other performance benefits include: • Low density • Extremely low water absorption • Excellent water vapor barrier properties • High rigidity, strength, and hardness • Variable heat deflection temperature up to 170°C • Very good resistance to acids and alkalis
7.1.7 Polyacrylics While a large number of acrylic polymers are manufactured, PMMA is the most common. It is popular by the trade name, Plexiglas®. PMMA has two very distinct properties that set the product apart from others. First, it is optically clear and colorless. It has a light transmission of 92%. The 4% reflection loss at each surface in unavoidable. Second, its surface is extremely hard. They are also highly weather resistant.
Figure 7.5. Chemical structure of COC.
12/11/2007 6:10:40 PM
7: Polyolefins and Acrylics
7.1.8 Other Olefin/Acrylic Polymers There are a large number of acrylic/olefin copolymers manufactured. One of the best known is the copolymer of ethylene and methacrylic acid forming a polymer known as ethylene-methacrylic-acid
383
(EMAA). This is more commonly known by its trade name, Surlyn®, made by DuPont. Generally, there is little multipoint data publicly available for these polymers, so they are not included in this book. Graphs of the properties of polyolefin plastics as a function of temperature, moisture, and other factors are illustrated in Sections 7.2–7.8.
7.2 Polyethylene (PE)
Figure 7.6. Stress vs. strain at various temperatures of Basell Polyolefins Lupolen® 1810H—low density (0.918 g/cc), MFR 1.5 g/10 min PE resin.
Figure 7.7. Stress vs. strain at various temperatures of Basell Polyolefins Lupolen® 5031L—high density (0.950 g/cc), MFR 6.5 g/10min, stabilized PE resin.
Mckeen_Ch07.indd 383
12/11/2007 6:10:40 PM
384
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 7.8. Stress vs. strain at various temperatures of Basell Polyolefins Lupolen® 5041H—high density (0.950 g/cc), MFR 1.5 g/10 min, stabilized PE resin.
Figure 7.9. Stress vs. strain at various temperatures of Basell Polyolefins Lupolen® 5261Z—high density (0.952 g/cc), MFR 2 g/10 min, stabilized PE resin.
Mckeen_Ch07.indd 384
12/11/2007 6:10:41 PM
7: Polyolefins and Acrylics
385
Figure 7.10. Stress vs. strain at various temperatures of Basell Polyolefins Lupolen® 6031M—high density (0.960 g/cc), MFR 8 g/10 min, stabilized PE resin.
Figure 7.11. Yield stress vs. density of Basell Polyolefins—PE resin.
Mckeen_Ch07.indd 385
12/11/2007 6:10:42 PM
386
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 7.12. Tensile modulus vs. density of Basell Polyolefins—PE resin.
Figure 7.13. Notched tensile impact strength vs. melt flow rate (MFR) of Basell Polyolefins—PE resin.
Mckeen_Ch07.indd 386
12/11/2007 6:10:44 PM
7: Polyolefins and Acrylics
387
Figure 7.14. Specific volume vs. temperature and pressure (PVT) of Basell Polyolefins—PE resin.
Figure 7.15. Hardness vs. density of Basell Polyolefins—PE resin.
Mckeen_Ch07.indd 387
12/11/2007 6:10:45 PM
388
The Effect of Temperature and Other Factors on Plastics and Elastomers
7.3 Polypropylene (PP)
Figure 7.16. Stress vs. strain at various temperatures of Basell Polyolefins Hostalen® H1022—easy flow, high impact PP resin.
Figure 7.17. Stress vs. strain at various temperatures of Basell Polyolefins Hostalen® H2250—easy flow, high heat PP resin.
Mckeen_Ch07.indd 388
12/11/2007 6:10:46 PM
7: Polyolefins and Acrylics
389
Figure 7.18. Stress vs. strain at various temperatures of Basell Polyolefins Hostalen® H5216—easy flow, random copolymer PP resin.
Figure 7.19. Flexural modulus at 23°C vs. glass fiber content of Asahi Kasei Thermylene®—PP resins.
Mckeen_Ch07.indd 389
12/11/2007 6:10:48 PM
390
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 7.20. Flexural modulus vs. temperature of Chisso America Olehard®—glass and mineral filled PP resin.
Figure 7.21. Flexural modulus vs. temperature of Chevron Phillips Chemical Marlex®—PP resin.
Mckeen_Ch07.indd 390
12/11/2007 6:10:49 PM
7: Polyolefins and Acrylics
391
Figure 7.22. Tensile modulus vs. temperature of Basell Polyolefins Hostalen®—PP resin.
Figure 7.23. Tensile strength at break vs. glass fiber content at 23°C of Asahi Kasei Thermylene®—PP resins.
Mckeen_Ch07.indd 391
12/11/2007 6:10:50 PM
392
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 7.24. Tensile strength at break vs. temperature of Chisso America Olehard®—glass and mineral filled PP resin.
Figure 7.25. Tensile strength vs. temperature of Asahi Kasei Thermylene®—PP resins.
Mckeen_Ch07.indd 392
12/11/2007 6:10:52 PM
7: Polyolefins and Acrylics
393
Figure 7.26. Notched charpy impact strength vs. temperature of Basell Polyolefins Hostalen®—PP resins.
Figure 7.27. Notched charpy impact strength vs. temperature of easy flow Basell Polyolefins Hostalen®— PP resins.
Mckeen_Ch07.indd 393
12/11/2007 6:10:53 PM
394
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 7.28. Notched charpy impact strength vs. temperature of additional Basell Polyolefins Hostalen®—PP resins.
Figure 7.29. Coefficient of thermal expansion (in flow direction) vs. temperature of Basell Polyolefins Hostalen®—PP resins.
Mckeen_Ch07.indd 394
12/11/2007 6:10:54 PM
7: Polyolefins and Acrylics
395
Figure 7.30. Coefficient of thermal expansion (in flow direction) vs. temperature of Basell Polyolefins Hostalen®—PP resins.
Figure 7.31. Enthalpy vs. temperature of Basell Polyolefins Hostalen®—PP resins.
Mckeen_Ch07.indd 395
12/11/2007 6:10:55 PM
396
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 7.32. Dissipation factor vs. temperature and frequency of Basell Polyolefins Hostalen® PPN 1060 F—PP resins.
7.4 Polymethylpentene (PMP)
Figure 7.33. Flexural modulus vs. temperature of Mitsui Chemicals TPX™ RT18—general purpose, unfilled PMP resin.
Mckeen_Ch07.indd 396
12/11/2007 6:10:57 PM
7: Polyolefins and Acrylics
397
Figure 7.34. Tensile strength vs. temperature of Mitsui Chemicals TPX™ RT18—general purpose, unfilled PMP resin.
Figure 7.35. Notched Izod impact strength vs. temperature of Mitsui Chemicals TPX™ RT18—general purpose, unfilled PMP resin.
Mckeen_Ch07.indd 397
12/11/2007 6:10:59 PM
398
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 7.36. Dielectric constant vs. frequency at 20°C of Mitsui Chemicals FR-TPX™ T130—30% chopped glass filled PMP resin.
Figure 7.37. Dielectric constant at 1 MHz vs. temperature of Mitsui Chemicals FR-TPX™ T130—30% chopped glass filled PMP resin.
Mckeen_Ch07.indd 398
12/11/2007 6:11:00 PM
7: Polyolefins and Acrylics
399
Figure 7.38. Dissipation factor vs. frequency at 20°C of Mitsui Chemicals FR-TPX™ T130—30% chopped glass filled PMP resin.
Figure 7.39. Dissipation factor vs. frequency of Mitsui Chemicals TPX™ RT18—general purpose, unfilled PMP resin.
Mckeen_Ch07.indd 399
12/11/2007 6:11:01 PM
400
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 7.40. Dissipation factor vs. temperature at 1 MHz of Mitsui Chemicals FR-TPX™ T130—30% chopped glass filled PMP resin.
Figure 7.41. Dissipation factor vs. temperature and frequency of Mitsui Chemicals TPX™ RT18—general purpose, unfilled PMP resin.
Mckeen_Ch07.indd 400
12/11/2007 6:11:02 PM
7: Polyolefins and Acrylics
401
7.5 Ultra High Molecular Weight Polyethylene (UHMWPE)
Figure 7.42. Stress vs. strain at various temperatures of Ticona GUR® 4120—high bulk density, corrosion stabilized UHMWPE resin.
Figure 7.43. Tensile strength vs. temperature of Ticona—UHMWPE resin.
Mckeen_Ch07.indd 401
12/11/2007 6:11:04 PM
402
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 7.44. Elongation at break vs. temperature of Ticona—UHMWPE resin.
Figure 7.45. Yield stress vs. temperature of Ticona GUR® 4120—high bulk density, corrosion stabilized UHMWPE resin.
Mckeen_Ch07.indd 402
12/11/2007 6:11:05 PM
7: Polyolefins and Acrylics
403
Figure 7.46. Notched charpy impact strength vs. temperature of Ticona GUR® 4120—high bulk density, corrosion stabilized UHMWPE resin.
Figure 7.47. Coefficient of linear thermal expansion vs. temperature of Ticona GUR® 4120—high bulk density, corrosion stabilized UHMWPE resin.
Mckeen_Ch07.indd 403
12/11/2007 6:11:06 PM
404
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 7.48. Heat capacity (enthalpy) vs. temperature of Ticona GUR®—UHMWPE resin.
Figure 7.49. Specific heat vs. temperature of Ticona GUR®—UHMWPE resin.
Mckeen_Ch07.indd 404
12/11/2007 6:11:08 PM
7: Polyolefins and Acrylics
405
7.6 Rigid Polyvinyl-Chloride (PVC)
Figure 7.50. Stress vs. strain at 23°C of PolyOne Fiberloc™—rigid PVC resins with different amounts of glass fiber reinforcement.
Figure 7.51. Stress vs. strain at 23°C of Various PolyOne Geon® rigid PVC resins.
Mckeen_Ch07.indd 405
12/11/2007 6:11:09 PM
406
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 7.52. Flexural modulus vs. temperature of PolyOne Fiberloc™—Rigid PVC resins with different amounts of glass fiber reinforcement.
Figure 7.53. Tensile modulus vs. temperature of two PolyOne Geon® rigid PVC resins[j5].
Mckeen_Ch07.indd 406
12/11/2007 6:11:10 PM
7: Polyolefins and Acrylics
407
Figure 7.54. Tensile modulus vs. temperature of two additional PolyOne Geon® rigid PVC resins.
Figure 7.55. Flexural strength vs. temperature of PolyOne Fiberloc™—rigid PVC resins with different amounts of glass fiber reinforcement.
Mckeen_Ch07.indd 407
12/11/2007 6:11:11 PM
408
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 7.56. Tensile strength vs. temperature of two PolyOne Geon® rigid PVC resins.
Figure 7.57. Notched Izod strength vs. temperature of PolyOne Geon® 87241—high flow, high impact, opaque rigid PVC resin.
Mckeen_Ch07.indd 408
12/11/2007 6:11:13 PM
7: Polyolefins and Acrylics
409
7.7 Cyclic-Olefin-Copolymer (COC)
Figure 7.58. Stress vs. strain at 23°C of several Ticona Topas®—COC resins.
Figure 7.59. Elastic modulus vs. temperature of Ticona Topas® 5013, 6013, 6015 and 6017—COC resins.
Mckeen_Ch07.indd 409
12/11/2007 6:11:16 PM
410
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 7.60. Shear modulus vs. temperature of Ticona Topas®—COC resin.
Figure 7.61. Tensile strength vs. temperature of Ticona Topas® 5013, 6013, 6015 and 6017—COC resins.
Mckeen_Ch07.indd 410
12/11/2007 6:11:18 PM
7: Polyolefins and Acrylics
411
Figure 7.62. Glass transition temperature vs. norbornene content of Ticona Topas®—COC resins.
Figure 7.63. Dielectric content vs. temperature of Ticona Topas® 6015—Clear, HDT 150°C COC resin.
Mckeen_Ch07.indd 411
12/11/2007 6:11:20 PM
412
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 7.64. Dissipation factor vs. temperature of Ticona Topas® 6015—Clear, HDT 150°C COC resin.
7.8 Polyacrylics
Figure 7.65. Stress vs. strain at various temperatures of Röhm GmbH Plexiglas® 6N—standard grade acrylic resin.
Mckeen_Ch07.indd 412
12/11/2007 6:11:21 PM
7: Polyolefins and Acrylics
413
Figure 7.66. Stress vs. strain at various temperatures of Röhm GmbH Plexiglas® zk20—high impact grade acrylic resin.
Figure 7.67. Stress vs. strain at various temperatures of Röhm Plexiglas® hw55—heat resistant grade acrylic resin.
Mckeen_Ch07.indd 413
12/11/2007 6:11:23 PM
414
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 7.68. Shear modulus vs. temperature of Cyro Industries Acrylite® acrylic resin.
Figure 7.69. Shear modulus vs. temperature of Röhm GmbH Plexiglas® acrylic resins.
Mckeen_Ch07.indd 414
12/11/2007 6:11:26 PM
7: Polyolefins and Acrylics
415
Figure 7.70. Tensile modulus vs. temperature—general purpose acrylic resin.
Figure 7.71. Tensile modulus vs. temperature of Röhm GmbH Plexiglas® acrylic resins.
Mckeen_Ch07.indd 415
12/11/2007 6:11:27 PM
416
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 7.72. Tensile strength vs. temperature—general purpose acrylic resin.
Figure 7.73. Charpy impact strength of Röhm GmbH Plexiglas® 7N—general purpose extrusion grade acrylic resin vs. percentage of Plexiglas® zkBR additives.
Mckeen_Ch07.indd 416
12/11/2007 6:11:29 PM
7: Polyolefins and Acrylics
417
Figure 7.74. Specific volume as a function of temperature and pressure (PVT) for Röhm GmbH Plexiglas® 7N—general purpose extrusion grade acrylic resin.
Mckeen_Ch07.indd 417
12/11/2007 6:11:30 PM
Mckeen_Ch07.indd 418
12/11/2007 6:11:31 PM
8 Thermoplastic Elastomers 8.1 Background Thermoplastic elastomers (TPEs) have two big advantages over the conventional thermoset (vulcanized) elastomers. The advantages being ease and speed of processing. Other advantages of TPEs are recyclability of scrap, lower energy costs for processing, and the availability of standard uniform grades (generally not available in thermosets). TPEs are molded or extruded on standard plasticsprocessing equipment in considerably shorter cycle times than those required for compression or transfer molding of conventional rubbers. They are made by copolymerizing two or more monomers, using either block or graft polymerization techniques. One of the monomers provides the hard, or crystalline, polymer segment that functions as a thermally stable component; the other monomer develops the soft or amorphous segment which contributes the elastomeric or rubbery characteristic. Physical and chemical properties can be controlled by varying the ratio of the monomers and the length of the hard and soft segments. Block techniques create long-chain molecules that have various or alternating hard and soft segments. Graft polymerization methods involve attaching one polymer chain to another as a branch. The properties that are affected by each phase can be generalized as: “Hard phase”—plastic properties
(3) Flexibility (4) Compression set and tensile set Three high performance types of TPEs make up this chapter.
8.1.1 Thermoplastic Polyurethane Elastomers (TPUs) Urethanes are a reaction product of a diisocyanate and a long- and short-chain polyether, polyester, or caprolactone glycols. The polyols and the short-chain diols react with the diisocyanates to form linear polyurethane molecules. This combination of a diisocyanate and a short-chain diol produces the rigid or hard segment. The polyols form the flexible or soft segment of the final molecule. Figure 8.1 shows the molecular structure in schematic form. The properties of the resin depends on the nature of the raw materials, the reaction conditions, and the ratio of the starting raw materials. The polyols used have a significant influence on certain properties of the thermoplastic polyurethane. Polyether and polyester polyols are both used to produce many products. The polyester based TPUs have the following characteristic features: • Good oil/solvent resistance
(1) Processing temperatures
• Good UV resistance
(2) Continuous-use temperature
• Abrasion resistance
(3) Tensile strength
• Good heat resistance
(4) Tear strength
• Mechanical properties
(5) Chemical and fluid resistance (6) Adhesion to inks, adhesives, and overmolding substrates
The polyether based TPUs have the following characteristic features: • Fungus resistance
“Soft phase”—elastomeric properties
• Low temperature flexibility
(1) Lower service temperature limits
• Excellent hydrolytic stability
(2) Hardness
• Acid/base resistance
419
Mckeen_Ch08.indd 419
12/11/2007 6:13:03 PM
420
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 8.1. Molecular structure (schematic form) of a TPU.
In addition to the basic components described above, most resin formulations contain additives to facilitate production and processability. Other additives can also be included such as • Demolding agents • Flame retardants • Heat/UV stabilizers • Plasticizers The polyether types are slightly more expensive and have better hydrolytic stability and low-temperature flexibility than the polyester types.
8.1.2 Thermoplastic Copolyester Elastomers (TPE-Es or COPEs) These TPEs are generally tougher over a broader temperature range than the urethanes described in Section 8.1.1. Also, they are easier and more forgiving in processing. They have the following characteristic features: • Excellent abrasion resistance • High tensile, compressive, and tear strength • Good flexibility over a wide range of temperatures
particularly better solvent resistance than the ordinary rubbers, but also better heat resistance. These TPEs can have low viscosity above the melting temperature of the crystalline regions, and can be molded easily in both thin sections and complex structures. Properties of thermoplastic polyester elastomers can be fine-tuned over a range by altering the ratio of hard to soft segments. In DuPont Hytrel® polyester TPEs, the resin is a block copolymer. The hard phase is polybutylene terephthalate. The soft segments are long chain polyether glycols.
8.1.3 Polyether Block Amide (PEBA) Thermoplastic Elastomers Polyether block amides are plasticizer-free TPEs. The soft segment is the polyether and the hard segment is the polyamide (nylon). They are easy to process by injection molding, and by profile or film extrusion. Often, they can be easily melt-blended with other polymers, and many compounders will provide custom products by doing this. Their chemistry allows them to achieve a wide range of physical and mechanical properties by varying the monomeric block types and ratios. They have the following characteristic features: (1) Light weight
• Good hydrolytic stability
(2) Great flexibility (extensive range)
• Resistance to solvents and fungus attack
(3) Resiliency
• Selection of a wide range of hardness
(4) Very good dynamic properties
In these polyester TPEs, the hard polyester segments can crystallize, giving the polymer some of the attributes of semicrystalline thermoplastics, most
Mckeen_Ch08.indd 420
(5) High strength (6) Outstanding impact resistance properties at low temperature
12/11/2007 6:13:03 PM
8: Thermoplastic Elastomers
(7) Easy processing (8) Good resistance to most chemicals
421
Graphs showing multipoint properties of TPEs as a function of temperature, moisture, and other factors are illustrated in Sections 8.2–8.4.
8.2 Thermoplastic Polyurethane Elastomers (TPU)
Figure 8.2. Stress vs. strain at various temperatures for BASF Elastollan® 1164 D—polyether resin, Shore hardness 64D TPU resin.
Figure 8.3. Stress vs. strain at various temperatures for BASF Elastollan® 1185 A—polyether resin, Shore hardness 85A TPU resin.
Mckeen_Ch08.indd 421
12/11/2007 6:13:03 PM
422
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 8.4. Stress vs. strain at various temperatures for BASF Elastollan® C 64 D—polyester resin, high crystallinity, Shore hardness 64D TPU resin.
Figure 8.5. Stress vs. strain at various temperatures for BASF Elastollan® C 85 A—polyester resin, high crystallinity, Shore hardness 85A TPU resin.
Mckeen_Ch08.indd 422
12/11/2007 6:13:06 PM
8: Thermoplastic Elastomers
423
Figure 8.6. Stress vs. strain at various temperatures for BASF Elastollan® C 95 A—polyester resin, high crystallinity, Shore hardness 95A TPU resin.
Figure 8.7. Stress vs. strain at various high temperatures for Bayer Desmopan® 453—polyester resin, Shore hardness 53D TPU resin.
Mckeen_Ch08.indd 423
12/11/2007 6:13:07 PM
424
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 8.8. Stress vs. strain at various low temperatures for Bayer Desmopan® 453—polyester resin, Shore hardness 53D TPU resin.
Figure 8.9. Stress vs. strain at various temperatures for BASF Elastollan® R 1000—20% glass fiber, Shore hardness 60D TPU resin.
Mckeen_Ch08.indd 424
12/11/2007 6:13:08 PM
8: Thermoplastic Elastomers
425
Figure 8.10. Stress vs. strain at various temperatures for BASF Elastollan® R 2000—20% glass fiber, Shore hardness 67D TPU resin.
Figure 8.11. Stress vs. strain at various temperatures for BASF Elastollan® R 3000—20% glass fiber, Shore hardness 73D TPU resin.
Mckeen_Ch08.indd 425
12/11/2007 6:13:10 PM
426
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 8.12. Stress vs. strain at various low temperatures for Bayer Texin® 285—polyester resin, Shore hardness 85A TPU resin.
Figure 8.13. Stress vs. strain at various high temperatures for Bayer Texin® 285—polyester resin, Shore hardness 85A TPU resin.
Mckeen_Ch08.indd 426
12/11/2007 6:13:11 PM
8: Thermoplastic Elastomers
427
Figure 8.14. Stress vs. strain at various high temperatures for Bayer Texin® 390—polyester resin, Shore hardness 88A TPU resin.
Figure 8.15. Stress vs. strain at various low temperatures for Bayer Texin® 390—polyester resin, Shore hardness 88A TPU resin.
Mckeen_Ch08.indd 427
12/11/2007 6:13:12 PM
428
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 8.16. Elastic modulus vs. temperature for BASF Elastollan® R glass fiber filled TPU resins.
Figure 8.17. Elastic modulus vs. temperature for BASF Elastollan® polyester TPU resins.
Mckeen_Ch08.indd 428
12/11/2007 6:13:13 PM
8: Thermoplastic Elastomers
429
Figure 8.18. Elastic modulus vs. temperature for BASF Elastollan® polyether TPU resins.
Figure 8.19. Tear strength vs. temperature for BASF Elastollan® polyester TPU resins.
Mckeen_Ch08.indd 429
12/11/2007 6:13:15 PM
430
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 8.20. Tear strength vs. temperature for BASF Elastollan® polyether TPU resins.
Figure 8.21. Tensile strength vs. temperature for Bayer TPU resins.
Mckeen_Ch08.indd 430
12/11/2007 6:13:16 PM
8: Thermoplastic Elastomers
431
Figure 8.22. Tensile set vs. temperature for Bayer TPU resins.
Figure 8.23. Hardness vs. temperature for BASF Elastollan® polyester TPU resins.
Mckeen_Ch08.indd 431
12/11/2007 6:13:18 PM
432
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 8.24. Coefficient of linear thermal expansion vs. temperature for BASF Elastollan® TPU resins.
8.3 Thermoplastic Copolyester Elastomers (TPE-Es or COPEs)
Figure 8.25. Stress vs. strain at various temperatures (low strain) for DuPont Hytrel® G4075—general purpose, low modulus, Shore D40 TPE-E resin.
Mckeen_Ch08.indd 432
12/11/2007 6:13:20 PM
8: Thermoplastic Elastomers
433
Figure 8.26. Stress vs. strain at various temperatures (high strain) for DuPont Hytrel® G4075—general purpose, low modulus, Shore D40 TPE-E resin.
Figure 8.27. Stress vs. strain at various temperatures (low strain) for DuPont Hytrel® 7246—high performance, high modulus, Shore D72 TPE-E resin.
Mckeen_Ch08.indd 433
12/11/2007 6:13:21 PM
434
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 8.28. Stress vs. strain at various temperatures (high strain) for DuPont Hytrel® 7246—high performance, high modulus, Shore D72 TPE-E resin.
Figure 8.29. Stress vs. strain at various temperatures (low strain) for DuPont Hytrel® 6356—high performance, medium-high modulus, Shore D63 TPE-E resin.
Mckeen_Ch08.indd 434
12/11/2007 6:13:23 PM
8: Thermoplastic Elastomers
435
Figure 8.30. Stress vs. strain at various temperatures (high strain) for DuPont Hytrel® 6356—high performance, medium-high modulus, Shore D63 TPE-E resin.
Figure 8.31. Stress vs. strain at various temperatures (low strain) for DuPont Hytrel® 5556—high performance, medium-high modulus, Shore D55 TPE-E resin.
Mckeen_Ch08.indd 435
12/11/2007 6:13:25 PM
436
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 8.32. Stress vs. strain at various temperatures (high strain) for DuPont Hytrel® 5556—high performance, medium-high modulus, Shore D55 TPE-E resin.
Figure 8.33. Stress vs. strain at various temperatures (low strain) for DuPont Hytrel® 4056—high performance, low modulus, Shore D40 TPE-E resin.
Mckeen_Ch08.indd 436
12/11/2007 6:13:26 PM
8: Thermoplastic Elastomers
437
Figure 8.34. Stress vs. strain at various temperatures (high strain) for DuPont Hytrel® 4056—high performance, low modulus, Shore D40 TPE-E resin.
Figure 8.35. Stress vs. strain at various temperatures in compression for DuPont Hytrel® G4075—general purpose, low modulus, Shore D40 TPE-E resin.
Mckeen_Ch08.indd 437
12/11/2007 6:13:27 PM
438
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 8.36. Stress vs. strain at various temperatures in compression for DuPont Hytrel® 7246—high performance, high modulus, Shore D72 TPE-E resin.
Figure 8.37. Stress vs. strain at various temperatures in compression for DuPont Hytrel® 6356—high performance, medium-high modulus, Shore D63 TPE-E resin.
Mckeen_Ch08.indd 438
12/11/2007 6:13:29 PM
8: Thermoplastic Elastomers
439
Figure 8.38. Stress vs. strain at various temperatures in compression for DuPont Hytrel® 5556—high performance, medium-high modulus, Shore D55 TPE-E resin.
Figure 8.39. Stress vs. strain at various temperatures in compression for DuPont Hytrel® 4056—high performance, low modulus, Shore D40 TPE-E resin.
Mckeen_Ch08.indd 439
12/11/2007 6:13:30 PM
440
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 8.40. Elastic modulus in compression vs. temperature for DuPont Hytrel® TPE-E resins.
Figure 8.41. Elastic modulus vs. temperature for DuPont Hytrel® TPE-E resins.
Mckeen_Ch08.indd 440
12/11/2007 6:13:31 PM
8: Thermoplastic Elastomers
441
Figure 8.42. Flexural modulus vs. temperature for DuPont Hytrel® TPE-E resins.
Figure 8.43. Dropped weight impact failure energy vs. temperature for DuPont Hytrel® TPE-E resins.
Mckeen_Ch08.indd 441
12/11/2007 6:13:32 PM
442
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 8.44. Dropped weight impact failure energy vs. temperature for additional DuPont Hytrel® TPE-E resins.
Figure 8.45. Dropped weight impact failure load vs. temperature for DuPont Hytrel® TPE-E resins.
Mckeen_Ch08.indd 442
12/11/2007 6:13:34 PM
8: Thermoplastic Elastomers
443
Figure 8.46. Dissipation factor vs. temperature for DuPont Hytrel® TPE-E resins.
8.4 Polyether Block Amide (PEBA) Thermoplastic Elastomers
Figure 8.47. Stress vs. strain at various temperatures for Arkema Pebax® 2533 SN 01—Shore hardness 25 PEBA thermoplastic elastomer resin.
Mckeen_Ch08.indd 443
12/11/2007 6:13:35 PM
444
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 8.48. Stress vs. strain at various temperatures for Arkema Pebax® 3533 SN 01—Shore hardness 35 PEBA thermoplastic elastomer resin.
Figure 8.49. Stress vs. strain at various temperatures for Arkema Pebax® 4033 SN 01—Shore hardness 40 PEBA thermoplastic elastomer resin.
Mckeen_Ch08.indd 444
12/11/2007 6:13:37 PM
8: Thermoplastic Elastomers
445
Figure 8.50. Shear modulus vs. temperature for Arkema Pebax® PEBA thermoplastic elastomer resins.
Mckeen_Ch08.indd 445
12/11/2007 6:13:38 PM
Mckeen_Ch08.indd 446
12/11/2007 6:13:39 PM
9 Fluoropolymers 9.1 Background The following sections will briefly explain the structures and properties of various fluoropolymers. It is important to note that there are variations in most of these polymers. The most common variations are the molecular weight, which will affect the melting point to some extent, and the viscosity of the polymer above its melting point, properties that are important in determining processing conditions and use. Traditionally, a fluoropolymer or fluoroplastic is defined as a polymer consisting of carbon (C) and fluorine (F) atoms. Sometimes these are referred to as perfluoropolymers to distinguish them from partially fluorinated polymers, fluoroelastomers, and other polymers that contain fluorine in their chemical structure. For example, fluorosilicone and fluoroacrylate polymers are not referred to as fluoropolymers.
9.1.1 Polytetrafluoroethylene (PTFE) Polytetrafluoroethylene polymer (PTFE) is an example of a linear fluoropolymer. Its structure in simplistic form is shown in Fig. 9.1. Formed by the polymerization of tetrafluoroethylene (TFE), the (–CF2–CF2–) groups repeat many thousand times. The fundamental properties of fluoropolymers evolve from the atomic structure of fluorine and carbon and their covalent bonding in specific chemical structures. The backbone is made up of carbon–carbon bonds and the pendant groups are carbon– fluorine bonds. Both are extremely strong bonds. The basic properties of PTFE stem from these two very strong chemical bonds. The size of the fluorine atom
Figure 9.1. Chemical structure of PTFE.
allows the formation of a uniform and continuous covering around the carbon–carbon bonds and protects them from chemical attack, thus imparting chemical resistance and stability to the molecule. PTFE is rated for use up to (260°C). PTFE does not dissolve in any known solvent. The fluorine sheath is also responsible for the low surface energy (18 dynes/ cm) and low coefficient of friction (0.05–0.08, static) of PTFE. Another attribute of the uniform fluorine sheath is the electrical inertness (or nonpolarity) of the PTFE molecule. Electrical fields impart only slight polarization in this molecule, so volume and surface resistivity are high. The PTFE molecule is simple and quite ordered, and so it can align itself with other molecules or with other portions of the same molecule. Disordered regions are called amorphous regions. This is important because polymers with high crystallinity require more energy to melt. In other words, they have higher melting points. When this happens it forms what is called a crystalline region. Crystalline polymers have a substantial fraction of their mass in the form of parallel, closely packed molecules. High molecular weight PTFE resins have high crystallinity and therefore, high melting points, typically as high as 320–342°C (608–648°F). The crystallinity of aspolymerized PTFE is typically 92%–98%. Further, the viscosity in the molten state (called melt creep viscosity) is so high that high molecular weight PTFE particles do not flow even at temperatures above its melting point. They sinter much like powdered metals; they stick to each other at the contact points, and combine into larger particles. PTFE is called a homopolymer, a polymer made from a single monomer. Recently, many PTFE manufacturers have added minute amounts of other monomers to their PTFE polymerizations to produce alternate grades of PTFE designed for specific applications. Generally, polymers made from two monomers are called copolymers, but fluoropolymer manufacturers call these grades modified homopolymer at below 1% by weight of the additional monomer. DuPont grades of this type are called Teflon® NXT resins. These modified granular PTFE materials retain the exceptional chemical, thermal, 447
Mckeen_Ch09.indd 447
12/11/2007 6:17:19 PM
448
The Effect of Temperature and Other Factors on Plastics and Elastomers
antistick, and low-friction properties of conventional PTFE resin, but offer some improvements. • Ability to weld • Improved permeation resistance • Less creep
Figure 9.2. Chemical structure of ECTFE.
• Smoother, less porous surfaces • Better high-voltage insulation The copolymers described in the following sections contain significantly more of the non-TFE monomers.
9.1.2 Polyethylene Chlorotrifluoroethylene (ECTFE) Polyethylene chlorotrifluoroethylene (ECTFE) is a copolymer of ethylene and chlorotrifluoroethylene. Figure 9.2 shows the molecular structure of ECTFE. This simplified structure shows that the ratio of the monomers is 1:1 and strictly alternating, which is the desirable proportion. Commonly known by the tradename, Halar®, ECTFE is an expensive, melt processable, semicrystalline, whitish semiopaque thermoplastic with good chemical resistance, and barrier properties. It also has good tensile and creep properties and good high-frequency electrical characteristics. Applications include chemically resistant linings, valve and pump components, barrier films, and release/vacuum bagging films.
Figure 9.3. Chemical structure of ETFE.
• Excellent resistance to extremes of temperature • A working temperature range from –200°C to 150°C • Excellent chemical resistance Mechanical strength of ETFE is good with excellent tensile strength and elongation and has superior physical properties compared to most fluoropolymers. With low smoke and flame characteristics, ETFE is rated 94V-0 by the Underwriters Laboratories Inc. It is odorless and nontoxic. • Outstanding resistance to weather and aging • Excellent dielectric properties
9.1.3 Polyethylene Tetrafluoroethylene (ETFE) Polyethylene tetrafluoroethylene (ETFE) is a copolymer of ethylene and tetrafluoroethylene. The basic molecular structure of ETFE is shown in Fig. 9.3. The structure in Fig. 9.3 shows alternating units of TFE and ethylene. While this polymer can be readily made, in many grades of ETFE the ratio of the two monomers are varied slightly to optimize properties for specific end uses. ETFE is a fluoroplastic with excellent electrical and chemical properties. It also has excellent mechanical properties. ETFE is specially suited for uses requiring high mechanical strength, chemical, thermal, and/or electrical properties. The mechanical properties of ETFE are superior to those of PTFE and fluorinated-ethylene-propylene (FEP). ETFE has the following characteristic features:
Mckeen_Ch09.indd 448
• Nonstick characteristics
9.1.4 FluorinatedEthylene-Propylene (FEP) If one of the fluorine atoms on tetrafluoroethylene is replaced with a trifluoromethyl group (–CF3) then the new monomer is called hexafluoropropylene (HFP). Polymerization of monomers (HFP) and TFE yield a different fluoropolymer, called FEP. The number of HFP groups is typically 13% by weight or less and its structure is shown in Fig. 9.4. The effect of using HFP is to put a ‘bump’ along the polymer chain. This bump disrupts the crystallization of the FEP, which has atypical as-polymerized crystallinity of 70% versus 92%–98% for PTFE. It also lowers its melting point. The reduction of the melting point depends mainly on the amount of
12/11/2007 6:17:20 PM
9: Fluoropolymers
trifluoromethyl groups added and secondarily on the molecular weight. Most FEP resins melt around 274°C (525°F), although lower melting points are possible. Even high molecular weight FEP will melt and flow. The high chemical resistance, low surface energy, and good electrical insulation properties of PTFE are retained.
9.1.5 Perfluoro-Alkoxy (PFA) Making a more dramatic change in the side-group than that done in making FEP, chemists put a perfluoroalkoxy group on the polymer chain. This group is signified as –O–Rf, where Rf can be any number of totally fluorinated carbons. A typical one is perfluoropropyl (–O–CF2–CF2–CF3). These polymers are called PFA and the perfluoroalkylvinylether group is typically added at 3.5% or less. Another common perfluoroalkoxy group is perfluoromethylvinylether (–O–CH3) making a polymer called MFA. A structure of PFA is shown in Fig. 9.5. The large side group reduces the crystallinity drastically. The melting point is generally between 305 and 310°C (581–590°F) depending on the molecular weight. The melt viscosity is also dramatically dependent on the molecular weight. Since PFA is also perfluorinated like FEP, its high chemical resistance, low surface energy, and good electrical insulation properties are retained.
449
9.1.6 Polychlorotrifluoroethylene (PCTFE) PCTFE is a homopolymer of chlorotrifluoroethylene, characterized by the following structure shown in Fig. 9.6. The addition of one chlorine atom contributes to lowering of the melt viscosity to permit extrusion and injection molding. It also contributes to the transparency, the exceptional flow, and the rigidity characteristics of the polymer. Fluorine is responsible for its chemical inertness and zero moisture absorption. Therefore, PCTFE has unique properties. Its resistance to cold flow, dimensional stability, rigidity, low gas permeability, and low moisture absorption is superior to any other fluoropolymer. It can also be used at low temperatures.
9.1.7 Polyvinylidene-Fluoride (PVDF) The polymers made from 1,1-di-fluoro-ethene (or vinylidene fluoride) are known as PVDF—polyvinylidene fluoride. They are resistant to oils and fats, water and steam, and gas and odors, making them of particular value for the food industry. PVDF is known for its exceptional chemical stability and excellent resistance to ultraviolet radiation. It is chiefly used in the production and coating of equipments used in aggressive environments, and where high levels of mechanical and thermal resistance are required. It is also used in architectural applications as a coating on metal siding where it provides exceptional resistance to environmental exposure. The chemical structure of PVDF is shown in Fig. 9.7.
Figure 9.4. Chemical structure of FEP.
Figure 9.6. Chemical structure of PCTFE.
Figure 9.5. Chemical structure of PFA.
Mckeen_Ch09.indd 449
Figure 9.7. Chemical structure of PVDF.
12/11/2007 6:17:20 PM
450
The Effect of Temperature and Other Factors on Plastics and Elastomers
One of the tradenames of PVDF is Kynar®. The alternating CH2 and CF2 groups along the polymer chain provide a unique polarity that influences its solubility and electric properties. At elevated temperatures PVDF can be dissolved in polar solvents such as organic esters and amines. This selective solubility offers a way to prepare corrosion resistant coatings for chemical process equipment and longlife architectural finishes on building panels. Key attributes of PVDF include: • Mechanical strength and toughness • High abrasion resistance
• Good flexibility • Permeation resistance • Excellent clarity and light transmission There are no multipoint charts available, but some tabular data is included in Chapter 11.
9.1.9 HTE HTE is a polymer of hexafluoropropylene, tetrafluoroethylene, and ethylene. It is made by 3M Dyneon. It has the following properties:
• High thermal stability • Broad processing range
• High dielectric strength
• Very good chemical resistance
• High purity
• Permeation resistance
• Readily melt processable
• High light transmission in visible and UV regions
• Resistant to most chemicals and solvents • Resistant to ultraviolet and nuclear radiation
• Excellent dimensional stability and toughness
• Resistant to weathering
• Good electrical properties
• Resistant to fungi • Low permeability to most gases and liquids • Low flame and smoke characteristics
9.1.8 THV™ THV™ is a polymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride. It is made by 3M Dyneon. It has the following properties: • Low processing temperature • Bonds to elastomers and hydrocarbon plastics
There are no multipoint charts available, but included here for completeness.
9.1.10 Fluoroplastic Melting Points The melting point ranges of the fluoropolymers are given in Table 9.1. These are useful in determining minimum processing temperatures (usually 25°C above the melt point) and maximum use temperatures (generally 25–40°C below the melting
Table 9.1. Melting Point Ranges of Various Fluoroplastics Fluoroplastic Polytetrafluoroethylene (PTFE) Polyethylene chlorotrifluoroethylene (ECTFE) Polyethylene tetrafluoroethylene (ETFE)
Mckeen_Ch09.indd 450
Melting Point °C 320–340 240 255–280
Fluorinated-ethylene-propylene (FEP)
260–270
Perfluoro alkoxy (PFA)
302–310
Perfluoro alkoxy (MFA)
280–290
Polychlorotrifluoroethylene (PCTFE)
210–212
Polyvinylidene fluoride (PVDF)
155–170
THV™
115–235
HTE
155–215
12/11/2007 6:17:20 PM
9: Fluoropolymers
451
points). Graphs showing the properties of fluoropolymer-based plastics as a function of temperature, moisture, and other factors are illustrated in Sections 9.2–9.8.
9.2 Polytetrafluoroethylene (PTFE)
Figure 9.8. Stress vs. strain in tension and compression for DuPont Co. General Purpose Teflon® PTFE resin.
Figure 9.9. Stress vs. strain at high strain rate for DuPont Co. General Purpose Teflon® PTFE resin.
Mckeen_Ch09.indd 451
12/11/2007 6:17:20 PM
452
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.10. Stress vs. strain at low strain rate for DuPont Co. General Purpose Teflon® PTFE resin.
Figure 9.11. Young’s modulus vs. temperature for 3M Dyneon™ PTFE resins.
Mckeen_Ch09.indd 452
12/11/2007 6:17:22 PM
9: Fluoropolymers
453
Figure 9.12. Tensile strength vs. temperature for DuPont Co. General Purpose Teflon® PTFE resin.
Figure 9.13. Hardness vs. temperature for DuPont Co. General Purpose Teflon® PTFE resin.
Mckeen_Ch09.indd 453
12/11/2007 6:17:23 PM
454
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.14. Linear thermal expansion vs. temperature for DuPont Co. General Purpose Teflon® PTFE resin.
Figure 9.15. Dielectric constant vs. temperature for DuPont Co. General Purpose Teflon® PTFE resin.
Mckeen_Ch09.indd 454
12/11/2007 6:17:25 PM
9: Fluoropolymers
455
Figure 9.16. Dissipation factor vs. temperature for DuPont Co. General Purpose Teflon® PTFE resin.
9.3 Ethylene Chlorotrifluoroethylene (ECTFE)
Figure 9.17. Flexural modulus vs. temperature for Solvay Solexis Halar® ECTFE resins.
Mckeen_Ch09.indd 455
12/11/2007 6:17:26 PM
456
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.18. Shear modulus vs. temperature for Solvay Solexis Halar® ECTFE resins.
Figure 9.19. Tensile modulus vs. temperature for Solvay Solexis Halar® ECTFE resins.
Mckeen_Ch09.indd 456
12/11/2007 6:17:27 PM
9: Fluoropolymers
457
Figure 9.20. Tensile strength vs. temperature for Solvay Solexis Halar® ECTFE resins.
Figure 9.21. Yield stress vs. temperature for Solvay Solexis Halar® ECTFE resins.
Mckeen_Ch09.indd 457
12/11/2007 6:17:28 PM
458
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.22. Elongation at break vs. temperature for Solvay Solexis Halar® ECTFE resins.
Figure 9.23. Elongation at yield vs. temperature for Solvay Solexis Halar® ECTFE resins.
Mckeen_Ch09.indd 458
12/11/2007 6:17:29 PM
9: Fluoropolymers
459
Figure 9.24. Linear thermal expansion vs. temperature for Solvay Solexis Halar® ECTFE resins.
Figure 9.25. Dielectric constant vs. temperature at various frequencies for Solvay Solexis Halar® ECTFE resins.
Mckeen_Ch09.indd 459
12/11/2007 6:17:31 PM
460
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.26. Dissipation factor vs. temperature at various frequencies for Solvay Solexis Halar® ECTFE resins.
Figure 9.27. Volume resistivity vs. temperature for Solvay Solexis Halar® ECTFE resins.
Mckeen_Ch09.indd 460
12/11/2007 6:17:32 PM
9: Fluoropolymers
461
9.4 Ethylene Tetrafluoroethylene (ETFE)
Figure 9.28. Stress vs. strain in compression at 23°C for DuPont Tefzel® ETFE resins.
Figure 9.29. Stress vs. strain in flexure at 23°C for DuPont Tefzel® ETFE resins.
Mckeen_Ch09.indd 461
12/11/2007 6:17:33 PM
462
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.30. Tensile stress vs. strain and temperature for SABIC Innovative Plastics LNP Thermocomp FP-EC1004 electrically conductive carbon fiber filled ETFE resin.
Figure 9.31. Tensile stress vs. strain at 23°C for DuPont Tefzel® ETFE resins.
Mckeen_Ch09.indd 462
12/11/2007 6:17:34 PM
9: Fluoropolymers
463
Figure 9.32. Flexural modulus vs. temperature for DuPont Tefzel® ETFE resins.
Figure 9.33. Tensile modulus vs. temperature for DuPont Tefzel® ETFE resins.
Mckeen_Ch09.indd 463
12/11/2007 6:17:36 PM
464
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.34. Tensile modulus vs. temperature for SABIC Innovative Plastics LNP Thermocomp FP-EC-1004 electrically conductive carbon fiber filled ETFE resin.
Figure 9.35. Shear strength vs. temperature for DuPont General Purpose Tefzel® 200 ETFE resin.
Mckeen_Ch09.indd 464
12/11/2007 6:17:37 PM
9: Fluoropolymers
465
Figure 9.36. Tensile strength vs. temperature for SABIC Innovative Plastics LNP Thermocomp FP-EC-1004 electrically conductive carbon fiber filled ETFE resin.
Figure 9.37. Elongation at break vs. temperature DuPont General Purpose Tefzel® 200 ETFE resin.
Mckeen_Ch09.indd 465
12/11/2007 6:17:39 PM
466
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.38. Dielectric constant vs. frequency DuPont General Purpose Tefzel® 200 ETFE resin.
Figure 9.39. Dissipation factor vs. frequency DuPont General Purpose Tefzel® 200 ETFE resin.
Mckeen_Ch09.indd 466
12/11/2007 6:17:40 PM
9: Fluoropolymers
467
9.5 FluorinatedEthylene-Propylene (FEP)
Figure 9.40. Tensile stress vs. strain in compression at various temperatures for DuPont general purpose FEP resins.
Figure 9.41. Tensile stress vs. strain at various temperatures for DuPont general purpose FEP resins.
Mckeen_Ch09.indd 467
12/11/2007 6:17:42 PM
468
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.42. Tensile stress vs. strain at –52°C for DuPont FEP resins.
Figure 9.43. Tensile stress vs. strain at 23°C for DuPont FEP resins.
Mckeen_Ch09.indd 468
12/11/2007 6:17:43 PM
9: Fluoropolymers
469
Figure 9.44. Tensile stress vs. strain at 100°C for DuPont FEP resins.
Figure 9.45. Tensile stress vs. strain at 200°C for DuPont FEP resins.
Mckeen_Ch09.indd 469
12/11/2007 6:17:44 PM
470
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.46. Tensile strength vs. temperature and various strain levels for DuPont general purpose FEP resin.
Figure 9.47. Tensile strength vs. temperature for SABIC Innovative Plastics LNP FEP resin with 20% glass fiber.
Mckeen_Ch09.indd 470
12/11/2007 6:17:45 PM
9: Fluoropolymers
471
Figure 9.48. Ultimate tensile strength vs. temperature for DuPont FEP resins.
Figure 9.49. Ultimate elongation vs. temperature for DuPont FEP resins.
Mckeen_Ch09.indd 471
12/11/2007 6:17:47 PM
472
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.50. Linear thermal expansion vs. temperature for DuPont general purpose FEP resins.
Figure 9.51. Dieletric constant vs. frequency for DuPont general purpose FEP resins.
Mckeen_Ch09.indd 472
12/11/2007 6:17:48 PM
9: Fluoropolymers
473
Figure 9.52. Dissipation factor vs. frequency for DuPont general purpose FEP resins.
Figure 9.53. Dissipation factor vs. temperature for DuPont general purpose FEP resins.
Mckeen_Ch09.indd 473
12/11/2007 6:17:50 PM
474
The Effect of Temperature and Other Factors on Plastics and Elastomers
9.6 Perfluoro Alkylvinylether (PFA)
Figure 9.54. Stress vs. strain at two temperatures for Solvay Solexis Hyflon® PFA resins.
Figure 9.55. Stress at break vs. temperature for Solvay Solexis Hyflon® PFA resins.
Mckeen_Ch09.indd 474
12/11/2007 6:17:52 PM
9: Fluoropolymers
475
Figure 9.56. Flexural modulus vs. temperature for DuPont Teflon® PFA 340 and 350 grade resins.
Figure 9.57. Flexural modulus vs. temperature for DuPont Teflon® PFA HP plus resins.
Mckeen_Ch09.indd 475
12/11/2007 6:17:54 PM
476
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.58. Young’s modulus vs. temperature for Solvay Solexis Hyflon® PFA resins.
Figure 9.59. Tensile strength vs. temperature for DuPont Teflon® PFA 340 and 350 grade resins.
Mckeen_Ch09.indd 476
12/11/2007 6:17:55 PM
9: Fluoropolymers
477
Figure 9.60. Tensile strength vs. temperature for DuPont Teflon® PFA HP plus resins.
Figure 9.61. Yield stress vs. temperature for Solvay Solexis Hyflon® PFA resins.
Mckeen_Ch09.indd 477
12/11/2007 6:17:57 PM
478
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.62. Elongation at break vs. temperature Solvay Solexis Hyflon® PFA resins.
Figure 9.63. Ultimate elongation vs. temperature for DuPont Teflon® PFA HP plus resins.
Mckeen_Ch09.indd 478
12/11/2007 6:17:59 PM
9: Fluoropolymers
479
Figure 9.64. Dielectric constant vs. frequency for DuPont Teflon® PFA 340 and 350 grade resins.
Figure 9.65. Dielectric constant vs. frequency for DuPont Teflon® PFA HP plus resins.
Mckeen_Ch09.indd 479
12/11/2007 6:18:00 PM
480
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.66. Dissipation factor vs. frequency and temperature for DuPont Teflon® PFA 340 and 350 grade resins.
Figure 9.67. Dissipation factor vs. frequency and temperature for DuPont Teflon® PFA HP plus resins.
Mckeen_Ch09.indd 480
12/11/2007 6:18:01 PM
9: Fluoropolymers
481
9.7 Polychlorotrifluoroethylene (PCTFE)
Figure 9.68. Stress vs. strain for at 23°C for Daikin Neoflon™ PCTFE resins.
Figure 9.69. Stress vs. strain in compression at various temperatures for Dyneon PCTFE resins.
Mckeen_Ch09.indd 481
12/11/2007 6:18:03 PM
482
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.70. Stress vs. strain at various temperatures for Dyneon crystalline and amorphous PCTFE resins.
Figure 9.71. Tensile modulus vs. temperature for Daikin Neoflon™ PCTFE resins.
Mckeen_Ch09.indd 482
12/11/2007 6:18:04 PM
9: Fluoropolymers
483
Figure 9.72. Tensile strength at break vs. temperature for Daikin Neoflon™ PCTFE resins.
Figure 9.73. Izod impact strength vs. temperature for Daikin Neoflon™ PCTFE resins.
Mckeen_Ch09.indd 483
12/11/2007 6:18:05 PM
484
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.74. Shore D harness vs. temperature for Daikin Neoflon™ M-300H—general purpose and M-400H— higher molecular weight, increased toughness PCTFE resins.
Figure 9.75. Coefficient of linear thermal expansion vs. temperature for Dyneon PCTFE resin.
Mckeen_Ch09.indd 484
12/11/2007 6:18:06 PM
9: Fluoropolymers
485
Figure 9.76. Linear thermal expansion vs. temperature for Daikin Neoflon™ PCTFE resins.
Figure 9.77. Elongation vs. temperature for Daikin Neoflon™ M-300H––general purpose PCTFE resin.
Mckeen_Ch09.indd 485
12/11/2007 6:18:07 PM
486
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.78. Dielectric constant vs. frequency and temperature for Daikin Neoflon™ PCTFE resin.
Figure 9.79. Dielectric constant vs. frequency at 25°C for Arkema Voltalef® 302 PCTFE resin.
Mckeen_Ch09.indd 486
12/11/2007 6:18:09 PM
9: Fluoropolymers
487
Figure 9.80. Dielectric constant vs. temperature and frequency for Daikin Neoflon™ PCTFE resin.
Figure 9.81. Dielectric constant vs. temperature at 25°C for Arkema Voltalef® 302 PCTFE resin.
Mckeen_Ch09.indd 487
12/11/2007 6:18:10 PM
488
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.82. Dissipation factor vs. frequency at 25°C for Arkema Voltalef® 302 PCTFE resin.
Figure 9.83. Dissipation factor vs. temperature at 60 Hz for Arkema Voltalef® 302 PCTFE resin.
Mckeen_Ch09.indd 488
12/11/2007 6:18:11 PM
9: Fluoropolymers
489
Figure 9.84. Dissipation factor vs. temperature and frequency for Daikin Neoflon™ PCTFE resins.
9.8 Polyvinylidene Fluoride (PVDF)
Figure 9.85. Stress vs. strain at various temperatures for SABIC Innovative Plastics Thermocomp® FP VC1003—electrically conductive, carbon fiber filled PVDF resin.
Mckeen_Ch09.indd 489
12/11/2007 6:18:12 PM
490
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.86. Stress vs. strain at various temperatures for Arkema Kynar Flex® 710—homopolymer PVDF resin.
Figure 9.87. Stress vs. strain at various temperatures for Arkema Kynar Flex® 2750—copolymer PVDF resin.
Mckeen_Ch09.indd 490
12/11/2007 6:18:13 PM
9: Fluoropolymers
491
Figure 9.88. Stress vs. strain at various temperatures for Solvay Solexis Solef® 1008—general purpose homopolymer injection molding PVDF resin.
Figure 9.89. Elongation at break vs. temperature for Solvay Solexis Solef® PVDF resins.
Mckeen_Ch09.indd 491
12/11/2007 6:18:15 PM
492
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.90. Elongation at yield vs. temperature for Solvay Solexis Solef® PVDF resins.
Figure 9.91. Flexural modulus vs. temperature for Solvay Solexis Solef® PVDF resins.
Mckeen_Ch09.indd 492
12/11/2007 6:18:16 PM
9: Fluoropolymers
493
Figure 9.92. Shear modulus vs. temperature for Arkema Kynar Flex® copolymer PVDF resins.
Figure 9.93. Tensile modulus vs. temperature for SABIC Innovative Plastics Thermocomp® FP VC-1003— electrically conductive, carbon fiber filled PVDF resin.
Mckeen_Ch09.indd 493
12/11/2007 6:18:17 PM
494
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.94. Young’s modulus vs. temperature for Solvay Solexis Solef® PVDF resins.
Figure 9.95. Young’s modulus vs. temperature for Arkema Kynar Flex®—PVDF resins.
Mckeen_Ch09.indd 494
12/11/2007 6:18:18 PM
9: Fluoropolymers
495
Figure 9.96. Compressive modulus vs. temperature for Solvay Solexis Solef® PVDF resins.
Figure 9.97. Tensile strength vs. temperature for Arkema Kynar Flex®—PVDF resins.
Mckeen_Ch09.indd 495
12/11/2007 6:18:20 PM
496
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.98. Tensile strength vs. temperature for Solvay Solexis Solef® PVDF resins.
Figure 9.99. Ultimate compressive strength vs. temperature for Solvay Solexis Solef® PVDF resins.
Mckeen_Ch09.indd 496
12/11/2007 6:18:22 PM
9: Fluoropolymers
497
Figure 9.100. Notched Izod impact strength vs. temperature for Solvay Solexis Solef® PVDF resins.
Figure 9.101. Pressure–volume–temperature (PVT) plot for Solvay Solexis Solef® 1008—general purpose homopolymer injection molding PVDF resin.
Mckeen_Ch09.indd 497
12/11/2007 6:18:23 PM
498
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.102. Density vs. temperature for Solvay Solexis Solef® PVDF resins.
Figure 9.103. Thermal conductivity vs. temperature for Solvay Solexis Solef® 1010—general purpose homopolymer molding and extrusion PVDF resin.
Mckeen_Ch09.indd 498
12/11/2007 6:18:25 PM
9: Fluoropolymers
499
Figure 9.104. Dielectric constant vs. frequency for Solvay Solexis Solef® PVDF resins.
Figure 9.105. Dielectric constant vs. temperature and frequency for Solvay Solexis Solef® 1010—general purpose homopolymer molding and extrusion PVDF resin.
Mckeen_Ch09.indd 499
12/11/2007 6:18:27 PM
500
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.106. Dielectric constant vs. temperature and frequency for Solvay Solexis Solef® 11008—general purpose copolymer injection molding PVDF resin.
Figure 9.107. Dissipation factor vs. frequency for Solvay Solexis Solef® PVDF resins.
Mckeen_Ch09.indd 500
12/11/2007 6:18:29 PM
9: Fluoropolymers
501
Figure 9.108. Dissipation factor vs. temperature and frequency for Solvay Solexis Solef® 1010—general purpose homopolymer molding and extrusion PVDF resin.
Figure 9.109. Dissipation factor vs. temperature and frequency for Solvay Solexis Solef® 11008—general purpose copolymer injection molding PVDF resin.
Mckeen_Ch09.indd 501
12/11/2007 6:18:31 PM
502
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 9.110. Dielectric strength vs. thickness for Solvay Solexis Solef® 1010—general purpose homopolymer molding and extrusion PVDF resin.
Figure 9.111. Volume resistivity vs. temperature for Solvay Solexis Solef® PVDF resins.
Mckeen_Ch09.indd 502
12/11/2007 6:18:33 PM
10 High Temperature Polymers 10.1 Background
10.1.2 Polyethersulfone (PES)
This section contains information and multipoint properties for several high-temperature, highperformance plastics. They might be classified or included in another chapter, but they are grouped in this chapter because of their performance levels.
Polyethersulfone (PES) is an amorphous polymer and a high-temperature engineering thermoplastic. Even though PES has high-temperature performance, it can be processed on conventional plastics processing equipments. Its chemical structure is shown in Fig. 10.2. PES has an outstanding ability to withstand exposure to elevated temperatures in air and water for prolonged periods. Because PES is amorphous, mold shrinkage is low and is suitable for applications requiring close tolerances and little dimensional changes over a wide temperature range. The properties of PES include:
10.1.1 Polyetheretherketone (PEEK) Polyetheretherketones (PEEKs) are also referred to as polyketones. The most common structure is given in Fig. 10.1. PEEK is a thermoplastic with extraordinary mechanical properties. The Young’s modulus of elasticity is 3.6 GPa and its tensile strength is 170 MPa. PEEK is partially crystalline, melts at around 350°C and is highly resistant to thermal degradation. The material is also resistant to both organic and aqueous environments, and is used in bearings, piston parts, pumps, compressor plate valves, and cable insulation applications. It is one of the few plastics compatible with ultra-high vacuum applications. In summary, the properties of PEEK include: • Outstanding chemical resistance • Outstanding wear resistance • Outstanding resistance to hydrolysis • Excellent mechanical properties • Outstanding thermal properties • Very good dielectric strength, volume resistivity, and tracking resistance • Excellent radiation resistance
• Excellent thermal resistance—Tg 224°C • Outstanding mechanical, electrical, flame, and chemical resistance • Very good hydrolytic and sterilization resistance • Good optical clarity • Processed by all conventional techniques
10.1.3 Polyphenylene Sulfide (PPS) Polyphenylene sulfide (PPS) is a semicrystalline material. It offers an excellent balance of properties, including high temperature resistance, chemical resistance, flowability, dimensional stability, and electrical characteristics. PPS must be filled with fibers and fillers to overcome its inherent brittleness. Because of its low viscosity, PPS can be molded with high loadings of fillers and reinforcements. Due to its outstanding flame resistance, PPS is ideal for high-temperature
Figure 10.1. The structure of PEEK.
503
Mckeen_Ch10.indd 503
12/11/2007 6:19:15 PM
504
The Effect of Temperature and Other Factors on Plastics and Elastomers
electrical applications. It is unaffected by all industrial solvents. The structure of PPS is shown in Fig. 10.3. The properties of PPS include: • Continuous use temperature of 220°C • Excellent dimensional properties • Transparent • Improved impact strength and toughness as compared to PES • Excellent hydrolytic stability • High stress cracking resistance • Good chemical resistance • Good surface release properties • Expected continuous temperature of 180°C
10.1.4 Polysulfone (PSU) Polysulfone (PSU) is a rigid, strong, tough, and high-temperature amorphous thermoplastic. The structure of PSU is shown in Fig. 10.4. In summary, the properties of PSU include: • High thermal stability • High toughness and strength • Good environmental stress crack resistance • Inherent fire resistance • Transparence
Figure 10.2. The structure of PES.
10.1.5 Polybenzimidazole (PBI) Polybenzimidazole (PBI) is a unique and highly stable linear heterocyclic polymer. The chemical structure is shown in Fig. 10.5. PBI exhibits excellent thermal stability, resistance to chemicals, acid and base hydrolysis, and temperature resistance. PBI can withstand temperatures as high as 430°C, and in short bursts, to 760°C. PBI does not burn and maintains its properties as low as −196°C. Ideally suited for its application in extreme environments, PBI can be formed into stock shapes and subsequently machined into high-precision finished parts. Since PBI does not have a melt point, moldings from virgin PBI polymer can only be formed in a high temperature, high pressure compression molding process. PBI is highly resistant to deformation, and has low hysterisis loss and high elastic recovery. PBI exhibits ductile failure, and may be compressed to over 50% strain without fracture. Celazole® PBI has the highest compressive strength of any thermoplastic or thermosetting resin at 400 MPa. There is no weight loss or change in compressive strength of Celazole® PBI exposed to 260°C in air for 500 h. At 371°C, no weight or strength change takes place for 100 h. In spite of these unusual properties, PBI is usually blended with other plastics, particularly polyesters. Graphs showing the properties of these high performance plastics as a function of temperature, moisture, and other factors are illustrated in Sections 10.5–10.2
Figure 10.3. The structure of PPS.
Figure 10.4. The structure of PSU.
Mckeen_Ch10.indd 504
12/11/2007 6:19:15 PM
10: High Temperature Polymers
505
Figure 10.5. The structure of PBI.
10.2 Polyetheretherketone (PEEK)
Figure 10.6. Stress vs. strain at 23°C of various Victrex® PEEK resins.
Mckeen_Ch10.indd 505
12/11/2007 6:19:16 PM
506
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.7. Flexural modulus vs. temperature of Greene, Tweed Arlon® PEEK resins.
Figure 10.8. Flexural modulus vs. temperature of various Victrex® PEEK resins.
Mckeen_Ch10.indd 506
12/11/2007 6:19:17 PM
10: High Temperature Polymers
507
Figure 10.9. Flexural modulus vs. temperature of Victrex® PEEK resins, comparing a polybenzimidazole/PEEK blend to PEEK resin.
Figure 10.10. Flexural modulus vs. temperature of different fiber-filled Victrex® PEEK resins.
Mckeen_Ch10.indd 507
12/11/2007 6:19:18 PM
508
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.11. Dynamic shear modulus vs. temperature of Solvay KetaSpire® and AviSpire® PEEK resins.
Figure 10.12. Dynamic shear modulus vs. temperature of Solvay KetaSpire® and AviSpire® 30% glass fiber reinforced PEEK resins.
Mckeen_Ch10.indd 508
12/11/2007 6:19:19 PM
10: High Temperature Polymers
509
Figure 10.13. Flexural strength vs. temperature of different fiber-filled Victrex® PEEK resins.
Figure 10.14. Shear strength vs. temperature of Greene, Tweed Arlon® 1000—unreinforced, general purpose PEEK resin.
Mckeen_Ch10.indd 509
12/11/2007 6:19:20 PM
510
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.15. Tensile strength vs. temperature of Greene, Tweed Arlon® 1000—unreinforced, general purpose PEEK resin.
Figure 10.16. Tensile strength vs. temperature of Victrex® PEEK resins.
Mckeen_Ch10.indd 510
12/11/2007 6:19:22 PM
10: High Temperature Polymers
511
Figure 10.17. Yield stress vs. temperature of Victrex® PEEK resins.
Figure 10.18. Falling weight impact failure energy vs. temperature of Victrex® PEEK resins.
Mckeen_Ch10.indd 511
12/11/2007 6:19:24 PM
512
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.19. Dielectric constant vs. frequency and temperature of Victrex® 450G—unreinforced PEEK resin.
Figure 10.20. Volume resistivity vs. temperature of Victrex® 450G—unreinforced PEEK resin.
Mckeen_Ch10.indd 512
12/11/2007 6:19:26 PM
10: High Temperature Polymers
513
10.3 Polyether Sulfone (PES)
Figure 10.21. Stress vs. strain at several temperatures of BASF Ultrason® E 1010—low viscosity, unreinforced PES resin (conditioned at 50% RH).
Figure 10.22. Stress vs. strain at several temperatures of BASF Ultrason® E 2010 G4—medium viscosity, 20% glass fiber reinforced PES resin (conditioned at 50% RH).
Mckeen_Ch10.indd 513
12/11/2007 6:19:27 PM
514
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.23. Stress vs. strain at several temperatures of BASF Ultrason® E 2010 G6—medium viscosity, 30% glass fiber reinforced PES resin (conditioned at 50% RH).
Figure 10.24. Stress vs. strain at several temperatures of BASF Ultrason® E 2010—medium viscosity, unreinforced PES resin (conditioned at 50% RH).
Mckeen_Ch10.indd 514
12/11/2007 6:19:29 PM
10: High Temperature Polymers
515
Figure 10.25. Stress vs. strain at several temperatures of BASF Ultrason® E 3010—high viscosity, unreinforced PES resin (conditioned at 50% RH).
Figure 10.26. Flexural modulus vs. temperature of Sumitomo Chemical Sumika Excel® PES resins.
Mckeen_Ch10.indd 515
12/11/2007 6:19:31 PM
516
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.27. Shear modulus vs. temperature of BASF Ultrason® E 2010—medium viscosity PES resin (dry as molded).
Figure 10.28. Tensile modulus vs. temperature of BASF Ultrason® E 2010—medium viscosity PES resin (conditioned at 50% RH).
Mckeen_Ch10.indd 516
12/11/2007 6:19:32 PM
10: High Temperature Polymers
517
Figure 10.29. Tensile modulus vs. temperature of BASF Ultrason® E 2010—medium viscosity PES resin (dry as molded).
Figure 10.30. Young’s modulus vs. temperature of BASF Ultrason® E 2010—medium viscosity PES resin.
Mckeen_Ch10.indd 517
12/11/2007 6:19:33 PM
518
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.31. Tensile strength vs. temperature of BASF Ultrason® E 2010—medium viscosity PES resin.
Figure 10.32. Tensile strength vs. temperature of Solvay Radel® A PES resins with different amounts of glass fiber filler.
Mckeen_Ch10.indd 518
12/11/2007 6:19:35 PM
10: High Temperature Polymers
519
Figure 10.33. Charpy impact strength vs. temperature of BASF Ultrason® E 2010 G4—medium viscosity, 20% glass fiber reinforced PES resin.
Figure 10.34. Charpy impact strength vs. temperature of Sumitomo Chemical Sumika Excel® 4800G—high viscosity, general purpose PES resin.
Mckeen_Ch10.indd 519
12/11/2007 6:19:36 PM
520
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.35. Specific volume as a function of temperature and pressure (PVT) for SF Ultrason® E 1010—low viscosity, unreinforced PES resin.
Figure 10.36. Coefficient of linear thermal expansion vs. temperature of Sumitomo Chemical Sumika Excel® PES resin.
Mckeen_Ch10.indd 520
12/11/2007 6:19:37 PM
10: High Temperature Polymers
521
Figure 10.37. Dissipation factor vs. frequency of Sumitomo Chemical Sumika Excel® 4800G—high viscosity, general purpose PES resin.
Figure 10.38. Dissipation factor vs. temperature of Sumitomo Chemical Sumika Excel® 4800G—high viscosity, general purpose PES resin.
Mckeen_Ch10.indd 521
12/11/2007 6:19:38 PM
522
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.39. Dissipation factor vs. temperature at 1 kHz of BASF Ultrason® E 2010—medium viscosity, unreinforced PES resin.
Figure 10.40. Volume resistivity vs. temperature of Sumitomo Chemical Sumika Excel® 4800G—high viscosity, general purpose PES resin.
Mckeen_Ch10.indd 522
12/11/2007 6:19:40 PM
10: High Temperature Polymers
523
10.4 Polyphenylene Sulfide (PPS)
Figure 10.41. Stress vs. strain at several temperatures of Chevron Phillips Chemical Ryton® BR42B—40% glass fiber filled, low friction PPS resin.
Figure 10.42. Stress vs. strain at several temperatures of Chevron Phillips Chemical Ryton® BR111—40% glass/mineral filled PPS resin.
Mckeen_Ch10.indd 523
12/11/2007 6:19:41 PM
524
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.43. Stress vs. strain at several temperatures of Ticona Fortron® 1140L4—40% glass fiber filled, medium melt viscosity PPS resin.
Figure 10.44. Stress vs. strain at several temperatures of Chevron Phillips Chemical Ryton® Ryton® R-4-200BL—40% glass fiber filled, high strength PPS resin.
Mckeen_Ch10.indd 524
12/11/2007 6:19:43 PM
10: High Temperature Polymers
525
Figure 10.45. Stress vs. strain at several temperatures of Chevron Phillips Chemical Ryton® Ryton® R-4-230NA—40% glass fiber filled, high flow PPS resin.
Figure 10.46. Stress vs. strain at several temperatures of Chevron Phillips Chemical Ryton® Ryton® R-7-120BL—65% glass fiber/mineral filled, arc resistant PPS resin.
Mckeen_Ch10.indd 525
12/11/2007 6:19:44 PM
526
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.47. Stress vs. strain at several temperatures of Chevron Phillips Chemical Ryton® Ryton® R-10-110BL—65% glass fiber/mineral filled, lower cost PPS resin.
Figure 10.48. Flexural modulus vs. temperature of Ticona Fortron® glass fiber filled PPS resins.
Mckeen_Ch10.indd 526
12/11/2007 6:19:46 PM
10: High Temperature Polymers
527
Figure 10.49. Flexural modulus vs. temperature of Chevron Phillips Chemical Ryton® PPS resins.
Figure 10.50. Flexural modulus vs. temperature of Toray Resin Company Torelina® A504—40% glass fiber filled, standard grade PPS resin.
Mckeen_Ch10.indd 527
12/11/2007 6:19:47 PM
528
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.51. Tensile modulus vs. temperature of Ticona Fortron® filled PPS resins.
Figure 10.52. Flexural strength vs. temperature of Chevron Phillips Chemical Ryton® PPS resins.
Mckeen_Ch10.indd 528
12/11/2007 6:19:49 PM
10: High Temperature Polymers
529
Figure 10.53. Flexural strength vs. temperature of Toray Resin Company Torelina® PPS resins.
Figure 10.54. Shear strength vs. temperature of Chevron Phillips Chemical Ryton® PPS resins.
Mckeen_Ch10.indd 529
12/11/2007 6:19:50 PM
530
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.55. Shear strength vs. temperature of Toray Resin Company Torelina® A504—40% glass fiber filled, standard grade PPS resin.
Figure 10.56. Tensile strength vs. temperature of Chevron Phillips Chemical Ryton® PPS resins.
Mckeen_Ch10.indd 530
12/11/2007 6:19:52 PM
10: High Temperature Polymers
531
Figure 10.57. Tensile strength vs. temperature of Toray Resin Company Torelina® PPS resins.
Figure 10.58. Compressive strength vs. temperature of Toray Resin Company Torelina® A504—40% glass fiber filled, standard grade PPS resin.
Mckeen_Ch10.indd 531
12/11/2007 6:19:53 PM
532
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.59. Notched Izod impact strength vs. temperature of Toray Resin Company Torelina® PPS resins.
Figure 10.60. Unnotched Izod impact strength vs. temperature of Toray Resin Company Torelina® PPS resins.
Mckeen_Ch10.indd 532
12/11/2007 6:19:55 PM
10: High Temperature Polymers
533
Figure 10.61. Izod impact strength vs. low temperature of Chevron Phillips Chemical Ryton® R-4—40% glass fiber filled, high strength PPS resin.
Figure 10.62. Izod impact strength vs. high temperature of Chevron Phillips Chemical Ryton® R-4—40% glass fiber filled, high strength PPS resin.
Mckeen_Ch10.indd 533
12/11/2007 6:19:57 PM
534
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.63. Dielectric constant vs. frequency and temperature of Chevron Phillips Chemical Ryton® R-4— 40% glass fiber filled, high strength PPS resin.
Figure 10.64. Dielectric constant vs. frequency and temperature of Chevron Phillips Chemical Ryton® R-7— 65% glass fiber/mineral filled PPS resin.
Mckeen_Ch10.indd 534
12/11/2007 6:19:58 PM
10: High Temperature Polymers
535
Figure 10.65. Dissipation factor vs. frequency at several temperatures of Ticona Fortron® 1140L4—40% glass fiber filled, medium melt viscosity PPS resin.
Figure 10.66. Dissipation factor vs. frequency at several temperatures of Ticona Fortron® 6160B4—60% glass fiber/mineral filled PPS resin.
Mckeen_Ch10.indd 535
12/11/2007 6:19:59 PM
536
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.67. Dissipation factor vs. frequency at several temperatures of Ticona Fortron® 6165A4—65% glass fiber/mineral filled, low melt viscosity PPS resin.
Figure 10.68. Volume resistivity vs. temperature of Ticona Fortron® 1140L4—40% glass fiber filled, medium melt viscosity PPS resin.
Mckeen_Ch10.indd 536
12/11/2007 6:20:01 PM
10: High Temperature Polymers
537
10.5 Polysulfone (PSU)
Figure 10.69. Stress vs. strain at several temperatures of Solvay Advanced Polymers Udel® GF-130—30% glass fiber reinforced PSU resin.
Figure 10.70. Stress vs. strain at several temperatures of Solvay Advanced Polymers Udel® P-1700— unreinforced, mid-viscosity PSU resin.
Mckeen_Ch10.indd 537
12/11/2007 6:20:02 PM
538
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.71. Stress vs. strain at several temperatures of BASF Ultrason® S 2010 G4—20% glass reinforced, medium viscosity PSU resin.
Figure 10.72. Stress vs. strain at several temperatures of BASF Ultrason® S 2010—unreinforced, medium viscosity PSU resin.
Mckeen_Ch10.indd 538
12/11/2007 6:20:04 PM
10: High Temperature Polymers
539
Figure 10.73. Compressive modulus vs. glass fiber content of Solvay Advanced Polymers Udel® PSU resins.
Figure 10.74. Flexural modulus vs. glass fiber content of Solvay Advanced Polymers Udel® PSU resins.
Mckeen_Ch10.indd 539
12/11/2007 6:20:05 PM
540
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.75. Flexural modulus vs. temperature of Solvay Advanced Polymers Udel® PSU resins.
Figure 10.76. Shear modulus vs. temperature of BASF Ultrason® S PSU resins.
Mckeen_Ch10.indd 540
12/11/2007 6:20:06 PM
10: High Temperature Polymers
541
Figure 10.77. Tensile modulus vs. glass fiber content of Solvay Advanced Polymers Udel® PSU resins.
Figure 10.78. Tensile modulus vs. temperature of Solvay Advanced Polymers Udel® PSU resins.
Mckeen_Ch10.indd 541
12/11/2007 6:20:08 PM
542
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.79. Tensile modulus vs. temperature of BASF Ultrason® S PSU resins.
Figure 10.80. Young’s modulus vs. temperature of BASF Ultrason® S PSU resins.
Mckeen_Ch10.indd 542
12/11/2007 6:20:09 PM
10: High Temperature Polymers
543
Figure 10.81. Compressive strength vs. glass fiber content of Solvay Advanced Polymers Udel® PSU resins.
Figure 10.82. Flexural strength vs. glass fiber content of Solvay Advanced Polymers Udel® PSU resins.
Mckeen_Ch10.indd 543
12/11/2007 6:20:11 PM
544
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.83. Flexural strength vs. temperature of Solvay Advanced Polymers Udel® PSU resins.
Figure 10.84. Tensile strength vs. temperature of Solvay Advanced Polymers Udel® PSU resins.
Mckeen_Ch10.indd 544
12/11/2007 6:20:12 PM
10: High Temperature Polymers
545
Figure 10.85. Tensile strength vs. temperature of BASF Ultrason® S PSU resins.
Figure 10.86. Tensile strength vs. glass fiber content of Solvay Advanced Polymers Udel® PSU resins.
Mckeen_Ch10.indd 545
12/11/2007 6:20:14 PM
546
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.87. Charpy notched impact strength vs. temperature of BASF Ultrason® S 2010 PSU resins.
Figure 10.88. Rockwell hardness vs. glass fiber content of Solvay Advanced Polymers Udel® PSU resins.
Mckeen_Ch10.indd 546
12/11/2007 6:20:15 PM
10: High Temperature Polymers
547
Figure 10.89. Specific volume as a function of temperature and pressure (PVT) of Solvay Advanced Polymers Udel® PSU resins.
Figure 10.90. Specific volume as a function of temperature and pressure (PVT) of BASF Ultrason® S 2010— unreinforced, medium viscosity PSU resin.
Mckeen_Ch10.indd 547
12/11/2007 6:20:17 PM
548
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.91. Coefficient of thermal expansion (crossflow direction) vs. temperature of Solvay Advanced Polymers Udel® PSU resins.
Figure 10.92. Coefficient of thermal expansion (flow direction) vs. temperature of Solvay Advanced Polymers Udel® PSU resins.
Mckeen_Ch10.indd 548
12/11/2007 6:20:18 PM
10: High Temperature Polymers
549
Figure 10.93. Specific heat vs. temperature of Solvay Advanced Polymers Udel® PSU resins.
Figure 10.94. Dielectric constant vs. temperature and frequency of Ultrason® S 2010—unreinforced, medium viscosity PSU resin.
Mckeen_Ch10.indd 549
12/11/2007 6:20:19 PM
550
The Effect of Temperature and Other Factors on Plastics and Elastomers
Figure 10.95. Dissipation factor vs. temperature and frequency of Ultrason® S 2010—unreinforced, medium viscosity PSU resin.
Mckeen_Ch10.indd 550
12/11/2007 6:20:21 PM
11 Tables of Selected ISO 10350 Properties 11.1 Background
• ISO 527-1:1993, Plastics—Determination of tensile properties—Part 1: General principles.
This chapter contains data in tabular form. This data is described in the standard ISO 10350-1:1998, which is titled: “Plastics – Acquisition and presentation of comparable single-point data – Part 1: Molding materials.” Standard ISO 10350 identifies specific test procedures for the acquisition and presentation of comparable data for many basic properties of plastics. The properties included are often in the manufacturers’ data sheets. In fact many manufacturers, particularly those based in Europe, provide an ISO 10350 Technical Data Sheet, along with a generalized technical data sheet that contains a mixture of ISO and ASTM data. All the data on ISO 10350 are defined by ISO standards rather than ASTM standards. Part 1 applies to unreinforced and reinforced thermoplastic and thermosetting materials, which is the subject of this book. The tables in this section follow one or more of the following standards:
• ISO 527-2:1993, Plastics—Determination of tensile properties—Part 2: Test conditions for molding and extrusion plastics.
• ISO 62, Plastics—Determination of water absorption. • ISO 179-1, Plastics—Determination of Charpy impact properties—Part 1: Noninstrumented impact test. • ISO 179-2:1997, Plastics—Determination of Charpy impact properties—Part 2: Instrumented impact test. • ISO 291:1997, Plastics—Standard atmospheres for conditioning and testing. • ISO 293:1986, Plastics—Compression molding test specimens of thermoplastic materials. • ISO 294-1:1996, Plastics—Injection molding of test specimens of thermoplastic materials— Part 1: General principles and molding of multipurpose and bar test specimens. • ISO 294-3:1996, Plastics—Injection molding of test specimens of thermoplastic materials— Part 3: Small plates. • ISO 295:1991, Plastics—Compression molding of test specimens of thermosetting materials.
• ISO 2818:1994, Plastics—Preparation of test specimens by machining. • ISO 3167:1993, Plastics—Multipurpose test specimens. • ISO 10724-1:1998, Plastics—Injection molding of test specimens of thermosetting materials—Part 1: General principles and molding of multipurpose test specimens. • ISO 10724-2:1998, Plastics—Injection molding of test specimens of thermosetting materials— Part 2: Small plates. • ISO 11359-2, Plastics—Thermomechanical analysis (TMA)—Part 2: Determination of coefficient of linear thermal expansion and glass transition temperature. • IEC 60250:1969, Recommended methods for the determination of the permittivity and dielectric dissipation factor of electrical insulating materials at power, audio and radio frequencies including meter wavelengths. While similar ASTM standard based data may be available, these tables do not include it. Materials without ISO measurements are not included in these tables. The tables are grouped in Sections 11.2–11.10 in the same manner as in the earlier chapters of this book. These tables contain several notations besides numerical data. These are: *
Inapplicable property or a property not relevant to this material.
–
Missing value, not applicable.
N
No break in a Charpy Impact Test.
P
Partial break.
The descriptions of the plastics are structured in two parts. The first part is the base polymers that are 551
Mckeen_Ch11.indd 551
12/11/2007 6:21:01 PM
552
The Effect of Temperature and Other Factors on Plastics and Elastomers
abbreviated as in Table 11.1.1. The fillers are listed next, and they are listed or abbreviated as those shown in Table 11.1.2, and are followed by a number indicating weight percent. Occasionally, the
manufacturer only gives a combined weight, and in these cases the fillers are grouped in parentheses followed by the combined weight percent.
Table 11.1.1 Base Polymers Abbreviations Abbreviation
Description
E/P
Ethylene–propylene
EVAC
Ethylene-vinyl acetate
MBS
Methacrylate-butadiene–styrene
ABS
Acrylonitrile-butadiene–styrene
ASA
Acrylonitrile-styrene-acrylate
C
Cellulose polymers
COC
Cycloolefin copolymer
EP
Epoxide; epoxy
HDPE
High density polyethylene
Imod
Impact modifier
LCP
Liquid crystalline polymer
MABS
Methyl methacrylate-acrylonitrile-butadiene-styrene
MF
Melamine-formaldehyde
MPF
Melamine-phenol-formaldehyde
PA11
Polyamide 11
PA12
Polyamide 12
PA12/MACMI
Copolyamide based on omega-aminododecanoic acid (laurolactame) and 3,3′-dimethyl – 4,4′-diaminodicyclohexylmethane and isophthalic acid
PA46
Polyamide 46
PA6
Polyamide 6
PA6/6T
Copolyamide based on e-caprolactam, hexamethylenediamine and terephthalic acid
PA610
Polyamide 610
PA612
Polyamide 612
PA66
Polyamide 66
PA66/6T
Copolyamide 66/6T
PA666
Copolyamide 666
PA6I/6T
Copolyamide based on hexamethylenediamine, isophthalic and terephthalic acid
PA6T/66
Copolyamide based on hexamethylenediamine, terephthalic acid and adipic acid
PA6T/6I
Copolyamide based on hexamethylenediamine, terephthalic and isophthalic acid
PA6T/XT
Polyamide 6=hexamethylene diamine t=terephtalic acid x=different co-monomers t=terephtalic acid
PAEK
Polyaryletherketone
PAI
Polyamideimide
PAIND/INDT
Polyamide NDT/INDT
PAMACM12
Homopolyamide based on 3,3′-dimethyl – 4,4′-diaminodicyclohexylmethane and dodecandioic acid
PAMXD6
Poly-m-xylyleneadipamide (Continued)
Mckeen_Ch11.indd 552
12/11/2007 6:21:02 PM
11: Tables of Selected ISO 10350 Properties
553
Table 11.1.1 Base Polymers Abbreviations (cont’d) Abbreviation
Description
PAPACM12
Homopolyamide based on bis(p-aminocyclohexyl)methane and dodecandioic acid
PBI
Polybenzimidazole
PBT
Poly(butylene terephthalate)
PC
Polycarbonate
PCCE
Poly(cyclohexylene dimethylene cyclohexanedicarboxylate), glycol and acid comonomer
PCTA
Poly(cyclohexylene dimethylene terephtalate), acid
PCTG
Poly(cyclohexylene dimethylene terephtalate), glycol
PE
Polyethylene
PEEK
Polyetheretherketone
PEI
Polyetherimide
PEN
Polyethylenenaphthalate
PES
Polyethersulfone
PET
Poly(ethylene terephthalate)
PETG
Poly(ethylene terephthalate), glycol
PF
Phenol – formaldehyde
PI
Polyimide
PK
Polyketone
PMMA
Poly(methyl methacrylate)
PMMI
Polymethylmethyacrylimide
POM
Poly(oxymethylene); polyformaldehyde
PP
Polypropylene
PPE
Poly(phenylene ether)
PPS
Poly(phenylene sulfide)
PPSU
Poly(phenylene sulfone)
PS
Polystyrene
PS-SY
Syndiotactic polystyrene
PSU
Polysulfone
PTFE
Polytetrafluoroethylene
PUR
Polyurethane
PVC
Poly(vinyl chloride)
PVDF
Poly(vinylidene fluoride)
SAN
Styrene acrylonitrile
SB
Styrene-butadiene
SMAH
Styrene-maleic anhydride
TEEE
Thermoplastic elastomer, ether-ester
TPA
Polyamide thermoplastic elastomer
TPC
Copolyester thermoplastic elastomer
TPO
Olefinic thermoplastic elastomer
TPS
Styrenic thermoplastic elastomer (Continued)
Mckeen_Ch11.indd 553
12/11/2007 6:21:02 PM
554
The Effect of Temperature and Other Factors on Plastics and Elastomers
Table 11.1.1 Base Polymers Abbreviations (cont’d) TPU
Urethane thermoplastic elastomer
TPV
Thermoplastic rubber vulcanisate
TPZ
Unclassified thermoplastic elastomer, not grouped above
UHMWPE
Ultra high molecular weight polyethylene
UP
Unsaturated polyester
Table 11.1.2 Filler Abbreviations Abbreviation
Description
CF
Carbon fiber
CD
Carbon fines, powder
GF
Glass fiber
GB
Glass beads, spheres, balls
GD
Glass fines, powder
GX
Glass not specified
K
Calcium carbonate
MD
Unspecified mineral
MeF
Metal fiber
MeD
Metal fines, powder
MiF
Mineral fiber
MiD
Mineral fines, powder
MiX
Mineral not specified
Moly
Molybdenum disulfide
NF
Natural organic fiber
P
Mica
Q
Silica
RF
Aramid fiber
T
Talcum, talc
X
Not specified
Z
Others not included in this list
Mckeen_Ch11.indd 554
12/11/2007 6:21:02 PM
Mckeen_Ch11.indd 555
Description
PS PS PS PS PS-I PS-I PS-I PS-I PS-I PS-I PS-I PS-I PS-I PS-I PS-I PS-I PS-I PS-I + PE
Edistir N 1910
Edistir N 2380
Edistir N 2560
Edistir N 2982
Edistir R 321P
Edistir R 540E
Edistir R 850E
Edistir RC 3
Edistir RC 600
Edistir RCL 600
Edistir RK
Edistir RK 451G
Edistir RK 5512G
Edistir RKL
Edistir RT 441M
Edistir RT 461F
Edistir SR 550
Koblend P 475E
1600
1900
2000
1900
1900
2100
1950
1900
1950
1950
2000
1800
2000
2400
3200
3200
3300
3200
25
18.5
30
22
24
23
21
24
29
29
29
22
24
24
*
*
*
*
2.7
1.2
1.6
1.2
1.7
1.3
1.3
1.7
1.5
1.5
1.5
1.6
1.6
1.1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
26
43
47
37
37
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
1.5
2
1.2
1.3
N
N
120
120
70
70
70
70
50
50
130
N
N
80
6
7
8
6.5
6.5
6.5
Charpy Impact 23°C (kJ/m2)
*
Strain at Break (%) 1.4
–
–
–
80
60
–
–
60
15
15
–
–
–
70
–
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
*
Stress at Break (MPa) 44
–
8.5
8
9
6.5
7
7
6.5
7
7
10
10
9
4
–
–
–
–
–
–
Charpy Notched Impact 23°C (kJ/m2)
3200
Yield at Strain (%) *
–
–
–
4
4
–
–
4
2
2
–
–
–
2
–
–
–
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
PS
Yield Stress (MPa) *
–
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
Relative Permitivity @1MHz
Edistir N 1840
Tensile Modulus (MPa) 3200
–
3
3
3
4
6
4
4
3
3
3
3
3
3
2
2
2
2
2
2
Dissipation Factor @1MHz
PS
(Continued )
–
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.04
0.04
0.04
0.04
0.04
0.04
Water Absorption (%)
Edistir N 1782
Polystyrene/Polimeri Europa
Name and Grade
11.2 Styrenic Plastics
11: Tables of Selected ISO 10350 Properties 555
12/11/2007 6:21:02 PM
Mckeen_Ch11.indd 556
PS PS PS PS PS PS PS PS PS PS PS
Styron 6335
Styron 634
Styron 637
Styron 648
Styron 660
Styron 678E
Styron 686E
Styron A-TECH 1120
Styron A-TECH 1175
Styron A-TECH 1200
Styron A-TECH 1400 PS-SY, GB10, MD10 PS-SY, GF10 PS-SY, GF10 PS-SY, GF10, MD10
Edgetek sPS® QT-10GB-10MN/000
Edgetek sPS® QT-10GF/000
Edgetek sPS® QT-10GF/000 FR
Edgetek sPS® QT-10GF-10MN/000
Polystyrene/PolyOne
PS
Tensile Modulus (MPa)
PS
6200
5800
5580
4650
2000
1750
1650
2000
3650
3300
3350
3400
3300
3350
2000
2000
2100
Yield Stress (MPa)
Styron 485
–
–
–
–
20
19
16
25
55
42
46
56
48
51
26
20
30
Yield at Strain (%)
Styron 457
–
–
–
–
1.3
1.3
1.4
1.4
3
2
2
3
2
3
2
1
2
Stress at Break (MPa)
Polystyrene/DOW
65
60
63
38
*
*
*
*
*
*
*
*
*
*
*
*
*
Strain at Break (%) 1.1
1.7
1.1
1.2
*
*
*
*
*
*
*
*
*
*
*
*
*
12
13
7.3
6
N
N
N
N
–
–
–
–
–
–
N
N
N
N
Charpy Impact 23°C (kJ/m2)
*
–
–
–
–
N
N
N
N
–
–
–
–
–
–
N
N
N
N
Charpy Impact −30°C (kJ/m2)
*
2
1
2
–
10
12
11
6
–
–
–
–
–
–
11
7
10
29
Charpy Notched Impact 23°C (kJ/m2)
3.1
–
–
–
–
6
8
–
3
–
–
–
–
–
–
6
5
6
11
Charpy Notched Impact −30°C (kJ/m2)
20
–
–
–
–
–
–
–
–
2.5
2.5
2.5
2.5
2.5
2.5
–
2.5
2.5
–
Relative Permitivity @1MHz
1200
–
–
–
–
–
–
–
–
0.6
0.6
0.6
0.6
0.6
0.6
–
0.4
0.4
–
Dissipation Factor @1MHz
PS-I + PE
Description
–
–
–
–
0
0
0
0
0
0
0
0
0
0
0
0
0
–
Water Absorption (%)
Koblend P 477E
Name and Grade
11.2 Styrenic Plastics (cont’d)
556 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:02 PM
Mckeen_Ch11.indd 557
PS-SY, GB20 PS-SY, GF20 PS-SY, GF22 PS-SY, MD22 PS-SY, GF25 PS-SY, GB30 PS-SY, GF30 PS-SY, GF30 PS-SY, GF30 PS-SY, GF40
Edgetek sPS® QT-20GB/000
Edgetek sPS® QT-20GF/000
Edgetek sPS® QT-22GF/000 FR
Edgetek sPS® QT-22MN/000 HI
Edgetek sPS® QT-25GF/000 FR
Edgetek sPS® QT-30GB/000
Edgetek sPS® QT-30GF/000
Edgetek sPS® QT-30GF/000 FR
Edgetek sPS® QT-30GF/000 FR HC
Edgetek sPS® QT-40GF/000 ASA ASA ASA ASA ASA ASA ASA ASA ASA
Luran® S 757 G
Luran® S 757 R
Luran® S 776 S
Luran® S 776 SE
Luran® S 777 K
Luran® S 778 T
Luran® S 778 TE
Luran® S 796 M
Luran® S 797 S
ASA/BASF
PS-SY, GF10, GB10
Edgetek sPS® QT-15GF-15GB/000
2000
2000
2500
2500
2300
2200
2200
2600
2400
12500
10500
10300
10200
4550
8000
4850
7000
7800
4000
7950
42
41
54
54
48
47
47
56
51
–
–
–
–
–
–
–
–
–
–
–
3.5
3.5
3.4
3.4
3.3
3.3
3.3
3.1
3.3
–
–
–
–
–
–
–
–
–
–
–
*
*
*
*
*
*
*
*
*
140
120
104
123
38
90
44
95
80
37
85
*
*
*
*
*
*
*
*
*
1.6
1.5
1.6
1.6
1.2
1.5
1.2
1.5
1.1
1
1.4
250
250
250
250
250
270
270
200
190
36
35
20
30
6
22
10
35
28
–
22
180
150
90
90
90
150
150
70
80
–
–
–
–
–
–
–
–
–
–
–
40
30
15
15
17
30
30
12
12
7
9
4.5
6
–
6
1
8
5
–
5
9
5
4
4
4
3
3
3
3
–
–
–
–
–
–
–
–
–
–
–
3.3
3.3
3.5
3.5
3.4
3.4
3.4
3.4
3.2
–
–
–
–
–
–
–
–
–
–
–
260
250
330
330
240
340
340
250
250
–
–
–
–
–
–
–
–
–
–
–
(Continued )
1.65
1.65
1.65
1.65
1.65
1.65
1.65
1.65
1.65
–
–
–
–
–
–
–
–
–
–
–
11: Tables of Selected ISO 10350 Properties 557
12/11/2007 6:21:03 PM
Mckeen_Ch11.indd 558
ASA ASA ASA
Polyman® (ASA) E 1007 H
Polyman® (ASA) E/ M11010
Polyman® (ASA) M/MI 2010
SAN
Lustran SAN® 35
SAN SAN, GF25
Polyman® (SAN) 29/10
Polyman® FSAN 35 GF SAN SAN SAN
Luran® 358 N
Luran® 358 N Crystal Clear
Luran® 368 R
SAN/BASF
SAN
Polyman® (SAN) 24/5
SAN/A. Schulman
SAN
Lustran SAN® 32
SAN/Lanxess
ASA
Polyman® (ASA) E 1006
ASA/A. Schulman
Tensile Modulus (MPa)
ASA
3700
3700
3700
11000
3700
3700
3700
3700
2200
2200
2400
2400
2500
6600
Yield Stress (MPa)
ASA, GF15
*
*
*
*
*
*
*
*
*
46
46
53
53
55
Yield at Strain (%)
Luran® S KR 2859
*
*
*
*
*
*
*
*
*
4.0
3.5
3
3
3.2
Stress at Break (MPa)
Luran® S KR 2858 G3
75
72
72
100
70
70
80
70
*
*
*
*
*
110
Strain at Break (%) 3
3
3
1.7
3
3
2
2
*
*
*
*
*
2.5
18
16
16
15
1
12
20
16
–
–
–
–
160
28
250
Charpy Impact 23°C (kJ/m2)
*
18
16
16
–
–
–
20
16
–
–
–
–
80
17
180
Charpy Impact −30°C (kJ/m2)
*
2
2
2
3.6
3
3
–
–
10
11
7
11
11
7
40
Charpy Notched Impact 23°C (kJ/m2)
3.5
*
*
*
–
–
–
–
–
–
–
–
–
4
6
9
Charpy Notched Impact −30°C (kJ/m2)
42
2.7
2.7
2.7
–
2.8
2.8
3
2.9
3
3
3
3
–
–
3.3
Relative Permitivity @1MHz
2000
70
70
70
–
70
70
60
70
90
90
90
90
–
–
260
Dissipation Factor @1MHz
ASA
Description
–
–
–
0.1
0.2
0.2
–
–
1.20
1.2
1.2
1.2
1.65
1.42
1.65
Water Absorption (%)
Luran® S 797 SE
Name and Grade
11.2 Styrenic Plastics (cont’d)
558 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:03 PM
Mckeen_Ch11.indd 559
SAN SAN, GF35 SAN SAN SAN
Luran® 378 P
Luran® 378 P G7
Luran® 388 S
Luran® KR 2556
Luran® KR 2636
SAN SAN SAN SAN SAN SAN SAN
Kostil B 266(1)
Kostil B 361 R11
Kostil B 365(0)
Kostil B 366(1)
Kostil B 361 R42
Kostil C 266(1)
Kostil PD C 166
SAN SAN SAN SAN SAN SAN SAN SAN SAN
Tyril 125
Tyril 790
Tyril 867 EUV
Tyril 867E
Tyril 880
Tyril 880B
Tyril 905
Tyril 905 UV
Tyril 990 ABS ABS
Magnum 1040
Magnum 2620
ABS/DOW
SAN
Tyril 100
SAN/DOW
SAN
Kostil B 265(0)
SAN/Polimeri Europa
SAN
Luran® 368 R Crystal Clear
2300
1900
3400
3350
3350
3500
3700
3700
3700
3800
3500
3440
3600
3500
3200
3450
3450
3350
3450
3450
3600
3900
3800
12000
3800
3700
48
42
*
65
65
*
*
72
72
76
*
*
*
*
51
*
*
60
*
*
*
*
*
*
*
*
2.5
2.8
*
2.5
2.5
*
*
2.6
2.6
2.6
*
*
*
*
3
*
*
3
*
*
*
*
*
*
*
*
*
*
63
*
*
84
77
*
*
*
56
71
70
70
*
65
65
*
67
67
70
79
79
110
75
75
*
*
2
*
*
2.5
2.6
*
*
*
1.6
2.4
3
3
*
2.2
2.2
*
2.5
2.5
2.5
5
3
2
3.5
3
N
N
10
16
16
20
20
17
17
17
10
6
19
18
24
14
14
18
16
16
14
20
21
17
19
18
80
N
10
17
17
20
20
18
18
18
10
2
19
18
21
14
14
18
16
16
14
21
19
17
19
18
24
63
2
–
–
2
2
–
–
–
2
2
–
–
–
–
–
–
–
–
1.5
2
2.5
4
2
2
8
16
2
–
–
2
2
–
–
–
1
2
–
–
–
–
–
–
–
–
*
*
*
*
*
*
–
–
–
3
3
–
–
3
3
2.8
–
–
–
–
–
–
–
–
–
–
2.8
2.7
2.8
3.2
2.7
2.7
–
–
–
–
–
–
–
–
–
1
–
–
–
–
–
–
–
–
–
–
70
70
80
100
80
70
(Continued )
–
–
–
0.2
0.2
–
–
0.1
0.1
0.1
–
–
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
–
–
–
–
–
–
11: Tables of Selected ISO 10350 Properties 559
12/11/2007 6:21:03 PM
Mckeen_Ch11.indd 560
ABS ABS ABS ABS ABS ABS ABS ABS ABS
Magnum 3504
Magnum 3513
Magnum 3525
Magnum 357HP
Magnum 358HP
Magnum 3616
Magnum 3904
Magnum 3904 “Smooth”
ABS
Magnum 344HP
Magnum 3490
ABS
Magnum 344CC
ABS
ABS
Magnum 342EZ
Magnum 348
2280
ABS
Magnum 3416SC
ABS
ABS
Magnum 3404 “Smooth”
ABS
ABS
Magnum 3404
Magnum 3453
ABS
Magnum 3325MT
Magnum 347EZ
2000
ABS
Tensile Modulus (MPa)
Magnum 275
1820
1900
2200
2380
2100
2080
2600
2120
2200
1800
1890
2030
1800
2280
2150
2150
2080
2000
Yield Stress (MPa)
2100
37
35
38
–
40
–
47
42
49
37
34
45
44
–
37
40
43
43
–
44
41
Yield at Strain (%)
ABS
2.6
2.5
3
–
2.3
–
2.4
2.5
2.4
2.3
2.2
2.5
2.5
–
2.3
2.4
2.7
2.5
–
2.6
2.1
Stress at Break (MPa)
Magnum 2642
*
*
*
–
*
–
*
*
*
*
*
*
*
–
*
*
*
*
–
*
*
Strain at Break (%) *
*
*
–
*
–
*
*
*
*
*
*
*
–
*
*
*
*
–
*
*
N
N
N
N
N
N
N
N
N
N
140
N
N
N
N
N
N
N
N
N
N
N
Charpy Impact 23°C (kJ/m2)
*
N
N
N
60
80
N
N
N
80
N
90
N
N
86
N
N
N
N
N
N
100
N
Charpy Impact −30°C (kJ/m2)
*
37
38
25
18
16
18
22
22
17
16
8
19
20
15
16
18
13
16
18
22
13
32
Charpy Notched Impact 23°C (kJ/m2)
2.4
18
16
10
7
7
10
11
11
5
8
5
10
7
7
8
9
9
9
10
9
7
15
Charpy Notched Impact −30°C (kJ/m2)
44
–
–
–
–
–
–
2.7
2.9
–
–
–
–
–
–
–
–
–
2.8
–
–
–
–
Relative Permitivity @1MHz
2000
–
–
–
–
–
–
80
70
–
–
–
–
–
–
–
–
–
60
–
–
–
–
Dissipation Factor @1MHz
ABS
Description
–
–
–
–
–
–
0.7
0.5
–
–
–
–
–
–
–
–
–
0.5
–
–
–
–
Water Absorption (%)
Magnum 2630
Name and Grade
11.2 Styrenic Plastics (cont’d)
560 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:03 PM
Mckeen_Ch11.indd 561
ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS
Magnum 541
Magnum 545
Magnum 555
Magnum 8391
Magnum 8434
Magnum 9010
Magnum 9020
Magnum 9030
Magnum 941
Magnum 9555
Magnum 9575
Magnum AG 700
Magnum FG 960
Magnum HPC 952
Magnum PG 914
ABS ABS ABS, GF15 ABS ABS, GB30 ABS ABS ABS
Polyflam® RABS 90000 UV5
Polyflam® RABS 90000 UV6
Polyflam® RABS 92000 UV5
Polyman® (ABS) E/HI
Polyman® (ABS) FABS 30 GB
Polyman® (ABS) HH
Polyman® (ABS) HH 2
Polyman® (ABS) HH 3
ABS/A. Schulman
ABS
Magnum 5200
1800
1800
1900
2800
1500
2350
2500
2200
2000
2100
2000
2000
2350
2400
1900
2000
2300
2300
2200
2400
2200
2200
2200
1980
53
51
49
35
40
*
40
42
44
45
44
33
42
50
42
44
48
50
–
–
47
45
45
35
2.8
2.7
2.7
1.8
2.5
*
2.1
3
2.6
2.6
2.6
1.8
2.6
2.3
2.8
2.4
2.5
2.4
–
–
2.6
2.4
2.4
2.4
*
*
*
*
*
42
*
*
*
*
*
*
*
*
*
*
*
*
–
–
*
*
*
*
*
*
*
*
*
2.2
*
“
*
*
*
*
*
*
*
*
*
*
–
–
*
*
*
*
50
60
65
–
N
45
N
80
N
N
N
N
140
N
N
N
N
N
N
N
N
N
N
140
–
–
–
–
N
13
56
45
N
N
N
N
60
N
N
N
80
90
N
N
N
100
100
60
6
10
12
5
34
5.5
10
10
22
44
22
16
22
29
63
32
24
19
–
18
40
24
24
15
2
6
7
–
19
3.6
5
5
9
18
9
7
8
9
16
15
8
6
–
9
12
9
9
6
3
–
–
–
3
–
3
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
90
–
–
–
90
–
7
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
(Continued )
1.2
–
–
–
1.2
0.8
1
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
11: Tables of Selected ISO 10350 Properties 561
12/11/2007 6:21:04 PM
Mckeen_Ch11.indd 562
2100 2200 2300
2500 2500 2300
ABS ABS ABS ABS ABS
ABS ABS ABS
ABS ABS, GF20
Polyman® (ABS) M/HI-A
Polyman® (ABS) M/HI-G
Polyman® (ABS) M/MI-A 40
Polyman® (ABS) M/MI-A K1452
Polyman® (ABS) M/SHI
Polyman® (ABS) M/TK
Polyman® (ABS) M/TK-A ABS ABS
Polyman® (ABS) M/AQ
Polyman® (ABS) M/HI-W ABS ABS
Polyman® (ABS) LC 185 A
Polyman® (ABS) M/TKHH
Polyman® (ABS) NWB/ HI
Polyman® FABS 20 GF
Tensile Modulus (MPa)
Polyman® (ABS) LC 165
5500
1900
2200
2300
2200
2300
2500
2200
Yield Stress (MPa)
2200
*
42
48
52
52
45
50
41
50
45
48
45
45
43
45
Yield at Strain (%)
ABS
*
3
2.5
2.5
2.5
2.3
2.3
2.5
3
2.5
2.1
2.8
2.3
3
3
Stress at Break (MPa)
Polyman® (ABS) LC 145
65
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Strain at Break (%) 2
*
*
*
*
*
*
*
*
*
*
*
*
*
*
13
N
N
N
N
N
N
70
85
N
N
N
N
N
N
70
Charpy Impact 23° (kJ/m2)
*
18
–
–
80
80
93
75
–
71
–
71
–
N
N
N
27
Charpy Impact −30°C (kJ/m2)
*
6
27
7
15
15
27
16
15
20
15
20
20
16
21
15
11
Charpy Notched Impact 23°C (kJ/m2)
2.8
4
–
–
7
7
11
7
–
11
–
9
7
8
10
8
6
Charpy Notched Impact −30°C (kJ/m2)
49
3
3
3
3
–
3
3
–
3
–
3
3
3
3
3
3
Relative Permitivity @1MHz
2300
–
90
90
90
–
90
90
–
90
–
90
90
90
90
90
90
Dissipation Factor @1MHz
ABS
Description
–
1.2
1.2
1.2
–
1.2
1.2
–
1.2
–
1.2
1.2
1.2
1.2
1.2
1.2
Water Absorption (%)
Polyman® (ABS) HH 3 D
Name and Grade
11.2 Styrenic Plastics (cont’d)
562 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:04 PM
Mckeen_Ch11.indd 563
ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS, GF16
Lustran ABS® H604
Lustran ABS® H605
Lustran ABS® H606LS
Lustran ABS® H607AS
Lustran ABS® H701
Lustran ABS® H702
Lustran ABS® H802
Lustran ABS® H950
Lustran ABS® M201AS
Lustran ABS® M202AS
Lustran ABS® M203FC
Lustran ABS® M301AS
Lustran ABS® M301FC
Lustran ABS® M305
Novodur® P2H-AT
Novodur® P2HE
Novodur® P2HGV
SBC SBC SBC
Styrolux® 3G 55
Styrolux® 656 C
Styrolux® 684 D
2800
Polyflam® RMMB 40300
ABS+PC
2500
1500
1800
900
1550
5500
2500
2500
2300
2100
2100
2400
2300
2400
2600
2700
2500
2150
2400
2550
2400
2400
1900
2100
Polyflam® (ABS/PA) RMMK 125
Styrenic Blends/A. Schulman
SBC
Styrolux® 3G 46
SBC/BASF
ABS
Lustran ABS® E401
ABS/Lanxess
Polyman®+A208 (ABS) NWB/MI
63
52
26
35
15
27
74
44
44
45
42
42
46
44
47
50
51
46
41
46
48
47
45
40
47
4
3
2
2
2
2
2
2.4
2.1
2.5
2.6
2.6
2.6
2.4
2.5
2.9
2.8
2.6
2.7
2.5
2.6
2.5
2.6
2.5
3
*
*
*
*
*
–
*
*
*
*
*
*
*
*
*
*
*
*
*
*
–
*
*
*
*
*
*
*
*
*
–
*
*
*
*
*
*
*
*
*
*
*
*
*
*
–
*
*
*
*
N
N
N
25
N
N
18
160
100
150
170
170
110
100
140
140
100
100
180
130
100
90
180
210
N
N
N
–
–
–
–
20
90
80
110
120
120
90
80
80
90
80
90
120
90
80
80
110
170
–
18
12
4
2
85
3
6
19
16
21
21
21
15
16
19
16
15
16
24
19
18
17
20
30
16
1
9
–
–
–
2
5
11
7
11
12
12
7
8
10
7
7
8
13
9
9
7
11
16
–
–
–
2.5
2.5
2.5
2.5
3.1
2.9
2.9
2.9
2.9
2.9
2.9
3
2.9
3
3
2.9
3
2.9
3
3
2.9
2.9
3
–
–
8
8
8
–
60
80
90
80
90
90
90
80
90
100
100
90
90
90
100
80
90
90
90
(Continued )
–
–
0.07
0.07
0.07
0.07
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
1.2
11: Tables of Selected ISO 10350 Properties 563
12/11/2007 6:21:04 PM
Mckeen_Ch11.indd 564
ABS+PC ABS+PA6 ABS+PC ABS+PC ABS+PC ABS+ASA ABS+ASA ABS+PA6, GF20
Polyflam® RMMB 60500
Schulablend® (ABS/PA) M/MK
Schulablend® (PC/ABS) M/MB 3
Schulablend® (PC/ABS) M/MB 5
Schulablend® (PC/ABS) M/MB 6
Schulablend® (PC/ASA) WR 5
Schulablend® (PC/ASA) WR 5 UV
Schulablend® ABS/PA) M/MK 20GF ASA+PC ASA+PC ASA+PC
Luran® S KR 2861/1 C
Luran® S KR 2863 C
Luran® S KR 2864 C
Styrenic Blends/BASF
ABS+PC
Polyflam® RMMB 60300
2600
2500
2300
4900
1900
2400
2300
2200
2300
1800
2400
2200
2600
ABS+PC
Tensile Modulus (MPa)
Polyflam® RMMB 4070 HF
Yield Stress (MPa) 63
62
53
*
44
55
55
52
49
44
48
40
60
60
Yield at Strain (%)
2400
4.6
4.9
4.9
*
4
4.5
5
4
4
3
4
3
4
5.4
Stress at Break (MPa)
Polyflam® RMMB 4070 F ABS+PC FR 4
*
*
*
77
*
*
*
*
*
*
*
*
*
*
Strain at Break (%) *
*
*
4.5
*
*
*
*
*
*
*
*
*
*
N
N
N
36
N
N
N
N
N
N
N
N
N
N
N
Charpy Impact 23°C (kJ/m2)
*
N
N
N
–
N
N
N
N
N
N
N
86
N
N
N
Charpy Impact −30°C (kJ/m2)
*
70
60
60
9
37
3
50
45
39
72
16
10
13
40
22
Charpy Notched Impact 23°C (kJ/m2)
4.5
11
17
20
–
20
–
43
–
17
32
9
–
–
17
14
Charpy Notched Impact −30°C (kJ/m2)
60
3
3
3.2
–
–
–
–
–
–
–
–
–
–
–
–
Relative Permitivity @1MHz
2600
120
100
150
–
–
–
–
–
–
–
–
–
–
–
–
Dissipation Factor @1MHz
ABS+PC
Description
0.6
0.6
0.9
–
–
–
–
–
–
–
–
–
–
–
–
Water Absorption (%)
Polyflam® RMMB 4070
Name and Grade
11.2 Styrenic Plastics (cont’d)
564 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:04 PM
Mckeen_Ch11.indd 565
3200 4100 5400 6500 7500
1900 2200 1600 2000 1600
ABS+PA6, GF8 ABS+PA6, GF8 ABS+PA6, GF20 ABS+PA6, GF20 ABS+PA6, GF30 ABS+PA6, GF30 ABS+PA6 ABS+PA6 ABS+PA6
ABS+PA6
Terblend® N NG 04 (cond)
Terblend® N NG 04 (dry)
Terblend® N NG-06 (cond)
Terblend® N NG-06 (dry)
Terblend® N NM11(cond)
Terblend® N NM-11(dry)
Terblend® N NM-12 (cond)
Terblend® N NM-19 (cond)
Terblend® N NM-19 (dry) ABS+PA6 ABS+PA6
Terblend® N NG 02 (dry)
Terblend® N NM-12 (dry) ABS+PA6 ABS+PA6
Terblend® N NG 02 (cond)
Terblend® N NMX04 (cond)
Terblend® N NMX04 (dry) ABS+PC ABS+PA6 ABS+PA6
Lustran ABS® H801
Triax® 1120 (cond.)
