This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
2 l +1 > r 2l+1 ; r2p2p > > p=0 l=0 > q > X Xt 2l+1 > 2 p ; r 2l+1 > :p=0 r 2p l=0
= 0
(1)
= 0
(2)
= 0
(3)
= 0:
(4)
N (1) (4), (2) | (3), q X p=0
r2p2p = 0
, , q X p=0
r2p2p = 0
t X l=0 t X l=0
r2l+1 2l+1 = 0
r2l+1 2l+1 = 0:
= ( r, .&& i i h(y) , h(y) 0, . 2
7. & A | F#x] x F , ' | ! A D A,
391
D
X n i=0
ai xi
! X n =
i=1
iai xi;1 ai 2 F i = 1 2 : : : n:
% A#y D] G(0).
. / ( A#y D] yx = xy+1, x y F#x] f1 x x2 : : :g> . , x, ( x, y(f(x)) = D(f(x)) = @(f(x)) | f(x). L ( : A#y D] ! G(0) : 00 00 1 1 1 0 0 B CC BB 0 2 CC 1 0 B B C B CC : 1 0 0 3 (x) = B CC (y) = BB B 1 0 A 0 4 C @ @ A 0
...
0
...
P , ( , f A#y D], f(x y) = f(x @) = fk (x)@ k + fk;1(x)@ k;1 + : : : + + fl (x)@ l , fl (x) 6= 0, l 6 k. / #f(x @)](xl ) = l!fl 6= 0. 2 H ( '. . / ( .
#1] K. R. Goodearl, P. Menal, J. Moncasi. Free and residually artinian regular rings // J. Algebra. To appear. #2] [. '( . N . | ".: C- , 1961. #3] D. V. Tjukavkin. Rings all of whose one-sided ideals are generated by idempotents // Communications in Algebra. | 1989. | V. 17. | N 5. | P. 1193{1198. #4] J. Hannah, K. C. O'Meara. A new measure of growth for countable-dimension algebra I. To appear. ( ) 1995 .
. .
. . . e-mail: [email protected]
, ! "#$ .
Abstract V. F. Edneral, Complex periodic solutions of autonomous ODE systems with analytical right sides near an equilibrium point, Fundamentalnaya i prikladnaya matematika 1(1995), 393{398.
The paper contains the proof of a theorem on the relation of frequencies of the periodic complex solutions of a nonlinear ordinary di-erential equation system resolved with respect to derivatives and having analytical right parts with the frequencies of periodic solutions of the corresponding linearized system in the neighborhood of an equilibrium point.
. ! " , , $ . % : d = P ( : : : ) i = 1 : : : n (1) 1 2 dt t | , P | , " 1 2 : : : " , . . P (0 0 : : : 0) = 0. i
i
f
n
ig
n
i
./ 0
CNPq 1, 300894/93-7.
1995, 1, N 2, 393{398. c 1995 !" #$, \& "
394
. .
P
0 " = =1 b X , i = 1 : : : n, (1) ( ) : dX = X + X + F (X X : : : X ) i = 1 : : : n (2) ;1 1 2 dt F | , | = 0, = ;1 . 3 : X f XQ i = 1 : : : n F (X1 X2 : : : X ) = X (3) Q n
i
ij
j
j
i
i
i
i
i
i
n
i
i
i 6
i
i
n
i
Q2 i
i
i
i
i
Ni
X = X1 X2 : : : X , XQ = X1 X22 X . 4 F , N Q , (3) , " : N = Q = q1 : : : q Z : q > 15 q > 0 k = i5 q1 + : : : + q > 0 (4) i = 1 : : : n: : def
f
def
ng
q1
q
qn n
i
i
i
i
f
f
i
;
i
6
k
X = Y +Y i
n
ng 2
i
i
X
Q2
n
g
h Q YQ i = 1 : : : n: i
(5)
i
i
Ni
i
1 (7. 3. 8 91], 92]). (5), : ;1 X f XQ i = 1 : : : n dX = X + X c X + X Q dt =1 Q2 : i
i
i
i
ij
j
i
i
j
i
(6)
i
i
Ni
;1 X g YQ i = 1 : : : n dY = Y + X c Y + Y Q dt =1 Q2 i
i
i
i
ij
j
j
P
i
i
i
i
(7)
i
Ni
g Q = 0, ( Q ) def = =1 q = 0, h Q Q , ( Q ) = 0, , h Q g Q . 2 4 (7) . (7) (6). n
i
i
i
i
j
j
j 6
i
i
i
i
i
i
i
395
8 , (2) (5) : dY = Y + Y + Y X g YQ def = = (Y) i = 1 : : : n (8) ;1 Q dt i
i
i
i
i
i
Q2 ( Q )=0 i
i
i
i
i
Ni
i
= 0, = ;1. ? (8) = . 4 (5) , " . @ 7. 3. 8 91], 92]. 4 . 0 , (2) . 4 (8) A: A = Y : = (Y) = Y a i = 1 : : : n (9) a | , i. A Ke (8) B K $ , . . Ke def = K , K : i 6
i
i
i
f
i
i
g
i
s
s
s
s
K = Y : Y = 0 i = i1 : : : i f
s
i
ps g
! , " , 1 6 i 6 n, i = i1 : : : i . 6
i
ps
2 (7. 3. 8 91], 92]). " # Ae def = A Ke (6) \
# (5).
:
, $ , " . ? Ae , " . 4 , (1), (2), (8)
, . 4 (8) "
C: C = Y : Y = 0 i = k i = 1 : : : n : ! , C Ae. 3 $ , C A, , C Ke . k
k
k
f
6
i
g
k 2
k 2
k 2
396
. .
. $ C A k , # , . . % , % ! # . $ k # # ( ) # . ( , C A # , . . 3 , = i = k C . 0 $ (9) " a. C , ( ) k ( ) C . 3 , Y ;1 = i = k + 1 C , i = k + 1 : +1 = 0 +1 = . % : k
2
k
k 2
6
i
k
k
i
6
i
i
k
k
= = Y +Y i
i
i
6
k
X
i
g1
j :::jn
k
Y1 1 j
Y i = 1 : : : n jn n
j1 :::jn
j1 : : : j , : j > 0 r = i5 j > 1 r = 1 : : : n (10) n
6
r
Xj
i
;
r
> 0
n
=1
X j r
n
r
r
r
=1
(11)
= 0:
(12)
4 , C : X g Y 1 Y = 0 i = 1 : : : n: R def = Y 1 1 k
j
i
i
j :::jn
jn n
j1 :::jn
4 : R = 0, ,
j 6 0 r = 1 : : : k 1 k +1 : : : n. 4 k = i $ (10) (12) , j = 0, . . j = 0, = 0. 4 $ : j = 0 r = 1 : : : n, (11). 4 k = i (12) (10) , j = 0 j = 0, j = 0 j = 1. C j = 0 , , (11), , j = , j > 1 (11). i 6
;
r
k k
k 6
k
6
r
k k
i
;
i
k
i
k
k
i
k
k ;
i
397
@ : = = s > 1, s | ,
, . ? , R C . D (9) $ a = 1, . . C A. E . F k , C (8) : dY = 0 i = 1 : : : k 1 k + 1 : : : n dt dY = Y dt "
(8): i
k
i
k
k 2
k
i
;
k
k
k
Y = Y 0 exp( t) Y = 0 k = 1 : : : k 1 k + 1 : : : n k
k
k
;
i
Y 0 | $ . 4 | , $ Im . C " , E $ Ae, . . ( !) Y 0 $ (5) (2), (1) Im . C : k
k
k
k
k
3 ( ). ) % ! # % . * # , # , % , + . , , , # , # # , + . % , , " ,
, . . "
398
. .
. 0 , ,
, ,
, , , ( 1 ). H ,
. F , " ( ) . 7 7. 3. 8 , a ... . !. !. 0 .
1] A. D. Bruno (Brjuno). Analytical form of dierential equations. I. // Trans. Mosc. Math. Soc. | 1971. | V. 25. | P. 131{288. A. D. Bruno (Brjuno). Analytical form of dierential equations. II. // Trans. Mosc. Math. Soc. | 1972. | V. 26. | P. 199{239. 2] A. D. Bruno. Local Method in Nonlinear Dierential Equations. Part I | The Local Method of Nonlinear Analyses of Dierential Equations, Part II - The Sets of Analyticity of a Normalizing Transformation. | Springer Series in Soviet Mathematics. ISBN 3-540-18926-2, 1988. | 370 pages. ( ") 1995 .
1 7 / 8 "$ ", 8
.
. .
. . .
. , ! .
Abstract M. I. Zelikin, Irregularity of optimal control in regular extremal problems, Fundamentalnaya i prikladnaya matematika 1(1995), 399{408.
Questions of typical discontinuity of optimal control in regular extremal problems of general position are discussed. Examples are given when there exists a countable set of accumulation points of switches.
ZT
(
)
(1)
f x u dt
0
_ = ( ), (0) = 0 , ( ) 2 ( ) 2 . ! 2 Rn |
2 Rs | Rn | ! #$ . % & $'!
' $
' ) = 1 * . + #!, , ! (1) # , *- , -
, #$ $! , # ' ' , ! & . .$- ' - / (1) ' ' ), # *- , $* ' ' (. 0. 1. 1 21], 22]). .
&
$ $
' ) # / ) # , ! ' . 5 1 ( # ) ' '/
# ), ) ! x
' x u
x
x
x T
x
u
B
u t
U
U
B
T
T
f
'
B
U
C
, - , - .
( 93{01{01731), 0 - ( UBD000). 1995, 1, N 2, 399{408. c 1995 !, "# \% "
400
. .
' & , $' 0. 1. 1' 21]. 7 !, , $
! # $' $' ' *, *- * : & ) ,) $' & , ! ! ' ' ! . 9 ! $ '
') ) ) ) ' $' :. +. 7 ' 23]. ! ! $' )* '
# ' ' : ' & & ! ) '. 5 # | & & $ ) *- ) : , ##
$ ' # ), *-) & . 5 ') # ) , ) ! * ) , $' 0. <. 1 24]. . $' )
5 # & # IFAC % , # =. 7. 5 # . 5 , , ! & ! )/ # & . % ! ZT
x
(2)
2 dt
0
_ = , _ = (0) = 0, (0) = 0 , ( ) = 1, ( ) = 1 j ( )j 6 1, # * j 0j, j 1j, j 0j, j 1 j. .! ') & , . 9 ) ! *- ! b( ) * ) +1 ;1 $ . 5 ,, ( ) ( ) | * , p *- ) * j ( )j , & , j ( )j. < * ! ' ) ( 0 0 ) & ) * = 2 sign , # | # $ ) ( ), &- ) * , = ;1 , &- , = 1. .! ' ) * ), '*- , $ ' $. 9 ) = 0. < ! * $ , . . & * ) *, # ) ( 1 1 ). 5 1 ' , $' # /! $ #, $' # $'. .$ ,, , ! $ ' # # . 7 x
y
y
u x
x
y
T
y
x
x T x
x
y
y T
y
u t
y
u t
x y
y
x
x y
x
Cy
y
C
x y
u
u
u
T
x y
401
! # (1) ' , $ ) , . . ) - ' . 5 ! ' ) *- / ) ) '. 5 # ' $' * , ' &
* ?. @. + 25] $' ), ' ) ! # . 7 -!* ,) ?. @. + )
, # ! ') # . : ! #, ' # # ) ! ' * ) ' ! # $' ) $- # & , $' 5. + 26]. .
$' ) ' ) ' ! # $' ), ' /! # # (. 5. + ) 27], =. 1. 28], @. 29] .). ? ,
# # #, ! ) , *- ) *$) ) ! ) , /! * . J ' ! # 1 , ) $' ),
! $' ), ) / * ) (. %. K. , ?. 1. + 210], 13). K ' # ) ! # $ '$ ! ) # # . .! , , 1 ,
* ), #. : ! #, # ! $- # & # ' (1), $' $ K. L 211] %. K. , ?. 1. + 212] ( $ %. K. , ?. 1. + & , * $) K. L , ! *- ) $
). . !, # $) . 5 & ',
j j 6 1
* ! ) ' ' #! * * # : ( ) = 0 ( ) + 1 ( ) ( ) = 0 ( ) + 1 ( ) 7# 5 # ! # / b( ) b( ) - b( ) ( ' &
)
)), b( ) b( ) ! / #! ) ' _ =; (3) _= u
f x u
f
x
uf
x
' x u
u t x t
t
'
x
u'
x :
x t t
@H
x
@
@H @x
#! = ; + h i = b( ), = b( ) # 2 2;1 1] = b( ). L #, ' H
u
f
'
u
u t
x
x t
t
402
. .