Triax® 1120 (dry)
Styrenic blends/Lanxess
2400
ASA+PMMA
Luran® S KR 2950
1900
1050
2400
2000
2000
1600
2100
2600
ASA+PC
Luran® S KR 2867 C WU
2600
ASA+PC
Luran® S KR 2866 C
40
30
49
40
32
43
34
50
45
43
34
*
*
*
*
*
*
49
61
60
3.2
13
3
3.5
5.5
3.5
5.5
3.2
5
3.5
5.5
*
*
*
*
*
*
3.6
4
3.4
*
*
*
*
*
*
*
*
*
*
*
90
80
60
50
45
40
–
*
*
*
*
*
*
*
*
*
*
*
*
*
3
3.5
3.2
3.5
3.5
4
–
*
*
N
N
220
N
–
N
–
N
–
N
–
35
–
30
–
35
–
120
N
N
N
N
160
N
–
N
–
–
–
N
–
30
–
25
–
25
–
54
N
160
74
74
30
65
–
65
–
17
–
65
–
9
–
8
–
8
–
9.5
16
35
16
16
12
20
–
15
–
9
–
15
–
6
–
5
–
3
–
3
9
5
3.6
3.7
3
2.9
3.3
2.9
3.3
2.9
3.3
2.9
3.3
2.9
3.6
2.9
3.6
2.9
3.6
–
3
–
–
–
90
150
550
150
550
150
550
150
550
130
500
130
500
130
500
–
100
–
(Continued )
6
*
–
–
*
–
*
–
*
–
*
3.4
*
–
*
–
*
–
0.4
0.9
11: Tables of Selected ISO 10350 Properties 565
12/11/2007 6:21:05 PM
Mckeen_Ch11.indd 566
4800
ABS+PA6, GF15 ABS+PA6 ABS+PA6 ABS+PA6 ABS+PA6
Triax® 1315 GF (dry)
Triax® DP 3155 (cond.)
Triax® DP 3155 (dry)
Triax® KU2- 3050 (dry)
Triax® KU2-3050 (cond.)
1050
1900
3200
2000
4000
ABS+PA6, GF15
Tensile Modulus (MPa)
Triax® 1315 GF (cond.)
Yield Stress (MPa)
1700
30
40
54
38
*
*
39
Yield at Strain (%)
ABS+PA6
13
3.2
3.3
5.3
*
*
3.5
Stress at Break (MPa)
Triax® 1220 S (dry)
*
*
*
*
82
70
*
Strain at Break (%) *
*
*
*
4
5
*
N
N
100
–
36
36
N
N
Charpy Impact 23°C (kJ/m2)
*
N
N
70
–
36
36
N
N
Charpy Impact −30°C (kJ/m2)
*
74
74
–
–
10
10
72
72
Charpy Notched Impact 23°C (kJ/m2)
13
16
16
–
–
6
6
23
25
Charpy Notched Impact −30°C (kJ/m2)
29
3.7
3.6
3.3
3.4
3.8
4
–
–
Relative Permitivity @1MHz
950
–
–
–
–
–
–
–
–
Dissipation Factor @1MHz
ABS+PA6
Description
*
6
4.3
*
3.8
*
6
*
Water Absorption (%)
Triax® 1220 S (cond.)
Name and Grade
11.2 Styrenic Plastics (cont’d)
566 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:05 PM
Mckeen_Ch11.indd 567
POM, RF5 POM POM+Imod POM+Imod POM POM POM POM POM POM, CF POM POM
Delrin® 100KM NC000
Delrin® 100P NC010
Delrin® 100ST NC010
Delrin® 100T NC010
Delrin® 107 NC010
Delrin® 111P NC010
Delrin® 1260 NC010
Delrin® 127UV NC010
Delrin® 150 NC010
Delrin® 300AS BK000
Delrin® 311 DP NC010
Delrin® 460 NC010
Description 2800
3300
9000
3100
3000
2900
3200
3200
1900
1400
2900
2900
64
74
58
72
70
65
72
72
52
43
70
*
9
15
5
23
23
7
20
25
26
30
25
*
–
–
–
–
*
–
*
–
*
*
*
65
–
–
–
–
–
*
–
*
–
*
*
*
15
–
200
32
–
–
400
160
210
N
N
N
N
–
N
150
Charpy Impact 23°C (kJ/m2)
27
Strain at Break (%) *
180
–
–
–
350
140
200
350
N
N
350
–
N
100
Charpy Impact −30°C (kJ/m2)
71
Stress at Break (MPa) *
7.1
10
4.5
12
15
6
11
14
25
100
14
4.5
14
9
Charpy Notched Impact 23°C (kJ/m2)
3100
Yield at Strain (%) 18
6.4
9
–
11
6
8
11
14
20
11
–
11
7
Charpy Notched Impact −30°C (kJ/m2)
POM
Yield Stress (MPa) 70
3.9
3.8
–
–
3.4
3.8
–
3.8
3.1
3.8
3.7
–
3.7
–
Relative Permitivity @1MHz
Delrin® 100 NC010
Tensile Modulus (MPa) 2700
44
–
400
50
60
43
43
50
90
–
40
–
50
–
Dissipation Factor @1MHz
POM, Z
(Continued )
0.75
0.4
3
1.4
1.2
0.7
1
0.9
0.9
0.9
1.4
–
0.9
–
Water Absorption (%)
DeIrin® 100AL NC010
Acetal homopolymer/DuPont
Name and Grade
11.3 Polyethers
11: Tables of Selected ISO 10350 Properties 567
12/11/2007 6:21:05 PM
Mckeen_Ch11.indd 568
POM POM POM POM+Imod POM, Z
Delrin® 500CL NC010
Delrin® 500MP NC010
Delrin® 500P NC010
Delrin® 500T NC010
Delrin® 500TL NC010
POM, Z POM POM, RF5 POM POM+Imod POM+Imod POM POM POM POM POM POM, CF
DeIrin® 100AL NC010
Delrin® 100 NC010
Delrin® 100KM NC000
Delrin® 100P NC010
Delrin® 100ST NC010
Delrin® 100T NC010
Delrin® 107 NC010
Delrin® 111P NC010
Delrin® 1260 NC010
Delrin® 127UV NC010
Delrin® 150 NC010
Delrin® 300AS BK000
Acetal homopolymer/DuPont
POM, Z
Tensile Modulus (MPa)
Delrin® 500AL NC010
9000
3100
3000
2900
3200
3200
1900
1400
2900
2900
3100
2700
2300
2500
3100
3400
3100
3100
Yield Stress (MPa)
2900
58
72
70
65
72
72
52
43
70
*
71
70
71
58
71
70
70
63
50
Yield at Strain (%)
POM, Z20
5
23
23
7
20
25
26
30
25
*
27
18
14
16
14
12
14
11
12
Stress at Break (MPa)
Delrin® 500AF
–
–
*
–
*
–
*
*
*
65
–
*
*
*
*
–
*
–
–
Strain at Break (%) –
–
*
–
*
–
*
*
*
15
–
*
*
*
*
–
*
–
–
–
–
400
160
210
N
N
N
N
–
N
150
170
N
300
–
350
150
40
–
Charpy Impact 23°C (kJ/m2)
–
–
–
350
140
200
350
N
N
350
–
N
100
160
340
300
–
290
120
35
–
Charpy Impact −30°C (kJ/m2)
–
4.5
12
15
6
11
14
25
100
14
4.5
14
9
5
15
9
5
8
7
3
6
Charpy Notched Impact 23°C (kJ/m2)
9
–
11
6
8
11
14
20
11
–
11
7
4
12
8
5
7
6
3
–
Charpy Notched Impact −30°C (kJ/m2)
63
–
–
3.4
3.8
–
3.8
3.1
3.8
3.7
–
3.7
–
–
3.6
3.9
–
3.5
–
3.1
–
Relative Permitivity @1MHz
2700
400
50
60
43
43
50
90
–
40
–
50
–
600
160
60
–
60
650
90
700
Dissipation Factor @1MHz
POM
Description
3
1.4
1.2
0.7
1
0.9
0.9
0.9
1.4
–
0.9
–
0.9
0.8
1.4
–
1
6
1
6.8
Water Absorption (%)
Delrin® 460E NC010
Name and Grade
11.3 Polyethers (cont’d)
568 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:05 PM
Mckeen_Ch11.indd 569
POM POM, Z POM
Delrin® 911 P NC010
Delrin® 911AL NC010
Delrin® II100 NC010 POM POM POM POM
Celcon AM90S
Celcon AM90S Plus
Celcon AS270
Celcon C13031 XAS
Acetal copolymer/Ticona
POM
Delrin® 900P NC010
POM, Z20
Delrin® 520MP NC010
POM, GF20
POM
Delrin® 511P NC010
Delrin® 570 NC000
POM, GF10
Delrin® 510GR NC000
POM
POM, Z
Delrin® 500TL NC010
Delrin® 560HD OR729
POM+Imod
Delrin® 500T NC010
POM
POM
Delrin® 500P NC010
Delrin® 560 NC010
POM
Delrin® 500MP NC010
POM
POM
Delrin® 500CL NC010
Delrin® 542CM NC010
POM, Z
Delrin® 500AL NC010
POM, GF25
POM, Z20
Delrin® 500AF
POM
POM
Delrin® 460E NC010
Delrin® 527UV NC010
POM
Delrin® 460 NC010
Delrin® 525GR NC000
POM
Delrin® 311 DP NC010
2710
2750
2500
2500
3100
3200
3400
3200
6000
2950
2900
3100
3100
9500
2800
3400
5500
2300
2500
3100
3400
3100
3100
2900
2700
2800
3300
–
–
–
–
71
70
–
71
*
63
60
72
70
*
54
75
–
71
58
71
70
70
63
50
63
64
74
–
–
–
–
25
9
–
12
*
8
10
16
15
*
16
11
–
14
16
14
12
14
11
12
9
9
15
–
–
–
–
*
*
–
*
59
*
–
–
*
140
–
*
–
*
*
*
–
*
–
–
–
–
–
–
–
–
–
*
*
–
*
12
*
–
–
*
3
–
*
–
*
*
*
–
*
–
–
–
–
–
–
4
–
–
N
–
–
200
54
–
–
300
270
55
7
15
48
170
N
300
–
350
150
40
–
200
32
–
–
–
–
–
–
–
200
50
–
160
300
260
66
–
–
60
160
340
300
–
290
120
35
–
180
–
7.5
–
7
7
15
6
7
7
4
6
6.9
8
8
8
4
8
5
5
15
9
5
8
7
3
6
7.1
10
–
–
–
–
12
–
–
6
3
–
6
8
8
8
–
7
5
4
12
8
5
7
6
3
–
6.4
9
–
–
–
–
–
–
–
3.8
3.9
–
–
–
3.8
3.8
–
3.8
–
–
3.6
3.9
–
3.5
–
3.1
–
3.9
3.8
–
–
–
–
–
–
–
50
50
–
–
–
60
–
–
60
70
600
160
60
–
60
650
90
700
44
–
(Continued )
–
–
–
–
–
–
1
1.4
0.8
5.8
0.9
1.4
1.2
1.3
1.4
0.9
1.1
0.9
0.8
1.4
–
1
6
1
6.8
0.75
0.4
11: Tables of Selected ISO 10350 Properties 569
12/11/2007 6:21:05 PM
Mckeen_Ch11.indd 570
POM POM POM POM, GB10 POM, GB25 POM, GF10 POM, GF15 POM, GF20 POM, GF25 POM, GF25 POM, GF25 POM, GF10 POM POM POM POM POM POM POM, PTFE POM, PTFE POM, PTFE
Celcon EC–90PLUS
Celcon EF10
Celcon GB10
Celcon GB25
Celcon GC10
Celcon GC15
Celcon GC20
Celcon GC25A
Celcon GC25T
Celcon GC25TF
Celcon GC90UV
Celcon LM25
Celcon LM90
Celcon LM90Z
Celcon LU02
Celcon LW25-S2
Celcon LW90
Celcon LW90-F1
Celcon LW90-F2
Celcon LW90-F4
Tensile Modulus (MPa)
Celcon CF802
2600
2650
2800
2500
2350
2530
2700
2750
2490
4170
8720
8630
8600
7300
5950
4750
3700
3100
8470
1880
3100
Yield Stress (MPa)
2450
–
–
–
–
–
56
–
–
–
–
–
–
–
–
–
–
–
–
–
37
–
–
Yield at Strain (%)
POM
–
–
–
–
–
9
–
–
–
–
–
–
–
–
–
–
–
–
–
6
–
–
Stress at Break (MPa)
Celcon CF801
–
–
–
–
–
–
–
–
–
59
120
129
106
99
91
75
–
–
67
–
–
–
Strain at Break (%) –
–
–
–
–
–
–
–
–
9
2
3
2
2.2
2.5
3
–
–
2
–
–
–
70
120
5.3
–
–
–
–
–
–
–
–
50
25
30
–
30
–
–
–
–
60
–
–
Charpy Impact 23°C (kJ/m2)
–
75
120
–
–
–
–
–
–
–
–
–
55
35
40
–
45
–
–
–
–
70
–
–
Charpy Impact −30°C (kJ/m2)
–
4
5
–
–
8.5
3.7
4.7
4.7
5.7
3.7
6.4
8.7
6.4
6
4.9
4.5
2.4
3.5
4.2
4.3
4.5
4.4
6.7
Charpy Notched Impact 23°C (kJ/m2)
–
4.3
–
–
–
–
–
–
–
–
–
–
7.2
–
–
–
–
2.2
–
–
–
4.1
–
–
Charpy Notched Impact −30°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Relative Permitivity @1MHz
2900
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Dissipation Factor @1MHz
POM
Description
–
–
–
0.65
–
–
–
–
–
–
–
–
0.65
–
–
–
0.65
–
–
2.8
–
–
–
Water Absorption (%)
Celcon C13031 XF
Name and Grade
11.3 Polyethers (cont’d)
570 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:06 PM
Mckeen_Ch11.indd 571
2500 8700 8200
POM, Si2 POM, PTFE4, GF25 POM, Si2, GF22 POM POM POM POM POM POM POM POM POM POM POM POM POM POM POM POM, MD POM, MD POM, MD POM, MD POM POM POM POM
Celcon LW90-S2
Celcon LWGC-F4
Celcon LWGC-S2
Celcon M140
Celcon M140-L1
Celcon M15HP
Celcon M25
Celcon M25UV
Celcon M270™
Celcon M270UV
Celcon M30AE
Celcon M450
Celcon M50
Celcon M90-34
Celcon M90AW
Celcon M90SW
Celcon M90™
Celcon M90UV
Celcon MC270
Celcon MC270-HM
Celcon MC90
Celcon MC90-HM
Celcon MR15HPB
Celcon MR50B
Celcon MR90B
Celcon MT12R01
2900
2800
2600
2900
3570
3010
3750
3150
2610
2760
2600
2430
2560
2500
2890
2420
2800
2820
2480
2460
2800
2630
2740
2590
POM
Celcon LW90GPK
2540
POM, PTFE
Celcon LW90-F5
65
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
9
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
94
85
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
2
1.5
–
–
–
140
110
140
150
–
–
–
–
–
190
110
90
–
–
–
–
–
120
–
250P
280
–
–
–
–
–
–
56
130
110
120
140
–
–
–
–
–
180
90
91
–
–
–
–
–
110
–
190
240
–
–
–
–
–
–
61
6.5
5.1
8.3
10
6.3
6.8
4.8
5.4
6.1
6
5
5
7.4
8.7
4.4
8.5
4.5
5.2
8.5
9.1
10
6.2
6
6
5
6.8
3.9
3.5
6
–
–
9
4.9
–
–
–
–
6
–
–
–
–
–
–
–
–
–
–
6
–
–
–
–
4.5
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
(Continued )
0.65
–
–
–
–
–
–
–
0.65
0.65
–
–
–
–
0.65
–
–
–
–
0.65
–
–
0.65
–
–
–
–
–
11: Tables of Selected ISO 10350 Properties 571
12/11/2007 6:21:06 PM
Mckeen_Ch11.indd 572
POM POM POM POM POM POM POM POM POM POM POM POM POM POM POM POM POM POM POM POM POM
Celcon MT24U01
Celcon MT2U01
Celcon MT8F01
Celcon MT8F02
Celcon MT8R02
Celcon MT8U01
Celcon TX90
Celcon TX90PLUS
Celcon UV140LG
Celcon UV25Z
Celcon UV270Z
Celcon UV90Z
Celcon WR25Z
Celcon WR9OZ
Hostaform C 13021
Hostaform C 13021 RM
Hostaform C 13031
Hostaform C 13031 K
Hostaform C 2521
Hostaform C 2521 G
Tensile Modulus (MPa)
Celcon MT24F01
2100
2600
3100
3050
2900
2900
2660
2620
2700
2700
2460
1950
1700
2150
2850
2700
2500
2600
2600
2900
2600
Yield Stress (MPa)
3100
44
62
64
68
65
65
–
–
64
–
–
41
–
–
64
62
48
58
62
65
–
70
Yield at Strain (%)
POM
12
9
8
8
9
8.5
–
–
9
–
–
10
–
–
9
9
7
9
9
7.5
–
8
Stress at Break (MPa)
Celcon MT12U03
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Strain at Break (%) –
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
50
220P
–
120
140
150
99
–
100
–
–
–
N
N
180
–
60
–
220
120
80
120
150
Charpy Impact 23°C (kJ/m2)
–
50
200
–
120
130
140
–
–
–
–
–
–
210
160
160
–
60
–
200
120
–
120
140
Charpy Impact −30°C (kJ/m2)
–
5
8.5
5
6.7
6.5
6.5
5.5
6.4
6
4.7
8.1
3.1
11
11
6.5
8
4
5.2
8.5
5.5
–
6
6
Charpy Notched Impact 23°C (kJ/m2)
9
4.5
7
5
6
6
6
–
–
–
–
–
–
3
3
6
–
4
–
7
5.5
–
6
6
Charpy Notched Impact −30°C (kJ/m2)
65
3.8
4
4.2
4
4
4
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Relative Permitivity @1MHz
2900
70
50
80
50
50
50
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Dissipation Factor @1MHz
POM
Description
0.8
0.65
0.65
0.65
0.65
0.65
–
–
0.65
–
–
–
0.65
0.65
0.65
–
0.2
–
0.65
0.65
–
0.65
0.65
Water Absorption (%)
Celcon MT12U01
Name and Grade
11.3 Polyethers (cont’d)
572 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:06 PM
POM POM POM POM, GB30 POM POM POM POM POM POM, GF10 POM, GF20 POM, GF30 POM, GF40 POM, GB10 POM, GB20 POM, GB30 POM POM POM POM POM POM POM POM
Hostaform C 2552
Hostaform C 27021
Mckeen_Ch11.indd 573
Hostaform C 27021 AST
Hostaform C 27021 GV3/30
Hostaform C 52021
Hostaform C 9021
Hostaform C 9021 10/1570
Hostaform C 9021 AW
Hostaform C 9021 G
Hostaform C 9021 GV1/10
Hostaform C 9021 GV1/20
Hostaform C 9021 GV1/30
Hostaform C 9021 GV1/40
Hostaform C 9021 GV3/10
Hostaform C 9021 GV3/20
Hostaform C 9021 GV3/30
Hostaform C 9021 K
Hostaform C 9021 M
Hostaform C 9021 SW
Hostaform C 9021 TF
Hostaform MT12U01
Hostaform MT12U03
Hostaform MT24U01
Hostaform MT8U01
2850
2900
3100
2900
2500
2850
2800
3000
3700
3400
3100
13000
9200
7200
4800
2300
2600
3000
2850
3000
3800
2800
2900
2500
64
65
70
65
48
53
65
60
37
46
52
–
–
–
–
45
58
64
64
65
38
63
65
60
9
7.5
8
9
7
7
9
8
6
6.5
7.5
–
–
–
–
9
8
8
9
7
6
8
7.5
9.5
–
–
–
–
–
–
–
–
–
–
–
140
135
120
90
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
2
2.5
3
4
–
–
–
–
–
–
–
–
–
180
120
120
150
60
90
120
100
40
50
60
20
30
35
40
30
150
110
180P
100
30
120
120
220P
160
120
120
140
60
85
120
100
40
50
60
25
35
40
50
30
130
110
160
100
30
120
120
200
6.5
55
6
6
4
4
6
5
3
3.5
4
9
8
8
6.5
3.5
6
6.5
6.5
5.5
2.5
6
6
9
6
5.5
6
6
4
4
6
5
3
3.5
4
9
8
8
6.5
3
5
6
6
5
3
5.5
4.5
7
–
–
–
–
3.7
4.1
4.2
4.2
4.5
4.2
4.1
4.5
4.3
4.3
4.1
3.8
3.8
*
4
4
4.5
*
4
4
–
–
–
–
80
75
80
60
80
70
60
60
60
60
60
70
50
*
50
50
80
*
50
50
(Continued )
0.65
0.65
0.65
0.65
0.65
–
0.75
0.65
0.9
0.8
0.8
0.9
0.9
0.85
0.85
0.8
0.65
0.65
0.65
0.65
0.9
0.7
0.65
0.65
11: Tables of Selected ISO 10350 Properties 573
12/11/2007 6:21:06 PM
Mckeen_Ch11.indd 574
POM POM POM POM
Hostaform S 27076
Hostaform S 9063
Hostaform S 9064
Hostaform S 9243
POM, GF25 POM POM POM POM
Schulaform® 9 A GF 25
Schulaform® 9 b
Schulaform® 9 d
Schulaform® 9 E HI
Schulaform® 9 f PPE PPE PPE, GF20 PPE PPE, GF20 PPE
Vestoran 1900 nf
Vestoran 1900 sw
Vestoran 1900-GF20 sw
Vestoran X4893 sw
Vestoran X7342 nf
Vestoran X9801 sw
PPE/Degussa
POM
Schulaform® 9 A
Acetal copolymer/A. Schulman
POM
Tensile Modulus (MPa)
Hostaform S 27072 WS10/1570
3200
5700
2400
5600
2000
2000
2600
1600
2900
2800
9000
2800
2100
1700
2100
900
2000
Yield Stress (MPa)
1700
*
*
45
*
60
60
61
42
64
63
*
63
44
45
53
–
46
44
Yield at Strain (%)
POM
*
*
3
*
6
6
14
18
8
11
*
13
7
12
9
–
8
10
Stress at Break (MPa)
Hostaform S 27064
63
100
*
110
*
*
*
*
*
*
125
*
–
–
–
–
–
–
Strain at Break (%) 5
2
*
3
*
*
*
*
*
*
3
*
–
–
–
>50
–
–
45
3
60
26
200
200
N
180
N
N
47
N
N
N
250P
N
150P
150P
140
Charpy Impact 23°C (kJ/m2)
–
–
–
–
–
–
–
N
160
N
N
N
200P
300P
220
N
110
110
90
Charpy Impact −30°C (kJ/m2)
–
12
7
13
8
25
25
8
15
5
6
8
7
14
13
12
12
11
11
9
Charpy Notched Impact 23°C (kJ/m2)
9
–
–
–
–
–
–
5.5
–
–
–
–
–
10
8
7
9
8
6
6
Charpy Notched Impact −30°C (kJ/m2)
54
–
3.5
2.8
2.7
2.9
2.9
4.2
4.2
4.2
4.2
4.2
4.2
3.8
4.4
4.2
5.3
*
4.4
4.2
Relative Permitivity @1MHz
2200
–
17
10
18
16
16
0.02
0.02
0.02
0.02
0.02
0.02
60
200
150
250
*
200
150
Dissipation Factor @1MHz
POM
Description
–
–
0.25
0.35
–
–
0.8
0.8
0.8
0.8
0.6
0.8
1
0.65
0.65
0.8
0.7
0.65
0.65
Water Absorption (%)
Hostaform S 27063
Name and Grade
11.3 Polyethers (cont’d)
574 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:07 PM
Mckeen_Ch11.indd 575
2600 2400 2400 2400
2400 4000 5700 7800 9500
PPE+PS PPE+PS PPE+PS PPE+PS PPE+PS PPE+PS, PTFE5 PPE+PS, PTFE10 PPE+PS, PTFE15 PPE+PS PPE+PS PPE+PS PPE+PS PPE+PS PPE+PS, (GF+MD)10 PPE+PS, (GF+MD)20 PPE+PS, (GF+MD)30 PPE+PS, (GF+MD)40 PPE+PS PPE+PS PPE+PS PPE+PS, CF
Iupiace AH50
Iupiace AH60
Iupiace AH70
Iupiace AH80
Iupiace AH8P
Iupiace AHF6005
Iupiace AHF6010
Iupiace AHF6015
Iupiace AN60
Iupiace AN70
Iupiace AN80
Iupiace AN90
Iupiace AP4
Iupiace AP6GM2
Iupiace AP6GM4
Iupiace AP6GM6
Iupiace AP6GM8
Iupiace AV60
Iupiace AV70
Iupiace AV90
Iupiace EHM1010A
4100
2600
2600
2600
2700
2700
2700
2700
2700
2500
2500
2500
2500
PPE+PS
Iupiace AH40
2500
PPE+PS
Iupiace AH40
PPE modified/Mitsubishi Engineering-Plastics
*
68
66
62
*
*
*
*
49
83
79
75
70
49
51
53
56
70
67
62
55
49
43
*
5.6
5.6
5.6
*
*
*
*
3.2
6.1
6.1
6.1
6
5
5
5
3.2
5.5
5.5
5.4
5
5
3.2
64
*
*
*
91
91
80
65
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
2.2
*
*
*
1
3.1
2.7
3
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
18
–
–
–
–
–
–
–
–
–
–
–
–
40
43
45
–
140
150
N
119
155
153
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
3
9
12
17
5
6
6
7
15
27
8
9
10
6
8
10
7
8
11
18
19
18
17
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
3.5
3.3
3.1
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
0.0048
0.0077
0.0067
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
(Continued )
0.06
0.07
0.07
0.07
0.06
0.06
0.06
0.06
0.07
0.07
0.07
0.07
0.07
0.06
0.06
0.06
0.06
0.07
0.07
0.07
0.07
0.07
0.07
11: Tables of Selected ISO 10350 Properties 575
12/11/2007 6:21:07 PM
Mckeen_Ch11.indd 576
4500 6600 8900 8600 8600 8600 4500 5600 6700 9000 4500
PPE+PS, GF10 PPE+PS, GF20 PPE+PS, GF30 PPE+PS, PTFE5 PPE+PS, PTFE10 PPE+PS, PTFE15 PPE+PS, GF10 PPE+PS, GF15 PPE+PS, GF20 PPE+PS, GF30 PPE+PS, GF10
Iupiace GH20
Iupiace GH30
Iupiace GHF3005
Iupiace GHF3010
Iupiace GHF3015
Iupiace GN10
Iupiace GN15
Iupiace GN20
Iupiace GN30
Iupiace GV10
Tensile Modulus (MPa)
Iupiace GH10
Yield Stress (MPa)
11000
*
*
*
*
*
*
*
*
*
*
*
*
Yield at Strain (%)
PPE+PS, (GF+MD)40
*
*
*
*
*
*
*
*
*
*
*
*
Stress at Break (MPa)
Iupiace GAV2515
83
110
99
91
83
100
100
96
103
89
75
104
Strain at Break (%) 2.5
1.5
2.5
2.5
2.5
1.8
1.8
1.8
1.3
1.5
2.6
1.4
33
30
32
34
36
30
30
30
33
31
29
–
–
Charpy Impact 23°C (kJ/m2)
1.6
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
98
8
7
7
7
7
7
8
8
8
7
6
6
6
Charpy Notched Impact 23°C (kJ/m2)
*
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
*
–
–
3.3
–
–
–
–
–
–
–
–
3.5
3.3
Relative Permitivity @1MHz
8700
–
–
0.0045
–
–
–
–
–
–
–
–
0.0048
0.0077
Dissipation Factor @1MHz
PPE+PS, (GF+MD)30
Description
0.06
0.06
0.06
0.06
0.06
0.1
0.1
0.1
0.06
0.06
0.06
0.06
0.06
Water Absorption (%)
Iupiace GAV2010
Name and Grade
11.3 Polyethers (cont’d)
576 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:07 PM
5500 6700 8900 6100 11000 8600 6300 7100 2900 8600
PPE+PS, GF15 PPE+PS, GF20 PPE+PS, GF30 PPE+PS, (GF+MD)20 PPE+PS, (GF+MD)35 PPE+PA6 PPE+PA6, GF20 PPE+PS, (GF+MD)30 PPE+PS, X PPE+PS, (GF+MD)35
Iupiace GV15
Iupiace GV20
Mckeen_Ch11.indd 577
Iupiace GV30
Iupiace GX1050
Iupiace GX1100
Iupiace NX7000
Iupiace NX7201
Iupiace TGV2010
Iupiace TX403
Iupiace VSG635V
*
51
*
*
68
*
*
*
*
*
*
2.6
*
*
4.1
*
*
*
*
*
74
*
95
97
*
115
75
110
103
90
1.2
*
1.5
2.2
*
3
2.7
1.5
2.5
2.5
–
N
–
–
–
–
–
28
30
32
–
–
–
–
–
–
–
–
–
–
6
26
5
6
30
5
5
9
7
7
–
–
–
–
–
–
–
–
–
–
–
–
3.3
–
–
–
–
–
3.2
–
–
–
0.0077
–
–
–
–
–
0.0027
–
0.06
0.06
0.06
–
–
0.06
0.06
0.06
0.06
0.06
11: Tables of Selected ISO 10350 Properties 577
12/11/2007 6:21:08 PM
Mckeen_Ch11.indd 578
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC, GF15
Apec® 1695
Apec® 1700
Apec® 1703
Apec® 1705
Apec® 1745
Apec® 1795
Apec® 1800
Apec® 1803
Apec® 1805
Apec® 1895
Apec® 1897
Apec® 2095
Apec® 2097
Apec® DP1-9354
Apec® DP1-9354/1
Apec® DP1-9379
Apec® DP1-9389
Makrolon® 1095
4600
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
–
65
65
65
65
65
65
65
65
65
65
65
65
65
65
65
65
65
–
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
45
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
12
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
100
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Charpy Impact 23°C (kJ/m2)
7
Strain at Break (%) –
90
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Charpy Impact −30°C (kJ/m2)
65
Stress at Break (MPa) –
–
6
6
8
8
6
6
8
8
8
8
8
9
9
9
9
9
10
10
10
Charpy Notched Impact 23°C (kJ/m2)
2300
Yield at Strain (%) 7
–
6
6
8
8
6
6
8
8
8
8
8
9
9
9
9
9
10
10
10
Charpy Notched Impact −30°C (kJ/m2)
PC
Yield Stress (MPa) 65
3.2
2.9
2.01
2.9
2.9
2.9
2.9
3
3
2.9
2.9
2.9
3
2.9
2.9
2.9
2.9
3
3
3
Relative Permitivity @1MHz
Apec® 1605
Tensile Modulus (MPa) 2300
85
60
70
84
80
70
70
80
80
100
100
100
80
81
81
81
81
80
87
87
Dissipation Factor @1MHz
PC
Description
0.24
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
Water Absorption (%)
Apec® 1600
Polycarbonate/Bayer
Name and Grade
11.4 Polyesters
578 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:08 PM
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
Makrolon® 1239
Makrolon® 1243
Mckeen_Ch11.indd 579
Makrolon® 1260
Makrolon® 1804
Makrolon® 2205
Makrolon® 2207
Makrolon® 2405
Makrolon® 2407
Makrolon® 2458
Makrolon® 2558
Makrolon® 2605
Makrolon® 2607
Makrolon® 2658
Makrolon® 2665
Makrolon® 2667
Makrolon® 2805
Makrolon® 2807
Makrolon® 2858
Makrolon® 2865
Makrolon® 2867
Makrolon® 3103 MAS157
Makrolon® 3105
Makrolon® 3107
Makrolon® 3108
Makrolon® 3158
Makrolon® 6265
Makrolon® 6267
Makrolon® 6455
Makrolon® 6485
2400
2400
2400
2400
2400
2350
2400
2400
2350
2400
2400
2400
2400
2400
2400
2400
2400
2400
2400
2400
2400
2400
2400
2400
2400
2400
2300
2400
2350
66
66
65
65
66
65
67
66
65
67
66
66
67
66
67
66
66
67
66
66
65
66
65
66
65
66
63
67
65
6.1
6.1
6
6
6.2
6.3
6.2
6.2
6.3
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6
6
6
6
6
6.2
5.8
6.2
6.4
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3.1
3
3
90
90
90
90
90
95
85
90
95
85
90
90
85
90
85
90
90
85
90
90
90
85
90
85
90
95
95
85
90
(Continued )
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
11: Tables of Selected ISO 10350 Properties 579
12/11/2007 6:21:08 PM
Mckeen_Ch11.indd 580
PC PC
Makrolon® DP11857
Makrolon® DP11870 2400
2400
2400
2300
2350
2400
PC
5900
Makrolon® DP11853
PC, GF20
Makrolon® 9425
3800
PC
PC, GF10
Makrolon® 9415
5800
Makrolon® DP11837
PC, GF20
Makrolon® 9125
9300
PC
PC, GF35
Makrolon® 8345
5800
3800
Makrolon® DP11265
PC, GF20
Makrolon® 8325
PC
PC, GF10
Makrolon® 8315
5000
Makrolon® AL2647
PC, GF30
Makrolon® 8035
4000
2400
2400
PC, GF20
Makrolon® 8025
Tensile Modulus (MPa)
PC
PC
Makrolon® 6557
Yield Stress (MPa) 66
65
67
58
64
67
66
67
–
–
–
–
–
–
–
–
67
66
Yield at Strain (%)
2400
6
6
6.3
6
5.9
6.1
6
6.1
–
–
–
–
–
–
–
–
6.1
6.1
Stress at Break (MPa)
Makrolon® AL2447
PC
Makrolon® 6555
–
–
–
–
–
–
–
–
90
45
85
110
90
45
55
55
–
–
Strain at Break (%) –
–
–
–
–
–
–
–
3
14
2.5
2
3.5
10
4
5
–
–
N
N
N
N
N
N
N
N
45P
100
40P
45P
60P
100
45P
50P
N
N
N
Charpy Impact 23°C (kJ/m2)
–
N
N
N
N
N
N
N
N
50P
100
45P
50P
65P
100
50P
55P
N
N
N
Charpy Impact −30°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact 23°C (kJ/m2)
6.1
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
66
3
3
3
–
3
3
3
3
3.3
3.2
3.3
3.6
3.3
3.2
3.5
3.3
3
3
3
Relative Permitivity @1MHz
2400
85
90
90
–
85
85
85
85
80
85
80
80
80
85
80
80
85
90
85
Dissipation Factor @1MHz
2400
PC
Makrolon® 6487
0.3
0.3
0.3
–
0.3
0.3
0.3
0.3
0.22
0.26
0.22
0.2
0.22
0.26
0.2
0.22
0.3
0.3
0.3
Water Absorption (%)
Makrolon® AG2677 PC
Description
Name and Grade
11.4 Polyesters (cont’d)
580 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:08 PM
Mckeen_Ch11.indd 581
2350
PC PC
Makrolon® LTG2623
Makrolon® LTG3123
Makrolon® OD2015 PC
Makrolon® Rx1805 PC PC PC PC PC PC PC PC PC PC PC PC PC
Calibre 1080 DVD
Calibre 200 10 MFR
Calibre 200 15 MFR
Calibre 200 22 MFR
Calibre 200 4 MFR
Calibre 200 6 MFR
Calibre 201 10 MFR
Calibre 201 15 MFR
Calibre 201 22 MFR
Calibre 201 4 MFR
Calibre 201 6 MFR
Calibre 202 10 MFR
Calibre 202 15 MFR
Polycarbonate/Dow
2350
PC
Makrolon® LQ3187
PC
2350
PC
Makrolon® LQ3147
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2240
2350
2400
2400
2400
PC
Makrolon® LQ2647
2250
PC
Makrolon® KU11248
60
60
60
60
60
60
60
60
60
60
60
60
–
66
64
65
65
67
67
67
60
6
6
6
6
6
6
6
6
6
6
6
6
–
6.3
5.9
6.3
6.2
6.2
6.2
6.1
6.1
*
*
*
*
*
*
*
*
*
*
*
*
–
–
–
–
–
–
–
–
–
*
*
*
*
*
*
*
*
*
*
*
*
–
–
–
–
–
–
–
–
–
N
N
N
N
N
N
N
N
N
N
N
N
310
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
140
N
N
N
N
N
N
N
N
25
35
95
55
70
80
90
95
100
70
80
90
8
–
–
–
–
–
–
–
–
–
–
14
–
11
12
13
14
15
11
12
13
2
–
–
–
–
–
–
–
–
3
3
3
3
3
3
3
3
3
3
3
3
–
–
3
3
3
3
3
3
3
20
20
20
20
20
20
20
20
20
20
20
20
–
–
85
95
95
85
85
85
110
(Continued )
–
–
–
–
–
–
–
–
–
–
–
–
–
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.4
11: Tables of Selected ISO 10350 Properties 581
12/11/2007 6:21:08 PM
Mckeen_Ch11.indd 582
Description
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
Name and Grade
Calibre 202 22 MFR
Calibre 202 4 MFR
Calibre 202 6 MFR
Calibre 203 10 MFR
Calibre 203 15 MFR
Calibre 203 22 MFR
Calibre 203 4 MFR
Calibre 203 6 MFR
Calibre 2060 10 MFR
Calibre 2060 15 MFR
Calibre 2061 10 MFR
Calibre 2061 15 MFR
Calibre 2071 15 MFR
Calibre 300 10 MFR
Calibre 300 15 MFR
11.4 Polyesters (cont’d) Tensile Modulus (MPa) 2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
Yield Stress (MPa)
2300
60
60
60
60
60
60
60
60
60
60
60
60
60
Yield at Strain (%) 6
6
6
6
6
6
6
6
6
6
6
6
6
6
Stress at Break (MPa)
60
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Strain at Break (%)
2300
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Charpy Impact 23°C (kJ/m2) N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Charpy Impact −30°C (kJ/m2)
N
80
90
80
80
90
80
90
95
55
70
80
90
55
55
20
Charpy Notched Impact 23°C (kJ/m2)
*
12
13
12
12
13
12
13
14
–
11
12
13
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
*
3
3
2.95
3
–
3
3
3
3
3
3
3
3
3
3
Relative Permitivity @1MHz
6
20
20
100
20
–
20
20
20
20
20
20
20
20
20
20
Dissipation Factor @1MHz
60
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Water Absorption (%)
2300
582 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:09 PM
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
Calibre 300V 10 MFR
Calibre 300V 15 MFR
Mckeen_Ch11.indd 583
Calibre 300V 6 MFR
Calibre 301 10 MFR
Calibre 301 15 MFR
Calibre 301 6 MFR
Calibre 301EP 22 MFR
Calibre 301EP 31 MFR
Calibre 301V 10 MFR
Calibre 301V 15 MFR
Calibre 301V 6 MFR
Calibre 302 10 MFR
Calibre 302 15 MFR
Calibre 302 6 MFR
Calibre 302EP 22 MFR
Calibre 302EP 31 MFR
Calibre 302V 10 MFR
Calibre 302V 15 MFR 2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
80
90
15
70
95
80
90
95
80
35
15
70
95
80
90
55
25
35
12
13
–
11
14
12
13
14
12
–
–
11
14
12
13
–
–
–
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
(Continued )
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
11: Tables of Selected ISO 10350 Properties 583
12/11/2007 6:21:09 PM
Mckeen_Ch11.indd 584
Description
PC PC PC PC PC PC PC PC PC PC PC PC PC PC
Name and Grade
Calibre 302V 6 MFR
Calibre 303 10 MFR
Calibre 303 15 MFR
Calibre 303 6 MFR
Calibre 303 8 MFR
Calibre 303EP 22 MFR
Calibre 303EP 31 MFR
Calibre 303V 10 MFR
Calibre 303V 15 MFR
Calibre 303V 4 MFR
Calibre 303V 6 MFR
Calibre 303V 8 MFR
Calibre 3041 35 MFR
Calibre 3043 35 MFR
11.4 Polyesters (cont’d) Tensile Modulus (MPa) 2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
Yield Stress (MPa)
2300
60
60
60
60
60
60
60
60
60
60
60
60
Yield at Strain (%) 6
6
6
6
6
6
6
6
6
6
6
6
6
Stress at Break (MPa)
60
*
*
*
*
*
*
*
*
*
*
*
*
*
Strain at Break (%)
2300
*
*
*
*
*
*
*
*
*
*
*
*
*
Charpy Impact 23°C (kJ/m2) N
N
N
N
N
N
N
N
N
N
N
N
N
–
–
N
N
N
N
N
N
N
N
N
N
N
N
Charpy Impact −30°C (kJ/m2)
N
–
–
55
55
55
25
90
15
70
35
95
80
90
95
Charpy Notched Impact 23°C (kJ/m2)
*
–
–
–
–
–
–
13
–
11
–
14
12
13
14
Charpy Notched Impact −30°C (kJ/m2)
*
–
–
–
–
–
–
–
3
3
3
3
3
3
3
Relative Permitivity @1MHz
6
–
–
–
–
–
–
–
20
20
20
20
20
20
20
Dissipation Factor @1MHz
60
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Water Absorption (%)
2300
584 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:09 PM
PC, 10GF PC, GF20 PC, GF20 PC PC PC PC PC PC, GF10 PC, GF10 PC, GF20 PC PC PC PC, Imod PC, Imod PC PC PC
Calibre 5101 15 MFR
Calibre 5210 15 MFR
Mckeen_Ch11.indd 585
Calibre 5210 8 MFR
Calibre 600 2 MFR
Calibre 600 3 MFR
Calibre 603 3 MFR
Calibre 701 10 MFR
Calibre 701 15 MFR
Calibre 7101 15 MFR
Calibre 7101 8 MFR
Calibre 7211 5 MFR
Calibre 891 10 MFR
Calibre 891 19 MFR
Calibre 893 19 MFR
Calibre IM 401 11
Calibre IM 401 18
Calibre MegaRad 2080 10 MFR
Calibre MegaRad 2080 15 MFR
Calibre MegaRad 2081 10 MFR 2300
2300
2300
2300
2200
2300
2300
2300
6000
3500
3500
2300
2300
2300
2300
2300
6500
6500
3600
62
62
62
60
55
60
60
60
60
60
60
60
60
60
60
60
105
105
60
6
6
6
6
6
6
6
6
4
4
4
6
6
6
6
6
4
4
4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
N
N
N
N
N
N
N
N
–
–
–
N
N
–
–
–
N
N
N
N
N
N
N
N
N
N
N
–
–
–
N
N
–
–
–
N
N
N
35
80
90
60
70
30
30
30
15
–
–
17
17
25
25
25
9
7
–
–
12
13
30
40
15
15
15
–
–
–
15
15
–
–
–
–
–
–
3
3
3
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
20
20
20
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
(Continued )
–
–
–
–
–
–
–
–
–
–
–
0.03
0.03
–
–
–
–
–
–
11: Tables of Selected ISO 10350 Properties 585
12/11/2007 6:21:09 PM
Mckeen_Ch11.indd 586
Description
PC PC, GF10 PC, GF20
Polyman® (PC) XP 31 RN
Polyman® (PC) XP 41 R 10 GF
Polyman® (PC) XP 41 R 20 GF PC PC PC PC PC PC PC PC PC PC
Xantar® 18 R
Xantar® 18 SR D
Xantar® 18 UR
Xantar® 19 R
Xantar® 19 SR D
Xantar® 19 UR
Xantar® 22 R
Xantar® 22 SR FD
Xantar® 22 UR
Xantar® 23 R
Polycarbonate/DSM
PC
Polyman® (PC) XP 21 RN
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
5500
3800
2300
2250
60
60
60
60
60
60
60
60
60
60
*
*
61
61
6
6
6
6
6
6
6
6
6
6
*
*
7
6
*
*
*
*
*
*
*
*
*
*
110
85
*
*
*
*
*
*
*
*
*
*
*
*
*
3
4
*
*
*
–
–
–
–
–
–
–
–
–
–
61
–
N
N
N
N
Charpy Impact 23°C (kJ/m2)
6
Strain at Break (%) *
–
–
–
–
–
–
–
–
–
–
72
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
62
Stress at Break (MPa) *
–
–
–
–
–
–
–
–
–
–
13
12
79
74
63
61
Charpy Notched Impact 23°C (kJ/m2)
2300
Yield at Strain (%) 6
–
–
–
–
–
–
–
–
–
–
12
–
–
34
17
–
Charpy Notched Impact −30°C (kJ/m2)
PC
Yield Stress (MPa) 62
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
–
–
–
–
–
–
Relative Permitivity @1MHz
Polyman® (PC) XP 11 RN
Tensile Modulus (MPa) 2300
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Dissipation Factor @1MHz
PC
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
29
–
35
35
34
34
Water Absorption (%)
Polyman® (PC) XP 01 RN
Polycarbonate/A. Schulman
Name and Grade
11.4 Polyesters (cont’d)
586 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:09 PM
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC, GF10 PC, GF10 PC, GF20 PC, GF20 PC, GF20 PC, GF20 PC, GF20 PC, GF20 PC, GF30 PC, GF30 PC, GF40
Xantar® 23 UR
Xantar® 24 R
Mckeen_Ch11.indd 587
Xantar® 24 SR D
Xantar® 24 UR
Xantar® 25 R
Xantar® 25 SR D
Xantar® 25 U
Xantar® 25 UR
Xantar® 27 R
Xantar® 27 SR D
Xantar® 27 U
Xantar® 27 UR
Xantar® FC 22 R
Xantar® FC 22 UR
Xantar® FC 23 R
Xantar® FC 23 UR
Xantar® FC 25 R
Xantar® FC 25 UR
Xantar® G2 23 R
Xantar® G2 23 UR
Xantar® G4 22 R
Xantar® G4 23 R
Xantar® G4 23 UR
Xantar® G4 25 R
Xantar® G4 25 UR
Xantar® G4F 22 UR
Xantar® G6 23 R
Xantar® G6 23 UR
Xantar® G8 23 R
10500
9500
9500
6000
6000
6000
6000
6000
6000
3500
3500
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
*
*
*
*
*
*
*
*
*
65
65
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
*
*
*
*
*
*
*
*
*
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
135
110
110
90
95
95
95
95
90
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1.5
2
2
4
4
4
4
4
4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
3.4
3.4
3.4
3.2
3.2
3.2
3.2
3.2
3.2
3
3
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
(Continued )
0.23
0.26
0.26
0.29
0.29
0.29
0.29
0.29
0.29
0.31
0.31
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
11: Tables of Selected ISO 10350 Properties 587
12/11/2007 6:21:10 PM
Mckeen_Ch11.indd 588
PC, GF40 PC, Imod PC, Imod PC, Imod PC, Imod PC PC PC PC PC, GF10 PC, GF20 PC, GF9 PC PC PC PC PC
Xantar® G8 23 UR
Xantar® MX 1000
Xantar® MX 1001
Xantar® MX 1002
Xantar® MX 1004
Xantar® MX 1020
Xantar® MX 1021
Xantar® MX 1021 D
Xantar® MX 1061
Xantar® MX 1081
Xantar® MX 1082
Xantar® MX 1094
Xantar® MX 2015
Xantar® MX 2021
Xantar® MX 2032
Xantar® MX 2042 D
Xantar® RX 1045
PBT, GF30
Celanex 1462Z PBT
PBT
Celanex 1400A
Celanex 1600A
PBT
Celanex 1300A
Tensile Modulus (MPa) 2550
–
2700
2500
2300
2300
2300
2300
2300
3200
6000
3500
2300
2100
2100
2100
2200
2200
Yield Stress (MPa)
2200
60
–
60
–
60
60
60
60
60
65
*
*
60
52
52
52
55
55
55
Yield at Strain (%) 5
–
4
–
6
6
6
6
6
5
*
*
6
6
6
6
6
6
6
6
Stress at Break (MPa)
55
–
135
–
60
*
*
*
*
*
*
90
80
*
*
*
*
*
*
*
*
Strain at Break (%)
2200
–
2.6
–
8
*
*
*
*
*
*
4
5
*
*
*
*
*
*
*
*
Charpy Impact 23°C (kJ/m2) N
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
210
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
1.5
7
7.2
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact 23°C (kJ/m2)
135
6.5
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
*
3.5
–
3.2
3.2
–
2.9
2.8
2.9
2.9
3
3.2
3
2.9
–
–
–
3
2.8
2.8
2.8
3.4
Relative Permitivity @1MHz
*
210
–
200
200
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Dissipation Factor @1MHz
10500
0.45
–
0.08
0.08
0.35
0.35
0.35
0.35
0.35
0.31
0.29
–
0.35
–
–
0.35
0.35
0.35
0.35
0.35
0.23
Water Absorption (%)
PBT/Ticona
Description
Name and Grade
11.4 Polyesters (cont’d)
588 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:10 PM
PBT PBT, GF7 PBT, GF15 PBT, GF20 PBT, GF30 PBT PBT PBT PBT PBT PBT PBT PBT PBT PBT PBT PBT PBT PBT PBT PBT PBT PBT PBT PBT, GF10 PBT, GF20 PBT, GF30
Celanex 1602Z
Celanex 1612Z
Mckeen_Ch11.indd 589
Celanex 1632Z
Celanex 1662Z
Celanex 1700A
Celanex 2000
Celanex 2000-2
Celanex 2000-K
Celanex 2001
Celanex 2001 HP
Celanex 2002
Celanex 2002-2
Celanex 2002AP
Celanex 2002UV
Celanex 2003
Celanex 2003-2
Celanex 2003HR
Celanex 2004
Celanex 2004-2
Celanex 2008
Celanex 2012
Celanex 2014
Celanex 2016
Celanex 2025
Celanex 2300 GV1/10
Celanex 2300 GV1/20
Celanex 2300 GV1/30 10300
7400
4700
1200
3000
3000
–
–
2400
2400
2700
2700
2700
2600
2600
2600
2600
–
2600
2700
2700
2700
2500
9200
5200
4200
2550
–
–
–
41
60
64
60
–
54
54
60
60
60
60
60
60
60
56
60
60
60
60
60
–
–
–
60
–
–
–
16
3
7
3.2
–
4
4
4
4
4
4
4
4
4
11
6
4
4
4
6
–
–
–
5
150
125
90
–
–
–
–
60
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
130
95
66
–
2.5
3
3.5
–
–
–
–
5
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
3.1
5.4
9
–
60
46
26
–
55
–
–
–
220P
220P
210
210
210
N
N
N
N
N
–
100
100
100
N
–
–
–
N
60
43
26
–
55
–
–
–
45
45
58
58
58
190
190
190
190
–
–
90
90
90
220
–
–
–
210
9.5
7.5
5
6.3
4.5
4
–
–
4.5
4.5
4.3
4.3
4.3
6
6
6
6
4.2
–
4
4
4
7.5
11
5.4
3.4
7
9
7
5
–
4.5
–
–
–
4.5
4.5
4.3
4.3
4.3
6
6
6
6
–
–
3.5
3.5
3.5
7
–
–
–
6.5
4.3
4.1
3.9
–
3.5
3.5
3.3
3.2
3.5
3.5
3.2
3.2
3.2
3.5
3.5
3.5
3.5
–
3.2
3.5
3.5
3.5
3.6
–
–
–
3.5
190
190
190
–
185
185
200
200
210
210
200
200
200
220
220
220
220
–
200
200
200
200
210
–
–
–
210
(Continued )
0.4
0.4
0.45
–
0.45
–
0.09
0.08
0.08
0.08
–
0.09
0.09
–
–
0.09
0.09
–
0.45
–
0.09
0.09
0.08
–
–
–
–
11: Tables of Selected ISO 10350 Properties 589
12/11/2007 6:21:10 PM
Mckeen_Ch11.indd 590
Description
PBT, GF50 PBT, GB20 PBT, GB30 PBT, GF15 PBT, GF20 PBT, GF30 PBT PBT, GF10 PBT, GF20 PBT, GF30 PBT PBT PBT PBT PBT PBT, GF7
Name and Grade
Celanex 2300 GV1/50
Celanex 2300 GV3/20
Celanex 2300 GV3/30
Celanex 2302 GV1/15
Celanex 2302 GV1/20
Celanex 2302 GV1/30
Celanex 2360 FL
Celanex 2360 GV1/10 FL
Celanex 2360 GV1/20 FL
Celanex 2360 GV1/30 FL
Celanex 2401 MT
Celanex 2402 MT
Celanex 2403 MT
Celanex 2404 MT
Celanex 2500
Celanex 3100
11.4 Polyesters (cont’d) Tensile Modulus (MPa) –
2700
2600
2600
2700
2600
11000
8000
5600
3000
10500
7800
6100
Yield Stress (MPa)
4000
–
60
56
60
60
60
–
–
–
–
–
–
–
–
Yield at Strain (%) –
4
7
4
4
4
–
–
–
–
–
–
–
–
–
Stress at Break (MPa)
–
78
–
–
–
–
–
145
120
90
55
150
135
110
50
50
Strain at Break (%)
3500
8
–
–
–
–
–
2.5
2.5
3
2.5
2.5
3
3
3
4
Charpy Impact 23°C (kJ/m2) N
140
–
N
140
N
58
40
24
26
56
43
35
22
34
190
130
–
190
130
190
58
40
24
26
58
43
35
23
34
65
Charpy Impact −30°C (kJ/m2)
70
6
5
3.3
6
5
6
9.5
7.5
5.5
3
10
8.5
6.5
3.3
3.5
12
Charpy Notched Impact 23°C (kJ/m2)
2
5.5
4.5
–
6
4.5
6
9
7
5.5
3
10
8
6.5
3.3
3.5
12
Charpy Notched Impact −30°C (kJ/m2)
165
3.6
3.8
–
3.5
–
3.5
4.4
3.9
3.5
3.6
4.1
4.1
4
4.4
4.2
4.1
Relative Permitivity @1MHz
–
200
200
–
220
–
220
150
160
160
185
170
180
180
120
180
190
Dissipation Factor @1MHz
–
0.6
0.45
–
–
–
–
0.4
0.4
0.45
0.45
0.4
0.4
0.45
0.4
0.45
0.35
Water Absorption (%)
17000
590 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:11 PM
PBT, GF7 PBT, GF14 PBT, GF7 PBT, GF15 PBT, GF15 PBT, GF15 PBT, GF15 PBT, GF20 PBT, GF15 PBT, GF15 PBT PBT, GF30 PBT, GF30 PBT PBT, GF30 PBT, GF30 PBT, GF30 PBT, GF30 PBT, GF30 PBT, GF30 PBT, GF30 PBT, GF30 PBT, GF40 PBT, GF40 PBT PBT, GF15 PBT, GF30 PBT, GF30 PBT, GF30 PBT, GF30
Celanex 3109HR
Celanex 3114
Mckeen_Ch11.indd 591
Celanex 3116
Celanex 3200
Celanex 3200-2
Celanex 3200HR
Celanex 3201
Celanex 3210-2
Celanex 3214
Celanex 3216
Celanex 3226
Celanex 3300
Celanex 3300-2
Celanex 3300D
Celanex 3300HR
Celanex 3300LM
Celanex 3309HR
Celanex 3309HRT
Celanex 3310
Celanex 3314
Celanex 3316
Celanex 3325HRT
Celanex 3400
Celanex 3409HR
Celanex 4016
Celanex 4202
Celanex 4300
Celanex 4300LM
Celanex 4302
Celanex 4302HS
–
–
9300
9300
5200
2800
12500
12100
7600
10700
10000
10800
8300
9200
9200
9200
9200
9200
9200
7200
6700
6200
7500
6000
5800
5800
5800
4700
5100
–
–
–
–
–
–
55
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
3.7
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
120
120
130
130
86
–
140
140
100
135
136
140
115
139
130
139
130
130
130
115
100
100
115
100
100
100
100
75
–
78
2.8
2.8
3.1
3.1
4.4
–
2.4
2.4
3.9
2.5
2.6
2.1
3.3
2.7
2.5
2.7
2.5
2.5
2.5
2.5
2.5
2.9
2.5
3.5
3.5
3.5
3.5
3.5
–
8
–
–
40
40
–
250
–
–
–
42
–
–
–
46
46
46
46
46
46
35
28
26
–
–
20
20
20
21
–
N
–
–
–
–
–
110
–
–
–
42
–
–
–
45
45
45
45
45
45
35
28
–
–
–
20
20
20
21
–
190
–
–
11
11
1
8.1
1
1
1
8.5
7.9
7.2
10
8.5
8.5
8.5
8.5
8.5
8.5
7
6
5.4
6.5
6.5
5.5
5.5
5.5
4.5
2.9
6
–
–
8.5
8.5
–
8.1
–
–
–
8.5
–
–
–
8.5
8.5
8.5
8.5
8.5
8.5
6.5
6
–
–
–
5
5
5
4.5
–
5.5
–
–
–
–
–
3.1
–
–
–
3.6
–
3.3
–
4.1
4.1
4.1
4.1
4.1
4.1
3.9
3.5
3.5
3.3
–
3.8
3.8
3.8
3.4
–
3.6
–
–
–
–
–
200
–
–
–
145
–
100
–
160
160
160
160
160
160
160
160
160
100
–
200
200
200
165
–
200
(Continued )
–
–
–
–
–
0.08
–
–
–
0.4
0.5
–
–
0.15
0.4
–
0.4
0.4
0.4
0.4
0.4
–
0.45
0.5
–
0.45
0.45
0.45
–
–
11: Tables of Selected ISO 10350 Properties 591
12/11/2007 6:21:11 PM
Mckeen_Ch11.indd 592
12000 7800 8000 9700 9700 9200 12900
PBT, GF30 PBT, GF33 PBT, GF30 PBT, GF15 PBT, GF15 PBT, GF15 PBT, GF15 PBT, GF20 PBT, GF30 PBT, GF30 PBT PBT PBT, (GF+Mica)40 PBT, (GF+Mica)30 PBT, (GF+Mica)30 PBT, (GF+Mica)30 PBT, (GF+Mica)35 PBT, (GF+Mica)35
Celanex 4302LM
Celanex 4305
Celanex 4306
Celanex 5200
Celanex 5200-2
Celanex 5201
Celanex 5202
Celanex 5203
Celanex 5300
Celanex 5300-2
Celanex 602AC
Celanex 6400-2
Celanex 6406
Celanex 6407
Celanex 6500
Celanex 6500LM
Celanex 7316
Celanex 7700
–
10000
10000
7200
6100
5900
6000
6000
Yield Stress (MPa)
9200
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Yield at Strain (%) –
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Stress at Break (MPa)
–
90
80
125
125
85
75
110
83
135
135
115
100
100
120
120
120
110
Strain at Break (%)
9500
1.4
1.8
2.2
2.2
2.1
2.5
1.8
3.5
3
3
2.7
2.5
2.5
3
3
2.9
3
Charpy Impact 23°C (kJ/m2) –
29
30
30
–
–
34
–
49
49
–
–
–
35
35
60
54
–
29
30
30
–
–
34
–
48
48
–
–
–
35
35
45
54
–
Charpy Impact −30°C (kJ/m2)
–
5.4
6.7
7.1
7.1
–
12
5
–
9.5
9.5
5.5
4.7
–
8
8
12
13
–
Charpy Notched Impact 23°C (kJ/m2)
2.8
–
6.7
6.4
6.4
–
–
5
–
9
9
–
–
–
8
8
11
13
–
Charpy Notched Impact −30°C (kJ/m2)
120
3.7
–
–
–
–
–
4.3
–
4.2
4.2
–
–
–
4
4
–
–
–
Relative Permitivity @1MHz
–
100
–
–
–
–
–
170
–
–
–
–
–
–
190
190
–
–
–
Dissipation Factor @1MHz
–
–
–
–
–
–
0.5
0.4
–
0.4
0.4
–
–
–
0.45
0.45
–
–
–
Water Absorption (%)
–
Description
Tensile Modulus (MPa)
Name and Grade
11.4 Polyesters (cont’d)
592 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:11 PM
Mckeen_Ch11.indd 593
PBT PBT, GF30 PBT, GF50 PBT, GF10 PBT, GF15 PBT, GF20 PBT, GF30 PBT, GB20 PBT, GB30 PBT, GF25 PBT PBT, GF10 PBT, GF20 PBT, GF30 PBT PBT PBT
Ultradur® B 4030 G6
Ultradur® B 4300 G10
Ultradur® B 4300 G2
Ultradur® B 4300 G3
Ultradur® B 4300 G4
Ultradur® B 4300 G6
Ultradur® B 4300 K4
Ultradur® B 4300 K6
Ultradur® B 4400 G5
Ultradur® B 4406
Ultradur® B 4406 G2
Ultradur® B 4406 G4
Ultradur® B 4406 G6
Ultradur® B 4500
Ultradur® B 4520
Ultradur® B 4520 Z2
PBT, (GF+Mica)35
Ultradur® B 2550
PBT/BASF
Celanex 7716
1700
2400
2500
11300
8200
5500
3000
11000
4000
3500
10000
7100
6000
4500
16000
9100
2500
10800
35
60
60
*
*
*
65
*
*
*
*
*
*
*
*
*
60
–
4.2
3.7
3.7
*
*
*
3.9
*
*
*
*
*
*
*
*
*
3.7
–
*
*
*
145
125
95
*
104
50
50
135
120
93
90
140
125
*
83
*
*
*
2.3
2.6
3.3
*
1.9
4
5
2.5
3
4
3.5
1.5
3.6
*
1.6
N
N
290
60
48
30
50
41
35
35
67
58
–
40
55
78
250
22
200
*
*
55
50
30
*
41
24
26
74
54
–
38
69
83
*
–
15
6
6
10
9
6
4
7.5
4
4
11
8
–
5
11
16
6
5
7.6
3
4
*
*
*
4
*
*
*
*
*
–
*
*
–
4
5
3.3
3.3
3.3
3.9
3.6
3.5
3.3
3.9
3.8
3.7
3.8
3.7
–
3.6
4
3.7
3.3
–
200
200
200
150
170
150
170
137
190
190
170
150
–
150
150
193
200
(Continued )
0.3
0.5
0.5
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.5
–
11: Tables of Selected ISO 10350 Properties 593
12/11/2007 6:21:11 PM
Mckeen_Ch11.indd 594
2600 4000
PBT PBT
Ultradur® B 6550 L
Ultradur® B 6550 LN
Ultradur® B 6550 N PBT*
Ultradur® KR 4001
PBT PBT PBT PBT PBT, GF10 PBT, GF10 PBT, GF20 PBT, GF20 PBT, GF30 PBT, GF12 PBT, GF20 PBT, GF30 PBT, GF30
Pocan® B 1501
Pocan® B 1505
Pocan® B 1600
Pocan® B 2505
Pocan® B 3215
Pocan® B 3215 Z
Pocan® B 3225
Pocan® B 3225 Z
Pocan® B 3235
Pocan® B 4215
Pocan® B 4225
Pocan® B 4235
Pocan® B 4239 PBT, X25
PBT
Pocan® B 1305
Pocan® B 7375
PBT
Pocan® B 1300
3500
10600
11500
7500
5700
10000
6700
7000
4500
5000
2900
2600
2600
2600
2800
2700
Yield Stress (MPa) *
*
*
*
*
*
*
*
*
*
60
55
55
60
55
55
*
60
56
Yield at Strain (%) *
*
*
*
*
*
*
*
*
*
3
4
4
4
4
4
*
3.5
3.5
3.5
Stress at Break (MPa)
50
55
125
140
120
100
150
115
120
85
100
*
*
*
*
*
*
60
*
*
*
Strain at Break (%)
2500
3
2.2
1.8
2.2
2.5
2.5
3.3
2.6
4
3
*
*
*
*
*
*
4.5
*
*
*
Charpy Impact 23°C (kJ/m2) 100
60
50
40
30
65
60
50
–
35
100
N
N
N
200
220
70
N
N
N
N
50
70
50
40
30
60
–
45
–
30
80
200
180
200
100
150
70
*
220
*
*
Charpy Impact −30°C (kJ/m2)
*
10
12
10
10
10
10
10
10
–
10
10
10
10
10
10
10
4
5
6
7
6
Charpy Notched Impact 23°C (kJ/m2)
*
10
11
10
10
10
10
10
10
–
10
10
10
10
10
10
10
*
*
5.3
–
*
Charpy Notched Impact −30°C (kJ/m2)
3.5
4.2
3.8
3.9
3.6
3.4
3.8
–
3.6
–
3.4
3.2
3.2
3.2
3.2
3.2
3.2
3.6
3.3
3.2
3.2
3.3
Relative Permitivity @1MHz
54
170
520
160
180
190
180
–
200
–
180
150
200
200
200
190
190
150
221
219
221
200
Dissipation Factor @1MHz
PBT/Lanxess
2600
PBT
Ultradur® B 6550
0.4
0.35
0.4
0.4
0.4
0.4
0.4
0.4
–
–
0.4
0.5
0.5
0.5
0.5
0.5
0.4
0.5
0.4
0.5
0.5
Water Absorption (%)
2400
Description
Tensile Modulus (MPa)
Name and Grade
11.4 Polyesters (cont’d)
594 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:12 PM
Mckeen_Ch11.indd 595
PBT PBT, GF7 PBT PBT
Pocan® KU27503/1 Z
Pocan® KU2-7755
Pocan® S 1506
Pocan® S 1517
2700 2700 3200 2700 1600
PBT PBT PBT
PBT PBT PBT, GF10 PBT, GF15 PBT, GF15 PBT, GF20 PBT, GF20 PBT, GF30 PBT, GF30 PBT, GF30
Arnite® T06 202
Arnite® T06 204 SN
Arnite® T06 204 XL PBT PBT, Imod
Arnite® T06 200 SNF
Arnite® T06 202 XL PBT PBT
Arnite® T06 200 (extrusion)
Arnite® T06 206 T
Arnite® T08 200
Arnite® T08 200 (extrusion)
Arnite® TV4 220
Arnite® TV4 230
Arnite® TV4 230 SF
Arnite® TV4 240
Arnite® TV4 240 S
Arnite® TV4 260 S
Arnite® TV4 260 SF
Arnite® TV4 261
10000
11000
11500
8500
7500
7000
6000
4500
2800
2800
2600
2700
PBT
2700
2000
1700
4700
2800
3400
Arnite® T06 200
PBT/DSM
PBT, GB20
Pocan® B 7425
*
*
*
*
*
*
*
*
55
55
35
62
65
58
55
45
55
55
45
35
*
55
*
*
*
*
*
*
*
*
*
3.5
3.5
4
8.7
5
4
3.5
4.5
3.5
3.5
4
4.5
*
6
*
140
130
130
110
120
95
100
80
*
*
–
*
*
*
*
*
*
*
*
*
75
*
50
3
2.5
2.5
2.5
3
2.5
3
5
*
*
–
*
*
*
*
*
*
*
*
*
3.7
*
3.5
60
50
55
50
45
40
35
30
N
N
N
N
N
N
N
N
N
N
N
N
35
200
30
60
50
55
50
45
40
35
30
N
N
N
–
–
N
N
–
N
N
N
N
35
–
30
10
8
10
9
7
6
8
7
6
6
20
3.7
5
5
5
12
5
5
60
75
10
10
10
10
8
10
9
7
6
8
7
6
6
12
–
–
5
5
–
5
5
15
25
10
10
10
3.7
3.8
3.9
3.7
3.5
3.5
3.4
–
3.2
3.2
–
3.2
–
3.2
3.2
3.2
3.2
3.2
3.1
3.1
3.6
3.2
3.6
170
140
150
150
180
140
180
–
200
200
–
200
–
200
200
220
200
200
190
170
600
160
170
(Continued )
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.35
0.45
0.45
–
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.4
0.4
0.35
0.3
0.4
11: Tables of Selected ISO 10350 Properties 595
12/11/2007 6:21:12 PM
Mckeen_Ch11.indd 596
6000
PBT, GF35 PBT, Imod, GF20
Arnite® TV4 270
Arnite® TV6 241 T
PBT PBT PBT PBT PBT PBT PBT PBT PBT, Imod
Crastin® 6129C NC010
Crastin® 6130 NC010
Crastin® 6130C NC010
Crastin® 6131 NC010
Crastin® 6131C NC010
Crastin® 6134 NC010
Crastin® 6134C NC010
Crastin® BM6450XD BK560 1600
2600
2600
2600
2600
2600
2600
2600
2600
Yield Stress (MPa)
Crastin® 6129 NC010
34
59
59
59
59
59
59
58
58
Yield at Strain (%)
–
9.3
4
4
6
6
8
8
5
5
–
Stress at Break (MPa)
*
–
–
–
–
–
–
–
–
–
85
145
Strain at Break (%)
*
–
–
–
–
–
–
–
–
–
4
2.5
Charpy Impact 23°C (kJ/m2) N
–
–
–
–
–
–
N
N
55
65
55
N
–
–
–
–
–
–
N
N
–
65
55
Charpy Impact −30°C (kJ/m2)
2.2
120
4
4
4
4
5
5
5.5
5.5
17
13
12
Charpy Notched Impact 23°C (kJ/m2)
130
–
–
–
–
–
–
–
4
4
–
13
11
Charpy Notched Impact −30°C (kJ/m2)
*
–
–
–
–
–
–
–
3.2
3.2
–
–
3.5
Relative Permitivity @1MHz
*
–
–
–
–
–
–
–
200
200
–
–
160
Dissipation Factor @1MHz
PBT/DuPont
11500
PBT, GF30
Arnite® TV4 264 SN
–
–
–
–
–
–
–
0.4
0.4
0.3
0.25
–
Water Absorption (%)
11500
Description
Tensile Modulus (MPa)
Name and Grade
11.4 Polyesters (cont’d)
596 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:12 PM
Mckeen_Ch11.indd 597
6800
PBT, GF15 PBT, GF30 PBT, GF30
Crastin® HR5315HF NC010
Crastin® HR5330HF BK503
Crastin® HR5330HF NC010
Crastin® HTI668FR PBT, NC010 (GF+MD)45
PET, GF15 PET, GF30 PET, GF30 PET, GF45 PET, GF13 PET, GF35 PET, GF45 PET, GF35 PET, GF45 PET, ,Imod, GF15
Impet 320R
Impet 330
Impet 330R
Impet 340R
Impet 610R
Impet 630R
Impet 740
Impet 830R
Impet 840R
Impet Hi430
Rynite® 425LW BK505 PET
4800
PET, GF45
Impet 2700 GV1/45
PET/DuPont
15700
PET, GF30
Impet 2700 GV1/30
5370
10700
15700
8600
5100
16800
11000
–
–
17000
11500
PET, GF20
8600
8400
5200
5200
Impet 2700 GV1/20
PET/Ticona
8400
PBT, GF15
Crastin® HR5315HF BK503
2600
PBT
Crastin® CE2548 GY740
2600
PBT
Crastin® CE2055 BKB580
–
–
–
–
–
–
–
–
–
–
–
–
–
–
*
–
–
–
–
–
60
–
–
–
–
–
–
–
–
–
–
–
–
–
–
*
–
–
–
–
9
60
73
140
118
140
85
97
190
170
170
115
140
175
135
77
132
120
95
92
46
–
4
3
1.3
2.1
1.4
2
3
2.1
2.6
2.6
2.5
1.5
2
2
2.1
3.5
3.5
3
3
15
–
35
53
–
–
59
–
–
–
48
–
–
44
41
30
28
75
65
60
50
–
90
–
38
–
38
–
–
45
–
–
44
40
28
22
–
–
–
–
–
–
6.3
16
6.4
7
6.4
–
5
15
10
–
5.1
14
11
8.5
5
13
11
10
10
5
3.5
–
8.4
–
–
6.4
–
–
–
10
–
–
14
11
8.5
4
12
9
7
6
3
4.2
–
–
–
–
–
–
–
–
–
–
4.5
4.2
4.1
4.1
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
165
180
190
305
200
–
–
–
–
–
(Continued )
–
0.12
–
–
–
–
0.09
–
–
–
–
0.4
0.4
0.45
0.5
–
–
–
–
–
–
11: Tables of Selected ISO 10350 Properties 597
12/11/2007 6:21:12 PM
Mckeen_Ch11.indd 598
PET, GF15 PET, GF30 PET, GF43 PET, GF45
Rynite® FR515 NC010
Rynite® FR530L NC010
Rynite® FR543 NC010
Rynite® FR943 NC010 PET PET PET
Amite® A06 300
Arnite® A04 900
Arnite® A06 101
PET/DSM
12500
PET, (MD+GF)40
Rynite® 940 BK505
2500
2800
2500
14000
17000
11500
6800
11200
PET, (GD+GF)36
Rynite® 936CS NC011
10200
19500
Rynite® 555 NC010 PET PET, (GF+P)35
15500
Rynite® 545 NC010 PET, GF45
Rynite® 935 NC010
14000
Tensile Modulus (MPa)
Rynite® 536 NC010 PET, GF36
Yield Stress (MPa) 55
80
–
–
*
*
*
*
*
*
*
*
*
*
Yield at Strain (%)
11000
4
4
–
*
*
*
*
*
*
*
*
*
*
*
Stress at Break (MPa)
PET, GF30
*
–
–
124
170
135
107
110
120
85
190
182
205
180
Strain at Break (%)
Rynite® 530CS NC011
*
–
–
1.5
1.8
2
2.6
1.8
2
2
2
2
2.4
2.3
Charpy Impact 23°C (kJ/m2) –
N
–
30
43
40
40
35
20
25
50
60
65
50
60
–
–
–
25
30
33
35
–
–
20
45
40
–
–
45
Charpy Impact −30°C (kJ/m2)
2.5
6.5
3
–
7
10
8.5
8
–
5
6
12
11
12
11
11
Charpy Notched Impact 23°C (kJ/m2)
158
–
–
–
5
10
8.5
7
–
–
4
12
11
–
–
11
Charpy Notched Impact −30°C (kJ/m2)
*
–
3.2
–
4.1
4.1
4.7
3.7
3.7
–
4.1
4.7
4.4
–
–
3.9
Relative Permitivity @1MHz
*
–
21
–
150
170
100
150
150
–
250
70
110
–
–
70
Dissipation Factor @1MHz
11000
Description
–
0.5
0.75
1
0.62
0.77
–
–
–
0.83
0.59
0.62
–
–
0.7
Water Absorption (%)
Rynite® 530 NC010 PET, GF30
Name and Grade
11.4 Polyesters (cont’d)
598 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:13 PM
Mckeen_Ch11.indd 599
PET, GF20 PET, GF33 PET, GF33 PET, GF35 PET, GF35 PET, GF35 PET, GF50 PET
Arnite® AV2 340
Arnite® AV2 360 S
Arnite® AV2 365 SN
Arnite® AV2 370
Arnite® AV2 370 /B
Arnite® AV2 372
Arnite® AV2 390
Arnite® D00 301
PCT, GF30 PCT, GF40 PCT, GF20 PCT, GF30 PCT, GF40
Thermx® CG033 NC010
Thermx® CG043 NC010
Thermx® CG923 NC010
Thermx® CG933 NC010
Thermx® CG943 NC010T
LCP, GF45 LCP, GF30 LCP, GF30 LCP, GF40
Zenite® 5145L BK010
Zenite® 6130 BK010
Zenite® 6130LX BK010
Zenite® 6140L BK010
LCP/DuPont
PCT, GF20
Thermx® CG023 NC010
PCT/DuPont
PET
Arnite® A06 700
–
15000
13000
15000
13000
10000
7500
–
8500
6400
2500
19000
13000
13000
13000
13500
13000
8500
2250
–
*
–
–
*
*
–
–
*
–
60
*
*
*
*
*
*
–
50
–
*
–
–
*
*
–
–
*
–
3.5
*
*
*
*
*
*
–
4
–
146
–
–
115
110
–
–
120
–
*
210
190
185
185
165
165
150
–
–
2.1
–
–
1.3
1.5
–
–
2
–
*
2
2.5
2.5
2.5
2
2
2.5
–
23
40
40
–
–
–
40
–
50
35
N
55
50
50
50
50
40
35
–
20
–
30
–
–
–
–
–
–
–
–
55
50
50
50
50
40
–
–
15
20
35
–
–
–
–
–
–
6
6
14
12
12
12
10
10
9
10
15
–
30
–
–
–
–
–
–
–
–
14
12
12
12
10
10
–
–
–
–
4
–
–
–
–
–
–
–
3.4
3.5
3.1
3.5
3.5
3.8
3.4
–
–
–
–
310
–
–
–
–
–
–
–
250
110
130
130
130
140
120
–
–
(Continued )
–
–
–
–
–
–
–
–
0.8
–
0.8
0.3
0.45
0.45
0.45
0.4
0.4
0.5
–
11: Tables of Selected ISO 10350 Properties 599
12/11/2007 6:21:13 PM
Mckeen_Ch11.indd 600
LCP, MD30 LCP, GF30 LCP, GF45 LCP, GF40 LCP, GF30 LCP, MD30
Zenite® 6330 BK010
Zenite® 7130 BK010
Zenite® 7145L BK010
Zenite® 9140HT NC010
Zenite® ZE16130A BK010
Zenite® ZE16401 BK010
Tensile Modulus (MPa) 23500 20000 7000 11000
LCP, GF30 LCP, GF50 LCP, CF30 LCP, GF25, X25 LCP, PTFE LCP, PTFE, GF LCP, X15 LCP, X30
Vectra A130
Vectra A150
Vectra A230
Vectra A410
Vectra A430
Vectra A435
Vectra A515
Vectra A530
11000
10500
22000
15000
LCP, GF15
Vectra A115
12000
8500
–
18000
Yield Stress (MPa)
18000
–
–
–
–
–
–
–
–
–
–
–
–
*
Yield at Strain (%) –
–
–
–
–
–
–
–
–
–
–
–
*
–
Stress at Break (MPa)
–
−160
−175
−175
−160
150
−130
−160
−190
−200
–
–
175
120
–
Strain at Break (%)
–
4.6
4.5
3.3
6.2
1.9
0.8
1.1
2.1
3.1
–
–
1.5
0.9
–
Charpy Impact 23°C (kJ/m2) 50
100
38
86
24
20
16
33
48
–
–
–
18
30
60
–
–
–
–
–
–
–
–
–
–
–
–
13
22
40
Charpy Impact −30°C (kJ/m2)
4
25
59
26
28
12
13
12
26
42
9
–
15
10
20
9
Charpy Notched Impact 23°C (kJ/m2)
125
–
–
–
–
–
–
–
–
–
–
–
–
12
20
8
Charpy Notched Impact −30°C (kJ/m2)
*
3.2
3.2
3.1
2.7
4.2
16.1
4.1
3.7
3
–
–
–
4.4
–
3.4
Relative Permitivity @1MHz
*
160
200
160
160
140
257
180
180
180
–
130
–
240
300
310
Dissipation Factor @1MHz
8800
–
–
–
–
–
–
–
–
–
–
0.7
–
–
–
–
Water Absorption (%)
LCP/Ticona
Description
Name and Grade
11.4 Polyesters (cont’d)
600 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:13 PM
Mckeen_Ch11.indd 601
11400 9500
15000 11000
LCP LCP, GF15 LCP, GF30 LCP, CF30 LCP, GF15 LCP, GF30 LCP, GF50 LCP, X50 LCP, X LCP, Milled Glass30 LCP, GF30 LCP LCP, X30 LCP, X40 LCP, X40 LCP, X40 LCP, GF30 LCP, GF40 LCP, GF30 LCP, GF40 LCP LCP, GF30 LCP, GF, PTFE LCP, X15 LCP, X30
Vectra A725
Vectra A950
Vectra B130
Vectra B230
Vectra C115
Vectra C130
Vectra C150
Vectra C550
Vectra C810
Vectra D130M
Vectra E130i
Vectra E471i
Vectra E530i
Vectra E540i
Vectra E820i
Vectra E820i Pd
Vectra H130
Vectra H140
Vectra L130
Vectra L140
Vectra MT1300
Vectra MT1310
Vectra MT1335
Vectra MT1340
Vectra MT1345
11000
10500
10600
17300
15000
17000
16500
8000
8500
9800
11500
13800
15000
17800
22000
15000
13000
31800
22000
10600
8100
14000
LCP, Z25
Vectra A700
10400
LCP, Graphite25
Vectra A625
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
160
175
175
190
182
130
155
−160
170
−90
−100
105
150
−140
−150
−92
−100
−115
−150
−160
−160
200
205
−182
−92
−140
140
4.6
4.5
3.3
2.1
3.4
1.1
1.6
1.2
1.5
3.6
3.5
3.2
3.5
2
1.6
1.5
3.4
2.3
1
1.9
2.5
0.7
1
3.4
4.2
1.5
5.7
50
100
38
33
270
32
45
24
29
35
54
–
84
55
43
6
25
17
15
28
42
15
18
270
31
15
67
–
–
–
–
53
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
53
–
–
–
2
5
2
2
9
1
23
14
24
4
8
–
29
20
22
–
3
4
13
25
34
6
12
95
17
7
11
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
2
–
–
–
–
–
–
–
–
–
–
–
3.2
3.2
3.1
3.7
3
3.6
3.5
3.6
5.6
–
3.6
3.6
3.2
3.8
3.3
3.9
3.7
4
4.1
3.7
3.1
32
3.5
3
–
–
13
160
200
160
180
200
200
240
200
221
163
165
310
257
320
250
220
140
100
180
180
200
–
80
200
–
–
1500
(Continued )
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
11: Tables of Selected ISO 10350 Properties 601
12/11/2007 6:21:13 PM
Mckeen_Ch11.indd 602
LCP LCP, GF30 LCP LCP, GF30 LCP, X40 LCP, GF30 LCP LCP
Vectra MT1355
Vectra MT2310
Vectra MT2355
Vectra MT3310
Vectra MT4350
Vectra T130
Vectra V100P
Vectra V300P
LCP, GF30 LCP, T45
Xydar G-930
Xydar M-345
2300 2000 1800
PC+ABS PC+ABS
PC+ABS
Bayblend® DP T90
Bayblend® DP W65 PC+AES PC+ABS
Bayblend® DP T65 TX
Bayblend® KU 1-1446
Bayblend® KU 2-1514 2400
2200
PC+ABS
2400
12100
15800
15900
11500
13400
16000
9800
Bayblend® DP T50
Polyester blends/Bayer
LCP, GF30
Xydar G-430
Tensile Modulus (MPa) 15000
Yield Stress (MPa)
31800
60
45
46
–
54
50
–
–
–
–
–
–
–
–
–
Yield at Strain (%) 5
4.5
4
–
4.5
3.8
–
–
–
–
–
–
–
–
–
–
Stress at Break (MPa)
–
–
–
–
–
–
–
86
135
135
153
150
140
105
160
200
205
Strain at Break (%)
22000
–
–
–
–
–
–
3.5
1.6
1.3
2.4
1.7
1.5
3.2
1.9
0.7
1
Charpy Impact 23°C (kJ/m2) –
–
–
–
–
–
–
18
–
–
110
50
–
28
15
18
20
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
0.8
–
–
–
–
–
–
–
11
–
–
7
3
–
2
1
1
Charpy Notched Impact 23°C (kJ/m2)
130
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
–
3.1
2.9
3
–
–
3
–
3.9
–
–
–
3.6
3.6
3.7
32
3.5
16.1
Relative Permitivity @1MHz
–
–
–
–
–
–
–
–
–
–
–
–
290
310
180
–
80
257
Dissipation Factor @1MHz
23500
0.5
0.7
0.7
–
–
0.7
–
–
–
–
–
–
–
–
–
–
–
Water Absorption (%)
LCP/Solvay
Description
Name and Grade
11.4 Polyesters (cont’d)
602 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:14 PM
Mckeen_Ch11.indd 603
2900 2600 2100
2300 3900 5900
2700 3100 2200
PC+ABS
Bayblend® R-R 610 PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS, GF10 PC+ABS, GF20 PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS
PC+PET, Imod, MD20 PC+PBT, Imod, MD10 PC+PBT, Imod, MD20
Bayblend® T45
Bayblend® T45 PG
Bayblend® T65
Bayblend® T85
Bayblend® T88-2N
Bayblend® T88-4N
Bayblend®R 2000
Bayblend®R 2000 BBS052
Bayblend®R 2010
Bayblend®R 3000
Bayblend®R 3005
Bayblend®R 3030
Makroblend® DP 2- PC+PET, 7655 MD10 PC+PET, Imod
Bayblend® KU 2-3020
Makroblend® DP 7645
Makroblend® DP 7665
Makroblend® KU 2-7608
Makroblend® KU 2-7609 3400
2600
4200
2800
2700
2700
2700
2700
2200
2100
4200
PC+ABS, GF10
Bayblend® KU 2-1522
2400
PC+ABS
Bayblend® KU 2-1514 BBS073
47
40
–
50
–
69
60
60
60
60
60
–
–
55
52
49
49
55
65
–
57
3
3
–
4.2
–
5
3.5
3.5
4
4
4
–
–
4.7
4.2
3.7
3.7
4
4
–
5
–
–
50
–
45
–
–
–
–
–
–
77
63
–
–
–
–
–
–
68
–
–
–
7
–
20
–
–
–
–
–
–
2
4
–
–
–
–
–
–
3
–
–
N
–
N
N
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
N
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
5
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
3.1
3.1
3.1
3.1
3.1
3.1
3.2
3.2
3
3
3
3
3.1
–
3.2
3.1
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
(Continued )
0.3
0.3
–
–
–
0.5
0.5
0.5
0.5
0.5
0.5
0.6
0.6
0.7
0.7
0.7
0.7
0.5
0.5
0.6
0.5
11: Tables of Selected ISO 10350 Properties 603
12/11/2007 6:21:14 PM
Mckeen_Ch11.indd 604
PC+PBT, Imod PC+PBT, Imod PC+PBT, Imod PC+PBT, Imod PC+PBT, Imod PC+PBT, Imod PC+PBT, Imod
Makroblend® KU 2-7912
Makroblend® KU 2-7912/4
Makroblend® KU -7912/5
Makroblend® KU 2-7915
Makroblend® KU 2-7940
Makroblend® S 7916
Makroblend® S 7916/2
Tensile Modulus (MPa) 9500 5900 7000 9200 6500
PBT+PET, GF30 PBT+ASA, GF15 PBT+ASA, GF20 PBT+ASA, GF30 PBT+PET, GF15
Pocan® DP 4035
Pocan® DP 7041
Pocan® DP 7042
Pocan® DP 7043
Pocan® KU1-7313
1800
1700
2100
2200
Yield Stress (MPa)
2100
*
*
*
*
*
45
40
55
50
53
Yield at Strain (%) *
*
*
*
*
4
4
4.6
4
4.2
4
Stress at Break (MPa)
50
110
120
100
90
120
–
–
–
–
–
–
Strain at Break (%)
2150
3
2.8
3
3
2.5
–
–
–
–
–
–
Charpy Impact 23°C (kJ/m2) 30
–
–
–
–
N
N
N
N
N
N
N
30
–
–
–
–
N
N
N
N
N
N
N
Charpy Impact −30°C (kJ/m2)
–
10
–
–
–
–
90
80
52
70
60
60
60
Charpy Notched Impact 23°C (kJ/m2)
–
10
–
–
–
–
25
60
50
50
40
45
25
Charpy Notched Impact −30°C (kJ/m2)
4
3.5
–
–
–
–
3
2.9
–
3.1
–
–
–
Relative Permitivity @1MHz
50
–
–
–
–
–
–
–
–
–
–
–
–
Dissipation Factor @1MHz
2200
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.6
0.4
0.4
0.4
Water Absorption (%)
Polyester blends/Lanxess
Description
Name and Grade
11.4 Polyesters (cont’d)
604 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:14 PM
Mckeen_Ch11.indd 605
8500 6500
PBT+PC, GF30 PBT+ABS, GF20 PBT+PC
Pocan® KU1-7635
Pocan® KU2-7125
Pocan® KU27604
PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS
Xantar® C CF 107
Xantar® C CF 407
Xantar® C CM 206
Xantar® C CM 206 U
Xantar® C CM 406
Xantar® C CM 406 FD
Xantar® C CM 406 U
Xantar® C CM 506
Xantar® C CM 506 U 2300
2300
2200
2200
2200
2100
2100
2700
2850
2700
PC+ABS
9900
PBT+PET, GF30
Arnite® TV4 461 KL
Xantar® C CE 407
9900
PBT+PET, GF30
Arnite® TV4 461
2200
7300
PBT+PET, GF20
Arnite® TV4 441
Stapron® E EM 605 PC+PET
4700
PBT+PET, MD20
Arnite® TM4 440
Polyester blends/DSM
5100
PBT+PC, GF20
Pocan® KU1-7625
2000
8600
PBT+PET, (GF+MD)40
Pocan® KU1-7341
55
55
50
50
50
45
45
60
60
60
55
*
*
*
–
45
*
*
*
*
5
5
4
4
4
4
4
4
4
4
6
*
*
*
–
3.5
*
*
*
*
–
–
–
–
–
–
–
–
–
–
*
130
130
112
57
*
100
100
75
80
–
–
–
–
–
–
–
–
–
–
*
2.4
2.4
2.7
2.4
*
2.8
2.5
4
1.2
N
N
N
N
N
N
N
N
N
N
N
45
45
25
35
N
35
50
35
20
N
N
N
N
N
N
N
N
N
N
N
45
45
25
–
N
30
–
–
20
40
40
40
40
40
35
35
–
–
–
55
9
9
7
4
–
10
–
–
10
20
20
20
20
20
15
15
–
–
–
25
9
9
7
–
–
10
–
–
10
2.9
2.9
2.9
2.9
2.9
2.9
2.9
3
3
3
–
3.9
3.9
–
–
–
3.6
–
–
3.9
–
–
–
–
–
–
–
–
–
–
–
160
160
–
–
–
–
–
–
–
(Continued )
0.5
0.5
0.6
0.6
0.6
0.7
0.7
0.6
0.6
0.6
0.35
0.3
0.3
0.3
–
0.3
0.4
0.3
0.3
0.3
11: Tables of Selected ISO 10350 Properties 605
12/11/2007 6:21:14 PM
Mckeen_Ch11.indd 606
2200 2300
PC+ABS
Xantar® C RC 3012 PC+ABS PC+ABS PC+ABS
Xantar® C MC 3700
Xantar® FC 19 R
Xantar® FC 19 UR PBT+PET, GF50 PBT+PET, GF10 PBT+PET, GF20 PBT+PET, GF30 PBT, GF10 PBT, GF20 PBT+ASA, GF10 PBT+ASA, GF20 PBT+ASA, GF20
Ultradur® B 4040 G10
Ultradur® B 4040 G2
Ultradur® B 4040 G4
Ultradur® B 4040 G6
Ultradur® B 4406 G4 Q113
Ultradur® B 4406 G6 Q113
Ultradur® S 4090 G2
Ultradur® S 4090 G4
Ultradur® S 4090 G4X 6800
6900
4500
11500
8350
10500
7500
5000
18700
2300
Yield Stress (MPa) *
*
*
*
*
*
*
*
*
60
60
Yield at Strain (%)
50
*
*
*
*
*
*
*
*
*
6
6
4
Stress at Break (MPa)
5
100
100
75
135
117
145
120
96
165
*
*
–
–
Strain at Break (%)
55
2.6
2.5
2.9
2.1
2.2
2.4
2.5
2.9
1.5
*
–
–
Charpy Impact 23°C (kJ/m2) 49
55
45
50
36
55
40
26
52
–
–
N
N
N
–
43
27
–
–
*
*
*
58
–
–
N
N
N
Charpy Impact −30°C (kJ/m2)
–
6.6
7
6
8
6.1
8
6
3.8
10
–
–
40
40
–
Charpy Notched Impact 23°C (kJ/m2)
–
–
*
*
–
–
*
*
*
*
–
–
20
–
–
Charpy Notched Impact −30°C (kJ/m2)
4
–
3.6
3.4
3.7
3.5
3.8
3.5
–
4.5
2.9
2.9
2.9
2.9
3
Relative Permitivity @1MHz
60
–
190
205
158
170
170
180
–
150
–
–
–
–
–
Dissipation Factor @1MHz
Polyester blends/BASF
2300
PC+ABS
Xantar® C MC 3433
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.35
0.35
0.6
0.5
0.6
Water Absorption (%)
2850
Description
Tensile Modulus (MPa)
Name and Grade
11.4 Polyesters (cont’d)
606 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:15 PM
Mckeen_Ch11.indd 607
PBT+ASA, GF30 PBT+ASA, GF14
Ultradur® S 4090 G6X
Ultradur® S 4090 GX
PBT+ASA, GF20 PBT+ASA, GF30 PBT+ASA, GF30 PBT+SAN, GF20 PBT+SAN, GF30
Crastin® LW9020FR NC010
Crastin® LW9030 NC010
Crastin® LW9030FR NC010
Crastin® LW9320 NC010
Crastin® LW9330 NC010
2300 3800 7600
PC+ABS PC+ABS PC+ABS, GF10 PC+ABS, GF20 PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS
Pulse 1350
Pulse 1370
Pulse 1550
Pulse 1718GF
Pulse 2000
Pulse 2000EZ
Pulse 2100LG
Pulse 2200BG
Pulse 830
Pulse 920MG
2050
2300
2200
2090
2350
2360
2400
PC+ABS
2300
9800
7400
10500
9500
8500
7000
5500
9800
9700
Pulse 1310
Polyester blends/Dow
PBT+ASA, GF20
Crastin® LW9020 NC010
Polyester blends/DuPont
PBT+ASA, GF30
Ultradur® S 4090 G6
48
55
52
48
54
52
*
59
55
56
52
*
*
*
*
*
*
*
*
*
4.6
4
5.1
4.9
4.4
5
*
3.4
4
4.2
4.1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
95
*
*
*
*
135
120
125
130
115
110
100
132
125
*
*
*
*
*
*
2
*
*
*
*
2.3
2.7
1.8
2.5
2.1
2.9
3.2
2.5
2.2
N
N
N
N
N
N
–
90
N
N
N
55
55
–
60
40
60
52
64
59
N
N
N
N
N
N
–
50
N
N
N
–
50
–
66
35
43
–
55
50
45
66
50
45
40
45
6
18
66
56
65
9
8.5
–
10
7
9.5
8
9
9
3
25
18
30
14
5
8
25
22
15
9
–
–
9.3
6.5
7.6
–
*
*
–
–
–
–
–
–
–
–
–
–
–
–
–
–
3.6
–
3.4
3.4
3.7
3.7
–
–
–
–
–
–
–
–
–
–
–
–
30
170
150
180
208
202
180
(Continued )
0.03
–
–
–
–
–
–
–
–
–
–
1
–
0.72
0.7
0.78
0.8
0.4
0.4
0.4
11: Tables of Selected ISO 10350 Properties 607
12/11/2007 6:21:15 PM
Mckeen_Ch11.indd 608
PC+ABS, GF10 PC+ABS PC+ABS PC+ABS
Pulse 979
Pulse A20-95
Pulse A35105
Pulse A35110
PBT+PET, GF20 PBT+PET, GF30 PBT+PET, GF45
Schuladur® PCR GF 20
Schuladur® PCR GF 30
Schuladur® PCR GF 45
1500 2800 4000
PBT Alloy, P10 PBT Alloy PBT Alloy PBT Alloy, GF7 PBT Alloy, GF15
Vandar 2122
Vandar 2500
Vandar 4602Z
Vandar 4612R
Vandar 4632Z
–
PBT Alloy
Vandar 2100UV
1450
1600
PBT Alloy
1600
15500
10500
8100
4500
Vandar 2100
Polyester blends/Ticona
PBT+PET, GF10
Schuladur® PCR GF 10
Tensile Modulus (MPa) 2350
Yield Stress (MPa)
2200
–
50
40
35
–
40
40
*
*
*
*
57
52
Yield at Strain (%)
44
–
4
6
5
–
4
4
*
*
*
*
4.8
5
5
Stress at Break (MPa) 60
–
–
–
–
–
–
132
145
125
80
*
*
*
4
–
–
–
>50
–
–
1.5
2.5
2.5
3.5
*
*
*
65
60
N
200
–
N
N
43
55
30
28
N
N
N
62
50
N
170
–
N
N
–
50
–
–
N
N
N
30
18
14
70
88
–
70
70
6
8
6
4
35
35
25
9
8
5
10
9
–
16
16
–
8
–
–
15
2
1
Charpy Notched Impact −30°C (kJ/m2)
2250
Strain at Break (%) 30
Charpy Impact 23°C (kJ/m2)
3
Charpy Impact −30°C (kJ/m2)
76
Charpy Notched Impact 23°C (kJ/m2)
*
4.1
3.8
3.9
–
–
3.6
3.6
–
3.85
–
–
–
–
–
–
Relative Permitivity @1MHz
*
290
290
310
–
–
200
200
–
0.0161
–
–
–
–
–
–
Dissipation Factor @1MHz
4000
0.45
0.45
0.45
0.45
–
0.45
0.45
–
0.3
0.3
–
–
–
–
–
Water Absorption (%)
Polyester blends/A. Schulman
Description
Name and Grade
11.4 Polyesters (cont’d)
608 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:15 PM
Mckeen_Ch11.indd 609
PBT Alloy PBT Alloy
Vandar 6000
Vandar 8000
1700
1750
7000
30
45
–
4.5
4.5
–
Description
PEI PEI PEI Blend PEI, GF10 PEI, GF10
Ultem® 1100
Ultem® 1110
Ultem® 1285
Ultem® 2100
Ultem® 2110
Tensile Modulus (MPa) 4500
4500
3300
3500
3500
*
*
110
110
110
105
*
*
6
6
6
6
115
115
75
80
85
85
Strain at Break (%) 4
4
36
10
10
60
60
35
30
N
–
–
N
N
35
30
N
–
–
N
N
–
–
3
–
–
5
4
Charpy Notched Impact 23°C (kJ/m2)
3200
Stress at Break (MPa) 85
3.6
15
7
7
3
–
–
5
4
Charpy Notched Impact −30°C (kJ/m2)
PEI
Yield at Strain (%) 6
–
–
–
2.9
2.9
2.94
–
–
2.9
2.9
–
–
0.6
0.5
0.45
–
0.45
0.6
1
0.5
1.2
0.65
0.7
0.7
(Continued )
0.0025
0.0025
0.0103
170
260
4.3
10
Relative Permitivity @1MHz
Ultem® 1010
Yield Stress (MPa) 105
75
–
20
N
–
70
Charpy Impact 23°C (kJ/ m 2)
3200
N
–
70
Dissipation Factor @1MHz
PEI
–
–
3.5
Water Absorption (%)
Ultem® 1000
–
–
80
Charpy Impact −30°C (kJ/m2)
PEI/SABIC Innovative Plastics
Name and Grade
11.5 Polyimides
* I napplicable property or a property not relevant to this material. – Missing value, not applicable. N No break in a Charpy impact test. P Partial break
PBT Alloy, GF30
Vandar 4662Z
11: Tables of Selected ISO 10350 Properties 609
12/11/2007 6:21:15 PM
Mckeen_Ch11.indd 610
12500 9900
PEI, Milled GF20 PEI, GF30 PEI, GF30 PEI, Milled GF30 PEI, GF40 PEI, GF40 PEI, GF40 PEI, (GF+MD)45 PEI, (GF+PTFE+Graphite) PEI, PTFE PEI, PTFE PEI PEI PEI PEI PEI PEI PEI, GF20 PEI, GF30
Ultem® 2300
Ultem® 2310
Ultem® 2312
Ultem® 2400
Ultem® 2410
Ultem® 2412EPR
Ultem® 3452
Ultem® 4000
Ultem® 4001
Ultem® 4002
Ultem® 9011
Ultem® 9070
Ultem® 9075
Ultem® 9076
Ultem® CRS5001
Ultem® CRS5011
Ultem® CRS5201
Ultem® CRS5311
Tensile Modulus (MPa)
Ultem® 2212
10000
7200
2900
3200
3000
3200
3000
3200
3300
3000
10100
11500
11500
6000
9500
9500
4500
Yield Stress (MPa)
6800
*
*
100
100
95
90
100
105
100
95
*
*
90
*
*
*
*
*
*
*
Yield at Strain (%)
PEI, GF20
*
*
8
8
6
6
6
6
6
6
*
*
2
*
*
*
*
*
*
*
Stress at Break (MPa)
Ultem® 2210
160
135
85
95
70
75
90
85
80
75
90
100
90
180
180
85
165
165
75
140
Strain at Break (%) 2
3
50
50
50
25
20
60
25
30
1
1.5
2
2
2
3
2
2
8
2
–
–
–
–
–
–
–
–
–
–
15
14
20
40
40
25
40
40
35
35
Charpy Impact 23°C (kJ/m2)
2
–
–
–
–
–
–
–
–
–
–
15
14
21
40
40
25
40
40
35
35
Charpy Impact −30°C (kJ/m2)
140
–
–
–
–
6
6
–
–
–
9
8
4.4
5
–
–
–
–
–
–
–
–
Charpy Notched Impact 23°C (kJ/m2)
*
–
–
–
–
6
7
–
3
11
11
8
4
5
–
–
4
10
10
–
9
–
Charpy Notched Impact −30°C (kJ/m2)
*
3.1
3
–
3
2.8
–
–
–
–
–
6.2
3.6
–
3.1
3.1
–
3.4
3.4
–
3
3
Relative Permitivity @1MHz
6800
0.003
0.0043
–
0.0043
–
–
–
–
–
–
0.022
0.015
–
0.0019
0.0019
–
0.0023
0.0023
–
0.0025
0.0025
Dissipation Factor @1MHz
PEI, GF20
Description
0.9
1
1.2
1.2
1.3
1.3
0.5
1.3
1.1
1.1
0.7
–
0.8
0.8
0.8
0.9
0.9
0.9
–
1
1
Water Absorption (%)
Ultem® 2200
Name and Grade
11.5 Polyimides (cont’d)
610 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:15 PM
PEI PEI PEI PEI PEI PEI PEI
Ultem® DT1800E
Ultem® DT1810E
Mckeen_Ch11.indd 611
Ultem® EXUM0169
Ultem® LTX300A
Ultem® LTX931A
Ultem® MD130A
Ultem® XH6050
3120
3500
9200
3200
2500
2500
2500
95
110
115
90
98
98
98
8.5
6
2
6
7
7
7
78
85
115
75
80
80
80
17
10
2
25
80
80
80
N
–
–
N
–
–
–
N
–
–
N
–
–
–
–
–
4
6
–
–
–
–
–
4
7
2
2
2
–
–
–
–
–
–
–
0.007
–
–
–
0.0061
–
0.0061
1.8
1.2
0.4
1.3
0.36
0.36
0.37
11: Tables of Selected ISO 10350 Properties 611
12/11/2007 6:21:16 PM
Mckeen_Ch11.indd 612
PA6, MD30 PA6, MD30 PA6, MD30 PA6, MD40 PA6, MD40 PA6, Imod PA6, Imod PA6, GF15 PA6, GF15
Minion® 73M30 NC010 (dry)
Minion® 73M30 NC010 (cond.)