! : h ( )i = 0 *$# , *- # ! # #$ = b( ). 5 ) b( ) b( ), *- 5 # , ' , !*. J ! ' $) 2 0 1], & ) ,# #! # ) ) ' $ . @! = 0( ) + 1( ), ! , $') & b( ) b( ) 1 b( ) b( ) = 0. 5 ! ( ) | # . .$ adF , ') & ) ( ) $ 5 f g. 5 $) , ' !/ , # '& ad2Hq0 ( 1) ,
) , ' . : ' 213], & # ) $) , $) , !* # *$# # ! . .$' , - # * &, $ '#
' # ! ' & ' ') , &, ' & $'! -# . J ) #. 9 , 1 $) ) # . 7 ' # ! ' ) - *& . :$ 1 ' # M( ) 6 . 5 5 # &
'
', & , ! ' # # # & , - , $' . ?. @ 214]. 5 ' & ) 0. N. : $ 0. 0. %* ' 215] $' , &-) ') $ ') $O |
& & , ! ' # # # . P 5 # $ * , ! * ), ,
') 0. N. : $ 0. 0. %* ', $ * #), & $ ). P# & ! ! & , , / ' , , & ! ! ! ! #, , ) # ! ! & , - . < $ , ! ' # ! # . , 0. 0. %* 216] ', ' & ' ! ) # # # $ # . :
) ' # & T
B
x
x T
x t t
t t
U
H
x t t
H
x
H
uH
x
x t t
F x
G x
F G
q
H
x
t
C
u
403
# ) ). <
& ' (, ') # , , ) ! # $ ' , , '. : , /! ' * #! 5 # , ) ! ) , ) '
# ' ' ). < , *- $! ,)
!*, $' $ $ %. K. ?. 1. + 212]. $& 5 ' #! ) ' $. ?' , $' , ) # $ '# , $& $
. % / , $
) -!* $$-
) ' . J ! # ' ' #! ' # & ' #$ ) $' , ) # . ? # ) # & #$ , *- # ! & ,
! ! *- # ,) . < , * *- '. 5 ! b( ) b( ) | $ , ! # 1. 5 &, adiH0 ( 1), = 0 1 2 3, ! ' b( ) b( ). 5 '
' i = adiH0 ( 1 )
j , = 1 2 ; 4, ) ) ', & ! #! (3)
_1 = 2 + 1 ( ) _3 = 4 + 3 ( ) (4) _2 = 3 + 2 ( ) _4 = ( ) + ( ) + 4 ( ) ) _= ( #
8 < 1 1 0 = : ;1 1 0 (5) ; 1 = 0 5
' i
! *- ( i ): ( 1 ) = 4 ( 2 ) = 3 ( 3 ) = 2 ( 4 ) = 1
' , ' ) . + #!, (4), (5) ! - #! ) ' 1 , 4 3 2 )=0 lim i ( 1 2 3 4
B
x t t
H
i
x t t
z
w
j
: : :
n
z
z
F
z w u
z
z
z
z
F
z w u
z
a w
w
F
z w u
b w u
a=b
z
>
z
<
z
z w u
:
z
h z
h z
h z
h z
h z
u
F
z z z z w u
i
4;
!0
5 j j 1 #$ $' , ). a=b <
F
G z w u
u
w
H
S
:
= f = 0g, *- ! 4, z
404
. .
1 210]. . b < 0 ja=bj < 1. S
p+ : N+ ! S p; : N; ! S - Nw , ! . " # N+w N+ w 2 S
$ . % $ w # , . # , ,
N;w N;.
5 #$ ( ) ' # & ', *$# -# # # ,# #$ x
Z
dx
=0
:
2 210]. (n ; 2)- # S # p+ n- # (x ). &# $ B # , . ! ' x ! , $ . (n ; 2)- - , . ( $ ) * .
: # # ' $) ! ) $) ! ) ) # - ! ' # : !
$) ! (. 0. 0. %* , 9. 5. .) 217] %. K. , ?. 1. + 212]). ,
, $$- 1 , ) 2 R2 2 ') # , j j | # . <# ' # ( ) ! $ # , ' ) & $ ' $ ! # # # j j 6 1 $'*- ) !*, / ' (%. K. , ?. 1. + 212]). 9& $ ' # ' , ! ' , ' ! & * . u
t
x y u
x
u
x y
u
405
# ! * ,
* $ 1 . % ! Z1
( ; ( ))2 x
F t
dt
0
_ = , _ = (0) = 0, (0) = 0 j ( )j 6 1. x
y
y
u
x
x
y
y
u t
1. t 2 2t1 t2] ' + F
$ $ jF 00(t)j 6 1. l = ft xb = F (t) yb = F 0(t)g | # . 2. " # l $ : (t x y) l , , #
$ l. 3. ' + F (t) t = , ! jF 00(t)j 6 1. # lj(t< ) # lj(t> ) , # , p $ . "
jQF ( )j + jQF 0( )j, QF ( ) | ' + F ) QF 0 | F 0.
: ! , & ) & '/
' 1 2. 1. % ! Z1
2
x1
+( 2; x
4 2
u1 x1
)
dt
0
_ 1 = 1 , _1 = 1, _ 2 = 2 , _2 = 2 (0) = 0, (0) = 0 j 1( )j 6 1,
ju2(t)j 6 1.
x
y
y
u
x
y
y
u
x
x
y
y
u
t
3. (. ! # 1.) 1. " + xb(t) yb(t) 1 (x1 y1 ) * : $ ub1(t),
406
. .
1, 2 ,: : : . p # $ i+1 ; i
jx(i)j. 2. + (x2 y2)
. 0 2i i+1 ] u1 = 1 + # x2 = x41 $ p x21 (i ), # jx1(i )j # x2 = ;x41 x21(i+1 ).
: ! ' 3 / #, $' # !* ! ! . . $ /! -!* . 1. 1 $ # 1 .
5 ! b1( ) b1 ( ) b2( ) b2 ( ) | ! 1 ! ' 0 0 . b2( ) b2 ( ) b2( ). 2. b1( ) b1 ( ) b1( ) * + ' +x
t y
t x
t y
t
x y
x
t y
x
t u
t y
t u
t
t
Z1
2
x1
+ (b2 ( ) ; x
t
4 2
u1 x1
)
dt
0
x_ 1 = y1 , y_1 = u1) x1(0) = (x1 )0 , y1 (0) = (y1 )0) ju1j 6 1.
! b1( ) b1 ( ) b1( ). 3. b2( ) b2 ( ) b2( ) * + ' +x
t y
x
t y
t u
t
Z1 ;
t u
x2
t
; ub1(t)xb41 (t)
2
dt
0
x_ 2 = y2 , y_2 = u2) x2(0) = (x2 )0 , y2 (0) = (y2 )0) ju2j 6 1.
: ! # ' 3 #, 5 # ,
) 2, ! - #! ) ' 1 . < ' ' ) 1. : ! # ' ' ' - # & ) 1{3. 1 & & !, $ ' #! '& * ' ) ' , - * $' , 41 , 42, 18 , 28 . : # & 3 ) ' 1. J ' , * ) ! # ! $- # & . x
x
y
y
407
2. % ! Z1
2
x1
+( 2; x
) +( 3;
4 2
u1 x1
x
4 2
u2 x2
)
dt
0
_ i = i , _i = i j ij 6 1, = 1 2 3 (0) = 0, (0) = 0 . 5
' ' - & , & !, ! b3 ( ) $
), $ ' , ' ! 1. 5 & ! !, & ! * $ $ & ' $
$- # & . : # / ' & , 1. . , ! 2, 2 , 2 ' ', ' ' # j 2j 6 1 , 2 # . 7 ! , $! ! ) #) . %& !, / # # ( ) 1 / * ) ) & ), 1 , 2 ' # : & ' 2 / $ $ # # j 2j 6 1. 9 , & ! ! # ) ! ' ' ' & '. .
#, $' ! $' $O *
! , # ' * *$' ' ! ' , ! $' ) # * , ) ! ', , # & #- $ ! & & ! ) '. x
y
y
u
u
i
u
x
u
x
x
y
y
t
y
u
u
U
x y
u
u
u
u
1] . . // . . -. . . | 1959. | N 2. | . 25{32. 2] Roxin E. The existence of optimal controls // Michigan Math. J. | 1962. | V. 9. | N 2. | P. 109{119. 3] (. ). * + ,-. /-+ , 0 0 + // 1, . 2 3. . . | 1984. | 6. 48. | N 4. | . 754{864. 4] Fuller A. T. Relay Control Systems Optimized for Various Performance Criteria // Automatic and Remote Control: Proc. First World Congress IFAC, Moscow, 1960. | Butterworths, London, 1961. | V. 1. | P. 510{519. 5] ) + . :. . - . | .: 2, 1969.
408
. .
6] Brunovsky P. Every normal linear system has a regular time-optimal synthesis // Math. Slovaca. | 1978. | V. 28. | N 1. | P. 81{100. 7] Brunovsky P. Existence of regular synthesis for general control probleme // J. Di;. Eq. | 1980. | V. 38. | P. 317{344. 8] < *. . = , // ( 2 3. | 1982. | 6. 267. | N 3. | . 532{535. 9] Sussman H. Synthesis, Presynthesis, Su>cient conditions for optimality abs. subanalytic sets // Non-linear Controllability and Optimal Control. Monograph Textbook Pure Appl. Math., 133 (ed. by H. Sussman). | N. Y.: Dekker, 1990. | P. 1{19. 10] < . 1., ) . . 30 .GKG K. + ,-. // 6- 1 2 . . . . | 1991. | 6. 197. | . 85{167. 11] Kupka I. The ubiquity of Fuller's phenomenon // Non-linear Controllability and Optimal Control. Monograph Textbook Pure Appl. Math., 133 (ed. by H. Sussman). | N. Y.: Dekker, 1990. | P. 313{350. 12] Zelikin M. I., Borisov V. F. Theory of Chattering Control with applications to Astronautics, Robotics, Economics and Engineering. | Birkhauser, Boston, 1994. 13] Kelley H. J., Kopp R. E., Moyer H. G. Singular Extremals // Topics in Optimization (ed. by G. Leitmann). | N. Y.: Acad. Press, 1967. | P. 63{103. 14] [ *. ., ) + . :., :-, 3. ., G \. . . ] . | .: 2, 1976. 15] (/ ]+ . ^., K . . 2/- / _ ,-. `
. // j . | 1968. | 6. 8. | N 4. | . 725{779. 16] ( . ., K . . =.
.
- ] . | .: 2, 1989. 17] K . ., + 2. [. + . | .: 2, 1993. ' ( 1995 .
, . .
. . .
, L , n + 1, I , ! n " L=I . $, % ( I ) ( .
Abstract
K. A. Zubrilin, On class of nilpotency of obstruction to embeddability of algebras satisfying Capelli identities, Fundamentalnaya i prikladnaya matematika 1(1995), 409{430.
In a /nitely generated algebra L satisfying Capelli identities of order n + 1 over an arbitrary /eld there exists a nilpotent ideal I such that the class of nilpotency of the ideal I is not greater than n and the quotient algebra L=I is embeddable. It is shown that this bound of class of nilpotency of obstruction (ideal I ) in the class of algebras of /nite signature cannot be improved.
,
n, , n , . , C- L, C | , , ~ L C- C- , C~ | " C. # $ m-
m + 1. # 1 ' " ( , '(
. 1. C - L, C | , n + 1. I L, L=I I ! n. 1995, 1, N 2, 409{430. c 1995 , !" \$ "
410
. .
+ 1 $ , $ , ( . - 1 (. /3], /2]) 2, , ( ( ( , $ . 4 $ 2 . 2. C - L n + 1. " C - 5 " J 5- 5 C L, J \ L L # n 5- 5 L 5- 5 C L=J , L | $ C - L=L \ J ,
$!%
, C - 5 C - 5 , 5 - 5 L . - ' , , $ ( I) $ " , ( . 3. 6 $ "
" ! !
". L | 6 1 $, $ n+1. I L, # n, L=I . + 2 $ 7. #. 8 /11], , C | ( , $ J \ L $ ( 2n+1 ; 1. 9 /5] , , , C | $ $,. + 2 ' ( ) , '
. " ;, ( , $() ( , ( ( ( , ( ((. /16]). 4. (A L) | C - (6 6 ), ! n + 1. " C - 5 " J 5- 5 C A , J \ A A
# n 5- 5 L 5- 5 C A=J , L | C - L=L \ J , . '
, 5 C - 5 , 5 - 5 L . 0
0
0
0
0
0
0
0
0
0
0
0
0
411
9
7. #. 8 /10] " , P I- . +
, , ' , . =
2, , . - ,
$ ' , $ m-
m + 1.
$ $ 7. #. 8 /11]. 9 $ ( , '(
. # $ . > ' ?. 4. @ $, 1943 /6]. ?, A , (' . 9 ( B. ?, /12], ;. -
/17], . # /15], 8. 4 /13] , , ' . 9 ( ( $ , ( . 9. +. @ /6], , $ ( ( ( PI- , . , $ , ( /1], /7]. + $ $ ; /4], /9], /14]. @ $ ' . D $ 2
$ $ /11] /5] . 9 x 1 ( $ . 9 x 2 $ L
, $ $ 2. 9 x 3 , 5 J , J \ L $ " n. 9 x 4 $ 5- 5 L , L | $ L=L \ J. 9 x 5 $ $ $(, $ $ $ x 2 x 4. 9 x 6 $ $ $ 2 $ 1 3. 0
0
412
x1
. .
#$ C | , $, , . E $ C- 6 C- $ A, ! 2 6 C- , $ n = n(!) !:A A {zC C A} ! A: | C n
D C- A 6 D(A) , C- , EndC A f(xb0 x1 : : : xq )jx1=v1 :::xq =vq , f(x0 : : : xq ) | C- 6, x0 , , , f(xb0 v1 : : : vq ) v = f(v v1 : : : vq ) ( v 2 A. = A |
, D(A) ( ( , , A. ? A D(A)- . I D(A) EndC A. 4 A D(A)- A. D $ $, ( , A ,, $ > 2. E $, I A 6 I1 , : : :, Iq A, I gjx1 =v1 :::xq =vq :::xr =vr g(x1 : : : xq : : : xr ) | C- 6, x1 : : : xq ', $ , ( ( xi , q < i, vi 2 Ii , 1 6 i 6 q, vi 2 A, i > q. E $ , I = (I1 : : : Iq ). + . . 9 , , 6 ,, $ > 2. . 4 I A 6 $ n, (I : : : I) 6= (0) (I : : : I) = (0): | {z } | {z } n
x2
n+1
9 J $ L. ,
n + 1
413
( 3 4). I $ $ 2.
1. ( L 6
! x1 x2 : : : L 6 , : ) L L, L L + x1 x2 : : :% ) fxij i 2 Ng L $ ,$ L , L% ) + f(x1 : : : xq ) 2 L, 6 x1 : : : xq , $ , + L, , f(v1 : : : vq ) = 0 L ! v1 : : : vq 2 L. . K ) ) L. ? L J , fxi j i 2 Ng L, , f(x1 : : : xq ), ( f(v1 : : : vq ) = 0 L $( v1 : : : vq 2 L. L $ , f(x1 : : : xq ) $ x1 : : : xq , L. 4 L , ) ). > $ $, ). #$ ' : fxi j i 2 Ng ! L | $ . > ' J L , L, $ , f(x1 : : : xq ), L, f('(x1 ) : : : '(xq )) L. 4 ) , f('(x1 ) : : : '(xq )) $ , : fxij i 2 Ng ! L (f(x1 : : : xq )jx1='(x1 ):::xq ='(xq ) )jx1= (x1 ):::xr = (xr ) = 0 L. ; $ f(w1 : : : wq ) ( w1 : : : wq 2 L. 4 ) , f(w1 : : : wq ) = 0 L. + , ) , $ . > , L L , $ varL = var L. I L $ 6 ( x: xi , i 2 N, JJ, L. , $ $, L
n + 1.
414
. .
2. f(x1 : : : xn xn+1) | 6, x1 : : : xn+1, x1 : : : xn $, , !
!. f;
n X
j =1 x1 : : : xn xn+1.
f jxj xn+1
(1)
$
. D $, (1) ( ( xi $ xi+1 , i = 1 : : : n. #$ i 2 f1 : : : n ; 1g. + f jxi xi+1 = ;f, $ f x1 : : : xn. #$ j 6= i i + 1. + (f jxn+1 xj )jxi xi+1 = = ; f jxn+1 xj , $ f jxn+1 xj x1 : : : xbj : : : xn xn+1. , (f jxi xn+1 )jxi xi+1 = f jxi =xn+1 xn+1 =xi+1 xi+1 =xi = ;f jxn+1 xi+1 : $
$
$
$
$
$
$
$
+ , (1) ( xi $ xi+1 , i 2 f1 : : : xn 1g. 8 ( xn $ xn+1 . = j 6= n, (f jxj xn+1 )jxn xn+1 = f jxj =xn xn =xn+1 xn+1 =xj = ;f jxj xn+1 : ;
$
$
$
> , (f ; f jxn xn+1 )jxn+1 xn = f jxn xn+1 ; f: + , (1) ( xn $ xn+1 . ; . 9 ' ' $ { . 3. ( { !.) - f(x1 : : : xn xn+1) | $ L, x1 : : : xn xn+1, x1 : : : xn $, , !
! x, a | $ + $ D(L). L $
n X q=0
(;1)q
X
16j1 < <jq 6n
$
$
f jxj1 =a xj1 :::xjq =a xjq xn+1 =an;q xn+1 = 0:
(2)
. # , a D(L) ( x1 : : : xn+1. > $ , , ( x x. # X fq = f jxj1 =a xj1 :::xjq =a xjq 0 < q 6 n 16j1 < <jq 6n
415
f0 = f. # $ a 2 D(L) ( x1 : : : xn+1, fq , 0 6 q 6 n, x1 : : : xn+1 x1 : : : xn. + L
n+1, L 2 fq =
n X j =1
fq jxj =xn+1 xn+1 =xj 0 6 q 6 n:
(3)
# $ (2) $ n X
X
q=0
(;1)q
f jxj =a xj1 :::xjq =a xjq xn+1 =an;q xn+1 = 16j1 < <jq 6n 1 n X = (;1)q fq jxn+1 =an;q xn+1 = q=0 n n X X = (;1)q fq jxn+1 =xj xj =an;q xn+1 = q=0 j =1 n X n X = (;1)q fq jxn+1 =xj xj =an;q xn+1 : j =1 q=0
(4)
9 (3). + $ . 4 (4) , $, J j, 1 6 j 6 n, n X fq jxj =an;q xn+1 xn+1 =xj = 0: (5)
q=0
= ( xj ! xn+1 , xn+1 ! x1 , x1 ! xj j- (5), n X q=0
fq jx1=an;q x1 = 0:
(6)
4 , q, 1 < q 6 n, fq jx1=an;q x1 = X = f jxj1 =a xj1 :::xjq =a xjq x1 =an;q x1 + 1<j1<X <jq 6n + f jxj1 =a xj1 :::xjq;1 =a xjq;1 x1 =an;q+1 x1
1<j1 < <jq;1 6n n X f1 jx1 =an;1 x1 = f jx1 =an;1 x1 xj =a xj + f0 jx1 =an x1 : j =2
416
. .
# , , n X
fq jx1=an;q x1 = = f0 jx1=an x1 ; f0 jx1=an x1 +
q=0
+ +
n X q=2
(;1)q
X
X
1<j1< <jq 6n
1<j1 < <jq;1 6n
X
1<j16n
f jxj1 =a xj1 x1 =an;1 x1 +
f jxj1 =a xj1 :::xjq =a xjq x1=an;q x1 +
f jxj1 =a xj1 :::xjq =a xjq;1 x1 =an;q+1 x1 = 0: 1
; . 9 ' , ' , $ n \ (" (. 4. f(x1 : : : x2n) | 6,
x1 : : : x2n,
x1 : : : xn
xn+1 : : : x2n $, , !
! x. L f(x1 : : : xn xn+1 : : : x2n) ; f(xn+1 xn+2 : : : x2n x1 x2 : : : xn) = 0: (7) . 9 ( x 5 1 12 , n X (;1)q hq f(x1 : : : x2n) = f(x1 : : : x2n): q=0
4 13 x 5 , hq f = 0
n + 1, q 2 f0 1 : : : n ; 1g. # $ hn f = (;1)n f jx1 xn+1 :::xn x2n , f ; (;1)n (;1)n f jx1 xn+1 :::xn x2n = 0
n + 1. ; . > , (12) x 5 ("
4. $
$
x3
$
$
" J . J \ L
9 J , C- 5 J 5- 5 C L , J \ L L
417
$ $ ( n. - $ , C- F J F- F C L, $ " n. > F $, C/ q (a)j a 2 D(L), 1 6 q 6 n], q (a), a 2 D(L), 1 6 q 6 n, ' . E $, 0(a) = 1C ( a 2 D(L). #$ J | F- F C L, n X q=0
(;1)q q (a) an q v ;
v 2 L, a 2 D(L). #$ Bq+1 | L, f jx1 =w1 :::xq+1 =wq+1 xq+2 =wq+2 ::: f | $ L , x1 : : : xq+1 , , ( ( x, w1 : : : wq+1 wq+2 : : : | $ L. 4 Bq+1 , L=Bq+1
q + 1.
5. d2q (x1 : : : x2q ) | $ + L=Bq+1 ,
x1 : : : x2q
x1 : : : xq
xq+1 : : : x2q $, , !
! x. j , 1 6 j 6 q, + a 2 D(L=Bq+1 ) X
16i1 <
d2q jxi1 =a xi1 :::xij =a xij = X (8) = d2q jxq+i1 =a xq+i1 :::xq+ij =a xq+ij :
16i1 <
. E ' $ , d2q | a ( x1 : : : x2q . 9 $ $ , , ( x L=Bq+1 . = a ( x1 : : : x2q , X
16i1 <
d2q jxi1 =a xi1 :::xij =a xij
x1 : : : x2q x1 : : : xq xq+1 : : : x2q .
418
. .
4 4 , d2q (x1 : : : x2q ) = d2q (xq+1 : : : x2q x1 : : : xq ). 4 , X
16i1 <
d2q jxi1 =a xi1 :::xij =a xij =
=
X
d2q jx1 xq+1 xq x2q x =a x :::x =a x : i1 i1 ij ij 16i1 <
$
# 4 ' , (8). ; . #$ Wq L=Bq+1 | $" L=Bq+1 ( , 1) dq (x1 : : : xq ), dq (x1 : : : xq ) | L=Bq+1 , x1 : : : xq ', $ , ( ( x, 2) $ ( J L=Bq+1 , L=L \ Bq+1 x x. > , Wq L=Bq+1 , q x. - ' , ( ( ( , $ . L $ , b 2 D(L) $ '(b) 2 EndD(L=Bq+1 ) F C Wq .
6. ( + b D(L) + '(b) $ EndD(L=Bq+1 ) F C Wq | ! + ,$ D(L=Bq+1 )- F C Wq , : 1) '(b)jF (b) C Wq = id, F(b) = C/ p(a)j a 2 D(L) a 6= b 0 6 p 6 n],
F (b) | + C - F , $ + , $! p (b), 1 6 p 6 n% 2) / '(b) $ Wq C/ p(b)j 0 6 p 6 n] $ : f d = '(b)(f d), f 2 C/ p(b)j 0 6 p 6 n], d 2 Wq , ($ , Wq ,! F C Wq d ! 1 d)% 3) 2 f1 2 F(b), f2 2 C/ p(b)j 0 6 p 6 n], '(b)(f1 f2 d) = f1 f2 d,
d 2 Wq % 4) 2 g(x0 x1 : : : xr ) 6
x0 x1 : : : xq ,
x1 : : : xq $, , !
! x,
n X
'(b)
j =0
(;1)j j (b) g(bn j v x1 : : : xr ) = 0 ;
Wq , v 2 L=Bq+1 + b $ + b
+ ,$ D(L) D(L=Bq+1 ).