Minion® 73M30HSL BK489 (dry)
Minion® 73M40 NC010 (dry)
Minion® 73M40 NC010 (cond.)
Zytel® 7331T NC010A (dry)
Zytel® 7331T NC010A (cond.)
Zytel® 73G15HSL BK363 (dry)
Zytel® 73G15HSL BK363 (cond.) 3500
6500
970
2400
2300
6000
–
1800
4900
*
*
39
62
*
*
–
*
*
*
*
26
4.4
*
*
–
*
*
60
140
*
*
59
87
–
56
82
84
8
4
*
*
29
11
–
46
14
5.5
70
40
–
–
N
130
–
N
130
65
60
Charpy Impact 23°C (kJ/m2)
*
Strain at Break (%) 3
40
40
–
–
95
95
–
85
85
50
50
Charpy Impact −30°C (kJ/m2)
*
Stress at Break (MPa) 140
7
6
35
16
9.5
6.5
–
13
6.5
13
7
Charpy Notched Impact 23°C (kJ/m2)
4900
Yield at Strain (%) *
7
5
6
8
5
4
–
3.5
3.5
4
5.5
Charpy Notched Impact −30°C (kJ/m2)
PA6, (MD+GF)40
Yield Stress (MPa) *
–
–
–
–
–
–
–
–
–
–
–
Relative Permitivity @1MHz
Minion® 73GM40 NC010 (cond.)
Tensile Modulus (MPa) 8400
–
–
–
–
–
–
150
–
–
–
38
Dissipation Factor @1MHz
PA6, (MD+GF)40
Description
*
7.6
*
–
*
5.4
6.3
*
6.3
–
5.6
Water Absorption (%)
Minion® 73GM40 NC010 (dry)
PA6/DuPont
Name and Grade
11.6 Polyamides (Nylons)
612 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:16 PM
PA6, GF15 PA6, GF15 PA6, GF15, Imod PA6, GF15, Imod PA6, GF30 PA6, GF30 PA6, GF30 PA6, GF30 PA6, GF30 PA6, GF30 PA6, GF30, Imod PA6, GF30, Imod PA6, GF45 PA6, GF45 PA6, GF35, Imod PA6, GF35, Imod PA6, GF15, Imod PA6, GF15, Imod PA6
Zytel® 73G15L NC010 (dry)
Zytel® 73G15L NC010 (cond.)
Zytel® 73G15THSL BK240 (dry)
Zytel® 73G15THSL BK240 (cond.)
Mckeen_Ch11.indd 613
Zytel® 73G20L NC010 (dry)
Zytel® 73G20L NC010 (cond.)
Zytel® 73G30HSL NC010 (dry)
Zytel® 73G30HSL NC010 (cond.)
Zytel® 73G30L NC010 (dry)
Zytel® 73G30L NC010 (cond.)
Zytel® 73G30T NC010 (dry)
Zytel® 73G30T NC010 (cond.)
Zytel® 73G45L NC010 (dry)
Zytel® 73G45L NC010 (cond.)
Zytel® BK262 73G35HSL (dry)
Zytel® BK262 73G35HSL (cond.)
Zytel® BM73G15THS BK317 (dry)
Zytel® BM73G15THS BK317 (cond.)
Zytel® FN727 NC010 (dry) 770
2500
5100
7000
11000
10000
14000
6000
9500
6000
9500
5500
9500
4300
7000
–
5500
3500
6000
23
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
44
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
65
107
120
190
150
220
100
170
120
190
110
190
83
150
55
120
61
140
*
22
5.7
6
3
4
2.5
5
3
5.5
3.5
5.5
3.5
6.5
4
19
2.9
8
4
–
120
85
90
90
110
110
100
110
100
100
100
100
90
70
–
–
90
50
–
–
–
90
90
100
120
90
90
80
80
–
–
60
70
–
–
50
45
130
33
27
22
16
23
21
25
19
21
13
20
13
16
10
13
9.5
14
7
–
–
–
10
10
23
21
25
19
21
10
–
16
10
5.2
5.7
14
6
–
–
–
–
–
–
–
–
–
–
–
–
–
–
3.9
–
–
–
–
–
160
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
(Continued )
–
*
–
*
5.8
–
4.9
*
6.2
*
6.3
*
6.3
*
7.2
*
–
*
7.6
11: Tables of Selected ISO 10350 Properties 613
12/11/2007 6:21:16 PM
Mckeen_Ch11.indd 614
PA6, Imod PA6, Imod
Zytel® ST7301 NC010 (dry)
Zytel® ST7301 NC010 (cond.) PA6 PA6 PA6 PA6 PA6 PA6 PA6 PA6 PA6
Ultramid® 8200 (dry)
Ultramid® 8200 (cond.)
Ultramid® 8200 HS BK102 (dry)
Ultramid® 8202 (dry)
Ultramid® 8202 (cond.)
Ultramid® 8202 HS (dry)
Ultramid® 8202 HS (cond.)
Ultramid® 8202C (dry)
Ultramid® 8202C (cond.)
PA6/BASF
PA6, GF20
Tensile Modulus (MPa)
Zytel® FR73G20GWF NC010 (cond.)
1360
3700
970
2700
970
2700
–
–
2700
–
1800
4300
Yield Stress (MPa)
6000
43
88
36
78
36
78
80
39
80
–
–
*
*
Yield at Strain (%)
PA6, GF20
22
4
16
4
16
4
5
16
5
–
–
*
*
Stress at Break (MPa)
Zytel® FR73G20GWF NC010 (dry)
*
*
*
*
*
*
*
*
*
–
–
83
90
Strain at Break (%) *
*
*
*
*
*
*
*
*
–
–
6.5
4
–
N
–
N
–
N
90
–
N
–
–
110
30
–
Charpy Impact 23°C (kJ/m2)
–
–
–
–
51
–
51
N
–
–
–
–
60
66
–
Charpy Impact −30°C (kJ/m2)
–
–
3.5
–
3.5
–
3.5
3.8
–
3.5
120
78
6.5
4
–
Charpy Notched Impact 23°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
18
17
–
3
–
Charpy Notched Impact −30°C (kJ/m2)
–
–
–
–
–
–
3.3
–
–
–
–
–
–
–
–
Relative Permitivity @1MHz
350
–
–
–
–
–
0.02
–
–
–
–
–
–
–
–
Dissipation Factor @1MHz
PA6
Description
*
9.3
*
9.5
*
9.5
9.5
*
9.5
*
–
*
–
*
Water Absorption (%)
Zytel® FN727 NC010 (cond.)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
614 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:16 PM
PA6 PA6 PA6, GF14 PA6, GF14 PA6, GF33 PA6, GF33 PA6 PA6 PA6 PA6 PA6 PA6, MD40 PA6, MD40 PA6, (MD+GF)20 PA6, (MD+GF)40 PA6, (MD+GF)40 PA6, (MD+GF)40 PA6, (MD+GF)40
Ultramid® 8202C HS BK-102 (dry)
Ultramid® 8202C HS BK-102 (cond.)
Mckeen_Ch11.indd 615
Ultramid® 8231G HS (dry)
Ultramid® 8231G HS (cond.)
Ultramid® 8233G HS (dry)
Ultramid® 8233G HS (cond.)
Ultramid® 8253 HS (dry)
Ultramid® 8253 HS (cond.)
Ultramid® 8254 HS BK 102 (dry)
Ultramid® 8254 HS BK 102 (cond.)
Ultramid® 8255 HS (dry)
Ultramid® 8260 (dry)
Ultramid® 8260 (cond.)
Ultramid® 8262G HS BK-102 (dry)
Ultramid® 8266G HS BK-102 (dry)
Ultramid® 8266G HS BK-102 (cond.)
Ultramid® 8267G HS BK-102 (dry)
Ultramid® 8267G HS BK-102 (cond.)
4860
8500
5610
9780
5200
2390
6400
–
460
875
730
2300
5840
10100
2640
5960
1360
3700
*
*
*
*
*
*
*
36
28
34
32
60
*
*
*
*
43
88
*
*
*
*
*
*
*
7
30
7
15
4
*
*
*
*
22
4
76
128
70
125
100
60
85
*
*
*
*
*
125
185
80
140
*
*
6
3.5
6
3
3
30
10
*
*
*
*
*
6
3.5
9
4
*
*
–
55
–
–
–
–
120
–
–
–
–
N
–
88
–
40
–
N
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
5
–
4
3
–
3
–
–
–
–
18
–
15
–
6.5
–
3.5
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
3.6
–
3.4
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
0.02
–
0.02
–
–
(Continued )
*
5.7
*
5.7
7.9
*
5.7
7.1
*
7.1
*
8.1
*
6.4
*
8.1
*
9.3
11: Tables of Selected ISO 10350 Properties 615
12/11/2007 6:21:16 PM
Mckeen_Ch11.indd 616
PA6, GF33 PA6, GF33 PA6 PA6 PA6 PA6 PA6 PA6 PA6 PA6 PA6 PA6 PA6
Ultramid® 8333G HI (cond.)
Ultramid® 8350 HS (dry)
Ultramid® 8350 HS (cond.)
Ultramid® 8351 HS BK102 (dry)
Ultramid® B3 (dry)
Ultramid® B3 (cond.)
Ultramid® B32 (dry)
Ultramid® B32 (cond.)
Ultramid® B32 Q128 (dry)
Ultramid® B32 Q128 (cond.)
Ultramid® B35 (dry)
Ultramid® B35 (cond.)
Tensile Modulus (MPa)
Ultramid® 8333G HI (dry)
900
2700
900
2700
900
2700
1000
3000
1800
675
1800
4610
9300
Yield Stress (MPa)
3100
45
80
45
80
45
80
45
90
49
32
53
*
*
65
Yield at Strain (%)
PA6, GF12
20
4.5
20
4.5
20
4.5
20
4.5
5
9
5
*
*
15
Stress at Break (MPa)
Ultramid® 8272G HS BK-102 (cond.)
*
*
*
*
*
*
*
*
*
*
*
90
145
–
Strain at Break (%) *
*
*
*
*
*
*
*
*
*
*
6
3.5
–
N
N
N
N
N
N
N
N
N
–
N
–
78
–
–
Charpy Impact 23°C (kJ/m2)
–
–
N
–
N
–
N
–
N
–
–
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
–
N
9
N
9
N
9
60
8
92
–
100
–
20
–
–
Charpy Notched Impact 23°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
–
7
3.5
7
3.5
7
3.5
7
3.5
–
–
–
–
3.4
–
–
Relative Permitivity @1MHz
5220
3000
310
3000
310
3000
310
3000
230
–
–
–
–
0.01
–
–
Dissipation Factor @1MHz
PA6, GF12
Description
*
9.5
*
9.5
*
9.5
*
9.5
6.7
*
6.7
*
5.5
*
8.3
Water Absorption (%)
Ultramid® 8272G HS BK-102 (dry)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
616 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:17 PM
Mckeen_Ch11.indd 617
13000 8200 6000
PA6, GF15 PA6, GF25 PA6, GF25 PA6, GF30 PA6, GF30 PA6, GF40
PA6, (GF+GB)30 PA6, (GF+MD)40 PA6, (GF+MD)40
Ultramid® B3EG5 (dry)
Ultramid® B3EG5 (cond.)
Ultramid® B3EG6 (dry)
Ultramid® B3EG6 (cond.)
Ultramid® B3G8 (dry)
Ultramid® B3G8 (cond.) PA6, GF40 PA6, (GF+GB)30
Ultramid® B3EG3 (cond.)
Ultramid® B3GK24 (dry)
Ultramid® B3GK24 (cond.)
Ultramid® B3GM35 (dry)
Ultramid® B3GM35 (cond.) 5000
8000
3000
6200
9500
5500
8000
3500
5800
3200
PA6, GF15
PA6, GF15
Ultramid® B35G3 bk 564 (cond.)
6100
Ultramid® B3EG3 (dry)
PA6, GF15
Ultramid® B35G3 bk 564 (dry)
1000
1700
PA6
Ultramid® B35F (cond.)
3000
Ultramid® B36FN Q99 (cond.)
PA6
Ultramid® B35F (dry)
3500
3200
PA6, GF15
Ultramid® B35EG3 (cond.)
5800
Ultramid® B36FN Q99 (dry)
PA6, GF15
Ultramid® B35EG3 (dry)
*
*
*
*
*
*
*
*
*
*
*
*
60
90
–
–
45
90
*
*
*
*
*
*
*
*
*
*
*
*
*
*
20
4.5
–
–
20
4.5
*
*
65
120
60
110
135
205
115
185
105
160
70
130
*
*
67
126
*
*
70
130
12
3
15
3.5
4.6
2.8
8
3.5
8.5
3.5
15
3.5
*
*
13
2.9
*
*
18
4
50
90
40
110
90
110
95
110
80
110
50
–
–
110
47
N
N
110
60
–
50
–
39
–
75
–
80
–
75
–
45
–
–
–
–
–
N
–
55
–
8
11
5
22
14
30
15
25
12
20
8
–
–
15
5.9
N
8
25
9
–
6
–
5
–
11
–
11
–
10
–
7
–
–
–
–
–
–
–
8
6.2
3.9
4.6
3.9
6
4
6.8
3.8
7
3.8
7
3.8
7
3.3
–
–
7
3.5
7
3.8
2000
200
700
200
1300
140
–
2200
230
2400
250
2400
250
3000
300
–
3000
310
2400
250
(Continued )
*
6.6
*
6.6
*
5.7
*
*
6.6
*
7.1
*
8
*
9.5
8
*
9.5
*
8
11: Tables of Selected ISO 10350 Properties 617
12/11/2007 6:21:17 PM
Mckeen_Ch11.indd 618
Description
PA6, (MD+GF)40 PA6, (MD+GF)40 PA6, (GF+MD)40 PA6, (GF+MD)40 PA6, (GF+MD)40 PA6 PA6 PA6 PA6 PA6 PA6, MD30 PA6, MD30 PA6, MD30 PA6, MD30
Name and Grade
Ultramid® B3GM35 bk 30564 (dry)
Ultramid® B3GM35 bk 30564 (cond.)
Ultramid® B3GM35 Q224 (dry)
Ultramid® B3GM35 Q611 (dry)
Ultramid® B3GM35 Q611 (cond.)
Ultramid® B3K (dry)
Ultramid® B3K (cond.)
Ultramid® B3L (dry)
Ultramid® B3L (cond.)
Ultramid® B3L Q235 (dry)
Ultramid® B3M6 bk 30564 (dry)
Ultramid® B3M6 bk 30564 (cond.)
Ultramid® B3M6 bk 60564 (dry)
Ultramid® B3M6 LS (dry)
11.6 Polyamides (Nylons) (cont’d) Tensile Modulus (MPa) 4600
4600
1700
4600
2800
900
2800
1000
3000
5000
8000
Yield Stress (MPa)
8000
*
*
*
*
70
35
70
40
85
*
*
*
Yield at Strain (%) *
*
*
*
4
18
3.5
20
4.5
*
*
*
*
Stress at Break (MPa)
*
75
75
45
75
*
*
*
*
*
65
120
120
70
Strain at Break (%)
4300
15
15
45
12
*
*
*
*
*
12
3
3
7.5
Charpy Impact 23°C (kJ/m2) 220
N
N
190
N
N
N
N
N
–
50
65
70
150
150
–
100
N
–
N
–
100
–
50
50
–
50
Charpy Impact −30°C (kJ/m2)
50
9
9
18
9
10
N
10
60
5.5
–
8
8
8
6
Charpy Notched Impact 23°C (kJ/m2)
2.8
7
–
–
5
–
–
6
–
4
–
6
–
–
4
Charpy Notched Impact −30°C (kJ/m2)
125
3.5
3.5
6.2
3.5
3.5
6.4
3.5
7
3.5
6.2
3.9
3.9
6.2
3.9
Relative Permitivity @1MHz
*
200
240
2000
200
200
2400
240
3000
230
200
200
200
2000
200
Dissipation Factor @1MHz
*
6.2
6.2
*
6.2
9
*
9
*
9.5
*
6.6
2
*
6.6
Water Absorption (%)
8300
618 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:17 PM
PA6, MD30 PA6, MD30 PA6, MD30 PA6, MD30 PA6, MD30 PA6 PA6 PA6, GF20 PA6, GF20 PA6, GF50 PA6, GF50 PA6, GF25 PA6, GF25 PA6, GF30 PA6, GF30 PA6, GF30 PA6, GF30 PA6, GF30 PA6, GF30
Ultramid® B3M6 LS (cond.)
Ultramid® B3M6 Q252 (dry)
Mckeen_Ch11.indd 619
Ultramid® B3M6 Q256 (dry)
Ultramid® B3M6 Q94 (dry)
Ultramid® B3M6 Q94 (cond.)
Ultramid® B3S (dry)
Ultramid® B3S (cond.)
Ultramid® B3UG4 (dry)
Ultramid® B3UG4 (cond.)
Ultramid® B3WG10 bk 564 (dry)
Ultramid® B3WG10 bk 564 (cond.)
Ultramid® B3WG5 (dry)
Ultramid® B3WG5 (cond.)
Ultramid® B3WG6 (dry)
Ultramid® B3WG6 (cond.)
Ultramid® B3WG6 BGVW bk 564 (dry)
Ultramid® B3WG6 BGVW bk 564 (cond.)
Ultramid® B3WG6 GP bk 23210 (dry)
Ultramid® B3WG6 GP bk 23210 (cond.) 5600
9600
5600
9600
6200
9500
5000
8000
11000
16700
3000
6000
1200
3400
1700
4600
4600
4600
1700
–
–
–
–
*
*
*
*
*
*
*
*
45
90
*
*
*
*
*
–
–
–
–
*
*
*
*
*
*
*
*
20
4
*
*
*
*
*
100
180
90
180
115
185
105
160
150
225
50
95
*
*
45
75
75
75
45
7.5
3.5
6
3
8
3.5
8.5
3.5
4.5
2.5
6
3
*
*
45
15
15
15
45
100
95
80
80
110
95
110
80
100
90
110
40
N
250
N
220
N
N
N
–
–
–
65
–
80
–
70
–
88
–
35
–
200
–
150
150
150
–
15
20
12
30
15
25
12
27
19
9
3
50
4
24
9
9
9
24
–
–
–
9
–
11
–
10
–
14
–
3.4
–
3
–
7
–
–
–
–
–
–
–
6.8
3.8
7
3.8
6.1
4.2
–
3.8
7
3.3
6.2
3.5
3.5
3.5
6.2
–
–
–
–
2200
230
2400
250
1400
140
–
150
3000
300
2000
200
200
240
2000
(Continued )
*
6.6
*
6.6
*
6.6
*
7.1
*
4.8
*
6.9
*
9.5
*
6.2
6.2
6.2
*
11: Tables of Selected ISO 10350 Properties 619
12/11/2007 6:21:17 PM
Mckeen_Ch11.indd 620
1000 3000 1000 10500
PA6, (MD+GF)45 PA6, GF63 PA6, GF63
Ultramid® B5 (cond.)
Ultramid® B5W (dry)
Ultramid® B5W (cond.)
Ultramid® BG40GM45 HS BK-130 (dry)
Ultramid® HMG13 HS BK-102 (dry)
Ultramid® HMG13 HS BK-102 (cond.)
13400
22400
3000
5300
Ultramid® B5 (dry)
PA6, GF30
Ultramid® B3ZG6 (cond.)
9000
1000
PA6, GF30
Ultramid® B3ZG6 (dry)
2900
Ultramid® B4F (cond.)
PA6, GF15
Ultramid® B3ZG3 (cond.)
5500
3000
PA6, GF15
Ultramid® B3ZG3 (dry)
–
Ultramid® B4F (dry)
PA6
Tensile Modulus (MPa)
Ultramid® B3Z Q263 (dry)
Yield Stress (MPa)
7200
–
*
*
45
90
45
90
45
90
*
*
*
*
45
*
Yield at Strain (%)
PA6, GF35
–
*
*
20
4.5
20
4.5
20
4.5
*
*
*
*
5
*
Stress at Break (MPa)
Ultramid® B3WG7 (cond.)
–
245
140
*
*
*
*
*
*
100
150
60
110
*
130
Strain at Break (%) –
2
2
*
*
*
*
*
*
10
3.6
18
4
*
7
–
–
48
N
N
N
N
N
N
110
95
110
75
N
110
100
Charpy Impact 23°C (kJ/m2)
3.5
–
–
–
–
N
–
N
–
N
–
90
–
55
–
–
90
Charpy Impact −30°C (kJ/m2)
195
–
–
6
N
9
N
9
N
9
35
20
30
16
13
33
18
Charpy Notched Impact 23°C (kJ/m2)
*
–
–
–
–
–
–
–
–
–
–
15
–
7
–
–
13
Charpy Notched Impact −30°C (kJ/m2)
*
–
–
–
7
3.5
7
3.5
7
3.5
6.8
3.8
6.2
3.7
–
6.2
3.9
Relative Permitivity @1MHz
11000
–
–
–
3000
230
3000
230
3000
310
2000
200
2000
250
–
1900
210
Dissipation Factor @1MHz
PA6, GF35
Description
–
–
–
*
9.5
*
9.5
*
9.5
*
6.2
*
7.5
–
*
6.2
Water Absorption (%)
Ultramid® B3WG7 (dry)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
620 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:17 PM
Mckeen_Ch11.indd 621
PA6, MD40 PA6, MD40 PA6, (MD+GF)40
Ultramid® HPN 9362 (dry)
Ultramid® HPN 9362 (cond.)
Ultramid® SEGM35HI BK-126 (dry)
1950
Rilsan BAZ 8 O TL (cond.)
1250
PA11 PA11, CD10 PA11, CD10 PA11 PA11 PA11 PA11 PA11 PA11 PA11
Rilsan BECN O TL (cond.)
Rilsan BESN G9 TL (dry)
Rilsan BESN G9 TL (cond.)
Rilsan BESN O P20 TL (dry)
Rilsan BESN O P20 TL (cond.)
Rilsan BESN O P40 TL (dry)
Rilsan BESN O P40 TL (cond.)
Rilsan BESN O TL (dry)
Rilsan BESN O TL (cond.)
Rilsan BESVO A FDA (dry) 1420
1230
1450
360
330
440
500
2100
2230
1470
Rilsan BECN O TL (dry) PA11
PA11, GF8
2200
8290
2900
4330
1700
Rilsan BAZ 8 O TL (dry) PA11, GF8
PA11/Arkema
PA6
Ultramid® HPN 9350 HS (dry)
41
40
42
25
27
29
32
45
48
41
43
65
68
–
45
65
45
5
8
6
32
30
20
20
7
5
10
5
4
4
–
27
3
4.5
*
*
*
*
*
*
*
*
*
*
*
*
*
119
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
2.6
*
*
*
–
N
–
N
–
N
–
N
N
N
–
100
85
–
–
–
N
–
N
–
N
–
N
–
150
140
N
–
100
92
–
–
–
–
–
23
–
N
–
N
–
5
5
14
–
10
11
4
–
6
40
–
13
–
7
–
9
–
5
4
11
–
4
5
–
–
–
–
–
–
3
–
4
–
–
–
–
–
3
–
–
–
–
–
–
–
–
183
–
1040
–
–
–
–
–
166
–
–
–
–
–
–
(Continued )
1.9
*
1.9
*
1.6
*
1.8
*
1.7
*
1.9
*
–
5.7
*
4.9
6.8
11: Tables of Selected ISO 10350 Properties 621
12/11/2007 6:21:18 PM
Mckeen_Ch11.indd 622
350 1260 1070 1490
PA11 PA11 PA11
PA11, Molybdenum PA11, Molybdenum PA11, GB30 PA11, GB30 PA11, GF23, CD7 PA11, GF23, CD7 PA11, GF30
Rilsan BMN O P40 D (cond.)
Rilsan BMN O TLD (dry) PA11 PA11
Rilsan BMN O P40 D (dry)
Rilsan BMN O TLD (cond.)
Rilsan BMN Y TLD (dry)
Rilsan BMN Y TLD (cond.)
Rilsan BUM 30 O (dry)
Rilsan BUM 30 O (cond.)
Rilsan BZM 23 G9 (dry)
Rilsan BZM 23 G9 (cond.)
Rilsan BZM 30 O TL (dry)
Tensile Modulus (MPa)
Rilsan BMN O P20 D (cond.)
5800
4300
4700
1940
2100
1420
405
480
Yield Stress (MPa)
540
*
*
*
39
42
40
46
40
40
25
27
29
31
Yield at Strain (%)
PA11
*
*
*
4
4
18
19
22
21
42
42
30
35
Stress at Break (MPa)
Rilsan BMN O P20 D (dry)
115
108
110
*
*
*
*
*
*
*
*
*
*
Strain at Break (%) 7
5
5
*
*
*
*
*
*
*
*
*
*
–
74
78
N
52
–
–
N
–
N
–
N
N
N
Charpy Impact 23°C (kJ/m2)
*
–
83
84
73
58
–
–
N
–
N
–
N
N
N
Charpy Impact −30°C (kJ/m2)
*
–
13
13
5.1
5
–
–
14
–
N
–
37
19
25
Charpy Notched Impact 23°C (kJ/m2)
6
–
10
10
5
5
–
–
11
–
6
–
7
5
13
Charpy Notched Impact −30°C (kJ/m2)
38
4
–
5
–
–
–
3
–
3
–
4
–
3
–
Relative Permitivity @1MHz
1230
210
–
208
–
–
–
212
–
262
–
964
–
614
–
Dissipation Factor @1MHz
PA11
Description
1.4
*
1.2
*
1.3
*
1.9
*
1.9
*
1.6
*
1.8
*
Water Absorption (%)
Rilsan BESVO A FDA (cond.)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
622 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:18 PM
Mckeen_Ch11.indd 623
PA11, GF43, Graphite7 PA11 PA11 PA11 PA11
Rilsan BZM 43 G9 (cond.)
Rilsan MB 3000 (dry)
Rilsan MB 3000 (cond.)
Rilsan NAT HP 3504 MB (dry)
Rilsan NAT HP 3504 MB (cond.)
PA12, GD30 PA12 PA12 PA12 PA12
Vestamid L1940 nf
Vestamid L2101 F nf (dry)
Vestamid L2101 F nf (cond.)
Vestamid L2106F nf (dry)
Vestamid L2106F nf (cond.)
1100
1300
1100
1400
1350
4000
PA12, GD30
Vestamid L1930 nf
450
4800
PA12
Vestamid L1723 sw (cond.)
480
PA12, GF23
PA12
Vestamid L1723 sw (dry)
1400
5000
PA12
Vestamid L1670 nf
2100
Vestamid L1833 nf (cond.)
PA12
Lauramid B
1900
520
610
1920
2070
Vestamid L1833 nf (dry) PA12, GF23
PA12
Lauramid A
PA12/Degussa
9000
PA11, GF43, Graphite7
Rilsan BZM 43 G9 (dry) 8300
5300
PA11, GF30
Rilsan BZM 30 O TL (cond.)
36
45
38
45
45
69
95
110
28
30
46
60
56
30
32
48
51
*
*
*
11
5
10
5
5
4
5
4.5
26
27
6
8
9
33
32
5
5
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
143
146
112
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
4
4
8
N
N
N
N
N
70
70
90
N
N
N
180
N
N
N
N
–
74
67
86
N
N
N
N
N
65
75
95
N
N
N
85
N
N
N
–
8.5
73
75
84
12
7
51
32
6
10
23
25
41
24
4
6
25
N
55
5
4
12
12
21
10
7
9
9
9
11
17
16
5
5
5
4
13
10
7
5
4
10
10
12
3.1
3
3.3
3
2.5
3.4
4
3.4
4.7
3.7
2.2
–
–
*
–
*
2
–
–
–
600
280
500
280
310
240
450
260
1700
1200
280
–
–
–
–
–
–
–
–
–
(Continued )
*
1.8
*
1.6
1.5
1.1
*
1.2
*
*
1.4
1.4
1.4
–
–
–
–
*
1.1
*
11: Tables of Selected ISO 10350 Properties 623
12/11/2007 6:21:18 PM
Mckeen_Ch11.indd 624
700 490 420 550 370 370
400 400 350
PA12
Vestamid L2122 nf (dry) PA12 PA12 PA12
PA12 PA12
PA12 PA12
Vestamid L2123 nf (cond.)
Vestamid L2123 sw 9.7507 (dry)
Vestamid L2123 sw 9.7507 (cond.)
Vestamid L2124 nf (dry) PA12 PA12
Vestamid L2122 sw 9.7507
Vestamid L2123 nf (dry) PA12 PA12
Vestamid L2122 nf (cond.)
Vestamid L2124 nf (cond.)
Vestamid L2124 sw 9.7507 (dry)
Vestamid L2124 sw 9.7507 (cond.)
Tensile Modulus (MPa)
Vestamid L2121 sw 9.7507 (cond.)
420
400
370
Yield Stress (MPa)
700
27
24
22
24
25
24
22
24
31
24
30
33
35
Yield at Strain (%)
PA12
29
31
27
31
30
32
31
32
27
25
26
21
20
Stress at Break (MPa)
Vestamid L2121 sw 9.7507 (dry)
*
*
*
*
*
*
*
*
*
*
*
*
*
Strain at Break (%) *
*
*
*
*
*
*
*
*
*
*
*
*
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Charpy Impact 23°C (kJ/m2)
*
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Charpy Impact −30°C (kJ/m2)
*
N
N
N
N
N
N
N
N
55
N
68
N
40
40
Charpy Notched Impact 23°C (kJ/m2)
20
7
6
6
6
8
13
8
13
6
7
6
6
7
7
Charpy Notched Impact −30°C (kJ/m2)
35
4.1
3.8
4.2
3.8
3.6
3.6
4
3.6
3.3
3.3
3.3
3.4
3.4
3.4
Relative Permitivity @1MHz
700
1900
1500
2000
1500
1100
1100
1100
1100
1000
1400
1000
550
550
550
Dissipation Factor @1MHz
PA12
Description
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Water Absorption (%)
Vestamid L2121 nf
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
624 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:18 PM
Mckeen_Ch11.indd 625
220
PA12 PA12 PA12 PA12 PA12 PA12 PA12, CD22 PA12, CD22 PA12, CF15 PA12, CB30 PA12, CB30 PA12, GF15 PA12, GF30 PA12, GF30 PA12 PA12, GF25 PA12
Vestamid L2128 nf (cond.)
Vestamid L2140 nf
Vestamid L2140 sw 9.7504 (dry)
Vestamid L2140 sw 9.7504 (cond.)
Vestamid L2141 sw 9.7504 (dry)
Vestamid L2141 sw 9.7504 (cond.)
Vestamid L-CD22-M sw (dry)
Vestamid L-CD22-M sw (cond.)
Vestamid L-CF15 sw (dry)
Vestamid L-GB30 nf (dry)
Vestamid L-GB30 nf (cond.)
Vestamid L-GF15 nf (dry)
Vestamid L-GF30 nf (dry)
Vestamid L-GF30 nf (cond.)
Vestamid L-R1-MHI sw
Vestamid L-R2-GF25 sw
Vestamid L-R3-EI sw (dry) 1500
6500
1600
5500
6500
3900
1800
2000
7500
2800
2900
1300
1500
1300
1500
1200
230
Vestamid L2128 nf (dry) PA12
42
*
37
110
130
100
37
47
120
45
45
42
46
41
48
38
15
18
9
*
5
5
4.5
5
5
5
6
6
5
12
5
13
5
11
35
45
*
120
*
*
*
*
“
*
*
*
*
*
*
*
*
*
*
*
*
4.5
*
“
*
*
*
*
*
*
*
*
*
*
*
*
*
*
N
75
N
75
85
75
N
N
65
37
34
N
N
N
N
N
N
N
N
70
80
95
100
80
N
N
70
40
34
N
N
N
N
N
N
N
21
12
60
24
23
17
6
6
20
6
6
12
10
12
11
55
N
N
9
11
8
22
21
11
6
6
12
5
6
8
8
10
7
10
7
6
*
*
–
4
3.4
3.4
4
3.5
*
5.1
5
3.5
4
3.3
3
3.4
4
3.8
*
*
–
400
330
260
370
230
*
550
330
500
1100
500
260
500
2800
2400
(Continued )
1.2
1.2
–
*
1
1.3
*
1.1
1.3
*
1.2
*
1.5
*
1.5
1.6
*
*
11: Tables of Selected ISO 10350 Properties 625
12/11/2007 6:21:18 PM
Mckeen_Ch11.indd 626
PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12
Vestamid L-R4-MHI sw
Vestamid L-R7-MHI sw (dry)
Vestamid L-R7-MHI sw (cond.)
Vestamid L-R9-MHI sw
Vestamid LX9013nf
Vestamid X7166 nf
Vestamid X7167 nf
Vestamid X7229 nf
Vestamid X7293 nf
Vestamid X7293 sw
Vestamid X7373 nf PA12 PA12, CD25
Grilamid L 16 LM
Grilamid L 20 EC
PA12/EMS-Grivory
PA12
Tensile Modulus (MPa)
Vestamid L-R3-MHI sw
1900
1100
1500
400
400
1000
1700
1800
400
1400
1200
1400
1250
1600
Yield Stress (MPa)
750
50
45
47
27
27
36
48
47
*
37
34
36
36
38
*
Yield at Strain (%)
PA12
10
15
5
32
32
17
5
5
*
6
10
6
8
5
*
Stress at Break (MPa)
Vestamid L-R3-EP sw (cond.)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Strain at Break (%) *
*
*
*
*
*
*
*
>50
*
*
*
*
*
>50
N
N
N
N
N
N
N
65
N
N
N
N
N
N
N
N
Charpy Impact 23°C (kJ/m2)
>50
50
N
N
N
N
N
N
80
N
N
N
N
N
N
N
N
Charpy Impact −30°C (kJ/m2)
*
2
7
6
N
N
11
9
3
140P
60
34
60
55
55
21
38
Charpy Notched Impact 23°C (kJ/m2)
*
2
6
6
7
7
5
6
5
7
12
8
12
12
15
5
4
Charpy Notched Impact −30°C (kJ/m2)
*
*
3
3.8
4.6
4.6
5
3.6
3.6
–
–
*
*
–
*
*
*
Relative Permitivity @1MHz
800
*
400
520
1900
1900
1700
380
340
–
–
*
*
–
*
*
*
Dissipation Factor @1MHz
PA12
Description
1.1
1.5
1.5
*
*
–
1.5
1.3
–
–
*
1.5
–
1.5
*
*
Water Absorption (%)
Vestamid L-R3-EP sw (dry)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
626 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:19 PM
Mckeen_Ch11.indd 627
PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12, CF30 PA12, CB30 PA12, CB50 PA12, GF23 PA12, GF23 PA12, GF25 PA12, GF20 PA12, GF20 PA12, GF30 PA12, GF30
Grilamid L 20 H FR
Grilamid L 20 HL black 9563
Grilamid L 20 L
Grilamid L 20 LF grey
Grilamid L 20 LM
Grilamid L 20 W 20
Grilamid L 25
Grilamid L 25 NZ ESD
Grilamid L 25 W 20 X
Grilamid L 25 W 20 Y
Grilamid L 25 W 40
Grilamid L 25 W 40 ESD
Grilamid L 25 W 40 X
Grilamid L 25 Z
Grilamid L 25A H
Grilamid L 25A NZ
Grilamid LC-3H
Grilamid LKN-3H
Grilamid LKN-5H
Grilamid LV-23 ESD
Grilamid LV-23H
Grilamid LV-25 HM
Grilamid LV-2A NZ
Grilamid LV-2H
Grilamid LV-3A H
Grilamid LV-3H
Stanyl® 46HF4130 (dry) PA46, GF30
PA46/DSM
PA12
Grilamid L 20 G
10000
6000
6000
4400
3500
5400
5000
5000
2300
1600
12000
750
1100
900
360
350
400
450
450
1000
1100
500
1100
2000
1100
1100
1500
1100
–
*
*
*
*
*
*
*
45
45
*
30
40
35
25
25
25
30
30
35
40
30
40
45
40
40
40
40
–
*
*
*
*
*
*
*
7
10
*
15
12
12
20
20
20
25
20
12
12
20
12
12
12
12
10
12
210
105
105
90
80
70
100
95
*
*
140
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3
8
8
10
15
5
15
5
*
*
3
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
60
80
80
70
N
30
80
70
N
N
60
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
60
80
80
70
N
30
85
40
65
45
60
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
13
20
20
20
30
10
20
8
5
5
13
100
10
55
N
N
N
N
N
80
10
40
4
4
7
7
7
7
12
15
15
15
20
8
12
6
4
3
8
75
7
13
13
9
4
7
6
20
7
3
3
3
6
6
6
6
–
3
–
3
–
–
3
*
3
3
*
3
3
3
4
*
4
4
4
*
3
3
3
4
3
3
2
3
–
300
–
300
–
–
300
*
300
300
*
300
300
350
1300
*
1300
1300
900
*
300
850
300
400
400
400
250
300
(Continued )
9.5
1.1
1.1
1.2
1.1
1.1
1.2
1
0.8
1.2
1.1
1.3
1.5
1.5
1.4
1.1
1.4
1.5
1.5
1.1
1.5
1.5
1.5
1.5
1.5
1.5
1.4
1.5
11: Tables of Selected ISO 10350 Properties 627
12/11/2007 6:21:19 PM
Mckeen_Ch11.indd 628
12000 15000 12000 16000 18000 15000
Stanyl® 46HF5030 (dry) PA46, GF30
Stanyl® 46HF5040 (dry) PA46, GF40 PA46, GF40 PA46, GF40
PA46, GF30 PA46, GF30 PA46, GF40 PA46, GF40 PA46, GF15 PA46, GF30 PA46, GF30
Stanyl® 46HF5041LW (dry)
Stanyl® 46HF5050 (dry) PA46, GF50 PA46, GF50
Stanyl® 46HF5040 (cond.)
Stanyl® 46HF5050 (cond.)
Stanyl® TE200F6 (dry)
Stanyl® TE200F6 (cond.)
Stanyl® TE200F8 (dry)
Stanyl® TE200F8 (cond.)
Stanyl® TE250F3 (dry)
Stanyl® TE250F6 (dry)
Stanyl® TE250F6 (cond.)
8000
12000
8000
8000
13000
6000
10000
6000
PA46, GF40
Tensile Modulus (MPa)
Stanyl® 46HF4530 (cond.)
Yield Stress (MPa) *
*
–
*
*
*
*
–
–
–
–
*
*
–
–
Yield at Strain (%)
10000
*
*
–
*
*
*
*
–
–
–
–
*
*
–
–
Stress at Break (MPa)
Stanyl® 46HF4530 (dry) PA46, GF40
125
180
140
140
230
115
210
135
200
150
130
190
170
115
210
Strain at Break (%) 3.5
2.5
3
6
3
7
4
2.3
1.5
1.3
2.5
1.7
1.9
6
3
60
50
–
95
85
90
80
–
50
25
70
60
40
90
60
90
Charpy Impact 23°C (kJ/m2)
6
50
50
–
75
75
70
70
–
–
–
–
–
*
60
60
60
Charpy Impact −30°C (kJ/m2)
115
11
10
6
22
14
19
12
19
17
8
14
12
13
17
13
17
Charpy Notched Impact 23°C (kJ/m2)
–
9
9
–
11
11
10
10
–
–
–
12
12
12
12
12
12
Charpy Notched Impact −30°C (kJ/m2)
–
4.5
4
–
4.6
4
4.6
4
–
4
–
–
4
*
–
–
–
Relative Permitivity @1MHz
6000
700
160
–
900
230
900
230
–
0.016
–
–
0.016
*
–
–
–
Dissipation Factor @1MHz
PA46, GF30
Description
*
5.9
–
*
8
*
9.5
*
3.9
–
*
4.5
–
*
9.5
*
Water Absorption (%)
Stanyl® 46HF4130 (cond.)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
628 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:19 PM
Mckeen_Ch11.indd 629
12000 –
PA46, GF45 PA46, GF45 PA46, Imod, GF30 PA46, Imod, GF30 PA46 PA46 PA46 PA46 PA46 PA46 PA46, GF30 PA46, GF30 PA46, GF20 PA46, GF20 PA46, GF30 PA46, GF30 PA46, GF40 PA46, GF40 PA46, GF40 PA46, GF40
Stanyl® TE250F9 (dry)
Stanyl® TE250F9 (cond.)
Stanyl® TE263F6 (dry)
Stanyl® TE263F6 (cond.)
Stanyl® TE300 (dry)
Stanyl® TE300 (cond.)
Stanyl® TE351 (dry)
Stanyl® TE351 (cond.)
Stanyl® TE373 (dry)
Stanyl® TE373 (cond.)
Stanyl® TS200F6 (dry)
Stanyl® TS200F6 (cond.)
Stanyl® TS250F4D (dry)
Stanyl® TS250F4D (cond.)
Stanyl® TS250F6D (dry)
Stanyl® TS250F6D (cond.)
Stanyl® TS250F8 (dry)
Stanyl® TS250F8 (cond.)
Stanyl® TS256F8 (dry)
Stanyl® TS256F8 (cond.)
11000
14000
12000
15000
8000
12000
6000
9200
6000
10000
1000
2800
1200
3000
1000
3300
–
17000
12000
PA46, GF40
Stanyl® TE250F8 (cond.)
15000
PA46, GF40
Stanyl® TE250F8 (dry)
–
–
–
–
–
–
–
–
–
–
50
85
45
60
55
100
–
–
*
*
*
*
–
–
–
–
–
–
–
–
–
–
20
10
15
4
20
10
–
–
*
*
*
*
145
180
140
195
125
180
100
150
115
210
–
–
–
–
–
–
85
140
130
200
130
180
2
1.5
2.6
2
3.5
2.5
4
2
7
4
–
–
–
–
–
–
10
5
3
2
2.5
1.9
–
–
–
–
60
50
–
–
90
80
–
–
–
–
N
N
–
–
75
65
70
60
–
–
–
–
–
–
–
–
70
70
–
–
–
–
N
N
–
–
50
50
50
50
10
8
12
10
11
10
10
8
19
12
–
7
14
9
45
12
–
–
15
13
14
12
8
8
10
10
9
9
8
8
10
10
–
4
–
–
12
9
–
–
13
13
12
12
–
–
4.5
4
4.5
4
–
–
–
–
–
–
–
–
4.3
3.6
–
–
4.5
4
4.5
4
–
–
700
160
700
160
–
–
–
–
–
–
–
–
1000
260
–
–
700
160
700
160
(Continued )
*
–
*
–
*
–
*
–
*
9.5
*
12.4
*
–
*
13.5
*
–
*
4.5
*
4.5
11: Tables of Selected ISO 10350 Properties 629
12/11/2007 6:21:19 PM
Mckeen_Ch11.indd 630
3200 13000
PA46, GF15 PA46, GF15 PA46, GF30 PA46, GF30 PA46, GF40 PA46, GF40 PA46, (GF+MD)30 PA46, (GF+MD)30
Stanyl® TW200F3 (cond.)
Stanyl® TW200F6 (dry)
Stanyl® TW200F6 (cond.)
Stanyl® TW200F8 (dry)
Stanyl® TW200F8 (cond.)
Stanyl® TW200FM33 (dry)
Stanyl® TW200FM33 (cond.)
Stanyl® TW241 B3 (dry) PA46, CF15
Tensile Modulus (MPa)
Stanyl® TW200F3 (dry)
12000 6100
PA46, GF60
Stanyl® TW241 F12 (cond.)
Stanyl® TW241 F3 (dry) PA46, GF15
20000
PA46, GF60
Stanyl® TW241 F12 (dry)
–
PA46, CF15
Stanyl® TW241 B3 (cond.)
7800
8000
13000
6000
10000
2800
6100
Yield Stress (MPa)
–
–
–
–
–
–
*
*
*
*
*
*
*
*
–
Yield at Strain (%)
PA46, CF30
–
–
–
–
–
*
*
*
*
*
*
*
*
–
Stress at Break (MPa)
Stanyl® TW200B6 (cond.)
140
170
255
110
185
70
140
140
230
115
210
70
140
150
Strain at Break (%) 4
3
2
4
2
6
3
6
3
7
4
8
4
4
50
100
90
–
–
–
–
95
85
100
80
100
50
–
–
Charpy Impact 23°C (kJ/m2)
2
45
80
80
–
–
–
–
75
75
80
65
50
45
–
–
Charpy Impact −30°C (kJ/m2)
240
6
20
19
–
5
–
4
22
14
21
12
13
6
13
7
Charpy Notched Impact 23°C (kJ/m2)
–
5.5
19
19
–
–
4
4
11
11
10
10
5.5
5.5
–
–
Charpy Notched Impact −30°C (kJ/m2)
–
–
–
–
–
–
–
–
4.7
4
4.7
4
–
–
–
–
Relative Permitivity @1MHz
24000
–
–
–
–
–
–
–
1000
200
1000
200
–
–
–
–
Dissipation Factor @1MHz
PA46, CF30
Description
11.5
*
5.5
*
11.5
*
9.5
*
8
*
9.5
*
11.5
*
9.5
Water Absorption (%)
Stanyl® TW200B6 (dry)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
630 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:20 PM
Mckeen_Ch11.indd 631
10000 6000 13000 8000
8000 9000 6000
Stanyl® TW241 F6 (dry) PA46, GF30 PA46, GF30
Stanyl® TW241 F8 (dry) PA46, GF40 PA46, GF40 PA46, GF50 PA46, GF50 PA46, (GF+MF)50 PA46, (GF+MF)50 PA46, GF30 PA46, GF30
PA46, CF15 PA46, CF15 PA46, GF30 PA46, GF30 PA46 PA46 PA46 PA46
Stanyl® TW241 F8 (cond.)
Stanyl® TW241F10 (dry)
Stanyl® TW241F10 (cond.)
Stanyl® TW242FM10 (dry)
Stanyl® TW242FM10 (cond.)
Stanyl® TW250F6 (dry)
Stanyl® TW250F6 (cond.)
Stanyl® TW271 F6 (dry) PA46, GF30 PA46, GF30
Stanyl® TW241 F6 (cond.)
Stanyl® TW271 F6 (cond.)
Stanyl® TW271B3 (dry)
Stanyl® TW271B3 (cond.)
Stanyl® TW275F6 (dry)
Stanyl® TW275F6 (cond.)
Stanyl® TW341 (dry)
Stanyl® TW341 (cond.)
Stanyl® TW341 B (dry)
Stanyl® TW341 B (cond.)
1000
3300
1000
3300
–
–
–
12500
12000
–
14500
10000
16000
2800
PA46, GF15
Stanyl® TW241 F3 (cond.)
55
100
55
100
–
–
–
–
*
*
*
*
–
–
*
*
–
–
–
–
–
20
10
20
10
–
–
–
–
*
*
*
*
–
–
*
*
–
–
–
–
–
*
*
*
*
115
205
110
185
110
190
125
180
–
160
160
250
140
230
115
210
70
–
–
–
–
7
3.5
4
2
7
3.7
3.5
2.5
–
2
5
2.7
6
3
7
4
8
N
N
N
N
–
–
–
–
–
–
60
50
–
–
100
90
95
85
100
80
100
N
N
N
N
–
–
–
–
–
–
50
50
–
–
80
80
75
75
80
65
50
35
10
45
12
–
–
–
6
15
13
11
10
–
6
24
16
22
14
21
12
13
–
–
12
9
–
–
–
–
11
11
9
9
–
4.5
12
12
11
11
10
10
5.5
–
–
4.5
3.6
–
–
–
–
–
–
4.7
4
–
–
4.7
4
4.7
4
4.7
4
–
–
–
1200
260
–
–
–
–
–
–
800
180
–
–
1000
200
1000
200
1000
200
–
(Continued )
*
13.5
*
13.5
*
9
*
9.5
*
7.4
*
5.9
*
6.75
*
6.75
*
8
*
9.5
*
11: Tables of Selected ISO 10350 Properties 631
12/11/2007 6:21:20 PM
Mckeen_Ch11.indd 632
PA46, Imod PA46 PA46
Stanyl® TW363 (cond.)
Stanyl® TW371 (dry)
Stanyl® TW371 (cond.)
4000 9600
Minlon® 10B140 NC010 PA66, MD40 (cond.) PA66, MD40 PA66, MD40 PA66, Imod, MD40 PA66, Imod, MD40 PA66, (MD+GF)38 PA66, (MD+GF)38
Minlon® 10B40 NC010 (dry)
Minlon® 10B40 NC010 (cond.)
Minlon® 11C140 NC010 (dry)
Minlon® 11C140 NC010 (cond.)
Minlon® 22C NC010 (dry)
Minlon® 22C NC010 (cond.)
5300
7500
2500
5800
5400
6500
1000
2900
600
1850
Minlon® 10B140 NC010 PA66, MD40 (dry)
PA66/DuPont
PA46, Imod
Tensile Modulus (MPa)
Stanyl® TW363 (dry)
Yield Stress (MPa)
1000
–
–
*
*
–
–
*
“
50
90
45
60
55
Yield at Strain (%)
PA46
–
–
*
*
–
–
*
*
15
10
25
20
20
Stress at Break (MPa)
Stanyl® TW341-N (cond.)
82
130
60
89
58
92
60
89
*
*
*
*
*
Strain at Break (%) 10
3.5
24
10
8
2.5
9
4
*
*
–
–
–
45
50
N
130
40
25
60
40
–
–
N
N
N
N
Charpy Impact 23°C (kJ/m2)
–
–
40
80
80
–
18
25
25
–
–
N
N
N
N
Charpy Impact −30°C (kJ/m2)
*
4
4
9
6.5
2
3
4
3.5
30
5
130
75
45
12
Charpy Notched Impact 23°C (kJ/m2)
10
4
3
4
5
2
2
2
3.5
–
–
30
26
12
9
Charpy Notched Impact −30°C (kJ/m2)
100
–
–
4.5
3.6
–
–
4.5
3.9
–
–
4
3.2
4.5
3.6
Relative Permitivity @1MHz
3300
500
100
750
240
–
200
550
230
–
–
1000
190
1200
260
Dissipation Factor @1MHz
PA46
Description
*
5.4
*
5.7
*
0.45
*
5
*
11.4
*
11
*
13.5
Water Absorption (%)
Stanyl® TW341-N (dry)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
632 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:20 PM
Mckeen_Ch11.indd 633
PA66 PA66 PA66 PA66 PA66 PA66 PA66 PA66 PA66 PA66 PA66
Zytel® 101F NC010 (dry)
Zytel® 101F NC010 (cond.)
Zytel® 101L NC010 (dry)
Zytel® 101L NC010 (cond.)
Zytel® 103FHS NC010 (dry)
Zytel® 103FHS NC010 (cond.)
Zytel® 103HSL NC010 (dry)
Zytel® 103HSL NC010 (cond.)
Zytel® 132F NC010 (dry)
Zytel® 132F NC010 (cond.)
Zytel® 135F NC010 (dry) 3600
1600
3400
1500
3100
1500
3100
1400
3100
1500
3100
1400
1800
PA66
PA66, Imod, MD15
Minlon® EFE6096 GY090A (cond.)
3800
Zytel® 101 NC001 (cond.)
PA66, Imod, MD15
Minlon® EFE6096 GY090A (dry)
6500
3100
PA66, (MD+GF)40
Minlon® EFE6053 BK413 (cond.)
10000
Zytel® 101 NC001 (dry) PA66
PA66, (MD+GF)40
Minlon® EFE6053 BK413 (dry)
98
60
91
54
85
54
85
53
82
53
82
53
82
*
*
*
*
4.5
18
4.4
25
4.5
25
4.5
25
4.5
25
4.5
25
4.5
*
*
*
*
*
–
–
*
*
–
–
*
*
*
*
*
*
*
76
95
160
*
–
–
*
*
–
–
“
*
*
*
*
*
>50
21
4.6
2.3
N
–
300
N
N
N
N
N
N
N
N
N
N
N
100
50
45
N
–
200
N
400
N
350
N
400
N
400
N
400
–
6
40
40
4
8
4
14
5
14
5.5
15
5.5
15
6
15
5.5
15
7.5
6.5
4.5
3
2.5
3
4
4.5
4
5
4
4.5
4
5
3
4.5
–
–
4
4
3.8
–
–
4
3.5
–
–
4
3.5
4.6
3.5
–
–
–
–
5
4.8
200
–
–
700
165
–
–
750
180
1000
180
–
–
550
230
700
130
(Continued )
8.5
*
8.5
*
8.5
*
8.5
*
8.5
*
8.5
*
8.5
*
7.7
*
5
11: Tables of Selected ISO 10350 Properties 633
12/11/2007 6:21:20 PM
Mckeen_Ch11.indd 634
1100 3100 1200
PA66
Zytel® 42A NC010 (dry) PA66 PA66 PA66 PA66, GF13 PA66, GF13 PA66, GF13 PA66, GF13 PA66, GF25 PA66, GF25 PA66, GF30
Zytel® 42A NC010 (cond.)
Zytel® 45HSB NC010 (dry)
Zytel® 70G13HS1L NC010 (dry)
Zytel® 70G13HS1L NC010 (cond.)
Zytel® 70G13L NC010 (dry)
Zytel® 70G13L NC010 (cond.)
Zytel® 70G25HSLR NC010 (dry)
Zytel® 70G25HSLR NC010 (cond.)
Zytel® 70G30HSLR NC010 (dry)
Tensile Modulus (MPa)
Zytel® 145 BK010 (cond.)
10000
6100
8400
3500
5500
3500
5500
3100
Yield Stress (MPa)
3100
*
*
*
*
*
*
*
83
52
83
50
79
Yield at Strain (%)
PA66
*
*
*
*
*
*
*
4
27
4.4
26
4
Stress at Break (MPa)
Zytel® 145 BK010 (dry)
200
115
188
75
120
75
120
–
*
*
*
*
Strain at Break (%) 3.4
5
3
13
2.9
13
2.9
–
*
*
*
*
70
80
60
70
40
70
32
–
N
N
–
–
N
Charpy Impact 23°C (kJ/m2)
*
70
45
60
30
40
30
30
–
N
N
–
–
N
Charpy Impact −30°C (kJ/m2)
*
12
11
10
6
5
6
4.5
6
20
6
28
6
9
Charpy Notched Impact 23°C (kJ/m2)
18
10
7
7
4
4.5
4
–
5.5
4
6
–
–
3
Charpy Notched Impact −30°C (kJ/m2)
69
4.1
–
–
–
4
–
–
–
–
–
–
4
3.9
Relative Permitivity @1MHz
2100
150
–
–
–
150
2400
70
–
750
150
–
95
600
Dissipation Factor @1MHz
PA66
Description
6
*
6.4
*
7.6
*
7.6
–
*
8.5
*
–
*
Water Absorption (%)
Zytel® 135F NC010 (cond.)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
634 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:20 PM
PA66, GF30 PA66, GF30 PA66, GF30 PA66, GF30 PA66, GF30 PA66, GF33 PA66, GF33 PA66, GF33 PA66, GF33 PA66, GF33 PA66, GF33 PA66, GF35 PA66, GF35 PA66, GF35 PA66, GF35 PA66, GF35 PA66, GF35
Zytel® 70G30HSLR NC010 (cond.)
Zytel® 70G30HSR2 BK309 (dry)
Mckeen_Ch11.indd 635
Zytel® 70G30HSR2 BK309 (cond.)
Zytel® 70G30L NC010 (dry)
Zytel® 70G30L NC010 (cond.)
Zytel® 70G33GRA BK350 (dry)
Zytel® 70G33GRA BK350 (cond.)
Zytel® 70G33HS1L NC010 (dry)
Zytel® 70G33HS1L NC010 (cond.)
Zytel® 70G33L NC010 (dry)
Zytel® 70G33L NC010 (cond.)
Zytel® 70G35HSL NC010 (dry)
Zytel® 70G35HSL NC010 (cond.)
Zytel® 70G35HSLRA4 BK267 (dry)
Zytel® 70G35HSLRA4 BK267 (cond.)
Zytel® 70G35HSLX BK357 (dry)
Zytel® 70G35HSLX BK357 (cond.)
8500
11000
7500
11200
8500
11000
8000
10500
8000
11000
8500
12500
7000
9800
7200
10000
7000
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
130
200
140
210
140
210
140
200
140
200
135
190
130
195
130
200
130
4
3
5
3
4.6
3.2
5
3.5
5
3.5
4
2.5
5
3.5
5
3.3
5
90
90
95
80
100
90
100
85
100
90
9
80
9
80
9
75
90
7
80
75
80
80
80
75
70
80
70
–
–
–
–
–
–
70
–
13
18
15
18
15
17
13
17
12
16
12
15
13
15
12
16
10
10
10
10
10
10
10
10
10
10
–
–
–
–
–
–
10
–
–
–
–
4.7
4.1
–
–
–
4
–
–
–
–
–
–
4.6
–
–
–
–
620
140
–
150
–
150
–
132
–
160
–
–
650
(Continued )
*
5.5
*
5.5
*
5.5
*
5.7
*
5.7
*
0.7
*
6.9
*
–
*
11: Tables of Selected ISO 10350 Properties 635
12/11/2007 6:21:20 PM
Mckeen_Ch11.indd 636
PA66, GF43 PA66, GF43 PA66, GF60 PA66, GF60 PA66, RF20 PA66, RF20 PA66+PA6, GF20 PA66+PA6, GF20 PA66+PA6, GF30 PA66+PA6, GF30 PA66, GF40
Zytel® 70G43L NC010 (cond.)
Zytel® 70G60HSL BK359 (dry)
Zytel® 70G60HSL BK359 (cond.)
Zytel® 70K20HSL BK284 (dry)
Zytel® 70K20HSL BK284 (cond.)
Zytel® 74G20HSL NC010 (dry)
Zytel® 74G20HSL NC010 (cond.)
Zytel® 74G30L NC010 (dry)
Zytel® 74G30L NC010 (cond.)
Zytel® 75LG40HSL BK031 (dry)
Tensile Modulus (MPa)
Zytel® 70G43L NC010 (dry)
13000
5500
10000
4500
7500
3500
5500
15000
20000
11000
14000
Yield Stress (MPa)
–
–
*
*
*
*
*
*
*
*
*
*
–
Yield at Strain (%)
PA66, GF43
–
*
*
*
*
*
*
*
*
*
*
–
Stress at Break (MPa)
Zytel® 70G43HSLA BK099 (cond.)
240
110
180
90
150
85
110
180
230
160
220
–
Strain at Break (%) 2.3
6
3
8
2.8
7.2
5
2.1
1.6
4
3
–
70
–
90
80
45
70
50
80
70
110
100
–
–
Charpy Impact 23°C (kJ/m2)
3
65
–
–
–
–
–
–
60
60
80
90
–
–
Charpy Impact −30°C (kJ/m2)
220
35
–
12
11
6
9
6
12
11
18
15
*
15
Charpy Notched Impact 23°C (kJ/m2)
–
35
–
–
–
–
–
–
10
12
12
12
*
*
Charpy Notched Impact −30°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
4.9
4.1
*
*
Relative Permitivity @1MHz
–
–
–
250
–
–
–
140
–
300
600
145
–
150
Dissipation Factor @1MHz
PA66, GF43
Description
–
*
–
*
9
*
–
*
3.4
*
4.7
*
7.6
Water Absorption (%)
Zytel® 70G43HSLA BK099 (dry)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
636 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:21 PM
Mckeen_Ch11.indd 637
PA66, GF50
Zytel® 75LG50HSL BK031 (cond.)
PA66, GF60
Zytel® 75LG60HSL BK031 (cond.)
PA66, Imod, GF14 PA66, Imod, GF14 PA66, Imod, GF14 PA66, Imod, GF25 PA66, Imod, GF25 PA66, Imod, GF33 PA66, Imod, GF33 PA66, Imod, GF33 PA66, Imod, GF33
Zytel® 80G14A NC010A (dry)
Zytel® 80G14AHS NC010 (dry)
Zytel® 80G14AHS NC010 (cond.)
Zytel® 80G25HS NC010 (dry)
Zytel® 80G25HS NC010 (cond.)
Zytel® 80G33HS1L NC010 (dry)
Zytel® 80G33HS1L NC010 (cond.)
Zytel® 80G33L NC010 (dry)
Zytel® 80G33L NC010 (cond.)
Zytel® 75LG60L NC010 PA66, GF60 (dry)
22000
PA66, GF60
Zytel® 75LG60HSL BK031 (dry)
6000
8500
5800
8500
4500
7000
3300
5100
–
22000
–
16500
Zytel® 75LG50L NC010 PA66, GF50 (dry)
–
17000
PA66, GF50
Zytel® 75LG50HSL BK031 (dry)
– 12500
PA66, GF40
Zytel® 75LG40L NC010 PA66, GF40 (dry)
Zytel® 75LG40HSL BK031 (cond.)
–
–
*
*
*
*
*
*
–
*
–
–
*
–
–
*
–
–
–
*
*
*
*
*
*
–
*
–
–
*
–
–
*
–
95
140
95
140
80
110
69
105
–
250
–
–
260
–
–
240
–
5
3.5
5
3.5
8
4
11
4
–
1.4
–
–
1.9
–
–
2.3
–
80
80
80
90
80
80
74
73
–
100
110
110
95
110
95
80
90
80
80
80
100
90
90
–
–
–
–
95
100
–
87
80
–
70
22
20
22
20
24
23
20
19
–
55
62
60
50
53
50
40
38
14
14
14
16
13
14
8
9
–
–
62
60
–
53
50
–
38
–
–
4.3
3.6
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
600
130
–
–
–
–
10
–
–
–
–
–
–
300
–
(Continued )
*
–
*
4.5
*
5.8
–
–
6.2
*
–
–
*
7.6
9
*
11: Tables of Selected ISO 10350 Properties 637
12/11/2007 6:21:21 PM
Mckeen_Ch11.indd 638
1200 3000
Zytel® E51 HSB NC010 PA66 (cond.) PA66 PA66 PA66, Imod, GF33 PA66, Imod, GF33 PA66, GF26 PA66+PA6, GF35 PA66 PA66
Zytel® EFE1068 NC010T (dry)
Zytel® EFE1068 NC010T (cond.)
Zytel® EFE8089B BK416 (dry)
Zytel® EFE8089B BK416 (cond.)
Zytel® FE5480HS BK32N (dry)
Zytel® FE5555 BK538 (dry)
Zytel® FN714 NC010 (dry)
Zytel® FN714 NC010 (cond.)
240
550
11000
9300
6000
8900
1500
3100
1120
Zytel® E51 HSB NC010 PA66 (dry)
PA66, Imod
Tensile Modulus (MPa)
Zytel® CFE8005HS BK010 (cond.)
Yield Stress (MPa)
2000
*
*
–
–
*
*
59
85
55
84
–
–
Yield at Strain (%)
PA66, Imod
–
–
–
–
*
*
25
4.5
29
4.3
–
–
Stress at Break (MPa)
Zytel® CFE8005HS BK010 (dry)
–
–
195
172
104
143
*
*
*
*
–
–
Strain at Break (%) >50
>50
2.8
2.5
8.5
4.5
*
*
*
–
–
–
–
–
–
98
100
N
N
–
N
–
–
90
Charpy Impact 23°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
–
–
–
10
8.5
28
27
12
5
21
7
–
–
23
Charpy Notched Impact 23°C (kJ/m2)
–
–
–
9
–
–
–
–
–
–
5.5
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Relative Permitivity @1MHz
11700
–
–
–
–
–
–
–
100
–
–
200
150
–
Dissipation Factor @1MHz
PA66, Imod, GF43
Description
*
6.5
–
–
*
–
*
8.5
*
8.5
*
1.8
4.9
Water Absorption (%)
Zytel® 80G43HS1L BK104 (dry)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
638 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:21 PM
Mckeen_Ch11.indd 639
PA66 PA66, GF25 PA66 PA66 PA66, MD30 PA66, MD30 PA66, Imod PA66, Imod PA66, Imod PA66, Imod PA66, Imod PA66, Imod PA66, Imod PA66, Imod PA66, GF30, PTFE15
Zytel® FN718 NC010 (cond.)
Zytel® FR50 NC010 (dry)
Zytel® FR7026V0F NC010 (dry)
Zytel® FR7026V0F NC010 (cond.)
Zytel® FR70M30V0 NC010 (dry)
Zytel® FR70M30V0 NC010 (cond.)
Zytel® MT409AHS NC010 (dry)
Zytel® MT409AHS NC010 (cond.)
Zytel® ST801A NC010 (dry)
Zytel® ST801A NC010 (cond.)
Zytel® ST801AHS NC010 (dry)
Zytel® ST801AHS NC010 (cond.)
Zytel® ST801AW NC010 (dry)
Zytel® ST801AW NC010 (cond.)
Zytel® WRF403 NC010 (dry)
Capron® AG40C (dry)
PA66/BASF
PA66
Zytel® FN718 NC010 (dry)
3700
10300
1200
1700
–
2000
907
2000
1000
2500
4500
8500
1800
3600
10000
420
960
92
*
*
*
43
50
43
48
41
62
*
*
–
60
–
–
*
5
*
*
*
37
5.7
11
5.8
30
4.4
*
*
–
21
–
–
*
*
185
*
–
–
–
*
*
–
–
54
73
–
*
180
–
–
*
2.8
>50
>50
–
–
*
*
–
–
6
2
–
*
2.6
>50
>50
N
80
–
N
–
–
–
–
–
–
24
21
N
N
40
–
–
–
–
–
N
–
–
–
–
–
–
19
21
N
400
–
–
–
4
11
–
83
–
–
–
–
19
3
2.5
7
4
11
–
130
–
–
–
23
–
–
–
–
–
–
2
2
2
3
–
–
–
–
–
3.5
3.2
3.6
3.3
–
–
3.7
3.4
4.2
3.7
–
–
3.8
–
–
–
–
380
110
400
110
380
50
440
120
500
140
–
–
180
–
–
(Continued )
–
–
–
–
*
6.7
–
–
–
4.9
–
4
*
8
–
*
6.4
11: Tables of Selected ISO 10350 Properties 639
12/11/2007 6:21:21 PM
Mckeen_Ch11.indd 640
8500 11500 8600
PA66, GF50 PA66, GF50 PA66, GF25 PA66, GF25 PA66, GF30 PA66, GF30 PA66, GF35 PA66, GF35
PA66, GF25 PA66, GF30
Ultramid® A3EG10 (cond.)
Ultramid® A3EG5 (dry)
Ultramid® A3EG5 (cond.)
Ultramid® A3EG6 (dry)
Ultramid® A3EG6 (cond.)
Ultramid® A3EG7 (dry)
Ultramid® A3EG7 (cond.)
Ultramid® A3EG7 Q206 PA66, GF35 (dry) PA66, GF25
Ultramid® A3EG10 (dry)
Ultramid® A3HG5 (dry)
Ultramid® A3HG5 (cond.)
Ultramid® A3HG6 HR bk 23591 (dry)
10000
6500
11500
7200
10000
6500
8600
12500
16800
1600
PA66
Tensile Modulus (MPa)
Ultramid® A3 (cond.)
Yield Stress (MPa) *
*
*
*
*
*
*
*
*
*
*
*
60
80
Yield at Strain (%)
3100
*
*
*
*
*
*
*
*
*
*
*
*
20
4
Stress at Break (MPa)
PA66
190
120
170
210
150
210
130
190
120
175
180
240
*
*
Strain at Break (%)
Ultramid® A3 (dry)
3.2
6
3
3
5
3
5
3
6
3
3.5
2.5
*
*
Charpy Impact 23°C (kJ/m2) 80
90
65
95
110
95
100
85
90
65
100
95
–
–
45
65
–
55
75
–
75
–
70
–
55
–
90
–
–
–
Charpy Impact −30°C (kJ/m2)
–
11
18
12
14
22
14
22
13
18
12
25
18
–
–
7
Charpy Notched Impact 23°C (kJ/m2)
–
9
–
9
–
–
12
–
11
–
9
–
13
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
–
3.5
5.5
3.5
3.5
5.7
3.5
5.6
3.5
5.5
3.5
6.6
3.8
5
3.6
–
Relative Permitivity @1MHz
–
–
1600
140
200
1500
200
1600
140
1600
140
1700
150
2000
260
–
Dissipation Factor @1MHz
9600
Description
5.5
*
6
5
*
5
*
5.5
*
6
*
4
*
8.5
–
Water Absorption (%)
Capron® AG50G6 HS BK0100 (dry)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
640 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:21 PM
Mckeen_Ch11.indd 641
3500 1600 3500
PA66, GF35 PA66 PA66 PA66 PA66
PA66 PA66 PA66, GF50 PA66, GF50 PA66, GF15 PA66, GF15 PA66, GF25 PA66, GF25 PA66, GF30 PA66, GF30 PA66, GF35 PA66, GF35 PA66, (GF+MD)40
Ultramid® A3K (dry)
Ultramid® A3K (cond.)
Ultramid® A3K Q202 (dry)
Ultramid® A3SK (dry)
Ultramid® A3SK (cond.) PA66 PA66
Ultramid® A3HG7 (cond.)
Ultramid® A3SK Q202 (dry)
Ultramid® A3W (dry)
Ultramid® A3W (cond.)
Ultramid® A3WG10 (dry)
Ultramid® A3WG10 (cond.)
Ultramid® A3WG3 (dry)
Ultramid® A3WG3 (cond.)
Ultramid® A3WG5 (dry)
Ultramid® A3WG5 (cond.)
Ultramid® A3WG6 (dry)
Ultramid® A3WG6 (cond.)
Ultramid® A3WG7 (dry)
Ultramid® A3WG7 (cond.)
Ultramid® A3WGM53 bk 20560 (dry)
12100
8500
11500
7200
10000
6500
8600
4500
6000
12500
16800
1100
3000
3000
1100
3100
8500
11200
PA66, GF35
Ultramid® A3HG7 (dry)
6800
PA66, GF30
Ultramid® A3HG6 HR bk 23591 (cond.)
*
*
*
*
*
*
*
*
*
*
*
50
85
95
60
95
85
50
85
*
*
*
*
*
*
*
*
*
*
*
*
*
*
20
4.4
4
20
4.3
5
20
5
*
*
*
160
150
210
130
190
120
180
85
130
180
240
*
*
*
*
*
–
*
*
150
200
120
2.3
5
3
5
3
6
3
10
3
3.5
2.5
*
*
*
*
*
–
*
*
5
3
5.4
55
110
95
100
85
90
65
70
45
100
95
N
N
N
N
N
N
N
N
110
95
90
50
–
75
–
70
–
55
–
43
–
90
–
N
–
–
–
–
–
N
–
75
–
8
2
14
2
13
1
12
11
8
2
18
2
6
4
1
4
5.5
20
5
22
13
1
6.7
–
12
–
10
–
9
7
–
13
–
5
–
–
–
–
–
4
–
12
–
4
5.7
3.5
5.6
3.5
5.5
3.5
5.5
3.5
6.6
3.8
5
3.2
3.2
5
3.2
3.2
5
3.2
5.7
3.5
5.6
200
3000
200
3000
140
3000
140
3000
140
3000
150
2000
250
250
2000
250
50
2000
250
1500
200
3000
(Continued )
5.1
*
5
*
5.5
*
6
*
7
*
4
*
8.5
8.5
*
8.5
8.5
*
8.5
*
5
*
11: Tables of Selected ISO 10350 Properties 641
12/11/2007 6:21:21 PM
Mckeen_Ch11.indd 642
PA66, GF50 PA66, GF25 PA66, GF25 PA66, GF35 PA66, GF35 PA66, GF25 PA66, GF25 PA66, GF25 PA66, GF25 PA66 PA66
Ultramid® A3X2G5 (dry)
Ultramid® A3X2G5 (cond.)
Ultramid® A3X2G7 (dry)
Ultramid® A3X2G7 (cond.)
Ultramid® A3X3G5 (dry)
Ultramid® A3X3G5 (cond.)
Ultramid® A3XZG5 (dry)
Ultramid® A3XZG5 (cond.)
Ultramid® A3Z (dry)
Ultramid® A3Z (cond.)
Tensile Modulus (MPa)
Ultramid® A3X2G10 (cond.)
850
1900
4500
6500
6000
8500
8500
11000
6000
8000
12000
Yield Stress (MPa)
16000
40
48
*
*
*
*
*
*
*
*
*
*
Yield at Strain (%)
PA66, GF50
18
5
*
*
*
*
*
*
*
*
*
*
Stress at Break (MPa)
Ultramid® A3X2G10 (dry)
*
*
70
105
100
140
120
160
100
140
130
180
Strain at Break (%) *
*
11
6
4.5
3
4
3
4.5
3
3
2
N
N
100
90
75
70
70
70
70
65
55
55
62
Charpy Impact 23°C (kJ/m2)
6
–
–
–
85
–
65
–
65
65
60
–
50
–
Charpy Impact −30°C (kJ/m2)
80
N
N
30
25
18
13
18
14
17
13
1
13
16
Charpy Notched Impact 23°C (kJ/m2)
*
–
31
–
–
–
–
–
10
–
–
–
11
–
Charpy Notched Impact −30°C (kJ/m2)
*
3.6
3.1
4
3.8
5
3.7
5
3.6
5
3.7
5
3.6
–
Relative Permitivity @1MHz
6100
700
160
300
200
1000
200
2000
200
1000
200
200
200
–
Dissipation Factor @1MHz
PA66, (GF+MD)40
Description
*
7.2
*
5
*
6
*
4.7
*
6
*
4
*
Water Absorption (%)
Ultramid® A3WGM53 bk 20560 (cond.)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
642 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:22 PM
Mckeen_Ch11.indd 643
PA66, GF30 PA66 PA66 PA66 PA66
Ultramid® A3ZG6 bk 20591 (cond.)
Ultramid® A4 (dry)
Ultramid® A4 (cond.)
Ultramid® A4H (dry)
Ultramid® A4H (cond.)
PA610 PA610 PA610 PA610
Amilan® CM2001 (cond)
Amilan® CM2006 (dry)
Amilan® CM2006 (cond)
Amilan® CM2401
2400 1500
PA612 PA612 PA612 PA612
Zytel® 153HSL NC010 (dry)
Zytel® 153HSL NC010 (cond.)
Zytel® 157HSL BK010 (dry)
Zytel® 157HSL BK010 (cond.)
Zytel® 158 NC010 (dry) PA612
Zytel® 158 NC010 (cond.) PA612
1500
PA612
Zytel® 151 L NC010 (cond.)
2500
1600
2400
1700
PA612
2400
–
–
–
–
–
1200
3100
1600
3200
6000
8500
Zytel® 151 L NC010 (dry)
PA612/DuPont
PA610
Amilan® CM2001 (dry)
PA610/Toray Resin Company
PA66, GF30
Ultramid® A3ZG6 bk 20591 (dry)
52
62
53
65
50
60
54
62
60
–
60
40
55
50
85
60
80
*
*
19
4.3
18
4.4
19
4.4
18
4.5
50
–
50
50
–
20
4.2
20
4.2
*
*
*
*
*
*
*
*
*
*
–
–
–
–
–
*
*
*
*
100
140
*
*
*
*
*
*
*
*
>50
50
50.0
>50
50
*
*
*
*
6
3.5
N
N
N
N
N
N
N
N
–
N
N
N
N
N
N
N
N
95
90
N
N
–
–
N
N
40
N
–
–
–
–
–
–
–
–
–
–
85
8
4.2
7
4
7
4
4
3.5
–
–
40
–
40
25
5.7
–
–
26
19
4
4.2
–
–
4
5
3
3.5
–
–
–
–
–
–
5
–
–
–
10
4
3.2
–
–
3.4
3.2
4
3.2
–
–
–
–
3.1
5
3.2
5
3.2
5.5
3.5
1000
165
–
–
400
160
400
160
–
–
–
–
0.02
2000
250
2000
260
1600
140
(Continued )
*
3
*
–
*
3
*
3
–
–
4
–
4
*
8.5
*
8.5
*
5
11: Tables of Selected ISO 10350 Properties 643
12/11/2007 6:21:22 PM
Mckeen_Ch11.indd 644
PA612, Imod PA612, GF33 PA612, GF33 PA612, GF43 PA612, GF43
Zytel® 350PHS2 NC010 (dry)
Zytel® 77G33L NC010 (dry)
Zytel® 77G33L NC010 (cond.)
Zytel® 77G43L NC010 (dry)
Zytel® 77G43L NC010 (cond.) PA666 PA666 PA666 PA666 PA666 PA666
Ultramid® 1C (dry)
Ultramid® 1C (cond.)
Ultramid® C35 (dry)
Ultramid® C35 (cond.)
Ultramid® C3U (dry)
Ultramid® C3U (cond.)
PA666/ASF
2400
PA612
1500
3500
1000
2200
1400
2400
12000
12000
8000
9500
800
2400
Zytel® 159L NC010 (dry)
Tensile Modulus (MPa)
Zytel® 159 NC010 (dry) PA612
Yield Stress (MPa)
1500
45
75
45
80
48
80
*
*
*
*
–
62
62
52
Yield at Strain (%)
PA612
20
4
20
5
–
5
*
*
*
*
–
4.5
4.5
19
Stress at Break (MPa)
Zytel® 158L NC010 (cond.)
*
*
*
*
–
–
170
190
140
170
–
*
*
*
Strain at Break (%) *
*
*
*
–
–
5
2.8
3
3
–
*
*
*
N
80
–
–
N
140
–
100
70
70
–
–
–
N
N
Charpy Impact 23°C (kJ/m2)
*
–
–
–
–
–
200
–
90
40
60
–
–
–
–
N
Charpy Impact −30°C (kJ/m2)
*
35
6
–
–
8.5
7.5
–
15
12
12
70
5
5
6
4
Charpy Notched Impact 23°C (kJ/m2)
4.5
–
4
–
–
–
8
–
15
10
10
–
–
–
4
5
Charpy Notched Impact −30°C (kJ/m2)
62
6
3.6
–
3.7
–
–
–
3.6
–
3.8
–
–
–
–
–
Relative Permitivity @1MHz
2400
3000
200
–
300
–
–
–
200
–
150
–
–
–
–
160
Dissipation Factor @1MHz
PA612
Description
*
8.5
*
10
*
–
*
1.7
*
1.8
–
–
–
*
0.02
Water Absorption (%)
Zytel® 158L NC010 (dry)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
644 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:22 PM
Mckeen_Ch11.indd 645
PA6T/XT, GF45 PA6T/XT, GF45 PA6T/XT, GF45
PA6T/XT, GF45 PA6T/XT, Imod, (GF+MD)60
Zytel® HTN51G45HSL NC010 (dry)
Zytel® HTN51G45HSL NC010 (cond.)
Zytel® HTN51G45HSLR BK420 (dry)
Zytel® HTN51G45HSLR BK420 (cond.)
Zytel® HTN51GM60THS BK083 (dry)
Zytel® HTN51LG50HSL PA6T/XT, GF50 BK083 (dry)
PA6T/66, GF35
PA6T/XT, GF35
Zytel® HTN51G35HSLR BK420 (cond.)
Zytel® HTN52G45HSL NC010 (dry)
PA6T/XT, GF35
Zytel® HTN51G35HSLR BK420 (dry)
PA6T/66, GF35
18000
PA6T/XT, GF35
Zytel® HTN51G35HSL NC010 (cond.)
Zytel® HTN52G35HSL NC010 (dry)
17000
PA6T/XT, GF35
Zytel® HTN51G35HSL NC010 (dry)
16000
–
–
–
15000
15000
12500
12500
12000
12000
–
PA6T/XT, GF25
Zytel® HTN51G25HSL BK083 (cond.)
9100
PA6T/XT, GF25
Zytel® HTN51G25HSL BK083 (dry)
PPA/DuPont
–
–
*
–
–
*
*
*
*
*
*
*
–
*
–
–
*
–
–
*
*
*
*
*
*
*
–
*
–
–
250
–
–
235
230
240
210
220
210
220
–
170
–
–
1.5
–
–
2.4
2.1
2.4
2.1
2.4
2.1
2.4
–
2.2
60
–
70
–
–
74
80
90
44
65
60
70
47
47
–
–
–
–
–
–
60
–
–
60
47
–
–
50
–
–
9.2
11
11
11
12
11
12
7
9
–
–
–
–
–
–
–
12
–
–
–
11
–
8.7
–
–
–
–
–
–
–
4.5
–
–
–
4
–
–
140
–
8400
–
700
200
–
180
–
–
–
120
–
–
(Continued )
4
8.5
3.4
8.5
*
–
*
3.6
*
–
*
5.5
*
5
11: Tables of Selected ISO 10350 Properties 645
12/11/2007 6:21:22 PM
Mckeen_Ch11.indd 646
PA6T/XT, MD40 PA6T/XT, Imod, MD30 PA6T/XT, Imod, MD30 PA6T/XT, Imod, MD30 PA6T/XT, Imod PA6T/XT, Imod PA6T/XT, GF35 PA6T/XT, GF35
Zytel® HTNFE16502 BK001 (dry)
Zytel® HTNFE250020 NC010 (dry)
Zytel® HTNFE250020 NC010 (cond.)
Zytel® HTNFE350006 NC010 (dry)
Zytel® HTNFE350015 NC010 (dry)
Zytel® HTNFE8200 NC010 (dry)
Zytel® HTNFR51G35L NC010 (dry)
Zytel® HTNFR51G35L NC010 (cond.)
Zytel® HTNWRF51 G30 PA6T/XT, GF30 NC010 (dry)
PA6T/XT, (MD+GF)40
Tensile Modulus (MPa)
Zytel® HTNFE150005 BK083 (cond.)
10000
–
15000
2190
–
–
5400
4600
12600
–
Yield Stress (MPa)
–
–
*
*
–
*
*
*
*
*
–
–
Yield at Strain (%)
PA6T/XT, (MD+GF)40
–
*
*
–
*
*
*
*
*
–
–
Stress at Break (MPa)
Zytel® HTNFE150005 BK083 (dry)
–
130
170
–
73
87
98
99
145
–
–
Strain at Break (%) –
1.1
1.4
–
3.3
6.5
4.2
5
1.8
–
–
–
–
40
–
–
–
60
100
–
–
–
–
Charpy Impact 23°C (kJ/m2)
–
–
–
35
–
–
–
–
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
–
10
–
11
–
–
–
3
5
2.4
–
–
–
Charpy Notched Impact 23°C (kJ/m2)
–
–
–
13
–
–
–
–
–
–
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
–
–
–
Relative Permitivity @1MHz
–
–
–
–
–
–
–
–
–
90
–
–
500
Dissipation Factor @1MHz
PA6T/66, GF45
Description
–
*
–
6.3
–
–
*
–
3.6
*
3.6
*
Water Absorption (%)
Zytel® HTN52G45HSL NC010 (cond.)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
646 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:22 PM
Mckeen_Ch11.indd 647
PA66/6T, GF33 PA66/6T, GF33 PA66/6T, GF45 PA66/6T, GF45 PA66/6T, MD30 PA66/6T, MD30 PA66/6T, MD40 PA66/6T, MD40 PA66/6T, MD40 PA66/6T, MD40 PA66/6T PA66/6T, GF33 PA66/6T, GF33 PA66/6T, GF45 PA66/6T, GF45 PA66/6T, GF33 PA66/6T, GF33
Amodel A–1133 HS (dry)
Amodel A-1133 HS (cond.)
Amodel A-1145 HS (dry)
Amodel A-1145 HS (cond.)
Amodel A1230 L (dry)
Amodel A-1230 L (cond.)
Amodel A-1240 HS (dry)
Amodel A-1240 HS (cond.)
Amodel A-1240 L (dry)
Amodel A-1240 L (cond.)
Amodel A-1565 HS (dry)
Amodel AF-1133 V0 (dry)
Amodel AF-1133 V0 (cond.)
Amodel AF-1145 V0 (dry)
Amodel AF-1145 V0 (cond.)
Amodel AF-4133 V0 (dry)
Amodel AF-4133 V0 (cond.)
PPA/Solvay
–
13800
18000
18000
13800
14000
20000
9350
10100
8280
8970
6900
6900
16800
16800
13400
13400
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
178
–
203
–
179
138
91
104
93
107
80
96
225
259
193
233
–
1.8
–
1
–
2
1
1.2
1.6
1.2
1.6
1.2
1.6
2.1
2.7
2.1
2.5
35
44
28
33
29
38
–
31
29
36
36
–
26
69
93
44
73
32
42
29
35
28
38
–
30
31
35
44
–
–
56
65
46
58
5.4
5.9
5.9
6.6
4.6
5.1
3.1
3.8
4.1
3.3
3.7
–
2.2
9.7
10
6.7
9.5
5.3
5.8
6
6.3
4.6
4.9
–
2.2
3.2
2.8
3.5
–
2.6
9.5
11
5.8
8.8
–
3.81
–
5.2
–
4.9
–
4
4
4
4
4
3.9
4.5
4.4
4.3
4.2
–
0.0111
–
0.008
–
0.008
–
0.019
0.017
0.019
0.017
0.02
0.018
0.021
0.016
0.022
0.017
(Continued )
*
–
*
–
*
–
–
*
–
*
–
*
–
*
–
*
–
11: Tables of Selected ISO 10350 Properties 647
12/11/2007 6:21:23 PM
Mckeen_Ch11.indd 648
PA66/6T, GF45 PA66/6T, GF45 PA66/6T, (GF+MD)65 PA66/6T, (GF+MD)65 PA66/6T, GF33
Amodel AS-1145 HS (dry)
Amodel AS-1145 HS (cond.)