419
. 4 1) { 3) , J '(b) $ Wq C/ p(b)j 0 6 p 6 n], C/ p(b)j 0 6 p 6 n] Wq $ D(L=Bq+1 ). L p(b), 0 6 p 6 n, ( dq (x1 : : : xq ) Wq , x1 : : : xq , ' :
p (b) dq (x1 : : : xq ) =
X
16j1 < <jp 6q
dq jxj1 =b xj1 :::xjp =b xjp
1 6 p 6 q, p (b) dq (x1 : : : xq ) = 0, q < p 6 n, 0(b)jWq = id. $ Wq p (b), 0 6 p 6 n, , , ( x x. $ 5. = b x1 : : : xq , p (b) dq (x1 : : : xq ) x1 : : : xq , , Wq . - , , ( x x , b 2 D(L) p (b) dq (x1 : : : xq ) Wq . + $ , p (b), 0 6 p 6 n, Wq C/ p(b)j 0 6 p 6 n]- . D $,
p (b) ( r (b) dq (x1 : : : xq )) = r (b) ( p (b) dq (x1 : : : xq )): , 1 6 p r 6 q,
p (b) ( r (b) dq (x1 : : : xq )) = p(b) =
X
X
16j1 < <jr 6q
dq jxj1 =b xj1 :::xjr =b xjr =
X
16i1 <
dq jx1=bn1 x1 :::xq =bnq xq
ni = 0, i 2= fi1 : : : ip g fj1 : : : jr g, ni = 1, i 2 fi1 : : : ip g 4 4 fj1 : : : jr g, ni = 2, i 2 fi1 : : : ip g \ fj1 : : : jr g. + , C/ p(b)j 0 6 p 6 n]- Wq . 4 p (b), 0 6 p 6 n, Wq , p (b), 0 6 p 6 n, D(L=Bq+1 ). $ C/ p(b)j 0 6 p 6 n]- Wq p (b), 0 6 p 6 n, D(L=Bq+1 ), ' J '(b) D(L=Bq+1 )- Wq , ' 1) { 3). # , J '(b) 4). 4 -
420
. .
p (b), 0 6 p 6 n, , Wq n X
'(b)
= =
j =0
(;1)j j (b) g(bn j v x1 : : : xr ) = ;
n X
(;1)j j (b) g(bn j v x1 : : : xr ) = ;
j =0
q X
X
j =0
16i1 <
(;1)j
g(x0 x1 : : : xr )jx0 =bn;j vxi1 =b xi1 :::xij =b xij = 0:
# $ { q ( 3). D $ .
7. d | $ + J \ L. g(x0 x1 : : : xs) | 6,
x0 x1 : : : xq , q 6 s,
x1 : : : xq $, , !
! x. gjx0 =dx1 =v1 :::xq =vq 2 Bq+1
v1 : : : vq | $ + L.
. 4 Bq+1 , L=Bq+1
q + 1. + J , d J \ L, , d=
r X i=1
hi
n X m=0
(;1)m m (ai) ani m vi ;
hi 2 F C D(L), ai 2 D(L), vi 2 L, 1 6 i 6 r. 8 J D(L=Bq+1 )- Wq ='(a1 ) '(ar ). + , , g(d x1 : : : xq : : : xs) 2 Wq (1 g(d x1 : : : xq : : : xs)) = = 1 g(d x1 : : : xq : : : xs). - , 4) 6 , r X
g(
i=1
hi
n X
m=0
(;1)m m (ai ) ani m v i x1 : : : xq : : : xs) = 0: ;
I hi, a hi , a J D(L) D(L=Bq+1 ). ; . > , J '(ai ) '(aj ), i 6= j, ' , . $ 7 J '(a1 ) '(ar ) $ J '(a(1) ) '(a(r) ), 2 Sr .
421
8. g | 6,
x1 : : : xq $, , !
! x. ! v1 : : : vq 2 J \ L gjx1 =v1 :::xq =vq 2 Bq :
. @ , q. E , q = 1. @ $ , g . # , q ; 1. # , gjx1 =v1 :::xq;1 =vq;1 $ C- , hjt1=w1 :::tq;1=wq;1 , h(t1 : : : tq 1 ) | , t1 : : : tq 1 xq , t1 : : : tq 1, t1 : : : tq 1 | x, w1 : : : wq 1 | L. 4 7 , hjxq =vq 2 Bq . ; . ;
;
;
;
;
' 1. J \ L L #
n + 1. #$ 5 | C- C/ q (a)j a 2 D(L), 1 6 q 6 n], q (a), a 2 D(L), 1 6 q 6 n, | ' . E $,
0(a) = 1C . #$ J | 5- 5 C L, n X (;1)q q (a) an q v ;
q=0
a 2 D(L), v 2 L. Q, J \ L J \ L. ' 2. J \ L L ! n.
x4
% -
L0
#$ L, 6, 5, J , '( J (. J , $, $, 6 . 9 J , , D(L=L \ J) PI- . + , L L=L \ J, 5- $ 5 L . 4 C- L=L \ J C- 5 C L=J, C- D(L=L \ J) C- D(5 C L=J), 5- 5 C L=J, D(5 C L=J) 5- L=L \ J, D(5 C L=J) . 0
0
422
. .
9. ) 4" C - D(L=L \ J) P I - n(n + 3)=2 +,," 1. ) 5 5- 5 H 5- 5 D(L=L \ J), H | D(L=L \ J),
$!. . ) 4 J 5 C L , D(L=L \ J) n + 1 5 5- 5 D(L=L \ J). + , , D(L=L \ J) n + 1 X sgn( )x(n) y1 x(n 1)y2 yn x(0) = 0 ;
2Sn+1
Sn+1 f0 1 : : : ng. #
, $ n(n + 3)=2 JJ, 1.
) 5- 5 H P I- , H 5 n + 1. 4 B" , 5- $ 5 H . ; . #$ X | ' L , L | $ C- L=L \ J 6. ? L C- $ 6 X. 9 6 X $ , X, $ " 6. E $ lt (G) " G, ('( t . 9 lt (G), G | , ' g, $ lt (g) , ,. E $, g $" h (g < h), t lt (g) > lt (h) lt+j (g) = lt+j (h) ( j 2 N. $, g1 < g2 , g2 < g3, g1 < g3. = g1 < g2 , , g2 < g1 . 10. g | 6 + X .
,
G,
G, : n + 1
#
G !, 1)
#
n, 2)
, $
# ,
. L Z- " 6 + X !, + # g X , g. . #$ g | 10. + 15 x 5 , g $ 0
0
0
0
423
h(t1 : : : tn+1)jt1 =y1 :::tn+1 =yn+1 h | 6 X t1 : : : tn+1 , t1 : : : tn+1, yi , 1 6 i 6 n, | 6 X, , ' yi , ri , h , ti , si , " 0 6 r1 < < rn+1 r1 + s1 > > rn+1 + sn+1 : # $ L
n + 1, 0
X
2Sn+1
sgn( )h(y(1) : : : y(n+1) ) = 0:
> g h(y(1) : : : y(n+1)). D $, g < g ( ( 2 Sn+1 . > , g g $ X . # t( ) = max1 6 i 6 n + 1 (i) 6= i si + r(i) . + lt() (g) < lt() (g ) lt()+j (g) = lt()+j (g ) ( j 2 N. D $ .
11. 2 L | L=L \ J , 5- 5 L . . #$ X | ' L . > Y D(L=L \ J) 0
0
0
!(g1 : : : bgq : : : gr ), r = r(!) | $ , ! 6, g1 : : : bgq : : : gr | 6 X, $, ' , $" n. # $ X 6 , Y . 4 9 , 5- $ 5 H , H | D(L=L \ J), Y . ? L C- $ 6 X. # 10 6 X, $ $ 14 x 5, C- $ L . #$ g | 6 X, m 14. + g $ a1 am x, x 2 X, a1 : : : am | D(L=L \ J), !(g1 : : : bgq : : : gr ), ! 2 6, g1 : : : bgq : : : gr | 6 X. + J , g 14, , a1 : : : am m ; n Y . + , m > n, ' $ j, aj aj +1 : : : aj +m=n+1] 1 2 Y . # $ 5- $ , $" m g 0
0
;
424
. .
$ 5 L 5- , 6 X, ( $ X ( g, " $(, '( , $" " g. ; . 0
x5
. (
9 J , $ $ 3. + $(, x 4. #$ S2n | , ' f1 : : : 2ng. > X f1 : : : ng, Y | fn + 1 : : : 2ng. D Z X $, ZS2n T (Z) ' : X T (Z) = sgn( ) 2S2n (Z )Y
( Z, T (?) =
X
2S2n
sgn( )
sgn( ) | 2 S2n . * 1. 5 " ZS2n X X (;1) Z T(Z) = sgn( ) (9) j
j
Z X
2S2n (X )=X
Z X , ? X . . D 2 S2n Z( ) X ' : Z( ) = 1(Y ) \ X. + X T(Z) = sgn( ) (10) ;
2S2n Z Z ()
# ZS2n X X X sgn( ) = (;1) Z T(Z) = (;1) Z j
Z X
j
j
Z X
j
2S2n Z Z ()
=
X X
(;1) Z sgn( ) :
2S2n Z Z ()
j
j
425
9 P . - Z Z ()(;1) Z , Z Z( ), ? Z( ), 1, Z( ) = ?, 0, Z( ) | . @ Z( ) $ , (X) = X. # . 12. ( " k, 0 6 k 6 n, + hk " ZS2n , j
j
X
j
Z j=k
T(Z) = hk
X
sgn( )
2S2n (X )=X
Z k X . . 4 , X X X T (Z) = sgn( ) = Z =k Z =k S2n Z Z () X n (11) X X = Cmk sgn( ) : j
j
j
j
2
m=k
2S2n jZ ()j=m
# (10), J , ' k ' m Cmk . + $ $, m 2 f0 1 : : : ng X
2S2n jZ ()j=m
sgn( ) = tm
X
2S2n (X )=X
sgn( ) = = tm
X
2S2n jZ ()j=0
8 Rm , ' (i1 j1 ) (im jm ) 1 6 i1 < < im 6 n < j1 < < jm 6 2n. $, X
2S2n jZ ()j=m
sgn( ) =
+ tm = ; .
X
2Rm
X
2Rm
sgn( )
sgn( ) hk =
X
2S2n jZ ()j=0 n X m=k
Cmk tm :
sgn( ) :
sgn( ) :
426
. .
> , (11) 1. 4 , n X X X (;1) Z T (Z) = (;1)k T(Z) = j
Z X
=
n X
j
(;1)k
n X
k=0 Cmk
Z j=k
j
X
sgn( ) =
k=0 m=k 2S2n jZ ()j=m n X m X X = (;1)k Cmk sgn( ) = m=0 X k=0 2S2n jZ ()j=m
=
2S2n jZ ()j=0
sgn( ) :
13. - ZS2n Z- ! x1 : : : x2n, x1 x2n = x(1) x(2n) ! 2 S2n . T(Z) x1 x2n Z- "
" 2n , ! x1 : : : x2n, !
!, $ ! jZ j, | 2n ; jZ j. . 4 T (Z) , T(Z) =
X
2S2n (Z )Y
sgn( ) =
X
X
U Y 2S2n (Z )=U
sgn( )
U Y , jU j = jZ j. 8 X
X
U Y 2S2n (Z )=U
sgn( ) x1 x2n
Z X, U Y , jU j = jZ j. $, U X Y nU. ; . 8 ' , (xij ), xij , 1 6 i j 6 2n, | ' . # , e0 = x11 x2n2n e0 = = x1(1) x2n(2n). E JRS , S R f1 : : : 2ng jS j = jRj, $ , (xij ),
, S R. # , xij , 1 6 i j 6 2n, " JRS = 0, jS j = jRj > n+1. I , , (xij ) ( n. + 13 , T (Z) e0 = 0, jZ j 6= n.
427
4 12 1 , X
Z X
(;1) Z T(Z) e0 = j
j
n X q=0
=
(;1)q hq
X
sgn( ) e0 =
2S2n (X )=X (;1)q hq JXX JYY = (;1)n hn JXX JYY
n X q=0
= JXY JYX
$ hq JXX JYY = 0 q < n. + , JXX JYY = JXY JYX : (12) + $ $ $(. L $ $ $ $. 9 " ' . #$ G | h, x | $ " G. + , " x, ( " y G, " x
" y h. $ " x. D , (x y) + (x h) = (y h), " G . max (x h), x " G h | $ G, G. ; G " G, 0.
14. G |
, n | . ! n+1
#
G, $ !
# n,
# ,
, ,
.
G
G, ,
G,
n ,
#
G G ! n. 0
0
. = G ( n, G $ G. #$ G $" n. + X " G $ ( " G, n. 9 , $ G X. = " x X, " y G, ' x G, X. + , X " G , $ G. G G n. # G n $ . 0
0
0
0
0
428
. .
D $, (x G ) 6 n ( " x G. # $ G | $ G, ' " y, (x G ) = (x y) " y x G. + (x G ) = (x y), " x y X. I , (x y) 6 n. ; . 0
0
0
0
15.
#
G n + 1 $ !
# , $ !
n.
#
G n + 1 $ !
# , i-
#
G si ,
, i-
# , ri,
: 0 6 r1 < < rn+1 r1 + s1 > > rn+1 + sn+1
,
# $
,
.