Amodel AS-1566 HS (dry)
Amodel AS-1566 HS (cond.)
Amodel AS-1933 HS (dry)
12600
22800
22800
16000
16000
12200
PA66/6T, GF33
–
Amodel AS-1133 HS (cond.)
PA66/6T, GF45
Amodel AFA-6145 V0 Z (dry)
–
–
12200
PA66/6T, GF33
Amodel AFA-6133 V0 Z (dry)
Tensile Modulus (MPa)
PA66/6T, GF33
PA66/6T, GF33
Amodel AFA-4133 V0 Z (dry)
Yield Stress (MPa) –
–
–
–
–
–
–
–
–
–
–
–
Yield at Strain (%)
–
–
–
–
–
–
–
–
–
–
–
–
–
Stress at Break (MPa)
Amodel AS-1133 HS (dry)
PA66/6T, GF45
Amodel AF-4145 V0 (cond.)
212
170
200
232
263
196
225
67
193
170
165
–
Strain at Break (%) 2.5
1.2
1.4
2
2.7
2.5
3
3
1.5
1.7
1.6
–
76
32
34
56
85
50
82
49
33
37
43
28
32
Charpy Impact 23°C (kJ/m2)
1.5
–
33
34
54
76
40
62
–
–
39
38
26
35
Charpy Impact −30°C (kJ/m2)
196
10
5.2
6.2
10
12
6.4
11
4.6
7.8
6.9
7.4
6.1
6.4
Charpy Notched Impact 23°C (kJ/m2)
–
–
5.1
5.9
6.9
9.4
4.9
9.2
–
–
6.7
7.5
6.2
6.4
Charpy Notched Impact −30°C (kJ/m2)
–
–
4.7
4.7
4.5
4.4
4.3
4.2
–
4.1
4.1
4.2
–
4.1
Relative Permitivity @1MHz
18600
–
0.014
0.004
0.021
0.016
0.022
0.017
–
0.011
0.011
0.01
–
0.0127
Dissipation Factor @1MHz
4900
PA66/6T, GF45
Amodel AF-4145 V0 (dry)
–
*
–
*
–
*
–
–
–
–
–
*
–
Water Absorption (%)
Amodel AP-9240 NL NT PA66/6T, Imod, (dry) MD40
Description
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
648 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:23 PM
Mckeen_Ch11.indd 649
2300 2500 2400
PA66/6T, GF33 PA66/6T, GF45 PA66/6T, GF45 PA66/6T, Imod PA66/6T, Imod PA66/6T, GF16 PA66/6T, GF16 PA66/6T, GF25 PA66/6T, GF25 PA66/6T
PA66/6T, Imod PA66/6T, Imod PA66/6T, Imod
Amodel AS-4145 HS (dry)
Amodel AS-4145 HS (cond.)
Amodel AT-1001 L (dry)
Amodel AT-1001 L (cond.)
Amodel AT-1116 HS (dry)
Amodel AT-1116 HS (cond.)
Amodel AT-1125 HS (dry)
Amodel AT-1125 HS (cond.)
Amodel AT-5001 (dry)
Amodel AT-5001 (cond.) PA66/6T PA66/6T, Imod
Amodel AS-4133 HS (cond.)
Amodel ET-1001 HS (dry)
Amodel ET-1001 HS (cond.)
Amodel ET-1001 L (dry)
Amodel ET-1001 L (cond.)
Reny 1002H (dry)
PAMXD6, GF30
12100
Polyarylamide/Mitsubishi Engineering–Plastics Corp
2300
2400
2300
8900
8900
6900
6900
2000
1900
16100
16100
12600
12600
PA66/6T, GF33
Amodel AS-4133 HS (dry)
15100
PA66/6T, GF45
Amodel AS-1945 HS (dry)
*
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
*
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
181
–
–
–
–
–
–
143
190
120
160
–
–
183
224
181
211
244
1.7
–
–
–
–
–
–
2.4
3.2
3.2
3.7
–
–
1.9
2.2
2.3
2.6
2.5
35
N
N
N
N
N
N
47
67
–
–
N
N
60
64
55
68
86
–
N
N
N
N
N
N
37
53
–
–
N
N
63
80
52
63
–
6.3
18
19
18
19
23
20
6
8.8
6.5
9.1
97
93
8.9
10
9.8
11
9.7
–
13
15
13
15
9.5
11
4.1
5.7
–
–
25
26
8.2
8.3
9.2
10
–
–
–
–
–
–
3.6
3.2
–
–
–
–
–
–
4
3.7
3.4
3.6
–
–
–
–
–
–
0.027
0.016
–
–
–
–
–
–
0.037
0.011
0.019
0.012
–
(Continued )
1.5
*
–
*
–
*
–
*
–
*
–
*
–
*
–
*
–
–
11: Tables of Selected ISO 10350 Properties 649
12/11/2007 6:21:23 PM
Mckeen_Ch11.indd 650
Description
PAMXD6, GF30 PAMXD6, GF40 PAMXD6, GF40 PAMXD6, GF50 PAMXD6, GF50 PAMXD6, GF50 PAMXD6, GF50 PAMXD6, GF50 PAMXD6, GF50 PAMXD6, GF50 PAMXD6, GF50 PAMXD6, GF60 PAMXD6, GF60 PAMXD6, GF55 PAMXD6, GF55 PAMXD6, GF40 PAMXD6, GF40 PAMXD6, GF30 PAMXD6, GF30 PAMXD6, GF30 PAMXD6, GF50 PAMXD6, GF50
Name and Grade
Reny 1002H (cond.)
Reny 1012H (dry)
Reny 1012H (cond.)
Reny 1021UCS (dry)
Reny 1021UCS (cond.)
Reny 1022H (dry)
Reny 1022H (cond.)
Reny 1025 (dry)
Reny 1025 (cond.)
Reny 1027 (dry)
Reny 1027 (cond.)
Reny 1032 (dry)
Reny 1032 (cond.)
Reny 1071 (dry)
Reny 1071 (cond.)
Reny 1313 (dry)
Reny 1313 (cond.)
Reny 1501AH (dry)
Reny 1501AH (cond.)
Reny 1511AH (dry)
Reny 1521AH (dry)
Reny 1722F (dry)
Tensile Modulus (MPa) 20700
20600
16500
11700
13300
11000
12000
23700
24900
22400
24700
17200
18700
18300
19600
19300
20400
14400
17800
Yield Stress (MPa)
13600
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Yield at Strain (%) *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Stress at Break (MPa)
*
244
215
197
135
162
136
162
237
264
204
249
197
227
229
275
214
260
184
252
177
218
Strain at Break (%)
16600
2
1.5
1.8
1.6
1.6
2.4
2
1.6
1.6
1.4
1.4
1.7
1.6
2
1.9
2.1
2
3.4
2.5
1.8
1.8
Charpy Impact 23°C (kJ/m2) 58
49
45
29
37
55
66
66
83
61
54
45
45
82
77
58
72
101
87
52
52
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
33
11.4
9.3
7.7
5.5
5.3
12.7
12.2
16
17
13.9
14
9.2
9
13.1
14.2
12.2
11.3
16.4
14.1
8.9
8.5
6.2
Charpy Notched Impact 23°C (kJ/m2)
1.8
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
148
–
–
4.42
4
–
4
–
–
–
5
–
–
–
–
–
5
–
–
–
–
–
–
Relative Permitivity @1MHz
*
–
–
0.00866
0.014
–
0.015
–
–
–
0.013
–
–
–
–
–
0.017
–
–
–
–
–
–
Dissipation Factor @1MHz
*
0.7
1.1
1.1
–
1.2
–
1.2
–
1.5
–
0.9
–
0.8
–
1
–
1.1
–
1.3
–
1.8
–
Water Absorption (%)
11100
11.6 Polyamides (Nylons) (cont’d)
650 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:23 PM
Mckeen_Ch11.indd 651
14900
22200 44700 40000
PAMXD6, (GF+MD)20 PAMXD6, GF20 PAMXD6, GF20 PAMXD6, GF40 PAMXD6, GF40 PAMXD6, GF40 PAMXD6, GF40 PAMXD6, CF30 PAMXD6, CF30 PAMXD6, GF20 PAMXD6, GF20 PAMXD6, CF20 PAMXD6, CF20 PAMXD6, GF25 PAMXD6, GF25 PAMXD6, Whisker PAMXD6, Whisker PAMXD6, MD30 PAMXD6, MD30
Reny 2502A (cond.)
Reny 2620 (dry)
Reny 2620 (cond.)
Reny 4011 (dry)
Reny 4011 (cond.)
Reny 4511 (dry)
Reny 4511 (cond.)
Reny C36 (dry)
Reny C36 (cond.)
Reny G07S (dry)
Reny G07S (cond.)
Reny G16S (dry)
Reny G16S (cond.)
Reny N252 (dry)
Reny N252 (cond.)
Reny W110 (dry)
Reny W110 (cond.)
Reny W38S2 (dry)
Reny W38S2 (cond.) PAMXD6, GF30 PAMXD6, GF50 PAMXD6, GF50 PAMXD6, GF50 PAMXD6, GF50
IXEF® 1002 (dry)
IXEF® 1022 (dry)
IXEF® 1022 (cond.)
IXEF® 1023 (dry)
IXEF® 1025 (dry)
Polyarylamide/Solvay
18400
PAMXD6, (GF+MD)20
Reny 2502A (dry)
17000
20000
20000
20000
11500
15900
16200
25700
19900
20200
9100
9200
24200
27200
20600
20900
18600
21600
11500
17600
19100
PAMXD6, GF50
Reny 1722F (cond.)
*
*
–
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
–
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
230
250
260
280
190
111
121
202
231
138
174
205
230
136
155
230
249
125
130
143
152
86
139
120
150
208
1.9
1.9
2.2
1.9
2
0.8
0.9
0.6
0.7
1.4
11
1.6
1.6
2.5
2.5
1.3
1.2
0.8
0.6
1.1
1
1.3
1.1
1.3
1.2
1.7
–
–
–
61
29
22
18
19
24
33
31
39
50
37
38
48
45
12
12
16
16
35
27
29
27
54
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
9
7.4
2.1
1.8
3
3.3
6.6
5.9
4.5
4.4
5.9
6
4.9
4.7
8.9
6.9
7.5
7.3
5.1
4.1
4.3
4.1
10.4
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
5
5
–
–
–
–
–
–
–
–
–
–
–
–
5
–
–
–
–
–
–
–
–
–
–
0.0068
0.018
0.008
–
–
–
–
–
–
–
–
–
–
–
–
0.017
–
–
(Continued )
–
–
*
3.3
–
–
1
–
0.75
–
1.1
–
1.1
–
1.1
–
1.4
–
0.7
–
0.9
–
1.3
–
0.9
–
11: Tables of Selected ISO 10350 Properties 651
12/11/2007 6:21:23 PM
Mckeen_Ch11.indd 652
20000 17000 16000
PAMXD6, GF60 PAMXD6, GF60 PAMXD6, GF40 PAMXD6, GF30 PAMXD6, GF50 PAMXD6, Imod, GF50 PAMXD6, Imod, GF50 PAMXD6, MD42 PAMXD6, MD55
IXEF® 1032 (cond.)
IXEF® 1313 (dry)
IXEF® 1501 (dry)
IXEF® 1521 (dry)
IXEF® 1622 (dry)
IXEF® 1622 (cond.)
IXEF® 2011 (dry)
IXEF® 2030 (dry)
Tensile Modulus (MPa)
IXEF® 1032 (dry)
PAMXD6, CF30
IXEF® 3006 (dry) PA6 alloy PA6 alloy PA6 alloy
Orgalloy LE 6000 (dry)
Orgalloy LE 6000 (cond.)
Orgalloy LE 60HM (dry)
Polyamide alloys/Arkema
20000
IXEF® 2530 (dry)
–
1300
–
26000
12000
PAMXD6, MD45 PAMXD6, (MD+GF)55
IXEF® 2057 (dry)
21500
18000
13000
11000
23000
24000
Yield Stress (MPa)
20000
–
35
–
*
*
*
*
*
*
*
*
*
*
*
*
Yield at Strain (%)
PAMXD6, GF50
–
4
–
*
*
*
*
*
*
*
*
*
*
–
*
*
Stress at Break (MPa)
IXEF® 1028 (dry)
–
*
–
250
150
100
140
140
200
235
230
185
190
250
280
250
Strain at Break (%) –
*
–
1.3
1.2
1.6
1.2
1.3
2.7
2.6
1.9
2.3
3.1
2
1.8
1.8
–
–
–
–
19
–
25
35
–
85
40
29
47
–
61
–
–
Charpy Impact 23°C (kJ/m2)
1.8
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
235
–
30
–
4.4
–
–
3.7
2
–
13
–
–
27
–
11
–
–
Charpy Notched Impact 23°C (kJ/m2)
*
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
*
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Relative Permitivity @1MHz
20000
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Dissipation Factor @1MHz
PAMXD6, GF50
Description
6.4
*
6.4
–
–
–
–
0.35
*
3.2
–
–
–
*
2.8
0.17
–
Water Absorption (%)
IXEF® 1027 (dry)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
652 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:24 PM
Mckeen_Ch11.indd 653
PA6 alloy PA6 alloy PA6 alloy PA6 alloy PA6 alloy PA6 alloy PA6 alloy
Orgalloy LE 60LMXV (cond.)
Orgalloy LE 60SF (dry)
Orgalloy LE 60SF (cond.)
Orgalloy LE 60THM (dry)
Orgalloy LE 60THM (cond.)
Orgalloy LT 4060 (dry)
Orgalloy LT 4060 (cond.) 300
–
1750
–
1350
–
600
–
PA6 alloy
Orgalloy R 60ES (cond.) PA6 alloy
Orgalloy R 60ES (dry) 2010
–
460
Orgalloy LT 5050ES noir PA6 alloy (cond.)
460 –
PA6 alloy
Orgalloy LT 5050 T6L (cond.)
–
Orgalloy LT 5050ES noir PA6 alloy (dry)
PA6 alloy
Orgalloy LT 5050 T6L (dry)
300
PA6 alloy
Orgalloy LE 60LMXV (dry)
700
Orgalloy LT 4060ES noir PA6 alloy T6L (cond.)
PA6 alloy
Orgalloy LE 60LM (cond.)
–
–
PA6 alloy
Orgalloy LE 60LM (dry)
1550
Orgalloy LT 4060ES noir PA6 alloy T6L (dry)
PA6 alloy
Orgalloy LE 60HM (cond.)
50
–
*
*
*
*
–
40
–
36
30
32
–
39
3.4
–
*
–
*
–
*
–
*
–
5
–
4
7
6
–
5
*
–
*
–
*
–
*
–
*
–
*
–
*
–
*
–
*
–
*
*
–
>50
–
>50
–
>50
–
>50
–
*
–
*
–
*
–
*
–
*
–
–
N
N
N
N
N
N
N
N
–
–
–
–
N
–
N
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
20
16
N
N
N
N
N
N
N
N
23
–
29
–
N
–
N
–
28
–
–
–
–
–
–
–
–
22
–
–
–
–
–
–
–
–
–
–
3
–
4
–
4
–
–
–
–
–
–
–
–
–
–
–
–
–
–
250
–
500
–
500
–
–
–
–
–
–
–
–
–
–
–
–
–
–
(Continued )
*
3.3
*
–
*
–
*
5
*
5
*
6
*
5.5
*
5.5
*
6.4
*
11: Tables of Selected ISO 10350 Properties 653
12/11/2007 6:21:24 PM
Mckeen_Ch11.indd 654
PA6 alloy, GF10 PA6 alloy, GF10 PA6 alloy, GF15 PA6 alloy, GF15 PA6 alloy, GF30 PA6 alloy, GF30 PA6 alloy, Imod PA6 alloy, Imod PA6 alloy PA6 alloy PA6 alloy, GF20 PA6 alloy, GF20 PA6 alloy, GF30
Orgalloy RS 6010 (cond.)
Orgalloy RS 6015ES noir T6L (dry)
Orgalloy RS 6015ES noir T6L (cond.)
Orgalloy RS 6030 (dry)
Orgalloy RS 6030 (cond.)
Orgalloy RS 60E10 (dry)
Orgalloy RS 60E10 (cond.)
Orgalloy RS 6600 (dry)
Orgalloy RS 6600 (cond.)
Orgalloy RS 6620 (dry)
Orgalloy RS 6620 (cond.)
Orgalloy RS 6630 (dry)
Tensile Modulus (MPa)
Orgalloy RS 6010 (dry)
–
5500
2600
–
1620
–
7500
–
2850
3300
–
Yield Stress (MPa) –
*
52
–
42
–
*
–
*
*
–
50
–
*
4
–
5
–
*
–
*
*
4
Yield at Strain (%)
2300
Stress at Break (MPa)
PA6 alloy
110
*
–
*
130
–
75
80
–
*
Strain at Break (%)
Orgalloy RS 6000 (cond.)
4.5
4
–
6.5
5
–
*
Charpy Impact 23°C (kJ/m2) –
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
–
18
16
–
20
17
32
27
22
20
14
21
20
20
16
Charpy Notched Impact 23°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
5
–
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
–
–
4
–
3
–
3
–
4
–
3
3
–
3
–
Relative Permitivity @1MHz
–
170
170
250
230
–
240
240
–
250
–
Dissipation Factor @1MHz
PA6 alloy
Description
1.9
*
2.3
*
2.9
*
3.2
*
2.3
*
2.8
*
3
*
3.3
Water Absorption (%)
Orgalloy RS 6000 (dry)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
654 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:24 PM
Mckeen_Ch11.indd 655
PA6 alloy, GF30
PA6+ABS PA6+ABS, GF12 PA6+ABS, GF12 PA6+ABS PA6+ABS PA6+ABS, Imod PA6+ABS, Imod
Technyl® alloy KC 216 (cond.)
Technyl® alloy KC 216 V12 Black (dry)
Technyl® alloy KC 216 V12 Black (cond.)
Technyl® alloy KC 226 BLACK (dry)
Technyl® alloy KC 226 BLACK (cond.)
Technyl® alloy KC 246 BLACK (dry)
Technyl® alloy KC 246 BLACK (cond.) PA66+PA6 PA66+PA6 PA66+PA6 PA66+PA6 PA66+PA6, CF10 PA66+PA6, CF10 PA66+PA6, CF20 PA66+PA6, CF20
Grilon TS FR (dry)
Grilon TS FR (cond.)
Grilon TS V0 (dry)
Grilon TS V0 (cond.)
Grilon TSC-10/4 EC (dry)
Grilon TSC-10/4 EC (cond.)
Grilon TSC-20/4 EC (dry)
Grilon TSC-20/4 EC (cond.)
PA alloy/EMS–Grivory
PA6+ABS
Technyl® alloy KC 216 (dry)
Polyamide alloys/Rhodia
Orgalloy RS 6630 (cond.)
10000
16000
6500
9200
1600
3600
1200
3300
1200
2250
1400
3000
2800
4800
1300
2700
8800
*
*
*
*
50
85
50
85
–
–
–
–
–
–
–
–
*
*
*
*
*
15
4
15
4
–
–
–
–
–
–
–
–
*
160
230
120
170
*
*
*
*
–
–
–
–
55
95
–
–
140
6
3
7
3
*
*
*
*
–
–
–
–
8
3.3
–
–
90
65
80
50
N
75
N
N
N
N
N
N
90
50
N
N
–
60
60
40
40
N
70
80
N
–
–
–
–
–
–
–
–
–
15
8
12
5
15
4
20
10
60
16
6
15
7
18
6.5
20
5
5
4
4
3
3
5
10
–
–
–
–
–
–
–
–
–
*
*
5
4
4
3
4
3
–
–
–
–
–
–
–
–
4
*
*
1200
450
700
150
750
150
–
–
–
–
–
–
–
–
160
(Continued )
*
5
*
5
*
8
*
8
*
–
*
–
*
–
*
–
*
11: Tables of Selected ISO 10350 Properties 655
12/11/2007 6:21:24 PM
Mckeen_Ch11.indd 656
11000 7500 16500
PA66+PA6, CF40 PA66+PA6, CF40 PA66+PA6, GF30 PA66+PA6, GF30 PA66+PA6, GF30 PA66+PA6, GF30 PA66+PA6, GF30
PA66+PA6, GF50
Grilon TSG-30 (dry)
Grilon TSG-30 (cond.)
Grilon TSG-30 FR (dry)
Grilon TSG-30 FR (cond.)
Grilon TSG-30/4 (dry)
Grilon TSG-35/4 (dry)
Grilon TSG-35/4 (cond.) PA66+PA6, GF35 PA66+PA6, GF50
Grilon TSC-40/4 EC (cond.)
Grilon TSG-30/4 (cond.) PA66+PA6, GF30 PA66+PA6, GF35
Grilon TSC-40/4 EC (dry)
Grilon TSG-50 (dry)
Grilon TSG-50 (cond.) PA66+PA6, GF50
6000
PA66+PA6, CF30
Grilon TSC-30/4 LF 15 (cond.)
Grilon TSG-50/4 (dry)
9700
PA66+PA6, CF30
Tensile Modulus (MPa)
Grilon TSC-30/4 LF 15 (dry)
17500
10000
4000
7100
6000
9700
17000
26000
16000
23000
Yield Stress (MPa)
15000
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Yield at Strain (%)
PA66+PA6, CF30
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Stress at Break (MPa)
Grilon TSC-30/4 EC (cond.)
250
150
240
130
195
125
190
65
105
120
175
200
260
170
230
180
Strain at Break (%) 2.5
5
3
6
3
8
3
15
5
6
3
4
2
4.5
2.5
5
80
100
90
85
75
80
70
N
50
85
75
85
60
60
45
85
60
Charpy Impact 23°C (kJ/m2)
2.5
70
90
80
70
60
60
60
50
40
65
65
50
50
45
45
70
60
Charpy Impact −30°C (kJ/m2)
250
14
20
15
13
10
12
10
8
4
20
13
16
10
13
10
16
10
Charpy Notched Impact 23°C (kJ/m2)
*
12
12
11
8
8
6
7
3
3
10
10
7
7
7
7
7
7
Charpy Notched Impact −30°C (kJ/m2)
*
4
4
4
4
4
4
4
4
4
4
3
*
*
*
*
*
*
Relative Permitivity @1MHz
23000
150
650
150
550
100
800
100
600
150
450
130
*
*
*
*
*
*
Dissipation Factor @1MHz
PA66+PA6, CF30
Description
5
*
6
*
5
*
5
*
7
*
6.5
*
5
*
5
*
5
Water Absorption (%)
Grilon TSC-30/4 EC (dry)
Name and Grade
11.6 Polyamides (Nylons) (cont’d)
656 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:24 PM
Mckeen_Ch11.indd 657
5600 2900 9000 5400
PA66+PA6, Imod, GF15 PA66+PA6, Imod, GF15 PA66+PA6, Imod, GF30 PA66+PA6, Imod, GF30 PA66+PA6, GB30 PA66+PA6, GB30 PA66+PA6, MD30 PA66+PA6, MD30 PA66+PA6 PA66+PA6 PA66+PA6 PA66+PA6 PA66+PA6, Moly2 PA66+PA6, Moly2 PA66+PA6, (PTFE+Si)20 PA66+PA6, (PTFE+Si)20 PA66+PA6, Imod PA66+PA6, Imod
Grilon TSGZ-15 (dry)
Grilon TSGZ-15 (cond.)
Grilon TSGZ-30 (dry)
Grilon TSGZ-30 (cond.)
Grilon TSK-30/4 (dry)
Grilon TSK-30/4 (cond.)
Grilon TSM-30 (dry)
Grilon TSM-30 (cond.)
Grilon TSS (dry)
Grilon TSS (cond.)
Grilon TSS/4 (dry)
Grilon TSS/4 (cond.)
Grilon TSS/4 LF 2 (dry)
Grilon TSS/4 LF 2 (cond.)
Grilon TSS/4 LF 20 (dry)
Grilon TSS/4 LF 20 (cond.)
Grilon TSZ 1 (dry)
Grilon TSZ 1 (cond.)
750
2400
1200
2700
1400
3300
1100
3000
750
2700
2300
5800
1800
4100
5000
PA66+PA6, (GF+GB)30
Grilon TSGK-30 X (cond.)
8500
PA66+PA6, (GF+GB)30
12500
Grilon TSGK-30 X (dry)
Grilon TSG-50/4 (cond.) PA66+PA6, GF50
35
65
35
60
50
90
50
80
40
70
*
*
*
*
*
*
*
*
*
*
*
20
4
10
4
15
5
15
5
15
4
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
45
75
45
75
90
180
65
110
85
155
170
*
*
*
*
*
*
*
*
*
*
15
3
35
10
8
4
10
4
10
3
4.5
N
N
N
N
N
N
N
N
N
N
N
45
85
30
90
80
90
75
75
50
85
N
N
55
45
N
N
N
N
N
N
35
35
25
25
80
80
70
60
45
45
80
45
11
8
4
20
4
40
6
35
8
7
5
8
4
25
15
17
12
13
8
20
8
10
4
4
4
4
5
6
7
6
3
5
3
2
10
10
5
5
7
7
12
3
3
3
3
4
3
4
3
3
3
3
3
4
4
4
3
4
3
3
3
4
450
150
550
150
750
200
800
200
500
150
450
140
600
150
700
150
700
150
390
120
650
*
8.5
*
5
*
7
*
8
*
9
*
6.5
*
5
*
7
*
8
*
7.5
*
11: Tables of Selected ISO 10350 Properties 657
12/11/2007 6:21:25 PM
Mckeen_Ch11.indd 658
HDPE HDPE HDPE LDPE LDPE LDPE LDPE LDPE LDPE LDPE HDPE HDPE HDPE HDPE
Hostalen GD9555
Hostalen GD9555 F
Hostalen GF9145 X
Lupolen 1800 H
Lupolen 1800 S
Lupolen 1810 E
Lupolen 1840 D
Lupolen 18P FAX
Lupolen 18P FFX
Lupolen 2420 D
Lupolen 4261 A Q 416
Lupolen 5021 D
Lupolen 5031 L Q 449
Lupolen 5031 L Q 449 K
PE/Bassell Polyolefins
1100
1000
1000
850
240
300
300
200
200
150
200
800
950
1050
26
26
25
24
10
10
10
9
9
8
9
21
23
25
10
8
9
10
–
–
–
–
–
–
–
10
10
10
–
–
–
–
20
45
65
20
–
–
–
28
44
41
91
–
–
–
–
600
850
850
600
–
–
–
520
580
490
1.4
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Impact 23°C (kJ/m2)
–
Strain at Break (%) 2.3
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
–
Stress at Break (MPa) 80
5
–
–
–
–
–
–
–
–
–
–
8
9
6
30
24
Charpy Notched Impact 23°C (kJ/m2)
10500
Yield at Strain (%) –
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
HDPE, GF60
Yield Stress (MPa) –
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Relative Permitivity @1MHz
Celstran PEHDGF60-01-US
Tensile Modulus (MPa) 6800
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Dissipation Factor @1MHz
HDPE, GF40
Description
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Water Absorption (%)
Celstran PEHDGF40-01
PE/Ticona
Name and Grade
11.7 Polyolefins and Acrylics
658 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:25 PM
Mckeen_Ch11.indd 659
UHMWPE UHMWPE UHMWPE UHMWPE UHMWPE UHMWPE UHMWPE UHMWPE UHMWPE
GUR 4113
GUR 4120
GUR 4130
GUR 4150
GUR 4152
GUR 4170
GUR 5113
GUR GHR 8020
GUR GHR 8110
PP PP, GF20 PP, GF30 PP, GF40 PP, Chalk20, T10 PP, MD15 PP, T20 PP PP PP
Altech® PP-B A 1000/120 UV
Altech® PP-B A 2020/150 GF20 CP
Altech® PP-B A 2030/150 GF30 CP
Altech® PP-B A 2040/150 GF40 CP
Altech® PP-B A 4430/120 MR30 UV
Altech® PP-B A 4815/100 MR15
AltechO PP-B A 4920/100 MR20
Altech® PP-H A 1000/100 DS
Altech® PP-H A 1000/140 FR
Altech® PP-H A 1000/149 FR
PP/Albis Plastic GmgH
UHMWPE
HDPE
GUR 2122
UHMWPE/Ticona
Lupolen 5661 A
1300
2000
1400
1800
1500
2400
7500
5300
4000
–
1060
–
750
570
680
680
680
720
750
790
1270
–
–
–
–
–
–
–
–
–
–
21
19
–
17
17
17
17
17
17
17
28
–
–
–
–
–
–
–
–
–
–
10
10
–
20
20
20
20
20
20
20
9
30
40
30
20
23
20
80
65
53
–
–
–
–
–
–
–
–
–
–
–
–
>50
14
>50
>50
>50
30
4.5
4.5
6
–
–
–
–
–
–
–
–
–
–
–
–
80
60
N
N
100
55
60
50
50
N
–
*
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
*
–
–
–
–
–
–
–
–
–
4
2.2
4
N
5.8
4
15
20
20
4.5
–
*
100P
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
*
100P
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
2.9
*
–
3
3
3
3
3
3
3
–
–
–
–
–
–
–
–
–
–
–
4
*
–
–
–
–
–
–
–
–
–
–
–
0.01
–
–
0.01
–
0.01
0.01
0.01
0.01
0.01
–
(Continued )
10
10
10
10
10
10
10
–
11: Tables of Selected ISO 10350 Properties 659
12/11/2007 6:21:25 PM
Mckeen_Ch11.indd 660
PP, GF30 PP, GF30 PP, GF30 PP, GF30 PP, GF30 PP, GF30 PP, GF30 PP, GF40 PP, GB20 PP, GB30
AltechO PP-H A 2030/150 GF30 CP
Altech® PP-H A 2030/156 GF30 CP
Altech® PP-H A 2030/157 GF30 CP
Altech® PP-H A 2030/158 GF30 CP
AltechO PP-H A 2030/250 GF30 CP
Altech® PP-H A 2030/252 GF30 UV CP
AltechO PP-H A 2040/150 GF40 CP
Altech® PP-H A 3020/100 GB20
Altech® PP-H A 3030/100 GB30
Tensile Modulus (MPa)
Altech® PP-H A 2030/100 GF30
2000
1500
6000
–
6000
5900
6700
6400
5500
5200
Yield Stress (MPa)
4100
–
–
–
–
–
–
–
–
–
–
–
Yield at Strain (%)
PP, GF20
–
–
–
–
–
–
–
–
–
–
–
Stress at Break (MPa)
Altech® PP-H A 2020/150 GF20 CP
19
24
70
–
80
–
90
–
75
55
60
Strain at Break (%) >50
>50
1
–
4
–
3
–
3
2
3.5
30
30
55
25
50
55
40
60
50
55
40
20
Charpy Impact 23°C (kJ/m2)
2
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
45
4
3
12
10
14
11
8
13
11
14
9
4.5
Charpy Notched Impact 23°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
–
–
–
Relative Permitivity @1MHz
4100
–
–
–
–
–
–
–
–
–
–
–
–
Dissipation Factor @1MHz
PP, GF20
Description
–
–
–
–
–
–
–
–
–
–
–
–
Water Absorption (%)
Altech® PP-H A 2020/100 GF20
Name and Grade
11.7 Polyolefins and Acrylics (cont’d)
660 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:25 PM
Mckeen_Ch11.indd 661
PP, T20 PP, T20 PP, T20 PP, T30 PP, T30 PP, T40
Altech® PP-H A 4920/100 MR20
Altech® PP-H A 4920/106 MR20
Altech® PP-H A 4920/170 MR20
Altech® PP-H A 4930/100 MR30
Altech® PP-H A 4930/106 MR30
Altech® PP-H A 4940/100 MR40
PP, T20 PP PP PP PP
Polyflam® RIPP 374 ND CS1
Polyflam® RIPP 490
Polyflam® RIPP 5000 E
Polyflam® RIPP 5440
Polyflam® RLD 10 D PP, GF30 PP, GF30 PP, GF30 PP, GF30 PP, GF30 PP, GF40 PP, GF40
Celstran PP-GF30-02
Celstran PP-GF30-03
Celstran PP-GF30-04
Celstran PP-GF30-05
Celstran PP-GF30-10
Celstran PP-GF40-02
Celstran PP-GF40-03
PP/Ticona
PP, T25
Polyflam® RIPP 3125 CS1
PP/A. Schulman
PP, Chalk18
Altech® PP-H A 4818/100 MR18 DS
7900
7700
6070
5980
6600
6000
5800
200
1500
1200
1900
2100
2400
4000
3400
3500
2700
2800
2800
1700
–
–
–
–
–
–
–
15
29
26
22
17
17
–
–
–
–
–
–
–
–
–
–
–
–
–
–
12
5
7
3
1.7
1.7
–
–
–
–
–
–
–
100
102
85
85
95
90
92
*
*
*
*
*
*
32
32
32
34
32
32
26
2
2.1
2.1
2.9
2.3
2.3
2.5
*
*
*
*
*
*
15
20
20
10
25
25
>50
–
–
–
66
48
–
–
N
N
N
37
60
33
20
25
27
22
60
60
80
–
–
–
80
44
–
–
N
35
65
11
19
13
–
–
–
–
–
–
–
20
23
15
26
18
17
20
60
13
20
3
6
8
3.5
4
3.9
2.5
4
4.5
4
–
–
–
24
20
–
–
4
3
5
3
2.4
2.4
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
(Continued )
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
11: Tables of Selected ISO 10350 Properties 661
12/11/2007 6:21:25 PM
Mckeen_Ch11.indd 662
PP, GF40 PP, GF50 PP, GF50 PP, GF50 PP, GF50 PP, GF50 PP, GF50 PP, GF50 PP, GF50
Celstran PP-GF40-10
Celstran PP-GF50-02
Celstran PP-GF50-03
Celstran PP-GF50-04
Celstran PP-GF500403P10/10
Celstran PP-GF500405P10/10
Celstran PP-GF500453P10/10
Celstran PP-GF500455P10/10
Celstran PP-GF50-10 1300 1150 1350 1350
PP Homopolymer PP Impact Copolymer PP Homopolymer PP Impact Copolymer
Hostalen PP H2222 36
Hostalen PP H2250 36
Hostalen PP H2464
11000
12000
11800
12000
11800
11100
10300
10200
7850
7300
Hostalen PP H2150
PP/Bassell Polyolefins
PP, GF40
Tensile Modulus (MPa)
Celstran PP-GF40-05
Yield Stress (MPa)
8900
29
31
26
30
–
–
–
–
–
–
–
–
–
–
–
Yield at Strain (%)
PP, GF40
10
10
11
9
–
–
–
–
–
–
–
–
–
–
–
Stress at Break (MPa)
Celstran PP-GF400414P10/10
–
–
–
–
107
124
126
125
127
120
115
110
96
100
109
Strain at Break (%) 400
–
–
–
1.7
1.7
1.9
1.7
1.9
1.9
1.8
1.7
1.9
2.3
1.9
–
N
N
N
–
–
57
–
55
59
–
–
–
70
53
59
Charpy Impact 23°C (kJ/m2)
2
–
26
85
26
–
–
53
–
54
57
–
–
–
–
44
55
Charpy Impact −30°C (kJ/m2)
110
–
11
40
9
1
–
18
–
18
19
2
26
18
25
16
16
Charpy Notched Impact 23°C (kJ/m2)
–
–
2.9
3.2
2.2
–
–
24
–
25
14
–
–
–
–
19
13
Charpy Notched Impact −30°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Relative Permitivity @1MHz
9100
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Dissipation Factor @1MHz
PP, GF40
Description
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Water Absorption (%)
Celstran PP-GF40-04
Name and Grade
11.7 Polyolefins and Acrylics (cont’d)
662 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:26 PM
Mckeen_Ch11.indd 663
1350
Hostalen PP W2080
PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA
Altuglas DRT
Altuglas HFI-10
Altuglas HFI-7
Altuglas HT 121
Altuglas MI-2T
Altuglas MI-4T
Altuglas MI-7T
Altuglas SG 10
Altuglas SG 7
Altuglas V 044
Altuglas V 045
Altuglas V 825 HID
Altuglas V 825 T
Altuglas V 920 T
Altuglas VM PMMA, Imod PMMA, Imod PMMA PMMA
Plexalloy® NTA-1
Plexalloy® NTA-3
Plexiglas® 6N
Plexiglas® 7H
Acrylic/Degussa
PMMA
Altuglas DRM
Acrylic/Arkema
1300
Hostalen PP H7350FLS PP Homopolymer 303064 PP Homopolymer
1300
PP Homopolymer
Hostalen PP H7050FL G51337
3200
3200
2900
2700
3100
3300
3300
3300
3300
3300
2300
1700
2400
2800
3000
3450
2300
1700
1700
1800
850
PP Random Copolymer
Hostalen PP H5416 E61349
850
PP Random Copolymer
Hostalen PP H5416
*
*
60
68
*
*
*
*
*
*
65
42
65
76
78
*
65
42
45
45
30
30
30
24
24
*
*
0
5
*
*
*
*
*
*
5
5
5
4
4
*
5
5
5
5
9
10
10
10
10
76
67
*
*
65
70
70
70
70
70
*
*
*
*
*
70
*
*
*
*
–
–
–
–
–
5.5
3
*
*
5
6
6
6
6
6
*
*
*
*
*
5
*
*
*
*
–
–
–
–
–
20
20
16
33
19
20
20
20
20
20
45
60
45
35
25
20
45
60
70
60
90
N
N
N
N
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
28
28
43
43
–
–
–
–
2
2
2
2
2
2
4
6
4
3
3
2
4
6
7
6
–
10
10
22
22
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
2.4
2.4
2.5
2.5
2.8
2.9
–
–
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
–
–
–
–
–
1.9
1.8
–
–
1.8
1.9
1.9
1.9
1.9
1.9
2
2
2
2
2
2.5
2
2
2
2
–
–
–
–
–
(Continued )
200
200
–
–
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
–
–
–
–
–
11: Tables of Selected ISO 10350 Properties 663
12/11/2007 6:21:26 PM
Mckeen_Ch11.indd 664
PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA, Imod PMMA, Imod PMMA, Imod PMMA, Imod PMMA, Imod PMMA, Imod PMMA, Imod
Plexiglas® 8N
Plexiglas® FT15
Plexiglas® df21 8N
Plexiglas® df22 7H
Plexiglas® df22 7N
Plexiglas® df22 8N
Plexiglas® df22 zk6BR
Plexiglas® df23 7H
Plexiglas® df23 7N
Plexiglas® df23 8N
Plexiglas® df23 zk6BR
Plexiglas® hw55
Plexiglas® zk20
Plexiglas® zk30
Plexiglas® zk40
Plexiglas® zk4BR
Plexiglas® zk4HC
Plexiglas® zk50
Plexiglas® zk5BR
Tensile Modulus (MPa)
PMMA
2400
950
2900
2800
1600
2000
2400
3600
1900
3300
3400
3400
1800
3300
3400
3400
3300
3500
3300
3300
Yield Stress (MPa)
Plexiglas® 8H
62
25
68
71
42
51
62
*
46
*
*
*
45
*
*
*
*
*
*
*
Yield at Strain (%) *
4.5
5
4.5
4.5
4.5
4.5
4.5
*
5
*
*
*
5
*
*
*
*
*
*
*
*
*
*
*
*
*
*
80
*
65
65
70
*
67
65
70
71
50
77
78
73
69
Stress at Break (MPa)
*
*
*
*
*
*
*
3.5
*
2.5
2.5
6
*
3.5
2.5
6
4.5
3.1
5.5
6.5
3.5
4
Strain at Break (%)
*
50
N
25
25
80
55
25
20
50
1
1
20
54
18
17
20
18
18
20
20
20
20
Charpy Impact 23°C (kJ/m2)
*
–
–
–
–
–
–
–
20
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
3200
–
13
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact 23°C (kJ/m2)
3200
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
PMMA
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
–
–
–
–
–
–
–
–
–
–
2.7
2.7
2.8
2.8
Relative Permitivity @1MHz
PMMA
300
400
300
200
300
300
300
200
–
–
–
–
–
–
–
–
–
–
200
200
200
200
Dissipation Factor @1MHz
Plexiglas® 7N
Description
2
1.2
2
2
1.5
1.7
1.7
2.2
–
–
–
–
–
–
–
–
–
–
2
1.9
2
2
Water Absorption (%)
Plexiglas® 7M
Name and Grade
11.7 Polyolefins and Acrylics (cont’d)
664 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:26 PM
PMMA, Imod PMMA, Imod PMMA, Imod PMMA, Imod
Plexiglas® zk5HC
Plexiglas® zk5HF
Mckeen_Ch11.indd 665
Plexiglas® zk6BR
Plexiglas® zk6HC
2000
1800
2500
2500
47
45
55
63
5.5
5
4.5
5
*
*
*
*
*
*
*
*
80
80
50
55
–
–
–
–
–
–
–
–
–
–
–
–
2.9
2.9
2.9
2.9
300
300
300
300
1.8
1.9
1.9
1.9
11: Tables of Selected ISO 10350 Properties 665
12/11/2007 6:21:26 PM
Mckeen_Ch11.indd 666
TEEE TEEE TEEE TEEE TEEE TEEE TEEE TEEE+PBT TEEE TEEE TEEE TEEE TEEE
Hytrel® 4556
Hytrel® 5526
Hytrel® 5555HS
Hytrel® 5556
Hytrel® 6356
Hytrel® 7246
Hytrel® 8238
Hytrel® DYM350BK
Hytrel® G3548L
Hytrel® G4074
Hytrel® G4774
Hytrel® G4778
Hytrel® G5544
Arnitel® 3103
TPC
TEEE, CD
Hytrel® 40CB
TPE/DSM
TEEE
570
190
110
110
55
20
370
1180
530
280
180
180
190
85
–
–
30
Hytrel® 4069
Tensile Modulus (MPa) 23.8
*
*
*
*
–
15
–
–
–
16
–
–
–
–
–
*
20
*
*
*
*
–
20
–
–
–
32
–
–
–
–
–
*
*
*
*
*
*
–
*
–
–
–
*
–
–
–
–
–
*
*
*
Stress at Break (MPa)
TEEE
Yield at Strain (%) *
*
>50
>50
>50
>50
–
*
–
–
–
*
–
–
–
–
–
>50
>50
>50
Strain at Break (%)
*
–
N
N
N
N
–
N
–
–
–
N
N
N
–
–
N
N
N
N
Charpy Impact 23°C (kJ/m2)
Hytrel® 4068
Yield Stress (MPa) *
–
–
N
N
N
–
N
–
–
–
N
–
N
–
–
N
N
N
N
Charpy Impact −30°C (kJ/m2)
*
23
N
N
N
N
–
–
15
33
N
N
84
N
N
–
N
N
N
N
Charpy Notched Impact 23°C (kJ/m2)
–
7
20
N
N
N
–
–
5
10
15
85
–
90
–
–
N
N
N
N
Charpy Notched Impact −30°C (kJ/m2)
55
–
4.5
–
4.7
5
–
4.4
3.7
3.7
4.1
4.4
–
4.6
4.5
–
–
–
4.7
4.8
Relative Permitivity @1MHz
TEEE
–
400
–
–
530
–
230
175
300
360
375
–
375
300
100
130
380
525
125
Dissipation Factor @1MHz
Hytrel® 4056
Description
–
2.2
–
–
3.7
–
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
–
0.7
0.7
0.7
0.8
Water Absorption (%)
Hytrel® 3078
TPE/DuPont
Name and Grade
11.8 Thermoplastic Elastomers
666 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:26 PM
TPC TPC TPC TPC TPC TPC TPC TPC TPC, GF20 TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC
Arnitel® 3104
Arnitel® EB460
Mckeen_Ch11.indd 667
Arnitel® EB463
Arnitel® EB464
Arnitel® EB464-01
Arnitel® EB500
Arnitel® EL550
Arnitel® EL630
Arnitel® EL695-G4
Arnitel® EL740
Arnitel® EL740-H/A
Arnitel® EM400
Arnitel® EM401
Arnitel® EM402-L
Arnitel® EM460
Arnitel® EM550
Arnitel® EM630
Arnitel® EM630-H
Arnitel® EM740
Arnitel® PB420
Arnitel® PB582-H
Arnitel® PL380
Arnitel® PL381
Arnitel® PL420-H
Arnitel® PL460-S
Arnitel® PL461
Arnitel® PL471
Arnitel® PL581
Amitel® PL650
Arnitel® PM381
60
570
300
240
165
240
100
60
60
300
100
1000
310
310
200
100
50
–
50
1100
1000
3650
310
200
225
75
115
115
105
60
–
–
–
–
–
–
–
–
–
–
*
35
20
20
14
9
7
–
7
38
34
*
19
14
*
*
*
*
–
–
–
–
–
–
–
–
–
–
–
–
*
20
29
29
20
30
74
–
74
20
10
*
16
20
*
*
*
*
–
–
–
–
–
–
–
–
–
–
–
–
*
*
*
*
*
*
*
–
*
–
*
65
*
*
*
*
*
*
–
–
–
–
–
–
–
–
–
–
–
–
>50
*
*
*
*
*
*
–
*
–
*
9
*
*
>50
>50
>50
>50
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
N
N
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
N
N
–
N
23
N
N
N
60
N
N
N
N
N
15
N
N
N
N
N
–
N
10
10
22
N
N
N
N
N
N
N
N
N
7
16
N
N
22
N
N
N
14
N
6
12
12
25
N
N
–
N
4
6
11
12
25
N
N
N
N
N
N
4.4
–
4
–
–
4.8
–
4.4
4.4
–
–
3.4
4.1
3.4
4
4.4
4
–
4
–
3.3
–
3.4
4
–
–
–
–
–
4.4
7
–
2.5
–
–
3.5
–
7
7
–
–
0.6
0.63
0.6
0.65
0.7
0.7
–
0.75
0.6
0.6
0.3
0.6
0.65
0.6
0.7
0.7
0.7
0.6
7
(Continued )
810
–
400
–
–
–
–
810
810
–
–
400
170
340
400
350
170
–
170
–
300
–
340
400
–
–
–
–
–
810
11: Tables of Selected ISO 10350 Properties 667
12/11/2007 6:21:27 PM
Mckeen_Ch11.indd 668
TPC TPC TPC TPC
Arnitel® PM581
Arnitel® PM650
Arnitel® UM551
Arnitel® UM551-V
TPA TPA TPA TPA TPA TPA TPA TPA
PEBAX 2533 SN 01(dry)
PEBAX 2533 SN 01(cond.)
PEBAX 3533 SN 01(dry)
PEBAX 3533 SN 01(cond.)
PEBAX 4033 SN 01(dry)
PEBAX 4033 SN 01(cond.)
PEBAX 5533 SN 01(dry)
PEBAX 5533 SN 01(cond.)
PEBA/Arkema
TPC
Tensile Modulus (MPa)
Arnitel® PM471
161
165
71
73
18
19
10
13
250
200
520
300
175
Yield Stress (MPa)
200
12
12
*
*
*
*
*
*
15
15
26.5
–
–
–
Yield at Strain (%)
TPC
25
25
*
*
*
*
*
*
22
22
26
–
–
–
Stress at Break (MPa)
Arnitel® PM460-B
*
*
*
*
*
*
*
*
*
*
–
–
–
–
Strain at Break (%) *
*
>50
>50
>50
>50
>50
>50
*
*
–
–
–
–
N
N
N
–
N
–
N
–
–
–
–
–
–
–
–
Charpy Impact 23°C (kJ/m2)
–
N
N
N
–
N
–
N
–
–
6
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
–
N
N
N
–
N
–
N
–
N
N
37
N
N
N
N
Charpy Notched Impact 23°C (kJ/m2)
–
N
N
N
–
N
–
N
–
–
6
11
16
N
N
N
Charpy Notched Impact −30°C (kJ/m2)
–
–
5
–
5
–
6
–
6
–
–
–
4.4
–
–
–
Relative Permitivity @1MHz
200
–
1020
–
604
–
434
–
378
–
–
–
810
–
–
–
Dissipation Factor @1MHz
TPC
Description
*
1.2
*
1.2
*
1.2
*
1.2
0.6
0.6
–
2.5
–
–
–
Water Absorption (%)
Arnitel® PM460
Name and Grade
11.8 Thermoplastic Elastomers (cont’d)
668 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:27 PM
Mckeen_Ch11.indd 669
80 253
TPA TPA TPA TPA TPA TPA
TPA TPA TPA
PEBAX 7033 SN 01(dry)
PEBAX 7033 SN 01(cond.)
PEBAX 7233 SN 01(dry)
PEBAX 7233 SN 01(cond.)
PEBAX MH 1657(dry)
PEBAX MH 1657(cond.) TPA TPA
PEBAX 6333 SN 01(cond.)
PEBAX MV 1041 SN 01(dry)
PEBAX MV 1041 SN 01(cond.)
PEBAX MV 1074 SN 01(dry)
PEBAX MV 1074 SN 01(cond.)
TPA TPA TPA
Vestamid E40-S3 nf (dry)
Vestamid E40-S3 nf(cond.)
Vestamid E47-S3 nf
PEBA/Degussa
90
TPA
PEBAX 6333 SN 01(dry)
120
–
80
89
97
227
522
–
384
414
280
307
298
TPA, CD
PEBAX 5533 SN 70 NOIR(cond.)
305
TPA, CD
PEBAX 5533 SN 70 NOIR(dry)
*
–
*
*
*
15
17
*
*
26
–
22
23
18
19
17
18
*
–
*
*
*
28
26
*
*
18
–
20
22
22
22
36
31
*
–
*
*
*
*
*
*
*
*
–
*
*
*
*
*
*
>50
–
>50
>50
>50
*
*
>50
>50
*
–
*
*
*
*
*
*
N
N
N
N
N
N
N
N
N
N
–
N
N
N
N
–
N
N
N
N
N
N
N
N
N
N
N
–
N
N
N
N
–
N
N
N
N
N
N
–
N
N
15
–
N
N
N
N
–
N
N
N
N
–
N
–
11
–
–
10
–
10
–
20
–
–
18
4.7
5.5
4.9
–
–
–
5
–
–
–
4
–
–
–
4
–
–
1
*
1
*
48
*
12
*
120
*
0.9
*
0.9
*
1.1
*
1.2
(Continued )
1300
1200
1200
–
–
–
957
–
–
–
586
–
–
–
757
–
–
11: Tables of Selected ISO 10350 Properties 669
12/11/2007 6:21:27 PM
670
Mckeen_Ch11.indd 670
* 1300 4.3 N N N N * * 29 22 TPA
360
1.1 1200 4 N N N N * * 31 24
1100 4.3 N N N N
Vestamid E62-S3 nf (cond.)
Description
Tensile Modulus (MPa)
Name and Grade
11.8 Thermoplastic Elastomers (cont’d)
Yield Stress (MPa)
370
Yield at Strain (%)
TPA
Stress at Break (MPa)
Vestamid E62-S3 nf (dry)
Strain at Break (%)
>50
Charpy Impact 23°C (kJ/m2)
*
Charpy Impact −30°C (kJ/m2)
*
Charpy Notched Impact 23°C (kJ/m2)
*
Charpy Notched Impact −30°C (kJ/m2)
230
Relative Permitivity @1MHz
TPA
Dissipation Factor @1MHz
Vestamid E55-S3 nf
Water Absorption (%)
1.1
The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:27 PM
Mckeen_Ch11.indd 671
PVDF PVDF PVDF PVDF, CF PVDF PVDF PVDF PVDF PVDF PVDF PVDF
Kynar 720
Kynar 740
Kynar 9000 HD
Kynar 9000 HDC N 123
Kynar Flex 2750
Kynar Flex 2800
Kynar Flex 2801
Kynar Flex 2820
Kynar Flex 2821
Kynar Flex 2822
Kynar Flex 2850 PVDF PVDF
Solef 1008
Solef 1010
PVDF/Solvay Solexis
PVDF
Kynar 710
2440
2480
1000
680
680
680
700
700
480
7000
2500
1700
2200
2300
2300
58.1
59.1
35
24
24
24
26
26
20
*
54
50
54
54
52
52
7.3
6.9
10
12
12
12
12
12
16
*
8
7
8
9
9
9
–
–
*
*
*
*
*
*
*
70
*
*
*
*
*
*
–
–
*
*
*
*
*
*
*
2
*
*
*
*
*
*
120
89
–
–
–
180
–
–
–
–
230
240
210
190
230
–
250
Charpy Impact 23°C (kJ/m2)
2000
Strain at Break (%) *
110
98
190
–
–
240
–
–
–
–
220
190
190
210
220
–
200
Charpy Impact −30°C (kJ/m2)
PVDF
Stress at Break (MPa) *
8.3
7.6
29
–
–
60
–
86
120
–
11
14
8
8
12
–
22
Charpy Notched Impact 23°C (kJ/m2)
PVDF
Yield at Strain (%) 9
3.4
2.3
5
–
–
5
–
5
6
–
5
5
5
5
5
–
5
Charpy Notched Impact −30°C (kJ/m2)
Kynar 6000 HD
Yield Stress (MPa) 50
–
–
6.5
6
6
6
7
7
7
*
7.5
8
7
6
7
6.5
7
Relative Permitivity @1MHz
Kynar 1000 HDC N 118
Tensile Modulus (MPa) 2000
–
–
0.04
0.04
0.03
0.03
0.03
0.03
0.03
0.03
–
0.15
0.03
0.03
0.03
0.03
0.02
–
0.03
(Continued )
2340
2340
2340
2340
2330
2330
–
*
2160
2310
2140
2060
2200
2460
2400
Dissipation Factor @1MHz
PVDF
Description
Water Absorption (%)
Kynar 1000 HD
PVDF/Arkema
Name and Grade
11.9 Fluoropolymers
11: Tables of Selected ISO 10350 Properties 671
12/11/2007 6:21:27 PM
Mckeen_Ch11.indd 672
PVDF PVDF PVDF PVDF PVDF
Solef 21508
Solef 31008
Solef 31508
Solef 6010
Solef 6012
PVDF PVDF
Dyneon™ PVDF 21508
Dyneon™ PVDF 60512
PTFE PTFE PTFE PTFE
Teflon® 7A
Teflon® 7B
Teflon® 7C
Teflon® 8
PTFE/DuPont
VOLTALEF 302
PCTFE
PVDF
Dyneon™ PVDF 11008
PCTFE/Arkema
PVDF
Dyneon™ PVDF 6010
PVDF/Dyneon 3M
PVDF
Tensile Modulus (MPa)
Solef 11010
–
–
–
–
1400
–
–
–
–
2130
2400
576
895
420
1100
Yield Stress (MPa)
1020
–
–
–
–
43
–
–
–
–
52.9
56.8
18.3
27.9
19.9
34.8
33.3
Yield at Strain (%)
PVDF
–
–
–
–
7
–
–
–
–
8.4
7.2
11
9.4
14
11
9.4
Stress at Break (MPa)
Solef 11008
27.6
37.9
36.5
34.5
–
35–40
14–30
20–40
35–50
–
–
–
–
–
–
–
Strain at Break (%) – –
350– 600 100– 350
300
400
400
380
–
–
–
–
–
–
200– 600
–
–
N
120
N
N
N
N
N
20–50
–
–
–
–
–
–
–
N
Charpy Impact 23°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
220
97
250
150
N
150
110
150
Charpy Impact −30°C (kJ/m2)
–
–
–
–
–
80
–
–
–
–
48P
8.9
110P
65P
84P
48P
12
19
Charpy Notched Impact 23°C (kJ/m2)
8.2
–
–
–
–
–
–
–
–
–
3.9
3.1
4.1
3.7
3
3.4
3.4
3.6
Charpy Notched Impact −30°C (kJ/m2)
56
–
–
–
–
–
7
7
7
7
–
–
–
–
–
–
–
–
Relative Permitivity @1MHz
2300
–
–
–
–
–
–
0.2
0.2
–
–
–
–
–
–
–
–
–
Dissipation Factor @1MHz
PVDF
Description
–
–
–
–
0.01
–
–
–
–
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
Water Absorption (%)
Solef 1012
Name and Grade
11.9 Fluoropolymers (cont’d)
672 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:28 PM
Mckeen_Ch11.indd 673
PTFE PTFE
Teflon® 8A
Teflon® 8B
– – – – – –
PTFE PTFE PTFE PTFE PTFE PTFE PTFE PTFE PTFE PTFE PTFE PTFE PTFE PTFE, GF15 PTFE, GF25 PTFE, (graphite & Coke)25 PTFE, (graphite & Carbon)25 PTFE, Graphite15 PTFE, Bronze60 PTFE, Stainless Steel50
Algoflon® F5/S
Algoflon® F6
Algoflon® F7
Algoflon® F3140 X
Algoflon® S 111
Algoflon® S 121
Algoflon® S 131
Algoflon® DF 210
Algoflon® DF 230
Algoflon® DF 280X
Algoflon® DF 380
Algoflon® DF 381
Algoflon® DF 680X
Algoflon® 15GL
Algoflon® 25GL
Algoflon® 25CAR
Algoflon® 25 CAR B
Algoflon® 15GR
Algoflon® 60BZ
Algoflon® 50 INOX
–
–
–
–
–
–
–
–
–
–
–
–
–
–
PTFE
–
–
–
–
Algoflon® F5
PTFE/Solvay Solexis
PTFE
Teflon® 850-A
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
20
20
24
21
19
20
24
28
30
30
30
30
30
35
37
37
35
41
40
40
39
27.6
27.6
27.6
220
230
230
220
80
220
280
270
375
375
300
300
300
340
350
350
500
400
380
400
370
300
300
300
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
(Continued )
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
11: Tables of Selected ISO 10350 Properties 673
12/11/2007 6:21:28 PM
Mckeen_Ch11.indd 674
Tensile Modulus (MPa) 159 165
121 131
PTFE Modified PTFE PTFE PTFE PTFE PTFE PTFE, GF15 PTFE, GF15 PTFE, GF25 PTFE, (GF+PTFE)25 PTFE, CF10 PTFE, MD15 PTFE, Graphite10 PTFE, Bronze60
Dyneon™ TFM 1600
Dyneon™ TF 1750
Dyneon™ TF 1620
Dyneon™ TF 1641
Dyneon™ TF 1645
Dyneon™ TF 1105
Dyneon™ TF 4103
Dyneon™ CC603
Dyneon™ CC605
Dyneon™ CCM605
Dyneon™ CCX1029
Dyneon™ CC503
Dyneon™ CC622
Dyneon™ CC6467/S
245
121
93
97
650
600
600
600
600
650
650
PTFE Modified
Dyneon™ TFM 1705
650
PTFE Modified
Dyneon™ TFM 1700
PTFE/Dyneon 3M
Yield Stress (MPa)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Yield at Strain (%)
PTFE,Bronze55, Moly5
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Stress at Break (MPa)
Algoflon® 55BZ+5Mos
450 450
≥27.6 ≥27.6
16.5
19.3
19.3
27.6
15.2
17.2
20.7
20.7
27.6
110
220
250
280
300
230
280
375
400
450
450
≥27.6
>27.6
450
450
450
90
31.7
33
33
17
Strain at Break (%) –
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Impact 23°C (kJ/m2)
45
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
17
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact 23°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Relative Permitivity @1MHz
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Dissipation Factor @1MHz
PTFE, Coke25, Ceramic5
Description
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Water Absorption (%)
Algoflon® 25CAR+5CER
Name and Grade
11.9 Fluoropolymers (cont’d)
674 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:28 PM
Mckeen_Ch11.indd 675
217 97
PTFE, Carbon23, Graphite2 PTFE, Polyimide10 PTFE, PPS
Dyneon™ CC191-HE
Dyneon™ CCX6380
Dyneon™ CC085
PFA PFA PFA PFA PFA PFA Fluorinated PFA Fluorinated PFA Fluorinated PFA Fluorinated PFA Fluorinated
Teflon® C PFA 560
Teflon® C PFA 580
Teflon® PFA 340
Teflon® PFA 345
Teflon® PFA 350
Teflon® PFA 440 HP
Teflon® PFA 445 HP
Teflon® PFA 450 HP
Teflon® PFA 940 HP Plus
Teflon® PFA 950 HP Plus PFA PFA PFA PFA PFA
Neoflon™ AP-201
Neoflon™ AP-210
Neoflon™ AP-211SH
Neoflon™ AP-215SH
Neoflon™ AP-230
PFA/Diakin
PFA
Teflon® C PFA 510
PFA/Dupont
152
PTFE, GF15, Moly5
Dyneon™ CC174/N
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
69
176
PTFE, Stainless Steel50
Dyneon™ CC655
–
–
–
–
–
13.8
13.8
15.2
13.8
13.8
15.2
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
32
27.9
33.3
27.9
21.6
28.3
28.3
27.6
26.2
24.8
28
29
24.8
18.6
16.5
13.8
11
18.6
13.8
23.4
20.7
350
400
420
400
300
260
310
300
320
300
300
300
300
250
250
100
150
270
160
240
220
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
2.05
2.05
2.03
2.1
2.03
2.03
2.1
2.03
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
0.05
0.05
0.03
0.03
0.03
–
0.01
0.03
–
–
–
–
–
–
–
–
(Continued )
0.0003
0.0003
0.0001
0.0001
0.0001
0.0001
0.0006
0.0001
–
–
–
–
–
–
–
–
11: Tables of Selected ISO 10350 Properties 675
12/11/2007 6:21:29 PM
Mckeen_Ch11.indd 676
PFA PFA
Hyflon® MFA 640
Hyflon® MFA 720
PFA PFA PFA PFA PFA
Dyneon™ PFA 6505N
Dyneon™ PFA 6515N
Dyneon™ PFA 6525N
Dyneon™ PFA-Flex 8502 UHP
Dyneon™ PFA-Flex 8515 UHP FEP FEP FEP FEP FEP FEP
Teflon® FEP 100
Teflon® FEP 140
Teflon® FEP 160
Teflon® FEP 3100
Teflon® FEP 5100
Teflon® FEP 6100
FEP/DuPont
PFA
Dyneon™ PFA 6502N
PFA/Dyneon 3M
PFA
Hyflon® MFA 620
Tensile Modulus (MPa) –
–
–
–
–
–
–
–
–
–
–
–
550
550
550
550
Yield Stress (MPa)
PFA
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Yield at Strain (%)
Hyflon® MFA 1041
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Stress at Break (MPa)
PFA/Solvay Solexis
20.7
21.4
23.4
34.5
31
27.6
34
35
21
26
30
30
23
21
26
20
Strain at Break (%) 300
310
350
320
350
340
350
330
350
450
410
380
300
280
300
280
–
–
–
–
–
–
–
–
–
–
–
–
–
N
N
N
–
Charpy Impact 23°C (kJ/m2)
370
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
32.4
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact 23°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
–
≤0.0005 ≤0.0005 ≤0.003 ≤0.003
≤2.10 ≤2.10 2.02– 2.08 2.02– 2.08
2.03
2.1
2.1
2.05
2.05
0.00057
0.0005
0.001
0.0006
0.0006
–
≤0.0005
≤2.10
–
≤0.0005
–
0.0005
0.0005
0.002
–
≤2.10
–
2
2
2
–
Relative Permitivity @1MHz
–
Dissipation Factor @1MHz
PFA
Description
–
–
0.01
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Water Absorption (%)
Neoflon™ AP-231SH
Name and Grade
11.9 Fluoropolymers (cont’d)
676 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:29 PM
Mckeen_Ch11.indd 677
FEP
Teflon® FEP CJ95
FEP FEP FEP FEP FEP FEP
Neoflon™ NP-120
Neoflon™ NP-12X
Neoflon™ NP-130
Neoflon™ NP-20
Neoflon™ NP-30
Neoflon™ NP-40
FEP FEP FEP
Dyneon™ FEP 6303
Dyneon™ FEP 6307
Dyneon™ FEP 6322
ETFE ETFE ETFE ETFE
Neoflon™ EP-541
Neoflon™ EP-543
Neoflon™ EP-610
Neoflon™ EP-620
ETFE
Dyneon™ ETFE ET 5236 ETFE ETFE ETFE
Tefzel® 200
Tefzel® 207
Tefzel® 210
ETFE/DuPont
ETFE
Dyneon™ ETFE ET 6235
ETFE/Dyneon 3M
ETFE
Neoflon™ EP-521
ETFE/Diakin
FEP
Dyneon™ FEP 6301
PFA/Dyneon 3M
FEP
Neoflon™ NP-101
FEP/Diakin
FEP
Teflon® FEP CJ92
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
22
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
40
40
44.8
46
46
30.5
30.5
45
44.5
44.5
20
25
28
30
27
27
27
32.1
27
31
27
26
27.6
300
300
300
430
425
350
250
420
440
440
300
350
350
350
350
350
350
370
350
370
350
300
320
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
2.55
2.7
2.55
–
2.58
–
–
–
–
–
0.007
0.007
0.007
–
–
–
–
–
–
–
–
(Continued )
0.0054
0.009
0.0031
–
–
–
–
–
–
–
≤0.0007 ≤0.0009
≤2.15 ≤2.15
–
–
≤0.0007
≤2.15
–
–
–
–
–
–
–
–
0.01
–
–
–
–
–
–
–
–
0.0007
0.001
–
–
–
–
–
–
–
–
2.02
2.1
11: Tables of Selected ISO 10350 Properties 677
12/11/2007 6:21:29 PM
Mckeen_Ch11.indd 678
– –
ETFE ETFE ETFE, Conductive ETFE, Conductive ETFE ETFE ETFE ETFE
Tefzel® HT-2127
Tefzel® HT-2129
Tefzel® HT-2160
Tefzel® HT-2170
Tefzel® HT-2181
Tefzel® HT-2183
Tefzel® HT-2185
Tefzel® HT-2202
PCTFE
Neoflon™ M-400H ECTFE ECTFE ECTFE ECTFE ECTFE ECTFE
Halar 300
Halar 500
Halar 520
Halar 558
Halar 600
Halar 6014
ECTFE/Solvay Solexis
PCTFE
Neoflon™ M-300P
PCTFE/Diakin
–
ETFE, GF25
Tensile Modulus (MPa)
Tefzel® HT-2004
–
–
1650
1650
1650
1650
–
–
–
–
–
–
–
–
Yield Stress (MPa)
–
32.4
33.1
31
31
29
30
–
–
–
–
–
–
–
–
–
–
–
–
Yield at Strain (%)
ETFE
5.0
4.5
5.0
5.0
5.0
5.0
–
–
–
–
–
–
–
–
–
–
–
–
Stress at Break (MPa)
Tefzel® 750
45.5
49.3
48.3
48.3
45.5
53.8
36.5
34.5
34.5
41.4
42.1
42.1
27.6
34.5
34.5
37.9
82.7
37.9
Strain at Break (%) 330
290
200
200
260
250
180
130
250
300
300
300
200
200
300
300
9
300
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Impact 23°C (kJ/m2)
300
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
46.2
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact 23°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
–
2.57
2.595
2.5
2.5
2.59
2.6
–
–
–
2.55
2.55
2.55
–
–
–
–
–
–
2.55
Relative Permitivity @1MHz
–
0.017
0.018
0.013
0.013
0.013
0.014
–
–
–
0.0054
0.0072
0.06
–
–
–
–
–
–
0.0072
Dissipation Factor @1MHz
ETFE
Description
0.1
–
0.005
0.005
0.1
0.1
–
–
0.007
0.007
0.007
0.007
–
–
–
–
–
–
0.007
Water Absorption (%)
Tefzel® 280
Name and Grade
11.9 Fluoropolymers (cont’d)
678 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:29 PM
Mckeen_Ch11.indd 679
– –
ECTFE, Copolymer ECTFE, Copolymer
Halar 901
Halar 930 LC
HTE
Dyneon™ HTE 1705
THV THV THV THV
Dyneon™ THV™ 220 FP
Dyneon™ THV™ 500 FP
Dyneon™ THV™ 610 FP
Dyneon™ THV™ 815 FP
THV/Dyneon 3M
HTE
Dyneon™ HTE 1510
–
–
–
–
–
–
–
ECTFE, Copolymer
Halar 812
HTE/Dyneon 3M
1480
ECTFE, Copolymer
Halar 801
–
ECTFE
Halar 700
–
–
–
–
–
–
29
29.6
–
32
33.1
–
–
–
–
–
–
5.0
5.0
–
–
4.5
29
28
28
20
44
32
50
53.8
41.4
51.5
47.9
420
500
500
600
450
520
260
250
200
230
340
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
4.66
4.82
5.72
2.2
2.3
2.57
2.59
–
–
2.595
–
0.09
0.1
0.14
0.004
0.006
0.013
0.014
–
–
0.018
–
–
–
–
–
–
0.1
0.1
–
–
–
11: Tables of Selected ISO 10350 Properties 679
12/11/2007 6:21:30 PM
Mckeen_Ch11.indd 680
Victrex® 150FC30
PEEK, (CF+PTFE+Graphite)30
11200
22300
Victrex® 450CA30 PEEK, CF30
3500
22300
PEEK
Victrex® 450G
3500
Victrex® 150CA30 PEEK, CF30
PEEK
Victrex® 381G
3500
11400
PEEK
Victrex® 150G
16000
Victrex® 450GL30 PEEK, GF30
PEEK+PBI
Victrex® TL-60
11500
11400
PEEK+PBI
Victrex® TF-60V
5000
Victrex® 150GL30 PEEK, GF30
PEEK+PBI
Victrex® TU-60
PEEK/Victrex
11000
Vestakeep 4000 GF30 nf
PEEK, GF30
3500
Vestakeep 4000 G PEEK nf
*
*
*
*
*
100
100
105
*
*
*
*
95
*
*
*
*
*
5
5
5
*
*
*
*
5.3
137
220
224
155
156
–
–
–
110
150
90
165
*
140
1.8
1.8
1.7
2
1.9
34
31
22
1.1
1.9
2
2.5
*
2.5
–
–
–
–
–
N
N
N
15
25
25
70
N
45
55
Charpy Impact 23°C (kJ/m2)
*
Strain at Break (%) 2
–
–
–
–
–
–
–
–
–
–
–
75
N
45
55
Charpy Impact −30°C (kJ/m2)
*
Stress at Break (MPa) 210
–
5.4
–
8.9
–
8.2
8.2
–
3.5
5
3
10
6.5
8
9
Charpy Notched Impact 23°C (kJ/m2)
11500
Yield at Strain (%) *
–
–
–
–
–
–
–
–
–
–
–
9
6.5
7
8
Charpy Notched Impact −30°C (kJ/m2)
PEEK, PTFE10, Graphite10, CF10
Yield Stress (MPa) *
–
–
–
–
–
–
–
–
–
–
–
3.2
2.8
4.9
17
Relative Permitivity @1MHz
Vestakeep 4000 FC30 nf
Tensile Modulus (MPa) 20000
–
–
–
0.004
0.004
0.003
0.003
0.003
–
–
–
0.42
0.5
1.9
23
Dissipation Factor @1MHz
PEEK, CF30
Description
0.06
0.06
0.06
0.11
0.11
0.5
0.5
0.5
3.8
4.6
6.5
0.38
0.48
0.37
0.39
Water Absorption (%)
Vestakeep 4000 CF30 nf
PEEK/Degussa
Name and Grade
11.10 Miscellaneous High Temperature Plastics
680 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:30 PM
Mckeen_Ch11.indd 681
PEEK
PEEK, GF30
PEEK, CF30
Victrex® HT G22
Victrex® HT G22GL30
Victrex® HT G22CA30
PES
PES, GF20
PES, GF20
PES, GF30
PES, GF30
PES
PES
PES
PES
Ultrason® E 1010 NAT(cond.)
Ultrason® E 2010 G4 UN(dry)
Ultrason® E 2010 G4 UN(cond.)
Ultrason® E 2010 G6 UN(dry)
Ultrason® E 2010 G6 UN(cond.)
Ultrason® E 2010 NAT(dry)
Ultrason® E 2010 NAT(cond.)
Ultrason® E 3010 NAT(dry)
Ultrason® E 3010 NAT(cond.)
PES
PES
PES
PES, GF20
Radel A-100
Radel A-200
Radel A-300
Radel AG-320
PES/Solvay
PES
Ultrason® E 1010 NAT(dry)
PES/BASF
PEEK, (CF+PTFE+Graphite)30
Victrex® 450FC30
5690
2660
2600
2600
2700
–
2700
–
10200
–
7500
–
2700
–
–
–
–
10100
–
–
–
–
90
–
90
–
*
–
–
–
90
–
*
*
*
*
–
–
–
–
6.7
–
6.7
–
*
–
*
–
6.7
–
*
*
*
*
105
–
–
–
*
–
*
–
140
–
130
–
*
–
218
164
110
134
3.2
–
–
–
*
–
*
–
1.9
–
2.4
–
*
–
2
2.9
20
2.2
–
N
N
N
N
–
N
45
–
47
–
N
–
–
–
–
–
–
N
N
N
N
–
N
–
45
–
45
–
N
–
–
–
–
–
–
6.8
6.8
6.8
7.5
–
7
–
8
–
6.5
–
6.5
–
–
–
–
–
–
7.5
7.5
7.5
7.5
*
7
*
8
*
8
*
7
*
–
–
–
–
3.88
3.54
3.54
3.54
3.8
–
3.8
*
4.3
*
4.2
*
3.8
*
–
–
–
–
–
–
–
–
*
2.1
*
2.1
*
1.5
*
1.7
*
2.1
–
–
–
0.06
(Continued )
0.0081
0.0056
0.0056
0.0056
140
*
140
*
100
*
100
*
140
*
–
–
0.0035
–
11: Tables of Selected ISO 10350 Properties 681
12/11/2007 6:21:30 PM
Mckeen_Ch11.indd 682
PPS, GF40
PPS, GF30
PPS, (GF+MD)65
PPS, (GF+MD)65
Primef 4010
Primef 5084
Primef 7002
Primef 7010
PPS, GF40
PPS, GF60
PPS, (GF+MD)60
PPS, (GF+MD)65
PPS, GF65
PPS, (GF+GB)40
PPS, (GF+MD)60
PPS, CF15
PPS, PTFE5, GF40
PPS, CF30
PPS, GF40
PPS, GF45
PPS, GF42
Tedur® L 9107-1
Tedur® L 9113-2
Tedur® L 9200-1
Tedur® L 9214-1
Tedur® L 9217-1
Tedur® L 9300-1
Tedur® L 9310-4
Tedur® L 9400-1
Tedur® L 9401-1
Tedur® L 9404-1
Tedur® L 9510-1
Tedur® L 9511
Tedur® L 9512
PPS/Albis
PPS, GF40
Primef 4002
Tensile Modulus (MPa)
PPS/Solvay
15500
16500
14000
26000
14500
13500
11000
13500
19000
22000
17000
22000
14500
21000
20000
12000
14000
13000
Yield Stress (MPa)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Yield at Strain (%)
PES, GF30
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Stress at Break (MPa)
Radel AG-360
180
180
180
170
165
135
50
170
130
145
180
170
180
160
160
140
180
160
120
Strain at Break (%) 1.4
1.4
1.7
0.6
1.5
1
0.5
1.8
0.8
0.9
1.7
1.4
1.8
1.2
1.2
1.8
1.7
1.6
3
40
38
45
22
38
20
8.5
40
25
25
35
28
55
–
–
–
–
–
–
–
Charpy Impact 23°C (kJ/m2)
1.9
40
38
45
22
–
20
8.5
40
–
25
35
28
55
–
–
–
–
–
–
–
Charpy Impact −30°C (kJ/m2)
130
8
7.5
8.5
5
7.5
5.5
1.5
7.5
7
6
8
7.5
9
–
–
–
–
–
–
–
Charpy Notched Impact 23°C (kJ/m2)
–
8
7.5
8.5
5
–
5.5
1.5
7.5
–
6
8
7.5
9
–
–
–
–
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
4.9
4.9
–
3.9
3.9
4.2
4.17
Relative Permitivity @1MHz
8630
–
–
–
–
–
–
–
–
–
–
–
–
–
90
90
–
20
20
0.003
0.0094
Dissipation Factor @1MHz
PES, GF30
Description
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Water Absorption (%)
Radel AG-330
Name and Grade
11.10 Miscellaneous High Temperature Plastics (cont’d)
682 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:30 PM
Mckeen_Ch11.indd 683
PPS, (GF+MD)60
PPS, MD55
PPS, MD50
PPS, (GF+MD)65
Tedur® L 9523
Tedur® L 9530
Tedur® L 9560
Tedur® P 9007
PPS
PPS
PPS
PPS
PPS
PPS, GF15
PPS, GF30
PPS, GF30
PPS, GF40
PPS, GF40
PPS, GF40
PPS, GF40
PPS, GF40
PPS, GF40
PPS, GF40
PPS, PTFE, GF40
PPS, (GF+MD)53
PPS, (GF+MD)53
PPS, (GF+MD)65
PPS, (GF+MD)65
PPS, (GF+MD)60
PPS, (GF+MD)65
PPS, (GF+MD)65
Fortron 0203
Fortron 0203HS
Fortron 0205
Fortron 0214
Fortron 0320
Fortron 1115L0
Fortron 1130L4
Fortron 1131L4 ITT
Fortron 1140E7
Fortron 1140EC
Fortron 1140L0
Fortron 1140L4
Fortron 1140L6
Fortron 1140L7
Fortron 1141L4
Fortron 1342L4
Fortron 4184L4
Fortron 4184L6
Fortron 4332D4
Fortron 4665B6
Fortron 6160B4
Fortron 6165A4
Fortron 6165A6
PPS/Ticona
PPS, (GF+MD)60
Tedur® L 9521-1
19000
19000
17300
17300
21500
16600
16600
14400
15500
14500
14700
14700
–
–
15700
12200
12000
7700
–
3800
4000
4200
4200
19000
8500
10000
20000
19000
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
130
130
145
110
145
165
165
165
195
170
195
195
185
170
150
165
170
120
90
90
66
33
33
140
65
55
115
120
1.2
1.2
1
1.2
1
1.4
1.4
1.6
1.9
1.6
1.9
1.9
1.9
1.4
1.2
1.9
1.9
2
8
3
2
1
1
1
0.8
0.7
0.9
1
20
20
27
18
–
29
29
44
53
–
53
53
–
–
28
42
34
32
–
–
–
–
–
23
11
7
18
14
20
20
27
18
–
29
29
–
53
–
53
53
–
–
28
42
34
–
–
–
–
–
–
23
11
7
18
14
7
7
7
6
–
7
7
8.5
12
–
10
10
10
–
7
8
9
5
–
–
–
–
–
7.5
2.5
1.2
4
4.5
7
7
7
6
–
7
7
8.5
12
–
10
10
10
–
7
8
9
–
–
–
–
–
–
7.5
2.5
1.2
4
4.5
5.6
5.6
4.9
5.3
–
4.7
4.7
–
–
–
4.1
4.6
–
4.1
4.7
–
–
–
4.6
–
–
4
4
–
–
–
–
–
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
–
–
–
–
–
(Continued )
20
20
10
20
–
20
20
–
–
–
20
62
–
20
200
–
–
–
11
–
–
–
84
–
–
–
–
–
11: Tables of Selected ISO 10350 Properties 683
12/11/2007 6:21:30 PM
Mckeen_Ch11.indd 684
PPS, (GF+MD)50
PPS, GF20
PPS, GF40
PPS, GF40
PPS
PPS
Fortron 6850L6
Fortron MT 9120L4
Fortron MT 9140L4
Fortron MT 9140L6
Fortron MT 9203HS
Fortron MT 9205C4
PPSU
PPSU
PPSU
PPSU
PPSU
PPSU
PPSU
Radel R-4300
Radel R-5000
Radel R-5100
Radel R-5500
Radel R-5700
Radel R-7000 A
Radel R-7200
PPSU/Solvay
PPS, (GF+MD)51
Tensile Modulus (MPa)
Fortron 6450A6
2350
2790
2300
2300
2300
2300
2340
4000
4200
–
–
–
18500
–
Yield Stress (MPa)
–
–
–
–
–
–
–
70
–
–
–
–
–
–
–
–
Yield at Strain (%)
PPS, PTFE, GF30
–
–
–
–
–
–
7.2
–
–
–
–
–
–
–
–
Stress at Break (MPa)
Fortron 6345L4
–
76
–
–
–
–
–
65
30
190
190
120
125
90
150
Strain at Break (%) –
20
–
–
–
–
–
2
1
1.8
1.8
1.5
1
1.5
1.9
N
N
N
N
N
N
N
–
–
48
48
–
16
18
–
–
Charpy Impact 23°C (kJ/m2)
1
–
–
–
–
N
N
N
–
–
–
–
–
16
–
–
–
Charpy Impact −30°C (kJ/m2)
115
–
–
–
–
58
58
12
–
–
9
9
–
4
6
–
–
Charpy Notched Impact 23°C (kJ/m2)
–
–
–
–
–
25
25
1
–
–
–
–
–
4
–
–
–
Charpy Notched Impact −30°C (kJ/m2)
–
–
–
–
–
–
–
–
3.2
4
–
–
–
–
–
–
–
Relative Permitivity @1MHz
–
–
–
–
–
–
–
–
–
–
–
–
–
10
–
–
–
Dissipation Factor @1MHz
PPS, PTFE, (GF+MD)65
Description
–
–
–
–
–
–
–
0.02
0.02
0.02
0.02
0.02
0.02
0.02
–
0.02
Water Absorption (%)
Fortron 6165D8
Name and Grade
11.10 Miscellaneous High Temperature Plastics (cont’d)
684 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:31 PM
Mckeen_Ch11.indd 685
PSU, GF20
PSU, GF30
PSU, GF30
PSU
PSU
PSU
PSU
Ultrason® S 2010 G4 UN (cond.)
Ultrason® S 2010 G6 UN (dry)
Ultrason® S 2010 G6 UN (cond.)
Ultrason® S 2010 NAT (dry)
Ultrason® S 2010 NAT (cond.)
Ultrason® S 3010 NAT (dry)
Ultrason® S 3010 NAT (cond.)
PSU, GF10
PSU, GF20
PSU, GF30
PSU
PSU
PSU
PSU
PSU, GF10
PSU, GF22
PSU, GF40
PSU, GF30
PSU, MD
Udel GF-110
Udel GF-120
Udel GF-130
Udel P-1700
Udel P-1720
Udel P-3500
Udel P-3703
Mindel B-310
Mindel B-322
Mindel B-340
Mindel B-360
Mindel B-390
PSU/Solvay
PSU, GF20
PPSU
Ultrason® S 2010 G4 UN (dry)
PSU/BASF
Radel R-7300
2760
–
–
–
–
2480
2480
2480
2480
7380
5170
3660
2600
–
2600
–
9600
–
7000
–
2800
–
–
–
–
–
–
–
–
–
–
–
–
80
–
80
–
*
–
*
–
–
–
–
–
–
–
–
–
–
–
–
–
–
5.7
5.7
*
*
–
–
–
121
124
103
88
–
–
–
–
108
97
78
*
–
*
–
1.8
–
2.2
–
–
–
1.9
1.3
2.5
3.3
–
–
–
–
2
3
4
N
–
N
–
33
–
37
–
–
–
–
–
38
–
–
–
N
28
–
–
N
–
N
–
–
–
–
–
–
–
–
–
36
–
–
–
–
N
31
–
–
5.5
–
5.5
–
7
6
–
–
–
–
6.6
–
–
–
11
5.3
5.8
–
–
–
*
–
*
–
–
–
*
–
–
–
–
5.7
–
–
–
–
5.2
5.3
–
–
–
*
–
*
–
–
–
*
–
3.4
3.8
3.9
3.7
3.34
–
3.03
3.06
3.03
3.7
3.5
3.4
3.1
*
3.1
*
3.7
*
3.5
*
–
–
–
–
–
–
–
–
–
–
–
–
–
*
0.8
*
0.8
*
0.5
*
0.6
–
(Continued )
0.007
0.01
0.01
0.009
0.01
–
0.0034
0.0056
0.003
0.005
0.005
0.005
64
*
64
*
60
*
60
*
–
11: Tables of Selected ISO 10350 Properties 685
12/11/2007 6:21:31 PM
686
Mckeen_Ch11.indd 686
– 0.006 3.24 – – – – 6.9 69 – – PSU, GF10 Mindel S-1010
3370
– 0.007 3.5 8.7 7.8 N N – – – – PSU Mindel S-1000
2410
– 0.006 3.7 – – – – 5 68 – – 3790
– 0.003
0.009 3.7
3.8 –
– –
– –
– –
– 2
2.5 121
66 –
PSU, MD25
Description
Tensile Modulus (MPa)
Mindel M-825
Yield Stress (MPa)
–
Yield at Strain (%)
–
Stress at Break (MPa)
Name and Grade
11.10 Miscellaneous High Temperature Plastics (cont’d)
Strain at Break (%)
–
Charpy Impact 23°C (kJ/m2)
4480
Charpy Impact −30°C (kJ/m2)
8970
Charpy Notched Impact 23°C (kJ/m2)
PSU, MD40
Charpy Notched Impact −30°C (kJ/m2)
PSU, GF30
Relative Permitivity @1MHz
Mindel M-800
Dissipation Factor @1MHz
Mindel B-430
Water Absorption (%)
–
The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:21:31 PM
12 Tables of Selected Thermal Properties 12.1 Background This contains data in tabular form. The tables in this section follow one or more of the following standards include where available: • ASTM D746-04 Standard Test Method for Brittleness Temperature of Plastics and Elastomers by Impact • ISO 812:2006 Rubber, vulcanized or thermoplastic—Determination of low-temperature brittleness • ISO 974:2000 Plastics—Determination of the brittleness temperature by impact • ASTM D696-03 Standard Test Method for Coefficient of Linear Thermal Expansion of Plastics Between −30°C and 30°C With a Vitreous Silica Dilatometer • ASTM E831-06 Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis • ISO 11359-1: Plastics—Thermomechanical analysis (TMA)—Part 1: General principles • ISO 11359-2: Plastics—Thermomechanical analysis (TMA)—Part 2: Determination of coefficient of linear thermal expansion and glass transition temperature • ISO 75-1: Plastics—Determination of temperature of deflection under load—Part 1: General test method • ISO 75-2: Plastics—Determination of temperature of deflection under load—Part 2: Plastics and ebonite • ISO 75-3: Plastics—Determination of temperature of deflection under load—Part 3: Highstrength thermosetting laminates and long-fiber-reinforced plastics • ISO 6603-2: Plastics—Determination of puncture impact behavior of rigid plastics—Part 2: Instrumented impact testing
• ASTM E1356-03 Standard Test Method for Assignment of the Glass Transition Temperatures by Differential Scanning Calorimetry • ISO 3146:2000 Plastics—Determination of melting behavior (melting temperature or melting range) of semi-crystalline polymers by capillary tube and polarizing-microscope methods • ASTM C351-92b(1999) Standard Test Method for Mean Specific Heat of Thermal Insulation • ASTM C177-04 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus • ISO 8302:1991 Thermal insulation—Determination of steady-state thermal resistance and related properties—Guarded hot plate apparatus • ASTM D1525-06 Standard Test Method for Vicat Softening Temperature (VST) of Plastics • ISO 306:2004 Plastics—Thermoplastic materials—Determination of Vicat softening temperature (VST) The tables are grouped in Sections 12.2–12.10 in the same manner as in the earlier chapters of this book. The descriptions of the plastics are structured in two parts. The first part is the base polymers that are abbreviated as in Table 11.1.1. The fillers are listed next, and they are listed or abbreviated as those shown in Table 11.1.2, and are followed by a number indicating weight percent. Occasionally, the manufacturer only gives a combined weight, and in these cases the fillers are grouped in parentheses followed by the combined weight percent. These tables contain several notations besides numerical data. These are: * Inapplicable property or a property not relevant to this material. – Missing value, not applicable.