. #$ x1 : : : xn+1 | " G, ( n. # ", , , (x1 h) > > (xn+1 h), h | $ G. 9 , " xi, " yi , yi i ; 1 (xi yi ) = n ; i + 1. I $
i, 1 6 i 6 n+1, $ " xi n. + " yi , 1 6 i 6 n + 1, . ; .
x6
*+ 1 { 3
9 J " $ 2, 1 3. + 2. #$ 5, J | , x 3. 4 1 x 3 , $ J \ L ( n. 4 11 x 4 , 5- $ 5 L , L | L=L \ J. #$ X | ' L . # Y , Y D(L), , $ 11 x 4. > 5 5,
q (a1 am ), 0 6 q 6 n, 1 6 m 6 n(n + 3)=2. + B" , 9 x 4 J , D(L=L \ J) n 5 5 D(L=L \ J), , 5 - $ 5 L . + . + 2 , $, C , . 0
0
0
0
0
0
0
429
+ 1. # 1, C | . + 2 , C- L=I 5- L~ , 5 | , , 5- $ L~ I L $ " n. - $ /2] (. /3]), 1. + 3. #$ , | , L. #$ I | $ L, $ $" n, L=I . + D(L=I) . #$ f(t1 t2) | $ ( t1 , t2 JJ, 1, D(L=I). + f( ) x 2 I, x | ' L. # I n = 0. # (f( ) x)n = 0. # $ L | ,
n + 1, L $" n + 1. - , (f( ) x)n = 0 $ n. # 3.
(
1] . . // . | 1989. | . 28. | N 2. | !. 127{143. 2] & ' (. ). ( . ). *+ ,- . - // /. - . 0. | 1986. | . 41. | N 5. | !. 161{162. 3] &0 3. (0 . | *.: * , 1971. 4] '+ *. 6. 7 . 7 // * . . | 1989. | . 180. | N 6. | !. 798{808. 5] 0 (. . , 0 :; < (. // * . . | 1995. | . 186. | N 3. | !. 53{64. 6] *+ . ). = . - ,- // * . . | 1943. | . 13. | N 2{3. | !. 263{286. 7] * 6. . = ,- - +- // 6 . *>/. * ., -. | 1975. | N 6. | !. 118{119. 8] * 6. . = . + , . < - P I - // 6 . *>/. * ., -. | 1989. | N 2. | !. 17{20. 9] , + !. 6. 7 . - // !. . <0 . | 1989. | . 30. | N 1. | !. 134{144. 10] ? @. . = A< P I - - // . | 1974. | . 13. | N 3. | !. 337{360. 11] ? @. . , 0 :; < B . (. // ). 3 !!!?. ! . . | 1981. | . 45. | N 1. | !. 143{166.
430
. .
12] Amitsur S. A. A non-commutative Hilbert basis theorem and subrings of matrices // Trans. Amer. Math. Soc. | 149(1970), p. 133{142. 13] Irving R. S. AFne PI-algebras not embeddable in matrix rings // J. Algebra. | 82(1983), p. 94{101. 14] Procesi C. A formal inverse of the Caylay { Hamilton theorem // J. Algebra. | 107(1987), p. 63{74. 15] Procesi C. Rings with polynomial identities. | Dekker, N.Y., 1973. 16] Razmyslov Yu. P., Zubrilin K. A. Capelli identities and representations of Onite type // Commun. Algebra. | 22(14). | 1994. | P. 5733{5744. 17] Small L. W. An example in P I -rings // J. Algebra. | 17(1971), p. 434{436. & ' 1995 .
. .
. . .
, .
. ! . ! # #.
Abstract
E. A. Lapshin, The denition of acoustic signal propagation domain, Fundamentalnaya i prikladnaya matematika 1(1995), 431{454.
The propagation domain of solution of the Burgers equation with initial function which is equal to zero outside an arbitrary segment is considered. The precise and asymptotical estimations of solution carrier in arbitrary cutting are derived. An algorithm for the carrier determination for arbitrary initial function is presented. The results have numerical applications.
1 " = 0
(" = 0) @u ; u @u = 0 @z @ u (z = 0 ) = () u = ( + zu). " z, u(z ) $ %& . ' $ , . . % , ( %). () , z = 0 * ) (z = 0), ;1 + ; ; + = ;1 ; (u ) ; u z = + (u ) ; u z (1) d (z) = ; 1 (u; + u+ ) dz 2 ! ,,- ( N 95-02-03827a).
1995, 1, N 2, 431{454. c 1995 !", #$ \& "
432
. .
u; u+ (z) | $0 u+ u; | $ , . . u; = !lim u(z ) (z);0 u+ = !lim u(z )0 (z)+0 ; () | %& , * % ' % ;+ ) | %&, ' , + () 0 ;1 ;+ (u ;+ (). 1 % u; = ; ( ), u+ = + ( ). 2. 2$ 3 3. (4 $ $ 3 3.) 3 u(z = 0 ) = (),
8> 0 6 b > a < () = > k2 + v2 2 5b 0] : k1 + v1 2 50 a]:
()
4 $ k2 6 0 k1 6 0 v2 6 0 v1 > 0: k2 = 0 v2 = 0 $ $ $ | 3 3. 7 (1) d (z) = ; u; + u+ dz 2 +;v u (z) = k 1 ; u+ z 1 ; (z) = u k; v2 ; u;z
2
d (z) = ; u; + u+ dz 2 k 1 (z) + v1 + (10 ) u = 1;k z 1 u; = k21 ;(z)k +z v2 : 2 ) u+ u; , $ d (z) = ; 1 k1 (z) + v1 + k2 (z) + v2 dz 2 1 ; k1 z 1 ; k2 z k1 + k2 1 v d + 1 v 1 2 dz 2 1 ; k1z 1 ; k2z = ; 2 1 ; k1 z + 1 ; k2z (0) = 0 | z = 0:
433
8 $ %%&3 . p (z) = k ;1 k (v1 (1 ; z2 ) ; v2 (1 ; zk1 ) + (v2 ; v1 ) (1 ; zk1)(1 ; zk2 )) = 2 1 p p p p = k ;1 k (v1 1 ; zk2 + v2 1 ; zk1 )( 1 ; zk2 ; 1 ; zk1): 2
1
$ % (z) z k1 6= k2 . 4 $ k1 = k2 = k (z) d (z) + k (z) = ; 1 v1 + v2 dz 1 ; kz 2 1 ; kz (0) = 0 = C(z) (1 ; kz) (z) = ; 12 (v1 + v2 )z: k1 6= k2 % (z) ' ' : p p p p (z) = k ;1 k (v1 1 ; zk2 + v2 1 ; zk1 )( 1 ; zk2 ; 1 ; zk1) = 2 1 p p = k ;1 k v1p1 ; zk2 + vp2 1 ; zk1 ((1 ; zk2 ) ; (1 ; zk1 )) = (2) 1 ; zk2 + 1 ; zk1 2 p1 p = ; v1 p1 ; zk2 + vp2 1 ; zk1 z: 1 ; zk2 + 1 ; zk1 7 *3 $ (z) z, 3 3 3. :' % (). 3 v1 v2 k1 k2 v1 = ;v2 > 0 k1 = k2 > 0: S1 S2 | * ) 3 z = 0. 2 p ; p1 ; k2z) p 1 ; k2 z p (z) = v2 z( 1 ; k2z + 1 ; k2 z 2 S1 = 12 v1a = ; 21 vk1 1
434
. .
2 S2 = 12 v2a = ; 21 vk2
S1 = v1 2 k2 = 2 : S2 v2 k1 2
8 (z0 ) = b, . .
p
p
v2z0p( 1 ; k2 z0 p; 1 ; k2 z0 ) = ; v2 : k2 1 ; k2z0 + 1 ; k2z0 ; < )3 z0 , z = z0 ' 3 b, . . 3 3. p p p p z0 k2 ( 1 ; k2z0 ; 1 ; k2z0 ) = 1 ; k2z0 + 1 ; k2z0 p p 1 ; k2z0 (1 + k2z0 ) = 1 ; k2z0 (z0 k2 ; 1) p ;(1 + k2z0 ) = (1 ; k2z0 )(1 ; k2z0 ) (1 + k2 z0)2 = (1 ; k2 z0 )(1 ; k2 z0 ): $ , ' 3, $ ;(1 + k2 z0 ) > 0: (3) 8 1 + 2k2z0 + 2 k22z02 = 1 ; z0 k2(1 + ) + k22 z02 z0 k2(2 + 1 + ) = z02 k22( ; 2 ): 3 z0 k2 6= 0, +1+ (4) z0 = 2 k ( ; 2) : 2
; > 0 k2 < 0, $ z0 , $ % (4), )3 3 ; 2 < 0, . . S1 > S2 . , $ ; 2 < 0 (3). (3, 2 2 + + 2 + + + > 0: ; 1 + 2+;+2 1 = ; ; +2 = ; 2 ; ; 2 =, $, $ (z) = b )3 , % (4) 3 S1 > S2 . >$ (z) = a, )3 * 3 S1 < S2 , % + + ) : z0 = (2 (5) k2 (2 ; )
435
@ ) 3 z? 3 u(z = 0 ) = () (% ()). ; S1 > S2 , ) 50 z0), z0 = k22(+1+ ;2 ) , 3 z %& u( z)
8 0 6 b > a > > < k2 + v2 u( z) = > 1 ; k2z 2 5b (z)] > : k11; +k vz1 2 5 (z) a]: 1
C3 (z) % (2)
(6)
p
p
(z) = ; v1 p1 ; zk2 + vp2 1 ; zk1 z: 1 ; zk2 + 1 ; zk1 z = z0 * 3:
8< 0 < b > a u( z0 ) = : k1 + v1 1 ; k1z0 2 5b a]:
( z~ = z ; z0 ~ = ; b % (2) $ v~2 = k~2 = 0, k~1 = 1;kk11z0 , v~1 = v1;1 +kk11z0b , $, $ z > z0 , %&, * % ,
8> 0 6 (z) > a < u( z) = > k~1~ + v~1 : 1 ; k~ z~ 2 5 (z) a] 1
(z) = ~ (~z ) + b,
q
~ (~z ) = v~~1 ( 1 ; z~k~1 ; 1): k1 ; ) S1 < S2 , z 2 50 z0), + + ) z0 = (2 k (2 ; ) 2
3 % (6) . + + ) z = z0 = (2 k (2 ; ) 2
436
. .
3 3
8 0 6 b > a < u( z0 ) = : k2 + v2 1 ; k2z0 2 5b a]:
z > z0 u( z)
8> 0 6 b > (z) < u( z0 ) = > k~2~ + v~2 : 1 ; k~ z~ 2 5b (z)] 2 0 k~2 = 1 ;kk2 z v~2 = v12;+kk2za 2 0
2 0
(z) = ~ (~z ) + a z~ = z ; z0 ~ = ; a q ~ (~z ) = v~2 1 ; z~k~2 ; 1 : k~2 3. E z, 3 $ . 3 u(z = 0 ) = (. 1). k1 k2 | 3, b < 0, a > 0, v1 > v2 . v4
() k1
v1 b
B
O v2 k2
A
a
v3 . 1
1 , z ' B, ' A & $. < ), $ $ A B = a ; v4z = b ; v3 z
437
, . . ) & $ $. = $ z (z) = b ; v3 z (7) (z) = a ; v4 z (8) . . < z ) 3 &. 3 v1 = ;v2 k1 = k2 . (7) ) (z) . 2, $
p
p
v2 z( p 1 ; k2z p; 1 ; k2 z = b ; v3z = b ; (v2 + k2b)z = b(1 ; k2z) ; v2 z: 1 ; k2z + 1 ; k2z
p
p
v z( 1 ; k z ; 1 ; k2z) = p p p 2 p 2 = b(1 ; k2z)( 1 ; k2z + 1 ; k2 z) ; v2 z( 1 ; k2z + 1 ; k2z) p p p 1 ; k2zv2 z( + 1) = b(1 ; k2 z)( 1 ; k2z + 1 ; k2 z) p v2 z( + 1) = b(1 ; k2z) + b (1 ; k2z)(1 ; k2 z) p (v2 ( + 1) + bk2)z ; b = b (1 ; k2z)(1 ; k2 z) v2( + 1) p + k (1 ; k2z)(1 ; k2z): 2 z ;1 = b :' $ $ C := v2(b+1) + k2.
p
Cz ; 1 = (1 ; k2z)(1 ; k2z) C 2z 2 + 1 ; 2Cz = k22 z 2 + 1 ; k2z( + 1) C 2 z ; 2C = k22 z ; k2( + 1) (C 2 ; k22 )z = 2C ; k2 ( + 1) 2 v2(b+1) + k2(1 ; ) z = 2C C;2k;2 (1k+2 ) = (9) v2 (+1) 2 + 2k v2 (+1) + k2(1 ; ) 2 2 2 b b ( $ z ) 3 Cz ; 1 > 0, $ z . I 3 &3 (7), (8), < $3 , * )3 (7). Cz ; 1 > 0 z > 0
438
. .
C = v2 (b+ 1) + k2 + ) : z = 2C c;2 k;2 (1 k22 $ C z, $
8 v (+1) 2 v (+1) >> 2 2 + b k2 (1 ; ) b 2 >> Cz ; 1 = c ;Ck22(1+)+k = > 0 2 2 < c ; k2 v (+1) +2k v (+1) + k2(1 ; ) 2 2 b b v (+1) >> (1 ; ) > 0: >> z = v (+1)22 b +v k(2+1) 2 : + 2k2 b + k2 (1 ; ) b 2
2
2
2
2
2
2
" 3 'J : 8> v ( + 1) 2 v ( + 1) + 2 b k2(1 ; ) > 0 >> 2 b < 2v2( + 1) >> b k22(1 ; ) > 0 >: v2( + 1) + 2v2( + 1) k + k2(1 ; ) > 0 2 2 b b 8> v ( + 1) 2 v ( + 1) + 2 b k2(1 ; ) 6 0 > 2 b >< 2v ( + 1) 2 >> b k22(1 ; ) 6 0 >: v2( + 1) + 2v2( + 1) k2 + k2(1 ; ) 6 0: 2 b b
C, $ v2 (b+1) > 0, . . v2 (b+1) = v2 ;b v1 > 0. C$, 3 * 8 v2( + 1) >< b +k22(1 ; ) > 0 (10) >: v2( + 1) + 2v2( + 1) k2 + k22(1 ; ) > 0 b b
8 2v2( + 1) >< + k2(1 ; ) 6 0 b >: v2( + 1) 2 + 2v2( + 1) k2 + k2(1 ; ) 6 0: 2 b b
8 3 $ k2 > 0 k2 < 0. 3 k2 > 0.
(11)
439
2 (10), (11) $ (10) , v2 (b+ 1) + k2 (1 ; ) > 0 (100) v2( + 1) 2 2v2( + 1) (11) , + k2 + k22 (1 ; ) 6 0: (110) b b 7$ k2 < 0. 8 2v2( + 1) >< + k2(1 ; ) > 0 (10) , v (b + 1) 2 2v ( + 1) >: 2 + 2 b k2 + k22 (1 ; ) > 0 b . . (11) < $ ). =, $ * ). 1. ; k2 > 0, * )3 (z) = ;v3 z + b $3 ) 3 ' (100), ' (110). ; ) k2 < 0, $3 ) 3 (1000). 1. k2 > 0 z % (9) z < k12 . 23 (z) = a ; v4z0 $ ) 1 $ * ). 2. ; k1 = k2 > 0, * )3 (z) = ;v4 z+a $3 ) 3 ' ; va2 (1 + ) + k2 ( ; 1) > 0 (12) v2(1 + ) 2 v2(1 + ) + k2 ( ; 1) 6 0: ; 2k (13) 2 2 a a ; ) k1 < 0, $3 ) 3 ; va2 (1 + ) + k2 ( ; 1) > 0 v2(1 + ) 2 ; 2k2 v2(1a+ ) + k22 ( ; 1) > 0: (14) a $3 % ;2 va2 (1 + ) + k2( ; 1) z= : (15) v2 (1+) 2 ; 2k v2 (1+) + k2 (2 ; ) 2 2 a a
2. k1 > k2 > 0 z % (15) z < k1 . 2
440
. .
2
r
. 2
> & & 3 $- 3. 8 , z = 0 %& ():
8 >< 0 < 0 > n () = > vj ; vj ;1 : j ; j;1 ( ; j;1) + vj;1 2 5j;1 = j ] j = 1Kn:
& & < ' z > 0. = . 8 ' )3 3 z ; 50 1) ) 50 z1] (z1 z2 ] : : : (zl 1). ) zi i = 1 l , $' ' z > zi & ' 3 & , | '3 &. < $ zi+1 & z = zi . ( ) ) (zi zi+1] i = 0 l, z0 := 0 zl+1 := 1, $ % , $ & z = zi . - $ ') . 441. 3, 4, 6 ' * ' . >& z = zi . 1) 3 &, ' , $' ' ( $, ), $ (. ))). & ) zi+1 (. ' ' N 4). >& ' , ' ) < 3 $ : ' , & , (. 2)0 ) ' | & )
441
8 #: = 0 n: n 0 1 0 1 j | , j |
# z
1.
:::
v v :::v
v
2.
i
?
=0
? - 2
? 7#! 4.
6
Z > zi
=
zi
3.
+1
zi
?
5.
z
-
+1
?
6.
5 ! ( i i + 1] = . 8 =
z z
z
Z
60 .
5 ! ( i i +1] = i+1 z z
z
z
i
?
= +1 i
7.
> . | , # .
Z
(. 3). ; ) , & < $ . 2$ * : r
2
. 3
442
. .
z = zi $ , $ ) $ ) $. @ ) * : ' z = zi $ $ 3 . 7 $ ' ) m *3 S(m) < ($ , $ $3 , * &3 , &3 *3, $3 )3 )3 *3). L m , S(m) 3, 3 . 1) zi . $ & z = zi;1 )* 3. 3 $ zi1 zi2 : : : 2 , z = zir , z > zir ' % $ ) , $ % ) 5zi;1 zir ]. 2 ) %, 3, ) & z > zi , zi = minfzi1 zi2 ::g (zi = 1, fzir gjr=12::: | )). C$ zir $ ) 5j j +1 ], * : 1) j j +1 vj +1 > vj . 2 j z zirj = k1 + zi;1 = vj +1 ; i;1 j j +1 ; vj kj | ) 5j j +1), 2) j , j +1 ) 2. 2, % (15), $ zirj = A2 ;;2k2AA++kkj ;(kkj;;1k ) + zi;1 j j j j ;1 ; + v v A = j ;j j +1 j 3) j , j +1 | ) 1. 2, % (9), $ 2B + kj ; kj +1 zirj = b2 + 2k + zi;1 j B + kj (kj ; kj +1) v; ; v+ B = j+1; j +1 : j j +1 2$ % ) (zi zi+1]. C k + 1 0 : : : k vj ( $ : vj+ vj; ) z = zi . 2' %&, * %
443
) (zi zi+1 ]. ( $ 3 ) $ . ; j , < * : j = j ; vj (z ; zi )
vj = vj :
; ) j | , v j = ; j
+
p1 ; z~k + v;p1 ; z~k p1 ; z~kj;1 + pj 1 ; z~k j j j ;1
j
k ( ; ) + v; + j (vj; ) = j ;1 j1 ; kj z~ j ;1
k ( ; ) + v+ (vj+ ) = j j1 ; kj z~ j z~ = z ; zi : j
2 " = 0 6
8 $ @ 2 " @V" " @@V2" + V" @V @ ; @z = 0 ;1 < < +1 0 < z 6 Z0 < +1 V" (z = 0 ) = f(): $ ) < $, , ) 51] (4. M. 7, ;. >. O \>$ ) $, "). 7 ' ' 52]. R $ (1) 3 " > 0, ) (" = 0) $, . < $ ) $ , ) $ 0 < z 6 Z0 = (z) $ < . ), $ ) V" (z ) =
N X n=0
vn (z )"n + o("N ):
(2)
444
. .
( ) * V" (z ) =
N
X
n=0
vn(z ) + wn(z ; " (z) ) "n + o("N )
(3)
%& vn(z ) ) , $ ) (2). 2 ) (3) ) ) (2), %& wn (z ) j j ! 1 ) 3 ( j ; (z)j > 0 > 0, 0 ", j ;" j " ! 0 ) 3 3 '3 $ ). 4 %& V" (z ) z > 0 ) 3 ')
N X V~ (N ) (z 0 ") = V (N ) (z ") + W (N ) (z ") = vn(z ) + wn(z ; " (z) ) "n n=0
) . 7$ , * <%%& ) (2), ) 3 $ (z). (2) (1) $ ". $
@v0 @v0 @v1 @v1 @v0 @2v0 @z ; v"0 @ + @z ; v0 @ ; @ v1 ; @2 " + # n;1 n ; v @vn ; v @v0 ; @ 2 vn;1 ; X v @vn;k "n + + o("N )=0 + @v k @ @z 0 @ n @ @ 5v0 (0 ) ; f()] +
N X
n=1
k=1
vn (0 )"n + o("N ) = 0:
(4) 8 (4) ' $3 $ o("N ) $ " $, <%%& ". 73, ) '3 <%%& < $, < @v0 ; v @v0 = 0 v (0 ) = f() 0 @z 0 @ @v1 ; v @v1 = @v0 v ; @ 2 v0 v (0 ) = 0 1 @z 0 @ @ 1 @2 .. . ;1 @vn ; v @vn ; v @v0 = @ 2 vn;1 ; nX @vn;k v (0 ) = 0: v 0 n k n @z @ @ @ @ k=1
445
C$ v0 (z ) ) $ (" = 0). @ f() $-, $, $ v1 = v2 = : : : = vn = 0. 3 , * <%%& ) (3). 2 %& wn z ;" (z) $ 3 (z), < %& ' 3 3 $ , j ; (z)j $ . 1 < $ $ %& vn (z ) $ $ 3 $ = (z), < %& vn (z ) ) (3) ) 3 ) 3 $ (z): vn (z ) =
N 1 @ m v X n ( ; (z))m + O(( ; (z))N ) = m m! @ m=0 N 1 @ m v X n
=
m=0 m!
@m
m "m + O("N ):
(5)
C3 = ;" (z) , $ (R(z (z))) ' $ 3 $ %& R(z ) :
8< lim R(z ) = R (z (z)) 6 (z) (z);0 (R(z (z))) = : !lim R(z ) = R(z (z)) > (z): ! (z)+0
8 z = z < : = ; (z) :
2
"
@V (z ) = 1 @V (z ) @ " @ 2 @ V (z ) = 1 @ 2 V (z ) @2 "2 @ 2 @V (z ) = @V (z ) ; 1 d (z) @V (z ) @z @z " dz @ (1) z 2 @V ) ; @V = 0: ";1( @@V2 + ddz(z) @V + V @ @ @z
(10 )
446
. .
=3 (5), (3) (10 ). M $ ", $
2 0
+ w ) @w0 + ";1 @@w20 + ddz(z) @w + (v 0 0 @ @
@2w1 d (z) @w1 @v0 @w1 @v0
+ @ 2 + dz +(v0 + w0 ) @ + @ + @ + @ 0 @w0 @(v0 ) @w0 + w1 + @v @ ; @z ; @z + +m "m;1 + +o("N ;1 ) @ @w @v @v 2 2 @w0 1 0 + w w1 + @0 + 2 = @@w22 + ddz(z) @w 2+ @ @ @ + @
@w1 2
) ; @ @v0 + @w (w ; 0 + (v0 ) @ @z @ @z m > 3 2 m @w0 w + m = @@w2m + ddz(z) @w m @ + @ mX ;2 @wl w + @wm;1 w + @v0 + @vm (v + w ) ; @wm;1 : + 1 0 @ m;l @ @ @ 0 @z l=2
<%%& " , $ %& wn n = 0 1 : : : @ 2 w0 + d (z) @w0 + (v + w ) @w0 = 0 0 0 2 @ dz @ @ 2 @ w1 + d (z) @w1 + @ ((v + w )w ) = @ 2 dz @ @ 0 0 1 d (z) @v0 ; (v +w ) @v0 ; @v0 @w0 0 @(v0 ) + ; = @w 0 0 @z @z dz @ @ @ @ 2 @ w1 + d (z) @w2 + @ ((v + w )w ) = @ 2 dz @ @ 0 0 2
@v 2 ! @v @w @ @v @w 0 1 0 1 @w1 w1 + @ + @z @ ; @0 = @z ; @ w1 ; @ m > 3 @ 2 wm + d (z) @wm + @ ((v + w )w ) = 0 m @ 2 dz @ @ 0 @(v0) mX ;1 @w @w @w l m ;1 m ;1 wm;l + @ : = @z ; @ wm;l ; @ l=1
447
1 %& w0(z ) w1 (z ) $ , v" (z = 0 ) = f(), f() 3 * %& 8 V < f() = : 0 6 0 > a a = ; k (6) k + V 0 6 6 a V > 0 k < 0: 4 < $ d (z) = ; 1 p V v = 0 v = p V : 0 dz 2 1 ; zk 0 1 ; zk 1) w0 . ( %& w0 (z ) @ 2 w0 + d (z) @w0 + (v + w ) @w0 = 0 < 0 (7) 0 0 @ 2 dz @ @ @ 2 w0 + d (z) @w0 + (v + w ) @w0 = 0 > 0: (8) 0 0 @ 2 dz @ @ < $ ( * %& z). ( '$3 %& w0(z ) j j ! 0. : ' , $' 3 ') ~V (z ") = v0(z ) + w0 z ; "
= (z). L ') * : w0 (z ;0) + v0 = w0(z +0) + v0 : (9) (7), (8). 7
y(;) = v0 + w0, y(+) = v0 + w0. 2 ' ) . @ , (9) <%%& %& y(;) (z ) y(;) (z ) $ = 0, . . y(;) (z ;0) = y(;) (z +0). < %& w0(z ) %& v0 (z ) $ $3 %& y(z ), * @ 2 y + d (z) @y + @ 1 y2 = 0 ;1 < < 1: (10) @ 2 dz @ @ 2 " ) 3 lim y(z ) = v0 !+1 lim y(z ) = v0 : !;1
448
. .