687
Mckeen_Ch12.indd 687
12/11/2007 6:24:35 PM
Mckeen_Ch12.indd 688
PS PS PS PS PS PS-I PS-I PS-I PS-I PS-I PS-I PS-I PS-I PS-I PS-I PS-I PS-I PS-I
EDISTIR N 1840
EDISTIR N 1910
EDISTIR N 2380
EDISTIR N 2560
EDISTIR N 2982
EDISTIR R 321P
EDISTIR R 540E
EDISTIR R 850E
EDISTIR RC 3
EDISTIR RC 600
EDISTIR RCL 600
EDISTIR RK
EDISTIR RK 451G
EDISTIR RK 5512G
EDISTIR RKL
EDISTIR RT 441M
EDISTIR RT 461F
EDISTIR SR 550 PS PS PS PS PS
STYRON 457
STYRON 485
STYRON 6335
STYRON 634
STYRON 637
Polystyrene/DOW
PS
EDISTIR N 1782
Polystyrene/Polimeri Europa
Name and Grade
12.2 Styrenic Plastics Description
–
–
–
–
–
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
–
–
–
–
–
88
97
92
93
95
95
93
95
95
95
95
96
87
100
92
102
83
89
102
75
80
73
73
78
68
75
72
74
74
74
74
73
73
74
72
73
70
80
75
80
69
71
80
Glass Transi- HDT @ Melt tion Tempera- 1.8 MPa Point (°C) ture (°C) (°C)
93
90
89
80
88
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
HDT @ 0.45 MPa (°C)
92
95
93
87
94
83
95
89
89
89
89
89
90
90
90
91
92
85
100
93
101
85
88
101
Vicat Softening Temperature (°C)
0.8
0.8
0.4
0.9
0.8
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.7
0.7
0.7
0.7
0.7
0.7
CLTE Parallel (×10E 4/°C)
0.7
0.7
0.7
0.7
0.7
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
CLTE Normal (×10E 4/°C)
688 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:35 PM
Mckeen_Ch12.indd 689
PS PS PS PS PS PS
STYRON 660
STYRON 678E
STYRON 686E
STYRON A-TECH 1120
STYRON A-TECH 1175
STYRON A-TECH 1200
PS-SY, MD22 PS-SY, GF25 PS-SY, GB30 PS-SY, GF30 PS-SY, GF30 PS-SY, GF30 PS-SY, GF40
Edgetek sPS® QT-22MN/000 HI
Edgetek sPS® QT-25GF/000 FR
Edgetek sPS® QT-30GB/000
Edgetek sPS® QT-30GF/000
Edgetek sPS® QT-30GF/000 FR
Edgetek sPS® QT-30GF/000 FR HC
Edgetek sPS® QT-40GF/000 ASA ASA ASA ASA ASA
Luran® S 757 G
Luran® S 757 R
Luran® S 776 S
Luran® S 776 SE
Luran® S 777 K
ASA/BASF
PS-SY, GF22
Edgetek sPS® QT-22GF/000 FR
PS-SY, GF10, GB10
Edgetek sPS® QT-15GF-15GB/000 PS-SY, GB20
PS-SY, GF10, MD10
Edgetek sPS® QT-10GF-10MN/000
PS-SY, GF20
PS-SY, GF10
Edgetek sPS® QT-10GF/000 FR
Edgetek sPS® QT-20GB/000
PS-SY, GF10
Edgetek sPS® QT-10GF/000
Edgetek sPS® QT-20GF/000
PS-SY, GB10, MD10
Edgetek sPS® QT-10GB-10MN/000
Polystyrene/PolyOne
PS
STYRON 648
*
*
*
*
*
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
–
–
–
–
–
–
–
*
*
*
*
*
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
97
96
96
97
96
240
225
220
240
200
215
190
215
220
190
210
210
190
210
190
66
68
69
83
71
83
83
101
101
101
101
101
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
79
8
80
96
82
95
96
97
92
92
98
97
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
85
–
88
100
86
100
100
0.95
0.95
0.95
0.95
0.95
–
0.3
0.3
0.18
0.3
0.31
0.63
0.31
0.25
0.29
0.19
–
–
0.29
–
0.9
0.9
0.9
0.8
0.8
0.8
0.8
(Continued )
*
*
*
*
*
–
0.54
0.54
0.45
0.4
0.53
0.53
0.51
0.49
0.42
0.46
–
–
0.52
–
0.7
0.7
0.7
0.7
0.8
0.6
0.7
12: Tables of Selected Thermal Properties 689
12/11/2007 6:24:35 PM
Mckeen_Ch12.indd 690
ASA ASA ASA ASA ASA, GF15
Luran® S 796 M
Luran® S 797 S
Luran® S 797 SE
Luran® S KR 2858 G3
ASA ASA ASA
POLYMAN® (ASA) E 1007 H
POLYMAN® (ASA) E/M11010
POLYMAN® (ASA) M/MI 2010
SAN
Lustran SAN® 35
SAN SAN, GF25
POLYMAN® (SAN) 29/10
POLYMAN® FSAN 35 GF SAN SAN SAN SAN SAN SAN, GF35 SAN SAN
Luran® 358 N
Luran® 358 N Crystal Clear
Luran® 368 R
Luran® 368 R Crystal Clear
Luran® 378 P
Luran® 378 P G7
Luran® 388 S
Luran® KR 2556
SAN/BASF
SAN
POLYMAN® (SAN) 24/5
SAN/A. SCHULMAN
SAN
Lustran SAN® 32
SAN/LANXESS
ASA
POLYMAN® (ASA) E 1006
ASA/A. SCHULMAN
ASA
Luran® S 778 TE
Description
Luran® S 778 T
Name and Grade
12.2 Styrenic Plastics (cont’d)
*
*
*
*
*
*
*
*
*
*
*
*
*
–
–
–
–
*
*
*
*
*
*
*
*
*
*
*
*
*
*
106
106
106
–
–
103
103
103
103
*
*
*
*
*
*
104
99
105
98
98
98
98
98
*
100
98
102
101
84
87
*
71
110
95
95
95
103
103
Glass Transi- HDT @ Melt tion Tempera- 1.8 MPa Point (°C) ture (°C) (°C)
110
103
108
103
102
102
102
102
–
103
102
104
103
96
104
105
86
115
100
100
100
106
106
HDT @ 0.45 MPa (°C)
120
107
109
107
106
106
106
106
112
102
101
103
103
96
102
–
100
115
90
90
90
104
104
Vicat Softening Temperature (°C)
0.7
0.7
0.25
0.7
0.7
0.7
0.7
0.7
–
0.7
0.7
0.6
0.62
0.9
0.9
0.9
0.9
0.3
0.95
0.95
0.95
0.95
0.95
CLTE Parallel (×10E 4/°C)
*
*
*
*
*
*
*
*
–
0.7
0.7
0.6
0.62
0.9
0.9
0.9
0.9
*
*
*
*
*
*
CLTE Normal (×10E 4/°C)
690 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:36 PM
Mckeen_Ch12.indd 691
SAN SAN SAN SAN SAN SAN
KOSTIL B 266(1)
KOSTIL B 361 R11
KOSTIL B 361 R42
KOSTIL B 365(0)
KOSTIL B 366(1)
KOSTIL C 266(1)
SAN SAN SAN SAN SAN SAN SAN SAN
TYRIL 125
TYRIL 790
TYRIL 867 EUV
TYRIL 867E
TYRIL 880
TYRIL 880B
TYRIL 905
TYRIL 905 UV ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS
MAGNUM 1040
MAGNUM 2620
MAGNUM 2630
MAGNUM 2642
MAGNUM 275
MAGNUM 3325MT
MAGNUM 3404
MAGNUM 3404 “Smooth”
MAGNUM 3416SC
MAGNUM 342EZ
MAGNUM 344CC
ABS/DOW
SAN
TYRIL 100
SAN/DOW
SAN
KOSTIL B 265(0)
SAN/Polimeri Europa
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
*
*
*
*
*
*
*
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
106
105
105
–
106
106
106
80
80
108
101
101
101
85
80
84
82
80
–
100
88
87
–
101
101
88
88
86
86
86
82
85
86
86
94
89
–
–
104
–
95
87
93
95
93
–
–
100
99
–
–
–
100
98
–
–
–
–
–
–
–
96
94
108
102
100
101
99
95
99
101
98
102
104
106
105
104
104
101
107
104
106
105
105
100
101
105
105
–
0.78
–
–
0.7
–
0.79
0.78
1
1.02
0.8
0.4
0.4
0.57
0.61
0.5
0.5
0.5
0.63
0.58
0.7
0.7
0.7
0.7
0.7
0.7
0.7
(Continued )
–
–
–
–
0.65
–
–
–
–
–
–
0.6
0.6
–
–
0.6
0.6
0.6
–
–
–
–
–
–
–
–
–
12: Tables of Selected Thermal Properties 691
12/11/2007 6:24:36 PM
Mckeen_Ch12.indd 692
ABS ABS ABS ABS ABS
MAGNUM 9555
MAGNUM 9575
MAGNUM AG 700
MAGNUM FG 960
ABS
MAGNUM 545
MAGNUM 941
ABS
MAGNUM 541
ABS
ABS
MAGNUM 5200
MAGNUM 9030
ABS
MAGNUM 3904 “Smooth”
ABS
ABS
MAGNUM 3904
MAGNUM 9020
ABS
MAGNUM 3616
ABS
ABS
MAGNUM 358HP
MAGNUM 9010
ABS
MAGNUM 357HP
ABS
ABS
MAGNUM 3525
MAGNUM 8434
–
ABS
MAGNUM 3513
ABS
ABS
MAGNUM 3504
ABS
ABS
MAGNUM 3490
MAGNUM 555
ABS
MAGNUM 348
MAGNUM 8391
–
ABS
MAGNUM 347EZ
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
ABS ABS
MAGNUM 344HP
Description
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
85
83
78
81
80
84
82
82
102
95
82
81
81
74
97
97
95
85
90
101
100
101
82
80
77
100
83
Glass Transi- HDT @ Melt tion Tempera- 1.8 MPa Point (°C) ture (°C) (°C)
MAGNUM 3453
Name and Grade
12.2 Styrenic Plastics (cont’d)
95
91
93
93
93
93
95
95
–
–
95
90
90
88
–
–
–
102
104
–
103
104
95
89
88
–
91
HDT @ 0.45 MPa (°C)
99
96
97
98
98
99
101
101
100
92
98
94
94
93
97
97
107
103
109
101
99
100
101
94
94
97
97
Vicat Softening Temperature (°C)
0.79
0.74
0.92
0.91
0.8
1
1.02
0.92
–
–
0.79
0.79
0.79
0.79
–
–
0.8
–
0.8
–
0.8
0.7
0.97
0.78
0.76
0.9
0.78
CLTE Parallel (×10E 4/°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
0.6
–
–
–
0.6
–
–
–
–
–
–
CLTE Normal (×10E 4/°C)
692 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:36 PM
Mckeen_Ch12.indd 693
ABS ABS, GF15 ABS, GF20 ABS, GF15 ABS ABS, GB30 ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS
POLYFLAM® RABS 90000 UV6
POLYFLAM® RABS 90350 UV5
POLYFLAM® RABS 90950 UV5
POLYFLAM® RABS 92000 UV5
POLYMAN® (ABS) E/HI
POLYMAN® (ABS) FABS 30 GB
POLYMAN® (ABS) HH
POLYMAN® (ABS) HH 2
POLYMAN® (ABS) HH 3
POLYMAN® (ABS) HH 3 D
POLYMAN® (ABS) LC 145
POLYMAN® (ABS) LC 165
POLYMAN® (ABS) LC 185 A
POLYMAN® (ABS) M/AQ
POLYMAN® (ABS) M/HI-A
POLYMAN® (ABS) M/HI-G
POLYMAN® (ABS) M/HI-W
POLYMAN® (ABS) M/MI-A 40
POLYMAN® (ABS) M/MI-A K1452
POLYMAN® (ABS) M/SHI
POLYMAN® (ABS) M/TK
POLYMAN® (ABS) M/TK-A
POLYMAN® (ABS) M/TK-HH
POLYMAN® (ABS) NWB/HI ABS ABS
Lustran ABS® E401
Lustran ABS® H604
ABS/LANXESS
ABS
ABS
POLYFLAM® RABS 90000 UV5
ABS/A. SCHULMAN
MAGNUM HPC 952
–
–
–
–
*
–
*
*
–
*
–
*
*
*
*
*
*
*
–
–
–
*
–
–
–
*
–
–
–
–
103
116
105
–
105
105
–
106
–
105
116
105
105
105
118
115
–
–
–
102
115
–
–
115
–
–
98
94
80
102
92
–
90
92
*
95
88
91
98
95
99
101
104
105
104
103
93
88
88
91
77
80
80
83
102
100
91
106
96
96
94
96
–
101
93
95
102
101
–
104
109
110
109
108
102
93
102
98
92
85
92
94
102
99
93
105
98
98
94
97
95
101
90
94
103
96
102
100
110
110
110
108
98
92
105
94
93
84
96
98
0.8
0.9
–
0.8
0.8
–
0.8
0.8
–
0.8
–
0.8
0.8
0.8
0.8
0.8
0.8
0.8
–
–
–
0.8
–
–
–
0.7
–
0.82
(Continued )
–
–
–
0.8
0.8
–
0.8
0.8
–
0.8
–
0.8
0.8
0.8
0.8
0.8
0.8
0.8
–
–
–
0.8
–
–
–
0.7
–
–
12: Tables of Selected Thermal Properties 693
12/11/2007 6:24:36 PM
Mckeen_Ch12.indd 694
ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS, GF16 ABS
Lustran ABS® H607AS
Lustran ABS® H701
Lustran ABS® H702
Lustran ABS® H802
Lustran ABS® H950
Lustran ABS® M201AS
Lustran ABS® M202AS
Lustran ABS® M203FC
Lustran ABS® M301AS
Lustran ABS® M301FC
Lustran ABS® M305
Novodur® P2H-AT
Novodur® P2HE
Novodur® P2HGV
Novodur® P2M-AT
SBC SBC SBC
Styrolux® 3G 55
Styrolux® 656 C
Styrolux® 684 D ABS+PA6 ABS+PC ABS+PC ABS+PC
POLYFLAM® (ABS/PA) RMMK 125
POLYFLAM® RMMB 40300
POLYFLAM® RMMB 4070
POLYFLAM® RMMB 4070 F FR 4
Styrenic Blends/A. SCHULMAN
SBC
Styrolux® 3G 46
Styrenic Blends/A. SCHULMAN
ABS ABS
Lustran ABS® H605
Description
Lustran ABS® H606LS
Name and Grade
12.2 Styrenic Plastics (cont’d)
–
–
–
–
–
–
–
–
*
*
*
*
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
114
91
84
60
65
67
51
58
93
102
96
93
94
96
96
94
94
96
105
101
99
99
96
98
98
Glass Transi- HDT @ Melt tion Tempera- 1.8 MPa Point (°C) ture (°C) (°C)
134
102
118
113
75
77
62
75
97
106
100
97
98
100
100
98
98
100
112
107
104
105
101
103
102
HDT @ 0.45 MPa (°C)
140
108
100
156
59
63
35
51
98
105
99
98
99
99
100
99
100
98
113
109
104
104
100
101
10
Vicat Softening Temperature (°C)
–
–
–
–
0.75
0.75
0.75
–
1
0.4
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.8
0.7
0.8
0.8
0.9
0.8
0.8
–
CLTE Parallel (×10E 4/°C)
–
–
–
–
*
*
*
–
–
0.8
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
CLTE Normal (×10E 4/°C)
694 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:37 PM
Mckeen_Ch12.indd 695
ABS+PC ABS+PC ABS+PA6 ABS+PC ABS+PC ABS+PC ABS+ASA ABS+ASA ABS+PA6, GF20
POLYFLAM® RMMB 60300
POLYFLAM® RMMB 60500
SCHULABLEND® (ABS/PA) M/MK
SCHULABLEND® (PC/ABS) M/MB 3
SCHULABLEND® (PC/ABS) M/MB 5
SCHULABLEND® (PC/ABS) M/MB 6
SCHULABLEND® (PC/ASA) WR 5
SCHULABLEND® (PC/ASA) WR 5 UV
SCHULABLEND® ABS/PA) M/MK 20 GF
ASA+PC ASA+PC ASA+PC ABS+PA6, GF8 ABS+PA6, GF20 ABS+PA6, GF30 ABS+PA6 ABS+PA6 ABS+PA6 ABS+PA6 ABS+PA6
Luran® S KR 2863 C
Luran® S KR 2864 C
Luran® S KR 2866 C
Terblend® N NG 02
Terblend® N NG 04
Terblend® N NG-06
Terblend® N NM-11
Terblend® N NM-12
Terblend® N NM-13
Terblend® N NM-19
Terblend® N NMX04 ABS+PC ABS+PA6
Lustran ABS® H801
Triax® 1120
Styrenic Blends/Lanxess
ASA+PC
Luran® S KR 2861/1 C
Styrenic Blends/BASF
ABS+PC
POLYFLAM® RMMB 4070 HF
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
*
*
*
*
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
*
*
*
–
141
141
141
141
–
–
–
–
–
68
99
72
65
58
66
65
107
100
80
102
105
109
106
98
97
110
105
99
101
65
94
95
86
91
106
97
85
80
88
85
188
164
105
113
124
130
125
118
130
130
125
105
179
93
118
107
97
102
105
97
102
94
105
102
120
114
108
110
120
130
120
111
110
130
125
115
128
106
120
106
101
1.05
0.8
1
1
1
0.9
1
–
0.4
0.6
0.9
0.8
0.8
0.8
–
–
–
–
–
–
–
–
–
–
(Continued )
1.15
–
–
–
–
–
–
–
–
–
*
*
*
*
–
–
–
–
–
–
–
–
–
–
12: Tables of Selected Thermal Properties 695
12/11/2007 6:24:37 PM
Mckeen_Ch12.indd 696
ABS+PA6 ABS+PA6, GF15 ABS+PA6 ABS+PA6
Triax® 1220 S
Triax® DP 3155
Triax® KU2-3050
Description
Triax® 1315 GF
Name and Grade
12.2 Styrenic Plastics (cont’d)
–
–
–
–
–
–
–
–
68
80
95
64
Glass Transi- HDT @ Melt tion Tempera- 1.8 MPa Point (°C) ture (°C) (°C)
91
175
175
91
HDT @ 0.45 MPa (°C)
102
163
112
97
Vicat Softening Temperature (°C)
1.05
0.7
0.4
1.05
CLTE Parallel (×10E 4/°C)
1.15
0.9
1.2
1.15
CLTE Normal (×10E 4/°C)
696 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:37 PM
Mckeen_Ch12.indd 697
POM, Z POM POM, RF5 POM POM+Imod POM+Imod POM POM POM POM POM POM, CF POM POM POM POM, Z20 POM, Z POM POM POM POM+Imod POM, Z POM, GF10 POM
Delrin® 100 NC010
Delrin® 100KM NC000
Delrin® 100P NC010
Delrin® 100ST NC010
Delrin® 100T NC010
Delrin® 107 NC010
Delrin® 111P NC010
Delrin® 1260 NC010
Delrin® 127UV NC010
Delrin® 150 NC010
Delrin® 300AS BK000
Delrin® 311 DP NC010
Delrin® 460 NC010
Delrin® 460E NC010
Delrin® 500AF
Delrin® 500AL NC010
Delrin® 500CL NC010
Delrin® 500MP NC010
Delrin® 500P NC010
Delrin® 500T NC010
Delrin® 500TL NC010
Delrin® 510GR NC000
Delrin® 511P NC010
Description
DeIrin® 100AL NC010
Acetal homopolymer/DuPont
Name and Grade
12.3 Polyethers
178
178
178
178
178
178
178
178
178
168
168
178
166
178
178
168
178
178
178
178
179
178
178
178
Melt Point (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
110
164
104
80
95
100
90
97
100
92
95
105
140
100
95
95
100
100
80
60
95
100
100
94
HDT @ 1.8 MPa (°C)
165
174
165
155
160
163
160
165
165
165
155
165
155
165
165
155
165
165
160
100
160
–
165
165
HDT @ 0.45 MPa (°C)
160
159
–
140
155
–
160
–
–
150
155
160
–
–
160
158
160
160
–
115
160
–
160
–
Vicat Softening Temperature (°C)
1.1
–
–
1.3
1.1
1
1.1
1.2
1
–
1.1
1.1
0.24
–
1.2
1.1
1.1
1.2
1.2
1.3
1.1
–
1.1
–
(Continued )
1.1
–
–
1.2
1.1
1
1.1
1.2
1
–
1.2
1.1
1.8
–
1.2
1.2
1.1
1.2
–
1.4
1.1
–
1.1
–
CLTE CLTE Parallel Normal (×10E4/°C) (×10E4/°C)
12: Tables of Selected Thermal Properties 697
12/11/2007 6:24:37 PM
Mckeen_Ch12.indd 698
POM, GF25 POM POM POM POM POM, GF20 POM POM, Z POM
Delrin® 527UV NC010
Delrin® 542CM NC010
Delrin® 560 NC010
Delrin® 560HD OR729
Delrin® 570 NC000
Delrin® 900P NC010
Delrin® 911AL NC010
Delrin® 911P NC010 POM POM POM POM POM POM POM POM, GB10 POM, GB25 POM, GF10 POM, GF15 POM, GF20 POM, GF25 POM, GF25 POM, GF25 POM, GF10
CELCON AM90S
CELCON AM90S Plus
CELCON C13031 XAS
CELCON CF801
CELCON CF802
CELCON EC-90PLUS
CELCON EF10
CELCON GB10
CELCON GB25
CELCON GC10
CELCON GC15
CELCON GC20
CELCON GC25A
CELCON GC25T
CELCON GC25TF
CELCON GC90UV
Acetal copolymer/Ticona
POM, Z20
Delrin® 525GR NC000
Description
Delrin® 520MP NC010
Name and Grade
12.3 Polyethers (cont’d)
167
165
165
165
165
166
166
165
166
165
164
167
165
168
167
167
178
178
178
178
168
168
178
178
178
178
Melt Point (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
141
162
161
160
160
159
155
105
94
158
70
100
90
102
90
90
110
100
95
130
98
100
95
95
170
94
HDT @ 1.8 MPa (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
165
160
165
165
158
156
160
165
175
165
HDT @ 0.45 MPa (°C)
16
161
161
161
161
161
161
161
–
161
161
161
161
161
–
–
160
–
160
160
–
155
–
160
–
–
Vicat Softening Temperature (°C)
–
0.26
0.27
0.25
0.43
0.46
0.53
0.71
–
0.27
1
1
1.1
0.94
1.1
1
1.2
–
1.2
0.6
–
1
–
1.2
0.4
1
–
1
1.25
1.2
1.1
1
1.2
0.81
–
1.2
1.1
1.2
1.1
1
1.1
1.1
1.2
–
1.2
0.85
–
1.1
–
1.2
1
0.95
CLTE CLTE Parallel Normal (×10E4/°C) (×10E4/°C)
698 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:37 PM
POM POM POM POM POM POM, PTFE POM, PTFE POM, PTFE POM, PTFE POM, PTFE, Si POM POM, Si2 POM, Si POM, PTFE4, GF25 POM, Si2, GF22 POM POM POM POM POM POM POM POM POM POM POM POM POM POM POM
CELCON LM25
CELCON LM90Z
Mckeen_Ch12.indd 699
CELCON LU02
CELCON LW25-S2
CELCON LW90
CELCON LW90-F2
CELCON LW90-F3
CELCON LW90-F4
CELCON LW90-F5
CELCON LW90FS-K
CELCON LW90GPK
CELCON LW90-S2
CELCON LW90-SC
CELCON LWGC-F4
CELCON LWGC-S2
CELCON M140
CELCON M140-L1
CELCON M15HP
CELCON M25
CELCON M25UV
CELCON M270™
CELCON M270UV
CELCON M30AE
CELCON M450
CELCON M50
CELCON M90-34
CELCON M90AW
CELCON M90SW
CELCON M90™
CELCON M90UV
165
165
166
167
165
165
166
163
167
166
166
166
172
166
166
165
167
165
166
167
166
167
167
166
166
–
166
167
167
167
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
101
101
90
86
100
97
103
91
102
103
93
94
101
100
102
161
160
–
94
91
87
91
94
98
98
98
90
90
95
98
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
161
161
161
161
–
161
161
161
161
161
161
161
166
161
161
161
–
–
161
–
–
161
–
161
161
161
–
16
161
161
1.1
1.2
1
1.1
–
1
–
1.1
1.1
1.1
1.2
1.2
1.1
1.1
1
0.24
0.33
–
1.1
1
–
1
1
1.1
1
1.1
1.1
–
1
1.1
(Continued )
1.2
1.2
1
1.1
–
1
–
1
1.2
1.2
1.2
1.2
1.2
1.2
1
1.3
0.94
–
1.2
1.1
–
1
1
1.1
0.9
1.2
1.1
–
1.1
1.1
12: Tables of Selected Thermal Properties 699
12/11/2007 6:24:37 PM
Mckeen_Ch12.indd 700
POM POM, MD POM, MD POM, MD POM, MD POM POM POM POM POM POM POM POM POM POM POM POM POM POM POM, Imod POM POM POM POM POM POM POM
CELCON MC270
CELCON MC270-HM
CELCON MC90
CELCON MC90-HM
CELCON MR15HPB
CELCON MR270B
CELCON MR50B
CELCON MR90B
CELCON MT12R01
CELCON MT12U01
CELCON MT12U03
CELCON MT24F01
CELCON MT24U01
CELCON MT2U01
CELCON MT8F01
CELCON MT8F02
CELCON MT8R02
CELCON MT8U01
CELCON TF-10XAP
CELCON TX25E
CELCON TX90
CELCON TX90PLUS
CELCON UV140LG
CELCON UV25Z
CELCON UV270Z
CELCON UV90Z
Description
CELCON M90XAP
Name and Grade
12.3 Polyethers (cont’d)
165
167
166
165
165
165
164
165
166
166
166
166
165
166
–
170
166
166
166
166
166
172
165
165
165
165
167
Melt Point (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
91
90
90
80
80
84
69
75
104
82
98
–
101
106
100
112
106
102
100
93
100
–
103
97
105
91
100
HDT @ 1.8 MPa (°C)
155
–
–
138
–
–
137
139
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
HDT @ 0.45 MPa (°C)
161
161
161
161
161
161
–
–
150
–
145
–
151
151
146
158
151
151
–
–
–
–
161
161
161
161
160
Vicat Softening Temperature (°C)
1.1
1.1
1.1
1.3
1.2
1.2
–
1.2
1.1
–
1.1
–
1.1
1.1
–
1.2
1.1
1.1
0.89
0.9
–
0.94
0.64
1
0.6
0.97
1.2
1.2
1.2
1.1
1.3
1.4
1.2
–
1.1
–
–
–
–
–
–
–
–
–
–
1
0.9
–
0.96
0.92
1.2
0.9
1.2
1.2
CLTE CLTE Parallel Normal (×10E4/°C) (×10E4/°C)
700 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:38 PM
Mckeen_Ch12.indd 701
POM, GF10 POM, GF20 POM, GF30 POM, GF40 POM, GB10 POM, GB20 POM, GB30 POM POM POM POM
HOSTAFORM C 9021 GV1/20
HOSTAFORM C 9021 GV1/30
HOSTAFORM C 9021 GV1/40
HOSTAFORM C 9021 GV3/10
HOSTAFORM C 9021 GV3/20
HOSTAFORM C 9021 GV3/30
HOSTAFORM C 9021 K
HOSTAFORM C 9021 M
HOSTAFORM C 9021 SW
HOSTAFORM C 9021 TF
166
166
166
166
166
166
166
166
166
166
166
166
166
167
166
HOSTAFORM C 9021 GV1/10
166
POM
POM
HOSTAFORM C 27021 AST
166
HOSTAFORM C 9021 G
POM
HOSTAFORM C 27021
162
POM
POM
HOSTAFORM C 2552
165
HOSTAFORM C 9021 AW
POM
HOSTAFORM C 2521 G
165
POM
POM
HOSTAFORM C 2521
170
HOSTAFORM C 9021 10/1570
POM
HOSTAFORM C 13031 XF
170
POM
POM
HOSTAFORM C 13031 K
170
HOSTAFORM C 9021
POM
HOSTAFORM C 13031
166
166
POM
HOSTAFORM C 13021 RM
166
166
POM
HOSTAFORM C 13021
166
POM
POM
CELCON WR90Z
166
HOSTAFORM C 52021
POM
CELCON WR25Z
166
HOSTAFORM C 27021 GV3/30 POM, GB30
POM
CELCON UV90Z Metallics
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
–
*
*
*
*
–
–
–
98
80
100
100
112
110
108
161
160
159
154
88
88
105
104
106
112
100
106
96
84
101
102
105
107
102
106
95
92
88
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
159
–
–
–
–
152
–
–
145
140
150
150
151
151
151
160
158
157
156
140
145
150
150
151
151
150
151
150
140
151
–
156
158
151
151
161
161
–
1.1
1.2
1.1
1.1
0.9
1
1.1
0.2
0.4
0.5
0.8
1.2
1.1
1.1
1.1
1.1
0.8
1.1
1.1
1.1
1
1.1
0.9
1.1
1.1
1.1
1.1
1
1
–
(Continued )
–
–
–
–
0.9
–
–
–
0.8
0.8
0.9
–
–
–
1.1
–
–
–
–
–
–
–
0.9
–
–
–
–
1.1
1.1
–
12: Tables of Selected Thermal Properties 701
12/11/2007 6:24:38 PM
Mckeen_Ch12.indd 702
POM POM POM POM POM POM POM POM POM POM POM POM POM, Imod
HOSTAFORM MR130ACS
HOSTAFORM MT12U01
HOSTAFORM MT12U03
HOSTAFORM MT24U01
HOSTAFORM MT8U01
HOSTAFORM S 27063
HOSTAFORM S 27064
HOSTAFORM S 27072 WS10/1570
HOSTAFORM S 9063
HOSTAFORM S 9064
HOSTAFORM S 9243
HOSTAFORM S 9244
POM, GF25 POM POM POM POM ROM, RF9
SCHULAFORM® 9 A GF 25
SCHULAFORM® 9 b
SCHULAFORM® 9 d
SCHULAFORM® 9 E HI
SCHULAFORM® 9 f
SCHULAFORM® AF 9 natur PPE PPE PPE, GF20
VESTORAN 1900 nf
VESTORAN 1900 sw
VESTORAN 1900-GF20 sw
PPE/Degussa
POM
SCHULAFORM® 9 A
Acetal copolymer/A. Schulman
POM
HOSTAFORM LM90
Description
HOSTAFORM EC140XF
Name and Grade
12.3 Polyethers (cont’d)
–
–
–
–
–
–
–
–
–
–
166
166
166
166
166
166
166
166
166
170
166
170
167
166
Melt Point (°C)
–
–
–
–
–
–
–
–
–
–
*
*
*
*
*
*
*
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
185
170
170
95
98
105
105
80
160
105
68
75
76
82
84
77
84
104
106
112
106
100
98
91
HDT @ 1.8 MPa (°C)
190
190
190
–
–
–
–
122
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
HDT @ 0.45 MPa (°C)
190
190
190
–
148
150
150
130
–
150
115
130
125
140
135
125
140
150
151
158
151
154
161
–
Vicat Softening Temperature (°C)
0.4
0.8
0.8
–
–
–
–
–
–
–
1.3
1.2
1.2
1.2
1.2
1.3
1.2
1.1
1.1
1.2
1.1
0.94
1
1
0.5
0.8
0.8
–
–
–
–
–
–
–
–
–
1.2
–
–
–
–
–
–
–
–
1
1.1
1.1
CLTE CLTE Parallel Normal (×10E4/°C) (×10E4/°C)
702 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:38 PM
Mckeen_Ch12.indd 703
PPE, GF20
VESTORAN X7342 nf PPE+PS PPE+PS PPE+PS PPE+PS PPE+PS PPE+PS PPE+PS, PTFE5 PPE+PS, PTFE10 PPE+PS, PTFE15 PPE+PS PPE+PS PPE+PS PPE+PS PPE+PS PPE+PS, (GF+MD)10 PPE+PS, (GF+MD)20 PPE+PS, (GF+MD)40 PPE+PS PPE+PS PPE+PS PPE+PS, CF PPE+PS, (GF+MD)30 PPE+PS, (GF+MD)40 PPE+PS, GF10 PPE+PS, GF20 PPE+PS, GF30 PPE+PS, PTFE5
Iupiace AH40
Iupiace AH50
Iupiace AH60
Iupiace AH70
Iupiace AH80
Iupiace AH8P
Iupiace AHF6005
Iupiace AHF6010
Iupiace AHF6015
Iupiace AN60
Iupiace AN70
Iupiace AN80
Iupiace AN91
Iupiace AP4
Iupiace AP6GM2
Iupiace AP6GM4
Iupiace AP6GM8
Iupiace AV60
Iupiace AV70
Iupiace AV90
Iupiace EHM1010A
Iupiace GAV2010
Iupiace GAV2515
Iupiace GH10
Iupiace GH20
Iupiace GH30
Iupiace GHF3005
PPE modified/Mitsubishi Engineering-Plastics
PPE
VESTORAN X4893 sw
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
115
134
132
132
129
120
160
145
125
112
117
115
98
78
145
139
128
115
115
111
115
88
135
124
115
105
93
162
110
125
140
138
141
135
126
176
160
140
128
123
123
108
87
160
154
145
130
125
129
125
98
150
142
130
120
108
165
122
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
168
130
0.25
0.35
0.3
0.45
0.23
0.25
0.53
0.6
0.6
0.63
0.34
0.37
0.47
–
0.55
0.55
0.55
0.55
0.6
0.6
0.6
0.6
0.66
0.66
0.66
0.66
0.67
0.4
0.8
(Continued )
0.6
0.6
0.68
0.75
0.52
0.6
0.55
0.63
0.63
0.66
0.53
0.68
0.58
–
0.58
0.58
0.58
0.58
0.6
0.6
0.6
0.6
0.69
0.69
0.69
0.69
0.71
0.3
0.8
12: Tables of Selected Thermal Properties 703
12/11/2007 6:24:38 PM
Mckeen_Ch12.indd 704
PPE+PS, PTFE10 PPE+PS, PTFE15 PPE+PS, GF10 PPE+PS, GF15 PPE+PS, GF20 PPE+PS, GF30 PPE+PS, GF10 PPE+PS, GF15 PPE+PS, GF20 PPE+PS, GF30 PPE+PS, (GF+MD)20 PPE+PS, (GF+MD)35 PPE+PA6 PPE+PS, (GF+MD)30 PPE+PS, X PPE+PS, (GF+MD)35
Iupiace GHF3015
Iupiace GN10
Iupiace GN15
Iupiace GN20
Iupiace GN30
Iupiace GV10
Iupiace GV15
Iupiace GV20
Iupiace GV30
Iupiace GX1050
Iupiace GX1100
Iupiace NX7000
Iupiace TGV2010
Iupiace TX403
Iupiace VSG635V
Description
Iupiace GHF3010
Name and Grade
12.3 Polyethers (cont’d)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Melt Point (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
115
92
105
123
110
105
135
130
130
125
133
130
125
125
132
132
HDT @ 1.8 MPa (°C)
120
104
110
177
116
110
140
136
136
130
140
138
135
130
137
137
HDT @ 0.45 MPa (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Vicat Softening Temperature (°C)
0.25
0.6
0.25
0.7
0.23
0.37
0.25
0.3
0.4
0.45
0.25
0.3
0.35
0.45
0.25
0.25
0.61
0.6
0.6
–
0.56
0.68
0.6
0.68
0.7
0.75
0.6
0.68
0.72
0.75
0.6
0.6
CLTE CLTE Parallel Normal (×10E4/°C) (×10E4/°C)
704 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:38 PM
Mckeen_Ch12.indd 705
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC, GF15 PC PC PC PC
Apec® 1605
Apec® 1695
Apec® 1700
Apec® 1703
Apec® 1705
Apec® 1745
Apec® 1795
Apec® 1800
Apec® 1803
Apec® 1805
Apec® 1895
Apec® 1897
Apec® 2095
Apec® 2097
Apec® DP1-9354
Apec® DP1-9379
Apec® DP1-9389
Apec® DP1-9354/1
Makrolon® 1095
Makrolon® 1239
Makrolon® 1243
Makrolon® 1260
Makrolon® 1804
Description
Apec® 1600
Polycarbonate/Bayer
Name and Grade
12.4 Polyesters
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Melt Point (°C)
148
–
145
148
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
127
122
124
130
136
185
175
162
162
172
173
157
158
160
161
162
148
148
148
149
150
138
138
140
HDT @ 1.8 MPa (°C)
140
135
137
142
142
208
194
174
174
191
192
172
173
172
173
174
160
160
160
161
162
150
150
152
HDT @ 0.45 MPa (°C)
148
142
143
148
145
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Vicat Softening Temperature (°C)
0.65
0.7
0.7
0.7
0.35
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
CLTE Parallel (×10E 4/°C)
(Continued )
0.65
0.7
0.7
0.7
0.65
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
CLTE Normal (×10E 4/°C)
12: Tables of Selected Thermal Properties 705
12/11/2007 6:24:38 PM
Mckeen_Ch12.indd 706
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
Makrolon® 2205
Makrolon® 2207
Makrolon® 2405
Makrolon® 2407
Makrolon® 2458
Makrolon® 2558
Makrolon® 2605
Makrolon® 2607
Makrolon® 2658
Makrolon® 2665
Makrolon® 2667
Makrolon® 2805
Makrolon® 2807
Makrolon® 2858
Makrolon® 2865
Makrolon® 2867
Makrolon® 3103 MAS157
Makrolon® 3105
Makrolon® 3107
Makrolon® 3108
Makrolon® 3158
Makrolon® 6265
Makrolon® 6267
Makrolon® 6455
Makrolon® 6485
Makrolon® 6487
Makrolon® 6555
Name and Grade
12.4 Polyesters (cont’d) Description
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Melt Point (°C)
145
–
–
145
–
–
146
148
146
146
148
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
Glass Transition Temperature (°C)
124
125
125
124
124
124
126
128
125
126
127
124
125
125
124
125
123
124
124
123
124
124
125
124
125
123
124
HDT @ 1.8 MPa (°C)
137
138
138
137
137
137
139
141
138
139
140
137
138
138
137
138
136
137
137
136
137
137
138
137
138
137
137
HDT @ 0.45 MPa (°C)
144
145
145
144
145
145
147
149
146
147
148
144
145
145
144
145
143
144
144
143
144
144
145
144
145
144
145
Vicat Softening Temperature (°C)
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
CLTE Parallel (×10E 4/°C)
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
CLTE Normal (×10E 4/°C)
706 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:39 PM
Mckeen_Ch12.indd 707
PC, GF20 PC, GF30 PC, GF10 PC, GF20 PC, GF35 PC, GF20 PC, GF10 PC, GF20 PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
Makrolon® 8025
Makrolon® 8035
Makrolon® 8315
Makrolon® 8325
Makrolon® 8345
Makrolon® 9125
Makrolon® 9415
Makrolon® 9425
Makrolon® AG2677
Makrolon® AL2447
Makrolon® AL2647
Makrolon® DP1-1265
Makrolon® DP1-1837
Makrolon® DP1-1853
Makrolon® DP1-1857
Makrolon® DP1-1870
Makrolon® KU1-1248
Makrolon® LQ2647
Makrolon® LQ3147
Makrolon® LQ3187
Makrolon® LTG2623
Makrolon® LTG3123
Makrolon® OD2015
Makrolon® Rx1805 PC PC PC PC
CALIBRE 1080 DVD
CALIBRE 200 10 MFR
CALIBRE 200 15 MFR
CALIBRE 200 22 MFR
Polycarbonate/Dow
PC
Makrolon® 6557
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
145
148
147
146
146
145
–
145
145
–
–
145
145
145
145
–
–
–
–
–
–
–
–
145
128
130
131
122
126
123
127
125
125
125
123
126
124
124
125
120
123
123
124
123
138
135
138
140
140
138
135
135
123
142
144
145
136
137
137
140
138
138
138
136
139
137
137
138
134
137
136
137
136
142
142
142
144
144
144
142
142
136
147
148
149
142
145
145
148
145
146
146
143
147
144
145
146
–
144
143
144
143
147
145
145
149
149
147
147
147
143
0.7
0.7
0.7
0.64
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.7
0.65
0.65
0.7
–
0.65
0.65
0.65
0.65
0.25
0.4
0.25
0.2
0.25
0.4
0.4
0.45
0.65
(Continued )
–
–
–
–
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.7
0.65
0.65
0.7
–
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.6
0.65
0.65
0.6
0.6
0.65
12: Tables of Selected Thermal Properties 707
12/11/2007 6:24:39 PM
Mckeen_Ch12.indd 708
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
CALIBRE 200 4 MFR
CALIBRE 200 6 MFR
CALIBRE 201 10 MFR
CALIBRE 201 15 MFR
CALIBRE 201 22 MFR
CALIBRE 201 4 MFR
CALIBRE 201 6 MFR
CALIBRE 202 10 MFR
CALIBRE 202 15 MFR
CALIBRE 202 22 MFR
CALIBRE 202 4 MFR
CALIBRE 202 6 MFR
CALIBRE 203 10 MFR
CALIBRE 203 15 MFR
CALIBRE 203 22 MFR
CALIBRE 203 4 MFR
CALIBRE 203 6 MFR
CALIBRE 2060 10 MFR
CALIBRE 2060 15 MFR
CALIBRE 2061 10 MFR
CALIBRE 2061 15 MFR
CALIBRE 2071 15 MFR
CALIBRE 300 10 MFR
CALIBRE 300 15 MFR
CALIBRE 300V 10 MFR
CALIBRE 300V 15 MFR
CALIBRE 300V 6 MFR
Name and Grade
12.4 Polyesters (cont’d) Description
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Melt Point (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
140
137
138
130
131
130
130
131
130
131
131
143
128
130
131
143
143
143
140
141
131
143
128
130
131
131
132
HDT @ 1.8 MPa (°C)
143
140
141
144
145
144
144
145
144
145
145
146
142
144
145
146
146
146
143
144
145
146
142
144
145
145
146
HDT @ 0.45 MPa (°C)
148
145
146
148
149
148
148
149
148
149
151
151
147
148
149
151
151
151
148
149
151
151
147
148
149
151
151
Vicat Softening Temperature (°C)
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
CLTE Parallel (×10E 4/°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
CLTE Normal (×10E 4/°C)
708 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:39 PM
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC, 10GF
CALIBRE 301 10 MFR
CALIBRE 301 15 MFR
Mckeen_Ch12.indd 709
CALIBRE 301 6 MFR
CALIBRE 301EP 22 MFR
CALIBRE 301EP 31 MFR
CALIBRE 301V 10 MFR
CALIBRE 301V 15 MFR
CALIBRE 301V 6 MFR
CALIBRE 302 10 MFR
CALIBRE 302 15 MFR
CALIBRE 302 6 MFR
CALIBRE 302EP 22 MFR
CALIBRE 302EP 31 MFR
CALIBRE 302V 10 MFR
CALIBRE 302V 15 MFR
CALIBRE 302V 6 MFR
CALIBRE 303 10 MFR
CALIBRE 303 15 MFR
CALIBRE 303 6 MFR
CALIBRE 303 8 MFR
CALIBRE 303EP 22 MFR
CALIBRE 303EP 31 MFR
CALIBRE 303V 10 MFR
CALIBRE 303V 15 MFR
CALIBRE 303V 4 MFR
CALIBRE 303V 6 MFR
CALIBRE 303V 8 MFR
CALIBRE 3041 35 MFR
CALIBRE 3043 35 MFR
CALIBRE 5101 15 MFR
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
137
135
135
138
140
140
137
131
138
128
141
131
130
131
131
130
131
138
128
131
130
131
131
130
138
138
128
131
130
131
147
138
138
141
143
143
140
145
142
142
144
145
144
145
145
144
145
142
142
145
144
145
145
144
141
142
142
145
144
145
148
144
144
146
148
148
145
149
145
147
149
151
148
149
151
148
149
145
147
151
148
149
151
148
146
145
147
151
148
149
0.38
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
(Continued )
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
12: Tables of Selected Thermal Properties 709
12/11/2007 6:24:39 PM
Mckeen_Ch12.indd 710
PC, GF20 PC PC PC PC PC PC, GF10 PC, GF10 PC, GF20 PC PC PC PC, Imod PC, Imod PC PC PC
CALIBRE 600 2 MFR
CALIBRE 600 3 MFR
CALIBRE 603 3 MFR
CALIBRE 701 10 MFR
CALIBRE 701 15 MFR
CALIBRE 7101 15 MFR
CALIBRE 7101 8 MFR
CALIBRE 7211 5 MFR
CALIBRE 891 10 MFR
CALIBRE 891 19 MFR
CALIBRE 893 19 MFR
CALIBRE IM 401 11
CALIBRE IM 401 18
CALIBRE MegaRad 2080 10 MFR
CALIBRE MegaRad 2080 15 MFR
CALIBRE MegaRad 2081 10 MFR PC PC PC PC PC, GF10 PC, GF20 PC, GF30
POLYMAN® (PC) XP 01 RN
POLYMAN® (PC) XP 11 RN
POLYMAN® (PC) XP 21 RN
POLYMAN® (PC) XP 31 RN
POLYMAN® (PC) XP 41 R 10 GF
POLYMAN® (PC) XP 41 R 20 GF
POLYMAN® (PC) XP 41 R 30 GF
Polycarbonate/A. Schulman
PC, GF20
CALIBRE 5210 8 MFR
Description
CALIBRE 5210 15 MFR
Name and Grade
12.4 Polyesters (cont’d)
*
*
*
*
*
*
*
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Melt Point (°C)
150
150
150
150
150
150
150
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
139
138
138
127
126
123
123
123
123
124
119
119
127
127
127
143
138
138
122
123
132
142
143
135
134
HDT @ 1.8 MPa (°C)
147
145
144
138
138
137
137
137
137
140
134
138
–
–
–
–
–
–
140
140
–
145
146
147
146
HDT @ 0.45 MPa (°C)
151
152
150
147
150
149
149
143
143
143
140
145
151
151
151
150
150
150
147
149
150
150
150
154
153
Vicat Softening Temperature (°C)
0.4
0.4
0.4
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.73
0.7
0.7
0.7
–
–
–
–
–
–
–
–
–
–
CLTE Parallel (×10E 4/°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
CLTE Normal (×10E 4/°C)
710 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:39 PM
Mckeen_Ch12.indd 711
PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC
Xantar® 18 R
Xantar® 18 SR D
Xantar® 18 UR
Xantar® 19 R
Xantar® 19 SR D
Xantar® 19 UR
Xantar® 22 R
Xantar® 22 SR FD
Xantar® 22 UR
Xantar® 24 R
Xantar® 24 SR D
Xantar® 24 UR
Xantar® 25 R
Xantar® 25 SR D
Xantar® 25 U
Xantar® 25 UR
Xantar® 27 R
Xantar® 27 SR D
Xantar® 27 U
Xantar® 27 UR
Xantar® F 22 R
Xantar® F 22 UR
Xantar® F 23 R
Xantar® F 23 UR
Xantar® F 25 R
Xantar® F 25 UR
Xantar® FC 19 R
Xantar® FC 19 UR
Xantar® FC 22 R
Polycarbonate/DSM
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
148
145
145
150
150
148
148
148
148
150
150
150
150
150
150
150
150
150
150
150
148
148
148
145
145
145
145
145
145
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
(Continued )
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
12: Tables of Selected Thermal Properties 711
12/11/2007 6:24:40 PM
Mckeen_Ch12.indd 712
PC PC PC PC PC PC, GF10 PC, GF10 PC, GF20 PC, GF20 PC, GF20 PC, GF20 PC, GF20 PC, GF20 PC, GF30 PC, GF30 PC, GF40 PC, GF40 PC, Imod PC, Imod PC, Imod PC, Imod PC PC PC PC PC, GF10 PC, GF20
Xantar® FC 23 R
Xantar® FC 23 UR
Xantar® FC 25 R
Xantar® FC 25 UR
Xantar® G2F 23 R
Xantar® G2F 23 UR
Xantar® G4F 22 R
Xantar® G4F 22 UR
Xantar® G4F 23 R
Xantar® G4F 23 UR
Xantar® G4F 25 R
Xantar® G4F 25 UR
Xantar® G6F 23 R
Xantar® G6F 23 UR
Xantar® G8F 23 R
Xantar® G8F 23 UR
Xantar® MX 1000
Xantar® MX 1001
Xantar® MX 1002
Xantar® MX 1004
Xantar® MX 1020
Xantar® MX 1021
Xantar® MX 1021 D
Xantar® MX 1061
Xantar® MX 1081
Xantar® MX 1082
Description
Xantar® FC 22 UR
Name and Grade
12.4 Polyesters (cont’d)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Melt Point (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
147
143
130
129
129
129
115
115
115
115
145
145
145
145
147
147
147
147
145
145
147
147
130
130
130
130
130
HDT @ 1.8 MPa (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
HDT @ 0.45 MPa (°C)
150
150
150
140
140
140
135
135
135
135
153
153
152
152
150
150
150
150
152
152
150
150
150
150
148
148
148
Vicat Softening Temperature (°C)
0.25
0.4
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.2
0.2
0.25
0.25
0.3
0.3
0.3
0.3
0.25
0.25
0.45
0.45
0.65
0.65
0.65
0.65
0.65
CLTE Parallel (×10E 4/°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
CLTE Normal (×10E 4/°C)
712 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:40 PM
Mckeen_Ch12.indd 713
PC PC PC PC PC PC
Xantar® MX 2015
Xantar® MX 2021
Xantar® MX 2032
Xantar® MX 2034
Xantar® MX 2042 D
Xantar® RX 1045 PBT PBT PBT, GF30 PBT PBT PBT, GF7 PBT, GF15 PBT, GF20 PBT, GF30 PBT PBT PBT PBT PBT PBT PBT PBT PBT PBT PBT PBT PBT
CELANEX 1300A
CELANEX 1400A
CELANEX 1462Z
CELANEX 1600A
CELANEX 1602Z
CELANEX 1612Z
CELANEX 1632Z
CELANEX 1642Z
CELANEX 1662Z
CELANEX 1700A
CELANEX 2000
CELANEX 2000-2
CELANEX 2000-K
CELANEX 2001
CELANEX 2001 HP
CELANEX 2002
CELANEX 2002-2
CELANEX 2002-3
CELANEX 2002AP
CELANEX 2002UV
CELANEX 2003
CELANEX 2003-2
PBT/Ticona
PC, GF9
Xantar® MX 1094
225
225
225
225
–
225
225
225
225
225
225
225
225
225
–
225
–
225
225
225
225
225
–
–
–
–
–
–
–
60
60
60
60
–
60
60
60
60
60
60
60
60
–
–
60
–
–
60
60
60
60
–
–
–
–
–
–
–
55
55
55
55
55
55
55
58
50
55
55
55
50
205
–
189
–
50
50
207
58
62
130
135
130
135
140
130
135
150
150
150
150
150
150
150
152
150
155
155
155
150
225
–
217
–
150
150
225
142
156
–
–
–
–
–
–
–
190
190
190
190
190
190
190
–
185
190
190
190
182
–
–
–
–
–
185
–
–
190
145
145
145
145
150
145
145
1.1
1.1
1.1
1.1
1.3
1.1
1.1
–
1.3
1.1
1.1
1.1
1
0.19
0.31
0.4
–
1.1
1.1
0.25
1.1
1.1
0.65
0.65
0.65
0.65
0.65
0.65
0.45
(Continued )
–
–
1.2
–
1.2
1.27
1.38
–
0.88
0.86
0.86
0.86
–
1.13
1.2
1.1
–
–
1.03
1.28
–
–
–
–
–
–
–
–
–
12: Tables of Selected Thermal Properties 713
12/11/2007 6:24:40 PM
Mckeen_Ch12.indd 714
PBT PBT PBT PBT PBT PBT PBT PBT PBT, GF10 PBT, GF20 PBT, GF30 PBT, GF50 PBT, GB20 PBT, GB30 PBT, GF15 PBT, GF20 PBT, GF30 PBT PBT, GF10 PBT, GF20 PBT, GF30 PBT PBT PBT PBT PBT PBT, GF7
CELANEX 2004
CELANEX 2004-2
CELANEX 2008
CELANEX 2012
CELANEX 2014
CELANEX 2016
CELANEX 2025
CELANEX 2300 GV1/10
CELANEX 2300 GV1/20
CELANEX 2300 GV1/30
CELANEX 2300 GV1/50
CELANEX 2300 GV3/20
CELANEX 2300 GV3/30
CELANEX 2302 GV1/15
CELANEX 2302 GV1/20
CELANEX 2302 GV1/30
CELANEX 2360 FL
CELANEX 2360 GV1/10 FL
CELANEX 2360 GV1/20 FL
CELANEX 2360 GV1/30 FL
CELANEX 2401 MT
CELANEX 2402 MT
CELANEX 2403 MT
CELANEX 2404 MT
CELANEX 2500
CELANEX 3100
Description
CELANEX 2003HR
Name and Grade
12.4 Polyesters (cont’d)
225
225
225
225
225
225
225
225
225
225
255
255
255
225
225
225
225
225
225
206
225
225
225
225
225
225
225
Melt Point (°C)
60
–
60
60
60
60
–
–
–
–
–
–
–
–
–
–
–
–
–
–
60
60
–
60
60
60
–
Glass Transition Temperature (°C)
143
60
55
55
60
55
209
206
195
65
200
195
190
90
70
215
210
195
190
98
60
66
57
57
54
54
55
HDT @ 1.8 MPa (°C)
206
160
–
150
160
150
–
–
–
165
–
–
–
190
180
–
–
–
–
128
165
134
152
155
166
166
150
HDT @ 0.45 MPa (°C)
185
190
190
190
190
190
225
220
210
190
225
220
210
195
190
225
220
215
205
–
190
–
–
–
175
175
190
Vicat Softening Temperature (°C)
1.3
1.1
–
1.1
1.1
1.1
0.25
0.35
0.45
1.1
0.2
0.35
0.35
1
1.1
0.15
0.25
0.35
0.6
–
0.63
1.39
1.3
–
1.1
1.1
1.1
CLTE Parallel (×10E 4/°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
0.77
1.04
–
–
–
–
–
CLTE Normal (×10E 4/°C)
714 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:40 PM
PBT, GF7 PBT, GF14 PBT, GF7 PBT, GF7 PBT, GF15 PBT, GF15 PBT, GF15 PBT, GF15 PBT PBT, GF20 PBT, GF15 PBT, GF15 PBT PBT PBT, GF30 PBT, GF30 PBT PBT, GF30 PBT, GF30 PBT, GF30 PBT, GF30 PBT, GF30 PBT, GF30 PBT, GF30 PBT, GF30 PBT, GF30 PBT, GF40 PBT, GF40 PBT PBT, GF15
CELANEX 3109HR
CELANEX 3112-2
Mckeen_Ch12.indd 715
CELANEX 3114
CELANEX 3116
CELANEX 3200
CELANEX 3200-2
CELANEX 3200HR
CELANEX 3201
CELANEX 3209H
CELANEX 3210-2
CELANEX 3214
CELANEX 3216
CELANEX 3224
CELANEX 3226
CELANEX 3300
CELANEX 3300-2
CELANEX 3300D
CELANEX 3300HR
CELANEX 3300LM
CELANEX 3309HR
CELANEX 3309HRHF
CELANEX 3309HRT
CELANEX 3310
CELANEX 3314
CELANEX 3316
CELANEX 3325HRT
CELANEX 3400
CELANEX 3409HR
CELANEX 4016
CELANEX 4202
225
225
225
225
–
225
–
225
225
–
225
225
225
225
225
225
225
–
225
225
225
–
225
225
225
225
225
225
224
225
–
–
60
–
–
–
–
60
–
–
60
60
60
60
60
60
–
–
60
60
60
–
60
–
60
60
60
60
–
60
183
62
212
212
184
208
210
205
204
210
205
205
205
205
205
205
203
198
200
192
203
180
195
195
195
195
150
–
183
143
–
159
226
226
–
–
220
222
–
222
225
225
225
–
–
–
–
218
–
215
223
220
218
–
–
–
–
–
–
206
–
–
–
–
–
225
225
–
–
–
220
220
220
220
220
220
220
–
206
–
–
–
220
22
215
215
200
–
–
185
0.36
1
0.15
0.15
–
0.25
0.2
0.2
–
–
0.25
0.25
0.25
0.25
0.25
0.25
0.35
–
0.4
0.42
0.3
–
0.35
–
0.4
0.4
0.6
–
–
1.3
(Continued )
1
1
–
1.01
–
0.77
0.75
1.1
–
–
1
1
1
1
1
1
0.35
–
–
0.98
1.1
–
–
–
1.1
1.1
–
–
–
–
12: Tables of Selected Thermal Properties 715
12/11/2007 6:24:40 PM
Mckeen_Ch12.indd 716
PBT, GF30 PBT, GF30 PBT, GF30 PBT, GF30 PBT, GF30 PBT, GF33 PBT, GF30 PBT, GF15 PBT, GF15 PBT, GF15 PBT, GF20 PBT, GF30 PBT, GF30 PBT PBT PBT, (GF+Mica)40 PBT, (GF+Mica)30 PBT, (GF+Mica)30 PBT, (GF+Mica)30 PBT, (GF+Mica)35 PBT, (GF+Mica)35 PBT, (GF+Mica)35 PBT, (GF+Mica)35 PBT PBT, (GF+Mica)40 PBT, GF40
CELANEX 4300LM
CELANEX 4302
CELANEX 4302HS
CELANEX 4302LM
CELANEX 4305
CELANEX 4306
CELANEX 5200-2
CELANEX 5201
CELANEX 5202
CELANEX 5203
CELANEX 5300
CELANEX 5300-2
CELANEX 602AC
CELANEX 6400-2
CELANEX 6406
CELANEX 6407
CELANEX 6500
CELANEX 6500LM
CELANEX 7316
CELANEX 7700
CELANEX 7714
CELANEX 7716
CELANEX J235
CELANEX J600
CELSTRAN PBT-GF40-08
Description
CELANEX 4300
Name and Grade
12.4 Polyesters (cont’d)
–
225
225
225
–
225
225
225
225
–
225
–
225
225
225
–
–
–
225
225
225
225
225
225
–
225
Melt Point (°C)
–
95
–
60
–
60
60
–
–
–
–
–
–
60
60
–
–
–
95
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
225
190
–
194
213
204
184
202
202
172
160
200
139
200
200
189
180
180
190
164
206
173
173
173
200
200
HDT @ 1.8 MPa (°C)
226
–
–
222
184
223
212
223
223
209
205
220
202
–
–
218
215
215
–
210
224
–
–
–
–
220
HDT @ 0.45 MPa (°C)
–
205
–
–
–
–
–
–
–
–
150
220
–
225
225
–
–
–
210
–
–
–
–
–
–
–
Vicat Softening Temperature (°C)
0.16
0.2
–
–
–
0.14
0.3
0.28
0.28
0.19
0.25
0.25
–
0.2
0.2
–
–
–
0.35
0.2
0.2
–
–
0.18
–
0.25
CLTE Parallel (×10E 4/°C)
0.87
0.68
–
–
–
0.79
0.55
0.85
0.85
0.7
0.97
–
–
–
–
–
–
–
–
0.87
0.65
–
–
1.25
–
–
CLTE Normal (×10E 4/°C)
716 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:41 PM
Mckeen_Ch12.indd 717
PBT, GF30 PBT, GF50 PBT, GF10 PBT, GF15 PBT, GF20 PBT, GF30 PBT, (GF+MF)30 PBT, GB20 PBT, GB30 PBT, GF25 PBT PBT, GF10 PBT, GF20 PBT, GF30 PBT PBT PBT
Ultradur® B 4030 G6
Ultradur® B 4300 G10
Ultradur® B 4300 G2
Ultradur® B 4300 G3
Ultradur® B 4300 G4
Ultradur® B 4300 G6
Ultradur® B 4300 GM42
Ultradur® B 4300 K4
Ultradur® B 4300 K6
Ultradur® B 4400 G5
Ultradur® B 4406
Ultradur® B 4406 G2
Ultradur® B 4406 G4
Ultradur® B 4406 G6
Ultradur® B 4500
Ultradur® B 4520
Ultradur® B 4520 Z2 PBT PBT PBT PBT PBT PBT PBT, GF10 PBT, GF10 PBT, GF20 PBT, GF20
Pocan® B 1300
Pocan® B 1305
Pocan® B 1501
Pocan® B 1505
Pocan® B 1600
Pocan® B 2505
Pocan® B 3215
Pocan® B 3215 Z
Pocan® B 3225
Pocan® B 3225 Z
PBT/LANXESS
PBT
Ultradur® B 2550
PBT/BASF
225
225
225
225
225
225
225
225
225
225
223
223
223
223
223
223
223
223
223
223
223
223
223
223
223
223
223
223
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
210
–
190
70
60
70
70
60
60
50
65
65
200
190
60
212
90
95
70
210
215
205
200
200
215
205
65
–
220
–
*
160
160
170
170
160
160
120
165
165
223
215
170
224
195
200
170
223
220
220
220
220
220
220
165
–
215
–
205
190
170
180
170
180
170
130
–
–
220
–
170
–
–
–
–
–
–
–
–
–
–
–
–
0.3
0.3
0.5
0.5
0.8
1.3
1.2
1.3
1.2
1.3
1.35
1.45
1.45
0.5
0.5
0.55
0.305
0.9
0.75
0.85
0.4
0.25
0.35
0.4
0.45
0.25
0.25
1.45
(Continued )
0.9
0.9
1.1
1.1
0.8
1.3
1.2
1.1
1.2
1.3
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
12: Tables of Selected Thermal Properties 717
12/11/2007 6:24:41 PM
Mckeen_Ch12.indd 718
PBT, GF12 PBT, GF20 PBT, GF30 PBT, GF30 PBT, X25 PBT, GB20 PBT PBT PBT, GF30 PBT, GF15 PBT, (GB+GF)30 PBT PBT, Imod PBT, GF15 PBT, GF20 PBT, GF25 PBT PBT, GF7 PBT PBT
Pocan® B 4225
Pocan® B 4235
Pocan® B 4239
Pocan® B 7375
Pocan® B 7425
Pocan® DP 1105
Pocan® DP 7139
Pocan® KL1-7033
Pocan® KL1-7265
Pocan® KL1-7835
Pocan® KU1-7301
Pocan® KU2-7020/1
Pocan® KU2-7209
Pocan® KU2-7240
Pocan® KU2-7241
Pocan® KU2-7503/1 Z
Pocan® KU2-7755
Pocan® S 1506
Pocan® S 1517 PBT PBT PBT PBT PBT
Arnite® T06 200
Arnite® T06 200 SNF
Arnite® T06 202
Arnite® T06 202 XL
Arnite® T06 204 SN
PBT/DSM
PBT, GF30
Pocan® B 4215
Description
Pocan® B 3235
Name and Grade
12.4 Polyesters (cont’d)
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
–
225
225
225
225
225
225
225
Melt Point (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
75
60
55
60
55
60
55
145
–
190
–
–
–
60
180
195
200
200
65
70
70
205
210
210
185
210
HDT @ 1.8 MPa (°C)
165
170
165
140
165
120
100
*
–
*
–
–
–
160
*
215
220
215
160
*
160
*
220
220
205
220
HDT @ 0.45 MPa (°C)
*
*
*
*
*
140
130
205
–
200
205
205
140
170
200
205
185
21
19
190
185
205
210
205
205
215
Vicat Softening Temperature (°C)
0.7
0.7
0.7
–
0.7
1.3
1
0.6
–
0.3
–
–
–
1.2
0.3
0.4
0.3
–
–
1
0.8
0.2
0.2
0.3
0.4
0.3
CLTE Parallel (×10E 4/°C)
0.7
0.7
0.7
–
0.7
1.3
1.1
0.9
–
0.9
–
–
–
1.2
0.7
0.9
1
–
–
1.1
0.8
0.8
0.8
0.8
1
0.9
CLTE Normal (×10E 4/°C)
718 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:41 PM
Mckeen_Ch12.indd 719
PBT PBT, GF10 PBT, GF15 PBT, GF15 PBT, GF20 PBT, GF20 PBT, GF30 PBT, GF30 PBT, GF30
Arnite® T08 200
Arnite® TV4 220
Arnite® TV4 230
Arnite® TV4 230 SF
Arnite® TV4 240
Arnite® TV4 240 S
Arnite® TV4 260 S
Arnite® TV4 260 SF
Arnite® TV4 261 PBT PBT PBT PBT PBT, Imod PBT, Imod, GF15 PBT, Imod, GF30 PBT, (MD+GF)45 PBT PBT PBT PBT PBT PBT PBT, GF10 PBT, GF15 PBT, GF20 PBT, GF30 PBT, GF45
Crastin® 6129 NC010
Crastin® 6130 NC010
Crastin® 6131 NC010
Crastin® 6134 NC010
Crastin® BM6450XD BK560
Crastin® HR5315HF NC010
Crastin® HR5330HF NC010
Crastin® HTI668FR NC010
Crastin® S600F10 NC010
Crastin® S600F20 NC010
Crastin® S600F40 NC010
Crastin® S600LF NC010
Crastin® S620F20 NC010
Crastin® S660FR NC010
Crastin® SK601 NC010
Crastin® SK602 NC010
Crastin® SK603 NC010
Crastin® SK605 NC010
Crastin® SK608 BK509
PBT/DuPont
PBT
Arnite® T06 204 XL
225
225
225
225
225
225
225
225
225
225
225
205
225
225
220
225
225
225
225
225
225
225
225
225
225
225
225
225
225
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
205
205
205
195
175
55
60
60
60
60
60
185
205
200
50
60
60
60
60
205
210
210
210
205
190
195
–
55
60
220
220
–
–
–
165
180
185
180
180
160
–
220
220
130
180
180
180
160
220
220
220
220
220
215
220
–
170
170
215
215
210
205
205
–
175
175
175
175
175
170
–
–
–
–
175
–
175
*
*
*
*
*
*
*
*
*
*
0.2
0.3
0.4
0.5
0.6
–
1.3
–
1.3
1.3
1.3
0.4
–
–
–
–
–
1.1
1.3
0.4
0.4
0.4
0.4
0.5
0.4
0.5
–
0.7
0.7
(Continued )
0.8
0.9
1
1.1
1.2
–
1.3
–
1.3
1.3
1.3
1
–
–
–
–
–
1.4
1.3
0.7
0.7
0.7
0.8
0.8
0.8
0.8
–
0.7
0.7
12: Tables of Selected Thermal Properties 719
12/11/2007 6:24:41 PM
Mckeen_Ch12.indd 720
PBT, GF15 PBT, GF30 PBT, GF20 PBT, Imod PBT, Imod PBT, Imod PBT, GF20 PBT, GF30 PBT, Imod, GF5 PBT, Gf10
Crastin® SK665FR BK507
Crastin® SO653 NC010
Crastin® ST820 NC010
Crastin® ST830FR NC010
Crastin® ST830FRUV NC010
Crastin® T803 NC010
Crastin® T805 NC010
Crastin® T835FRUV NC010
Crastin® T841FR NC010
PET, GF30 PET, GF45 PET, GF15 PET, GF30 PET, GF30 PET, GF45 PET, GF13 PET, GF35 PET, GF45 PET, GF35 PET, GF45
IMPET 2700 GV1/30
IMPET 2700 GV1/45
IMPET 320R
IMPET 330
IMPET 330R
IMPET 340R
IMPET 610R
IMPET 630R
IMPET 740
IMPET 830R
IMPET 840R PET, Imod, GF30 PET, Imod, GF15
Rynite® 408 NC010
Rynite® 415HP NC010
PET/DuPont
PET, GF20
IMPET 2700 GV1/20
PET/Ticona
PBT, GF50
Crastin® SK662FR NC010
Description
Crastin® SK609 NC010
Name and Grade
12.4 Polyesters (cont’d)
250
250
250
–
246
250
250
250
250
250
250
255
255
255
205
223
205
205
225
224
225
225
225
209
225
Melt Point (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
207
220
228
216
228
175
164
229
224
224
203
228
225
215
170
120
185
180
55
58
48
60
210
200
205
HDT @ 1.8 MPa (°C)
238
–
244
235
–
230
223
252
240
240
235
–
–
–
–
–
–
–
125
130
105
185
220
220
–
HDT @ 0.45 MPa (°C)
206
–
–
–
–
–
–
–
–
–
–
260
260
255
180
–
190
–
–
–
125
195
–
–
215
Vicat Softening Temperature (°C)
0.2
0.14
0.15
0.31
0.15
0.31
0.38
0.68
0.32
0.32
0.34
0.15
0.2
0.3
0.7
–
0.3
0.35
–
–
1.9
1.1
0.2
1
0.2
CLTE Parallel (×10E 4/°C)
1.17
0.85
1
0.72
1
0.5
0.59
0.65
0.77
0.77
0.76
–
–
–
1.4
–
1.2
1.6
–
–
1.9
1.1
0.9
0.3
0.8
CLTE Normal (×10E 4/°C)
720 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:41 PM
Mckeen_Ch12.indd 721
PET, GF30 PET, GF30 PET, GF36 PET, GF45 PET PET, (GF+P)35 PET, (GD+GF)36 PET, (MD+GF)40 PET, GF15 PET, GF30 PET, GF43 PET, GF45
Rynite® 530 NC010
Rynite® 530CS NC011
Rynite® 536 NC010
Rynite® 545 NC010
Rynite® 555 NC010
Rynite® 935 NC010
Rynite® 936CS NC011
Rynite® 940 BK505
Rynite® FR515 NC010
Rynite® FR530L NC010
Rynite® FR543 NC010
Rynite® FR943 NC010
PET PET PET, GF20 PET, GF33 PET, GF33 PET, GF35 PET, GF35 PET, GF35 PET, GF50 PET
Arnite® A06 300
Arnite® A06 700
Arnite® AV2 340
Arnite® AV2 360 S
Arnite® AV2 365 SN
Arnite® AV2 370
Arnite® AV2 370 /B
Arnite® AV2 372
Arnite® AV2 390
Arnite® D00 301 PCT, GF30 PCT, GF40 PCT, GF20 PCT, GF30
Thermx® CG033 NC010
Thermx® CG043 NC010
Thermx® CG923 NC010
Thermx® CG933 NC010
PCT/DuPont
PET
Arnite® A04 900
PET/DSM
PET
Rynite® 425LW BK505
285
–
–
–
255
255
255
255
255
255
255
255
255
255
255
250
254
252
254
250
247
252
252
252
246
245
252
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
103
234
–
262
70
240
235
235
235
240
235
225
–
–
80
220
224
222
200
220
205
200
229
226
230
225
224
170
–
–
–
270
75
255
250
250
250
250
250
245
–
–
115
240
240
243
240
241
–
230
*
250
–
245
245
–
–
–
–
–
*
*
*
*
*
*
*
*
*
*
*
214
224
218
210
–
225
204
230
230
–
–
228
–
0.06
0.15
0.24
0.32
0.8
0.2
0.3
0.3
0.3
0.2
0.2
0.3
0.75
0.8
0.7
0.19
0.11
0.25
0.18
0.15
–
0.16
0.08
0.13
–
–
0.1
0.28
(Continued )
1
1.1
0.75
0.85
0.8
0.6
0.7
0.7
0.7
0.65
0.65
0.7
0.75
0.8
0.7
0.65
0.79
1.1
0.88
0.6
–
0.52
0.75
0.71
–
–
0.81
0.89
12: Tables of Selected Thermal Properties 721
12/11/2007 6:24:42 PM
Mckeen_Ch12.indd 722
LCP, GF30 LCP, GF30 LCP, GF40 LCP, MD30 LCP, (GF+MD)35 LCP, GF30 LCP, GF45 LCP, GF40 LCP, GF30 LCP, MD30 LCP, GF30 LCP, (GF+MD)50
Zenite® 6130 BK010
Zenite® 6130LX BK010
Zenite® 6140L BK010
Zenite® 6330 BK010
Zenite® 6635 BK010
Zenite® 7130 BK010
Zenite® 7145L BK010
Zenite® 9140HT NC010
Zenite® ZE16130A BK010
Zenite® ZE16401 BK010
Zenite® ZE17101 BK010
Zenite® ZE55201 BK010 LCP, GF15 LCP, GF30 LCP, GF50 LCP, CF30 LCP, GF25, X25 LCP, PTFE LCP, PTFE, GF LCP, X15 LCP, X30 LCP, Graphite25 LCP, Z25 LCP
VECTRA A115
VECTRA A130
VECTRA A150
VECTRA A230
VECTRA A410
VECTRA A430
VECTRA A435
VECTRA A515
VECTRA A530
VECTRA A625
VECTRA A700
VECTRA A725
LCP/Ticona
LCP, GF45
Description
Zenite® 5145L BK010
LCP/DuPont
Name and Grade
12.4 Polyesters (cont’d)
280
280
280
280
280
280
280
280
280
280
280
280
335
352
335
335
–
355
353
335
335
335
335
335
319
Melt Point (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
120
–
–
–
–
Glass Transition Temperature (°C)
160
232
185
190
185
230
165
235
225
240
235
230
265
295
240
–
356
295
295
229
245
235
209
265
–
HDT @ 1.8 MPa (°C)
–
–
–
–
–
–
–
–
–
–
–
–
300
–
–
–
–
–
–
–
275
–
–
300
–
HDT @ 0.45 MPa (°C)
–
156
159
151
149
146
138
165
158
177
160
162
–
–
–
–
–
–
–
–
–
–
–
–
–
Vicat Softening Temperature (°C)
0.1
0.08
0.05
0.1
0
0
0.01
0.07
0.02
0.07
0.06
0.1
–
–
–
–
–
0.07
0.11
–
–
–
–
–
0.07
CLTE Parallel (×10E 4/°C)
0.31
0.25
0.19
0.3
0.3
0.19
0.46
0.24
0.18
0.19
0.23
0.18
–
–
–
–
–
0.24
0.21
–
–
–
–
–
0.36
CLTE Normal (×10E 4/°C)
722 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:42 PM
LCP, GF15 LCP, GF30 LCP, CF30 LCP, GF15 LCP, GF30 LCP, GF50 LCP, X50 LCP, X LCP, Milled Glass30 LCP, GF30 LCP LCP, GF40 LCP, X30 LCP, X40 LCP, X40 LCP, X40 LCP, GF30 LCP, GF40 LCP, GF30 LCP, GF40 LCP LCP, GF15 LCP, GF30 LCP, GF, PTFE LCP, X15 LCP, X30 LCP, GF30 LCP, GF30 LCP, GF30 LCP, X40
VECTRA A950
VECTRA B130
Mckeen_Ch12.indd 723
VECTRA B230
VECTRA C115
VECTRA C130
VECTRA C150
VECTRA C550
VECTRA C810
VECTRA D130M
VECTRA E130i
VECTRA E471i
VECTRA E480i
VECTRA E530i
VECTRA E540i
VECTRA E820i
VECTRA E820i Pd
VECTRA H130
VECTRA H140
VECTRA L130
VECTRA L140
VECTRA MT1300
VECTRA MT1305
VECTRA MT1310
VECTRA MT1335
VECTRA MT1340
VECTRA MT1345
VECTRA MT2310
VECTRA MT3310
VECTRA MT4310
VECTRA MT4350
335
335
325
280
280
280
280
280
280
280
300
300
330
330
–
335
335
335
335
335
335
330
325
325
325
325
325
280
280
280
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
230
276
255
235
190
185
230
235
230
187
240
235
306
298
220
220
230
235
270
265
276
220
197
225
255
255
250
235
235
187
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
195
192
169
151
149
146
160
162
145
176
175
224
221
–
203
195
–
–
200
195
–
180
184
192
192
176
167
169
145
0.11
0.07
0.06
0.03
0.1
0
0
0.06
0.1
0.04
0.05
0.05
0.04
0.02
0.23
0.17
0.11
0.02
–
0.06
0.07
0.12
0.23
0.1
0.04
0.06
0.03
0.01
0.03
0.04
(Continued )
0.11
0.2
0.18
0.13
0.3
0.3
0.19
0.23
0.18
0.38
0.34
0.19
0.18
0.22
0.49
0.57
0.11
0.34
–
0.18
0.2
0.38
0.4
0.37
0.17
0.18
0.22
0.04
0.13
0.38
12: Tables of Selected Thermal Properties 723
12/11/2007 6:24:42 PM
Mckeen_Ch12.indd 724
LCP, GF30 LCP LCP
VECTRA V100P
VECTRA V300P
LCP, GF30 LCP, T45
XYDAR G-930
XYDAR M-345 PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS, GF10 PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS
Bayblend® DP T50
Bayblend® DP T65 TX
Bayblend® DP T90
Bayblend® FR 2000
Bayblend® FR 2000 BBS052
Bayblend® FR 2010
Bayblend® FR 3000
Bayblend® FR 3005
Bayblend® FR 3030
Bayblend® KU 1-1446
Bayblend® KU 2-1514
Bayblend® KU 2-1514 BBS073
Bayblend® KU 2-1522
Bayblend® KU 2-3020
Bayblend® R-R 610
Bayblend® T45
Bayblend® T45 PG
Bayblend® T65
Polyester blends/Bayer
LCP, GF30
XYDAR G-430
LCP/Solvay
LCP, GF35
VECTRA T130
Description
VECTRA S135
Name and Grade
12.4 Polyesters (cont’d)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
370
350
Melt Point (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
100
95
95
85
86
121
115
115
98
96
78
82
90
78
80
–
–
97
229
271
298
105
140
300
335
HDT @ 1.8 MPa (°C)
122
112
112
95
96
134
126
126
118
106
87
92
100
88
90
–
–
116
–
–
–
–
HDT @ 0.45 MPa (°C)
118
110
110
108
10
132
134
134
118
113
93
95
106
91
93
125
118
116
–
–
226
–
Vicat Softening Temperature (°C)
0.8
0.85
0.85
0.76
–
0.4
0.68
0.68
0.9
0.76
0.76
0.76
0.76
0.76
0.76
–
–
0.8
–
–
0.03
0.01
CLTE Parallel (×10E 4/°C)
0.85
0.9
0.9
0.8
–
0.75
0.68
0.68
0.95
0.8
0.8
0.8
0.8
0.8
0.8
–
–
0.85
0.05
−0.01
–
–
0.19
0.23
CLTE Normal (×10E 4/°C)
724 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:42 PM
Mckeen_Ch12.indd 725
PC+ABS, GF10 PC+ABS, GF20 PC+PET, MD10 PC+PET, Imod PC+PET, Imod, MD20 PC+PBT, Imod, MD10 PC+PBT, Imod, MD20 PC+PBT, Imod PC+PBT, Imod PC+PBT, Imod PC+PBT, Imod PC+PBT, Imod PC+PBT, Imod PC+PBT, Imod
Bayblend® T88-2N
Bayblend® T88-4N
Makroblend® DP 2-7655
Makroblend® DP 7645
Makroblend® DP 7665
Makroblend® KU 2-7608
Makroblend® KU 2-7609
Makroblend® KU 2-7912
Makroblend® KU 2-7912/4
Makroblend® KU 2-7912/5
Makroblend® KU 2-7915
Makroblend® KU 2-7940
Makroblend® S 7916
Makroblend® S 7916/2
PBT+ASA, GF20 PBT+ASA, GF30 PBT+PET, GF15 PBT+PET, (GF+MD)40 PBT+PC, GF20 PBT+PC, GF30 PBT+ABS, GF20 PBT+PC PBT+PET, GF20 PBT+PET, GF30
Pocan® DP 7042
Pocan® DP 7043
Pocan® KU1-7313
Pocan® KU1-7341
Pocan® KU1-7625
Pocan® KU1-7635
Pocan® KU2-7125
Pocan® KU2-7604
Pocan® T 7323
Pocan® T 7331
Arnite® TM4 440
PBT+PET, MD20
PBT+ASA, GF15
Pocan® DP 7041
Polyester blends/DSM
PBT+PC, GF30
Pocan® B 7616
Polyester blends/Lanxess
PC+ABS
Bayblend® T85
225
–
–
225
–
225
225
–
–
–
–
–
225
225
225
225
222
–
–
–
225
225
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
100
205
200
–
135
–
–
180
195
185
175
170
100
60
60
–
85
82
88
80
–
–
–
–
109
122
118
109
195
220
220
–
200
–
–
215
220
–
–
–
–
115
110
–
*
120
122
120
–
–
–
–
*
134
130
127
–
210
205
–
130
–
–
205
195
–
–
–
145
120
115
122
–
–
–
–
–
–
–
–
–
132
129
129
–
0.3
0.4
1
0.3
–
–
0.3
0.5
–
–
–
0.4
1.4
1.3
0.9
0.9
0.9
0.9
0.9
0.5
0.7
0.55
0.84
0.7
0.3
0.42
0.75
(Continued )
–
0.6
0.7
1
0.8
–
–
0.6
1.1
–
–
–
0.7
1.4
1.3
0.9
1
0.9
0.9
0.9
0.55
0.75
0.7
0.9
0.8
0.8
0.8
0.8
12: Tables of Selected Thermal Properties 725
12/11/2007 6:24:43 PM
Mckeen_Ch12.indd 726
PBT+PET, GF30 PBT+PET, GF30 PC+PET PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS
Arnite® TV4 461 KL
Stapron® E EM 605
Xantar® C CE 407
Xantar® C CF 107
Xantar® C CF 407
Xantar® C CM 206
Xantar® C CM 206 U
Xantar® C CM 406
Xantar® C CM 406 FD
Xantar® C CM 406 U
Xantar® C CM 506
Xantar® C CM 506 U
Xantar® C MC 3433
Xantar® C MC 3700 PBT+PET, GF50 PBT+PET, GF10 PBT+PET, GF20 PBT+PET, GF30 PBT, GF10 PBT, GF20 PBT+ASA, GF10 PBT+ASA, GF20 PBT+ASA, GF20 PBT+ASA, GF30
Ultradur® B 4040 G10
Ultradur® B 4040 G2
Ultradur® B 4040 G4
Ultradur® B 4040 G6
Ultradur® B 4406 G4 Q113
Ultradur® B 4406 G6 Q113
Ultradur® S 4090 G2
Ultradur® S 4090 G4
Ultradur® S 4090 G4X
Ultradur® S 4090 G6
Polyester blends/BASF
PBT+PET, GF20
Arnite® TV4 461
Description
Arnite® TV4 441
Name and Grade
12.4 Polyesters (cont’d)
223
223
223
223
223
223
235
235
235
235
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Melt Point (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
175
190
160
105
195
180
202
180
168
205
110
90
110
110
105
105
105
95
95
100
90
100
120
205
205
200
HDT @ 1.8 MPa (°C)
210
210
205
190
220
215
220
215
216
221
–
–
–
–
–
–
–
–
–
–
–
–
–
225
225
–
HDT @ 0.45 MPa (°C)
160
–
157
150
–
–
–
–
–
–
13
10
13
13
12
120
120
110
110
120
104
120
130
–
–
–
Vicat Softening Temperature (°C)
0.3
–
0.4
0.55
0.28
0.35
–
–
–
0.25
–
–
–
–
–
–
–
0.8
0.8
–
–
–
0.8
0.4
0.4
–
CLTE Parallel (×10E 4/°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
0.6
0.6
–
CLTE Normal (×10E 4/°C)
726 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:43 PM
Mckeen_Ch12.indd 727
PBT+ASA, GF14
Ultradur® S 4090 GX
PBT+ASA, GF20 PBT+ASA, GF30 PBT+ASA, GF30 PBT+SAN, GF20 PBT+SAN, GF30
Crastin® LW9020FR NC010
Crastin® LW9030 NC010
Crastin® LW9030FR NC010
Crastin® LW9320 NC010
Crastin® LW9330 NC010
PC+ABS PC+ABS PC+ABS, GF10 PC+ABS, GF20 PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS PC+ABS, GF10 PC+ABS PC+ABS PC+ABS
PULSE 1350
PULSE 1370
PULSE 1550
PULSE 1718GF
PULSE 2000
PULSE 2000EZ
PULSE 2100LG
PULSE 2200BG
PULSE 830
PULSE 920MG
PULSE 979
PULSE A20-95
PULSE A35-105
PULSE A35-110 PBT+PET, GF10 PBT+PET, GF20 PBT+PET, GF30 PBT+PET, GF45
SCHULADUR® PCR GF 10
SCHULADUR® PCR GF 20
SCHULADUR® PCR GF 30
SCHULADUR® PCR GF 45
Polyester blends/A. Schulman
PC+ABS
PULSE 1310
Polyester blends/Dow
PBT+ASA, GF20
Crastin® LW9020 NC010
Polyester blends/DuPont
PBT+ASA, GF30
Ultradur® S 4090 G6X
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
220
220
225
225
225
225
223
223
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
202
205
200
169
110
105
96
–
102
105
109
104
105
107
113
117
105
104
98
185
180
190
180
175
170
170
205
–
225
225
–
130
126
110
–
126
129
131
126
126
130
–
131
129
125
122
–
–
–
–
–
–
210
220
–
–
132
122
109
131
128
134
131
128
124
130
120
131
134
128
121
–
–
–
150
–
145
–
–
–
–
–
–
–
–
–
–
–
0.72
0.72
0.75
0.69
0.72
–
0.34
0.72
0.66
0.65
–
0.3
–
0.25
–
0.3
0.52
0.3
(Continued )
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
1
–
1
–
1
–
–
12: Tables of Selected Thermal Properties 727
12/11/2007 6:24:43 PM
Mckeen_Ch12.indd 728
LCP+PPS, GF40 LCP+PPS, GF40 PBT Alloy PBT Alloy PBT Alloy, P10 PBT Alloy PBT Alloy PBT Alloy, GF7 PBT Alloy, GF15 PBT Alloy, GF30 PBT Alloy PBT Alloy
VECTRA V143XL
VANDAR 2100
VANDAR 2100UV
VANDAR 2122
VANDAR 2500
VANDAR 4602Z
VANDAR 4612R
VANDAR 4632Z
VANDAR 4662Z
VANDAR 6000
VANDAR 8000
Description
VECTRA V140
Polyester blends/Ticona
Name and Grade
12.4 Polyesters (cont’d)
225
–
225
225
225
225
225
225
225
225
335
280
Melt Point (°C)
–
–
60
60
60
60
–
–
60
60
–
–
Glass Transition Temperature (°C)
52
74
175
154
92
48
50
53
50
50
260
270
HDT @ 1.8 MPa (°C)
127
106
218
210
200
110
125
128
110
110
–
–
HDT @ 0.45 MPa (°C)
–
–
190
180
170
130
–
–
137
137
–
–
Vicat Softening Temperature (°C)
1.1
0.9
0.15
0.25
0.4
1.3
1.3
–
1.3
1.3
0.08
0.11
CLTE Parallel (×10E 4/°C)
–
–
1.27
1.41
1.38
–
1.34
–
–
–
0.31
0.21
CLTE Normal (×10E 4/°C)
728 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:43 PM
Mckeen_Ch12.indd 729
PEI PEI PEI PEI PEI Blend PEI, GF10 PEI, GF10 PEI, GF20 PEI, GF20 PEI, Milled GF20 PEI, GF30 PEI, GF30 PEI, Milled GF30 PEI, GF40 PEI, GF40 PEI, GF40 PEI, (GF+MD)45 PEI, (GF+PTFE+Graphite) PEI, PTFE PEI, PTFE PEI PEI PEI PEI, GF20
Ultem® 1010
Ultem® 1100
Ultem® 1110
Ultem® 1285
Ultem® 2100
Ultem® 2110
Ultem® 2200
Ultem® 2210
Ultem® 2212
Ultem® 2300
Ultem® 2310
Ultem® 2312
Ultem® 2400
Ultem® 2410
Ultem® 2412EPR
Ultem® 3452
Ultem® 4000
Ultem® 4001
Ultem® 4002
Ultem® 9011
Ultem® CRS5001
Ultem® CRS5011
Ultem® CRS5201
Description
Ultem® 1000
PEI/GE Plastics
Name and Grade
12.5 Polyimides
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Melt Point (°C)
225
225
225
217
–
–
217
217
217
217
217
217
217
217
217
217
217
217
217
–
217
217
217
217
Glass Transition Temperature (°C)
218
204
201
–
200
200
212
212
203
212
212
207
210
210
205
211
210
207
208
165
198
198
198
201
HDT @ 1.8 MPa (°C)
–
–
–
–
–
–
–
–
213
215
215
–
–
212
–
210
210
–
210
–
–
–
207
210
HDT @ 0.45 MPa (°C)
–
–
–
–
219
–
233
–
222
234
234
–
–
227
–
225
220
–
223
181
–
–
218
218
Vicat Softening Temperature (°C)
–
–
–
–
0.39
–
0.162
–
0.25
0.144
0.144
0.234
0.162
0.198
–
–
0.252
–
0.324
0.486
–
–
0.558
0.558
CLTE Parallel (×10E 4/°C)
(Continued )
–
–
–
–
0.4
–
1.62
–
0.3
–
–
0.27
0.414
–
–
–
–
–
–
0.486
–
–
–
0.54
CLTE Normal (×10E 4/°C)
12: Tables of Selected Thermal Properties 729
12/11/2007 6:24:43 PM
Mckeen_Ch12.indd 730
– –
Ultem® EXUM0169 PEI PEI PEI PEI
Ultem® LTX300A
Ultem® MD130A
Ultem® XH6050
PAI,Graphite20, PTFE3 PAI,Graphite12, PTFE3 PAI PAI, GF30 PAI, CF30
Torlon® 4275
Torlon® 4301
Torlon® 4435
Torlon® 5030
Torlon® 7130
PI, Graphite10 PI, Graphite15 PI, Graphite30 PI, Graphite40 PI, Graphite15, PTFE10 PI, Moly15
Vespel® ST-2010
Vespel® SP21
Vespel® ST-2030
Vespel® SP22
Vespel® SP211
Vespel® SP3
– Missing value, not applicable.
PI
Vespel® SP1 DF
PI/DuPont
PAI, X3, PTFE0.5
Torlon® 4203L
PAI/Solvay
–
PEI
Ultem® DT1810E
–
–
–
–
–
–
–
–
–
–
–
PEI
Ultem® DT1800E
–
PEI, GF30
Description
Melt Point (°C)
Ultem® CRS5311
Name and Grade
12.5 Polyimides (cont’d)
–
–
–
–
–
–
–
–
247
217
–
200
200
200
225
Glass Transition Temperature (°C)
–
–
–
–
360
–
360
282
282
278
279
290
278
217
198
189
178
178
178
218
HDT @ 1.8 MPa (°C)
–
–
–
–
–
–
–
–
237
–
204
–
–
–
–
HDT @ 0.45 MPa (°C)
–
–
–
–
–
–
–
–
242
–
210
192
192
192
–
Vicat Softening Temperature (°C)
0.47
0.54
0.15
0.31
0.28
0.5
0.31
0.09
0.16
0.144
0.25
0.25
0.31
0.5
–
0.5
0.55
0.55
0.55
–
CLTE Parallel (×10E 4/°C)
–
–
–
–
–
–
–
–
0.5
–
0.5
0.55
0.55
0.55
–
CLTE Normal (×10E 4/°C)
730 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:44 PM
Mckeen_Ch12.indd 731
PA6, GF30 PA6, GF30 PA6, GF30, Imod PA6, GF35 PA6, GF45 PA6, GF15, Imod PA6, GF20 PA6, Imod PA6, Imod
Zytel® 73G30HSL NC010
Zytel® 73G30L NC010
Zytel® 73G30T NC010
Zytel® 73G35HSL BK262
Zytel® 73G45L NC010
Zytel® BM73G15THS BK317
Zytel® FR73G20GWF NC010
Zytel® ST7301 BK356
Zytel® ST7301 NC010
Ultramid® 8200
PA6
PA, GF30
Zytel® 73G30HSL BK261
PA6/BASF
PA, GF30
PA6, GF15
Zytel® 73G15HSL BK363
Zytel® 73G30HSL BK416
221
PA6
Zytel® 7335F NC010 PA6, GF15
PA6, Imod
Zytel® 7331T NC010A
PA6, GF15, Imod
PA6
Zytel® 7301J NC010
Zytel® 73G15L NC010
PA6, MD40
Minion® 73M40 NC010
Zytel® 73G15THSL BK240
221
PA6, MD30
Minion® 73M30HSL BK489
220
221
221
221
221
221
221
221
221
221
221
221
221
221
221
221
221
221
221
PA6, MD30
Minion® 73M30 NC010
221
PA6, (MD+GF)40
Description
Melt Point (°C)
Minion® 73GM40 NC010
PA6/DuPont
Name and Grade
12.6 Polyamides (Nylons)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
60
51
45
150
180
213
208
206
210
210
205
204
200
200
204
65
50
55
110
78
78
195
HDT @ 1.8 MPa (°C)
–
95
88
200
–
221
–
–
220
220
220
220
–
220
–
175
150
160
196
–
196
–
–
–
–
–
–
215
–
–
–
215
–
–
–
215
–
200
–
–
210
210
212
Vicat HDT @ Soften0.45 MPa ing (°C) Temperature (°C)
–
–
–
–
–
0.16
–
–
0.14
0.22
–
–
–
0.37
–
0.76
–
–
0.65
–
0.88
0.41
CLTE Parallel (×10E 4/°C)
(Continued )
–
–
–
–
–
1
–
–
1.02
1.02
–
–
–
1.09
–
0.92
–
–
0.75
–
1.02
0.77
CLTE Normal (×10E 4/°C)
12: Tables of Selected Thermal Properties 731
12/11/2007 6:24:44 PM
Mckeen_Ch12.indd 732
PA6 PA6 PA6 PA6 PA6 PA6, GF14 PA6, GF33 PA6 PA6 PA6, MD40 PA6, (MD+GF)20 PA6, (MD+GF)40 PA6, (MD+GF)40 PA6, GF12 PA6, GF33 PA6 PA6 PA6 PA6, GF15 PA6, GF15 PA6, GF15 PA6, GF25 PA6, GF30 PA6, GF40 PA6, (GF+GB)30 PA6, (MD+GF)40
Ultramid® 8202
Ultramid® 8202 HS
Ultramid® 8202C
Ultramid® 8202C HS BK-102
Ultramid® 8231G HS
Ultramid® 8233G HS
Ultramid® 8253 HS
Ultramid® 8254 HS BK 102
Ultramid® 8260
Ultramid® 8262G HS BK-102
Ultramid® 8266G HS BK102
Ultramid® 8267G HS BK-102
Ultramid® 8272G HS BK-102
Ultramid® 8333G HI
Ultramid® 8350 HS
Ultramid® 8351 HS BK-102
Ultramid® B32 Q128
Ultramid® B35EG3
Ultramid® B35G3 bk 564
Ultramid® B3EG3
Ultramid® B3EG5
Ultramid® B3EG6
Ultramid® B3G8
Ultramid® B3GK24
Ultramid® B3GM35 bk 30564
Description
Ultramid® 8200 HS BK-102
Name and Grade
12.6 Polyamides (Nylons) (cont’d)
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
Melt Point (°C)
–
–
–
–
–
–
–
–
55
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
190
200
215
210
210
190
187
190
65
49
51
205
170
200
205
163
–
43
55
205
195
65
65
60
60
56
HDT @ 1.8 MPa (°C)
210
215
220
220
220
215
214
215
160
–
–
220
210
215
217
211
195
–
–
215
217
–
–
–
–
–
–
–
220
220
220
210
–
210
204
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Vicat HDT @ Soften0.45 MPa ing (°C) Temperature (°C)
0.375
0.375
0.125
0.225
0.225
0.325
–
0.325
0.85
–
–
0.24
0.28
0.3
0.21
–
0.46
0.93
0.88
0.21
0.39
–
–
–
–
–
CLTE Parallel (×10E 4/°C)
–
–
0.625
0.65
0.65
0.75
–
0.75
–
–
–
0.84
0.72
0.67
0.58
–
0.58
1.11
0.93
0.7
0.78
–
–
–
–
–
CLTE Normal (×10E 4/°C)
732 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:44 PM
Mckeen_Ch12.indd 733
PA6, (GF+MD)40 PA6 PA6 PA6 PA6, MD30 PA6, MD30 PA6, MD30 PA6, MD30 PA6, MD30 PA6, MD30 PA6 PA6, GF20 PA6, GF50 PA6, GF25 PA6, GF30 PA6, GF30 PA6, GF30 PA6, GF35 PA6 PA6, GF15 PA6, GF30 PA6, GF40 PA6, (MD+GF)45 PA6, GF63 PA6 PA6, (MD+GF)40
Ultramid® B3GM35 Q611
Ultramid® B3K
Ultramid® B3L
Ultramid® B3L Q235
Ultramid® B3M6 bk 30564
Ultramid® B3M6 bk 60564
Ultramid® B3M6 LS
Ultramid® B3M6 Q252
Ultramid® B3M6 Q256
Ultramid® B3M6 Q94
Ultramid® B3S
Ultramid® B3UG4
Ultramid® B3WG10 bk 564
Ultramid® B3WG5
Ultramid® B3WG6
Ultramid® B3WG6 BGVW bk 564
Ultramid® B3WG6 GP bk 23210
Ultramid® B3WG7
Ultramid® B3Z Q263
Ultramid® B3ZG3
Ultramid® B3ZG6
Ultramid® B3ZG8 bk 20560
Ultramid® BG40GM45 HS BK-130
Ultramid® HMG13 HS BK-102
Ultramid® HPN 9350 HS
Ultramid® SEGM35HI BK-126 PA11 PA11, CD10
RILSAN BECN O TL
RILSAN BESN G9 TL
PA11/Arkema
PA6, (GF+MD)40
Ultramid® B3GM35 Q224
189
189
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
260
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
60
–
–
–
–
–
–
–
–
60
–
–
56
55
190
50
214
200
205
200
180
40
215
210
205
210
200
215
170
65
65
65
65
65
65
70
65
55
65
200
200
168
150
215
–
–
215
220
220
200
55
220
220
218
220
220
220
210
180
195
190
190
195
190
195
150
150
180
215
215
162
160
–
–
–
–
–
220
–
–
220
–
–
220
220
–
–
204
–
–
–
–
–
–
204
204
204
–
–
0.9
0.9
–
–
–
–
0.15
0.225
0.325
–
0.175
–
–
0.225
0.225
0.125
0.525
0.85
0.65
0.65
0.65
0.65
0.65
0.65
0.85
0.85
0.85
0.38
0.375
(Continued )
–
–
–
–
–
–
0.55
0.65
0.75
–
0.65
–
–
0.65
0.65
0.55
0.55
–
0.6
0.6
0.6
0.6
0.6
0.6
–
–
–
–
–
12: Tables of Selected Thermal Properties 733
12/11/2007 6:24:44 PM
Mckeen_Ch12.indd 734
PA11 PA11 PA11 PA11 PA11 PA11, Molybdenum PA11, GB30 PA11, GF23, CD7 PA11, GF30 PA11, GF43, Graphite7 PA11 PA11
RILSAN BESN O TL
RILSAN BESVO A FDA
RILSAN BMN O P20 D
RILSAN BMN O P40 D
RILSAN BMN O TLD
RILSAN BMN Y TLD
RILSAN BUM 30 O
RILSAN BZM 23 G9
RILSAN BZM 30 O TL
RILSAN BZM 43 G9
RILSAN MB 3000
RILSAN NAT HP 3504 MB PA12 PA12 PA12 PA12 PA12, GF23 PA12, GD30 PA12, GD30 PA12 PA12 PA12 PA12
LAURAMID A
LAURAMID B
VESTAMID L1670 nf
VESTAMID L1723 sw
VESTAMID L1833 nf
VESTAMID L1930 nf
VESTAMID L1940 nf
VESTAMID L2101 F nf
VESTAMID L2106F nf
VESTAMID L2121 nf
VESTAMID L2121 sw 9.7507
PA12/Degussa
PA11 PA11
RILSAN BESN O P40 TL
Description
RILSAN BESN O P20 TL
Name and Grade
12.6 Polyamides (Nylons) (cont’d)
176
176
178
178
178
178
178
173
178
–
–
185
189
189
189
189
189
189
189
182
187
189
189
182
187
Melt Point (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
45
45
40
50
50
130
160
45
50
190
127
40
–
175
175
170
60
50
50
45
47
50
50
45
47
HDT @ 1.8 MPa (°C)
110
110
80
110
110
170
175
95
120
194
186
–
–
180
180
178
165
155
145
130
135
145
145
130
135
130
130
130
140
140
170
175
130
140
188
176
–
–
180
170
170
165
162
160
140
145
160
160
140
146
Vicat HDT @ Soften0.45 MPa ing (°C) Temperature (°C)
1.6
1.6
1.5
1.5
1.5
0.5
0.7
1.8
1.5
–
–
1.38
1.02
0.3
0.5
0.5
0.7
0.9
0.85
1.1
1
0.85
0.85
1.1
1
CLTE Parallel (×10E 4/°C)
1.5
1.7
1.5
1.5
1.5
0.5
0.8
1.8
1.5
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
CLTE Normal (×10E 4/°C)
734 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:44 PM
Mckeen_Ch12.indd 735
PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12
VESTAMID L-R3-MHI sw
VESTAMID L-R4-MHI sw
VESTAMID L-R7-MHI sw
VESTAMID L-R9-MHI sw
VESTAMID LX9013nf
VESTAMID X7166 nf
VESTAMID X7167 nf
VESTAMID X7229 nf
VESTAMID X7293 nf
VESTAMID X7293 sw
VESTAMID X7373 nf
PA12, GF15
VESTAMID L-GF15 nf
PA12
PA12, CB30
VESTAMID L-GB30 nf
VESTAMID L-R3-EP sw
PA12, CF15
VESTAMID L-CF15 sw
PA12
PA12, CD22
VESTAMID L-CD22-M sw
VESTAMID L-R3-EI sw
PA12
VESTAMID L2141 sw 9.7504
PA12, GF25
PA12
VESTAMID L2140 sw 9.7504
VESTAMID L-R2-GF25 sw
178
PA12
VESTAMID L2140 nf
PA12, GF30
PA12
VESTAMID L2128 nf
PA12
PA12
VESTAMID L2124 sw 9.7507
VESTAMID L-GF30 nf
PA12
VESTAMID L2124 nf
VESTAMID L-R1-MHI sw
178
PA12
VESTAMID L2123 nf
178
172
175
172
178
172
–
178
178
178
178
178
178
178
178
178
178
178
–
178
164
–
–
171
–
PA12
VESTAMID L2122 sw 9.7507
173
PA12
VESTAMID L2122 nf
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
50
45
45
40
50
50
–
50
50
50
50
60
60
170
50
165
160
55
170
80
50
50
50
40
45
45
45
45
45
130
100
100
130
130
140
–
130
130
130
130
120
130
175
130
175
175
150
175
160
110
110
110
70
90
90
80
95
95
150
130
130
150
150
150
–
140
140
140
140
140
140
170
140
175
170
155
175
160
140
140
140
100
125
125
120
130
125
1.5
1.8
1.8
0.8
0.9
–
–
–
1.7
1.8
1.8
1.5
1.5
1
–
0.6
0.8
1.3
1.5
0.8
1.5
1.4
1.4
1.8
1.7
1.8
1.8
1.7
1.7
(Continued )
1.4
1.8
1.8
–
0.8
–
–
–
1.8
–
1.7
1.4
1.5
0.8
–
0.7
0.8
1.3
1.5
–
1.4
1.4
1.4
1.8
1.6
1.7
1.7
1.6
1.7
12: Tables of Selected Thermal Properties 735
12/11/2007 6:24:45 PM
Mckeen_Ch12.indd 736
PA12, CB30 PA12, CB50 PA12, GF23 PA12, GF23 PA12, GF25
Grilamid LKN-5H
Grilamid LV-23 ESD
Grilamid LV-23H
Grilamid LV-25 HM
PA12
Grilamid L 25 W 40
Grilamid LKN-3H
PA12
Grilamid L 25 W 20 Y
PA12, CF30
PA12
Grilamid L 25 W 20 X
Grilamid LC-3H
PA12
Grilamid L 25 NZ ESD
PA12
PA12
Grilamid L 25
Grilamid L 25A NZ
PA12
Grilamid L 20 W 20
PA12
PA12
Grilamid L 20 LM
Grilamid L 25A H
PA12
Grilamid L 20 LF grey
PA12
PA12
Grilamid L 20 L
Grilamid L 25 Z
PA12
Grilamid L 20 HL black 9563
PA12
PA12
Grilamid L 20 H FR
PA12
PA12
Grilamid L 20 G
Grilamid L 25 W 40 ESD
PA12, CD25
Grilamid L 20 EC
Grilamid L 25 W 40 X
PA12
Description
Grilamid L 16 LM
PA12/EMS-Grivory
Name and Grade
12.6 Polyamides (Nylons) (cont’d)
178
178
178
178
178
178
178
178
178
173
173
173
178
174
178
178
174
178
178
178
178
178
178
178
178
Melt Point (°C)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Glass Transition Temperature (°C)
135
155
150
65
50
165
45
45
40
45
45
45
45
45
45
45
45
50
65
45
45
50
45
65
50
HDT @ 1.8 MPa (°C)
*
–
*
*
–
*
80
115
85
95
95
95
95
95
95
115
100
125
140
115
115
130
115
135
125
*
*
*
160
*
*
*
138
*
116
*
128
*
128
*
138
135
143
156
138
138
138
138
160
145
Vicat HDT @ Soften0.45 MPa ing (°C) Temperature (°C)
0.4
0.2
0.2
1.2
1.4
0.1
1.2
1.2
1.2
1.4
1.4
1.4
1.4
1.4
1.3
1.2
1.4
1.2
0.8
1.2
1.2
0.9
1.2
1.2
1.2
CLTE Parallel (×10E 4/°C)
1.5
1.5
1.5
1.2
1.4
1.3
1.4
1.4
1.4
1.8
1.8
1.8
1.8
1.8
1.5
1.4
1.6
1.4
1.3
1.4
1.4
1.2
1.4
1.3
1.4
CLTE Normal (×10E 4/°C)
736 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:45 PM
Mckeen_Ch12.indd 737
PA12, GF20 PA12, GF30 PA12, GF30
Grilamid LV-2H
Grilamid LV-3A H
Grilamid LV-3H
PA46, Imod, GF30 PA46 PA46 PA46 PA46, GF30 PA46, GF20 PA46, GF30 PA46, GF40 PA46, GF40 PA46, CF30 PA46, GF15 PA46, GF30 PA46, GF40 PA46, (GF+MD)30
Stanyl® TE300
Stanyl® TE351
Stanyl® TE373
Stanyl® TS200F6
Stanyl® TS250F4D
Stanyl® TS250F6D
Stanyl® TS250F8
Stanyl® TS256F8
Stanyl® TW200B6
Stanyl® TW200F3
Stanyl® TW200F6
Stanyl® TW200F8
Stanyl® TW200FM33
PA46, GF15
Stanyl® TE250F3
Stanyl® TE263F6
PA46, GF40
Stanyl® TE200F8
PA46, GF45
PA46, GF30
Stanyl® TE200F6
Stanyl® TE250F9
PA46, GF50
Stanyl® 46HF5050
PA46, GF30
PA46, GF40
Stanyl® 46HF5041LW
PA46, GF40
PA46, GF40
Stanyl® 46HF5040
Stanyl® TE250F6
PA46, GF40
Stanyl® 46HF4530
Stanyl® TE250F8
PA46, GF30
Stanyl® 46HF4130
PA46/DSM
PA12, GF20
Grilamid LV-2A NZ
295
295
295
295
295
295
295
295
295
295
295
295
295
295
295
295
295
295
295
295
295
295
295
295
295
178
178
178
178
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
*
*
*
*
275
290
290
275
290
290
290
290
290
290
190
160
190
280
290
290
290
290
290
290
290
290
290
290
270
160
160
150
130
290
290
290
290
–
290
290
290
290
290
–
–
280
–
290
290
290
290
290
290
290
290
290
290
290
*
*
*
160
290
290
290
290
–
290
290
290
290
290
–
–
290
–
290
290
290
290
290
290
290
290
290
290
290
170
*
*
*
0.4
0.25
0.25
0.5
0.08
0.2
0.25
0.25
0.4
0.25
0.85
0.9
0.85
0.2
0.2
0.25
0.25
0.4
0.25
0.25
0.2
0.2
0.25
0.25
0.2
0.2
0.2
0.3
0.4
(Continued )
0.7
0.5
0.6
0.8
0.34
0.7
0.5
0.55
0.6
0.6
1.1
0.9
1.1
0.8
0.45
0.5
0.55
0.6
0.5
0.6
0.3
0.45
0.6
0.6
0.4
1.5
1.5
1.5
1.5
12: Tables of Selected Thermal Properties 737
12/11/2007 6:24:45 PM
Mckeen_Ch12.indd 738
PA46, GF60 PA46, GF15 PA46, GF30 PA46, GF40 PA46, (GF+MF)50 PA46, GF30 PA46, GF30 PA46, CF15 PA46, GF30 PA46 PA46 PA46 PA46, Imod PA46
Stanyl® TW241 F12
Stanyl® TW241 F3
Stanyl® TW241 F6
Stanyl® TW241 F8
Stanyl® TW242FM10
Stanyl® TW250F6
Stanyl® TW271 F6
Stanyl® TW271B3
Stanyl® TW275F6
Stanyl® TW341
Stanyl® TW341 B
Stanyl® TW341-N
Stanyl® TW363
Stanyl® TW371
263
PA66, MD40 PA66, MD40 PA66, MD40 PA66, Imod, MD40 PA66, Imod, MD40 PA66, Imod, MD40 PA66, Imod, MD40 PA66, Imod, MD36 PA66, Imod, MD36
Minlon® 10B140 NC010
Minlon® 10B40 NC010
Minion® 10B40HS1 BK061
Minion® 11C140 BK086
Minlon® 11C140 NC010
Minion® 11C40 BKB086
Minion® 11C40 NC010
Minion® 12T BKB100
Minion® 12T NC010
256
256
256
256
256
256
263
263
PA66, MD40
263
295
295
295
295
295
295
295
295
295
295
295
295
295
295
295
Melt Point (°C)
Minion® 10B140 BK061
PA66/DuPont
PA46, CF15
Description
Stanyl® TW241 B3
Name and Grade
12.6 Polyamides (Nylons) (cont’d)
–
–
–
–
–
–
–
–
–
–
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
Glass Transition Temperature (°C)
80
80
100
90
110
95
200
200
170
170
190
90
190
190
190
285
290
290
290
285
290
290
275
290
290
HDT @ 1.8 MPa (°C)
205
–
215
210
220
–
–
245
240
240
290
200
280
280
280
290
290
–
290
290
290
290
290
290
–
–
–
–
–
235
–
–
–
245
–
290
250
290
290
290
290
290
–
290
*
290
290
290
290
–
Vicat HDT @ Soften0.45 MPa ing (°C) Temperature (°C)
0.64
0.64
0.64
0.64
0.86
–
0.36
0.36
0.65
0.85
1.8
0.85
0.85
0.85
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.5
0.2
0.25
CLTE Parallel (×10E 4/°C)
0.65
0.65
0.65
0.65
0.86
–
0.66
0.66
0.9
–
1.1
2
1.1
1.1
1.1
0.6
0.6
0.5
0.55
0.5
0.5
0.6
0.8
0.35
0.5
CLTE Normal (×10E 4/°C)
738 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:45 PM
PA66, Imod, MD32 PA66, (MD+GF)38 PA66, (MD+GF)38 PA66, (MD+GF)40 PA66, Imod, MD15 PA66, (MD+GF)38 PA66 PA66 PA66 PA66 PA66 PA66 PA66 PA66 PA66 PA66, Imod PA66 PA66 PA66 PA66 PA66, Imod PA66 PA66, GF13 PA66, GF13 PA66, GF13 PA66, GF25 PA66, GF25 PA66, GF30 PA66, GF30 PA66, GF30
Minion® 12TA BKB124
Minion® 22C BK086
Mckeen_Ch12.indd 739
Minlon® 22C NC010
Minlon® EFE6053 BK413
Minlon® EFE6096 GY090A
Minion® IG38C1 BK434
Zytel® 101 NC001
Zytel® 101F BKB009
Zytel® 101F NC010
Zytel® 101L BKB038
Zytel® 101L NC010
Zytel® 103FHS BKB009
Zytel® 103FHS NC010
Zytel® 103HSL BKB038
Zytel® 103HSL NC010
Zytel® 114HSL BK000
Zytel® 132F NC010
Zytel® 135F NC010
Zytel® 145 BK010
Zytel® 42A NC010
Zytel® 450HSLX 52 BK1
Zytel® 45HSB NC010
Zytel® 70G13HS1L BK031
Zytel® 70G13HS1L NC010
Zytel® 70G13L NC010
Zytel® 70G25HSLR BK099
Zytel® 70G25HSLR NC010
Zytel® 70G30HSL BK039B
Zytel® 70G30HSLR BK099
Zytel® 70G30HSLR NC010
262
262
263
262
262
262
262
262
262
263
262
262
263
262
263
262
262
262
262
262
262
262
262
262
263
263
262
263
263
257
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
253
253
250
252
252
238
238
238
70
63
70
65
88
75
65
70
70
70
70
70
70
70
70
70
222
235
240
225
225
80
261
–
258
261
–
258
258
258
–
210
200
190
210
225
195
200
200
200
195
200
200
200
195
200
–
–
256
255
–
–
250
–
257
–
–
–
–
–
–
–
243
–
–
238
–
–
–
238
–
238
–
–
–
–
250
–
–
–
0.22
–
–
0.33
–
0.4
0.4
0.4
1
–
1
1.1
1.21
–
–
1
–
1
–
1
–
1
–
–
–
0.34
0.28
0.41
0.41
–
(Continued )
1.07
–
–
1.12
–
0.96
0.96
0.96
1
–
1
1.1
1.21
–
1.1
–
1.1
–
1.1
–
1.1
–
–
–
0.81
0.87
0.62
0.62
–
12: Tables of Selected Thermal Properties 739
12/11/2007 6:24:45 PM
Mckeen_Ch12.indd 740
PA66 PA66, Imod, GF33 PA66 PA66
Zytel® EFE8089B BK416
Zytel® FE3071 NC010
Zytel® FE3757 NC010
PA66, Imod, GF25
Zytel® 80G25HS NC010
Zytel® EFE1068 NC010T
PA66, Imod, GF14
Zytel® 80G14AHS NC010
PA66
PA66, RF20
Zytel® 70K20HSL BK284
Zytel® E51 HSB NC010
PA66, RF20
Zytel® 70K20HSL NC010
PA66, Imod
PA66, GF60
Zytel® 70G60HSL BK359
Zytel® CDV808 BK409
PA66, GF50
Zytel® 70G50HSLA BK039B
PA66, Imod, GF
PA66, GF43
Zytel® 70G43L NC010
Zytel® CDV805 BK409
PA66, GF43
Zytel® 70G43HSLA BK099
PA66, GF
PA66, GF35
Zytel® 70G35HSLX BK357
Zytel® CDV595 BK409
262
PA66, GF35
Zytel® 70G35HSLRA4 BK267
PA66, Imod, GF33
PA66, GF35
Zytel® 70G35HSL NC010
PA66, Imod, GF43
PA66, GF35
Zytel® 70G35HSL BK039B
Zytel® 80G33L NC010
PA66, GF33
Zytel® 70G33L NC010
Zytel® 80G43HS1L BK104
262
PA66, GF33
Zytel® 70G33L BK031
263
263
262
262
263
262
–
250
263
262
263
263
263
263
262
262
262
263
260
262
263
262
262
262
PA66, GF30 PA66, GF30
Zytel® 70G30HSR2 BK309
Description
Melt Point (°C)
Zytel® 70G30L NC010
Name and Grade
12.6 Polyamides (Nylons) (cont’d)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
66
70
245
70
70
185
225
248
250
247
245
238
–
222
255
253
255
255
252
250
252
250
252
252
253
–
HDT @ 1.8 MPa (°C)
195
200
–
–
200
230
–
260
261
262
–
255
–
255
260
–
262
–
–
–
261
260
261
261
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
250
250
–
255
–
–
–
255
–
–
–
–
–
Vicat HDT @ Soften0.45 MPa ing (°C) Temperature (°C)
0.8
–
–
–
–
–
–
0.16
–
0.15
–
0.4
–
–
–
–
0.15
–
–
–
0.2
–
0.18
0.18
–
–
CLTE Parallel (×10E 4/°C)
0.9
–
–
–
–
–
–
0.72
–
1.19
–
1.04
–
–
–
–
0.79
–
1
–
0.83
0.83
–
–
CLTE Normal (×10E 4/°C)
740 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:46 PM
Mckeen_Ch12.indd 741
PA66+PA6, GF35 PA66, GF25 PA66 PA66, MD30 PA66, Imod PA66, Imod PA66, Imod PA66, Imod PA66, Imod PA66, Imod PA66, Imod
Zytel® FE5555 BK538
Zytel® FR50 NC010
Zytel® FR7026V0F NC010
Zytel® FR70M30V0 NC010
Zytel® MT409AHS BK010
Zytel® MT409AHS NC010
Zytel® ST801A NC010
Zytel® ST801AHS BK01 0
Zytel® ST801AHS NC010
Zytel® ST801AW BK195
Zytel® ST801AW NC010 PA66, GF50 PA66, GF25 PA66, GF30 PA66, GF35 PA66, GF35 PA66, GF25 PA66, GF30 PA66, GF35 PA66 PA66 PA66 PA66 PA66 PA66, GF50 PA66, GF15 PA66, GF25 PA66, GF30
Ultramid® A3EG10
Ultramid® A3EG5
Ultramid® A3EG6
Ultramid® A3EG7
Ultramid® A3EG7 Q206
Ultramid® A3HG5
Ultramid® A3HG6 HR bk 23591
Ultramid® A3HG7
Ultramid® A3K
Ultramid® A3K Q202
Ultramid® A3SK
Ultramid® A3SK Q202
Ultramid® A3W
Ultramid® A3WG10
Ultramid® A3WG3
Ultramid® A3WG5
Ultramid® A3WG6
PA66/BASF
PA66, GF26
Zytel® FE5480HS BK32N
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
262
262
262
262
262
262
262
263
263
–
260
263
–
–
–
–
–
–
–
72
72
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
250
245
240
250
75
75
75
75
75
250
250
245
250
250
250
245
250
60
62
62
61
63
66
65
200
70
239
250
253
250
250
250
250
220
220
220
220
220
250
250
250
250
250
250
250
250
155
162
157
147
157
205
187
238
–
–
–
–
250
250
250
250
250
–
250
250
250
250
250
250
250
250
250
250
250
–
–
–
–
–
–
–
235
–
–
–
–
0.25
0.3
0.325
0.125
0.85
0.85
0.85
0.85
0.85
0.175
0.25
0.3
0.175
0.175
0.25
0.3
0.125
1.4
1.5
0.9
1.4
1.4
1
1
0.64
–
–
–
–
(Continued )
0.65
0.65
0.75
0.55
–
–
–
–
–
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.55
1.2
1.3
1.2
1.2
1.3
1.2
1
0.81
–
–
–
12: Tables of Selected Thermal Properties 741
12/11/2007 6:24:46 PM
Mckeen_Ch12.indd 742
PA66, (GF+MD)40 PA66, GF50 PA66, GF35 PA66, GF25 PA66, GF25 PA66 PA66, GF30
Ultramid® A3X2G10
Ultramid® A3X2G7
Ultramid® A3X3G5
Ultramid® A3XZG5
Ultramid® A3Z
Ultramid® A3ZG6 bk 20591
PA610 PA610
Amilan® CM2006
Amilan® CM2401
PA612 PA612 PA612 PA612 PA612 PA612, Imod PA612, GF33 PA612, GF33 PA612, GF33 PA612, GF43 PA612, GF43
Zytel® 158 NC010
Zytel® 158L NC010
Zytel® 159 NC010
Zytel® 159L NC010
Zytel® 350PHS2 NC010
Zytel® 77G33HS1L NC010
Zytel® 77G33L BK031
Zytel® 77G33L NC010
Zytel® 77G43L BK031
Zytel® 77G43L NC010
PA612
Zytel® 153HSL NC010
Zytel® 157HSL BK010
PA612
Zytel® 151 L NC010
PA612/DuPont
PA610
Amilan® CM2001
PA610/Toray Resin Company
PA66, GF35
Ultramid® A3WGM53 bk 20560
Description
Ultramid® A3WG7
Name and Grade
12.6 Polyamides (Nylons) (cont’d)
218
218
218
218
218
215
216
216
218
218
218
218
218
220
225
225
260
260
260
260
260
260
260
260
Melt Point (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
203
205
200
200
200
45
62
62
62
62
62
62
62
–
–
–
240
60
250
250
250
250
225
250
HDT @ 1.8 MPa (°C)
217
217
216
–
216
120
–
–
135
135
–
135
135
–
180
180
250
125
250
250
250
250
250
250
–
–
–
–
–
–
–
–
–
181
–
181
181
–
–
–
–
–
–
–
–
–
–
250
Vicat HDT @ Soften0.45 MPa ing (°C) Temperature (°C)
0.1
0.1
0.17
0.17
0.17
–
–
–
1.2
1.2
–
1.2
1.1
–
1
1.2
0.3
0.85
0.3
0.3
0.175
0.175
0.15
0.175
CLTE Parallel (×10E 4/°C)
1.04
1.04
1.13
1.13
1.13
–
–
–
1.2
1.2
1.2
1.2
–
–
–
0.65
–
0.7
0.7
0.65
0.45
0.65
0.65
CLTE Normal (×10E 4/°C)
742 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:46 PM
Mckeen_Ch12.indd 743
PA666 PA666
Ultramid® C3U
Ultramid® CC4
PA6T/XT, GF35 PA6T/XT, GF35 PA6T/XT, GF45 PA6T/XT, GF45 PA6T/XT, Imod, (GF+MD)60 PA6T/XT, GF50 PA6T/66, GF35 PA6T/XT, (MD+GF)40 PA6T/XT, MD40 PA6T/XT, Imod, MD30 PA6T/XT, Imod, MD30 PA6T/XT, Imod PA6T/XT, Imod PA6T/XT, GF35 PA6T/XT, GF30 PA6T/XT, RF20
Zytel® HTN51G35HSL NC010
Zytel® HTN51G35HSLR BK420
Zytel® HTN51G45HSL NC010
Zytel® HTN51G45HSLR BK420
Zytel® HTN51GM60THS BK083
Zytel® HTN51LG50HSL BK083
Zytel® HTN52G45HSL NC010
Zytel® HTNFE150005 BK083
Zytel® HTNFE16502 BK001
Zytel® HTNFE250020 NC010
Zytel® HTNFE350006 NC010
Zytel® HTNFE350015 NC010
Zytel® HTNFE8200 NC010
Zytel® HTNFR51G35L NC010
Zytel® HTNWRF51 G30 NC010
Zytel® HTNWRF51 K20 NC010 PA66/6T, GF33 PA66/6T, GF45 PA66/6T, MD30 PA66/6T, MD40 PA66/6T, MD40 PA66/6T PA66/6T, GF33
AMODEL A-1133 HS
AMODEL A-1145 HS
AMODEL A-1230 L
AMODEL A-1240 HS
AMODEL A-1240 L
AMODEL A-1565 HS
AMODEL AF-1133 V0
PPA/Solvay
PA6T/XT, GF25
Zytel® HTN51G25HSL BK083
PPA/DuPont
PA666
Ultramid® 1C
PA666/BASF
326
312
312
312
312
312
313
300
300
295
300
304
304
301
300
300
–
300
300
300
300
300
300
300
196
243
–
95
127
127
127
127
127
127
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
294
271
150
179
171
287
280
220
260
255
206
–
260
264
250
250
285
243
260
–
265
264
265
263
–
70
–
–
–
260
260
260
301
297
–
–
270
220
–
278
280
276
–
–
–
280
–
275
276
275
–
–
210
–
–
–
–
–
301
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
250
–
0.2
0.212
0.34
0.34
0.41
0.15
0.239
–
–
0.2
–
–
–
–
–
–
–
–
0.15
–
0.15
–
–
0.8
–
(Continued )
0.661
0.304
0.4
0.4
0.49
0.5
0.599
–
–
0.5
–
–
–
–
–
–
–
–
–
–
0.45
–
0.5
–
–
0.9
–
12: Tables of Selected Thermal Properties 743
12/11/2007 6:24:46 PM
Mckeen_Ch12.indd 744
PA66/6T, GF33 PA66/6T, GF45 PA66/6T, GF33 PA66/6T, GF33 PA66/6T, GF45 PA66/6T, Imod, MD40 PA66/6T, GF33 PA66/6T, GF45 PA66/6T, (GF+MD)65 PA66/6T, GF33 PA66/6T, GF45 PA66/6T, GF33 PA66/6T, GF45 PA66/6T, Imod PA66/6T, GF16 PA66/6T, GF25 PA66/6T PA66/6T, GF15 PA66/6T, Imod PA66/6T, Imod
AMODEL AF-4145 V0
AMODEL AFA-4133 V0 Z
AMODEL AFA-6133 V0 Z
AMODEL AFA-6145 V0 Z
AMODEL AP-9240 NL NT
AMODEL AS-1133 HS
AMODEL AS-1145 HS
AMODEL AS-1566 HS
AMODEL AS-1933 HS
AMODEL AS-1945 HS
AMODEL AS-4133 HS
AMODEL AS-4145 HS
AMODEL AT-1001 L
AMODEL AT-1116 HS
AMODEL AT-1125 HS
AMODEL AT-5001
AMODEL AT-6115 HS
AMODEL ET-1001 HS
AMODEL ET-1001 L PAMXD6, GF30 PAMXD6, GF40 PAMXD6, GF50 PAMXD6, GF50
Reny 1002H
Reny 1012H
Reny 1021UCS
Reny 1022H
Polyarylamide/Mitsubishi Engineering-Plastics Corp.