' $ (10) , $ @y = ; 1 y2 + d (z) y + C(z) @ 2 dz C(z) | , 4' ' , $' y v0 %& @y @ 3
1 d (z) 1
2
)2 ; v0 + v0 v = ; 1 v v : C(z) = ylim y + y = (v !v0 2 dz 2 0 2 0 2 0 0 ; y ! v0 , C(z) $ ) ). 2 ' , %& y(z ) @y = ; 1 y2 + d (z) y + 1 v v : (11) @ 2 dz 2 0 0 ( $3 (6) @y = ; 1 y2 + 1 p V y: (12) @ 2 2 1 ; zk 8 (12) %& pV 1;zk ; 12 p V (+C0 (z))
: (A) 1 + e 1;zk @ C0(z) ' , $' * ') $ 3 ". z = 0 ', $' 3 y=
Z1
;1
wn(0 )d = 0 n = 0 1 2 : : ::
= (13) n = 0 , $ C0 (z = 0) = 0. 1) w1. ( %& w1(z ) @ 2 w1 ; 1 p V @w1 + @ (yw ) = @w0 < 0 @ 2 2 1 ; zk @ @ 1 @z
(13)
(14)
@ 2 w1 ; 1 p V @w1 + @ (yw ) = @w0 ; @ 2 2 1 ; zk @ @ 1 @z (15) @v0 @v0 @v0 @ @v d (z) 0 ; @ @ (w0 ) + @z ; dz @ ; v0 @ > 0:
449
$3 (6)
0 p V @v = 1 ;k kz 0 @ 1 ; zk dv0 = 1 V k d (z) = ; 1 p V : dz 2 (1 ; zk)3=2 dz 2 1 ; zk < (15) $
v =
(B)
@ 2 w1 ; 1 p V @w1 + @ (yw ) = @w0 ; k @ (w ): (150) @ 2 2 1 ; zk @ @ 1 @z 1 ; kz @ 0 4 % (14), (15), (150) 3 %& % (A), w0(z ) = y(z ) < 0 w0(z ) = y ; v0 , > 0. = ' $ (14) (150 ) ' 1 ' , $' @w @ 3 w0 ! 0 w1 ! 0, $
Z @y @w1 + y ; 1 p V w 1= @ 2 1 ; zk @z d = (16) ;1 k 1 0 = y 2 1 ; zk ( + C0(z)) + C0(z) < 0 @w1 + y ; 1 p V w = Z @w0 ; k @ (w ) d = 0 1 @ 21 1k; zk 1 @z 1 ; kz @ (17) p ( + C ( z )) 0 k 1 2 1;zk 0 = ye 2 1 ; zk ( ; C0(z) ; C0 (z)) > 0:
' 3, $' 3 $ %& V~ (1) (z ") ! (z) $3 ' $ $ O("). " &3 ' , @w1 (z +0) ; @w1(z +0) = @v0 (z (z) + 0) ; @v0 (z (z) ; 0) @ @ @ @ ' z 2 50 z0]. 1 (16) (17) $ $ %& w1(z ) , ) ' $ C00 (z) + 12 1 ;k zk C0 (z) = p k : V 1 ; zk :
p
p C0(z) = 1 ; zk(C0(0) ; V1 ln(1 ; kz)) = ; 1 V; kz ln(1 ; kz):
(18)
450
. .
23 (16), (17). 7 = ; p V ( + C ; 0(z)): 2 1 ; zk 2 (16)
(19)
@w1 ; p V 1 p V 1 ; e w = ; 1 p V 1 2k ; 2C 0 (z) : p + 1 0 @ 2 1 ; zk 2 1 ; zk 1+e 2 1 ; zk 1+e V 1 ; zk V 7* ; 2p1; zk
dw1 + 1 ; e w = 1 2k ; 2C 0 (z) : p 1 0 @ 1 + e 1 + e V 1 ; zk 8 $ w1 = A( )(1 + e );2 e . 1 A( ) A0 ( ) = p 2k ; 2C00 (z) 1 +ee V 1 ; zk 1 2 ; e; (1 + ) ; 2C 0 (z)( ; e; ) + CK (z): A( ) = p 2k 1 0 V 1 ; zk 2 =, < 0 1 e 2 ; 0 ; K w1 = p 2k ; e (1 + ) ; 2C (z)( ; e ) + C (z) 1 0 (1 + e )2 : V 1 ; zk 2 (20) 23 (17). : 3 (19), $
@w1 ; 1 ; e w = e 2C 0 (z) + 2k C (z) + p2k : 0 @ 1 + e 1 1 + e 1 ; kz 0 V 1 ; zk : w1 = B( )(1 + e );2 e B 0 ( ) = (1 + e )(2C00 (z) + 1 ;2kkz C0(z)) + p2k (1 + e ) V 1 ; zk
2 + e ; e + C1(z): B 0 ( ) = ( + e )(2C00 (z) + 1 ;2kkz C0 (z)) + p 2k V 1 ; zk 2 C$, > 0
2 e 2k 2k w1 = 2C + 1 ; kz C0(z) ( +e )+ p + e ; e +C1 (z) (1+e )2 : V 1 ; zk 2 (21) 0 0
451
$ %& C0(z) % (18) (20) (21), $ 2k 1 w1 = p 2 ; e; (1+ ) ; V 1 ; zk 2 (200) ; K e 1 ; 1+ 2 ln(1 ; kz) ( ; e ) + C1 ( ) (1+e )2 < 0 2k 1 1 2 w1 = p ; e (1+ ) ; 1+ 2 ln(1 ; kz) ( ; e ) + V 1 ; zk 2 e (210) + C1 ( ) (1+e )2 > 0: L ') V~ (1)(z ") = (z) ) '3 v1 + w1 (z ;0) = v1 + w1(z +0): : 3 w1 (z ;0) = w1(z +0) v1 = v1 = 0: 4' CK1 (z) ' , $' 3 : 2k 1 1 e0 2 ;0 ;0 K p ; e (1+ ) ; 1+ ln(1 ; kz) ( ; e ) + C (z) 0 0 1 2 (1+e0 )2 = V 1 ; zk 2 0 1 e0 2 ; e0 (1+ ) ; 1+ 1 ln(1 ; kz) ( ; e0 ) +C (z) = p2k 0 0 1 2 (1+e0 )2 : V 1 ; zk 2 0 C3 0 = 21 ln(1 ; kz). : e;0 (1 + 0 ) ; e0 (1 ; 0) + 2 0 + 1 ; 12 ln(1 ; kz) e0 ; CK1(z) = p 2k V 1 ; kz p ; kz) + C1(z): ; e;0 1 + 21 ln(1 ; kz) + C1(z) = 2k ln(1 V 1 ; kz = (13) n = 1 C1(0):
Z +1 ;1
w1(z )d = 0:
= ) (200 ) (210) w1 , $ z = 0 %& w1(z ) $. <
Z +1 Z0 w1(z )d = 2 w1 (z )d = ;1Z 1 ;1 e Z0 0 4k e d =0: 2k 2 ; ; e ; + C d = C (0) =2 1(0) 1 2 (1 + e )2 V +1 (1 + e )2 +1 V
452
. .
: $, $ C1(0) = 0. 23 %& C1(z). C1(z) ' ' , $' %& V~ (2)(z ") $ $3 ', $ $ O("2 ). " , @w2 (z ;0) ; @w2(z +0) = @v1 (z (z) + 0) ; @v1 (z (z) ; 0) (22) @ @ @ @ ' ' z 2 50 Z0]. ( %& w2 3
@w2 + d (z) + v + w w = Z @w1 ; @ ( 1 w2) d < 0 0 2 0 @ dz @ 2 1 ;1 @z @w2 + d (z) + v + w w = 0 2 0 @ dz Z @w1 @ 1 @v0 @ 2 = ; w ; (w ) d > 0: 1 @z @ 2 1 @ @ ;1
2 : $ @w @ (22), $ %& C1(z)
Z 0 @w1 Z 0 @w1 @z d = @z d: ;1
+1
= z :
Z @w1 @w1 k k(1 + 21 ln(1 ; kz)) d = + ; V @ 2(1 ; zk) 2(1 ; zk) ; 2p1; +1 @z zk Z @w1 @w1 k 1 ln(1 ; kz)) k(1 + d : 2 = p @z + @ 2(1 ; zk) ; 2(1 ; zk) ; V 0
0
2 1;zk
;1
V + 1 ln(1 ; kz), 0 = 1 ln(1 ; kz). C3 = ; 2p1; 2 2 rz
Z @w1 0
+1
k
@z + 2(1 ; zk)
@(w1 )
@ ; w1
d =
@(w1 ) Z @w1 k = + 2(1 ; zk) @ ; w1 d : ;1 @z 0
3 Z 0 @w1 Z 0 @w1 k k ; 2(1 ; zk) w1 d = ; 2(1 ; zk) w1 d : ;1 @z +1 @z
453
w1 $ % (200) (210). 0 e 2k 1 k ( ; e; ; 2) ; k C (z) d = 0 p C (z) + 2 1 2(1 ; zk) 1 +1(1 + e ) Z 0 e V 1;zk2k2 1 ; kz k k 1 0 ; = 2 C1(z) + V p1 ; zk 2 1 ; kz ( ; e ) ; 2(1 ; zk) C1(z) d : ;1 (1 + e ) Z 0 e d = 10 (z) ; 2(1 ;k zk) C1 (z) 2 ;1 (1 + e )
Z 0 e Z 0 e 2 k ; = V (1 ; kz)3=2 2 ( ; e ; 2)d ; ;1 (1 + e )2 ( + e )d : +1 (1 + e ) : 1 2 k k 0 C1 (z) ; 2(1 ; zk) C1(z) = V (1 ; kz)3=2 1 ; 2 ln(1 ; kz) : 83 , $ C1(0) = 0. < 2 (1 ; 12 ln(1 p ; kz)) ; 1 : C1(z) = Vk 1 ; kz 0 0 23 % (20 ) (21 ) $ CK1(z) C1(z) $ 1 2k e 2 ; w1 = p ( ; 0) ; ( ; 0 )(1 + e ) > 0 V 1 ; kz (1 + e )2 2 w1 = p2k (1 +e e )2 12 ( ; 0)2 ; ( ; 0 )(1 + e ) 6 0: V 1 ; kz $ 3 & w1 % z. > 0 ; ; jw1j = p2k (1 +e e; )2 12 ( ; 0)2 ; (1 +e e; ) ( ; 0) 6 V 12k; zk 1 ; 2 ; p 6 (23) 2 e ( ; 0) + e ( ; 0) 6 V 1 ; zk 2k 2 2 + 1 : 6 p e2+0 + e1+1 0 6 V (12k ; kz) e2 e V zk 6 0 ; jw1j = p 2k (1 +e e )2 12 ( ; 0)2 ; (1 +e e; ) ( ; 0) 6 V 12k; zk 1 6 V p1 ; zk 2 e ( ; 0 )2 + e ( ; 0) 6 2k 2 2k 2 1 2k 2 1 1 6 p e2;0 + e1;0 6 V (1 ; kz) e0 e2 + e = V e2 + e : V zk
Z
454
. .
=, (B), . . $3 % (6), w1 & ; (z) k 2 1 w1 z 6 " V (1 ; zk) e2 + e > 0 ( 6 0 6 (z)): 4 '* $ $- & %& w1 ' 6 (z), (z) | & , * '
; (z) ( @v ) R z ( @v ) dz 2 1 w1 z 6 @ e z @ 2 + : " v0 e e 0
1 2
0
0
C3 z > z0 z0 { , & ' @v0 (z ): v0 = !lim v (z ), ( @v@0 ) = !lim l(z )+0 @ +0 0 3 W | $3. ; " 1 " 1 6 @v0 1 R z (W@v0 ) dz ; 2 1 ( @v0) e 2 z0 @ + e2 e ' " 2 50 " 1 ] ' 6 (z) j"w1j 6 W u"(z ) = v0 + w0 + w1" + O("2 ) w0 + O("2 ): 1 %& w0 * 3 O(") . C$, " 2 50 " 1 ] $3 O(") $ " = 0 & & . ( v = ;v , = ; , ) $ 3 "1 , $ ' " 2 50 "1 ] $3 O(") $ " = 0 & & . = ) $, $ & , $ " = 0, " 2 50 "1], "1 = minf" 1 "1 g, $3 O(").