PA66/6T, GF45
AMODEL AF-1145 V0
Description
AMODEL AF-4133 V0
Name and Grade
12.6 Polyamides (Nylons) (cont’d)
–
–
–
–
312
312
307
300
312
312
312
320
326
312
312
312
312
312
313
310
310
325
312
312
326
Melt Point (°C)
–
–
–
–
127
127
90
90
127
127
127
95
95
127
127
127
127
127
–
90
90
95
127
127
95
Glass Transition Temperature (°C)
230
217
226
224
120
120
265
88
280
256
120
298
298
282
278
271
287
277
115
277
277
295
275
273
298
HDT @ 1.8 MPa (°C)
238
227
237
237
–
–
298
185
300
300
–
320
320
–
–
–
301
297
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
298
–
295
–
–
Vicat HDT @ Soften0.45 MPa ing (°C) Temperature (°C)
0.1
–
0.2
0.2
–
–
–
0.94
–
–
0.95
0.16
0.22
–
–
0.11
0.15
0.239
–
–
–
–
–
0.2
0.12
CLTE Parallel (×10E 4/°C)
0.4
–
0.5
0.5
–
–
–
–
–
–
0.9
0.59
0.59
–
–
0.38
0.5
0.599
–
–
–
–
0.391
0.571
CLTE Normal (×10E 4/°C)
744 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:46 PM
Mckeen_Ch12.indd 745
PAMXD6, GF50 PAMXD6, GF60 PAMXD6, GF55 PAMXD6, GF40 PAMXD6, GF30 PAMXD6, GF30 PAMXD6, GF50 PAMXD6, GF50 PAMXD6, (GF+MD)20 PAMXD6, GF20 PAMXD6, GF40 PAMXD6, GF40 PAMXD6, CF30 PAMXD6, GF20 PAMXD6, CF20 PAMXD6, GF25 PAMXD6, Whisker PAMXD6, MD30
Reny 1027
Reny 1032
Reny 1071
Reny 1313
Reny 1501AH
Reny 1511AH
Reny 1521AH
Reny 1722F
Reny 2502A
Reny 2620
Reny 4011
Reny 4511
Reny C36
Reny G07S
Reny G16S
Reny N252
Reny W110
Reny W38S2 PAMXD6, GF30 PAMXD6, GF50 PAMXD6, GF50 PAMXD6, GF50 PAMXD6, GF50 PAMXD6, GF50 PAMXD6, GF60 PAMXD6, GF40 PAMXD6, GF30 PAMXD6, GF50
IXEF® 1002
IXEF® 1022
IXEF® 1023
IXEF® 1025
IXEF® 1027
IXEF® 1028
IXEF® 1032
IXEF® 1313
IXEF® 1501
IXEF® 1521
Polyarylamide/Solvay
PAMXD6, GF50
Reny 1025
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
230
230
215
230
225
220
230
230
230
230
210
218
227
240
236
224
223
226
214
217
226
228
224
220
217
230
230
221
231
*
*
*
*
*
*
*
*
*
239
–
236
–
255
236
234
235
234
235
237
238
237
237
235
–
237
233
238
–
–
–
–
–
–
–
–
210
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
0.17
0.18
0.18
0.14
0.17
0.17
0.17
0.17
0.17
0.18
0.2
0.04
0.2
–
–
0.05
0.4
0.1
0.1
0.2
–
–
–
0.2
0.2
0.1
0.1
–
0.1
(Continued )
0.41
–
–
0.35
0.42
0.41
0.41
0.41
0.41
–
0.4
0.3
0.4
–
–
0.5
0.4
0.08
0.4
0.3
–
–
–
0.5
0.6
0.3
0.4
–
0.4
12: Tables of Selected Thermal Properties 745
12/11/2007 6:24:47 PM
Mckeen_Ch12.indd 746
PAMXD6, MD55 PAMXD6, MD45 PAMXD6, (MD+GF)55 PAMXD6, CF30
IXEF® 2030
IXEF® 2057
IXEF® 2530
IXEF® 3006
PA6 Alloy PA6 Alloy, GF10 PA6 Alloy, GF15 PA6 Alloy, GF30 PA6 Alloy, Imod PA6 Alloy PA6 Alloy, GF20 PA6 Alloy, GF30
ORGALLOY RS 6000
ORGALLOY RS 6010
ORGALLOY RS 6015ES noir T6L
ORGALLOY RS 6030
ORGALLOY RS 60E10
ORGALLOY RS 6600
ORGALLOY RS 6620
ORGALLOY RS 6630
PA6 Alloy
ORGALLOY LT 4060ES noir T6L
PA6 Alloy
PA6 Alloy
ORGALLOY LT 4060
ORGALLOY R 60ES
220
PA6 Alloy
ORGALLOY LE 60THM
PA6 Alloy
PA6 Alloy
ORGALLOY LE 60SF
PA6 Alloy
PA6 Alloy
ORGALLOY LE 60LMXV
ORGALLOY LT 5050 T6L
PA6 Alloy
ORGALLOY LE 60LM
ORGALLOY LT 5050ES noir
220
PA6 Alloy
ORGALLOY LE 60HM
255
255
255
220
220
220
220
220
220
220
220
220
220
220
220
220
PA6 Alloy
220
–
–
–
–
–
–
Melt Point (°C)
ORGALLOY LE 6000
Polyamide alloys/Arkema
PAMXD6, Imod, GF50 PAMXD6, MD42
IXEF® 1622
Description
IXEF® 2011
Name and Grade
12.6 Polyamides (Nylons) (cont’d)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
–
–
–
–
–
–
Glass Transition Temperature (°C)
225
220
80
50
190
175
190
75
75
–
–
–
–
50
–
–
–
–
45
230
205
150
220
185
220
HDT @ 1.8 MPa (°C)
245
240
160
90
210
210
210
130
130
–
–
60
60
80
–
–
–
–
–
*
*
*
*
*
195
160
165
–
183
–
–
129
130
–
–
–
–
–
99
60
–
–
97
–
–
–
–
Vicat HDT @ Soften0.45 MPa ing (°C) Temperature (°C)
0.18
–
0.65
1.1
0.19
–
–
0.93
0.93
1.7
1.7
–
–
–
–
2
–
–
–
–
–
0.14
0.18
0.18
0.15
CLTE Parallel (×10E 4/°C)
1.1
–
1.1
1.43
1.26
–
–
1.33
1.33
1.8
1.8
–
–
–
–
–
–
–
–
–
–
0.35
0.33
0.45
0.43
CLTE Normal (×10E 4/°C)
746 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:47 PM
Mckeen_Ch12.indd 747
PA6+ABS, GF12 PA6+ABS
Technyl® Alloy KC 216 V12 Black
Technyl® Alloy KC 226 BLACK PA66+PA6 PA66+PA6 PA66+PA6, CF10 PA66+PA6, CF20 PA66+PA6, CF30 PA66+PA6, CF30 PA66+PA6, CF40 PA66+PA6, GF30 PA66+PA6, GF30 PA66+PA6, GF30 PA66+PA6, GF35 PA66+PA6, GF50 PA66+PA6, GF50 PA66+PA6, (GF+GB)30 PA66+PA6, Imod, GF15 PA66+PA6, Imod, GF30 PA66+PA6, GB30 PA66+PA6, MD30 PA66+PA6 PA66+PA6 PA66+PA6, Moly2 PA66+PA6, (PTFE+Si)20 PA66+PA6, Imod PA66+PA6, Imod PA66+PA6I/6T, CF40
Grilon TS FR
Grilon TS V0
Grilon TSC-10/4 EC
Grilon TSC-20/4 EC
Grilon TSC-30/4 EC
Grilon TSC-30/4 LF 15
Grilon TSC-40/4 EC
Grilon TSG-30
Grilon TSG-30 FR
Grilon TSG-30/4
Grilon TSG-35/4
Grilon TSG-50
Grilon TSG-50/4
Grilon TSGK-30 X
Grilon TSGZ-15
Grilon TSGZ-30
Grilon TSK-30/4
Grilon TSM-30
Grilon TSS
Grilon TSS/4
Grilon TSS/4 LF 2
Grilon TSS/4 LF 20
Grilon TSZ 1
Grilon TSZ 3
Grivory GC-4H
PA alloy/EMS-Grivory
PA6+ABS
Technyl® Alloy KC 216
Polyamide alloys/Rhodia
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
220
220
220
*
–
*
–
–
–
–
–
–
–
–
–
*
–
–
–
*
–
–
–
–
–
–
–
–
–
–
235
55
55
85
85
65
55
110
70
215
215
215
250
220
240
235
180
220
240
235
240
240
240
70
60
75
145
70
*
*
*
*
220
220
140
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
210
205
115
200
110
*
*
*
*
–
*
*
*
*
–
–
–
*
–
–
*
–
–
*
*
–
*
*
*
*
–
–
–
0.1
1.2
1.2
0.8
0.6
0.7
0.8
0.8
0.8
0.2
0.2
0.6
0.15
0.15
0.2
0.2
0.2
0.2
0.1
0.1
0.1
0.2
0.2
0.7
0.7
–
–
–
(Continued )
0.8
1.5
1.5
0.9
0.9
0.8
1.2
0.8
0.8
1.1
1.1
0.8
0.9
1
1
1
1
1.1
0.7
0.8
0.8
0.9
1
0.9
0.9
–
–
–
12: Tables of Selected Thermal Properties 747
12/11/2007 6:24:47 PM
Mckeen_Ch12.indd 748
PA66+PA6I/6T, MD40 PA66+PA6I/6T, GF20 PA66+PA6I/6T, GF40 PA66+PA6I/6T, GF50 PA66+PA6I/6T, GF60
Grivory GM-4H
Grivory GV-4H
Grivory GV-5H
Grivory GV-6H
Description
Grivory GV-2H
Name and Grade
12.6 Polyamides (Nylons) (cont’d)
260
260
260
260
260
Melt Point (°C)
*
*
*
*
*
Glass Transition Temperature (°C)
235
235
235
230
105
HDT @ 1.8 MPa (°C)
*
*
*
*
*
245
245
245
237
*
Vicat HDT @ Soften0.45 MPa ing (°C) Temperature (°C)
0.15
0.15
0.15
0.1
0.9
CLTE Parallel (×10E 4/°C)
0.9
0.9
0.9
1
0.9
CLTE Normal (×10E 4/°C)
748 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:47 PM
Mckeen_Ch12.indd 749
HDPE HDPE UHMWPE UHMWPE UHMWPE UHMWPE UHMWPE
GUR GHR 8110
GUR HOSTALLOY 731
GUR 2122
GUR 4113
GUR 4120
GUR 413
GUR 415 PP, GF PP PP, GF20 PP, GF30 PP, GF40 PP, Chalk20, T10 PP, MD15 PP, T20 PP PP PP PP, GF20 PP, GF20 PP, GF30 PP, GF30
ALCOM® PP 620/8 GF/MRX
ALTECH® PP-B A 1000/120 UV
ALTECH® PP-B A 2020/150 GF20 CP
ALTECH® PP-B A 2030/150 GF30 CP
ALTECH® PP-B A 2040/150 GF40 CP
ALTECH® PP-B A 4430/120 MR30 UV
ALTECH® PP-B A 4815/100 MR15
ALTECHO PP-B A 4920/100 MR20
ALTECH® PP-H A 1000/100 DS
ALTECH® PP-H A 1000/140 FR
ALTECH® PP-H A 1000/149 FR
ALTECH® PP-H A 2020/100 GF20
ALTECH® PP-H A 2020/150 GF20 CP
ALTECH® PP-H A 2030/100 GF30
ALTECHO PP-H A 2030/150 GF30 CP
PP/Albis Plastic GmgH
HDPE
Description
GUR GHR 8020
PE/Ticona
Name and Grade
12.7 Polyolefins and Acrylics
163
163
163
163
163
–
163
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
133
Melt Point (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
140
138
130
134
54
73
50
56
65
–
145
–
125
–
110
42
42
42
42
42
–
44
–
HDT @ 1.8 MPa (°C)
–
–
–
–
85
–
–
–
–
–
–
–
–
–
–
65
65
65
65
65
–
75
–
HDT @ 0.45 MPa (°C)
130
110
126
105
85
100
90
64
76
75
120
105
107
82
110
80
80
80
80
80
80
80
–
Vicat Softening Temperature (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
2
2
2
2
2
2
2
–
CLTE Parallel (×10E 4/°C)
(Continued )
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
CLTE Normal (×10E 4/°C)
12: Tables of Selected Thermal Properties 749
12/11/2007 6:24:47 PM
Mckeen_Ch12.indd 750
PP, GB30 PP, Chalk18 PP, T20 PP, T20 PP, T20 PP, T30 PP, T30 PP, T40
ALTECH® PP-H A 3030/100 GB30
ALTECH® PP-H A 4818/100 MR18 DS
ALTECH® PP-H A 4920/100 MR20
ALTECH® PP-H A 4920/106 MR20
ALTECH® PP-H A 4920/170 MR20
ALTECH® PP-H A 4930/100 MR30
ALTECH® PP-H A 4930/106 MR30
ALTECH® PP-H A 4940/100 MR40 PP, T25 PP, T20 PP PP PP PP PP, T30 PP, GF30 PP, T20 PP, T20
POLYFLAM® RIPP 3125 CS1
POLYFLAM® RIPP 374 ND CS1
POLYFLAM® RIPP 490
POLYFLAM® RIPP 5000 E
POLYFLAM® RIPP 5440
POLYFLAM® RLD 10 D
POLYFLAM® RPP 3130 CS1
POLYFLAM® RPP 3230 CS1
POLYFLAM® RPP 371 ND
POLYFLAM® RPP 374 ND CS1
PP/A. Schulman
PP, GB20
ALTECH® PP-H A 3020/100 GB20
ALTECH® PP-H A 2030/252 GF30 UV CP PP, GF30 PP, GF40
–
PP, GF30
ALTECHO PP-H A 2030/250 GF30 CP
ALTECHO PP-H A 2040/150 GF40 CP
–
PP, GF30
ALTECH® PP-H A 2030/158 GF30 CP
165
167
–
–
–
–
–
–
165
–
163
–
–
–
163
163
163
–
163
163
–
–
PP, GF30
–
PP, GF30
ALTECH® PP-H A 2030/157 GF30 CP
Description
Melt Point (°C)
ALTECH® PP-H A 2030/156 GF30 CP
Name and Grade
12.7 Polyolefins and Acrylics (cont’d)
−10
−10
–
–
–
–
–
–
−15
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
84
63
145
72
34
52
57
58
67
66
95
–
85
77
75
75
60
65
60
140
140
138
145
148
148
HDT @ 1.8 MPa (°C)
118
110
157
105
46
85
89
108
101
102
135
–
–
–
120
120
100
–
95
–
–
–
–
–
–
HDT @ 0.45 MPa (°C)
82
77
129
73
3
7
6
7
5
6
105
100
10
108
100
100
98
90
95
135
130
135
135
135
138
Vicat Softening Temperature (°C)
–
–
–
–
–
–
–
–
–
–
–
:
–
–
–
–
–
–
–
–
–
–
–
–
CLTE Parallel (×10E 4/°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
CLTE Normal (×10E 4/°C)
750 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:48 PM
Mckeen_Ch12.indd 751
– –
PP PP PP PP, Imod, T20 PP, MD20 PP, MD20 PP, MD40 PP, MD15 PP, MD15 PP, MD20 PP, T20 PP, T20 PP, T20 PP, T20 PP, T20 PP, T30 PP, T30 PP, Barium Sulfate55, GF10 PP, T10 PP, GB20 PP, GB20 PP, GB20 PP, GB20 PP, GB20 PP, GB20 PP, T20 PP, T20
POLYFLAM® RPP 500 D
POLYFORT® AFP 2934
POLYFORT® AFP 3306 Rezyklat
POLYFORT® AFP 3318
POLYFORT® FIP 20 M K1033
POLYFORT® FIP 20 MA K1469
POLYFORT® FIP 40 MA K1544
POLYFORT® FIPP 15 M HSR 3329
POLYFORT® FIPP 15 M HSR K1757
POLYFORT® FIPP 20 M HSR 3329
POLYFORT® FIPP 20 T
POLYFORT® FIPP 20 T LE K1731
POLYFORT® FIPP 20 T LE K1756
POLYFORT® FIPP 20 T LE K1832
POLYFORT® FIPP 20 TSP UVA/2
POLYFORT® FIPP 30 T K1005
POLYFORT® FIPP 30 TF
POLYFORT® FIPP 65/10 BSGF
POLYFORT® FPP 10 T WLB
POLYFORT® FPP 20 GB
POLYFORT® FPP 20 GF
POLYFORT® FPP 20 GFC
POLYFORT® FPP 20 GFC K1400
POLYFORT® FPP 20 GFC SHH LW
POLYFORT® FPP 20 GFM HI
POLYFORT® FPP 20 T
POLYFORT® FPP 20 T K1534 natur
165
–
167
165
–
165
165
165
165
163
162
–
162
–
162
162
–
162
–
–
165
–
–
–
165
–
PP
POLYFLAM® RPP 490 CS1
165
PP, T20
POLYFLAM® RPP 374 ND CS1 5V
−10
–
−10
−10
–
−10
−10
−10
−10
–
–
−20
−21
–
−21
–
−21
−20
–
−20
–
–
−10
–
–
–
−10
–
−10
65
70
64
126
129
136
105
81
56
114
79
69
52
48
*
60
64
66
51
52
*
55
62
50
49
42
85
60
80
105
125
115
150
156
153
142
119
93
149
117
113
83
103
–
99
103
105
88
88
93
92
105
88
–
61
120
105
118
70
95
–
–
126
115
101
95
88
–
74
75
70
–
–
67
70
66
–
61
98
97
94
56
–
45
94
98
92
8
–
0.8
0.7
0.6
0.6
0.6
0.6
0.8
–
–
0.8
0.8
0.8
0.8
–
0.8
0.8
–
0.8
–
–
0.8
–
–
–
–
–
–
(Continued )
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
12: Tables of Selected Thermal Properties 751
12/11/2007 6:24:48 PM
Mckeen_Ch12.indd 752
PP, T20 PP, T20 PP, T20 PP, GF30 PP, T22 PP, T22 PP, GF30 PP, GF30 PP, GF30 PP, GF30 PP, GF30 PP, GF30 PP, T30 PP, (GF+GB)40 PP, T38 PP, T38 PP, GF40 PP, GF40 PP, Chalk40 PP, T40 PP, T40 PP, T40 PP, T40
POLYFORT® FPP 20 T SHH LW
POLYFORT® FPP 20 T WLB
POLYFORT® FPP 20 TF WLB
POLYFORT® FPP 20/10 GFM
POLYFORT® FPP 22 T K1093
POLYFORT® FPP 22 T LE K1684
POLYFORT® FPP 30 GF
POLYFORT® FPP 30 GFC
POLYFORT® FPP 30 GFC BOW
POLYFORT® FPP 30 GFC HI
POLYFORT® FPP 30 GFC K1079
POLYFORT® FPP 30 GFC-F WLB
POLYFORT® FPP 30 T SHH REC
POLYFORT® FPP 30/10 GBGF
POLYFORT® FPP 38 T K1419
POLYFORT® FPP 38 T K1785
POLYFORT® FPP 40 GFC HI
POLYFORT® FPP 40 GFC schwarz
POLYFORT® FPP 40 K
POLYFORT® FPP 40 T
POLYFORT® FPP 40 T K1442
POLYFORT® FPP 40 T REC
POLYFORT® FPP 40 T WLB
PP, Barium Sulfate75
PP, T20
POLYFORT® FPP 70 BS
PP, T20
POLYFORT® FPP 20 T Recyclat
Description
POLYFORT® FPP 20 T K1751
Name and Grade
12.7 Polyolefins and Acrylics (cont’d)
165
–
–
167
167
–
165
–
–
165
–
–
–
165
165
165
165
165
–
165
–
–
–
–
–
–
Melt Point (°C)
−10
–
–
−10
−10
–
−10
–
–
−10
–
–
–
−10
−10
−10
−10
−10
–
−10
–
–
–
–
–
–
Glass Transition Temperature (°C)
55
74
*
85
80
56
147
141
73
80
112
*
144
145
120
144
144
110
68
66
120
64
64
72
54
57
HDT @ 1.8 MPa (°C)
–
125
110
135
133
90
–
158
–
133
150
105
161
160
150
159
159
148
114
118
145
107
105
–
8
102
HDT @ 0.45 MPa (°C)
–
94
–
–
97
91
140
131
–
95
–
–
140
136
90
127
127
105
94
95
–
95
91
97
–
65
Vicat Softening Temperature (°C)
0.8
–
0.8
0.8
0.8
–
–
–
–
0.8
–
–
–
0.8
0.8
0.8
0.8
0.8
–
0.8
–
–
–
–
–
–
CLTE Parallel (×10E 4/°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
CLTE Normal (×10E 4/°C)
752 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:48 PM
Mckeen_Ch12.indd 753
PP, GF30 PP, GF30 PP, GF30 PP, GF40 PP, GF40 PP, GF40 PP, GF50 PP, GF50 PP, GF50
CELSTRAN PP-GF30-04
CELSTRAN PP-GF30-05
CELSTRAN PP-GF30-10
CELSTRAN PP-GF40-02
CELSTRAN PP-GF40-04
CELSTRAN PP-GF40-0414P10/10
CELSTRAN PP-GF50-04
CELSTRAN PP-GF50-0403P10/10
CELSTRAN PP-GF50-0453P10/10 PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA
ALTUGLAS DRM
ALTUGLAS DRT
ALTUGLAS HFI-10
ALTUGLAS HFI-7
ALTUGLAS HT 121
ALTUGLAS MI-2T
ALTUGLAS MI-4T
ALTUGLAS MI-7T
ALTUGLAS SG 10
ALTUGLAS SG 7
ALTUGLAS V 044
ALTUGLAS V 045
ALTUGLAS V 825 HID
ALTUGLAS V 825 T
ALTUGLAS V 920 T
ALTUGLAS VM
Acrylic/Arkema
PP, GF30
PP, MD75
CELSTRAN PP-GF30-02
PP/Ticona
POLYFORT® FPP 75 M schwarz
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
170
164
162
166
162
–
–
–
–
–
–
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
–
–
–
–
–
–
–
–
–
–
–
77
95
100
98
93
93
85
80
93
98
99
110
83
81
88
84
158
158
155
157
152
152
157
156
148
150
52
82
100
103
102
96
96
90
85
98
102
102
119
88
85
93
90
–
–
–
–
–
–
161
–
–
–
81
90
103
108
104
102
102
90
90
103
106
107
121
90
90
100
95
–
–
–
–
–
–
–
–
–
–
–
0.7
0.65
0.65
0.65
0.65
0.65
0.8
1
0.8
0.75
0.7
0.65
0.8
1
1
0.9
–
–
–
–
–
–
–
–
–
–
–
(Continued )
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
12: Tables of Selected Thermal Properties 753
12/11/2007 6:24:48 PM
Mckeen_Ch12.indd 754
PMMA, Imod PMMA, Imod PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA, Imod PMMA, Imod PMMA, Imod PMMA, Imod PMMA, Imod PMMA, Imod
PLEXALLOY® NTA-3
PLEXIGLAS® 6N
PLEXIGLAS® 7H
PLEXIGLAS® 7M
PLEXIGLAS® 7N
PLEXIGLAS® 8H
PLEXIGLAS® 8N
PLEXIGLAS® FT15
PLEXIGLAS® df21 8N
PLEXIGLAS® df22 7H
PLEXIGLAS® df22 7N
PLEXIGLAS® df22 8N
PLEXIGLAS® df22 zk6BR
PLEXIGLAS® df23 7H
PLEXIGLAS® df23 7N
PLEXIGLAS® df23 8N
PLEXIGLAS® df23 zk6BR
PLEXIGLAS® hw55
PLEXIGLAS® zk20
PLEXIGLAS® zk30
PLEXIGLAS® zk40
PLEXIGLAS® zk4BR
PLEXIGLAS® zk4HC
PLEXIGLAS® zk50
Description
PLEXALLOY® NTA-1
Acrylic/Degussa
Name and Grade
12.7 Polyolefins and Acrylics (cont’d)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Melt Point (°C)
115
108
108
115
114
112
122
107
108
108
106
109
110
108
108
111
–
117
115
110
108
112
99
125
120
Glass Transition Temperature (°C)
70
–
95
85
91
96
106
93
98
97
97
93
98
97
97
98
105
98
98
95
–
95
90
106
102
HDT @ 1.8 MPa (°C)
73
–
99
92
96
100
109
99
103
101
101
99
103
101
101
103
107
103
103
100
–
100
95
106
103
HDT @ 0.45 MPa (°C)
75
102
102
94
98
102
119
91
109
105
105
98
109
105
105
109
115
108
108
103
104
103
96
116
110
Vicat Softening Temperature (°C)
1.5
0.8
0.8
1.2
1.1
1
0.7
0.9
0.63
0.63
0.63
0.9
0.63
0.63
0.63
0.63
0.66
0.8
0.8
0.8
0.8
0.8
0.8
0.75
0.785
CLTE Parallel (×10E 4/°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
CLTE Normal (×10E 4/°C)
754 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:48 PM
PMMA, Imod PMMA, Imod PMMA, Imod PMMA, Imod PMMA, Imod
PLEXIGLAS® zk5BR
PLEXIGLAS® zk5HC
Mckeen_Ch12.indd 755
PLEXIGLAS® zk5HF
PLEXIGLAS® zk6BR
PLEXIGLAS® zk6HC
–
–
–
–
–
95
109
95
108
109
93
88
93
–
93
98
93
102
–
98
97
95
96
100
100
1.1
1.1
0.9
0.9
0.9
–
–
–
–
–
12: Tables of Selected Thermal Properties 755
12/11/2007 6:24:49 PM
Mckeen_Ch12.indd 756
TEEE TEEE TEEE, CD TEEE TEEE TEEE TEEE TEEE TEEE TEEE TEEE+PBT TEEE TEEE TEEE TEEE TEEE TEEE
Hytrel® 4068
Hytrel® 4069
Hytrel® 40CB
Hytrel® 4556
Hytrel® 5526
Hytrel® 5555HS
Hytrel® 5556
Hytrel® 6356
Hytrel® 7246
Hytrel® 8238
Hytrel® DYM350BK
Hytrel® G3548L
Hytrel® G4074
Hytrel® G4774
Hytrel® G4778
Hytrel® G5544
Hytrel® HTR4275 BK316 TPC TPC TPC TPC TPC TPC
Arnitel® 3103
Arnitel® 3104
Arnitel® 3107
Arnitel® EB460
Arnitel® EB463
Arnitel® EB464
TPE/DSM
TEEE
Description
Hytrel® 4056
TPE/DuPont
Name and Grade
12.8 Thermoplastic Elastomers
210
203
217
220
212
221
196
215
208
208
170
170
154
222
221
218
211
211
203
203
203
–
–
150
Melt Point (°C)
–
–
–
–
–
–
–
−35
–
–
−30
−35
–
−60
50
25
–
0
−20
–
−20
–
–
−50
Glass Transition Temperature (°C)
–
–
–
45
–
–
–
–
–
–
–
–
–
40
45
45
45
45
45
40
45
–
–
–
HDT @ 1.8 MPa (°C)
–
–
–
7
–
–
50
77
60
60
–
–
–
50
105
95
85
85
70
60
65
–
–
50
HDT @ 0.45 MPa (°C)
–
–
–
–
–
–
170
190
–
168
115
115
–
170
210
205
19
195
180
177
180
–
135
110
Vicat Softening Temperature (°C)
–
–
–
–
1.5
–
1.81
2.11
2.2
2.2
2.15
2.17
1.8
1.47
1.8
–
1.78
1.8
1.8
1.97
2.3
2.3
1.3
CLTE Parallel (×10E 4/°C)
–
–
–
–
1.5
–
1.85
1.86
1.94
1.94
2.07
2.05
2.4
–
1.49
1.71
–
1.76
1.77
1.77
1.86
2.3
2.3
1.6
CLTE Normal (×10E 4/°C)
756 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:49 PM
Mckeen_Ch12.indd 757
TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC
Arnitel® PL420-H
Arnitel® PL460-S
Arnitel® PL461
Arnitel® PL471
Arnitel® PL581
Amitel® PL650
Arnitel® PM381
Arnitel® PM460
Arnitel® PM460-B
Arnitel® PM471
Arnitel® PM581
TPC
Arnitel® EM630
TPC
TPC
Arnitel® EM550
Arnitel® PL381
TPC
Arnitel® EM460
TPC
TPC
Arnitel® EM402-L
Arnitel® PL380
TPC
Arnitel® EM401
TPC
TPC
Arnitel® EM400
Arnitel® PB582-H
TPC
Arnitel® EL740-H/A
TPC
TPC
Arnitel® EL740
Arnitel® PB420
TPC, GF20
Arnitel® EL695-G4
TPC
TPC
Arnitel® EL630
TPC
TPC
Arnitel® EL550
Arnitel® EM630-H
TPC
Arnitel® EB500
Arnitel® EM740
TPC
Arnitel® EB464-01
218
217
216
216
212
221
218
224
220
220
220
212
212
220
211
221
212
212
207
185
195
–
195
220
221
219
212
207
215
214
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
−78
–
−78
–
–
–
−60
−64
–
–
100
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
6
6
–
–
100
–
6
–
–
–
–
100
6
–
–
–
–
–
*
–
–
120
165
115
110
–
–
105
–
–
–
–
–
105
–
–
–
–
–
105
–
160
125
125
90
50
–
–
–
–
160
165
125
90
–
–
1.1
–
–
–
1.5
–
1.1
–
–
–
–
1.5
1.5
–
–
1.65
1.5
1.85
1.5
1.6
2.2
–
2.2
1.1
1.65
0.2
1.85
2
–
–
(Continued )
1.1
–
–
–
1.5
–
1.1
–
–
–
–
1.5
1.5
–
–
1.65
1.5
1.85
1.5
1.6
2.2
–
2.2
1.1
1.65
–
1.85
2
–
–
12: Tables of Selected Thermal Properties 757
12/11/2007 6:24:49 PM
Mckeen_Ch12.indd 758
TPC TPC
Arnitel® UM551-V
TPA TPA TPA TPA, CD TPA TPA TPA TPA TPA TPA
PEBAX 3533 SN 01
PEBAX 4033 SN 01
PEBAX 5533 SN 01
PEBAX 5533 SN 70 NOIR
PEBAX 6333 SN 01
PEBAX 7033 SN 01
PEBAX 7233 SN 01
PEBAX MH 1657
PEBAX MV 1041 SN 01
PEBAX MV 1074 SN 01 TPA TPA TPA TPA
VESTAMID E40-S3 nf
VESTAMID E47-S3 nf
VESTAMID E55-S3 nf
VESTAMID E62-S3 nf
PEBA/Degussa
TPA
PEBAX 2533 SN 01
PEBA/Arkema
TPC
Arnitel® UM551
Description
Arnitel® PM650
Name and Grade
12.8 Thermoplastic Elastomers
–
–
–
–
158
170
204
174
172
169
159
159
160
144
134
200
195
221
Melt Point (°C)
(cont’d)
–
–
–
–
−40
–
−40
–
–
–
–
–
−65
−65
−65
–
–
Glass Transition Temperature (°C)
45
45
45
*
–
–
–
–
–
–
–
–
–
–
–
–
–
–
HDT @ 1.8 MPa (°C)
100
90
65
55
–
–
–
106
99
90
–
66
52
46
42
85
80
–
HDT @ 0.45 MPa (°C)
110
100
70
60
–
–
–
–
–
–
–
–
–
–
–
90
85
–
Vicat Softening Temperature (°C)
2
2
2.3
2.4
–
–
–
1.2
1.6
1.4
2.2
1.7
1.95
2.1
2
–
1.6
–
CLTE Parallel (×10E 4/°C)
2
2
2.1
2.1
–
–
–
–
–
–
–
–
–
–
–
–
–
–
CLTE Normal (×10E 4/°C)
758 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:49 PM
Mckeen_Ch12.indd 759
169 171
KYNAR 1000 HDC N 118 PVDF PVDF PVDF PVDF PVDF PVDF
KYNAR 6000 HD
KYNAR 710
KYNAR 720
KYNAR 740
KYNAR 9000 HD
PVDF PVDF PVDF PVDF PVDF PVDF
KYNAR FLEX 2800
KYNAR FLEX 2801
KYNAR FLEX 2820
KYNAR FLEX 2821
KYNAR FLEX 2822
KYNAR FLEX 2850 PVDF PVDF PVDF PVDF PVDF PVDF PVDF PVDF PVDF
SOLEF 1008
SOLEF 1010
SOLEF 1012
SOLEF 11008
SOLEF 11010
SOLEF 21508
SOLEF 31008
SOLEF 31508
SOLEF 6010
PVDF/Solvay
135
PVDF
KYNAR FLEX 2750
174
165
170
134
159
161
175
175
175
158
142
142
142
142
142
170
KYNAR 9000 HDC N 123 PVDF, CF
171
168
168
168
169
Description
Melt Point (°C)
PVDF
KYNAR 1000 HD
PVDF/Arkema
Name and Grade
12.9 Fluoropolymers
−42
−31
−35.5
−33
−37
−33.5
−42
−42
−43.5
−38
−36
−36
−36
−36
−36
−34
−42
−40
−40
−40
−40
−40
−40
−40
Glass Transition Temperature (°C)
110
36
48
40
52
52
112
113
115
–
48
48
48
48
48
–
125
110
105
110
110
108
104
104
HDT @ 1.8 MPa (°C)
145
49
82
62
100
100
145
147
148
114
–
–
68
–
68
–
–
–
135
132
130
–
–
–
HDT @ 0.45 MPa (°C)
14
49.9
79.6
58.2
95.2
89.6
140
140
138
107
76
76
76
79
79
61
–
141
135
139
140
140
–
138
Vicat Softening Temperature (°C)
–
–
–
–
–
–
–
–
–
1.6
1.6
1.6
1.6
1.6
1.6
1.77
–
1.36
1.5
1.5
1.5
1.5
–
1.5
CLTE Parallel (×10E 4/°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
CLTE Normal (×10E 4/°C)
12: Tables of Selected Thermal Properties 759
12/11/2007 6:24:49 PM
Mckeen_Ch12.indd 760
343
VESTAKEEP 4000 G nf
PEEK PEEK PEEK, GF30 PEEK, GF30 PEEK, CF30 PEEK, CF30 PEEK, (CF+PTFE+Graphite)30 PEEK, (CF+PTFE+Graphite)30
Victrex® 381G
Victrex® 450G
Victrex® 150GL30
Victrex® 450GL30
Victrex® 150CA30
Victrex® 450CA30
Victrex® 150FC30
Victrex® 450FC30 PEEK PEEK PEEK PEEK PEEK, GF30 PEEK, GF30 PEEK, CF30 PEEK, CF30 PEEK Modified
Ketaspire™ KT-820P
Ketaspire™ KT-820 NT
Ketaspire™ KT-880P
Ketaspire™ KT-880 NT
Ketaspire™ KT-820 GF30
Ketaspire™ KT-880 GF30
Ketaspire™ KT-820 CF30
Ketaspire™ KT-880 CF30
Avaspire™ AV-650
PEEK/Solvay
PEEK
Victrex® 150G
PEEK/Victrex
VESTAKEEP 4000 GF30 nf PEEK, GF30
340
343
340
343
340
343
343
340
340
340
343
340
343
340
343
340
340
343
343
343
VESTAKEEP 4000 FC30 nf PEEK, PTFE10, Graphite10, CF10 PEEK
343
Description
VESTAKEEP 4000 CF30 nf PEEK, CF30
PEEK/Degussa
Name and Grade
Melt Point (°C)
12.10 Miscellaneous High Temperature Plastics
158
147
150
147
150
147
147
150
150
143
143
143
143
143
143
143
143
143
143
143
143
143
Glass Transition Temperature (°C)
193
315
315
315
315
129
129
162
162
277
277
316
316
316
316
160
160
155
–
153
–
–
HDT @ 1.8 MPa (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
176
–
–
HDT @ 0.45 MPa (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Vicat Softening Temperature (°C)
0.5
0.067
0.052
0.19
0.17
0.5
0.5
0.43
0.43
0.22
0.22
0.14
0.14
0.22
0.22
0.47
0.47
0.47
0.26
0.58
0.17
0.11
CLTE Parallel (×10E 4/°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
CLTE Normal (×10E 4/°C)
760 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:50 PM
Mckeen_Ch12.indd 761
PEEK Modified, GF30 PEEK Modified, GF30 PEEK Modified, GF40
Avaspire™ AV-650 GF30
Avaspire™ AV-651 GF30
Avaspire™ AV-750 GF40
PES, GF20 PES, GF30 PES PES
Ultrason® E 2010 G4 UN
Ultrason® E 2010 G6 UN
Ultrason® E 2010 NAT
Ultrason® E 3010 NAT
PES PES PES, GF20 PES, GF30
RADEL A-200
RADEL A-300
RADEL AG-320
RADEL AG-330
PPS, GF40 PPS, GF30 PPS, (GF+MD)65
PRIMEF 4010
PRIMEF 5084
PRIMEF 7002 PPS, GF40 PPS, GF60 PPS, (GF+MD)60 PPS, (GF+MD)65 PPS, GF65 PPS, (GF+GB)40 PPS, (GF+MD)60 PPS, CF15
Tedur® L 9107-1
Tedur® L 9113-2
Tedur® L 9200-1
Tedur® L 9214-1
Tedur® L 9217-1
Tedur® L 9300-1
Tedur® L 9310-4
Tedur® L 9400-1
PPS/Albis
PPS, GF40
PRIMEF 4002
PPS/Solvay
PES
RADEL A-100
PES/Solvay
PES
Ultrason® E 1010 NAT
PES/BASF
PEEK Modified
Avaspire™ AV-651
280
280
280
280
280
280
280
280
–
–
–
–
–
–
–
–
–
*
*
*
*
*
345
340
340
340
–
–
–
–
–
–
–
–
–
–
–
–
220
220
220
220
220
228
225
225
225
225
150
158
158
158
260
–
260
260
–
–
–
–
260
260
260
260
216
214
204
204
204
195
195
212
212
195
285
213
209
190
–
240
–
–
–
–
–
–
–
–
–
–
220
218
214
214
214
218
218
224
224
216
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
218
217
215
215
215
215
215
217
217
215
–
–
–
–
–
–
–
–
–
–
–
–
0.15
–
0.18
–
0.31
0.31
0.486
0.486
0.486
0.55
0.55
0.15
0.24
0.55
0.15
0.17
0.19
0.47
(Continued )
–
–
–
–
–
–
–
–
0.27
–
0.41
–
0.31
0.31
0.486
0.486
0.486
*
*
*
*
*
–
–
–
–
12: Tables of Selected Thermal Properties 761
12/11/2007 6:24:50 PM
Mckeen_Ch12.indd 762
PPS, CF30 PPS, GF40 PPS, GF45 PPS, GF42 PPS, (GF+MD)60 PPS, (GF+MD)60 PPS, MD55 PPS, MD50 PPS, (GF+MD)65
Tedur® L 9510-1
Tedur® L 9511
Tedur® L 9512
Tedur® L 9521-1
Tedur® L 9523
Tedur® L 9530
Tedur® L 9560
Tedur® P 9007 PPS PPS PPS PPS PPS PPS, GF15 PPS, GF30 PPS, GF30 PPS, GF40 PPS, GF40 PPS, GF40 PPS, GF40 PPS, GF40 PPS, GF40 PPS, GF40
FORTRON 0203
FORTRON 0203HS
FORTRON 0205
FORTRON 0214
FORTRON 0320
FORTRON 1115L0
FORTRON 1130L4
FORTRON 1131L4 ITT
FORTRON 1140E7
FORTRON 1140EC
FORTRON 1140L0
FORTRON 1140L4
FORTRON 1140L6
FORTRON 1140L7
FORTRON 1141L4
PPS/Ticona
PPS, PTFE5, GF40
Tedur® L 9404-1
Description
Tedur® L 9401-1
Name and Grade
280
280
280
280
280
–
280
280
*
–
280
280
280
280
280
280
280
280
280
280
280
280
280
280
280
Melt Point (°C)
12.10 Miscellaneous High Temperature Plastics (cont’d)
90
90
90
90
90
–
90
90
90
–
90
90
90
90
90
–
–
–
–
–
–
–
–
–
–
Glass Transition Temperature (°C)
270
270
270
270
–
270
270
265
255
220
115
110
115
120
120
260
–
200
–
260
260
260
260
260
260
HDT @ 1.8 MPa (°C)
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
235
–
260
–
–
–
–
–
–
HDT @ 0.45 MPa (°C)
*
*
*
*
*
–
*
*
*
–
*
*
*
*
*
–
–
–
–
–
–
–
–
–
–
Vicat Softening Temperature (°C)
–
–
0.26
0.26
–
–
0.2
0.29
0.29
–
0.52
0.52
0.53
0.55
0.55
–
–
–
–
–
–
–
–
–
–
CLTE Parallel (×10E 4/°C)
–
–
0.42
0.62
–
–
0.41
0.62
0.52
–
0.53
0.53
0.52
0.53
0.53
–
–
–
–
–
–
–
–
–
–
CLTE Normal (×10E 4/°C)
762 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:50 PM
Mckeen_Ch12.indd 763
PPS, (GF+MD)53 PPS, (GF+MD)53 PPS, (GF+MD)65 PPS, (GF+MD)65 PPS, (GF+MD)60 PPS, (GF+MD)65 PPS, (GF+MD)65 PPS, PTFE, (GF+MD)65 PPS, PTFE, GF30 PPS, (GF+MD)51 PPS, (GF+MD)50 PPS, GF20 PPS, GF40 PPS, GF40 PPS PPS
FORTRON 4184L4
FORTRON 4184L6
FORTRON 4332D4
FORTRON 4665B6
FORTRON 6160B4
FORTRON 6165A4
FORTRON 6165A6
FORTRON 6165D8
FORTRON 6345L4
FORTRON 6450A6
FORTRON 6850L6
FORTRON MT 9120L4
FORTRON MT 9140L4
FORTRON MT 9140L6
FORTRON MT 9203HS
FORTRON MT 9205C4
PPSU PPSU PPSU PPSU PPSU PPSU PPSU
RADEL R-5000
RADEL R-5100
RADEL R-5500
RADEL R-5700
RADEL R-7000 A
RADEL R-7200
RADEL R-7300 PSU, GF20 PSU, GF30 PSU
Ultrason® S 2010 G4 UN
Ultrason® S 2010 G6 UN
Ultrason® S 2010 NAT
PSU/BASF
PPSU
RADEL R-4300
PPSU/Solvay
PPS, PTFE, GF40
FORTRON 1342L4
*
*
*
–
–
–
–
–
–
–
–
280
280
280
280
280
280
–
–
280
280
280
280
280
280
280
280
280
187
187
187
–
–
–
220
220
220
220
–
90
90
90
90
90
90
–
–
90
90
90
90
90
90
90
90
90
167
183
183
182
188
182
207
207
207
207
207
115
120
270
270
255
270
260
260
270
270
270
270
270
270
270
270
270
181
187
188
–
–
193
214
214
214
214
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
180
190
187
–
–
–
–
225
–
–
–
*
–
–
–
–
–
–
*
*
*
*
–
*
*
0.55
0.21
0.25
–
–
–
0.56
0.558
0.56
0.558
–
0.55
–
–
–
0.15
–
–
0.19
0.19
0.19
–
–
–
0.24
0.24
0.22
(Continued )
*
*
–
–
–
–
0.56
0.558
0.56
0.558
–
–
0.53
–
–
–
0.17
–
–
0.24
0.24
0.24
–
–
–
0.32
0.32
0.4
12: Tables of Selected Thermal Properties 763
12/11/2007 6:24:50 PM
Mckeen_Ch12.indd 764
PSU, GF10 PSU, GF22 PSU, GF40 PSU, GF30 PSU, MD PSU, GF30 PSU, MD40 PSU, MD25 PSU PSU, GF10 PSU, GF20 PSU, GF30 PSU, GF10 PSU, GF20 PSU, GF30 PSU PSU PSU
MINDEL B-322
MINDEL B-340
MINDEL B-360
MINDEL B-390
MINDEL B-430
MINDEL M-800
MINDEL M-825
MINDEL S-1000
MINDEL S-1010
MINDEL S-1020
MINDEL S-1030
UDEL GF-110
UDEL GF-120
UDEL GF-130
UDEL P-1700
UDEL P-1720
UDEL P-3500
PSU
Description
MINDEL B-310
PSU/Solvay
Ultrason® S 3010 NAT
Name and Grade
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
*
Melt Point (°C)
12.10 Miscellaneous High Temperature Plastics (cont’d)
190
190
190
190
190
190
–
–
–
–
190
190
–
–
–
–
–
–
187
Glass Transition Temperature (°C)
174
174
174
181
180
179
155
153
151
149
174
179
166
169
160
160
160
158
169
HDT @ 1.8 MPa (°C)
–
181
181
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
186
HDT @ 0.45 MPa (°C)
–
–
188
193
–
–
–
170
190
183
184
183
Vicat Softening Temperature (°C)
0.56
0.56
0.56
0.198
0.252
0.36
0.382
0.434
0.439
1.03
0.391
0.34
0.31
0.529
0.54
0.239
0.27
–
0.55
CLTE Parallel (×10E 4/°C)
0.56
0.56
0.56
0.198
0.252
0.36
0.382
0.434
0.439
1.03
0.391
0.34
0.31
0.529
0.54
0.239
0.27
–
*
CLTE Normal (×10E 4/°C)
764 The Effect of Temperature and Other Factors on Plastics and Elastomers
12/11/2007 6:24:50 PM
Appendix 1: Abbreviations ABS ASA COC COPE ECTFE ETFE EVA FEP HDPE HPPA LCP LDPE LLDPE MDPE PA PAI PAMXD6 PBI PBT PC PCE PCT PCTFE PE PEBA PEEK PEI PES PET
Acrylonitrile-Butadiene-Styrene Acrylonitrile-Styrene-Acrylate Cyclic Olefin Copolymer Thermoplastic Copolyester Elastomers, same as TPE-E Polyethylene Chlorotrifluoroethylene Polyethylene Tetrafluoroethylene Ethylene Vinyl Acetate Fluorinated Ethylene Propylene High Density Polyethylene High Performance Polyamide Liquid Crystalline Polymer Low Density Polyethylene Linear Low Density Polyethylene Medium Density Polyethylene Polyamide (Nylon) Polyamide-Imide Polyarylamide, Polyxylylene Adipamide Polybenzimidazole Polybutylene Terephthalate Polycarbonate Perchloroethylene Polycyclohexylene-Dimethylene Terephthalate Polychlorotrifluoroethylene Polyethylene Polyether Block Amide Thermoplastic Elastomers Polyetheretherketone Polyetherimide Polyethersulfone Polyethylene Terephthalate
PFA PI PMMA POM
Perfluoro Alkoxy Polyimide Polymethyl Methacrylate Polyoxymethylene or Acetal Homopolymer POM-Co Polyoxymethylene Copolymer or Acetal Copolymer PP Polypropylene PPA Polyphthalamide PPE Polyphenylene Ether, same as PPO PPO Polyphenylene Oxide, same as PPE PPS Polyphenylene Sulfide PPSU Polyphenylene Sulfone PS Polystyrene PSU Polysulfone PTFE Polytetrafluoroethylene PTP Polytrimethyl Pentene PUR Polyurethane PVC Polyvinyl Chloride PVDF Polyvinylidene Fluoride SAN Styrene-Acrylonitrile SMA Styrene-Maleic Anhydride TEEE Thermoplastic Elastomer Ether Ester Block Copolymer TPE Thermoplastic Elastomers TPE-E Thermoplastic Copolyester Elastomers, same as COPE TPU Thermoplastic Polyurethane Elastomers UHMWPE Ultra High Molecular Weight Polyethylene ULDPE Ultra Low Density Polyethylene VLDPE Very Low Density Polyethylene
765
Mckeen_Appendix-1.indd 765
12/11/2007 5:54:58 PM
Mckeen_Appendix-1.indd 766
12/11/2007 5:54:58 PM
Appendix 2: Trade Names Product
Polymer Types
Manufactured by
A. Schulman PE
PE
A. Schulman GmbH
A. Schulman PP
PP
A. Schulman GmbH
ACRYLITE PLUS®
Acrylic (PMMA)
CYRO Industries
ACRYLITE®
Acrylic (PMMA)
CYRO Industries
ACUDEL™
PPSU
Solvay Advanced Polymers, L.L.C.
Akulon®
Nylon 6, Nylon 66
DSM Engineering Plastics
Akulon® Ultraflow™
Nylon 6
DSM Engineering Plastics
Algoflon
PTFE
Solvay Solexis, Inc.
Amilan®
Nylon 6, Nylon 610, Nylon 66, Nylon Copolymer, Nylon
Toray Resin Company
Amilus™
Acetal
Toray Resin Company
AMODEL®
PPA
Solvay Advanced Polymers, L.L.C.
Apec®
PC
Bayer MaterialScience AG
Aqualoy®
Nylon 66, PP
A. Schulman GmbH
Arlon
PEEK
Greene, Tweed & Co.
Arnite®
PBT, PBT+PET, PET
DSM Engineering Plastics
Arnitel®
TEEE
DSM Engineering Plastics
ASHLENE®
ABS, ABS+PC, Acetal, Nylon 11, Nylon 12, Nylon 6, Nylon 610, Nylon 612, Nylon 66, Nylon 66/6, PBT, PC, PC+PBT, PET, PPE, PPE+PS, PPE+PS+Nylon, SAN
Ashley Polymers, Inc.
AURUM®
PI
Mitsui Chemicals America, Inc.
AvaSpire™
PEEK
Solvay Advanced Polymers, L.L.C.
Bayblend®
ABS+PC
Bayer MaterialScience AG
Bayfol®
PC, PC+PBT
Bayer MaterialScience LLC
Bergadur®
PBT
PolyOne Corporation
Bergaform®
Acetal
PolyOne Corporation
Bergamid®
Nylon 6, Nylon 66, Nylon 66/6
PolyOne Corporation
CALIBRE™
PC
Dow Plastics
Capron®
Nylon 6
BASF Corporation
Celanex®
PBT
Ticona
Celazole®
PBI
Quadrant Engineering Plastic Products
Celcon®
Acetal
Ticona
Celstran®
PE, Nylon 6, Nylon 66, PBT, PPS, TPU
Ticona
Centrex®
AES, ASA, ASA+AES, ASA+PC
Lustran Polymers
767
Mckeen_Appendix-2.indd 767
12/11/2007 5:55:06 PM
768
Appendix 2
Product
Polymer Types
Manufactured by
Chisso Polypro
PP
Chisso America Inc.
Clearflex®
PE
Polimeri Europa
ComAlloy®
ABS, Nylon 6, Nylon 66, PP
A. Schulman GmbH
Compel®
PP
Ticona
Comshield®
ABS, Nylon 66, PC, PPS
A. Schulman GmbH
Comtuf®
ABS+PC, Nylon 6, Nylon 612, Nylon 66, PBT, PBT Alloy, PC, PC+PET, A. Schulman GmbH PC+Polyester, PC+Styrenic, PET, PP
Crastin®
PBT, PBT Alloy
DuPont Engineering Polymers
Cristamid®
Nylon 12
Arkema
CYCOLAC®
ABS
SABIC Innovative Plastics
CYCOLOY®
ABS+PC, PC
SABIC Innovative Plastics
CYREX®
PC+Acrylic
CYRO Industries
CYRO® MCR
Acetal
CYRO Industries
CYROLITE®
Acrylic (PMMA)
CYRO Industries
Cyrolon®
PC
CYRO Industries
CYROVU® HP2
Acrylic
CYRO Industries
Delrin®
Acetal
DuPont Engineering Polymers
Desmopan®
TPU, TPU-Ester/Ether, TPU-Polyester
Bayer MaterialScience AG
Duracap™
PVC
PolyOne Corporation
Durethan®
Nylon 6, Nylon 66, Nylon Copolymer, Nylon
LANXESS AG
Durethan® A
Nylon 66
LANXESS AG
Durethan® B
Nylon 6
LANXESS AG
Durethan® T
Nylon 6
LANXESS AG
Dutral
EPDM, EPM, Polyolefin
Polimeri Europa
Dyflor
PVDF
Degussa AG
DYLARK®
SMA
NOVA Chemicals
Dyneon™ ETFE
ETFE
Dyneon
Dyneon™ PFA
Fluorelastomer
Dyneon
Dyneon™ THV
ETFE, FEP, Fluorelastomer, Fluoropolymer, PFA
Dyneon
Edgetek™
ABS, Acetal, PE, LCP, Nylon 6, Nylon 610, Nylon 612, Nylon 66, PBT, PC, PC+PSU, PEEK, PEI, PES, PPA, PPS, PPSU, PSU
PolyOne Corporation
Edgetek™ XT
PC+PBT
PolyOne Corporation
Edistir®
PS, SBC
Polimeri Europa
Elastollan®
TPU, TPU-Ester/Ether, TPU-Polyester, TPU-Polyether
BASF Corporation
Elvamide®
Nylon
DuPont Engineering Polymers
EMERGE™
ABS, ABS+PC, PC
Dow Plastics
ENDURAN®
PBT, PBT+PC+PET, PBT+PET
SABIC Innovative Plastics
Mckeen_Appendix-2.indd 768
12/11/2007 5:55:06 PM
769
Trade Names
Product
Polymer Types
Manufactured by
ENGAGE™
TPO
Dow Plastics
Enpnite
TP
Chisso America Inc.
EpiSpire™
PSU
Solvay Advanced Polymers, L.L.C.
Fiberloc™
PVC
PolyOne Corporation
GAFONE™
PES
Gharda Chemicals Limited (Solvay)
GAFONE™ B
PSS
Gharda Chemicals Limited (Solvay)
GAFONE™ P
PPSU
Gharda Chemicals Limited (Solvay)
GAFONE™ S
PSU
Gharda Chemicals Limited (Solvay)
GAFONE™ T
PSS
Gharda Chemicals Limited (Solvay)
GATONE™
PEEK
Gharda Chemicals Limited (Solvay)
GELOY®
ASA, ASA+AMSAN, ASA+PC, ASA+PVC, ASA+SAN
SABIC Innovative Plastics
Geon®
PVC Alloy, PVC Elastomer, PVC+NBR
PolyOne Corporation
Geon® HTX™
PVC
PolyOne Corporation
GESAN®
SAN
SABIC Innovative Plastics
Grilamid®
PE, Nylon 12, Nylon 12 Elast, Nylon, PPA, TP
EMS-GRIVORY
Grilon®
Nylon 6, Nylon 6 Elast, Nylon 6/69, Nylon 610, Nylon 612, Nylon 66, Nylon 66/6, Nylon Copolymer, Nylon, TPE
EMS-GRIVORY
Grivory®
Nylon Copolymer, PPA
EMS-GRIVORY
GUR
PE, Polyolefin, UHMWPE
Ticona
Halar
ECTFE
Solvay Solexis, Inc.
Halon
ETFE
Solvay Solexis, Inc.
Hiloy®
ABS, Nylon 6, Nylon 612, Nylon 66, PBT, PBT Alloy, PC, PET, Polyester Alloy, PPE+PS+Nylon, PPS, SAN, SMA
A. Schulman GmbH
Hostacom
Polyolefin, PP, TPO
Basell Polyolefins
Hostaform
Acetal
Ticona
Hostalen
PE, PP
Basell Polyolefins
Hostalen PP
PP
Basell Polyolefins
HSPP
PP
Chisso America Inc.
Hyflon® MFA
PFA
Solvay Solexis, Inc.
Hyflon® PFA
PFA
Solvay Solexis, Inc.
Hylar®
PVDF
Solvay Solexis, Inc.
Hytrel®
TPC-ET
DuPont Engineering Polymers
Impet®
PET
Ticona
Reny
PAMXD6
Mitsubishi Engineering-Plastics Corp
Iupiace®
PPE+PS
Mitsubishi Engineering-Plastics Corp
Iupilon®
ABS+PC, PC, PC Alloy, PC+PBT, PC+PET
Mitsubishi Engineering-Plastics Corp
Iupital®
Acetal
Mitsubishi Engineering-Plastics Corp
IXEF®
PAMXD6
Solvay Advanced Polymers, L.L.C.
Mckeen_Appendix-2.indd 769
12/11/2007 5:55:06 PM
770
Appendix 2
Product
Polymer Types
Manufactured by
KADEL®
PEEK
Solvay Advanced Polymers, L.L.C.
Kapton
PI
DuPont Packaging & Industrial Polymers
KetaSpire™
PEEK
Solvay Advanced Polymers, L.L.C.
Koblend®
ABS+PC, PS+PE
Polimeri Europa
Kostil®
SAN
Polimeri Europa
Kynar Flex®
PVDF
Arkema
Kynar®
PVDF
Arkema
LEXAN®
ABS+PC, PC, PC+PBT, PC+Polyester, PC+PPC, PC+SAN, PPC
SABIC Innovative Plastics
Lubricomp®
ABS, Acetal, Nylon 12, Nylon 6, Nylon 610, Nylon 612, Nylon 66, Nylon, PBT, PC, PEEK, PEI, PES, PPA, PPE+PS, PPSU, PVDF, SAN, TPEE
LNP Engineering Plastics Inc. (SABIC Innovative Plastics)
Lubrilon®
Nylon 6, Nylon 612, Nylon 66, Nylon, PBT Alloy, PC, PPS
A. Schulman GmbH
Lubriloy®
Acetal, Nylon 66, PC, PPA, PPE+PS
LNP Engineering Plastics Inc. (SABIC Innovative Plastics)
Lubri-Tech™
Acetal, Nylon 612, Nylon 66, PC, PPS
PolyOne Corporation
LUCITE®
Acrylic (PMMA)
Lucite International Inc.
LUCITE® Acritherm™
Acrylic (PMMA)
Lucite International Inc.
LUCITE® SuperTuf™
Acrylic (PMMA)
Lucite International Inc.
Lupolen
PE
Basell Polyolefins
Lupolex
PE
Basell Polyolefins
Luran®
SAN
BASF Corporation
Luran® S
ASA
BASF Corporation
Lustran® ABS
ABS, ABS+Acrylic
Lustran Polymers
Lustran® Elite
ABS
Lustran Polymers
Lustran® SAN
SAN
Lustran Polymers
Lustran® Ultra
ABS, ABS+PC
Lustran Polymers AG
MAGNUM™
ABS
Dow Plastics
Makroblend®
PC Alloy, PC+PET
Bayer MaterialScience LLC
Makrofol®
PC
Bayer MaterialScience LLC
Makrolon®
PC, PC+PET
Bayer MaterialScience AG
Malen
PE
Basell Polyolefins
MarFlex™ HiD®
PE
Chevron Phillips Chemical Company LLC
MarFlex™ PE
PE+PE
Chevron Phillips Chemical Company LLC
Marlex®
PE
Chevron Phillips Chemical Company LLC
Maxxam™
PP
PolyOne Corporation
Maxxam™ FR
PE, PP
PolyOne Corporation
Metocene
PP
Basell Polyolefins
MINDEL®
PSU, PSU Alloy, PSU+ABS
Solvay Advanced Polymers, L.L.C.
Minlon®
Nylon 6, Nylon 66
DuPont Engineering Polymers
MonTor Nylon
Nylon 6, Nylon 610, Nylon 66, Nylon
Toray Resin Company
Mckeen_Appendix-2.indd 770
12/11/2007 5:55:06 PM
771
Trade Names
Product
Polymer Types
Manufactured by
Moplen
PP, TPU
Basell Polyolefins
Norpex®
PPE
Custom Resins Group
NORYL GTX®
PPE+PS+Nylon, PPS+PPE
SABIC Innovative Plastics
NORYL PPX®
PPE+PS+PP
SABIC Innovative Plastics
NORYL®
PPE, PPE+Polyolefin, PPE+PS, PPE+PS+PPS+PPE, PS
SABIC Innovative Plastics
Novodur®
ABS
Lustran Polymers
Nylatron®
Nylon 66
DSM Engineering Plastics
Nylene®
Nylon 6, Nylon 612, Nylon 66, Nylon 66/6, Nylon,
Custom Resins Group
Oleform
PP
Chisso America Inc.
Olehard
PP
Chisso America Inc.
Orgalloy®
Nylon 6, Nylon 6 Alloy, Nylon 66 Alloy
Arkema
Pebax®
PEBA
Arkema
PELLETHANE™
TPU-Ester/Ether, TPU-Polyester, TPU-Polyether
Dow Plastics
Petra®
PET
BASF Corporation
Plexalloy®
ABS+Acrylic
Rohm GmbH & Co. KG
POCAN®
PBT, PBT+ASA, PBT+PET, PC+PBT, PET
LANXESS AG
Polyaxis®
EVA, PE, Polyolefin, PP
A. Schulman GmbH
Polybatch™
PET, Polyolefin, PP, PS
A. Schulman GmbH
Polyfabs®
ABS
A. Schulman GmbH
Polyflam®
ABS, ABS+PC, PE, PP, PS
A. Schulman GmbH
Polyfort®
PE, Nylon+PP, Polyolefin, PP
A. Schulman GmbH
Polyman®
ABS, ABS+PC, Acrylic (PMMA), ASA, PC, SAN
A. Schulman GmbH
PREVAIL™
ABS+TPU
Dow Plastics
PREVEX®
PPE+PS, SMA
SABIC Innovative Plastics
PULSE™
ABS+PC
Dow Plastics
RADEL®A
PES
Solvay Advanced Polymers, L.L.C.
RADEL®R
PES, PPSU
Solvay Advanced Polymers, L.L.C.
REMEX®
PBT, PC+PBT
SABIC Innovative Plastics
RETAIN
ABS+PC, PC
Dow Plastics
Rilsan®
Nylon 11, Nylon 12
Arkema
Rilsan® Fine Powders
Nylon 11
Arkema
Riteflex®
TEEE
Ticona
Rynite®
PBT, PET
DuPont Engineering Polymers
Ryton®
PPS
Chevron Phillips Chemical Company LLC
Schulablend®
ABS+Nylon, ABS+PC, Nylon 6, Nylon+PP A. Schulman GmbH
Schuladur®
PBT, PBT+PET, PET
A. Schulman GmbH
Schulaform®
Acetal
A. Schulman GmbH
Schulamid®
Nylon 6, Nylon 66, Nylon 66/6, Nylon
A. Schulman GmbH
Mckeen_Appendix-2.indd 771
12/11/2007 5:55:06 PM
772
Appendix 2
Product
Polymer Types
Manufactured by
Schulatec®
PPS, SPS
A. Schulman GmbH
Sinkral®
ABS
Polimeri Europa
Siveras™
LCP
Toray Resin Company
SOLEF®
PVDF
Solvay Solexis, Inc.
Stanyl®
Nylon 46
DSM Engineering Plastics
Stapron® E
PC+PET
DSM Engineering Plastics
Stat-Kon®
ABS, ABS+PC, Acetal, Nylon 12, Nylon 6, Nylon 610, Nylon 66, PBT, PC, PEEK, LNP Engineering Plastics Inc. (SABIC PEI, PES, Polyolefin, PPA, PPE+PS, Innovative Plastics) PPS, PUR
Stat-Loy®
ABS, ABS+PC, Acetal, Acrylic (PMMA), Nylon 6, PBT, PP
LNP Engineering Plastics Inc. (SABIC Innovative Plastics)
STYRON A-TECH™
PS
Dow Plastics
STYRON™
PS
Dow Plastics
SUMIKAEXCEL® PES
PES
Sumitomo Chemical America, Inc.
SUMIKASUPER® LCP LCP
Sumitomo Chemical America, Inc.
Teflon® AF
Fluoropolymer
DuPont Fluoropolymers
Teflon® C PFA
PFA
DuPont Fluoropolymers
Teflon® FEP
FEP
DuPont Fluoropolymers
Teflon® PFA
PFA
DuPont Fluoropolymers
Teflon® PTFE
PTFE
DuPont Fluoropolymers
Tefzel
ETFE
DuPont Fluoropolymers
Terblend® N
Nylon 6+ABS
BASF Corporation
Terluran®
ABS
BASF Corporation
Texin®
ABS+TPU, PC+TPU, TPU, TPU-Ester/ Ether, TPU-Polyester, TPU-Polyether
Bayer MaterialScience LLC
Thermocomp®
ABS, ABS+PC, Acetal, ETFE, Nylon 11, Nylon 12, Nylon 6, Nylon 610, Nylon 612, Nylon 66, PBT, PC, PC+PBT, PEEK, PEI, PES, Polyester, TP, PPA, PPE+PS, PPS, PPSU, PSU, PUR, PVDF, SAN, TP, TPEE
LNP Engineering Plastics Inc. (SABIC Innovative Plastics)
Thermotuf®
Nylon 6, Nylon 610, Nylon 612, Nylon 66, Nylon, PBT, PC, Polyester, TP, PPS
LNP Engineering Plastics Inc. (SABIC Innovative Plastics)
Thermx®
PCT
DuPont Engineering Polymers
Thermylene®
PP
Asahi Kasei Plastics North America Inc.
Toraycon®
PBT
Toray Resin Company
Torelina®
PPS
Toray Resin Company
TORLON®
PAI
Solvay Advanced Polymers, L.L.C.
Toyolac®
ABS, ABS+Nylon, ABS+PBT, ABS+PC
Toray Resin Company
Toyolacparel
ABS
Toray Resin Company
Triax®
ABS, ABS+Nylon, Nylon 6+ABS
Lustran Polymers
Trogamid
Nylon 6/3T, Nylon
Degussa AG
TYRIL™
SAN
Dow Plastics
Mckeen_Appendix-2.indd 772
12/11/2007 5:55:06 PM
773
Trade Names
Product
Polymer Types
Manufactured by
UDEL®
PSU
Solvay Advanced Polymers, L.L.C.
ULTEM®
PEI, PEI+PCE
SABIC Innovative Plastics
Ultradur®
PBT, PBT+ASA, PBT+PET
BASF Corporation
Ultraform®
Acetal
BASF Corporation
Ultramid®
Nylon 6, Nylon 66
BASF Corporation
Ultramid® A
Nylon 66
BASF Corporation
Ultramid® B
Nylon 6
BASF Corporation
Ultramid® C
Nylon 66/6
BASF Corporation
Ultrason® E
PES
BASF Corporation
Ultrason® S
PSU
BASF Corporation
VALOX®
ABS+PBT, ABS+PBT+PET, PBT, PBT+PC+PET, PBT+PET, PC+PBT, PET
SABIC Innovative Plastics
Vandar®
PBT, TEEE
Ticona
Vespel®
PI
DuPont Engineering Polymers
Vestamid®
Nylon 12, Nylon 12 Elast, Nylon 612, PEBA
Degussa AG
Voloy®
Nylon 6, Nylon 66, Nylon 66 Alloy, PBT, PBT Alloy, PET, PP
A. Schulman GmbH
Voltalef®
PTFE
Arkema
Xantar®
PC
DSM Engineering Plastics
Xantar® C
ABS+PC
DSM Engineering Plastics
XENOY®
ABS+PBT+PC, PBT+PET, PC+PBT, PC+PET, PC+Polyester
SABIC Innovative Plastics
XT® Polymer
Acrylic (PMMA)
CYRO Industries
XYDAR®
LCP
Solvay Advanced Polymers, L.L.C.
XYLEX®
PC+Polyester
SABIC Innovative Plastics
Yparex®
PE
DSM Engineering Plastics
Zenite®
LCP
DuPont Engineering Polymers
Zytel®
Nylon 6, Nylon 612, Nylon 66, Nylon 66/6
DuPont Engineering Polymers
Zytel® HTN
PPA
DuPont Engineering Polymers
Mckeen_Appendix-2.indd 773
12/11/2007 5:55:07 PM
Mckeen_Appendix-2.indd 774
12/11/2007 5:55:07 PM
Appendix 3: Unit Conversion Tables The following tables show conversion factors to convert most of the units used in this book from SI units (Système International) to various English units.
The conversion factors are reported only to four significant figures.
Pressure, Stress, Modulus Convert from
Convert to
gigapascal (GPa)
MPa
kilopascal (kPa)
atmosphere, standard (atm)
kilopascal (kPa)
bar (bar)
kilopascal (kPa) kilopascal (kPa) megapascal (MPa)
Multiply by 1000 0.009869 0.01
kilogram-force per square centimeter pound-force per square inch (psi)
(lbf/in.2)
kilogram-force per square millimeter
megapascal (MPa)
pound-force per square inch (psi)
pascal (Pa)
atmosphere, standard (atm)
pascal (Pa)
bar (bar)
(kgf/cm2)
(kgf/mm2)
(lbf/in.2)
0.1450 0.1020 145.0 9.869 × 10−6 0.00001
(dyn/cm2)
pascal (Pa)
dyne per square centimeter
pascal (Pa)
gram-force per square centimeter (gf/cm2)
pascal (Pa)
kilogram-force per square centimeter (kgf/cm2)
pascal (Pa)
kilogram-force per square meter (kgf/m2)
pascal (Pa)
kilogram-force per square millimeter
pascal (Pa)
pound-force per square foot (lbf/ft2)
pascal (Pa)
0.01020
pound-force per square inch (psi)
10
(kgf/mm2)
0.01020 1.020 × 10−5 0.1020 1.020 × 10−7 0.02089
(lbf/in.2)
0.0001450
Energy Convert from
Convert to
Multiply by
joule (J)
British thermal unit (Btu)
0.0009471
joule (J)
erg (erg)
10000000
joule (J)
foot pound-force (ft lbf)
0.7376
joule (J)
kilocalorie (mean) (kcal)
0.0002387
joule (J)
kilowatt hour (kW h)
joule (J)
watt hour (W h)
joule (J)
watt second (W s)
megajoule (MJ)
2.778 × 10−7 0.0002778 1
kilowatt hour (kW h)
watt per square meter
(W/m2)
watt per square meter
(W/m2)
watt per square meter
(W/m2)
0.2778
erg per square centimeter second watt per square centimeter watt per square inch
(W/cm2)
(W/in.2)
1000 0.0001 0.0006452
775
Mckeen_Appendix-3.indd 775
12/11/2007 5:55:15 PM
776
Appendix 3
Force Convert from
Convert to
Multiply by
newton (N)
dyne (dyn)
100000
newton (N)
kilogram-force (kgf)
0.1020
newton (N)
pound-force (lbf)
0.2248
newton per kilogram (N/kg)
pound-force per pound (lbf/lb)
0.1020
newton per meter (N/m)
pound-force per foot (lbf/ft)*
0.06852
newton per meter (N/m)
pound-force per inch (lbf/in.)
0.005710
*Pound force-foot is often called a foot pound.
Impact Resistance Convert from kilojoule per square meter
(kJ/m2)
kilojoule per square meter
(kJ/m2)
Convert to
kilogram centimeter per square centimeter
(kg-cm/cm2)
kilogram centimeter per square centimeter
(kg-cm/cm2)
Multiply by
pound-force per square inch
(lbf/in.2)
0.4758
pound-force per square foot
(lbf/ft2)
68.52
joules per square centimeter
(J/cm2)
0.09804
pound-force per square inch
(lbf/in.2)
0.4666
kilogram centimeter per centimeter (kg-cm/cm)
joules per centimeter (J/cm)
0.09804
kilogram centimeter per centimeter (kg-cm/cm)
pound-force per inch (lbf/in.)
0.1837
joules per centimeter (J/cm)
pound-force per inch (lbf/in.)
1.873
joules per meter (J/m)
pound-force per foot (lbf/ft)
0.2248
Linear Expansion Convert from millimeters per millimeter per degree Centigrade (mm/mm/°C)
Convert to
Multiply by
inches per inch per degree Fahrenheit (in./in./°F)
0.5556
Tear Strength Convert from
Convert to
Multiply by
kilonewtons/meter (kN/m)
pound-force per foot (lbf/ft)
68.52
kilonewtons/meter (kN/m)
pound-force per inch (lbf/in.)
5.710
Specific Heat Convert from kilojoules/kilogram °K (kJ/kg °K)
Convert to Btu/pound/°F (Btu/lb °F)
Multiply by 0.2388
Dielectric Strength Convert from kilovolts per millimeter (kV/mm)
Mckeen_Appendix-3.indd 776
Convert to volts per mil (V/mil)
Multiply by 25.4
12/11/2007 5:55:16 PM
INDEX 4-Hydroxybenzoic acid (HBA), 151 4-Methylpentene-1 based polyolefin, 381 4-Methylpentene-1, 379 6-Hydroxynaphthalene-2-carboxylic acid (HNA), 151 ABS/A. Schulman, 561–563, 693 ABS/DOW, 559–561, 691–693 ABS/Lanxess, 563, 693–694 Acetal copolymer, see Polyoxymethylene copolymer (POM-Co) Acetal homopolymer, see Polyoxymethylene (POM) Acrylic/Arkema, 663, 753 Acrylic/Degussa, 663–665, 754–755 Acrylics, 379–417, 749–755 Acrylite® acrylic resin shear modulus vs. temperature of, 414 Acrylonitrile-butadiene-styrene (ABS), 4, 42, 61–78 chemical structure, 43 Acrylonitrile-styrene-acrylate (ASA), 41–42, 51–55 tensile modulus vs. temperature for, 210 Addition polymerization, 1 Additives, 5–7 Adipic acid, 244 ALCOM® PP 620/8 GF/MRX, 749 Algoflon® 15GL, 673 Algoflon® 15GR, 673 Algoflon® 25 CAR B, 673 Algoflon® 25CAR, 673 Algoflon® 25GL, 673 Algoflon® 50 INOX, 673 Algoflon® 55BZ+5Mos, 674 Algoflon® 60BZ, 673 Algoflon® DF 210, 673 Algoflon® DF 230, 673 Algoflon® DF 280X, 673 Algoflon® DF 380, 673 Algoflon® DF 381, 673 Algoflon® DF 680X, 673 Algoflon® F3140 X, 673 Algoflon® F5, 673 Algoflon® F5/S, 673 Algoflon® F6, 673 Algoflon® F7, 673 Algoflon® S 111, 673 Algoflon® S 121, 673 Algoflon® S 131, 673 Algoflon®25CAR+5CER, 674 Altech® PP-B A1000/120 UV, 659, 749 Altech® PP-B A2020/150 GF20 CP, 659, 749
Altech® PP-B A2030/150 GF30 CP, 659, 749 Altech® PP-B A2040/150 GF40 CP, 659, 749 Altech® PP-B A4430/120 MR30 UV, 659, 749 Altech® PP-B A4815/100 MR15, 659, 749 Altech® PP-H A1000/100 DS, 659, 749 Altech® PP-H A1000/140 FR, 659, 749 Altech® PP-H A1000/149 FR, 659, 749 Altech® PP-H A2020/100 GF20, 660, 749 Altech® PP-H A2020/150 GF20 CP, 660, 749 Altech® PP-H A2030/100 GF30, 660, 749 Altech® PP-H A2030/156 GF30 CP, 660, 750 Altech® PP-H A2030/157 GF30 CP, 660, 750 Altech® PP-H A2030/158 GF30 CP, 660, 750 Altech® PP-H A2030/252 GF30 UV CP, 660, 750 Altech® PP-H A3020/100 GB20, 660, 750 Altech® PP-H A3030/100 GB30, 660, 750 Altech® PP-H A4818/100 MR18 DS, 661, 750 Altech® PP-H A4920/100 MR20, 661, 750 Altech® PP-H A4920/106 MR20, 661, 750 Altech® PP-H A4920/170 MR20, 661, 750 Altech® PP-H A4930/100 MR30, 661, 750 Altech® PP-H A4930/106 MR30, 661, 750 Altech® PP-H A4940/100 MR40, 661, 750 ALTECHO PP-B A 4920/100 MR20, 749 AltechO PP-B A4920/100 MR20, 659 AltechO PP-H A2030/150 GF30 CP, 660, 749 AltechO PP-H A2030/250 GF30 CP, 660, 750 AltechO PP-H A2040/150 GF40 CP, 660, 750 Alternating copolymer, 2 Altuglas DRM, 663, 753 Altuglas DRT, 663, 753 Altuglas HFI-10, 663, 753 Altuglas HFI-7, 663, 753 Altuglas HT 121, 663, 753 Altuglas MI-2T, 663, 753 Altuglas MI-4T, 663, 753 Altuglas MI-7T, 663, 753 Altuglas SG 10, 663, 753 Altuglas SG 7, 663, 753 Altuglas V 044, 663, 753 Altuglas V 045, 663, 753 Altuglas V 825 HID, 663, 753 Altuglas V 825 T, 663, 753 Altuglas V 920 T, 663, 753 Altuglas VM, 663, 753 American Society for Testing and Materials (ASTM), 7, 379 Amilan® CM2001 (dry), 643 Amilan® CM2001(cond), 643
777
Mckeen_Index.indd 777
12/11/2007 6:27:19 PM
778
Amilan® CM2001, 742 Amilan® CM2006 (dry), 643 Amilan® CM2006 (cond), 643 Amilan® CM2006, 742 Amilan® CM2401, 643, 742 Aminolauric acid, 244 Aminoundecanoic acid, 244 Amite® A06 300, 598 Amitel® PL650, 667, 757 Amodel A-1133 HS (cond.), 647 Amodel A–1133 HS (dry), 647 Amodel A-1133 HS, 743 Amodel A-1145 HS (cond.), 647 Amodel A-1145 HS (dry), 647 Amodel A-1145 HS, 743 Amodel A1230 L (dry), 647 Amodel A-1230 L (cond.), 647 Amodel A-1230 L, 743 Amodel A-1240 HS (cond.), 647 Amodel A-1240 HS (dry), 647 Amodel A-1240 HS, 743 Amodel A-1240 L (dry), 647 Amodel A-1240 L, 647, 743 Amodel A-1565 HS (dry), 647 Amodel A-1565 HS, 743 Amodel AF-1133 V0 (cond.), 647 Amodel AF-1133 V0 (dry), 647 Amodel AF-1133 V0, 743 Amodel AF-1145 V0 (cond.), 647 Amodel AF-1145 V0 (dry), 647 Amodel AF-1145 V0, 744 Amodel AF-4133 V0 (cond.), 647 Amodel AF-4133 V0 (dry), 647 Amodel AF-4133 V0, 744 Amodel AF-4145 V0 (cond.), 648 Amodel AF-4145 V0 (dry), 648 Amodel AF-4145 V0, 744 Amodel AFA-4133 V0 Z (dry), 648 Amodel AFA-4133 V0 Z, 744 Amodel AFA-6133 V0 Z (dry), 648 Amodel AFA-6133 V0 Z, 744 Amodel AFA-6145 V0 Z (dry), 648 Amodel AFA-6145 V0 Z, 744 Amodel AP-9240 NL NT (dry), 648 Amodel AP-9240 NL NT, 744 Amodel AS-1133 HS (cond.), 648 Amodel AS-1133 HS (dry), 648 Amodel AS-1133 HS, 744 Amodel AS-1145 HS (cond.), 648 Amodel AS-1145 HS (dry), 648 Amodel AS-1145 HS, 744 Amodel AS-1566 HS (cond.), 648 Amodel AS-1566 HS (dry), 648 Amodel AS-1566 HS, 744 Amodel AS-1933 HS (dry), 648 Amodel AS-1933 HS, 744
Mckeen_Index.indd 778
Index
Amodel AS-1945 HS (dry), 649 Amodel AS-1945 HS, 744 Amodel AS-4133 HS (cond.), 649 Amodel AS-4133 HS (dry), 649 Amodel AS-4133 HS, 744 Amodel AS-4145 HS (cond.), 649 Amodel AS-4145 HS (dry), 649 Amodel AS-4145 HS, 744 Amodel AT-1001 L (dry), 649 Amodel AT-1001 L (cond.), 649 Amodel AT-1001 L, 744 Amodel AT-1116 HS (cond.), 649 Amodel AT-1116 HS (dry), 649 Amodel AT-1116 HS, 744 Amodel AT-1125 HS (cond.), 649 Amodel AT-1125 HS (dry), 649 Amodel AT-1125 HS, 744 Amodel AT-5001 (cond.) Amodel AT-5001 (dry), 649 Amodel AT-5001, 744 Amodel AT-6115 HS, 744 Amodel ET-1001 HS (cond.), 649 Amodel ET-1001 HS (dry), 649 Amodel ET-1001 HS, 744 Amodel ET-1001 L (dry), 649 Amodel ET-1001 L (cond.), 649 Amodel ET-1001 L, 744 Amorphous nylon, 247 chemical structure, 248 Antiblocking agents, 5 Antistatic agents, 6 Apec® 1600, 578, 705 Apec® 1605, 578, 705 Apec® 1695, 578, 705 Apec® 1700, 578, 705 Apec® 1703, 578, 705 Apec® 1705, 578, 705 Apec® 1745, 578, 705 Apec® 1795, 578, 705 Apec® 1800, 578, 705 Apec® 1803, 578, 705 Apec® 1805, 578, 705 Apec® 1895, 578, 705 Apec® 1897, 578, 705 Apec® 2095, 578, 705 Apec® 2097, 578, 705 Apec® DP1-9354, 578, 705 Apec® DP1-9354/1, 578, 705 Apec® DP1-9379, 578, 705 Apec® DP1-9389, 578, 705 Arkema Kynar Flex® 2750 stress vs. strain at various temperatures for, 490 Arkema Kynar Flex® 710 stress vs. strain at various temperatures for, 490
12/11/2007 6:27:19 PM
INDEX
Arkema Kynar Flex® copolymer PVDF resins, see also individual entries shear modulus vs. temperature for, 493 tensile strength vs. temperature for, 495 Young’s modulus vs. temperature for, 494 Arkema Orgalloy® RS 6010 pressure-specific volume-temperature (PVT) for, 377 stress vs. strain at various temperatures for, 375 Arkema Pebax® 2533 SN 01 stress vs. strain at various temperatures for, 443 Arkema Pebax® 3533 SN 01 stress vs. strain at various temperatures for, 444 Arkema Pebax® 4033 SN 01 stress vs. strain at various temperatures for, 444 Arkema Pebax® PEBA thermoplastic elastomer resins shear modulus vs. temperature for, 445 Arkema Rilsan® BMN P20 stress vs. strain at temperatures for, 257 Arkema Rilsan® BMN PA11 resin elongation at break vs. temperature for, 259 equilibrium water absorption vs. relative humidity for, 264 flexural modulus vs. temperature for, 259, 260 Rockwell hardness vs. temperature for, 263 shear modulus vs. temperature for, 260 stress at yield vs. moisture content for, 262 tensile strength vs. temperature for several, 262 Arkema Rilsan® BUM 30 O stress vs. strain at various temperatures for, 257 Arkema Rilsan® BZM 23 G9 stress vs. strain at various temperatures for, 258 Arkema Rilsan® PA11 resins torsional modulus vs. moisture content for, 261 Arkema Voltalef® 302 PCTFE resin dielectric constant vs. temperature at 25°C for, 487 dissipation factor vs. frequency at 25°C for, 488 dissipation factor vs. temperature at 60 Hz for, 488 Arnite® A04 900, 598, 721 Arnite® A06 101, 598 Arnite® A06 300, 721 Arnite® A06 700, 599, 721 Arnite® AV2 340, 599, 721 Arnite® AV2 360 S, 599, 721 Arnite® AV2 365 SN, 721, 599 Arnite® AV2 370 /B, 599, 721 Arnite® AV2 370, 599, 721 Arnite® AV2 372, 194, 599, 721 Arnite® AV2 390, 599, 721 Arnite® D00 301, 599, 721 Arnite® T06 200 SNF, 718 Arnite® T06 200 (extrusion), 595 Arnite® T06 200, 595 Arnite® T06 200, 718 Arnite® T06 200SNF, 595 Arnite® T06 202 XL, 595, 718 Arnite® T06 202, 595, 718
Mckeen_Index.indd 779
779
Arnite® T06 204 SN, 718 Arnite® T06 204 XL, 595, 719 Arnite® T06 204SN, 595 Arnite® T06 206 T, 595 Arnite® T08 200 (extrusion), 595 Arnite® T08 200, 595, 719 Arnite® TM4 440, 605, 725 Arnite® TV4 220, 595, 719 Arnite® TV4 230 SF, 719 Arnite® TV4 230, 595, 719 Arnite® TV4 230SF, 595 Arnite® TV4 240 S, 595, 719 Arnite® TV4 240, 595, 719 Arnite® TV4 260 S, 595, 719 Arnite® TV4 260 SF, 595, 719 Arnite® TV4 261, 595, 719 Arnite® TV4 264SN, 596 Arnite® TV4 270, 596 Arnite® TV4 441, 605, 726 Arnite® TV4 461 KL, 605, 726 Arnite® TV4 461, 605, 726 Arnite® TV6 241 T, 596 Arnitel® 3103, 666, 756 Arnitel® 3104, 667, 756 Arnitel® 3107, 756 Arnitel® EB460, 667, 756 Arnitel® EB463, 667, 756 Arnitel® EB464, 667, 756 Arnitel® EB464-01, 667, 757 Arnitel® EB500, 667, 757 Arnitel® EL550, 667, 757 Arnitel® EL630, 667, 757 Arnitel® EL695-G4, 667, 757 Arnitel® EL740, 667, 757 Arnitel® EL740-H/A, 667, 757 Arnitel® EM400, 667, 757 Arnitel® EM401, 667, 757 Arnitel® EM402-L, 667, 757 Arnitel® EM460, 667, 757 Arnitel® EM550, 667, 757 Arnitel® EM630, 667, 757 Arnitel® EM630-H, 667, 757 Arnitel® EM740, 667, 757 Arnitel® PB420, 667, 757 Arnitel® PB582-H, 667, 757 Arnitel® PL380, 667, 757 Arnitel® PL381, 667, 757 Arnitel® PL420-H, 667, 757 Arnitel® PL460-S, 667, 757 Arnitel® PL461, 667, 757 Arnitel® PL471, 667, 757 Arnitel® PL581, 667, 757 Arnitel® PM381, 667, 757 Arnitel® PM460, 668, 757 Arnitel® PM460-B, 668, 757 Arnitel® PM471, 668, 757
12/11/2007 6:27:19 PM
780
Arnitel® PM581, 668, 757 Arnitel® PM650, 668, 758 Arnitel® UM551, 668, 758 Arnitel® UM551-V, 668, 758 ASA/A. Schulman, 558, 690 ASA/BASF, 557–558, 689–690 Asahi Kasei Thermylene® PP resins flexural modulus at 23°C vs. glass fiber content of, 389 tensile strength at break vs. glass fiber content at 23°C of, 391 tensile strength vs. temperature of, 392 ASTM C177-04 Standard Test Method, 16, 687 ASTM C351-92b (1999) Standard Test Method, 16, 687 ASTM D1238-04c Standard Test Method, 17 ASTM D1525-06 Standard Test Method, 16, 687 ASTM D696-03 Standard Test Method, 16, 25, 687 ASTM D746-04 Standard Test Method, 16, 687 ASTM D790-03 standard test methods, 13 ASTM E1356-03 Standard Test Method, 16, 687 ASTM E228-06 standard test method, 25 ASTM E831-06 Standard Test Method, 16, 25, 687 Avaspire™ AV-650 GF30, 761 Avaspire™ AV-650, 760 Avaspire™ AV-651 GF30, 761 Avaspire™ AV-651, 761 Avaspire™ AV-750 GF40, 761 AviSpire® PEEK resins dynamic shear modulus vs. temperature of, 508 Basell Polyolefi ns Hostalen® PP resin tensile modulus vs. temperature of, 391 Basell Polyolefins Hostalen® H1022 stress vs. strain at various temperatures of, 388 Basell Polyolefins Hostalen® H2250 stress vs. strain at various temperatures of, 388 Basell Polyolefins Hostalen® H5216 stress vs. strain at various temperatures of, 389 Basell Polyolefins Hostalen® PP resins coefficient of thermal expansion vs. temperature of, 394, 395 enthalpy vs. temperature of, 395 notched charpy impact strength vs. temperature of, 393, 394 Basell Polyolefins Hostalen® PPN 1060 F PP resins dissipation factor vs. temperature and frequency of, 396 Basell Polyolefins Lupolen® 1810H stress vs. strain at various temperatures of, 383 Basell Polyolefins Lupolen® 5031L stress vs. strain at various temperatures of, 383 Basell Polyolefins Lupolen® 5041H stress vs. strain at various temperatures of, 384 Basell Polyolefins Lupolen® 5261Z stress vs. strain at various temperatures of, 384
Mckeen_Index.indd 780
Index
Basell Polyolefins Lupolen® 6031M stress vs. strain at various temperatures of, 385 Basell Polyolefins PE resin hardness vs. density of, 387 notched tensile impact strength vs. melt flow rate (MFR) of, 386 specific volume vs. temperature and pressure (PVT) of, 387 tensile modulus vs. density of, 386 yield stress vs. density of, 385 BASF Elastollan® 1164 D stress vs. strain at various temperatures for, 421 BASF Elastollan® 1185 A stress vs. strain at various temperatures for, 421 BASF Elastollan® C 64 D stress vs. strain at various temperatures for, 422 BASF Elastollan® C 85 A stress vs. strain at various temperatures for, 422 BASF Elastollan® C 95 A stress vs. strain at various temperatures for, 423 BASF Elastollan® polyester TPU resins coefficient of linear thermal expansion vs. temperature for, 432 hardness vs. temperature for, 431 BASF Elastollan® R 1000 stress vs. strain at various temperatures for, 424 BASF Elastollan® R 2000 stress vs. strain at various temperatures for, 425 BASF Elastollan® R 3000 stress vs. strain at various temperatures for, 425 BASF Elastollan® R glass fiber filled TPU resins elastic modulus vs. temperature for, 428, 429 tear strength vs. temperature for, 429, 430 BASF for Hostaform® C 2521 elongation at break vs. temperature for, 125 BASF Hostaform® dissipation factor vs. frequency at 25°C for, 130 dissipation factor vs. temperature at 105 Hz for, 130 BASF Hostaform® C 9021 ball indentation hardness vs. temperature for, 123 Specific volume as a function of PVT for, 123 BASF Luran® 368 R specific volume as a function of PVT for, 61 tensile stress vs. strain for, 55 BASF Luran® 378P tensile stress vs. strain for, 56 BASF Luran® 378P G7 tensile stress vs. strain for, 56 BASF Luran® 388S tensile stress vs. strain for, 57 BASF Luran® ASA resins falling dart impact vs. temperature for, 54 penetration energy vs. temperature for, 55 shear modulus vs. temperature for, 53
12/11/2007 6:27:19 PM
INDEX
BASF Luran® S 757 R specific volume as a function of PVT for, 54 tensile stress vs. strain for, 51 BASF Luran® S 757 S tensile stress vs. strain for, 51 BASF Luran® S 778 T tensile stress vs. strain for, 52 BASF Luran® SAN resins shear modulus vs. temperature for, 59 tensile modulus vs. temperature for, 60 BASF PA6 resins (DAM) tensile modulus vs. temperature for, 251, 252 BASF Petra® 130 stress vs. strain at various temperatures for, 186 BASF Petra® 30 BK-112 stress vs. strain at various temperatures for, 187 BASF Petra® 330 FR BK stress vs. strain at various temperatures for, 187 BASF Petra® reinforced recycled PET resins flexural modulus vs. temperature for, 190 shear modulus vs. temperature for, 193 BASF polystyrenes BASF Polystyrene 158 K stress vs. strain at various temperatures for, 44 BASF Polystyrene 454 C stress vs. strain at various temperatures for, 44 linear thermal expansion vs. temperature for, 49 tensile modulus vs. temperature for, 46 Young’s modulus vs. temperature for, 47 BASF Styrolux® 3G55 resin Young’s modulus vs. polystyrene content for, 83 BASF Styrolux® 656 C high flow SBC resin specific volume as a function of PVT for, 85 BASF Styrolux® 684D resin penetration energy (ISO 6603-2) vs. polystyrene content for, 84 Vicat softening temperature vs. polystyrene content for, 84 BASF Styrolux® SBC resins stress vs. strain at 23°C for, 83 BASF Terblend® ABS/PA resins tensile modulus vs. temperature for, 91 BASF Terblend® N NG04 stress vs. strain at various temperatures for, 89 BASF Terluran® ABS resins tensile modulus vs. temperature for, 72 BASF Terluran® HH-106 tensile stress vs. strain for, 66 BASF Terluran® HI-10 tensile stress vs. strain for, 67 BASF Ultradur® tensile strength vs. temperature for, 176 BASF Ultradur® S4090 tensile strength vs. temperature for, 211
Mckeen_Index.indd 781
781
BASF Ultradur® S4090 G4 dielectric constant vs. frequency at 23°C for, 212 dissipation factor vs. frequency at 23°C for, 212 BASF Ultraform® acetal copolymer resins modulus of elasticity vs. temperature for, 115 shear modulus vs. temperature for, 116 tensile modulus vs. temperature for, 118 BASF Ultraform® H 2320 006 specific volume as a function of PVT for, 124 stress vs. strain for, 113 BASF Ultraform® H 4320 stress vs. strain for, 113 BASF Ultraform® N 2200 G53 specific volume as a function of PVT for, 124 stress vs. strain for, 114 BASF Ultramid® A3EG10 stress vs. strain at various temperatures for, 277, 278 BASF Ultramid® A3EG6 dielectric strength vs. moisture content and temperature for, 309 stress vs. strain at various temperatures for, 275, 276 volume resistivity vs. temperature for, 311 BASF Ultramid® A3K pressure-specific volume-temperature (PVT) for, 304 stress vs. strain at various temperatures for, 278, 279 BASF Ultramid® A3WG7 stress vs. strain at various temperatures for, 276, 277 BASF Ultramid® A3XG6 volume resistivity vs. temperature for, 311 BASF Ultramid® B3EG5 stress vs. strain at various temperatures for, 249–250 BASF Ultramid® B3K pressure–specific volume-temperature (PVT) for, 255 BASF Ultramid® B-3nylon 6 notched izod of, 6 BASF Ultramid® C3U stress vs. strain at various temperatures for, 330 BASF Ultramid® C3U-C 3U pressure-specific volume-temperature (PVT) for, 335 BASF Ultramid® PA6 resins linear thermal expansion vs. temperature for, 256 shear modulus vs. temperature for several, 251 tensile strength vs. moisture content for several, 254 water absorption vs. relative humidity for, 256 BASF Ultramid® PA66 resins (DAM) linear thermal expansion vs. temperature for, 306 shear modulus vs. temperature for, 290, 333 tensile modulus vs. temperature for, 291, 292, 334 tensile strength vs. moisture content for, 298 Young’s modulus vs. temperature for, 292 BASF Ultramid® reinforced PA6 resins Young’s modulus vs. temperature for, 253 BASF Ultramid® S3 and S4 PA610 resins linear thermal expansion vs. temperature for, 315 water absorption vs. relative humidity for, 315
12/11/2007 6:27:20 PM
782
BASF Ultrason® E 1010 stress vs. strain at several temperatures of, 513 BASF Ultrason® E 2010 dissipation factor vs. temperature at 1 kHz of, 522 shear modulus vs. temperature of, 516 stress vs. strain at several temperatures of, 514 tensile modulus vs. temperature of, 516, 517 tensile strength vs. temperature of, 518 Young’s modulus vs. temperature of, 517 BASF Ultrason® E 2010 G4 charpy impact strength vs. temperature of, 519 stress vs. strain at several temperatures of, 513 BASF Ultrason® E 2010 G6 stress vs. strain at several temperatures of, 514 BASF Ultrason® E 3010 stress vs. strain at several temperatures of, 515 BASF Ultrason® S 2010 G4 stress vs. strain at several temperatures of, 538 BASF Ultrason® S 2010 PSU resins charpy notched impact strength vs. temperature of, 546 BASF Ultrason® S 2010 specific volume as a function of temperature and pressure (PVT) of, 547 stress vs. strain at several temperatures of, 538 BASF Ultrason® S PSU resins shear modulus vs. temperature of, 540 tensile modulus vs. temperature of, 542 tensile strength vs. temperature of, 545 Young’s modulus vs. temperature of, 542 Bayblend® DP T50, 602, 724 Bayblend® DP T65 TX, 724 Bayblend® DP T90, 602, 724 Bayblend® DP W65, 602 Bayblend® DPT65 TX, 602 Bayblend® FR 2000 BBS052, 724 Bayblend® FR 2000, 724 Bayblend® FR 2010, 724 Bayblend® FR 3000, 724 Bayblend® FR 3005, 724 Bayblend® FR 3030, 724 Bayblend® KU 1-1446, 724 Bayblend® KU 2-1514 BBS073, 724 Bayblend® KU 2-1514, 724 Bayblend® KU 2-1522, 724 Bayblend® KU 2-3020, 724 Bayblend® KU1-1446, 602 Bayblend® KU2-1514 BBS073, 603 Bayblend® KU2-1514, 602 Bayblend® KU2-1522, 603 Bayblend® KU2-3020, 603 Bayblend® R-R 610, 603, 724 Bayblend® T45 PG, 603, 724 Bayblend® T45, 603, 724 Bayblend® T65, 603, 724 Bayblend® T85, 603, 725
Mckeen_Index.indd 782
Index
Bayblend® T88-2N, 603, 725 Bayblend® T88-4N, 603, 725 Bayblend®R 2000, 603 Bayblend®R 2000BBS052, 603 Bayblend®R 2010, 603 Bayblend®R 3000, 603 Bayblend®R 3005, 603 Bayblend®R 3030, 603 Bayer Cadon® SMA resins notched Izod impact strength vs. temperature for, 81 tensile strength vs. temperature for, 80 Bayer Desmopan® 453 stress vs. strain at various high temperatures for, 423, 424 Bayer MaterialScience Apec® 1600 stress vs. strain at, 152 Bayer MaterialScience Apec® 1700 stress vs. strain at various temperatures for, 153 Bayer MaterialScience Bayblend® ABS/PC resins shear modulus vs. temperature for several, 90 Bayer MaterialScience Bayblend® T85 stress vs. strain at various temperatures for, 85 Bayer MaterialScience Bayblend® T88-2N PVT for, 94 stress vs. strain at various temperatures for, 86 Bayer MaterialScience Makrolon® 2205 pressure-specific volume-temperature (PVT) for, 158 stress vs. strain at various temperatures for, 155 Bayer Texin® 285 stress vs. strain at various low temperatures for, 426 Bayer Texin® 390 stress vs. strain at various low temperatures for, 427 Bayer TPU resins tensile set vs. temperature for, 431 tensile strength vs. temperature for, 430 Biphenol diamine PMDA polyetherimide (Aurum®) chemical structure of, 214 Blends, polymer, 4–5 immiscible blends, 4 multiphase polymer blends, 4 Blends, styrenic, 43 Block copolymerization, 2, 30 BPADA monomer chemical structure of, 215 BPADA-based Pis blends of, 216 BPADA-DDS polyetherimide sulfone (Ultem® XH6050) chemical structure of, 214 BPADA-MPD polyetherimide (Ultem® 1000 series) chemical structure of, 214 BPADA-PMDA-MPD copolyetherimide (Ultem® 6000 series) chemical structure of, 215 BPADA-PPD polyetherimide chemical structure of, 214 Branched polymers, 2–3
12/11/2007 6:27:20 PM
INDEX
Calibre 1080 DVD, 581, 707 Calibre 200 10MFR, 581, 707 Calibre 200 15MFR, 581, 707 Calibre 200 22MFR, 581, 707 Calibre 200 4 MFR, 581, 708 Calibre 200 6 MFR, 581, 708 Calibre 201 10MFR, 581, 708 Calibre 201 15MFR, 581, 708 Calibre 201 22MFR, 581, 708 Calibre 201 4 MFR, 581, 708 Calibre 201 6 MFR, 581, 708 Calibre 202 10MFR, 581, 708 Calibre 202 15MFR, 581, 708 Calibre 202 22MFR, 582, 708 Calibre 202 4 MFR, 582, 708 Calibre 202 6 MFR, 582, 708 Calibre 203 10MFR, 582, 708 Calibre 203 15MFR, 582, 708 Calibre 203 22MFR, 582, 708 Calibre 203 4 MFR, 582, 708 Calibre 203 6 MFR, 582, 708 Calibre 2060 10MFR, 582, 708 Calibre 2060 15MFR, 582, 708 Calibre 2061 10MFR, 582, 708 Calibre 2061 15MFR, 582, 708 Calibre 2071 15MFR, 582, 708 Calibre 300 10MFR, 582, 708 Calibre 300 15MFR, 582, 708 Calibre 300V 10MFR, 583, 708 Calibre 300V 15MFR, 583, 708 Calibre 300V 6MFR, 583, 708 Calibre 301 10MFR, 583, 709 Calibre 301 15MFR, 583, 709 Calibre 301 6 MFR, 583, 709 Calibre 301EP 22MFR, 583, 709 Calibre 301EP 31MFR, 583, 709 Calibre 301V 10MFR, 583, 709 Calibre 301V 15MFR, 583, 709 Calibre 301V 6MFR, 583, 709 Calibre 302 10MFR, 583, 709 Calibre 302 15MFR, 583, 709 Calibre 302 6 MFR, 583, 709 Calibre 302EP 22MFR, 583, 709 Calibre 302EP 31MFR, 583, 709 Calibre 302V 10MFR, 583, 709 Calibre 302V 15MFR, 583, 709 Calibre 302V 6MFR, 584, 709 Calibre 303 10MFR, 584, 709 Calibre 303 15MFR, 584, 709 Calibre 303 6 MFR, 584, 709 Calibre 303 8 MFR, 584, 709 Calibre 303EP 22MFR, 584, 709 Calibre 303EP 31MFR, 584, 709 Calibre 303V 10MFR, 584, 709 Calibre 303V 15MFR, 584, 709 Calibre 303V 4MFR, 584, 709
Mckeen_Index.indd 783
783
Calibre 303V 6MFR, 584, 709 Calibre 303V 8MFR, 584, 709 Calibre 3041 35MFR, 584, 709 Calibre 3043 35MFR, 584, 709 Calibre 5101 15MFR, 585, 709 Calibre 5210 15MFR, 585, 710 Calibre 5210 8MFR, 585, 710 Calibre 600 2 MFR, 585, 710 Calibre 600 3 MFR, 585, 710 Calibre 603 3 MFR, 585, 710 Calibre 701 10MFR, 585, 710 Calibre 701 15MFR, 585, 710 Calibre 7101 15MFR, 585, 710 Calibre 7101 8MFR, 585, 710 Calibre 7211 5MFR, 585, 710 Calibre 891 10MFR, 585, 710 Calibre 891 19MFR, 585, 710 Calibre 893 19MFR, 585, 710 Calibre IM 401 11, 585, 710 Calibre IM 401 18, 585, 710 Calibre MegaRad2080 10 MFR, 585, 710 Calibre MegaRad2080 15 MFR, 585, 710 Calibre MegaRad2081 10 MFR, 585, 710 Caprolactam, 244 Capron® AG40C (dry), 639 Capron® AG50G6 HSBK0100 (dry), 640 Catalysts, 5 Celanese method, 97 Celanex 1300A, 588, 713 Celanex 1400A, 588, 713 Celanex 1462Z, 588, 713 Celanex 1600A, 588, 713 Celanex 1602Z, 589, 713 Celanex 1612Z, 589, 713 Celanex 1632Z, 589, 713 Celanex 1662Z, 589, 713 Celanex 1700A, 589, 713 Celanex 2000, 589, 713 Celanex 2000-2, 589, 713 Celanex 2000-K, 589, 713 Celanex 2001 HP, 589, 713 Celanex 2001, 589, 713 Celanex 2002, 589, 713 Celanex 2002-2, 589, 713 Celanex 2002AP, 589, 713 Celanex 2002UV, 589, 713 Celanex 2003, 589, 713 Celanex 2003-2, 589, 713 Celanex 2003HR, 589, 714 Celanex 2004, 589, 714 Celanex 2004-2, 589, 714 Celanex 2008, 589, 714 Celanex 2012, 589, 714 Celanex 2014, 589, 714 Celanex 2016, 589, 714 Celanex 2025, 589, 714
12/11/2007 6:27:20 PM
784
Celanex 2300GV1/10, 589, 714 Celanex 2300GV1/20, 589, 714 Celanex 2300GV1/30, 589, 714 Celanex 2300GV1/50, 590, 714 Celanex 2300GV3/20, 590, 714 Celanex 2300GV3/30, 590, 714 Celanex 2302GV1/15, 590, 714 Celanex 2302GV1/20, 590, 714 Celanex 2302GV1/30, 590, 714 Celanex 2360 FL, 590, 714 Celanex 2360GV1/10 FL, 590, 714 Celanex 2360GV1/20 FL, 590, 714 Celanex 2360GV1/30 FL, 590, 714 Celanex 2401 MT, 590, 714 Celanex 2402 MT, 590, 714 Celanex 2403 MT, 590, 714 Celanex 2404 MT, 590, 714 Celanex 2500, 590, 714 Celanex 3100, 590, 714 Celanex 3109HR, 591, 715 Celanex 3114, 591, 715 Celanex 3116, 591, 715 Celanex 3200, 591, 715 Celanex 3200-2, 591, 715 Celanex 3200HR, 591, 715 Celanex 3201, 591, 715 Celanex 3210-2, 591, 715 Celanex 3214, 591, 715 Celanex 3216, 591, 715 Celanex 3226, 591, 715 Celanex 3300, 591, 715 Celanex 3300-2, 591, 715 Celanex 3300D, 591, 715 Celanex 3300HR, 591, 715 Celanex 3300LM, 591, 715 Celanex 3309HR, 591, 715 Celanex 3309HRT, 591, 715 Celanex 3310, 591, 715 Celanex 3314, 591, 715 Celanex 3316, 591, 715 Celanex 3325HRT, 591, 715 Celanex 3400, 591, 715 Celanex 3409HR, 591, 715 Celanex 4016, 591, 715 Celanex 4202, 591, 715 Celanex 4300, 591, 716 Celanex 4300LM, 591, 716 Celanex 4302, 591, 716 Celanex 4302HS, 591, 716 Celanex 4302LM, 592, 716 Celanex 4305, 592, 716 Celanex 4306, 592, 716 Celanex 5200, 592, 716 Celanex 5200-2, 592, 716 Celanex 5201, 592, 716 Celanex 5202, 592, 716
Mckeen_Index.indd 784
Index
Celanex 5203, 592, 716 Celanex 5300, 592, 716 Celanex 5300-2, 592, 716 Celanex 602AC, 592, 716 Celanex 6400-2, 592, 716 Celanex 6406, 592, 716 Celanex 6407, 592, 716 Celanex 6500, 592, 716 Celanex 6500LM, 592, 716 Celanex 7316, 592, 716 Celanex 7700, 592, 716 Celcon AM90S Plus, 569, 698 Celcon AM90S, 569, 698 Celcon AS270, 569, 698 Celcon C13031 XAS, 569, 698 Celcon C13031 XF, 570, 698 Celcon CF801, 570, 698 Celcon CF802, 570, 698 Celcon EC–90PLUS, 570, 698 Celcon EF10, 570, 698 Celcon GB10, 570, 698 Celcon GB25, 570, 698 Celcon GC10, 570, 698 Celcon GC15, 570, 698 Celcon GC20, 570, 698 Celcon GC25A, 570, 698 Celcon GC25T, 570, 698 Celcon GC25TF, 570, 698 Celcon GC90UV, 570, 698 Celcon LM25, 570, 699 Celcon LM90, 570, 699 Celcon LM90Z, 570, 699 Celcon LU02, 570, 699 Celcon LW25-S2, 570, 699 Celcon LW90, 570, 699 Celcon LW90-F1, 570, 699 Celcon LW90-F2, 570, 699 Celcon LW90-F4, 570, 699 Celcon LW90-F5, 571, 699 Celcon LW90GPK, 571, 699 Celcon LW90-S2, 571, 699 Celcon LWGC-F4, 571, 699 Celcon LWGC-S2, 571, 699 Celcon M140, 571, 699 Celcon M140-L1, 571, 699 Celcon M15HP, 571, 699 Celcon M25, 571, 699 Celcon M25UV, 571, 699 Celcon M270™, 571, 699 Celcon M270UV, 571, 699 Celcon M30AE, 571, 699 Celcon M450, 571, 699 Celcon M50, 571, 699 Celcon M90-34, 571, 699 Celcon M90AW, 571, 699 Celcon M90SW, 571, 699
12/11/2007 6:27:20 PM
INDEX
Celcon M90™, 571, 699 Celcon M90UV, 571, 699 Celcon MC270, 571, 700 Celcon MC270-HM, 571, 700 Celcon MC90, 571, 700 Celcon MC90-HM, 571, 700 Celcon MR15HPB, 571, 700 Celcon MR50B, 571, 700 Celcon MR90B, 571, 700 Celcon MT12R01, 571, 700 Celcon MT12U01, 572, 700 Celcon MT12U03, 572, 700 Celcon MT24F01, 572, 700 Celcon MT24U01, 572, 700 Celcon MT2U01, 572, 700 Celcon MT8F01, 572, 700 Celcon MT8F02, 572, 700 Celcon MT8R02, 572, 700 Celcon MT8U01, 572, 700 Celcon TX90, 572, 700 Celcon TX90PLUS, 572, 700 Celcon UV140LG, 572, 700 Celcon UV25Z, 572, 700 Celcon UV270Z, 572, 700 Celcon UV90Z Metallics, 701 Celcon UV90Z, 700 Celcon WR25Z, 572, 701 Celcon WR9OZ, 572, 701 Celstran PBT-GF40-08, 716 Celstran PEHDGF40-01, 658 Celstran PEHDGF60-01-US, 658 Celstran PP-GF30-02, 661, 753 Celstran PP-GF30-03, 661 Celstran PP-GF30-04, 661, 753 Celstran PP-GF30-05, 661, 753 Celstran PP-GF30-10, 661, 753 Celstran PP-GF40-02, 661, 753 Celstran PP-GF40-03, 661 Celstran PP-GF40-04, 662, 753 Celstran PP-GF40-0414P10/10, 662, 753 Celstran PP-GF40-05, 662 Celstran PP-GF40-10, 662 Celstran PP-GF50-02, 662 Celstran PP-GF50-03, 662 Celstran PP-GF50-04, 662, 753 Celstran PP-GF50-0403P10/10, 662, 753 Celstran PP-GF50-0405P10/10, 662 Celstran PP-GF50-0453P10/10, 662, 753 Celstran PP-GF50-0455P10/10, 662 Celstran PP-GF50-10, 662 Charpy impact strength testing, 14–15, 32 sample configurations, 15 Chevron Phillips Chemical Marlex® PP flexural modulus vs. temperature of, 390 Chevron Phillips Chemical Ryton® BR111 stress vs. strain at several temperatures of, 523
Mckeen_Index.indd 785
785
Chevron Phillips Chemical Ryton® BR42B stress vs. strain at several temperatures of, 523 Chevron Phillips Chemical Ryton® PPS resins flexural modulus vs. temperature of, 527 flexural strength vs. temperature of, 528 shear strength vs. temperature of, 529 tensile strength vs. temperature of, 530 Chevron Phillips Chemical Ryton® R-4 dielectric constant vs. frequency and temperature of, 534 Izod impact strength vs. high temperature of, 533 Chevron Phillips Chemical Ryton® R-7 dielectric constant vs. frequency and temperature of, 534 Chevron Phillips Chemical Ryton® Ryton® R-10-110BL Stress vs. strain at several temperatures of, 526 Chevron Phillips Chemical Ryton® Ryton® R-4-200BL stress vs. strain at several temperatures of, 524 Chevron Phillips Chemical Ryton® Ryton® R-7-120BL Stress vs. strain at several temperatures of, 525 Chisso America Olehard® resin flexural modulus vs. temperature of, 390 tensile strength at break vs. temperature of, 392 Coefficient of thermal expansion, 25 ASTM D696-03 standard test method, 25 ASTM E228-06 standard test method, 25 ASTM E831-06 standard test method, 25 ISO 11359-2:1999 plastics, 25 Combustion modifiers, 5 Compressive properties, plastics, 12 Condensation polymerization, 1 Copolymers classification, 2 alternating copolymer, 2 block copolymer, 2 graft copolymer, 2 random copolymer, 2 Coupling agents, 7 Crastin® 6129 NC010, 719 Crastin® 6129CNC010, 596 Crastin® 6129NC010, 596 Crastin® 6130 NC010, 719 Crastin® 6130CNC010, 596 Crastin® 6130NC010, 596 Crastin® 6131 NC010, 719 Crastin® 6131CNC010, 596 Crastin® 6131NC010, 596 Crastin® 6134 NC010, 719 Crastin® 6134CNC010, 596 Crastin® 6134NC010, 596 Crastin® BM6450XD BK560, 719 Crastin® CE2055BKB580, 597 Crastin® CE2548GY740, 597 Crastin® HR5315HF NC010, 719 Crastin® HR5330HF NC010, 719 Crastin® HTI668FR NC010, 597, 719
12/11/2007 6:27:20 PM
786
Crastin® LW9020 NC010, 727 Crastin® LW9020FR NC010, 727 Crastin® LW9020NC010, 607 Crastin® LW9030 NC010, 727 Crastin® LW9030FR NC010, 727 Crastin® LW9030NC010, 607 Crastin® LW9320NC010, 607, 727 Crastin® LW9330 NC010, 607, 727 Crastin® S600F10 NC010, 719 Crastin® S600F20 NC010, 719 Crastin® S600F40 NC010, 719 Crastin® S600LF NC010, 719 Crastin® S620F20 NC010, 719 Crastin® S660FR NC010, 719 Crastin® SK601 NC010, 719 Crastin® SK602 NC010, 719 Crastin® SK603 NC010, 719 Crastin® SK605 NC010, 719 Crastin® SK608 BK509, 719 Crastin® SK609 NC010, 720 Crastin® SK662FR NC010, 720 Crastin® SK665FR BK507, 720 Crastin® SO653 NC010, 720 Crastin® ST820 NC010, 720 Crastin® ST830FR NC010, 720 Crastin® ST830FRUV NC010, 720 Crastin® T803 NC010, 720 Crastin® T805 NC010, 720 Crastin® T835FRUV NC010, 720 Crastin® T841FR NC010, 720 Crastin®BM6450XD BK560, 596 Crastin®HR5315HF BK503, 597 Crastin®HR5315HF NC010, 597 Crastin®HR5330HF BK503, 597 Crastin®HR5330HF NC010, 597 Crastin®LW9020FR NC010, 607 Crastin®LW9030FR NC010, 607 Cross-linked polymers, 2–3 Crystalline vs. amorphous thermoplastics, 3–4 Cyclic Olefin Copolymer (COC), 382 D3763-06 standard test method, 16 D5420-04 standard test method, 15 D5628-06 standard test method, 15 Degussa Trogamid® amorphous nylon linear expansion vs. moisture content for, 340 linear thermal expansion vs. temperature for, 341 moisture content vs. relative humidity for, 341 storage modulus vs. temperature for, 338 tensile modulus vs. temperature for, 339 Degussa Trogamid® T5000 charpy notched impact strength vs. temperature for, 339 dielectric constant vs. frequency and water content for, 342 dielectric constant vs. temperature for, 342
Mckeen_Index.indd 786
Index
dissipation factor vs. frequency for, 343 dissipation factor vs. temperature for, 343 pressure-specifi c volume-temperature (PVT) for, 340 stress vs. strain for, 336, 337 Degussa Vestamid® L1723 sw pressure-specific volume-temperature (PVT) for, 268 stress vs. strain at various temperatures for, 265, 266 thermal expansion vs. temperature for, 269 DeIrin® 100AL NC010, 567, 568, 697 Delrin® 100 change in length vs. temperature and humidity for, 106 notched Izod impact strength vs. temperature for, 104 Delrin® 100 and 500 NC010 dielectric constant vs. temperature for, 108 Delrin® 100 NC010, 567, 568, 697 Delrin® 100, 500, 900 shear modulus vs. temperature for, 102 Delrin® 100, 500T, 100ST Young’s modulus vs. temperature for, 102 Delrin® 100KM NC000, 567, 568, 697 Delrin® 100P NC010, 567, 568, 697 Delrin® 100P, 500P, and 900P change in length vs. temperature and humidity for, 106 Delrin® 100ST NC010, 567, 568, 697 Delrin® 100T NC010, 567, 568, 697 Delrin® 107 NC010 specific volume as a function of PVT, 105 Delrin® 107 NC010, 567, 568, 697 Delrin® 111P NC010, 567, 568, 697 Delrin® 1260 NC010, 567, 568, 697 Delrin® 127UV NC010, 567, 568, 697 Delrin® 150 NC010, 567, 568, 697 Delrin® 300AS BK000, 567, 568, 697 Delrin® 311 DP NC010, 567, 569, 697 Delrin® 460 NC010, 567, 569 Delrin® 460 NC010, 568, 697 Delrin® 460E NC010, 569, 697 Delrin® 500, see also individual entries change in length vs. temperature and humidity for, 106 dissipation factor vs. frequency for, 109 notched Izod impact strength vs. humidity for, 104 notched Izod impact strength vs. temperature for, 104, 105 Delrin® 500 NC010 dielectric constant vs. moisture content at 23°C for, 107 dielectric strength vs. thickness at 23°C for, 108 dissipation factor vs. moisture content at 23°C for, 109 dissipation factor vs. temperature for, 110 Delrin® 500AF, 568, 569, 697 Delrin® 500AL NC010, 568, 569, 697 Delrin® 500CL NC010, 568, 569, 697 Delrin® 500MP NC010, 568, 569, 697 Delrin® 500P dielectric constant vs. frequency for, 107 Delrin® 500P NC010, 568, 569, 697
12/11/2007 6:27:20 PM
INDEX
Delrin® 500T NC010, 568, 569 Delrin® 500T NC010, 697 Delrin® 500TL NC010, 568, 569, 697 Delrin® 510GR NC000, 569, 697 Delrin® 511P NC010, 569, 697 Delrin® 520MP NC010, 569, 698 Delrin® 525GR NC000 polymers stress vs. strain for, 100 Delrin® 525GR NC000, 569, 698 Delrin® 527UV NC010, 569, 698 Delrin® 542CM NC010, 569, 698 Delrin® 560 NC010, 569, 698 Delrin® 560HD OR729, 569, 698 Delrin® 570 NC000, 569, 698 Delrin® 570 polymers stress vs. strain for, 100 Delrin® 900P NC010, 569, 698 Delrin® 911 P NC010, 569 Delrin® 911AL NC010, 569, 698 Delrin® 911P NC010, 698 Delrin® acetal resin flexural modulus vs. temperature for, 101 stress vs. strain in, 101 tensile strength vs. temperature for, 103 tensile yield strength vs. temperature for, 103 Designing, plastics, 25–35 experience, 25 impact strength, assessment, 30–33 knowledge requirement, 25 maximum service temperature assessment, 26–29 requirements, 25 rigidity of plastics materials, 26 selection guides, 33–35, see also Selection guides thermal stability assessment, 27–29 time dependent behavior, 33 toughness, 29–35 training, 25 Dianimo diphenyl sulfone (DDS), 215 Dielectric constant, 22 Dow Chemical Dylark® SMA resins flexural modulus vs. temperature for, 79 notched Izod impact strength vs. temperature for, 81 tensile modulus vs. temperature for, 80 Dow Chemical Magnum ABS resins dissipation factor vs. frequency for, 77 Dow Chemical Magnum™ 1040 tensile stress vs. strain for, 63 Dow Chemical Magnum™ 2620 tensile stress vs. strain for, 64 Dow Chemical Magnum™ ABS resins dielectric constant vs. frequency for, 77 shear modulus vs. temperature for, 71 Dow Chemical Tyril™ 790 tensile stress vs. strain for, 57 Dow Chemical Tyril™ 905 tensile stress vs. strain for, 58
Mckeen_Index.indd 787
787
Dow Chemical Tyril™ SAN resins shear modulus vs. temperature for, 59 Dow Styron™ 457 stress vs. strain at various temperatures for, 45 Dow Styron™ 6075 notched Izod impact vs. temperature for, 48 tensile modulus vs. temperature for, 46 tensile strength vs. temperature for, 47 Dow Styron™ 648 stress vs. strain at various temperatures for, 45 Dow Styron™ polystyrene resins dielectric constant vs. frequency for, 49 dissipation factor vs. frequency for, 50 enthalpy vs. temperature for, 50 DuPont Co dielectric constant vs. temperature for, 454 dissipation factor vs. temperature for, 455 hardness vs. temperature for, 453 linear thermal expansion vs. temperature for, 454 stress vs. strain at high strain rate for, 451 stress vs. strain at low strain rate for, 452 stress vs. strain in tension and compression for, 451 tensile strength vs. temperature for, 453 DuPont Crastin® elongation at break vs. fiber glass reinforcement content for, 179 flexural strength vs. glass fiber content for, 171 impact strength vs. fiber glass reinforcement content for, 177 specific density vs. fiber glass reinforcement content for, 180 tensile modulus vs. fiber glass reinforcement content for, 169 tensile modulus vs. temperature for, 170, 171 tensile strength vs. fiber glass reinforcement content for, 174 tensile strength vs. temperature for, 174, 175 DuPont Crastin® PBT tensile modulus vs. temperature for, 210 DuPont Crastin® PBT/ASA polyester alloy/blend resins tensile strength vs. temperature for, 210 DuPont Crastin® S600F10 NC010 stress vs. strain at various temperatures for, 161 DuPont Crastin® S600LF NC010 pressure-specific volume-temperature (PVT) for, 179 DuPont Crastin® SO653 NC010 stress vs. strain at various temperatures for, 161 DuPont Crastin® ST820 NC010 stress vs. strain at various temperatures for, 162 Dupont Crastin® tensile modulus vs. temperature for, 170 DuPont Engineering Plastics Zytel® HTN51G35HSL Pressure-specific volume-temperature (PVT) for, 361 DuPont Engineering Polymers Delrin® 100P NC010 stress vs. strain for, 99
12/11/2007 6:27:20 PM
788
DuPont Hytrel® 4056 stress vs. strain at various temperatures in compression for, 439 high strain, 437 low strain, 436 DuPont Hytrel® 5556 Stress vs. strain at various temperatures high strain, 436 low strain, 435 DuPont Hytrel® 6356 stress vs. strain at various temperatures high strain, 435 in compression, 438 low strain, 434 DuPont Hytrel® 7246 Stress vs. strain at various temperatures for high strain, 434 in compression, 438 low strain, 433 DuPont Hytrel® G4075 stress vs. strain at various temperatures for high strain, 433 in compression, 437 low strain, 432 DuPont Hytrel® TPE-E resins dissipation factor vs. temperature for, 443 dropped weight impact failure energy vs. temperature for, 441, 442 dropped weight impact failure load vs. temperature for, 442 elastic modulus in compression vs. temperature for, 440 elastic modulus vs. temperature for, 440 flexural modulus vs. temperature for, 441 DuPont Hytrelv 5556 stress vs. strain at various temperatures in compression for, 439 DuPont Minlon® 10B40 NC010 stress vs. strain at various temperatures for, 271, 272 tensile strength vs. humidity at various temperatures for, 295 DuPont Minlon® 11C40 NC010 stress vs. strain at various temperatures for, 272, 273 tensile strength vs. humidity at various temperatures for, 296 DuPont Minlon® 12T stress vs. strain at various temperatures for, 273, 274 tensile strength vs. humidity at various temperatures for, 296 DuPont Minlon® 20B stress vs. strain at various temperatures for, 274, 275 tensile strength vs. humidity at various temperatures for, 297
Mckeen_Index.indd 788
Index
DuPont Minlon® 22C tensile strength vs. humidity at various temperatures for, 297 DuPont Minlon® mineral filled PA66 resins flexural modulus vs. relative humidity at 23°C for several, 286 flexural modulus vs. temperature for, 287 DuPont Minlon® mineral reinforced PA66 resins Stress vs. strain in compression at 23°C for several, 269 DuPont Minlon® PA66 resins Izod impact strength vs. humidity at 23°C, 303 at 40°C for, 302 tensile strength vs. humidity at 149°C for, 294 at 23°C for, 293 at 40°C for several, 293 at 93°C for, 294 tensile strength vs. temperature for, 295 DuPont Rynite® 500 series of toughened, reinforced PET resins flexural modulus vs. temperature for, 191 DuPont Rynite® 545 stress vs. strain at various temperatures for, 188 DuPont Rynite® 555 stress vs. strain at various temperatures for, 188 DuPont Rynite® 900 series flexural modulus vs. temperature for, 192 DuPont Rynite® 935 stress vs. strain at various temperatures for, 189 DuPont Rynite® FR500 series of flame retardant PET resins flexural modulus vs. temperature for, 192 DuPont Rynite® FR530L stress vs. strain at various temperatures for, 189 DuPont Rynite® FR900 series flexural modulus vs. temperature for, 193 DuPont Rynite® SST35 stress vs. strain at various temperatures for, 190 DuPont Rynite® toughened, reinforced PET resins flexural modulus vs. temperature for, 191 DuPont Teflon® PFA 340 and 350 grade resins dielectric constant vs. frequency for, 479 dissipation factor vs. frequency and temperature for, 480 flexural modulus vs. temperature for, 475 tensile strength vs. temperature for, 476 DuPont Teflon® PFA HP plus resins dielectric constant vs. frequency for, 479 dissipation factor vs. frequency and temperature for, 480 flexural modulus vs. temperature for, 475 tensile strength vs. temperature for, 477 ultimate elongation vs. temperature for, 478
12/11/2007 6:27:21 PM
INDEX
DuPont Tefzel® ETFE resins dielectric constant vs. frequency, 466 dissipation factor vs. frequency, 466 elongation at break vs. temperature, 465 flexural modulus vs. temperature for, 463 shear strength vs. temperature for, 464 stress vs. strain in compression at 23°C for, 461 stress vs. strain in flexure at 23°C for, 461 tensile modulus vs. temperature for, 463 tensile stress vs. strain at 23°C for, 462 DuPont Thermx® CG033 stress vs. strain at various temperatures for, 203 DuPont Thermx® CG923 pressure–specific volume–temperature for, 204 stress vs. strain at various temperatures for, 203 DuPont Thermx® glass tensile modulus vs. temperature for, 204 DuPont Vespel® direct-formed PI dimension change vs. relative humidity at 23°C for, 237 dimension change vs. temperature perpendicular to forming for, 238 flexural modulus vs. temperature for, 233 stress vs. strain at 23°C in compression parallel to forming for, 230 stress vs. strain at 23°C, 231 stress vs. strain at 260°C in tension parallel to forming for, 231 tensile strength vs. temperature for, 235 DuPont Vespel® machined PI dimension change vs. relative humidity at 23°C for, 237 dimension change vs. temperature for, 238 flexural modulus vs. temperature for, 234 stress vs. strain at 23°C in compression for, 229 stress vs. strain at 23°C in tension perpendicular to forming for, 232 stress vs. strain at 260°C in tension for, 232 stress vs. strain at 300°C in compression for, 230 tensile strength vs. temperature for, 236 DuPont Vespel® SP1 PI dielectric constant vs. temperature for, 239 dielectric strength vs. thickness for, 240 dissipation factor vs. temperature and frequency for, 240 surface resistivity vs. temperature for, 241 volume resistivity vs. temperature for, 241 DuPont Zenite® 6130L BK010 stress vs. strain at various temperatures of, 198 DuPont Zytel® 101 dielectric constant vs. temperature at 100 Hz for, 307 dielectric strength vs. temperature for, 309 dielectric strength vs. thickness for, 310 dissipation factor vs. moisture content for, 308 dissipation factor vs. temperature for, 308
Mckeen_Index.indd 789
789
flexural modulus vs. temperature at different humidity levels for, 288 general purpose PA66 resin dimensional change vs. humidity for, 305 dimensional change vs. moisture content for, 306 stress vs. strain in compression at 23°C for, 270 tensile strength vs. temperature and moisture content for, 300 volume resistivity vs. moisture content for, 310 volume resistivity vs. temperature for, 312 yield point vs. temperature and moisture content for, 285 DuPont Zytel® 101L NC010 Stress vs. strain at various temperatures for, 283, 284 DuPont Zytel® 109L stress vs. strain at various temperatures for, 331 DuPont Zytel® 151L dielectric constant vs. moisture content for, 324 dielectric constant vs. temperature for, 325 dissipation factor vs. moisture content at 100 Hz for, 326 dissipation factor vs. temperature at 100 Hz for, 326 volume resistivity vs. moisture content for, 327 volume resistivity vs. temperature for, 327 DuPont Zytel® 158 NC010 pressure-specific volume-temperature of, 323 stress vs. strain at various temperatures for, 317 tensile yield strength vs. temperature of, 322 DuPont Zytel® 158L flexural modulus vs. temperature and moisture content, 318 DuPont Zytel® 408 flexural modulus vs. temperature at different humidity levels for, 288 stress vs. strain at various temperatures for, 284, 285 DuPont Zytel® 70G series PA66 resins flexural modulus vs. fiber glass content at 23°C for, 290 DuPont Zytel® 70G-13 Stress vs. zstrain at various temperatures for, 281 DuPont Zytel® 70G-33 dimensional change vs. humidity for, 304 DuPont Zytel® 70G-33L NC010 Stress vs. strain at various temperatures for, 281 DuPont Zytel® 70G-33L Stress vs. strain in compression at various temperatures for, 270 tensile strength vs. temperature and moisture content for, 299 DuPont Zytel® 70G-43LNC010 Stress vs. strain at various temperatures for, 282 DuPont Zytel® 71G flexural modulus vs. temperature at different humidity levels for, 287
12/11/2007 6:27:21 PM
790
DuPont Zytel® 71G-33L dimensional change vs. humidity for, 305 Stress vs. strain at various temperatures for, 283 tensile strength vs. temperature and moisture content for, 300 DuPont Zytel® 77G33L NC010 flexural modulus vs. humidity, 318 flexural modulus vs. temperature of, 319 Shear strength vs. relative humidity of, 320 shear strength vs. temperature of, 320 tensile strength vs. relative humidity of, 321 DuPont Zytel® 77G33L NC010 stress vs. strain for, 316 tensile strength vs. temperature of, 322 DuPont Zytel® 77G43L stress vs. strain for, 317 DuPont Zytel® glass fiber filled PA66 resins flexural modulus vs. relative humidity at 23°C for several, 286 Izod impact strength vs. humidity for, 303 Tensile strength vs. humidity at two temperatures for two, 298 DuPont Zytel® PA612 resins equilibrium moisture content vs. relative humidity, 324 Izod notched impact strength vs. relative humidity at 23°C of two, 323 DuPont Zytel® PA66 resins (DAM) shear strength vs. humidity for, 301 shear strength vs. temperature for, 302 DuPont Zytel® PA66 resins flexural modulus vs. temperature and relative humidity for, 289 moisture content vs. relative humidity for, 307 DuPont Zytel® ST-801 flexural modulus vs. temperature at different humidity levels for, 289 Stress vs. strain in compression at 23°C for, 271 DuPont Zytel® ST811 HS NC010 Stress vs. strain at various temperatures for, 280 DuPont’s Fusabond®N MN-493D, 6 Dyes, 7 Dynamic mechanical thermal analysis (DMTA), 19 Dyneon™ CC085, 675 Dyneon™ CC174/N, 675 Dyneon™ CC191-HE, 675 Dyneon™ CC503, 674 Dyneon™ CC603, 674 Dyneon™ CC605, 674 Dyneon™ CC622, 674 Dyneon™ CC6467/S, 674 Dyneon™ CC655, 675 Dyneon™ CCM605, 674 Dyneon™ CCX1029, 674 Dyneon™ CCX6380, 675 Dyneon™ ETFE ET5236, 677 Dyneon™ ETFE ET6235, 677
Mckeen_Index.indd 790
Index
Dyneon™ FEP 6301, 677 Dyneon™ FEP 6303, 677 Dyneon™ FEP 6307, 677 Dyneon™ FEP 6322, 677 Dyneon™ HTE 1510, 679 Dyneon™ HTE 1705, 679 Dyneon™ PFA 6502N, 676 Dyneon™ PFA 6505N, 676 Dyneon™ PFA 6515N, 676 Dyneon™ PFA 6525N, 676 Dyneon™ PFA-Flex8502 UHP, 676 Dyneon™ PFA-Flex8515 UHP, 676 Dyneon™ PVDF 11008, 672 Dyneon™ PVDF 21508, 672 Dyneon™ PVDF 6010, 672 Dyneon™ PVDF 60512, 672 Dyneon™ TF 1105, 674 Dyneon™ TF 1620, 674 Dyneon™ TF 1641, 674 Dyneon™ TF 1645, 674 Dyneon™ TF 1750, 674 Dyneon™ TF 4103, 674 Dyneon™ TFM 1600, 674 Dyneon™ TFM 1700, 674 Dyneon™ TFM 1705, 674 Dyneon™ THV™ 220FP, 679 Dyneon™ THV™ 500FP, 679 Dyneon™ THV™ 610FP, 679 Dyneon™ THV™ 815FP, 679 ECTFE/Solvay Solexis, 678–679 Edgetek sPS® QT-10GB-10MN/000, 556, 689 Edgetek sPS® QT-10GF/000 FR, 556, 689 Edgetek sPS® QT-10GF/000, 556, 689 Edgetek sPS® QT-10GF-10MN/000, 556, 689 Edgetek sPS® QT-15GF-15GB/000, 557, 689 Edgetek sPS® QT-20GB/000, 557, 689 Edgetek sPS® QT-20GF/000, 557, 689 Edgetek sPS® QT-22GF/000 FR, 557, 689 Edgetek sPS® QT-22MN/000 HI, 557, 689 Edgetek sPS® QT-25GF/000 FR, 557, 689 Edgetek sPS® QT-30GB/000, 557, 689 Edgetek sPS® QT-30GF/000 FR HC, 557, 689 Edgetek sPS® QT-30GF/000 FR, 557, 689 Edgetek sPS® QT-30GF/000, 557, 689 Edgetek sPS® QT-40GF/000, 557, 689 Edistir N 1782, 555, 688 Edistir N 1840, 555, 688 Edistir N 1910, 555, 688 Edistir N 2380, 555, 688 Edistir N 2560, 555, 688 Edistir N 2982, 555, 688 Edistir R 321P, 555, 688 Edistir R 540E, 555, 688 Edistir R 850E, 555, 688 Edistir RC 3, 555, 688
12/11/2007 6:27:21 PM
INDEX
Edistir RC 600, 555, 688 Edistir RCL 600, 555, 688 Edistir RK 451G, 555, 688 Edistir RK 5512G, 555, 688 Edistir RK, 555, 688 Edistir RKL, 555, 688 Edistir RT 441M, 555, 688 Edistir RT 461F, 555, 688 Edistir SR 550, 5550, 688 Elastomers, 5 Electrical tests, 9 EMS-Grivory Grilamid® amorphous nylons shear modulus vs. temperature for, 337 tensile modulus vs. temperature for two, 338 EMS-GRIVORY Grilamid® L 20 G stress vs. strain at various temperatures for, 264 EMS-GRIVORY Grilamid® LV PA12 resins Shear modulus vs. temperature for, 267 EMS-GRIVORY Grilamid® LV-3H stress vs. strain at various temperatures for, 265 EMS-Grivory Grilamid® TR55 stress vs. strain at various temperatures for, 335 EMS-Grivory Grilamid® TR90 stress vs. strain at various temperatures for, 336 EMS-Grivory Grilon® TS V0 stress vs. strain at various temperatures for, 329 EMS-Grivory Grivory GC-4H stress vs. strain at various temperatures for, 372, 373 tensile modulus vs. temperature for, 376 EMS-Grivory Grivory GM-4H tensile modulus vs. temperature for, 376 EMS-Grivory Grivory GV-5H Stress vs. strain at various temperatures for, 374 tensile modulus vs. temperature for, 377 EMS-Grivory Grivory® HT2V-5H stress vs. strain at various temperatures for, 328 Enduran® PBT/PET flexural modulus vs. temperature for, 207 Eoblend P 475E, 555 ETFE/Diakin, 677 ETFE/DuPont, 677–678 ETFE/Dyneon 3M, 677 Ethylene Chlorotrifluoroethylene (ECTFE), 455–460 Ethylene Tetrafluoroethylene (ETFE), 461–466 Ethylene, 379 Ethylene-methacrylic-acid (EMAA), 383 Extenders, 7 Falling dart impact strength testing, 15–16 FEP/Diakin, 677 FEP/DuPont, 676–677 Filler abbreviations, 554 Fillers, 5 Fire retardants, 5 Flame retardants, 5, 420
Mckeen_Index.indd 791
791
Flexural properties, plastics, 13–14 principle used, 13 Fluorinated-ethylene-propylene (FEP), 448–449, 467 chemical structure, 449 dieletric constant vs. frequency for, 472 dissipation factor vs. frequency for, 473 dissipation factor vs. temperature for, 473 linear thermal expansion vs. temperature for, 472 tensile strength vs. temperature and various strain levels for, 470 tensile stress vs. strain at various temperatures for, 467 at 100°C for, 469 at 200°C for, 469 at 23°C for, 468 at –52°C for, 468 tensile stress vs. strain in compression at various temperatures for, 467 ultimate elongation vs. temperature for, 471 ultimate tensile strength vs. temperature for, 471 Fluoroplastic melting points, 450–451 Fluoropolymers, 447–502 Fluoropolymers, 671–679 Fortron 0203, 683, 762 Fortron 0203HS, 762, 683 Fortron 0205, 762, 683 Fortron 0214, 762, 683 Fortron 0320, 762, 683 Fortron 1115L0, 762, 683 Fortron 1130L4, 762, 683 Fortron 1131L4 ITT, 762, 683 Fortron 1140E7, 762, 683 Fortron 1140EC, 762, 683 Fortron 1140L0, 762, 683 Fortron 1140L4, 762, 683 Fortron 1140L6, 762, 683 Fortron 1140L7, 762, 683 Fortron 1141L4, 762, 683 Fortron 1342L4, 763, 683 Fortron 4184L4, 763, 683 Fortron 4184L6, 763, 683 Fortron 4332D4, 763, 683 Fortron 4665B6, 763, 683 Fortron 6160B4, 763, 683 Fortron 6165A4, 763, 683 Fortron 6165A6, 763, 683 Fortron 6165D8, 763, 683 Fortron 6345L4, 763, 683 Fortron 6450A6, 763, 684 Fortron 6850L6, 763, 684 Fortron MT 9120L4, 763, 684 Fortron MT 9140L4, 763, 684 Fortron MT 9140L6, 763, 684 Fortron MT 9203HS, 763, 684 Fortron MT 9205C4, 763, 684
12/11/2007 6:27:21 PM
792
Gardner impact strength testing, 15–16 Glass transition temperature (Tg)/Tg estimation, 19–22 commercial polyethersulfone, 23 commercial polysulfone, 23 electrical methods of determining, 22 mechanical methods of estimating, 19–21 thermal methods of estimating, 21–22 volume methods of determining, 22 Graft copolymer, 2 Greene, Tweed Arlon® 1000 shear strength vs. temperature of, 509 tensile strength vs. temperature of, 510 Greene, Tweed Arlon® PEEK resins flexural modulus vs. temperature of, 506 Grilamid L 16 LM, 736, 626 Grilamid L 20 EC, 736, 626 Grilamid L 20 G, 736, 627 Grilamid L 20 H FR, 736, 627 Grilamid L 20 HL black 9563, 736, 627 Grilamid L 20 L, 736, 627 Grilamid L 20 LF grey, 736, 627 Grilamid L 20 LM, 736, 627 Grilamid L 20 W 20, 736, 627 Grilamid L 25 NZ ESD, 736, 627 Grilamid L 25 W 20 X, 736, 627 Grilamid L 25 W 20 Y, 736, 627 Grilamid L 25 W 40 ESD, 736, 627 Grilamid L 25 W 40 X, 736, 627 Grilamid L 25 W 40, 736, 627 Grilamid L 25 Z, 736, 627 Grilamid L 25, 736, 627 Grilamid L 25A H, 736, 627 Grilamid L 25A NZ, 736, 627 Grilamid LC-3H, 736, 627 Grilamid LKN-3H, 736, 627 Grilamid LKN-5H, 736, 627 Grilamid LV-23 ESD, 736, 627 Grilamid LV-23H, 736, 627 Grilamid LV-25 HM, 736, 627 Grilamid LV-2A NZ, 737, 627 Grilamid LV-2H, 737, 627 Grilamid LV-3A H, 737, 627 Grilamid LV-3H, 737, 627 Grilon TS FR (cond.), 655 Grilon TS FR (dry), 655 Grilon TS FR, 747 Grilon TS V0 (cond.), 655 Grilon TS V0 (dry), 655 Grilon TS V0, 747 Grilon TSC-10/4 EC (cond.), 655 Grilon TSC-10/4 EC (dry), 655 Grilon TSC-10/4 EC, 747 Grilon TSC-20/4 EC (cond.), 655 Grilon TSC-20/4 EC (dry), 655 Grilon TSC-20/4 EC, 747 Grilon TSC-30/4 EC (cond.), 656
Mckeen_Index.indd 792
Index
Grilon TSC-30/4 EC (dry), 656 Grilon TSC-30/4 EC, 747 Grilon TSC-30/4 LF 15 (cond.), 656 Grilon TSC-30/4 LF 15 (dry), 656 Grilon TSC-30/4 LF 15, 747 Grilon TSC-40/4 EC (cond.), 656 Grilon TSC-40/4 EC (dry), 656 Grilon TSC-40/4 EC, 747 Grilon TSG-30 (cond.), 656 Grilon TSG-30 (dry), 656 Grilon TSG-30 FR (dry), 656 Grilon TSG-30 FR (cond.), 656 Grilon TSG-30 FR, 747 Grilon TSG-30, 747 Grilon TSG-30/4 (cond.), 656 Grilon TSG-30/4 (dry), 656 Grilon TSG-30/4, 747 Grilon TSG-35/4 (cond.), 656 Grilon TSG-35/4 (dry), 656 Grilon TSG-35/4, 747 Grilon TSG-50 (cond.), 656 Grilon TSG-50 (dry), 656 Grilon TSG-50, 747 Grilon TSG-50/4 (cond.), 657 Grilon TSG-50/4 (dry), 656 Grilon TSG-50/4, 747 Grilon TSGK-30 X (dry), 657 Grilon TSGK-30 X (cond.), 657 Grilon TSGK-30 X, 747 Grilon TSGZ-15 (cond.), 657 Grilon TSGZ-15 (dry), 657 Grilon TSGZ-15, 747 Grilon TSGZ-30 (cond.), 657 Grilon TSGZ-30 (dry), 657 Grilon TSGZ-30, 747 Grilon TSK-30/4 (cond.), 657 Grilon TSK-30/4 (dry), 657 Grilon TSK-30/4, 747 Grilon TSM-30 (cond.), 657 Grilon TSM-30 (dry), 657 Grilon TSM-30, 747 Grilon TSS (cond.), 657 Grilon TSS (dry), 657 Grilon TSS, 747 Grilon TSS/4 (cond.), 657 Grilon TSS/4 (dry), 657 Grilon TSS/4 LF 2 (dry), 657 Grilon TSS/4 LF 2 (cond.), 657 Grilon TSS/4 LF 2, 747 Grilon TSS/4 LF 20 (cond.), 657 Grilon TSS/4 LF 20 (dry), 657 Grilon TSS/4 LF 20, 747 Grilon TSS/4, 747 Grilon TSZ 1 (cond.), 657 Grilon TSZ 1 (dry), 657 Grilon TSZ 1, 747
12/11/2007 6:27:21 PM
INDEX
Grilon TSZ 3, 747 Grivory GC-4H, 747 Grivory GM-4H, 748 Grivory GV-2H, 748 Grivory GV-4H, 748 Grivory GV-5H, 748 Grivory GV-6H, 748 GUR 2122, 749, 659 GUR 4113, 749, 659 GUR 4120, 749, 659 GUR 413, 749 GUR 4130, 659 GUR 415, 749 GUR 4150, 659 GUR 4152, 659 GUR 4170, 659 GUR 5113, 659 GUR GHR 8020, 749, 659 GUR GHR 8110, 749, 659 GUR HOSTALLOY 731, 749 GV1/30GV1/20, 573 Halar 300, 678 Halar 500, 678 Halar 520, 678 Halar 558, 678 Halar 600, 678 Halar 6014, 678 Halar 700, 679 Halar 801, 679 Halar 812, 679 Halar 901, 679 Halar 930 LC, 679 Hardness tests, 9 Heat deflection data, 37 Heat deflection temperature (HDT), 17 Hexafluoropropylene (HFP), 448 High modulus polyethylene (HMPE), 382 High performance polyethylene (HPPE), 382 High temperature polymers, 503–550 High-density polyethylene (HDPE), 380 High-impact polystyrene (HIPS), 2, 41 structure, 41 Homopolymers, 381 Hostaform C 13021 RM, 572, 701 Hostaform C 13021, 572, 701 Hostaform C 13031 K, 572, 701 Hostaform C 13031, 572, 701 Hostaform C 2521 G, 572, 701 Hostaform C 2521, 572, 701 Hostaform C 2552, 573, 701 Hostaform C 27021 AST, 573, 701 Hostaform C 27021, 573, 701 Hostaform C 27021GV3/30, 573 Hostaform C 52021, 573, 701 Hostaform C 9021 AW, 573, 701
Mckeen_Index.indd 793
793
Hostaform C 9021 G, 573, 701 Hostaform C 9021 K, 573, 701 Hostaform C 9021 M, 573, 701 Hostaform C 9021 SW, 573, 701 Hostaform C 9021 TF, 573, 701 Hostaform C 9021, 573, 701 Hostaform C 902110/1570, 573, 701 Hostaform C 9021GV1/10, 573, 701 Hostaform C 9021GV1/40, 573, 701 Hostaform C 9021GV3/10, 573, 701 Hostaform C 9021GV3/20, 573, 701 Hostaform C 9021GV3/30, 573, 701 Hostaform EC140XF, 702 Hostaform LM90, 702 Hostaform MR130ACS, 702 Hostaform MT12U01, 573, 702 Hostaform MT12U03, 573, 702 Hostaform MT24U01, 573, 702 Hostaform MT8U01, 573, 702 Hostaform S 27063, 574, 702 Hostaform S 27064, 574, 702 Hostaform S 27072, 702 Hostaform S 27072WS10/1570, 574 Hostaform S 27076, 574 Hostaform S 9063, 574, 702 Hostaform S 9064, 574, 702 Hostaform S 9243, 574, 702 Hostaform S 9244, 702 Hostaform® C 9021 change in length vs. water absorption for, 126 Hostalen GD9555 F, 658 Hostalen GD9555, 658 Hostalen GF9145 X, 658 Hostalen PP H2150, 662 Hostalen PP H2222 36, 662 Hostalen PP H2250 36, 662 Hostalen PP H2464, 662 Hostalen PP H5416, 663 Hostalen PP H5416E61349, 663 Hostalen PP H7050FLG51337, 663 Hostalen PP H7350FLS303064, 663 Hostalen PP W2080, 663 HTE/Dyneon 3M, 679 Hyflon® MFA 1041, 676 Hyflon® MFA 620, 676 Hyflon® MFA 640, 676 Hyflon® MFA 720, 676 Hytrel® 3078, 666 Hytrel® 4056, 666, 756 Hytrel® 4068, 666, 756 Hytrel® 4069, 666, 756 Hytrel® 40CB, 666, 756 Hytrel® 4556, 666, 756 Hytrel® 5526, 666, 756 Hytrel® 5555HS, 666, 756 Hytrel® 5556, 666, 756
12/11/2007 6:27:21 PM
794
Hytrel® 6356, 666, 756 Hytrel® 7246, 666, 756 Hytrel® 8238, 666, 756 Hytrel® DYM350BK, 666, 756 Hytrel® G3548L, 666, 756 Hytrel® G4074, 666, 756 Hytrel® G4774, 666, 756 Hytrel® G4778, 666, 756 Hytrel® G5544, 666, 756 Hytrel® HTR4275 BK316, 756 Imide polymer blends, 216–217 Immiscible blends, polymer, 4 Impact copolymers, 381 Impact modifiers, 5–6 general-purpose impact modification, 6 low temperature impact strength, 6 super tough impact strength, 6 Impact property testing of plastics, 14–16 charpy impact strength, 14–15 falling dart impact strength, 15–16 Gardner impact strength testing, 15–16 Izod impact strength, 14–15 pendulum type impact strength tester, 14 Impact strength assessment, 30–33 Impact tests, 9 Impet 2700 GV1/20, 597, 720 Impet 2700 GV1/30, 597, 720 Impet 2700 GV1/45, 597, 720 Impet 320R, 597, 720 Impet 330, 597, 720 Impet 330R, 597, 720 Impet 340R, 597, 720 Impet 610R, 597, 720 Impet 630R, 597, 720 Impet 740, 597, 720 Impet 830R, 597, 720 Impet 840R, 597, 720 Impet Hi430, 597 Instron universal materials testing machine, 7, 11, 13 ISO 10350 properties, 551–686 IEC 60250:1969, 551 ISO 10350-1:1998, 551 ISO 10724-1:1998, 551 ISO 10724-2:1998, 551 ISO 11359-2, 551 ISO 179-1, 551 ISO 179-2:1997, 551 ISO 2818:1994, 551 ISO 291:1997, 551 ISO 293:1986, 551 ISO 294-1:1996, 551 ISO 294-3:1996, 551 ISO 295:1991, 551 ISO 3167:1993, 551 ISO 527-1:1993, 551
Mckeen_Index.indd 794
Index
ISO 527-2:1993, 551 ISO 62, 551 ISO 1133:2005 Plastics, 17 ISO 11359-1, 16, 687 ISO 11359-2, 16, 25, 687 ISO 178:2001 plastics, 13 ISO 306:2004 Plastics, 16, 687 ISO 3146:2000 Plastics, 16, 687 ISO 6603-2, 16, 687 ISO 75-1, 16, 687 ISO 75-2, 16, 687 ISO 75-3, 16, 687 ISO 7765-2:1994 plastics, 16 ISO 812:2006 rubber, 16, 687 ISO 8302:1991 Thermal insulation, 16, 687 ISO 974:2000 Plastics, 16, 687 ISO and ATSM standards for common polymer families, 10 Isophthalic acid (IPA), 244, 248 Iupiace AH40, 575, 703 Iupiace AH50, 575, 703 Iupiace AH60, 575, 703 Iupiace AH70, 575, 703 Iupiace AH80, 575, 703 Iupiace AH8P, 575, 703 Iupiace AHF6005, 575, 703 Iupiace AHF6010, 575, 703 Iupiace AHF6015, 575, 703 Iupiace AN60, 575, 703 Iupiace AN70, 575, 703 Iupiace AN80, 575, 703 Iupiace AN90, 575 Iupiace AN91, 703 Iupiace AP4, 575, 703 Iupiace AP6GM2, 575, 703 Iupiace AP6GM4, 575, 703 Iupiace AP6GM6, 575 Iupiace AP6GM8, 575, 703 Iupiace AV60, 575, 703 Iupiace AV70, 575, 703 Iupiace AV90, 575, 703 Iupiace EHM1010A, 575, 703 Iupiace GAV2010, 576, 703 Iupiace GAV2515, 576, 703 Iupiace GH10, 576, 703 Iupiace GH20, 576, 703 Iupiace GH30, 576, 703 Iupiace GHF3005, 576, 703 Iupiace GHF3010, 576, 704 Iupiace GHF3015, 576, 704 Iupiace GN10, 576, 704 Iupiace GN15, 576, 704 Iupiace GN20, 576, 704 Iupiace GN30, 576, 704 Iupiace GV10, 576, 704 Iupiace GV15, 577, 704
12/11/2007 6:27:22 PM
INDEX
Iupiace GV20, 577, 704 Iupiace GV30, 577, 704 Iupiace GX1050, 577, 704 Iupiace GX1100, 577, 704 Iupiace NX7000, 577, 704 Iupiace NX7201, 577 Iupiace TGV2010, 577, 704 Iupiace TX403, 577, 704 Iupiace VSG635V, 577, 704 Iupiace® AV 40 dissipation factor vs. frequency and temperature for, 147 dissipation factor vs. temperature at 60 Hz for, 148 Iupiace® NX-9000 flexural modulus vs. temperature for, 135 Iupiace® PPE dielectric constant vs. frequency for, 146 dielectric strength vs. thickness for, 148 elongation vs. temperature for, 145 flexural modulus vs. temperature for, 134 flexural strength vs. temperature for, 137, 138 Izod impact strength vs. temperature for, 142 tensile strength vs. temperature for, 139 Iupital F20-02 02 resin dielectric constant vs. temperature for, 128 stress vs. strain for, 112 water absorption vs. change of dimension for, 127 IXEF® 1002 (dry), 651 IXEF® 1002, 745 IXEF® 1022 (cond.), 651 IXEF® 1022 (dry), 651 IXEF® 1022, 745 IXEF® 1023 (dry), 651 IXEF® 1023, 745 IXEF® 1025 (dry), 651 IXEF® 1025, 745 IXEF® 1027 (dry), 652 IXEF® 1027, 745 IXEF® 1028 (dry), 652 IXEF® 1028, 745 IXEF® 1032 (cond.), 652 IXEF® 1032 (dry), 652 IXEF® 1032, 745 IXEF® 1313 (dry), 652 IXEF® 1313, 745 IXEF® 1501 (dry), 652 IXEF® 1501, 745 IXEF® 1521 (dry), 652 IXEF® 1521, 745 IXEF® 1622 (cond.), 652 IXEF® 1622 (dry), 652 IXEF® 1622, 746 IXEF® 2011 (dry), 652 IXEF® 2011, 746 IXEF® 2030 (dry), 652 IXEF® 2030, 746
Mckeen_Index.indd 795
795
IXEF® 2057 (dry), 652 IXEF® 2057, 746 IXEF® 2530 (dry), 652 IXEF® 2530, 746 IXEF® 3006 (dry), 652 IXEF® 3006, 746 Izod impact strength testing, 14–15 sample configurations, 15 Izod test, 31 Ketaspire™ KT-820 CF30, 760 Ketaspire™ KT-820 NT, 760 Ketaspire™ KT-820P, 760 Ketaspire™ KT-880 CF30, 760 Ketaspire™ KT-880 NT, 760 Ketaspire™ KT-880P, 760 Kostil B 265(0), 559, 691 Kostil B 266(1), 559, 691 Kostil B 361 R11, 559, 691 Kostil B 361 R42, 559, 691 Kostil B 365(0), 559, 691 Kostil B 366(1), 559, 691 Kostil C 266(1), 559, 691 Kostil PD C 166, 559 Kynar 1000 HD, 671, 759 Kynar 1000 HDC N 118, 671, 759 Kynar 6000 HD, 671, 759 Kynar 710, 671, 759 Kynar 720, 671, 759 Kynar 740, 671, 759 Kynar 9000 HD, 671, 759 Kynar 9000 HDC N 123, 671, 759 Kynar Flex 2750, 671, 759 Kynar Flex 2800, 671, 759 Kynar Flex 2801, 671, 759 Kynar Flex 2820, 671, 759 Kynar Flex 2821, 671, 759 Kynar Flex 2822, 671, 759 Kynar Flex 2850, 671, 759 Lanxess AG Novodur® ABS resins shear modulus vs. temperature for, 71 Lanxess AG Novodur® P2H-AT tensile stress vs. strain for, 64 Lanxess AG Novodur® P3H-AT tensile stress vs. strain for, 65 Lanxess Pocan® B1505 stress vs. strain at various temperatures for, 162 Lanxess Pocan® B3225 dissipation factor vs. temperature and frequency for, 181 stress vs. strain at various temperatures for, 163 Lanxess Pocan® reinforced PBT resins shear modulus vs. temperature for, 169 Lanxess Triax® 1120 stress vs. strain at various temperatures for, 89
12/11/2007 6:27:22 PM
796
Lanxess Triax® ABS/PA resins shear modulus vs. temperature for, 90 Lauramid A, 623, 734 Lauramid B, 623, 734 LCP/DuPont, 599–600, 722 LCP/Solvay, 602, 724 LCP/Ticona, 600–602, 722–724 Lexan® 101 stress vs. strain at various temperatures for, 154 Lexan® 3412R stress vs. strain at various temperatures for, 155 Lexan® 500R stress vs. strain at various temperatures for, 154 Lexan® PC resins, see also individual entries dielectric constant vs. temperature for, 158 dielectric strength vs. thickness for, 159 dissipation factor vs. frequency for, 159 flexural modulus vs. temperature for, 156 LG-Dow Calibre™ 300-10 stress vs. strain at various temperatures for, 153 LG-Dow Polycarbonate Calibre™ 300 notched Izod impact strength vs. MFR and temperature form, 157 notched Izod impact strength vs. temperature and MFR for, 157 LG-Dow Polycarbonate Calibre™ 300-10 instrumented dart impact vs. MFR for, 156 Linear low density polyethylene (LLDPE), 380 Linear polymers, 2–3 Liquid crystalline polymers (LCPs), 150, 194–202 LNP FEP resin tensile strength vs. temperature for, 470 LNP Thermocomp FP-EC tensile stress vs. strain and temperature for, 462 LNP Thermocomp FP-EC-1004 tensile modulus vs. temperature for, 464, 465 LNP Thermocomp® stress vs. strain at various temperatures for, 312 LNP Thermocomp® HF–1006 stress vs. strain at various temperatures for, 258 tensile modulus vs. temperature for, 261 tensile strength vs. temperature for, 263 LNP Thermocomp® IF tensile modulus vs. temperature, 319 tensile strength vs. temperature, 321 LNP Thermocomp® IF-1006 stress vs. strain at various temperatures for, 316 tensile modulus vs. temperature for, 252 LNP Thermocomp® PF-1006 tensile strength vs. temperature for, 254 LNP Thermocomp® QF-1006 tensile modulus vs. temperature for, 313 tensile strength vs. temperature for, 313 LNP Thermocomp® RC-1006 stress vs. strain at various temperatures for, 279
Mckeen_Index.indd 796
Index
tensile modulus vs. temperature for, 291 tensile strength vs. temperature for, 299 Low density polyethylene (LDPE), 380 Lubricants, 5 Lupolen 1800 H, 658 Lupolen 1800 S, 658 Lupolen 1810 E, 658 Lupolen 1840 D, 658 Lupolen 18P FAX, 658 Lupolen 18P FFX, 658 Lupolen 2420 D, 658 Lupolen 4261 A Q416, 658 Lupolen 5021 D, 658 Lupolen 5031 L Q449 K, 658 Lupolen 5031 L Q449, 658 Lupolen 5661 A, 659 Luran® 358 N Crystal Clear, 558, 690 Luran® 358 N, 558, 690 Luran® 368 R Crystal Clear, 559, 690 Luran® 368 R, 558, 690 Luran® 378 P G7, 559, 690 Luran® 378 P, 559, 690 Luran® 388 S, 559, 690 Luran® KR 2556, 559, 690 Luran® KR 2636 Luran® S 757 G, 557, 689 Luran® S 757 R, 557, 689 Luran® S 776 S, 557, 689 Luran® S 776 SE, 557, 689 Luran® S 777 K, 557, 689 Luran® S 778 T, 557, 689 Luran® S 778 TE, 557, 690 Luran® S 796 M, 557, 690 Luran® S 797 S, 557, 690 Luran® S 797 SE, 558, 690 Luran® S KR 2858 G3, 558, 690 Luran® S KR 2859, 558 Luran® S KR 2861/1 C, 564, 695 Luran® S KR 2863 C, 564, 695 Luran® S KR 2864 C, 564, 695 Luran® S KR 2866 C, 565, 695 Luran® S KR 2867 CWU, 565 Luran® S KR 2950, 565 Lustran ABS® E401, 563, 693 Lustran ABS® H604, 563, 693 Lustran ABS® H605, 563, 694 Lustran ABS® H606LS, 563, 694 Lustran ABS® H607AS, 563, 694 Lustran ABS® H701, 563, 694 Lustran ABS® H702, 563, 694 Lustran ABS® H801, 565, 694 Lustran ABS® H802, 563, 694 Lustran ABS® H950, 563, 694 Lustran ABS® M201AS, 563, 694 Lustran ABS® M202AS, 563, 694 Lustran ABS® M203FC, 563, 694
12/11/2007 6:27:22 PM
INDEX
Lustran ABS® M301AS, 563, 694 Lustran ABS® M301FC, 563, 694 Lustran ABS® M305, 563, 694 Lustran SAN® 32, 558, 690 Lustran SAN® 35, 558, 690 Magnum 1040, 559, 691 Magnum 2620, 559, 691 Magnum 2630, 560, 691 Magnum 2642, 560, 691 Magnum 275, 560, 691 Magnum 3325MT, 560, 691 Magnum 3404 smooth, 560, 691 Magnum 3404, 560, 691 Magnum 3416SC, 560, 691 Magnum 342EZ, 560, 691 Magnum 344CC, 560, 691 Magnum 344HP, 560, 692 Magnum 3453, 560, 692 Magnum 347EZ, 560, 692 Magnum 348, 560, 692 Magnum 3490, 560, 692 Magnum 3504, 560, 692 Magnum 3513, 560, 692 Magnum 3525, 560, 692 Magnum 357HP, 560, 692 Magnum 358HP, 560, 692 Magnum 3616, 560, 692 Magnum 3904 smooth, 560, 692 Magnum 3904, 560, 692 Magnum 5200, 561, 692 Magnum 541, 561, 692 Magnum 545, 561, 692 Magnum 555, 561, 692 Magnum 8391, 561, 692 Magnum 8434, 561, 692 Magnum 9010, 561, 692 Magnum 9020, 561, 692 Magnum 9030, 561, 692 Magnum 941, 561, 692 Magnum 9555, 561, 692 Magnum 9575, 561, 692 Magnum AG 700, 561, 692 Magnum FG 960, 561, 692 Magnum HPC 952, 561, 693 Magnum PG 914, 561 Makroblend® DP 2-7655, 603, 725 Makroblend® DP 7645, 725 Makroblend® DP 7665, 725 Makroblend® DP7645, 603 Makroblend® DP7665, 603 Makroblend® KU 2-7608, 725 Makroblend® KU 2-7609, 725 Makroblend® KU 2-7912, 725 Makroblend® KU 2-7912/4, 725 Makroblend® KU 2-7912/5, 725
Mckeen_Index.indd 797
797
Makroblend® KU 2-7915, 725 Makroblend® KU 2-7940, 725 Makroblend® KU2-7608, 603 Makroblend® KU2-7609, 603 Makroblend® KU2-7912, 604 Makroblend® KU2-7912/4, 604 Makroblend® KU2-7915, 604 Makroblend® KU2-7940, 604 Makroblend® KU-7912/5, 604 Makroblend®S 7916, 604, 725 Makroblend®S 7916/2, 604, 725 Makrolon® 1095, 578, 705 Makrolon® 1239, 579, 705 Makrolon® 1243, 579, 705 Makrolon® 1260, 579, 705 Makrolon® 1804, 579, 705 Makrolon® 2205, 579, 705 Makrolon® 2207, 579, 706 Makrolon® 2405, 579, 706 Makrolon® 2407, 579, 706 Makrolon® 2458, 579, 706 Makrolon® 2558, 579, 706 Makrolon® 2605, 579, 706 Makrolon® 2607, 579, 706 Makrolon® 2658, 579, 706 Makrolon® 2665, 579, 706 Makrolon® 2667, 579, 706 Makrolon® 2805, 579, 706 Makrolon® 2807, 579, 706 Makrolon® 2858, 579, 706 Makrolon® 2865, 579, 706 Makrolon® 2867, 579, 706 Makrolon® 3103MAS157, 579, 706 Makrolon® 3105, 579, 706 Makrolon® 3107, 579, 706 Makrolon® 3108, 579, 706 Makrolon® 3158, 579, 706 Makrolon® 6265, 579, 706 Makrolon® 6267, 579, 706 Makrolon® 6455, 579, 706 Makrolon® 6485, 579, 706 Makrolon® 6487, 580, 706 Makrolon® 6555, 580, 706 Makrolon® 6557, 580, 707 Makrolon® 8025, 580, 707 Makrolon® 8035, 580, 707 Makrolon® 8315, 580, 707 Makrolon® 8325, 580, 707 Makrolon® 8345, 580, 707 Makrolon® 9125, 580, 707 Makrolon® 9415, 580, 707 Makrolon® 9425, 580, 707 Makrolon® AG2677, 580, 707 Makrolon® AL2447, 580, 707 Makrolon® AL2647, 580, 707 Makrolon® DP1-1265, 580, 707
12/11/2007 6:27:22 PM
798
Makrolon® DP1-1837, 580, 707 Makrolon® DP1-1853, 580, 707 Makrolon® DP1-1857, 580, 707 Makrolon® DP1-1870, 580, 707 Makrolon® KU1-1248, 581, 707 Makrolon® LQ2647, 581, 707 Makrolon® LQ3147, 581, 707 Makrolon® LQ3187, 581, 707 Makrolon® LTG2623, 707 Makrolon® LTG3123, 707 Makrolon® OD2015, 581, 707 Makrolon® Rx1805, 581, 707 Makrolon®LTG2623, 581 Makrolon®LTG3123, 581 Maximum service temperature assessment, 26–29 Mechanical methods of estimating Tg, 19–21 Mechanical property testing of plastics, 7–14 compressive properties, 12 flexural properties, 13–14 shear properties, 12–13 tensile testing, 7–12, see also Tensile testing Mechanical tests, plastics, 8 Medium density polyethylene (MDPE), 380 Melt flow index (MFI), 19 test apparatus, 18 Melting point (Tm), 22–25 Methyl methacrylate, 379 Methylene Dianiline (MDA), 215 Mica, 7 Mindel B-310, 685, 764 Mindel B-322, 685, 764 Mindel B-340, 685, 764 Mindel B-360, 685, 764 Mindel B-390, 685, 764 Mindel B-430, 686, 764 Mindel M-800, 686, 764 Mindel M-825, 686, 764 Mindel S-1000, 686, 764 Mindel S-1010, 686, 764 MIndel S-1020, 764 Mindel S-1030, 764 Minion® 10B140 BK061, 738 Minion® 10B40HS1 BK061, 738 Minion® 11C140 BK086, 738 Minion® 11C40 BKB086, 738 Minion® 11C40 NC010, 738 Minion® 12T BKB100, 738 Minion® 12T NC010, 738 Minion® 12TA BKB124, 739 Minion® 22C BK086, 739 Minion® 73GM40 NC010, 731 Minion® 73GM40NC010 (cond.), 612 Minion® 73GM40NC010 (dry), 612 Minion® 73M30 NC010 (cond.), 612 Minion® 73M30 NC010 (dry), 612 Minion® 73M30 NC010, 731
Mckeen_Index.indd 798
Index
Minion® 73M30HSL BK489, 731 Minion® 73M30HSLBK489 (dry), 612 Minion® 73M40 NC010 (cond.), 612 Minion® 73M40 NC010 (dry), 612 Minion® 73M40 NC010, 731 Minion® IG38C1 BK434, 739 Minlon® 10B140 NC010 (cond.), 632 Minlon® 10B140 NC010 (dry), 632 Minlon® 10B140 NC010, 738 Minlon® 10B40 NC010 (cond.), 632 Minlon® 10B40 NC010 (dry), 632 Minlon® 10B40 NC010, 738 Minlon® 11C140 NC010, 738 Minlon® 11C140NC010 (cond.), 632 Minlon® 11C140NC010 (dry), 632 Minlon® 22C NC010 (cond.), 632 Minlon® 22C NC010 (dry), 632 Minlon® 22C NC010, 739 Minlon® EFE6053 BK413, 739 Minlon® EFE6053BK413 (cond.), 633 Minlon® EFE6053BK413 (dry), 633 Minlon® EFE6096 GY090A, 739 Minlon® EFE6096GY090A (cond.), 633 Minlon® EFE6096GY090A (dry), 633 Miscellaneous high temperature plastics, 680–686 Mitsui Chemicals Aurum® PI resins flexural modulus vs. temperature for, 233 Mitsui Chemicals FR-TPX™ T130 dielectric constant at 1 MHz vs. temperature of, 398 dielectric constant vs. frequency at 20°C of, 398 dissipation factor vs. frequency at 20°C of, 399 dissipation factor vs. temperature at 1 MHz of, 400 Mitsui Chemicals TPX™ RT18 dissipation factor vs. frequency of, 399 dissipation factor vs. temperature and frequency of, 400 lexural modulus vs. temperature of, 396 notched Izod impact strength vs. temperature of, 397 tensile strength vs. temperature of, 397 Molecular weight, polymers, 2–3 Monomers, 2 m-Phenylene Diamine (MPD), 215 Neoflon™ AP-201, 675 Neoflon™ AP-210, 675 Neoflon™ AP-211SH, 675 Neoflon™ AP-215SH, 675 Neoflon™ AP-230, 675 Neoflon™ AP-231SH, 676 Neoflon™ EP-521, 677 Neoflon™ EP-541, 677 Neoflon™ EP-543, 677 Neoflon™ EP-610, 677 Neoflon™ EP-620, 677 Neoflon™ M-300P, 678 Neoflon™ M-400H, 678
12/11/2007 6:27:22 PM
INDEX
Neoflon™ NP-101, 677 Neoflon™ NP-120, 677 Neoflon™ NP-12X, 677 Neoflon™ NP-130, 677 Neoflon™ NP-20, 677 Neoflon™ NP-30, 677 Neoflon™ NP-40, 677 Norbornene, 379 Noryl GTX® GTX964 Izod impact strength vs. temperature for, 144 tensile modulus vs. temperature for, 137 Noryl GTX® PPE tensile strength vs. temperature for, 141 Noryl® 731 pressure-specific volume-temperature (PVT) for, 145 Noryl® PPE dielectric constant vs. frequency for, 146 dissipation factor vs. frequency for, 147 flexural modulus vs. temperature for, 135, 136 flexural strength vs. temperature for, 138 Gardner impact strength vs. temperature for, 141 Izod impact strength vs. relative humidity for, 142 Izod impact strength vs. temperature for, 143, 144 strength vs. temperature for, 140 tensile modulus vs. temperature for, 136 tensile strength vs. temperature for, 140 Nova Chemicals Dylark® SMA resins notched Izod impact strength vs. temperature for, 82 Novodur® P2H-AT, 563, 694 Novodur® P2HE, 563, 694 Novodur® P2HGV, 563, 694 Novodur® P2M-AT, 694 Nylene® PA6 resins rockwell hardness vs. temperature for, 255 tensile strength vs. moisture content for custom resins, 253 Nylon 11 (PA11), 243, 245, 246, 257–264 characteristics, 245 Nylon 12 (PA12), 243, 245, 246, 264–269 Nylon 46, 243, 247–248 characteristics, 247 chemical structure of, 248 Nylon 6 (PA6), 243–245, 249–256 characteristics, 244 chemical structure of, 245 Nylon 610 (PA610), 243, 246, 247, 312–335 structure of, 246 Nylon 612, 243, 246–247 Nylon 66 (PA66), 243, 245–246, 269–312 characteristics, 245 Nylon 666, 243, 247 Nylon amorphous, 243, 335–343 Olefin/Acrylic Polymers, 383 Orgalloy LE 6000 (cond.), 652 Orgalloy LE 6000 (dry), 652
Mckeen_Index.indd 799
799
Orgalloy LE 6000, 746 Orgalloy LE 60HM (dry), 652 Orgalloy LE 60HM (cond.), 653 Orgalloy LE 60HM, 746 Orgalloy LE 60LM (dry), 653 Orgalloy LE 60LM (cond.), 653 Orgalloy LE 60LM, 746 Orgalloy LE 60LMXV (cond.), 653 Orgalloy LE 60LMXV (dry), 653 Orgalloy LE 60LMXV, 746 Orgalloy LE 60SF (dry), 653 Orgalloy LE 60SF (cond.), 653 Orgalloy LE 60SF, 746 Orgalloy LE 60THM (cond.), 653 Orgalloy LE 60THM (dry), 653 Orgalloy LE 60THM, 746 Orgalloy LT 4060 (dry), 653 Orgalloy LT 4060 (cond.), 653 Orgalloy LT 4060, 746 Orgalloy LT 4060ES noir T6L, 746 Orgalloy LT 4060ES noirT6L (cond.), 653 Orgalloy LT 4060ES noirT6L (dry), 653 Orgalloy LT 5050 T6L (cond.), 653 Orgalloy LT 5050 T6L (dry), 653 Orgalloy LT 5050 T6L, 746 Orgalloy LT 5050ES noir (cond.), 653 Orgalloy LT 5050ES noir (dry), 653 Orgalloy LT 5050ES noir, 746 Orgalloy R 60ES (cond.), 653 Orgalloy R 60ES (dry), 653 Orgalloy R 60ES, 746 Orgalloy RS 6000 (dry), 654 Orgalloy RS 6000 (cond.), 654 Orgalloy RS 6000, 746 Orgalloy RS 6010 (dry), 654 Orgalloy RS 6010 (cond.), 654 Orgalloy RS 6010, 746 Orgalloy RS 6015ES noir T6L, 746 Orgalloy RS 6015ESnoir T6L (cond.), 654 Orgalloy RS 6015ESnoir T6L (dry), 654 Orgalloy RS 6030 (dry), 654 Orgalloy RS 6030 (cond.), 654 Orgalloy RS 6030, 746 Orgalloy RS 60E10 (cond.), 654 Orgalloy RS 60E10 (dry), 654 Orgalloy RS 60E10, 746 Orgalloy RS 6600 (dry), 654 Orgalloy RS 6600 (cond.), 654 Orgalloy RS 6600, 746 Orgalloy RS 6620 (dry), 654 Orgalloy RS 6620 (cond.), 654 Orgalloy RS 6620, 746 Orgalloy RS 6630 (dry), 654 Orgalloy RS 6630 (cond.), 655 Orgalloy RS 6630, 746 Oxydiamiline (ODA), 215
12/11/2007 6:27:22 PM
800
PA alloy/EMS–Grivory, 655–658, 747–748 PA11/Arkema, 621–623, 733–734 PA12/Degussa, 623–626, 734–735 PA12/EMS-Grivory, 626–627, 736–737 PA46/DSM, 627–632, 737 PA6/BASF, 614–621, 731–733 PA6/DuPont, 612–614, 731 PA610/Toray Resin Company, 643, 742 PA612/DuPont, 643–644, 742 PA66/BASF, 639–643, 741–742 PA66/DuPont, 632–639, 738–741 PA666 resins shear modulus vs. temperature of, 332, 333 tensile modulus vs. temperature of, 334 PA666/ASF, 644 PA666/BASF, 743 PAI/Solvay, 730 PBT/BASF, 593–594, 717 PBT/DSM, 595–596, 718–719 PBT/DuPont, 596–597, 719–720 PBT/Lanxess, 594–595, 717–718 PBT/Ticona, 588–592, 713–716 PCT/DuPont, 599, 721 PCTFE/Arkema, 672 PCTFE/Diakin, 678 PE/Bassell Polyolefi ns, 658–659 PE/Ticona, 658, 749 PEBA/Arkema, 668–669, 758 PEBA/Degussa, 669–670, 758 PEBAX 2533 SN 01, 758 PEBAX 2533 SN01(cond.), 668 PEBAX 2533 SN01(dry), 668 PEBAX 3533 SN 01, 758 PEBAX 3533 SN01(cond.), 668 PEBAX 3533 SN01(dry), 668 PEBAX 4033 SN 01, 758 PEBAX 4033 SN01(cond.), 668 PEBAX 4033 SN01(dry), 668 PEBAX 5533 SN 01, 758 PEBAX 5533 SN 70 NOIR, 758 PEBAX 5533 SN 70NOIR(cond.), 669 PEBAX 5533 SN 70NOIR(dry), 669 PEBAX 5533 SN01(cond.), 668 PEBAX 5533 SN01(dry), 668 PEBAX 6333 SN 01, 758 PEBAX 6333 SN01(cond.), 669 PEBAX 6333 SN01(dry), 669 PEBAX 7033 SN 01, 758 PEBAX 7033 SN01(cond.), 669 PEBAX 7033 SN01(dry), 669 PEBAX 7233 SN 01, 758 PEBAX 7233 SN01(cond.), 669 PEBAX 7233 SN01(dry), 669 PEBAX MH 1657(cond.), 669 PEBAX MH 1657(dry), 669 PEBAX MH 1657, 758
Mckeen_Index.indd 800
Index
PEBAX MV 1041 SN 01, 758 PEBAX MV 1041 SN01 (cond.), 669 PEBAX MV 1041 SN01 (dry), 669 PEBAX MV 1074 SN 01, 758 PEBAX MV 1074 SN01 (cond.), 669 PEBAX MV 1074 SN01 (dry), 669 PEEK/Degussa, 680, 760 PEEK/Solvay, 760–761 PEEK/Victrex, 680–681, 760 PEI/GE Plastics, 729–730 Perfluoro alkylvinylether (PFA), 474–480 PES/BASF, 681, 761 PES/Solvay, 681–682, 761 PET/DSM, 598–599, 721 PET/DuPont, 597–598, 720–721 PET/Ticona, 597, 720 PFA/Diakin, 675–676 PFA/Dupont, 675 PFA/Dyneon 3M, 676, 677 PFA/Solvay Solexis, 676 PI/DuPont, 730 Pigments, 7 Plasticization,6, 30, 420 Plastics, 1–39 basic component, 1 designing, 25–35, see also Designing polymers and, 1–7 copolymers, 2 rigidity of, 26 testing, 7–25, see also Testing Plexalloy® NTA-1, 663, 754 Plexalloy® NTA-3, 663, 754 Plexiglas® 6N, 663, 754 Plexiglas® 7H, 663, 754 Plexiglas® 7M, 664, 754 Plexiglas® 7N, 664, 754 Plexiglas® 8H, 664, 754 Plexiglas® 8N, 664, 754 Plexiglas® df21 8N, 664, 754 Plexiglas® df22 7H, 664, 754 Plexiglas® df22 7N, 664, 754 Plexiglas® df22 8N, 664, 754 Plexiglas® df22 zk6BR, 664, 754 Plexiglas® df23 7H, 664, 754 Plexiglas® df23 7N, 664, 754 Plexiglas® df23 8N, 664, 754 Plexiglas® df23 zk6BR, 664, 754 Plexiglas® FT15, 664, 754 Plexiglas® hw55, 664, 754 Plexiglas® zk20, 664, 754 Plexiglas® zk30, 664, 754 Plexiglas® zk40, 664, 754 Plexiglas® zk4BR, 664, 754 Plexiglas® zk4HC, 664, 754 Plexiglas® zk50, 664, 754 Plexiglas® zk5BR, 664, 755
12/11/2007 6:27:23 PM
INDEX
Plexiglas® zk5HC, 665, 755 Plexiglas® zk5HF, 665, 755 Plexiglas® zk6BR, 665, 755 Plexiglas® zk6HC, 665, 755 Plexiglas®, 382 Pocan® B 1300, 594, 717 Pocan® B 1305, 594, 717 Pocan® B 1501, 594, 717 Pocan® B 1505, 594, 717 Pocan® B 1600, 594, 717 Pocan® B 2505, 594, 717 Pocan® B 3215 Z, 594, 717 Pocan® B 3215, 594, 717 Pocan® B 3225 Z, 594, 717 Pocan® B 3225, 594, 717 Pocan® B 3235, 594, 717 Pocan® B 4215, 594, 718 Pocan® B 4225, 594, 718 Pocan® B 4235, 594, 718 Pocan® B 4239, 594, 718 Pocan® B 7375, 594, 718 Pocan® B 7425, 595, 718 Pocan® B 7616, 725 Pocan® DP 1105, 718 Pocan® DP 4035, 604 Pocan® DP 7041, 604, 725 Pocan® DP 7042, 604, 725 Pocan® DP 7043, 604, 725 Pocan® DP 7139, 718 Pocan® KL1-7033, 718 Pocan® KL1-7265, 718 Pocan® KL1-7835, 718 Pocan® KU1-7301, 718 Pocan® KU1-7313, 604, 725 Pocan® KU1-7341, 605, 725 Pocan® KU1-7625, 605 Pocan® KU1-7625, 725 Pocan® KU1-7635, 605, 725 Pocan® KU2-7020/1, 718 Pocan® KU2-7125, 605, 725 Pocan® KU2-7209, 718 Pocan® KU2-7240, 718 Pocan® KU2-7241, 718 Pocan® KU2-7503/1 Z, 595, 718 Pocan® KU27604, 605 Pocan® KU2-7604, 725 Pocan® KU2-7755, 595, 718 Pocan® S 1506, 595, 718 Pocan® S 1517, 595, 718 Pocan® T 7323, 725 Pocan® T 7331, 725 Polimeri Europa Kostil® B 265 tensile stress vs. strain for, 58 Polimeri Europa Kostil® SAN resins shear modulus vs. temperature for, 60 Poly-(4-methyl-l-pentene), 380
Mckeen_Index.indd 801
801
Poly(methyl methacrylate), 380 Polyacrylics, 382, 412–417 Polyamide 12 characteristics, 245 Polyamide alloys/Arkema, 652–655, 746 Polyamide alloys/Rhodia, 655, 747 Polyamide Blend (PPA), 372–377 Polyamide blend resins tensile modulus vs. temperature for, 137, 141 Polyamide-Imide (PAI), 213–216, 226–229 chemical structure of, 216 Polyamides (Nylons), 243–277 Polyamides (Nylons), 612–657 Polyarylamide (PAA), 248–249, 362–371 characteristics, 248 Polyarylamide/Mitsubishi Engineering-Plastics Corp, 649–651, 744–745 Polyarylamide/Solvay, 651–652, 745–746 Polybenzimidazole (PBI), 504–505 structure of, 505 Polybutadiene, 4 Polybutylene terephthalate (PBT), 149, 150, 160–184, 217 chemical structure, 150 Polycarbonate (PC), 149–150, 152–159 Polycarbonate polyester chemical structure of, 150 Polycarbonate/A. Schulman, 586, 710 Polycarbonate/Bayer, 578–581, 705–707 Polycarbonate/Dow, 581–585, 707–710 Polycarbonate/DSM, 586–588, 711–713 Polychlorotrifluoroethylene (PCTFE), 449, 481–489 chemical structure, 449 Daikin Neoflon™ M-300H elongation vs. temperature for, 485 shore D harness vs. temperature for, 484 Daikin Neoflon™ PCTFE resins dielectric constant vs. frequency and temperature for, 486 dielectric constant vs. frequency at 25°C for, 486 dielectric constant vs. temperature and frequency for, 487 dissipation factor vs. temperature and frequency for, 489 Izod impact strength vs. temperature for, 483 linear thermal expansion vs. temperature for, 485 stress vs. strain for at 23°C for, 481 tensile modulus vs. temperature for, 482 tensile strength at break vs. temperature for, 483 Dyneon crystalline and amorphous PCTFE resins stress vs. strain at various temperatures for, 482 Dyneon PCTFE resin coefficient of linear thermal expansion vs. temperature for, 484 stress vs. strain in compression at various temperatures for, 481
12/11/2007 6:27:23 PM
802
Polycyclohexylene Dimethylene Terephthalate (PCT), 150–151, 203–204 chemical structure, 152 Polyester based TPUs, 419 Polyester blends and alloys, 151–152, 205–212 Polyester blends/A. Schulman, 608, 727 Polyester blends/BASF, 606–607, 726–727 Polyester blends/Bayer, 602–604, 724–725 Polyester blends/Dow, 607–608, 727 Polyester blends/DSM, 605–606, 725–726 Polyester blends/DuPont, 607, 727 Polyester blends/Lanxess, 604–605, 725 Polyester blends/Ticona, 608–609, 728 Polyester polyols, 419 Polyesters, 1, 149–212 formation, 149 Polyether Block Amide (PEBA) Thermoplastic Elastomers, 420–421, 443–445 Polyether plastics, 97–148 polyoxymethylene copolymer (POM-Co), 97–98 Polyether, 419 Polyetheretherketone (PEEK), 503, 505–512 properties, 503 structure, 503 Polyetherimide (PEI), 213, 217–225 Polyethers, 567–577, 578–609, 697–704, 705–728 Polyethersulfone (PES) properties, 503 structure, 504 Tg estimation, 23 Polyethylene (PE), 379–381, 383 Polyethylene Chlorotrifluoroethylene (ECTFE), 448 chemical structure, 448 Polyethylene terephthalate (PET), 1, 149, 150, 184–194, 217 chemical structure, 151 Polyethylene terephthalate (PET)/polycarbonate (PC), 206 Polyethylene tetrafluoroethylene (ETFE), 448 Polyethylene, 380 Polyflam® (ABS/PA) RMMK 125, 563, 694 Polyflam® RABS 90000UV5, 561, 693 Polyflam® RABS 90000UV6, 561, 693 Polyflam® RABS 92000UV5, 561, 693 Polyflam® RIPP 3125CS1, 661, 750 Polyflam® RIPP 374ND CS1, 661, 750 Polyflam® RIPP 490, 661, 750 Polyflam® RIPP 5000 E, 661, 750 Polyflam® RIPP 5440, 661, 750 Polyflam® RLD 10 D, 661, 750 Polyflam® RMMB 40300, 563, 694 Polyflam® RMMB 4070 FFR 4, 564, 694 Polyflam® RMMB 4070, 564, 694 Polyflam® RMMB 4070HF, 564, 694 Polyflam® RMMB 60300, 564, 695
Mckeen_Index.indd 802
Index
Polyflam® RMMB 60500, 564, 695 Polyflam® RABS 90350 UV5, 693 Polyflam® RABS 90950 UV5, 693 Polyflam® RPP 3130 CS1, 750 Polyflam® RPP 3230 CS1, 750 Polyflam® RPP 371 ND, 750 Polyflam® RPP 374 ND CS1 5V, 751 Polyflam® RPP 374 ND CS1, 750 Polyflam® RPP 490 CS1, 751 Polyflam® RPP 500 D, 751 Polyfort® AFP 2934, 751 Polyfort® AFP 3306 Rezyklat, 751 Polyfort® AFP 3318, 751 Polyfort® FIP 20 M K1033, 751 Polyfort® FIP 20 MA K1469, 751 Polyfort® FIP 40 MA K1544, 751 Polyfort® FIPP 15 M HSR 3329, 751 Polyfort® FIPP 15 M HSR K1757, 751 Polyfort® FIPP 20 M HSR 3329, 751 Polyfort® FIPP 20 T LE K1731, 751 Polyfort® FIPP 20 T LE K1756, 751 Polyfort® FIPP 20 T LE K1832, 751 Polyfort® FIPP 20 T, 751 Polyfort® FIPP 20 TSP UVA/2, 751 Polyfort® FIPP 30 T K1005, 751 Polyfort® FIPP 30 TF, 751 Polyfort® FIPP 65/10 BSGF, 751 Polyfort® FPP 10 T WLB, 751 Polyfort® FPP 20 GB, 751 Polyfort® FPP 20 GF, 751 Polyfort® FPP 20 GFC K1400, 751 Polyfort® FPP 20 GFC SHH LW, 751 Polyfort® FPP 20 GFC, 751 Polyfort® FPP 20 GFM HI, 751 Polyfort® FPP 20 T K1534 natur, 751 Polyfort® FPP 20 T K1751, 752 Polyfort® FPP 20 T Recyclat, 752 Polyfort® FPP 20 T SHH LW, 752 Polyfort® FPP 20 T WLB, 752 Polyfort® FPP 20 T, 751 Polyfort® FPP 20 TF WLB, 752 Polyfort® FPP 20/10 GFM, 752 Polyfort® FPP 22 T K1093, 752 Polyfort® FPP 22 T LE K1684, 752 Polyfort® FPP 30 GF, 752 Polyfort® FPP 30 GFC BOW, 752 Polyfort® FPP 30 GFC HI, 752 Polyfort® FPP 30 GFC K1079, 752 Polyfort® FPP 30 GFC, 752 Polyfort® FPP 30 GFC-F WLB, 752 Polyfort® FPP 30 T SHH REC, 752 Polyfort® FPP 30/10 GBGF, 752 Polyfort® FPP 38 T K1419, 752 Polyfort® FPP 38 T K1785, 752 Polyfort® FPP 40 GFC HI, 752 Polyfort® FPP 40 GFC schwarz, 752
12/11/2007 6:27:23 PM
INDEX
Polyfort® FPP 40 K, 752 Polyfort® FPP 40 T K1442, 752 Polyfort® FPP 40 T REC, 752 Polyfort® FPP 40 T WLB, 752 Polyfort® FPP 40 T, 752 Polyfort® FPP 70 BS, 752 Polyfort® FPP 75 M Schwarz, 753 Polyimide (PI), 216 chemical structures of, 217 Polyimide (PI), 229–241 Polyimides (PI), 213–241 Polyimides, 609–611, 729–730 Polyman® (ABS) E/HI, 561, 693 Polyman® (ABS) FABS30 GB, 561, 693 Polyman® (ABS) HH 2, 693 Polyman® (ABS) HH 3 D, 693 Polyman® (ABS) HH 3, 693 Polyman® (ABS) HH, 561, 693 Polyman® (ABS) LC 165, 562, 693 Polyman® (ABS) LC185 A, 562, 693 Polyman® (ABS) M/AQ, 562, 693 Polyman® (ABS) M/HI-A, 562, 693 Polyman® (ABS) M/HI-G, 562, 693 Polyman® (ABS) M/HI-W, 562, 693 Polyman® (ABS) M/MI-A40, 562, 693 Polyman® (ABS) M/MI-AK1452, 562, 693 Polyman® (ABS) M/SHI, 562, 693 Polyman® (ABS) M/TK, 562, 693 Polyman® (ABS) M/TK-A, 562, 693 Polyman® (ABS) M/TK-HH, 562, 693 Polyman® (ABS) NWB/HI, 562, 693 Polyman® (ABS)HH 2, 561 Polyman® (ABS)HH 3 D, 562 Polyman® (ABS)HH 3, 561 Polyman® (ABS)LC 145, 562 Polyman® (ASA) E 1006, 558, 690 Polyman® (ASA) E 1007 H, 558, 690 Polyman® (ASA) E/M11010, 558, 690 Polyman® (ASA) M/MI2010, 558, 690 Polyman® (PC) XP 41 R 30 GF, 710 Polyman® (PC) XP01 RN, 586, 710 Polyman® (PC) XP11 RN, 586, 710 Polyman® (PC) XP21 RN, 586, 710 Polyman® (PC) XP31 RN, 586, 710 Polyman® (PC) XP41 R 10 GF, 586, 710 Polyman® (PC) XP41 R 20 GF, 586, 710 Polyman® (SAN) 24/5, 558, 690 Polyman® (SAN) 29/10, 558, 690 Polyman® FABS 20 GF, 562 Polyman® FSAN 35 GF, 558, 690 Polyman®+A208 (ABS)NWB/MI, 563 Polymerization, 1, see also Addition polymerization; Condensation polymerization Polymers blends, 4–5 linear, branched, and cross-linked polymers, 2
Mckeen_Index.indd 803
803
molecular weight, 2–3 and plastics, 1–7 crystalline vs. amorphous, 3–4 thermosets vs. thermoplastics, 3 Polymethylpentene (PMP), 396–400 Polyolefin polymers structures of, 380 Polyolefins, 379–417 Polyolefins, 749–755 PolyOne Fiberloc ™ stress vs. strain at 23°C of, 405 PolyOne Fiberloc™ Rigid PVC resins flexural modulus vs. temperature of, 406 flexural strength vs. temperature of, 407 PolyOne Geon® 87241 notched Izod strength vs. temperature of, 408 PolyOne Geon® rigid PVC resins stress vs. strain at 23°C of Various, 405 tensile modulus vs. temperature for, 406, 407 tensile strength vs. temperature of, 408 Polyoxymethylene (POM), 97, 99–110 Acetal homopolymer/DuPont, 567–568 Acetal homopolymer/DuPont, 568–569, 697–698 chemical structure, 977 DuPont’s method of preparation, 97 polyphenylene ether/polyphenylene oxides (PPE or PPO), modified, 98 Polyoxymethylene copolymer (POM-Co), 97–98, 110–131 Acetal copolymer/A. Schulman, 574, 702 Acetal copolymer/Ticona, 569–574 Acetal copolymer/Ticona, 698–702 Polyphenylene ether (PPE), 98 Polyphenylene oxide (PPO), 4, 21, 98 Polyphenylene Sulfide (PPS), 503 properties of, 504 structure of, 504 Polyphthalamide (PPA), 248, 346–362 Polyphthalamide, 243 Polypropylene (PP), 381 types, 381 Polypropylene ether (PPE), 131–148 Polypropylene, 380 tensile strength vs. temperature for, 141 Polystyrene flexural modulus vs. temperature for, 135 flexural strength vs. temperature for, 138 Polystyrene blend resins dielectric constant vs. frequency for, 146 dielectric strength vs. thickness for, 148 dissipation factor vs. frequency for, 147 dissipation factor vs. temperature at 60 Hz for, 148 elongation vs. temperature for, 145 flexural modulus vs. temperature for, 134 flexural strength vs. temperature for, 137, 138 Gardner impact strength vs. temperature for, 141
12/11/2007 6:27:23 PM
804
Polystyrene blend resins (continued) Izod impact strength vs. relative humidity for, 142 Izod impact strength vs. temperature for, 142, 143, 144 tensile strength vs. temperature for, 139, 140 Polystyrene, 4, 41, 44–50, see also BASF Polystyrene chemical structure, 41 tensile modulus vs. temperature for, 137 Polystyrene/DOW, 556, 688–689 Polystyrene/polimeri europa, 555, 688 Polystyrene/polyOne, 556–557, 689 Polysulfone (PSU), 504 structure, 504 Tg estimation, 23 Polytetrafluoroethylene (PTFE), 447–448, 451–455 chemical structure, 447 Polytrimethyl Pentene (PTP), 381–382 Polyvinyl chloride (PVC), 1, 379, 380, 382, 405–408 Polyvinylidene fluoride (PVDF), 449–450, 489–502 chemical structure of, 449 PP/A. Schulman, 661, 750–753 PP/Albis Plastic GmgH, 659–661, 749–750 PP/Bassell Polyolefi ns, 662–663 PP/Ticona, 661–662, 753 PPA/DuPont, 645–646, 743 PPA/Solvay, 647–649, 743–744 PPE modifi ed/Mitsubishi Engineering-plastics, 703–704 PPE/Degussa, 574–577, 702–703 p-Phenylene Diamine (PDA), 215 PPS/Albis, 682–683, 761–762 PPS/Solvay, 682, 761 PPS/Ticona, 683–684, 762–763 PPSU/Solvay, 684–685, 763 Primef 4002, 682, 761 Primef 4010, 682, 761 Primef 5084, 682, 761 Primef 7002, 682, 761 Primef 7010, 682 Propylene, 379 PSU/BASF, 685, 763–764 PSU/Solvay, 685–686, 764 PTFE/DuPont, 672–673 PTFE/Dyneon 3M, 674–675 PTFE/Solvay Solexis, 673–674 Pulse 1310, 607, 727 Pulse 1350, 607, 727 Pulse 1370, 607, 727 Pulse 1550, 607, 727 Pulse 1718GF, 607, 727 Pulse 2000, 607, 727 Pulse 2000EZ, 607, 727 Pulse 2100LG, 607, 727 Pulse 2200BG, 607, 727 Pulse 830, 607, 727 Pulse 920MG, 607, 727 Pulse 979, 608, 727 Pulse A20-95, 608, 727
Mckeen_Index.indd 804
Index
Pulse A35105, 608 Pulse A35-105, 727 Pulse A35110, 608 Pulse A35-110, 727 PVDF/Arkema, 671, 759 PVDF/Dyneon 3M, 672 PVDF/Solvay Solexis, 671–672 PVDF/Solvay, 759 Pyomellitic dianhydride (PMDA), 215, 217 Radel A-100, 681, 761 Radel A-200, 681, 761 Radel A-300, 681, 761 Radel AG-320, 681, 761 Radel AG-330, 682, 761 Radel AG-360, 682 Radel R-4300, 684, 763 Radel R-5000, 684, 763 Radel R-5100, 684, 763 Radel R-5500, 684, 763 Radel R-5700, 684, 763 Radel R-7000 A, 684, 763 Radel R-7200, 684, 763 Radel R-7300, 685, 763 Random copolymers, 2, 381 Reinforcement, 5 Relative temperature index (RTI), 29 commercial polyphthalamide, 28 Release agents, 5 Reny 1002H (cond.), 650 Reny 1002H (dry), 649 Reny 1002H, 744 Reny 1012H (cond.), 650 Reny 1012H (dry), 650 Reny 1012H, 744 Reny 1021UCS (cond.), 650 Reny 1021UCS (dry), 650 Reny 1021UCS, 744 Reny 1022H (cond.), 650 Reny 1022H (dry), 650 Reny 1022H, 744 Reny 1025 (cond.), 650 Reny 1025 (dry), 650 Reny 1025, 745 Reny 1027 (cond.), 650 Reny 1027 (dry), 650 Reny 1027, 745 Reny 1032 (cond.), 650 Reny 1032 (dry), 650 Reny 1032, 745 Reny 1071 (cond.), 650 Reny 1071 (dry), 650 Reny 1071, 745 Reny 1313 (cond.), 650 Reny 1313 (dry), 650 Reny 1313, 745
12/11/2007 6:27:23 PM
INDEX
Reny 1501AH (cond.), 650 Reny 1501AH (dry), 650 Reny 1501AH, 745 Reny 1511AH (dry), 650 Reny 1511AH, 745 Reny 1521AH (dry), 650 Reny 1521AH, 745 Reny 1722F (cond.), 651 Reny 1722F (dry), 650 Reny 1722F, 745 Reny 2502A (cond.), 651 Reny 2502A (dry), 651 Reny 2502A, 745 Reny 2620 (cond.), 651 Reny 2620 (dry), 651 Reny 2620, 745 Reny 4011 (cond.), 651 Reny 4011 (dry), 651 Reny 4011, 745 Reny 4511 (cond.), 651 Reny 4511 (dry), 651 Reny 4511, 745 Reny C36 (cond.), 651 Reny C36 (dry), 651 Reny C36, 745 Reny G07S (cond.), 651 Reny G07S (dry), 651 Reny G07S, 745 Reny G16S (cond.), 651 Reny G16S (dry), 651 Reny G16S, 745 Reny N252 (cond.), 651 Reny N252 (dry), 651 Reny N252, 745 Reny W110 (cond.), 651 Reny W110 (dry), 651 Reny W110, 745 Reny W38S2 (cond.), 651 Reny W38S2 (dry), 651 Reny W38S2, 745 Rigidity of plastics, 26 Rilsan BAZ 8 O TL (dry), 621 Rilsan BAZ 8 O TL (cond.), 621 Rilsan BECN O TL (dry), 621 Rilsan BECN O TL (cond.), 621 Rilsan becn O TL, 733 Rilsan BESN G9 TL (cond.), 621 Rilsan BESN G9 TL (dry), 621 Rilsan besn G9 TL, 733 Rilsan BESN O P20 TL (cond.), 621 Rilsan BESN O P20 TL (dry), 621 Rilsan besn O P20 TL, 734 Rilsan BESN O P40 TL (cond.), 621 Rilsan BESN O P40 TL (dry), 621 Rilsan besn O P40 TL, 734 Rilsan BESN O TL (dry), 621
Mckeen_Index.indd 805
805
Rilsan BESN O TL (cond.), 621 Rilsan besn O TL, 734 Rilsan BESVO A FDA (cond.), 622 Rilsan BESVO A FDA (dry), 621 Rilsan besvo A FDA, 734 Rilsan BMN O P20 D (cond.), 622 Rilsan BMN O P20 D (dry), 622 Rilsan BMN O P20 D, 734 Rilsan BMN O P40 D (cond.), 622 Rilsan BMN O P40 D (dry), 622 Rilsan BMN O P40 D, 734 Rilsan BMN O TLD (dry), 622 Rilsan BMN O TLD (cond.), 622 Rilsan BMN O TLD, 734 Rilsan BMN Y TLD (dry), 622 Rilsan BMN Y TLD (cond.), 622 Rilsan BMN Y TLD, 734 Rilsan BUM 30 O (dry), 622 Rilsan BUM 30 O (cond.), 622 Rilsan BUM 30 O, 734 Rilsan BZM 23 G9 (dry), 622 Rilsan BZM 23 G9 (cond.), 622 Rilsan BZM 23 G9, 734 Rilsan BZM 30 O TL (cond.), 623 Rilsan BZM 30 O TL (dry), 622 Rilsan BZM 30 O TL, 734 Rilsan BZM 43 G9 (dry), 623 Rilsan BZM 43 G9 (cond.), 623 Rilsan BZM 43 G9, 734 Rilsan MB 3000 (cond.), 623 Rilsan MB 3000 (dry), 623 Rilsan MB 3000, 734 Rilsan NAT HP 3504 MB, 734 Rilsan NAT HP 3504MB (cond.), 623 Rilsan NAT HP 3504MB (dry), 623 Röhm GmbH Plexiglas® 6N stress vs. strain at various temperatures of, 412 Röhm GmbH Plexiglas® 7N charpy impact strength of, 416 specific volume as a function of temperature and pressure (PVT) for, 417 Röhm GmbH Plexiglas® acrylic resins, see also individual entries shear modulus vs. temperature of, 414 tensile modulus vs. temperature of, 415, 416 Röhm GmbH Plexiglas® zk20 stress vs. strain at various temperatures of, 413 Röhm Plexiglas® hw55 stress vs. strain at various temperatures of, 413 Rynite® 408 NC010, 720 Rynite® 415HP NC010, 720 Rynite® 425LWBK505, 597, 721 Rynite® 530 NC010, 598, 721 Rynite® 530 NC010, 721 Rynite® 530CSNC011, 598, 721 Rynite® 536 NC010, 598, 721
12/11/2007 6:27:24 PM
806
Rynite® 545 NC010, 598, 721 Rynite® 555 NC010, 598, 721 Rynite® 935 NC010, 598, 721 Rynite® 936CSNC011, 598, 721 Rynite® 940 BK505, 598, 721 Rynite® FR515NC010, 598, 721 Rynite® FR530LNC010, 598, 721 Rynite® FR543NC010, 598, 721 Rynite® FR943NC010, 598, 721 SABIC Innovative Plastics Cycolac® ABS resins coefficient of thermal expansion vs. temperature for, 76 flexural modulus vs. temperature for, 68 shear modulus vs. temperature for, 70 specific volume as a function of PVT for, 76 SABIC Innovative Plastics Cycolac® EX39 tensile stress vs. strain for, 61 SABIC Innovative Plastics Cycolac® KJB tensile stress vs. strain for, 62 SABIC Innovative Plastics Cycolac® MGABS01 tensile stress vs. strain for, 62 SABIC Innovative Plastics Cycolac® Z48 tensile stress vs. strain for, 63 SABIC Innovative Plastics Cycoloy ABS/PC resins charpy impact strength vs. temperature for, 92, 93 SABIC Innovative Plastics Cycoloy C1000HF notched Izod impact strength vs. temperature for, 93 puncture impact test (ISO 6603-2) vs. temperature for, 94 PVT for, 95 stress vs. strain at various temperatures for, 87 SABIC Innovative Plastics Cycoloy EHA stress vs. strain at various temperatures for, 88 tensile modulus vs. temperature for, 91 tensile strength at yield vs. temperature for, 92 SABIC Innovative Plastics Geloy® ASA resins flexural modulus vs. temperature for, 53 SABIC innovative plastics Geloy® CR7520 stress vs. strain in compression for, 52 SABIC Innovative Plastics Noryl GTX® GTX830 stress vs. strain at various temperatures for, 133 SABIC Innovative Plastics Noryl® stress vs. strain at various temperatures for, 132 SABIC Innovative Plastics Noryl® 731 stress vs. strain at various temperatures for, 131 SABIC Innovative Plastics Noryl® GFN1 stress vs. strain at various temperatures for, 132 SABIC Innovative Plastics Noryl® GFN3 stress vs. strain at various temperatures for, 133 SABIC Innovative Plastics Prevex® IP-16 SMA resin specific volume as a function of PVT for, 82 tensile stress vs. strain for, 78, 79 SABIC Innovative Plastics Thermocomp® FP VC-1003 tensile modulus vs. temperature for, 493
Mckeen_Index.indd 806
Index
SABIC Innovative Plastics Xenoy® 2230 stress vs. strain at various temperatures for, 26 SABIC Innovative Plastics Xenoy® 6127 stress vs. strain at various temperatures for, 206 SAN/A. Schulman, 558, 690 SAN/BASF, 558–559, 690 SAN/DOW, 559, 691 SAN/Lanxess, 558, 690 SAN/Polimeri Europa, 559, 691 SBC/BASF, 563 Schulablend® (ABS/PA)M/MK, 564, 695 Schulablend® (PC/ABS)M/MB 3, 564, 695 Schulablend® (PC/ABS)M/MB 5, 564, 695 Schulablend® (PC/ABS)M/MB 6, 564, 695 Schulablend® (PC/ASA)WR 5 UV, 564, 695 Schulablend® (PC/ASA)WR 5, 564, 695 Schulablend® ABS/PA)M/MK 20GF, 564, 695 Schuladur® PCRGF 10, 608, 727 Schuladur® PCRGF 20, 608, 727 Schuladur® PCRGF 30, 608, 727 Schuladur® PCRGF 45, 608, 727 Schulaform® 9 A GF 25, 574, 702 Schulaform® 9 A, 574, 702 Schulaform® 9 b, 574, 702 Schulaform® 9 d, 574, 702 Schulaform® 9 E HI, 574, 702 Schulaform® 9 f, 574, 702 Schulaform® AF 9 natur, 702 Sebacic acid, 244 Selection guides, in plastics designing, 33–35 based on abrasion resistance, 38 based on chemical resistance, 36 based on colorability, 38 based on continuous operating temperature, 37 based on densities, 38 based on electrical properties, 38 based on friction, 38 based on mechanical properties, 36 based on non-flammability, 38 based on transparency, 38 Semicrystalline polyamides properties of, 245 SF Ultrason® E 1010 specific volume as a function of temperature and pressure (PVT) for, 520 Shear properties, plastics, 12–13 measurement, apparatus for, 13 Slip, 5 Smoke suppressants, 5 Solef 1008, 671, 759 Solef 1010, 671, 759 Solef 1012, 672, 759 Solef 11008, 672, 759 Solef 11010, 672, 759 Solef 21508, 672, 759 Solef 31008, 672, 759
12/11/2007 6:27:24 PM
INDEX
Solef 31508, 672, 759 Solef 6010, 672, 759 Solef 6012, 672 Solexis Solef® 1008 PVT plot for Solvay, 497 Solvay Advanced Polymers Udel® GF-130 stress vs. strain at several temperatures of, 537 Solvay Advanced Polymers Udel® P-1700 stress vs. strain at several temperatures of, 537 Solvay Advanced Polymers Udel® PSU resins coefficient of thermal expansion (crossflow direction) vs. temperature of, 548 coefficient of thermal expansion (flow direction) vs. temperature of, 548 compressive modulus vs. glass fiber content of, 539 compressive strength vs. glass fiber content of, 543 flexural modulus vs. glass fiber content of, 539 flexural modulus vs. temperature of, 540 flexural strength vs. glass fiber content of, 543 flexural strength vs. temperature of, 544 Rockwell hardness vs. glass fiber content of, 546 specific volume as a function of temperature and pressure (PVT) of, 547 specific heat vs. temperature of, 549 tensile modulus vs. glass fiber content of, 541 tensile modulus vs. temperature of, 541 tensile strength vs. glass fiber content of, 545 tensile strength vs. temperature of, 544 Solvay Amodel® flexural modulus vs. temperature for, 351, 352 flexural strength vs. temperature for, 356 Izod impact strength vs. temperature for, 361 modulus vs. temperature for, 353 tensile elongation at break vs. temperature for, 359 tensile modulus vs. temperature for, 353 tensile strength vs. temperature for, 357, 358 Solvay Amodel® A, see also individual entries compressive modulus vs. temperature for, 355 compressive strength vs. temperature for, 360 flexural modulus vs. temperature for, 351 flexural strength vs. temperature for, 355 tensile elongation at break vs. temperature for, 360 tensile strength vs. temperature for, 358 Solvay Amodel® A-1133 HS flexural modulus vs. relative humidity for, 350 moisture absorption vs. relative humidity for, 362 stress vs. strain at various temperatures for, 346 tensile strength vs. relative humidity for, 357 Solvay Amodel® A-1145 HS stress vs. strain at various temperatures for, 346 Solvay Amodel® AS-1566 HS stress vs. strain at various temperatures for, 347 Solvay Amodel® AT-5001 stress vs. strain at various temperatures for, 347 Solvay Amodel® ET-1001 HS stress vs. strain at various temperatures for, 348
Mckeen_Index.indd 807
807
Solvay IXEF® tensile modulus vs. relative humidity at 23°C for, 365 Solvay IXEF® 1002 stress vs. strain at various temperatures for, 362 Solvay IXEF® 1022 COLTE vs. temperature for, 370 flexural modulus vs. temperature for, 365 flexural strength vs. temperature for, 366 notched IZOD strength vs. temperature for, 368 PVT for, 369 stress vs. strain at various temperatures for, 363 tensile modulus vs. temperature for, 366 tensile strength vs. relative humidity at 23°C for, 367 tensile strength vs. temperature for, 367 unnotched IZOD strength vs. temperature for, 368 Solvay IXEF® 1032 stress vs. strain at various temperatures for, 363 Solvay IXEF® 1622 coefficient of linear thermal expansion (COLTE) vs. temperature for, 370 Solvay IXEF® 2011 coefficient of linear thermal expansion (COLTE) vs. temperature for, 371 Solvay IXEF® 2057 stress vs. strain at various temperatures for, 364 Solvay IXEF® 3006 stress vs. strain at various temperatures for, 364 Solvay IXEF® PAA resins Izod strength vs. water content for, 369 water absorption vs. relative humidity for, 371 Solvay KetaSpire® dynamic shear modulus vs. temperature of, 508 Solvay Radel® A PES resins tensile strength vs. temperature of, 518 Solvay Solexis Halar® ECTFE resins dielectric constant vs. temperature at various frequencies for, 459 dissipation factor vs. temperature at various frequencies for, 460 elongation at break vs. temperature for, 458 elongation at yield vs. temperature for, 458 flexural modulus vs. temperature for, 455 linear thermal expansion vs. temperature for, 459 shear modulus vs. temperature for, 456 tensile modulus vs. temperature for, 456 tensile strength vs. temperature for, 457 volume resistivity vs. temperature for, 460 yield stress vs. temperature for, 457 Solvay Solexis Hyflon® PFA resins elongation at break vs. temperature, 478 stress at break vs. temperature for, 474 stress vs. strain at two temperatures for, 474 yield stress vs. temperature for, 477 Young’s modulus vs. temperature for, 476 Solvay Solexis Solef® 1008 stress vs. strain at various temperatures for, 491
12/11/2007 6:27:24 PM
808
Solvay Solexis Solef® 1010 dielectric constant vs. temperature and frequency for, 499 dielectric strength vs. thickness for, 502 dissipation factor vs. temperature and frequency for, 501 thermal conductivity vs. temperature for, 498 Solvay Solexis Solef® 11008 dielectric constant vs. temperature and frequency for, 500 dissipation factor vs. temperature and frequency for, 501 Solvay Solexis Solef® PVDF resins compressive modulus vs. temperature for, 495 density vs. temperature for, 498 dielectric constant vs. frequency for, 499 dissipation factor vs. frequency for, 500 elongation at break vs. temperature for, 491 elongation at yield vs. temperature for, 492 flexural modulus vs. temperature for, 492 notched Izod impact strength vs. temperature for, 497 tensile strength vs. temperature for, 496 ultimate compressive strength vs. temperature for, 496 ultimate compressive strength vs. temperature for, 496 volume resistivity vs. temperature for, 502 Young’s modulus vs. temperature for, 494 Standard elastomer tests, 8 Stanyl® 46HF4130 (dry), 627 Stanyl® 46HF4130 (cond.), 628 Stanyl® 46HF4130, 737 Stanyl® 46HF4530 (dry), 628 Stanyl® 46HF4530 (cond.), 628 Stanyl® 46HF4530, 737 Stanyl® 46HF5030 (dry), 628 Stanyl® 46HF5040 (dry), 628 Stanyl® 46HF5040 (cond.), 628 Stanyl® 46HF5040, 737 Stanyl® 46HF5041LW (dry), 628 Stanyl® 46HF5041LW, 737 Stanyl® 46HF5050 (dry), 628 Stanyl® 46HF5050 (cond.), 628 Stanyl® 46HF5050, 737 Stanyl® PA46 resins flexural modulus vs. temperature for, 344 shear modulus vs. temperature and humidity for Stanyl® TE200F6 stress vs. strain at various temperatures for, 344 Stanyl® TE200F6 (dry), 628 Stanyl® TE200F6 (cond.), 628 Stanyl® TE200F6, 737 Stanyl® TE200F8 (dry), 628 Stanyl® TE200F8(cond.), 628
Mckeen_Index.indd 808
Index
Stanyl® TE200F8, 737 Stanyl® TE250 series shear modulus vs. temperature for, 345 Stanyl® TE250F3 (dry), 628 Stanyl® TE250F3, 737 Stanyl® TE250F6 (dry), 628 Stanyl® TE250F6 (cond.), 628 Stanyl® TE250F6, 737 Stanyl® TE250F8 (dry), 629 Stanyl® TE250F8 (cond.), 629 Stanyl® TE250F8, 737 Stanyl® TE250F9 (dry), 629 Stanyl® TE250F9 (cond.), 629 Stanyl® TE250F9, 737 Stanyl® TE263F6 (dry), 629 Stanyl® TE263F6 (cond.), 629 Stanyl® TE263F6, 737 Stanyl® TE300 (cond.), 629 Stanyl® TE300 (dry), 629 Stanyl® TE300, 737 Stanyl® TE351 (cond.), 629 Stanyl® TE351 (dry), 629 Stanyl® TE351, 737 Stanyl® TE373 (cond.), 629 Stanyl® TE373 (dry), 629 Stanyl® TE373, 737 Stanyl® TS200F6 (dry), 629 Stanyl® TS200F6 (cond.), 629 Stanyl® TS200F6, 737 Stanyl® TS250F4D (cond.), 629 Stanyl® TS250F4D (dry), 629 Stanyl® TS250F4D, 737 Stanyl® TS250F6D (cond.), 629 Stanyl® TS250F6D (dry), 629 Stanyl® TS250F6D, 737 Stanyl® TS250F8 (dry), 629 Stanyl® TS250F8 (cond.), 629 Stanyl® TS250F8, 737 Stanyl® TS256F8 (dry), 629 Stanyl® TS256F8 (cond.), 629 Stanyl® TS256F8, 737 Stanyl® TW200B6 (dry), 630 Stanyl® TW200B6 (cond.), 630 Stanyl® TW200B6, 737 Stanyl® TW200F3 (dry), 630 Stanyl® TW200F3 (cond.), 630 Stanyl® TW200F3, 737 Stanyl® TW200F6 (dry), 630 Stanyl® TW200F6 (cond.), 630 Stanyl® TW200F6, 737 Stanyl® TW200F8 (dry), 630 Stanyl® TW200F8 (cond.), 630 Stanyl® TW200F8, 737 Stanyl® TW200FM33 (cond.), 630 Stanyl® TW200FM33 (dry), 630 Stanyl® TW200FM33, 737
12/11/2007 6:27:24 PM
INDEX
Stanyl® TW241 B3 (dry), 630 Stanyl® TW241 B3 (cond.), 630 Stanyl® TW241 B3, 738 Stanyl® TW241 F12 (cond.), 630 Stanyl® TW241 F12 (dry), 630 Stanyl® TW241 F12, 738 Stanyl® TW241 F3 (dry), 630 Stanyl® TW241 F3 (cond.), 631 Stanyl® TW241 F3, 738 Stanyl® TW241 F6 (dry), 631 Stanyl® TW241 F6 (cond.), 631 Stanyl® TW241 F6, 738 Stanyl® TW241 F8 (dry), 631 Stanyl® TW241 F8 (cond.), 631 Stanyl® TW241 F8, 738 Stanyl® TW241F10 (cond.), 631 Stanyl® TW241F10 (dry), 631 Stanyl® TW242FM10 (cond.), 631 Stanyl® TW242FM10 (dry), 631 Stanyl® TW242FM10, 738 Stanyl® TW250F6 (dry), 631 Stanyl® TW250F6 (cond.), 631 Stanyl® TW250F6, 738 Stanyl® TW271 F6 (dry), 631 Stanyl® TW271 F6 (cond.), 631 Stanyl® TW271 F6, 738 Stanyl® TW271B3 (dry), 631 Stanyl® TW271B3 (cond.), 631 Stanyl® TW271B3, 738 Stanyl® TW275F6 (dry), 631 Stanyl® TW275F6 (cond.), 631 Stanyl® TW275F6, 738 Stanyl® TW341 (cond.), 631 Stanyl® TW341 (dry), 631 Stanyl® TW341 B (dry), 631 Stanyl® TW341 B (cond.), 631 Stanyl® TW341 B, 738 Stanyl® TW341, 738 Stanyl® TW341-N (dry), 632 Stanyl® TW341-N (cond.), 632 Stanyl® TW341-N, 738 Stanyl® TW363 (cond.), 632 Stanyl® TW363 (dry), 632 Stanyl® TW363, 738 Stanyl® TW371 (cond.), 632 Stanyl® TW371 (dry), 632 Stanyl® TW371, 738 Stapron® E EM 605, 605, 726 Stress vs. strain curves, 11, 30, 32 breakpoint, 10 elastic limit, 10 proportional limit, 10 stress vs. strain behaviors, range, 12 tensile properties determined from, 12 ultimate strength, 10 yield point, 10
Mckeen_Index.indd 809
809
Styrene-acrylonitrile (SAN), 42, 55–61 chemical structure, 42 Styrene-Maleic Anhydride (SMA), 42, 78–82 production, 43 Styrenic blends, 43 and alloys, 85–95 Styrenic Blends/A. Schulman, 563–564, 694, 694–695 Styrenic Blends/BASF, 564–565, 695 Styrenic blends/Lanxess, 565–566, 695–696 Styrenic block copolymers (SBCs), 42–43, 83–85 “microscopic” structure, 43 styrenic plastics, 41–95 acrylonitrile-butadiene-styrene (ABS), 42 acrylonitrile-styrene-acrylate (ASA), 41–42, 51–55 blends, 43 polystyrene, 41, 44–50 styrene, chemical structure, 41 styrene-acrylonitrile (SAN), 42 styrene-maleic anhydride (SMA), 42 styrenic block copolymers (SBCs), 42–43 Styrenic plastics, 555–560, 688–696 Styrolux® 3G 46, 563, 694 Styrolux® 3G 46, 694 Styrolux® 3G 55, 563 Styrolux® 3G 55, 694 Styrolux® 656 C, 563 Styrolux® 656 C, 694 Styrolux® 684 D, 563 Styrolux® 684 D, 694 Styron 457, 556, 688 Styron 485, 556, 688 Styron 6335, 556, 688 Styron 634, 556, 688 Styron 637, 556, 688 Styron 648, 556, 689 Styron 660, 556, 689 Styron 678E, 556, 689 Styron 686E, 556, 689 Styron A-TECH 1120, 556, 689 Styron A-TECH 1175, 556, 689 Styron A-TECH 1200, 556, 689 Styron A-TECH 1400, 556 Sumitomo Chemical Sumika Excel® 4800G charpy impact strength vs. temperature of, 519 dissipation factor vs. frequency of, 521 dissipation factor vs. temperature of, 521 volume resistivity vs. temperature of, 522 Sumitomo Chemical Sumika Excel® PES resin coefficient of linear thermal expansion vs. temperature of, 520 flexural modulus vs. temperature of, 515 Technyl® alloy KC 216 V12 Black, 747 Technyl® alloy KC 216 (cond.), 655 Technyl® alloy KC 216 (dry), 655 Technyl® Alloy KC 216, 747
12/11/2007 6:27:24 PM
810
Technyl® alloy KC 216V12 Black (cond.), 655 Technyl® alloy KC 216V12 Black (dry), 655 Technyl® Alloy KC 226 BLACK, 747 Technyl® alloy KC 226BLACK (cond.), 655 Technyl® alloy KC 226BLACK (dry), 655 Technyl® alloy KC 246BLACK (cond.), 655 Technyl® alloy KC 246BLACK (dry), 655 Tedur® L 9107-1, 682, 761 Tedur® L 9113-2, 682, 761 Tedur® L 9200-1, 682, 761 Tedur® L 9214-1, 682, 761 Tedur® L 9217-1, 682, 761 Tedur® L 9300-1, 682, 761 Tedur® L 9310-4, 682, 761 Tedur® L 9400-1, 682, 761 Tedur® L 9401-1, 682, 762 Tedur® L 9404-1, 682, 762 Tedur® L 9510-1, 682, 762 Tedur® L 9511, 682, 762 Tedur® L 9512, 682, 762 Tedur® L 9521-1, 683, 762 Tedur® L 9523, 683, 762 Tedur® L 9530, 683, 762 Tedur® L 9560, 683, 762 Tedur® P 9007, 683, 762 Teflon® FEP 3100, 676 Teflon® PFA 445 HP, 675 Teflon® 7A, 672 Teflon® 7B, 672 Teflon® 7C, 672 Teflon® 8, 672 Teflon® 850-A, 673 Teflon® 8A, 673 Teflon® 8B, 673 Teflon® C PFA 510, 675 Teflon® C PFA 560, 675 Teflon® C PFA 580, 675 Teflon® FEP 100, 676 Teflon® FEP 140, 676 Teflon® FEP 160, 676 Teflon® FEP 5100, 676 Teflon® FEP 6100, 676 Teflon® FEP CJ92, 677 Teflon® FEP CJ95, 677 Teflon® PFA 340, 675 Teflon® PFA 345, 675 Teflon® PFA 350, 675 Teflon® PFA 440 HP, 675 Teflon® PFA 450 HP, 675 Teflon® PFA 940 HPPlus, 675 Teflon® PFA 950 HPPlus, 675 Tefzel® 200, 677 Tefzel® 207, 677 Tefzel® 210, 677 Tefzel® 280, 678 Tefzel® 750, 678
Mckeen_Index.indd 810
Index
Tefzel® HT-2004, 678 Tefzel® HT-2127, 678 Tefzel® HT-2129, 678 Tefzel® HT-2160, 678 Tefzel® HT-2170, 678 Tefzel® HT-2181, 678 Tefzel® HT-2183, 678 Tefzel® HT-2185, 678 Tefzel® HT-2202, 678 Tensile testing, plastics, 7–12 ASTM D412-98a(2002)el, 7 ASTM D638-03, 7 ISO 37 Rubber, 7 ISO 527-1:1993 Plastics, 7 ISO 527-2:1993 Plastics, 7 standard elastomer tests, 8 standard electrical tests, 9 standard hardness tests, 9 standard impact tests, 9 standard mechanical tests, 8 standard thermal tests, 9 stress–strain curves, 11, see also Stress–strain curves Terblend® N NG 02 (dry), 565 Terblend® N NG 02 (cond), 565 Terblend® N NG 02, 695 Terblend® N NG 04 (dry), 565 Terblend® N NG 04 (cond), 565 Terblend® N NG 04, 695 Terblend® N NG-06 (dry), 565 Terblend® N NG-06 (cond), 565 Terblend® N NG-06, 695 Terblend® N NM-11 (cond), 565 Terblend® N NM-11 (dry), 565 Terblend® N NM-11, 695 Terblend® N NM-12 (dry), 565 Terblend® N NM-12 (cond), 565 Terblend® N NM-12, 695 Terblend® N NM-13, 695 Terblend® N NM-19 (dry), 565 Terblend® N NM-19 (cond), 565 Terblend® N NM-19, 695 Terblend® N NMX04 (cond), 565 Terblend® N NMX04 (dry), 565 Terblend® N NMX04, 695 Terephthalic acid (TPA), 248 Terephthalic acid, 244 Terluran® GP-22 tensile stress vs. strain for, 65 Terluran® GP-35 tensile stress vs. strain for, 66 Terpolymer, 2 Testing of plastics, 7–25 impact property testing, 14–16 mechanical property testing, 7–14, see also Mechanical property testing thermal property testing, 16–25
12/11/2007 6:27:24 PM
INDEX
Tetrafluoroethylene (TFE), 447 Thermal methods of estimating Tg, 21–22 Thermal property testing of plastics, 16–25 coefficient of thermal expansion, 25 glass transition temperature (Tg), 19–22 heat deflection temperature (HDT), 17 melt flow index test, 18 melting point (Tm), 22–25 Vicat softening temperature (VST), 17–18 Thermal stability assessment, 27–29 Thermal tests, 9 Thermocomp® SF stress vs. strain at various temperatures for, 266 tensile modulus vs. temperature for, 267 tensile strength vs. temperature for, 268 Thermoplastic Copolyester Elastomers (TPE-Es), 420, 432–443 Thermoplastic elastomers (TPEs), 419–445 Thermoplastic elastomers, 666–670, 756–759 Thermoplastic polyurethane elastomers (TPU), 419–432 Thermoplastic UHMWPE, 382 Thermosets vs. thermoplastics, 3 Thermx® CG023NC010, 599 Thermx® CG033NC010, 599, 721 Thermx® CG043NC010, 599, 721 Thermx® CG923NC010, 599, 721 Thermx® CG933NC010, 599, 721 Thermx® CG943NC010T, 599 THV/Dyneon 3M, 679 Ticona Celanex® 2300 GV/30 stress vs. strain at various temperatures for, 160 Ticona Celanex® 2300 series shear modulus vs. temperature for, 168 Ticona Celanex® 2500 stress vs. strain at various temperatures for, 160 Ticona Celanex® PBT resins dielectric strength vs. thickness for, 183 Ticona Celanex®, see also individual entries flexural modulus vs. temperature for, 166 flexural modulus vs. temperature for, 167 flexural strength vs. temperature for, 172 flexural strength vs. temperature for, 173 tensile stress at break vs. temperature for, 165 Ticona Celcon® M25 copolymer resin stress vs. strain for, 110 Ticona Celcon® M25/M90/M270 dielectric constant variation with temperature and frequency for, 127, 128 dielectric strength vs. thickness for, 131 dissipation factor variation with temperature and frequency for, 129 flexural modulus vs. temperature for, 114 tensile modulus vs. temperature for, 117 Ticona Celcon® M270 stress vs. strain for, 111
Mckeen_Index.indd 811
811
Ticona Celcon® M90 stress vs. strain for, 111 elongation at break vs. temperature for, 125 linear thermal expansion vs. temperature for, 126 tensile yield strength vs. temperature for, 119 Ticona Fortron® 1140L4 dissipation factor vs. frequency at several temperatures of, 535 stress vs. strain at several temperatures of, 524 volume resistivity vs. temperature of, 536 Ticona Fortron® 6160B4 dissipation factor vs. frequency at several temperatures of, 535 Ticona Fortron® 6165A4 dissipation factor vs. frequency at several temperatures of, 536 Ticona Fortron® filled PPS resins tensile modulus vs. temperature of, 528 Ticona Fortron® glass fiber filled PPS resins flexural modulus vs. temperature of, 526 Ticona GUR® 4120, 403 coefficient of linear thermal expansion vs. temperature of, 403 stress vs. strain at various temperatures of, 401 Yield stress vs. temperature of, 402 Ticona GUR® UHMWPE resin heat capacity (enthalpy) vs. temperature of, 404 specific heat vs. temperature of, 404 Ticona Hostaform® acetal copolymer resins deformation vs. temperature for, 122 Izod notched impact strength vs. temperature for, 119 shear modulus vs. temperature for, 115, 116 work to damage vs. temperature for, 121 yield stress vs. temperature for, 118 Ticona Hostaform® C 9021 stress vs. strain for, 112 Ticona Hostaform® S acetal copolymer resins charpy notched impact strength vs. temperature for, 120 Ticona Hostform® C 9064 and S 9240 tensile modulus vs. temperature for, 117 Ticona Impet® 2700 GV1/20 stress vs. strain at various temperatures for 184 Ticona Impet® 2700 GV1/30 stress vs. strain at various temperatures for, 185 Ticona Impet® 2700 GV1/45 stress vs. strain at various temperatures for, 185 Ticona Impet® reinforced PET resins stress vs. strain at 23°C for several, 186 Ticona Topas® 5013, 6013, 6015 and 6017 COC resins elastic modulus vs. temperature of, 409 tensile strength vs. temperature of, 410 Ticona Topas® 6015 dielectric content vs. temperature of, 411 dissipation factor vs. temperature of, 412
12/11/2007 6:27:25 PM
812
Ticona Topas® COC resins glass transition temperature vs. norbornene content of, 411 shear modulus vs. temperature of, 410 stress vs. strain at 23°C of, 409 Ticona UHMWPE resin elongation at break vs. temperature of, 402 tensile strength vs. temperature of, 401 Ticona Vandar® flexural modulus vs. temperature for, 207, 208 Ticona Vandar® 2100 stress vs. strain at various temperatures for, 205 Ticona Vandar® polyester alloy/blend resins shear modulus vs. temperature for, 209 stress vs. strain at 23°C for, 205 tensile strength vs. temperature for, 211 Ticona Vectra® A130 enthalpy vs. temperature of, 200 specific heat vs. temperature of, 201 stress vs. strain at various temperatures of, 194, 195 Ticona Vectra® A530 stress vs. strain at various temperatures of, 195 Ticona Vectra® A950 LCP chemical structure, 152 Ticona Vectra® E130 stress vs. strain at various temperatures of, 196 Ticona Vectra® E820iP dielectric constant vs. temperature of, 202 Ticona Vectra® H140 stress vs. strain at various temperatures of, 196 Ticona Vectra® L130 stress vs. strain at various temperatures of, 197 Ticona Vectra® LCPs dielectric constant vs. frequency at, 202 shear modulus vs. temperature of various, 199 thermal conductivity vs. temperature of various, 201 Time dependent behavior, in plastics designing, 33 Toray Plastics Toyolac™ 100 tensile stress vs. strain for, 67 Toray Plastics Toyolac™ 500 tensile stress vs. strain for, 68 Toray Plastics Toyolac™ ABS resins flexural modulus vs. temperature for, 69 flexural strength vs. temperature for, 72 Izod impact strength vs. temperature for, 74 modulus of bending elasticity vs. temperature for, 70 Rockwell hardness vs. temperature for, 75 surface resistivity vs. relative humidity for, 78 tensile strength at break vs. temperature for, 73 tensile strength at yield vs. temperature for, 73 Toray Plastics Toyolac™ transparent ABS resins Izod impact strength vs. temperature for, 75 Toray Plastics Tyolac™ ABS resins Izod impact strength vs. temperature for, 74 Toray Resin Company Amilan® CM2001
Mckeen_Index.indd 812
Index
Izod impact strength vs. temperature for, 314 tensile yield strength vs. temperature for, 314 Toray Resin Company Torelina® A504 compressive strength vs. temperature of, 531 flexural modulus vs. temperature of, 527 shear strength vs. temperature of, 530 Toray Resin Company Torelina® PPS resins flexural strength vs. temperature of, 529 notched Izod impact strength vs. temperature of, 532 tensile strength vs. temperature of, 531 unnotched Izod impact strength vs. temperature of, 532 Toray Siveras® L204G35 flexural modulus vs. temperature of, 198 flexural strength vs. temperature of, 199 Toray Toraycon® dielectric constant vs. temperature for, 181 dissipation factor vs. temperature for, 182 flexural modulus vs. temperature for, 167 flexural strength vs. temperature for, 173 Izod impact strength vs. temperature for, 178 tensile strength vs. temperature for, 176 Torlon® PAI resins flexural modulus vs. temperature for, 227 flexural strength vs. temprature for, 228 moisture absorption vs. relative humidity for, 229 stress vs. strain at 135°C for, 227 stress vs. strain at 23°C for, 226 tensile strength vs. temperature for, 228 Torlon® 4203L, 730 Torlon® 4275, 730 Torlon® 4301, 730 Torlon® 4435, 730 Torlon® 5030, 730 Torlon® 7130, 730 Tougheners, 5–6, 30 Toughness, plastics designing and, 29–35 TPE/DSM, 666–668, 756–758 TPE/DuPont, 666, 756 Triax® 1120 (cond.), 565 Triax® 1120 (dry), 565 Triax® 1120, 695 Triax® 1220 S (cond.), 566 Triax® 1220 S (dry), 566 Triax® 1220 S, 696 Triax® 1315 GF (cond.), 566 Triax® 1315 GF (dry), 566 Triax® 1315 GF, 696 Triax® DP 3155 (cond.), 566 Triax® DP 3155 (dry), 566 Triax® DP 3155, 696 Triax® KU2- 3050 (dry), 566 Triax® KU2-3050 (cond.), 566 Triax® KU2-3050, 696 Trimellitic anhydride (TMA), 216
12/11/2007 6:27:25 PM
INDEX
Tyril 100, 559, 691 Tyril 125, 559, 691 Tyril 790, 559, 691 Tyril 867 EUV, 559, 691 Tyril 867E, 559, 691 Tyril 880, 559, 691 Tyril 880B, 559, 691 Tyril 905 UV, 559, 691 Tyril 905, 559, 691 Tyril 990, 559 Ube Industries Upitol® SA 101 PI, 234 flexural strength vs. temperature, 235 Udel GF-110, 685, 764 Udel GF-120, 685, 764 Udel GF-130, 685, 764 Udel P-1700, 685, 764 Udel P-1720, 685, 764 Udel P-3500, 685, 764 Udel P-3703, 685 Uhmwpe/Ticona, 659 UL 746B relative temperature index test, 27 Ultem® 1000 moisture absorption vs. relative humidity of, 224 pressure–specific volume–temperature (PVT) of, 223 stress vs. strain at various temperatures of, 217 stress vs. strain in compression of, 221 Ultem® 1000, 609, 729 Ultem® 1010, 609, 729 Ultem® 1100, 609, 729 Ultem® 1110, 609, 729 Ultem® 1285, 609, 729 Ultem® 2100 stress vs. strain at various temperatures of, 218 Ultem® 2100, 609, 729 Ultem® 2110, 609, 729 Ultem® 2200 stress vs. strain at various temperatures of, 218 Ultem® 2200, 610, 729 Ultem® 2210, 610, 729 Ultem® 2212, 610, 729 Ultem® 2300 stress vs. strain at various temperatures of, 219 Ultem® 2300, 610, 729 Ultem® 2310, 610, 729 Ultem® 2312, 610, 729 Ultem® 2400 stress vs. strain at various temperatures of, 219 Ultem® 2400, 610, 729 Ultem® 2410, 610, 729 Ultem® 2412EPR, 610, 729 Ultem® 3452 stress vs. strain at various temperatures of, 220 Ultem® 3452, 610, 729 Ultem® 4000 stress vs. strain at various temperatures of, 220
Mckeen_Index.indd 813
813
Ultem® 4000, 610, 729 Ultem® 4001, 610, 729 Ultem® 4002, 610, 729 Ultem® 9011, 610, 729 Ultem® 9070, 610 Ultem® 9075, 610 Ultem® 9076, 610 Ultem® CRS5001, 610, 729 Ultem® CRS5011, 610, 729 Ultem® CRS5201, 610, 729 Ultem® CRS5311, 610, 730 Ultem® DT1800E, 611, 730 Ultem® DT1810E, 611, 730 Ultem® EXUM0169, 611, 730 Ultem® LTX300A, 611, 730 Ultem® LTX931A, 611 Ultem® MD130A, 611, 730 Ultem® PEI resins, see also individual entries dielectric constant vs. frequency and temperature of, 224 dielectric constant vs. temperature and frequency of, 225 dissipation factor vs. temperature and frequency of, 225 flexural modulus vs. temperature of, 222 shear modulus vs. temperature of several, 222 stress vs. strain at 23°C of several, 221 tensile strength vs. temperature of several, 223 Ultem® XH6050, 611, 730 Ultra High Molecular Weight Polyethylene (UHMWPE), 382, 401–404 Ultra low density polyethylene (ULDPE), 379 Ultradur® B 2550, 593, 717 Ultradur® B 4030G6, 593, 717 Ultradur® B 4040 G10, 726 Ultradur® B 4040 G2, 726 Ultradur® B 4040 G4, 726 Ultradur® B 4040 G6, 726 Ultradur® B 4300 GM42, 717 Ultradur® B 4300G10, 593, 717 Ultradur® B 4300G2, 593, 717 Ultradur® B 4300G3, 593, 717 Ultradur® B 4300G4, 593, 717 Ultradur® B 4300G6, 593, 717 Ultradur® B 4300K4, 593, 717 Ultradur® B 4300K6, 593, 717 Ultradur® B 4400G5, 593, 717 Ultradur® B 4406 G4 Q113, 726 Ultradur® B 4406 G4, 717 Ultradur® B 4406 G6 Q113, 726 Ultradur® B 4406 G6, 717 Ultradur® B 4406, 593, 717 Ultradur® B 4406G2, 593, 717 Ultradur® B 4406G4, 593 Ultradur® B 4406G6, 593 Ultradur® B 4500, 593, 717
12/11/2007 6:27:25 PM
814
Ultradur® B 4520, 593, 717 Ultradur® B 4520Z2, 593, 717 Ultradur® B 6550 L, 594 Ultradur® B 6550 N, 594 Ultradur® B 6550, 594 Ultradur® B 6550LN, 594 Ultradur® B4040 G10, 606 Ultradur® B4040 G2, 606 Ultradur® B4040 G4, 606 Ultradur® B4040 G6, 606 Ultradur® B4406 G4 Q113, 606 Ultradur® B4406 G6 Q113, 606 Ultradur® KR 4001, 594 Ultradur® S4090 G2, 606, 726 Ultradur® S4090 G4, 606, 726 Ultradur® S4090 G4X, 606, 726 Ultradur® S4090 G6, 607, 726 Ultradur® S4090 G6X, 607, 727 Ultradur®S 4090 GX, 607, 727 Ultramid® 1C (cond.), 644 Ultramid® 1C (dry), 644 Ultramid® 1C, 743 Ultramid® 8200 (cond.), 614 Ultramid® 8200 (dry), 614 Ultramid® 8200 HS BK-102 (dry), 614 Ultramid® 8200 HS BK-102, 732 Ultramid® 8200, 731 Ultramid® 8202 (cond.), 614 Ultramid® 8202 (dry), 614 Ultramid® 8202 HS (cond.), 614 Ultramid® 8202 HS (dry), 614 Ultramid® 8202 HS, 732 Ultramid® 8202, 732 Ultramid® 8202C (dry), 614 Ultramid® 8202C HS BK-102, 732 Ultramid® 8202C HSBK-102 (cond.), 615 Ultramid® 8202C HSBK-102 (dry), 615 Ultramid® 8202C (cond.), 614 Ultramid® 8202C, 732 Ultramid® 8231G HS (cond.), 615 Ultramid® 8231G HS (dry), 615 Ultramid® 8231G HS, 732 Ultramid® 8233G HS (cond.), 615 Ultramid® 8233G HS (dry), 615 Ultramid® 8233G HS, 732 Ultramid® 8253 HS (cond.), 615 Ultramid® 8253 HS (dry), 615 Ultramid® 8253 HS, 732 Ultramid® 8254 HS BK 102, 732 Ultramid® 8254 HS BK102 (cond.), 615 Ultramid® 8254 HS BK102 (dry), 615 Ultramid® 8255 HS (dry), 615 Ultramid® 8260 (cond.), 615 Ultramid® 8260 (dry), 615 Ultramid® 8260, 732 Ultramid® 8262G HS BK-102, 732
Mckeen_Index.indd 814
Index
Ultramid® 8262G HSBK-102 (dry), 615 Ultramid® 8266G HS BK102, 732 Ultramid® 8266G HSBK-102 (cond.), 615 Ultramid® 8266G HSBK-102 (dry), 615 Ultramid® 8267G HS BK-102, 732 Ultramid® 8267G HSBK-102 (cond.), 615 Ultramid® 8267G HSBK-102 (dry), 615 Ultramid® 8272G HS BK-102, 732 Ultramid® 8272G HSBK-102 (cond.), 616 Ultramid® 8272G HSBK-102 (dry), 616 Ultramid® 8333G HI (cond.), 616 Ultramid® 8333G HI (dry), 616 Ultramid® 8333G HI, 732 Ultramid® 8350 HS (cond.), 616 Ultramid® 8350 HS (dry), 616 Ultramid® 8350 HS, 732 Ultramid® 8351 HS BK-102 (dry), 616 Ultramid® 8351 HS BK-102, 732 Ultramid® A3 (cond.), 640 Ultramid® A3 (dry), 640 Ultramid® A3EG10 (cond.), 640 Ultramid® A3EG10 (dry), 640 Ultramid® A3EG10, 741 Ultramid® A3EG5 (dry), 640 Ultramid® A3EG5 (cond.), 640 Ultramid® A3EG5, 741 Ultramid® A3EG6 (dry), 640 Ultramid® A3EG6 (cond.), 640 Ultramid® A3EG6, 741 Ultramid® A3EG7 (dry), 640 Ultramid® A3EG7 Q206 (dry), 640 Ultramid® A3EG7 Q206, 741 Ultramid® A3EG7 (cond.), 640 Ultramid® A3EG7, 741 Ultramid® A3HG5 (dry), 640 Ultramid® A3HG5 (cond.), 640 Ultramid® A3HG5, 741 Ultramid® A3HG6 HR bk 23591, 741 Ultramid® A3HG6 HRbk 23591 (cond.), 641 Ultramid® A3HG6 HRbk 23591 (dry), 640 Ultramid® A3HG7 (dry), 641 Ultramid® A3HG7 (cond.), 641 Ultramid® A3HG7, 741 Ultramid® A3K (cond.), 641 Ultramid® A3K (dry), 641 Ultramid® A3K Q202 (dry), 641 Ultramid® A3K Q202, 741 Ultramid® A3K, 741 Ultramid® A3SK (cond.), 641 Ultramid® A3SK (dry), 641 Ultramid® A3SK Q202 (dry), 641 Ultramid® A3SK Q202, 741 Ultramid® A3SK, 741 Ultramid® A3W (cond.), 641 Ultramid® A3W (dry), 641 Ultramid® A3W, 741
12/11/2007 6:27:25 PM
INDEX
Ultramid® A3WG10 (cond.), 641 Ultramid® A3WG10 (dry), 641 Ultramid® A3WG10, 741 Ultramid® A3WG3 (dry), 641 Ultramid® A3WG3 (cond.), 641 Ultramid® A3WG3, 741 Ultramid® A3WG5 (dry), 641 Ultramid® A3WG5 (cond.), 641 Ultramid® A3WG5, 741 Ultramid® A3WG6 (dry), 641 Ultramid® A3WG6 (cond.), 641 Ultramid® A3WG6, 741 Ultramid® A3WG7 (dry), 641 Ultramid® A3WG7 (cond.), 641 Ultramid® A3WG7, 742 Ultramid® A3WGM53 bk 20560, 742 Ultramid® A3WGM53bk 20560 (cond.), 642 Ultramid® A3WGM53bk 20560 (dry), 641 Ultramid® A3X2G10 (cond.), 642 Ultramid® A3X2G10 (dry), 642 Ultramid® A3X2G10, 742 Ultramid® A3X2G5 (cond.), 642 Ultramid® A3X2G5 (dry), 642 Ultramid® A3X2G7 (cond.), 642 Ultramid® A3X2G7 (dry), 642 Ultramid® A3X2G7, 742 Ultramid® A3X3G5 (cond.), 642 Ultramid® A3X3G5 (dry), 642 Ultramid® A3X3G5, 742 Ultramid® A3XZG5 (cond.), 642 Ultramid® A3XZG5 (dry), 642 Ultramid® A3XZG5, 742 Ultramid® A3Z (cond.), 642 Ultramid® A3Z (dry), 642 Ultramid® A3Z, 742 Ultramid® A3ZG6 bk 20591, 742 Ultramid® A3ZG6 bk20591 (cond.), 643 Ultramid® A3ZG6 bk20591 (dry), 643 Ultramid® A4 (cond.), 643 Ultramid® A4 (dry), 643 Ultramid® A4H (cond.), 643 Ultramid® A4H (dry), 643 Ultramid® B3 (cond.), 616 Ultramid® B3 (dry), 616 Ultramid® B32 (cond.), 616 Ultramid® B32 (dry), 616 Ultramid® B32 Q128 (cond.), 616 Ultramid® B32 Q128 (dry), 616 Ultramid® B32 Q128, 732 Ultramid® B35 (cond.), 616 Ultramid® B35 (dry), 616 Ultramid® B35EG3 (cond.), 617 Ultramid® B35EG3 (dry), 617 Ultramid® B35EG3, 732 Ultramid® B35F (cond.), 617 Ultramid® B35F (dry), 617
Mckeen_Index.indd 815
815
Ultramid® B35G3 bk 564, 732 Ultramid® B35G3 bk564 (cond.), 617 Ultramid® B35G3 bk564 (dry), 617 Ultramid® B36FN Q99 (cond.), 617 Ultramid® B36FN Q99 (dry), 617 Ultramid® B3EG3 (dry), 617 Ultramid® B3EG3 (cond.), 617 Ultramid® B3EG3, 732 Ultramid® B3EG5 (dry), 617 Ultramid® B3EG5 (cond.), 617 Ultramid® B3EG5, 732 Ultramid® B3EG6 (dry), 617 Ultramid® B3EG6 (cond.), 617 Ultramid® B3EG6, 732 Ultramid® B3G8 (cond.), 617 Ultramid® B3G8 (dry), 617 Ultramid® B3G8, 732 Ultramid® B3GK24 (cond.), 617 Ultramid® B3GK24 (dry), 617 Ultramid® B3GK24, 732 Ultramid® B3GM35 bk 30564, 732 Ultramid® B3GM35 bk30564 (cond.), 618 Ultramid® B3GM35 bk30564 (dry), 618 Ultramid® B3GM35 Q224, 733 Ultramid® B3GM35 Q611, 733 Ultramid® B3GM35 (cond.), 617 Ultramid® B3GM35 (dry), 617 Ultramid® B3GM35Q224 (dry), 618 Ultramid® B3GM35Q611 (cond.), 618 Ultramid® B3GM35Q611 (dry), 618 Ultramid® B3K (cond.), 618 Ultramid® B3K (dry), 618 Ultramid® B3K, 733 Ultramid® B3L (cond.), 618 Ultramid® B3L (dry), 618 Ultramid® B3L Q235 (dry), 618 Ultramid® B3L Q235, 733 Ultramid® B3L, 733 Ultramid® B3M6 bk 30564, 733 Ultramid® B3M6 bk 60564, 733 Ultramid® B3M6 bk30564 (cond.), 618 Ultramid® B3M6 bk30564 (dry), 618 Ultramid® B3M6 bk60564 (dry), 618 Ultramid® B3M6 LS (cond.), 619 Ultramid® B3M6 LS (dry), 618 Ultramid® B3M6 LS, 733 Ultramid® B3M6 Q252 (dry), 619 Ultramid® B3M6 Q252, 733 Ultramid® B3M6 Q256 (dry), 619 Ultramid® B3M6 Q256, 733 Ultramid® B3M6 Q94 (cond.), 619 Ultramid® B3M6 Q94 (dry), 619 Ultramid® B3M6 Q94, 733 Ultramid® B3S (cond.), 619 Ultramid® B3S (dry), 619 Ultramid® B3S, 733
12/11/2007 6:27:25 PM
816
Ultramid® B3UG4 (dry), 619 Ultramid® B3UG4 (cond.), 619 Ultramid® B3UG4, 733 Ultramid® B3WG10 bk 564, 733 Ultramid® B3WG10 bk564 (cond.), 619 Ultramid® B3WG10 bk564 (dry), 619 Ultramid® B3WG5 (dry), 619 Ultramid® B3WG5 (cond.), 619 Ultramid® B3WG5, 733 Ultramid® B3WG6 (dry), 619 Ultramid® B3WG6 BGVW bk 564, 733 Ultramid® B3WG6 GP bk 23210, 733 Ultramid® B3WG6 GPbk 23210 (cond.), 619 Ultramid® B3WG6 GPbk 23210 (dry), 619 Ultramid® B3WG6 (cond.), 619 Ultramid® B3WG6, 733 Ultramid® B3WG6BGVW bk 564 (cond.), 619 Ultramid® B3WG6BGVW bk 564 (dry), 619 Ultramid® B3WG7 (dry), 620 Ultramid® B3WG7 (cond.), 620 Ultramid® B3WG7, 733 Ultramid® B3Z Q263 (dry), 620 Ultramid® B3Z Q263, 733 Ultramid® B3ZG3 (dry), 620 Ultramid® B3ZG3 (cond.), 620 Ultramid® B3ZG3, 733 Ultramid® B3ZG6 (dry), 620 Ultramid® B3ZG6 (cond.), 620 Ultramid® B3ZG6, 733 Ultramid® B3ZG8 bk 20560, 733 Ultramid® B4F (cond.), 620 Ultramid® B4F (dry), 620 Ultramid® B5 (cond.), 620 Ultramid® B5 (dry), 620 Ultramid® B5W (cond.), 620 Ultramid® B5W (dry), 620 Ultramid® BG40GM45 HS BK-130, 733 Ultramid® BG40GM45HS BK-130 (dry), 620 Ultramid® C35 (cond.), 644 Ultramid® C35 (dry), 644 Ultramid® C3U (cond.), 644 Ultramid® C3U (dry), 644 Ultramid® C3U, 743 Ultramid® CC4, 743 Ultramid® HMG13 HS BK-102, 733 Ultramid® HMG13 HSBK-102 (cond.), 620 Ultramid® HMG13 HSBK-102 (dry), 620 Ultramid® HPN 9350 HS, 733 Ultramid® HPN 9350HS (dry), 621 Ultramid® HPN 9362 (cond.), 621 Ultramid® HPN 9362 (dry), 621 Ultramid® SEGM35HI BK-126, 733 Ultramid® SEGM35HIBK-126 (dry), 621 Ultrason® E 1010 NAT, 761 Ultrason® E 1010NAT (cond.), 681 Ultrason® E 1010NAT (dry), 681
Mckeen_Index.indd 816
Index
Ultrason® E 2010 G4 UN, 761 Ultrason® E 2010 G6 UN, 761 Ultrason® E 2010 NAT, 761 Ultrason® E 2010G4 UN (cond.), 681 Ultrason® E 2010G4 UN (dry), 681 Ultrason® E 2010G6 UN (cond.), 681 Ultrason® E 2010G6 UN (dry), 681 Ultrason® E 2010NAT (cond.), 681 Ultrason® E 2010NAT (dry), 681 Ultrason® E 3010 NAT, 761 Ultrason® E 3010NAT (cond.), 681 Ultrason® E 3010NAT (dry), 681 Ultrason® S 2010 dielectric constant vs. temperature and frequency of, 549 dissipation factor vs. temperature and frequency of, 550 Ultrason® S 2010 G4 UN, 763 Ultrason® S 2010 G6 UN, 763 Ultrason® S 2010 NAT, 763 Ultrason® S 2010G4 UN (cond.), 685 Ultrason® S 2010G4 UN (dry), 685 Ultrason® S 2010G6 UN (cond.), 685 Ultrason® S 2010G6 UN (dry), 685 Ultrason® S 2010NAT (cond.), 685 Ultrason® S 2010NAT (dry), 685 Ultrason® S 3010 NAT, 764 Ultrason® S 3010NAT (cond.), 685 Ultrason® S 3010NAT (dry), 685 Urethanes, 419 UV stabilizers, 6 Valox®, see also individual entries dielectric strength vs. temperature for, 182 Valox® 310-SEO stress vs. strain at various temperatures for, 163 Valox® 325 stress vs. strain at various temperatures for, 164 Valox® 420 stress vs. strain at various temperatures for, 164 Valox® 420SEO volume resistivity vs. temperature for, 184 Valox® DR-51 stress vs. strain at various temperatures for, 165 Valox® PBT resins dielectric constant vs. frequency at 23°C for, 180 dielectric strength vs. thickness for, 183 flexural modulus vs. temperature for, 168 Izod impact strength vs. temperature for, 178 tensile strength vs. temperature for, 177 Vandar 2100, 608, 728 Vandar 2100UV, 608, 728 Vandar 2122, 608, 728 Vandar 2500, 608, 728 Vandar 4602Z, 608, 728 Vandar 4612R, 608, 728
12/11/2007 6:27:25 PM
INDEX
Vandar 4632Z, 608, 728 Vandar 4662Z, 609, 728 Vandar 6000, 609, 728 Vandar 8000, 609, 728 Vectra A115, 600, 722 Vectra A130, 600, 722 Vectra A150, 600, 722 Vectra A230, 600, 722 Vectra A410, 600, 722 Vectra A430, 600, 722 Vectra A435, 600, 722 Vectra A515, 600, 722 Vectra A530, 600, 722 Vectra A625, 601, 722 Vectra A700, 601, 722 Vectra A725, 601, 722 Vectra A950, 601, 722 Vectra B130, 601, 722 Vectra B230, 601, 723 Vectra C115, 601, 723 Vectra C130, 601, 723 Vectra C150, 601, 723 Vectra C550, 601, 723 Vectra C810, 601, 723 Vectra D130M, 601, 723 Vectra E130i, 601, 723 Vectra E471i, 601, 723 Vectra E480i, 723 Vectra E530i, 601, 723 Vectra E540i, 601, 723 Vectra E820i Pd, 601, 723 Vectra E820i, 601, 723 Vectra H130, 601, 723 Vectra H140, 601, 723 Vectra L130, 601, 723 Vectra L140, 601, 723 Vectra MT1300, 601, 723 Vectra MT1305, 723 Vectra MT1310, 723 Vectra MT1335, 601, 723 Vectra MT1340, 601, 723 Vectra MT1345, 601, 723 Vectra MT1355, 602 Vectra MT2310, 602, 723 Vectra MT2355, 602 Vectra MT3310, 602, 723 Vectra MT4310, 723 Vectra MT4350, 602, 723 Vectra S135, 724 Vectra T130, 602, 724 Vectra V100P, 602, 724 Vectra V140, 728 Vectra V143XL, 728 Vectra V300P, 602, 724 Very low density polyethylene (VLDPE), 380 Vespel® SP1 DF, 730
Mckeen_Index.indd 817
817
Vespel® SP21, 730 Vespel® SP211, 730 Vespel® SP22, 730 Vespel® SP3, 730 Vespel® ST-2010, 730 Vespel® ST-2030, 730 Vestakeep 4000 G nf, 760 Vestakeep 4000CF30 nf, 680, 760 Vestakeep 4000FC30 nf, 680, 760 Vestakeep 4000GF30 nf, 680, 760 Vestakeep 4000nf, 680 Vestamid E40-S3 nf (dry), 669 Vestamid E40-S3 nf, 758 Vestamid E40-S3nf (cond.), 669 Vestamid E47-S3 nf, 669, 758 Vestamid E55-S3 nf, 670, 758 Vestamid E62-S3 nf (cond.), 670 Vestamid E62-S3 nf (dry), 670 Vestamid E62-S3 nf, 758 Vestamid L1670 nf, 623 Vestamid L1670 nf, 734 Vestamid L1723 sw (cond.), 623 Vestamid L1723 sw (dry), 623 Vestamid L1723 sw, 734 Vestamid L1833 nf (dry), 623 Vestamid L1833 nf (cond.), 623 Vestamid L1833 nf, 734 Vestamid L1930 nf, 623 Vestamid L1930 nf, 734 Vestamid L1940 nf, 623 Vestamid L1940 nf, 734 Vestamid L2101 F nf (cond.), 623 Vestamid L2101 F nf (dry), 623 Vestamid L2101 F nf, 734 Vestamid L2106F nf (cond.), 623 Vestamid L2106F nf (dry), 623 Vestamid L2106F nf, 734 Vestamid L2121 nf, 624, 734 Vestamid L2121 sw 9.7507, 734 Vestamid L2121 sw9.7507 (cond.), 624 Vestamid L2121 sw9.7507 (dry), 624 Vestamid L2122 nf (dry), 624 Vestamid L2122 nf (cond.), 624 Vestamid L2122 nf, 735 Vestamid L2122 sw9.7507, 624, 735 Vestamid L2123 nf (dry), 624 Vestamid L2123 nf (cond.), 624 Vestamid L2123 nf, 735 Vestamid L2123 sw9.7507 (cond.), 624 Vestamid L2123 sw9.7507 (dry), 624 Vestamid L2124 nf (dry), 624 Vestamid L2124 nf (cond.), 624 Vestamid L2124 nf, 735 Vestamid L2124 sw 9.7507, 735 Vestamid L2124 sw9.7507 (cond.), 624 Vestamid L2124 sw9.7507 (dry), 624
12/11/2007 6:27:26 PM
818
Vestamid L2128 nf (dry), 625 Vestamid L2128 nf (cond.), 625 Vestamid L2128 nf, 735 Vestamid L2140 nf, 625 Vestamid L2140 nf, 735 Vestamid L2140 sw 9.7504, 735 Vestamid L2140 sw9.7504 (cond.), 625 Vestamid L2140 sw9.7504 (dry), 625 Vestamid L2141 sw 9.7504, 735 Vestamid L2141 sw9.7504 (cond.), 625 Vestamid L2141 sw9.7504 (dry), 625 Vestamid L-CD22-M sw, 735 Vestamid L-CD22-M (cond.), 625 Vestamid L-CD22-M (dry), 625 Vestamid L-CF15 sw (dry), 625 Vestamid L-CF15 sw, 735 Vestamid L-GB30 nf (cond.), 625 Vestamid L-GB30 nf (dry), 625 Vestamid L-GB30 nf, 735 Vestamid L-GF15 nf (dry), 625 Vestamid L-GF15 nf, 735 Vestamid L-GF30 nf (cond.), 625 Vestamid L-GF30 nf (dry), 625 Vestamid L-GF30 nf, 735 Vestamid L-R1-MHI sw, 625, 735 Vestamid L-R2-GF25sw, 625, 735 Vestamid L-R3-EI sw (dry), 625 Vestamid L-R3-EI sw, 735 Vestamid L-R3-EP sw (cond.), 626 Vestamid L-R3-EP sw (dry), 626 Vestamid L-R3-EP sw, 735 Vestamid L-R3-MHI sw, 626, 735 Vestamid L-R4-MHI sw, 626, 735 Vestamid L-R7-MHI sw (cond.), 626 Vestamid L-R7-MHI sw (dry), 626 Vestamid L-R9-MHI sw, 626, 735 Vestamid LX9013nf, 626, 735 Vestamid X7166 nf, 626, 735 Vestamid X7167 nf, 626, 735 Vestamid X7229 nf, 626, 735 Vestamid X7293 nf, 626, 735 Vestamid X7293 sw, 626, 735 Vestamid X7373 nf, 626, 735 Vestoran 1900 nf, 574, 702 Vestoran 1900 sw, 574, 702 Vestoran 1900-GF20 sw, 574, 702 Vestoran X4893 sw, 574, 702 Vestoran X7342 nf, 574, 702 Vestoran X9801 sw, 574 Vicat softening temperature (VST), 17–18 Vicat test, 28 Victrex® 150CA30, 680, 760 Victrex® 150FC30, 680, 760 Victrex® 150G, 680, 760 Victrex® 150GL30, 680, 760 Victrex® 381G, 680, 760
Mckeen_Index.indd 818
Index
Victrex® 450CA30, 680, 760 Victrex® 450FC30, 681, 760 Victrex® 450G, 680, 760 Victrex® 450GL30, 680, 760 Victrex® HT G22, 681 Victrex® HTG22CA30, 681 Victrex® HTG22GL30, 681 Victrex® PEEK resins falling weight impact failure energy vs. temperature of, 511 flexural modulus vs. temperature for, 505, 506, 507 flexural strength vs. temperature of different fiber-filled, 509 stress vs. strain at 23°C of various, 505 tensile strength vs. temperature of, 510 Yield stress vs. temperature of, 511 Victrex® TF-60V, 680 Victrex® TL-60, 680 Victrex® TU-60, 680 Vinyl chloride, 379 Voltalef 302, 672 WS10/1570, 702 Xantar® 18 R, 586, 711 Xantar® 18 SR D, 586, 711 Xantar® 18 UR, 586, 711 Xantar® 19 R, 586, 711 Xantar® 19 SR D, 586, 711 Xantar® 19 UR, 586, 711 Xantar® 22 R, 586, 711 Xantar® 22 SR FD, 586, 711 Xantar® 22 UR, 586, 711 Xantar® 23 R, 586 Xantar® 23 UR, 587 Xantar® 24 R, 587, 711 Xantar® 24 SR D, 587, 711 Xantar® 24 UR, 587, 711 Xantar® 25 R, 587, 711 Xantar® 25 SR D, 587 Xantar® 25 SR D, 711 Xantar® 25 U, 587, 711 Xantar® 25 UR, 587, 711 Xantar® 27 R, 587, 711 Xantar® 27 SR D, 587, 711 Xantar® 27 U, 587, 711 Xantar® 27 UR, 587, 711 Xantar® C CE 407, 605, 726 Xantar® C CF 107, 605, 726 Xantar® C CM 206, 605, 726 Xantar® C CM 206U, 605, 726 Xantar® C CM 406 FD, 726 Xantar® C CM 406, 605, 726 Xantar® C CM 406FD, 605 Xantar® C CM 406U, 605, 726 Xantar® C CM 506 U, 726
12/11/2007 6:27:26 PM
INDEX
Xantar® C CM 506, 605, 726 Xantar® C CM 506U, 605 Xantar® C MC 3433, 726 Xantar® C MC 3700, 726 Xantar® C MC3433, 606 Xantar® C MC3700, 606 Xantar® C RC 3012, 606 Xantar® F 22 R, 711 Xantar® F 22 UR, 711 Xantar® F 23 R, 711 Xantar® F 23 UR, 711 Xantar® F 25 R, 711 Xantar® F 25 UR, 711 Xantar® FC 19 R, 606, 711 Xantar® FC 19 UR, 606, 711 Xantar® FC 22 R, 587, 711 Xantar® FC 22 UR, 587, 712 Xantar® FC 23 R, 587, 712 Xantar® FC 23 UR, 587, 712 Xantar® FC 25 R, 587, 712 Xantar® FC 25 UR, 587, 712 Xantar® G2 23 R, 587 Xantar® G2 23 UR, 587 Xantar® G2F 23 R, 712 Xantar® G2F 23 UR, 712 Xantar® G4 22 R, 587 Xantar® G4 23 R, 587 Xantar® G4 23 UR, 587 Xantar® G4 25 R, 587 Xantar® G4 25 UR, 587 Xantar® G4F 22 R, 712 Xantar® G4F 22UR, 587, 712 Xantar® G4F 23 R, 712 Xantar® G4F 23 UR, 712 Xantar® G4F 25 R, 712 Xantar® G4F 25 UR, 712 Xantar® G6 23 R, 587 Xantar® G6 23 UR, 587 Xantar® G6F 23 R, 712 Xantar® G6F 23 UR, 712 Xantar® G8 23 R, 587 Xantar® G8 23 UR, 588 Xantar® G8F 23 R, 712 Xantar® G8F 23 UR, 712 Xantar® MX 1000, 588, 712 Xantar® MX 1001, 588, 712 Xantar® MX 1002, 588, 712 Xantar® MX 1004, 588, 712 Xantar® MX 1020, 588, 712 Xantar® MX 1021 D, 712 Xantar® MX 1021, 588, 712 Xantar® MX 1061, 588, 712 Xantar® MX 1081, 588, 712 Xantar® MX 1082, 588, 712 Xantar® MX 1094, 588, 713 Xantar® MX 2015, 588, 713
Mckeen_Index.indd 819
819
Xantar® MX 2021, 588, 713 Xantar® MX 2032, 588, 713 Xantar® MX 2034, 713 Xantar® MX 2042 D, 713 Xantar® MX1021 D, 588 Xantar® MX2042 D, 588 Xantar® RX 1045, 588, 713 Xenoy® PBT/PC alloy polyester alloy/blend resins flexural modulus vs. temperature for, 208, 209 Xydar G-430, 602, 724 Xydar G-930, 602, 724 Xydar M-345, 602, 724 Zenite® 5145LBK010, 599, 722 Zenite® 6130BK010, 599, 722 Zenite® 6130LXBK010, 599, 722 Zenite® 6140LBK010, 599, 722 Zenite® 6330BK010, 600, 722 Zenite® 6635 BK010, 722 Zenite® 7130BK010, 600, 722 Zenite® 7145LBK010, 600, 722 Zenite® 9140HTNC010, 600, 722 Zenite® ZE16130ABK010, 600, 722 Zenite® ZE16401BK010, 600, 722 Zenite® ZE17101 BK010, 722 Zenite® ZE55201 BK010, 722 Zytel® 101 NC001 (dry), 633 Zytel® 101 NC001 (cond.), 633 Zytel® 101 NC001, 739 Zytel® 101F BKB009, 739 Zytel® 101F NC010 (cond.), 633 Zytel® 101F NC010 (dry), 633 Zytel® 101F NC010, 739 Zytel® 101L BKB038, 739 Zytel® 101L NC010 (cond.), 633 Zytel® 101L NC010 (dry), 633 Zytel® 101L NC010, 739 Zytel® 103FHS BKB009, 739 Zytel® 103FHS NC010 (cond.), 633 Zytel® 103FHS NC010 (dry), 633 Zytel® 103FHS NC010, 739 Zytel® 103HSL BKB038, 739 Zytel® 103HSL NC010 (cond.), 633 Zytel® 103HSL NC010 (dry), 633 Zytel® 103HSL NC010, 739 Zytel® 114HSL BK000, 739 Zytel® 132F NC010 (cond.), 633 Zytel® 132F NC010 (dry), 633 Zytel® 132F NC010, 739 Zytel® 135F NC010 (cond.), 634 Zytel® 135F NC010 (dry), 633 Zytel® 135F NC010, 739 Zytel® 145 BK010 (dry), 634 Zytel® 145 BK010 (cond.), 634 Zytel® 145 BK010, 739 Zytel® 151 L NC010 (cond.), 643
12/11/2007 6:27:26 PM
820
Zytel® 151 L NC010 (dry), 643 Zytel® 151 L NC010, 742 Zytel® 153HSL NC010 (cond.), 643 Zytel® 153HSL NC010 (dry), 643 Zytel® 153HSL NC010, 742 Zytel® 157HSL BK010 (cond.), 643 Zytel® 157HSL BK010 (dry), 643 Zytel® 157HSL BK010, 742 Zytel® 158 NC010 (dry), 643 Zytel® 158 NC010 (cond.), 643 Zytel® 158 NC010, 742 Zytel® 158L NC010 (cond.), 644 Zytel® 158L NC010 (dry), 644 Zytel® 158L NC010, 742 Zytel® 159 NC010 (dry), 644 Zytel® 159 NC010, 742 Zytel® 159L NC010, 742 Zytel® 350PHS2 NC010, 742 Zytel® 350PHS2NC010 (dry) 644 Zytel® 42A NC010 (dry), 634 Zytel® 42A NC010 (cond.), 634 Zytel® 42A NC010, 739 Zytel® 450HSLX 52 BK1, 739 Zytel® 45HSB NC010 (dry), 634 Zytel® 45HSB NC010, 739 Zytel® 70G series PA66 resins tensile strength vs. fiber glass content of, 301 Zytel® 70G13HS1L BK031, 739 Zytel® 70G13HS1L NC010, 739 Zytel® 70G13HS1LNC010 (cond.), 634 Zytel® 70G13HS1LNC010 (dry), 634 Zytel® 70G13L NC010 (cond.), 634 Zytel® 70G13L NC010 (dry), 634 Zytel® 70G13L NC010, 739 Zytel® 70G25HSLR BK099, 739 Zytel® 70G25HSLR NC010, 739 Zytel® 70G25HSLRNC010 (cond.), 634 Zytel® 70G25HSLRNC010 (dry), 634 Zytel® 70G30HSL BK039B, 739 Zytel® 70G30HSLR BK099, 739 Zytel® 70G30HSLR NC010, 739 Zytel® 70G30HSLRNC010 (cond.), 635 Zytel® 70G30HSLRNC010 (dry), 634 Zytel® 70G30HSR2 BK309, 740 Zytel® 70G30HSR2BK309 (cond.), 635 Zytel® 70G30HSR2BK309 (dry), 635 Zytel® 70G30L NC010 (cond.), 635 Zytel® 70G30L NC010 (dry), 635 Zytel® 70G30L NC010, 740 Zytel® 70G33GRABK350 (cond.), 635 Zytel® 70G33GRABK350 (dry), 635 Zytel® 70G33HS1LNC010 (cond.), 635 Zytel® 70G33HS1LNC010 (dry), 635 Zytel® 70G33L BK031, 740 Zytel® 70G33L NC010 (cond.), 635 Zytel® 70G33L NC010 (dry), 635
Mckeen_Index.indd 820
Index
Zytel® 70G33L NC010, 740 Zytel® 70G35HSL BK039B, 740 Zytel® 70G35HSL NC010, 740 Zytel® 70G35HSLNC010 (cond.), 635 Zytel® 70G35HSLNC010 (dry), 635 Zytel® 70G35HSLRA4 BK267, 740 Zytel® 70G35HSLRA4BK267 (cond.), 635 Zytel® 70G35HSLRA4BK267 (dry), 635 Zytel® 70G35HSLX BK357, 740 Zytel® 70G35HSLXBK357 (cond.), 635 Zytel® 70G35HSLXBK357 (dry), 635 Zytel® 70G43HSLA BK099, 740 Zytel® 70G43HSLABK099 (cond.), 636 Zytel® 70G43HSLABK099 (dry), 636 Zytel® 70G43L NC010 (cond.), 636 Zytel® 70G43L NC010 (dry), 636 Zytel® 70G43L NC010, 740 Zytel® 70G50HSLA BK039B, 740 Zytel® 70G60HSL BK359, 740 Zytel® 70G60HSLBK359 (cond.), 636 Zytel® 70G60HSLBK359 (dry), 636 Zytel® 70K20HSL BK284, 740 Zytel® 70K20HSL NC010, 740 Zytel® 70K20HSLBK284 (cond.), 636 Zytel® 70K20HSLBK284 (dry), 636 Zytel® 7301J NC010, 731 Zytel® 7331T NC010A (cond.), 612 Zytel® 7331T NC010A (dry), 612 Zytel® 7331T NC010A, 731 Zytel® 7335F NC010, 731 Zytel® 73G15HSL BK363, 731 Zytel® 73G15HSLBK363 (cond.), 612 Zytel® 73G15HSLBK363 (dry), 612 Zytel® 73G15L NC010 (cond.), 613 Zytel® 73G15L NC010 (dry), 613 Zytel® 73G15L NC010, 731 Zytel® 73G15THSL BK240, 731 Zytel® 73G15THSLBK240 (cond.), 613 Zytel® 73G15THSLBK240 (dry), 613 Zytel® 73G20L NC010 (cond.), 613 Zytel® 73G20L NC010 (dry), 613 Zytel® 73G30HSL BK261, 731 Zytel® 73G30HSL BK416, 731 Zytel® 73G30HSL NC010, 731 Zytel® 73G30HSLNC010 (cond.), 613 Zytel® 73G30HSLNC010 (dry), 613 Zytel® 73G30L NC010 (cond.), 613 Zytel® 73G30L NC010 (dry), 613 Zytel® 73G30L NC010, 731 Zytel® 73G30T NC010 (cond.), 613 Zytel® 73G30T NC010 (dry), 613 Zytel® 73G30T NC010, 731 Zytel® 73G35HSL BK262, 731 Zytel® 73G45L NC010 (cond.), 613 Zytel® 73G45L NC010 (dry), 613 Zytel® 73G45L NC010, 731
12/11/2007 6:27:26 PM
INDEX
Zytel® 74G20HSLNC010 (cond.), 636 Zytel® 74G20HSLNC010 (dry), 636 Zytel® 74G30L NC010 (cond.), 636 Zytel® 74G30L NC010 (dry), 636 Zytel® 75LG40HSLBK031 (cond.), 637 Zytel® 75LG40HSLBK031 (dry), 636 Zytel® 75LG40L NC010 (dry), 637 Zytel® 75LG50HSLBK031 (cond.), 637 Zytel® 75LG50HSLBK031 (dry), 637 Zytel® 75LG50L NC010 (dry), 637 Zytel® 75LG60HSLBK031 (cond.), 637 Zytel® 75LG60HSLBK031 (dry), 637 Zytel® 75LG60L NC010 (dry), 637 Zytel® 77G33HS1L NC010, 742 Zytel® 77G33L BK031, 742 Zytel® 77G33L NC010 (cond.), 644 Zytel® 77G33L NC010 (dry), 644 Zytel® 77G33L NC010, 742 Zytel® 77G43L BK031, 742 Zytel® 77G43L NC010 (cond.), 644 Zytel® 77G43L NC010 (dry), 644 Zytel® 77G43L NC010, 742 Zytel® 80G14AHS NC010, 740 Zytel® 80G14AHSNC010 (cond.), 637 Zytel® 80G14AHSNC010 (dry), 637 Zytel® 80G14ANC010A (dry), 637 Zytel® 80G25HS NC010, 740 Zytel® 80G25HSNC010 (cond.), 637 Zytel® 80G25HSNC010 (dry), 637 Zytel® 80G33HS1LNC010 (cond.), 637 Zytel® 80G33HS1LNC010 (dry), 637 Zytel® 80G33L NC010 (cond.), 637 Zytel® 80G33L NC010 (dry), 637 Zytel® 80G33L NC010, 740 Zytel® 80G43HS1L BK104, 740 Zytel® 80G43HS1LBK104 (dry), 638 Zytel® BK26273G35HSL (cond.), 613 Zytel® BK26273G35HSL (dry), 613 Zytel® BM73G15THS BK31, 7317 Zytel® BM73G15THSBK317 (cond.), 613 Zytel® BM73G15THSBK317 (dry), 613 Zytel® CDV595 BK409, 740 Zytel® CDV805 BK409, 740 Zytel® CDV808 BK409, 740 Zytel® CFE8005HSBK010 (cond.), 638 Zytel® CFE8005HSBK010 (dry), 638 Zytel® E51 HSB NC010 (cond.), 638 Zytel® E51 HSB NC010 (dry), 638 Zytel® E51 HSB NC010, 740 Zytel® EFE1068 NC010T, 740 Zytel® EFE1068NC010T (cond.), 638 Zytel® EFE1068NC010T (dry), 638 Zytel® EFE8089B BK416, 740 Zytel® EFE8089BBK416 (cond.), 638 Zytel® EFE8089BBK416 (dry), 638 Zytel® FE3071 NC010, 740
Mckeen_Index.indd 821
821
Zytel® FE3757 NC010, 740 Zytel® FE5480HS BK32N, 741 Zytel® FE5480HSBK32N (dry), 638 Zytel® FE5555 BK538 (dry), 638 Zytel® FE5555 BK538, 741 Zytel® FN714 NC010 (cond.), 638 Zytel® FN714 NC010 (dry), 638 Zytel® FN718 NC010 (cond.), 639 Zytel® FN718 NC010 (dry), 639 Zytel® FN727 NC010 (cond.), 614 Zytel® FN727 NC010 (dry), 613 Zytel® FR50 NC010 (dry), 639 Zytel® FR50 NC010, 741 Zytel® FR7026V0F NC010, 741 Zytel® FR7026V0FNC010 (cond.), 639 Zytel® FR7026V0FNC010 (dry), 639 Zytel® FR70M30V0 NC010, 741 Zytel® FR70M30V0NC010 (cond.), 639 Zytel® FR70M30V0NC010 (dry), 639 Zytel® FR73G20GWF NC010, 731 Zytel® FR73G20GWFNC010 (cond.), 614 Zytel® FR73G20GWFNC010 (dry), 614 Zytel® HTN51G25HSL BK083, 743 Zytel® HTN51G25HSLBK083 (cond.), 645 Zytel® HTN51G25HSLBK083 (dry), 645 Zytel® HTN51G35HSL NC010, 743 Zytel® HTN51G35HSLNC010 (cond.), 645 Zytel® HTN51G35HSLNC010 (dry), 645 Zytel® HTN51G35HSLR BK420, 743 Zytel® HTN51G45HS stress vs. strain at various temperatures for, 349 Zytel® HTN51G45HSL stress vs. strain at various temperatures for, 350 Zytel® HTN51G45HSL NC010, 743 Zytel® HTN51G45HSLNC010 (cond.), 645 Zytel® HTN51G45HSLNC010 (dry), 645 Zytel® HTN51G45HSLR BK420, 743 Zytel® HTN51GM60THS BK083, 743 Zytel® HTN51LG50HSL BK083, 743 Zytel® HTN51LG50HSLBK083 (dry), 645 Zytel® HTN52G35HSLNC010 (dry), 645 Zytel® HTN52G45HSL NC010, 743 Zytel® HTN52G45HSLNC010 (cond.), 646 Zytel® HTN52G45HSLNC010 (dry), 645 Zytel® HTNFE150005 BK083, 743 Zytel® HTNFE150005BK083 (cond.), 646 Zytel® HTNFE150005BK083 (dry), 646 Zytel® HTNFE16502 BK001, 743 Zytel® HTNFE16502BK001 (dry), 646 Zytel® HTNFE250020 NC010, 743 Zytel® HTNFE250020NC010 (cond.), 646 Zytel® HTNFE250020NC010 (dry), 646 Zytel® HTNFE350006 NC010, 743 Zytel® HTNFE350006NC010 (dry), 646 Zytel® HTNFE350015 NC010, 743 Zytel® HTNFE350015NC010 (dry), 646
12/11/2007 6:27:26 PM
822
Zytel® HTNFE8200 NC010, 743 Zytel® HTNFE8200NC010 (dry), 646 Zytel® HTNFR51G35L NC010, 743 Zytel® HTNFR51G35LNC010 (cond.), 646 Zytel® HTNFR51G35LNC010 (dry), 646 Zytel® HTNWRF51 G30 NC010, 743 Zytel® HTNWRF51 G30NC010 (dry), 646 Zytel® HTNWRF51 K20 NC010, 743 Zytel® MT409AHS BK010, 741 Zytel® MT409AHS NC010, 741 Zytel® MT409AHSNC010 (cond.), 639 Zytel® MT409AHSNC010 (dry), 639 Zytel® resins flexural modulus vs. temperature for, 352 tensile strength vs. temperature for, 359 Zytel® ST7301 BK356, 731 Zytel® ST7301 NC010 (cond.), 614 Zytel® ST7301 NC010 (dry), 614 Zytel® ST7301 NC010, 731
Mckeen_Index.indd 822
Index
Zytel® ST801A NC010 (cond.), 639 Zytel® ST801A NC010 (dry), 639 Zytel® ST801A NC010, 741 Zytel® ST801AHS BK01 0, 741 Zytel® ST801AHS NC010, 741 Zytel® ST801AHSNC010 (cond.), 639 Zytel® ST801AHSNC010 (dry), 639 Zytel® ST801AW BK195, 741 Zytel® ST801AW NC010, 741 Zytel® ST801AWNC010 (cond.), 639 Zytel® ST801AWNC010 (dry), 639 Zytel® WRF403 NC010 (dry), 639 Zytel®HTN51G35HSL stress vs. strain at various temperatures for, 348, 349 Zytel®HTN51G35HSLRBK420 (cond.), 645 Zytel®HTN51G35HSLRBK420 (dry), 645 Zytel®HTN51G45HSLRBK420 (cond.), 645 Zytel®HTN51G45HSLRBK420 (dry), 645 Zytel®HTN51GM60THSBK083 (dry), 645
12/11/2007 6:27:26 PM
Plastics Design Library Founding Editor: William A. Woishnis Selection of Polymeric Materials: How to Select Design Properties from Different Standards, E. Alfredo Campo, 978 0 8155 1551-7, 296 pp., 2008 Fluorinated Ionomers, Walther Grot, 978-0-8155-1541-8, 250 pp., 2008 Handbook of Thermoplastic Elastomers, Jiri George Drobny, 978-0-8155-1549-4, 424 pp., 2007 Compounding Precipitated Silica in Elastomers, Norman Hewitt, 978-0-8155-1528-9, 600 pp., 2007 Essential Rubber Formulary: Formulas for Practitioners, V. C. Chandrasekaran, 978-0-8155-1539-5, 202 pp., 2007 The Effects of UV Light and Weather on Plastics and Elastomers, 2nd Ed., L. K. Massey, 978-0-8155-1525-8, 488 pp., 2007 Fluorinated Coatings and Finishes Handbook: The Definitive User’s Guide and Databook, Laurence W. McKeen, 978-0-8155-1522-7, 400 pp., 2006 Fluoroelastomers Handbook: The Definitive User’s Guide and Databook, Albert L. Moore, 0-8155-1517-0, 359 pp., 2006 Reactive Polymers Fundamentals and Applications: A Concise Guide to Industrial Polymers, J.K. Fink, 0-81551515-4, 800 pp., 2005 Fluoropolymers Applications in Chemical Processing Industries, P. R. Khaladkar, and S. Ebnesajjad, 0-8155-1502-2, 592 pp., 2005 The Effect of Sterilization Methods on Plastics and Elastomers, 2nd Ed., L. K. Massey, 0-8155-1505-7, 408 pp., 2005 Extrusion: The Definitive Processing Guide and Handbook, H. F. Giles, Jr., J. R. Wagner, Jr., and E. M. Mount, III, 0-8155-1473-5, 572 pp. 2005 Film Properties of Plastics and Elastomers, 2nd Ed., L. K. Massey, 1-884207-94-4, 250 pp. 2004 Handbook of Molded Part Shrinkage and Warpage, J. Fischer, 1-884207-72-3, 244 pp., 2003 Fluoroplastics, Volume 2: Melt-Processible Fluoroplastics, S. Ebnesajjad, 1-884207-96-0, 448 pp., 2002 Permeability Properties of Plastics and Elastomers, 2nd Ed. L. K. Massey, 1-884207-97-9, 550 pp., 2002 Rotational Molding Technology, R. J. Crawford and J. L. Throne, 1-884207-85-5, 450 pp., 2002 Specialized Molding Techniques & Application, Design, Materials and Processing, H. P. Heim, and H. Potente, 1-884207-91-X, 350 pp., 2002 Chemical Resistance CD-ROM, 3rd Ed., Plastics Design Library Staff, 1-884207-90-1, 2001 Plastics Failure Analysis and Prevention, J. Moalli, 1-884207-92-8, 400 pp., 2001 Fluoroplastics, Volume 1: Non-Melt Processible Fluoroplastics, S. Ebnesajjad, 1-884207-84-7, 365 pp., 2000 Coloring Technology for Plastics, R. M. Harris, 1-884207-78-2, 333 pp., 1999 Conductive Polymers and Plastics in Industrial Applications, L. M. Rupprecht, 1-884207-77-4, 302 pp., 1999 Imaging and Image Analysis Applications for Plastics, B. Pourdeyhimi, 1-884207-81-2, 398 pp., 1999 Metallocene Technology in Commercial Applications, G. M. Benedikt, 1-884207-76-6, 325 pp., 1999 Weathering of Plastics, G. Wypych, 1-884207-75-8, 325 pp., 1999 Dynamic Mechanical Analysis for Plastics Engineering, M. Sepe, 1-884207-64-2, 230 pp., 1998 Medical Plastics: Degradation Resistance and Failure Analysis, R. C. Portnoy, 1-884207-60-X, 215 pp., 1998 Metallocene Catalyzed Polymers, G. M. Benedikt and B. L. Goodall, 1-884207-59-6, 400 pp., 1998 Polypropylene: The Definitive User’s Guide and Databook, C. Maier and T. Calafut, 1-884207-58-8, 425 pp., 1998 Handbook of Plastics Joining, Plastics Design Library Staff, 1-884207-17-0, 600 pp., 1997
Mckeen_PDL-Series.indd i
12/11/2007 6:27:34 PM
Fatigue and Tribological Properties of Plastics and Elastomers, Plastics Design Library Staff, 1-884207-15-4, 595 pp., 1995 Chemical Resistance, Vol. 1, Plastics Design Library Staff, 1-884207-12-X, 1100 pp., 1994 Chemical Resistance, Vol. 2, Plastics Design Library Staff, 1-884207-13-8, 977 pp., 1994 The Effect of Creep and Other Time Related Factors on Plastics and Elastomers, Plastics Design Library Staff, 1-884207-03-0, 528 pp., 1991
Mckeen_PDL-Series.indd ii
12/11/2007 6:27:34 PM