1] . . , . . , . . , . . .
!" "
. | $.: &- $ . -, 1983. 2] . ,. -. . !" ! 0
/" 0 0
/
// 2 ! /
. !. 2. | $.: &- $ . -, 1971. | -. 145{251.
( ) 1995 .
. .
. . .
. .
517.5
, ! . ! " # $ $ $ % " ! .
Abstract M. K. Potapov, B. V. Simonov, On estimates for the modules of the smoothness of the functions with transformed Fourier series, Fundamentalnaya i prikladnaya matematika 1(1995), 455{469.
In this article the functions are considered which have generalized derivative in Weyl's sense. The lower and upper estimates for the modules of smoothness of these derivativesare expressed in terms of the modules of smoothnessof the function itself.
1
Lp (1 < p < 1) | 2- f(x),
0Z2 11=p kf kp = @ jf(x)jp dxA < 1" 0
w (f t)p | # ( Lp ) ( > 0) f(x) 2 Lp : 1 X w (f t)p = sup k (;1) f(x + ( ; )h)kp jhj6t
=0( ; 1) : : :( ; + 1) : =
!
- . /. " 0 % " 1 (" N NCJ000) - ! " 1 3$ ! (" N 93{01{00240). 1995, 1, N 2, 455{469. c 1995 !, "# \% "
456
. . , . .
+ , f(x) - , f(x) a20 +
1 X
(an cos nx + bn sin nx)
n=1
# .
Sm (f x) = / 0 - 10 = A0 (x) 1m =
mX ;1 k=0
X
2m ;1
n=2m;1
1 X
m=0
Am (x)
(1)
Ak (x):
An (x)
m = 1 2 : : ::
M - , .2 , 1 X
n=0
an cos nx
# ann # 0 (n " 1) # # " 3 | , .2 , 1 X
n=1
an cos 2n;1x:
4 (t) - , 50 2], 5 2] .- # 2 (0 2) - ., 2 0 ,
Z2 0
(t)t dt < 1:
= k , # 0 < k < 1. 8 # :
= n =
Z2 1=n
(t) dt + nk
Z1=n
1=
(t)tk dt
n = 1 2 : : : |
0
0 , (t)" ( f) | - 2. 9 (1), 1 X ( f) n An(x)" n=1
f(n)g | .2 (0) =
457
0 :
Z2
(t) dt (n) =
1
Z
1=2n;1
(t) dt n = 1 2 : : ::
1=2n
; F () > 0 G() > 0, F () G() , 2
0 c, 2 , F() 6 cG(). ; F () G() G() F(), - F () G().
2
1. max(2 p) 6 < 1, k (t) - = k . f(x) 2 Lp ( f) '(x) 2 Lp ,
8 Z2 91= Z < = ; w (f t) dt + (f t)p dt
(t)t
(t)w p k + k + :
w (' )p: 0
2. 0 < 6 min(p 2), k (t) - = k ,
Z2
(t) dt
;k
Z 0
f(x) 2 Lp
(t)tk dt
Z
(t) dt
8 2 (0 ]:
(2)
2
Z2
(t)wk (f t)p dt < 1
(3)
0
'(x) 2 Lp ( f)
91= 8Z Z2 = < w (' )p : (t)wk + (f t)p dt + (t)t; wk + (f t)p dt : (4) 0
3. f(x) 2 Mk \ Lp , ) " 1 max(2 p) 6 6 < 1 1 < p 6 < 1$ %) " 2 0 < 6 6 min(2 p) 0 < 6 p < 1.
458
. . , . .
4. f(x) 2 3 \ Lp , ) " 1 max(2 p) 6 6 < 1 2 6 < 1$ %) " 2 0 < 6 6 min(2 p) 0 < 6 2. . (t) k - = k , (2). ). = 2 f(x) 2 L2 , '(x) 2 L2 ( f) %' , %"
Z2
8 > 0
(t)wk2 (f t)2 dt < 1
0
8Z 91=2 Z2 < = w (' )2 : (t)wk2+ (f t)2 dt + 2 (t)t;2 wk2+ (f t)2 dt : 0
%). = p f(x) 2 Mk \ Lp , '(x) 2 Lp ( f) %' , %"
Z2
8 > 0
0
(t)wkp (f t)p dt < 1
8Z 91=p 2 Z < = w (' )p : (t)wkp+ (f t)p dt + p (t)t;p wkp+ (f t)p dt : 0
). = 2 f(x) 2 3 \ Lp , '(x) 2 Lp ( f) %' , %"
Z2
8 > 0
0
(t)wk2 (f t)p dt < 1
8Z 91=2 Z2 < = w (' )p : (t)wk2+ (f t)2 dt + 2 (t)t;2 wk2+ (f t)2 dt : 0
459
3 !
1 (. 51]). 0 < 6 min(p 2) f(x) 2 Lp
Z2
(t)wk (f t)p dt < 1
0
'(x) 2 Lp ( f). 2 (. 52]). f(x) 2 Lp , 1 < p < 1 P1 A (x) . ( n n=0
0Z2 1 p=2 11=p kf kp @ X 1m2 dxA : m=0
0
3 (. 53]). f(x) 2 Lp , 1 < p < 1 P1 A (x), f g , n=1 n
n
jnj 6 M
X
n 2 N
2+1 ;1
m=2
jm ; m+1j 6 M
= 0 1 2 : : ::
( P1 n=1 n An (x) '(x) 2 Lp , k'kp 6 ckf kp , c f(x). 4 (. 51, 4]). f(x) 2 Lp , 1 < p < 1 P1 n=0 An (x). ( )
1 m X X An(x)kp
w f m1 m; k n An (x)kp + k p n=m+1 =1
m; kSm() (f x)kp + kf(x) ; Sm (f x)kp"
%) f(x) 2 M ,
X 1=p X 1=p m 1 w f m1 m; apnnp+p;2 + apn np;2 " p n=1 n=m+1
) f(x) 2 3,
w (f 2 )p 2 ;m
;m
X m =1
2 2
a 2
1=2 X 1 +
=m+1
a 2
1=2
:
460
. . , . .
5 (. 54]).
8 2 91=n > > Z1=n
0
: % n = 1 2 : : : ) n 6 n+1 $ %) n nk > n+1 =(n + 1)k $ ) 2n n .
4 # 1 + I=
Z
(t)wk + (f t)p dt +
0
Z2
(t)t; wk + (f t)p dt = I1 + I2 :
n | , 2;n+1 6 < 2;n. ? I1 . 4 . ), - I1
1 X
=n
2
;(k+)
( + 1)kS
(k+) 2
+ X ( + 1) p =n
(f)k
1
kf ; S2 (f)kp = I3 + I4:
? I4. @ 2 I4
0Z2 1 1 X @ X
=n
0
=
p=2 1=p 12m+1 2= ( + 1) dxA :
A , > p > 2 - -2 B # ,
0Z2" 1 1 =2#p= 1=p X X 12m+1 2= ( + 1) dxA I4 @ = n m = 0Z02" 1 m # 1=p 2= p=2 X X @ 12m+1 2= ( + 1) =2 dxA m = n = n 0Z02" 1 #p=2 1=p X @ 12m+1 22m dxA : 0
m=n
461
C n 5, , Bn = 2m =n , 2m 6 n < 2m+1 3. 8 # , 3, 2, 4 . ), I4 k
1 X
m=2n
m Am (x)kp w (' 2;n )p :
+ 0 , # , I4 , . I3 : I3
Z
1=2n
(t)t(k+) dtkS2kn+ (f)kp +
0Z2 p=2 1=p 1 X X @ + 12m 22m(k+) 2= ()2;2 (k+) dxA =n+1 0 m=n+1 0Z2 n p=2 1=p X 2;n @ 12m 22m(k+) 22n 2;2nk dxA + 0Z2* 10 m=1 =2+p= 1=p X X +@ 12m 22m(k+)2= ()2;2 (k+) dxA =n+1 m=n+1 0 0Z2 n p=2 1=p X 2;n @ 12m 22m 22m dxA + 0Z2* 01 m=11 2=+p=2 1=p X X = 2 12m 22m(+k) 2= ()2;2 (k+) dxA +@ 0
m=n+1 =m w (' 2;n)p + 0
0 2* 1=p + 1=Z2m; p= 2 Z 1 2 = X 2 2m(+k)
(t)t(k+) dt dxC +B 1m 2 @ A m = n +1 0 0 0 2* 1=p + 1=Z2m; p= 2 Z 1 2 = w (' 2;n)p + B@ X 12m22mk
(t)tk dt dxC A 1
1
w (' 2;n)p :
0
m=n+1
8 - , ,
0
I3 + I4 w (' 2;n)p :
462
. . , . .
8 I2. 0 , # ,
I1 . I2 2;n
nX +1 =1
()2;kkS2(k +) (f)kp +2;n
nX +1 =1
2 ()kf ; S2 (f)kp =I5 +I6 :
? I5 .
0Z2 p=2 1=p X I5 2;n @ 12m 22m(k+) 2= ()2;2k dxA 0=1Z2n0+1 m=1 1=p D E X X = 2 p= 2;n @ 12m 22m(k+) 2= ()2;2k dxA =1 m =1 0Z02" n+1 n+1 # 1=p 2= p=2 X X 2;n @ 12m 22m(k+) 2= ()2;2k =2 dxA = m m =1 0 02" # 1=p 1=Z2m; Z nX +1 2= p=2 12m 22m(+k)
(t)tk dt dxC 2;n B@ A nX +1
1
0 m=1 ;n w (' 2 )p :
1=2n+1
? I6. I6 2;n + 2;n
Z2
1=2n+1
nX +1 =1 n
X
=1
+
()2 kS2n+1 (f) ; S2 (f)kp
Z2 X 1
(t) dt
n X ;n
+2
2 ()kf ; S2n+1 (f)kp +
=1
0
1m m=n+2 Z2 X n
2 ()
Z2 X 1
12m 22m
2
m=
p=2 !=p dx
1m+1 2
0p=2 !=p dx
+
p=2 !=p dx
+
0 m=n+2 Z2X =2p= !=p n X n 2 2= 2 ;n 1m+1 2 () 2 dx =1 m = 0
463
k' ; S2n
+1
+2
;n
(')kp +
Z2 X n X mn m=1 =1
0
w (' 2;n)p:
w (' 2;n)p + 2;n
o=22= p=2 !=p
2 2=
1m+1 2 () 2
Z2 X n 0
m=1
dx
2m 2 m+1 2m;1
1
2
2
p=2 !=p dx
8 - , , I5 + I6 w (' 2;n)p : ?-D I3 , I4 , I5 , I6 # , : I 1= w (' )p : 8 1 ..
5 # 2
f(x) 2 Lp (3). 8 # 1 , 2 '(x) 2 Lp , ( f). 0 , (4). n | , 2;(n+1) 6 < 2;n. E # 4 . ) w (' )p w (' 2;n)p k
1 X
=2n
A (x)kp + ;n
+2
k X A (x)kp = I7 + 2;n I8: 2n ;1
=1
C 5 , Bn = n =2m+1 , 2m 6 n < 2m+1 , 3. 8 # , 3 2 (2), ,
0Z2 1 p=2 11=p X I7 k 1m 2m kp @ 12m 22m dxA 0 m=n+1 0m2=n+1 11=p m 1 = 2 X Z Z 1 2= p=2 B@ 12m
(t) dt dxC A 1 X
0
m=n+1
1=2m+1
464
. . , . .
0Z2 1 2=p=2 11=p 1 X X @ 12m 2m(k+) ( + 1)2; (k+) dxA : 0
=m
m=n+1
A , 6 2 6 p, 0 , B # , # :
0Z2" 1 =2#p= 11=p X X 2 = I7 @ j1mj2m(k+) ( + 1)2;(k+) dxA m=n+1 00 1="n+1 2 p=2 #=p11=p Z X X 2 = @ j1mj2m(k+) ( + 1)2;(k+) dx A =n+1 0 m=n+1 11= X !1= 0 1Z=2n 1 ( + 1)2; (k+) kS2(k +) (f)kp B @ (t)wk+ (f t)p dtCA : =n+1
0
? I8 . 0 0, I7 , :
0Z2 n p=2 11=p X I8 @ 12m 22m; 22m dxA 0 02" m=1 2 #p=2 11=p 1=Z2m; Z Z ;1 2= n 2= X B@ 121 (t) dt + 12m+1
(t) dt 22m dxC A m=1 0 1 1=2m 0Z2" n;1 X 2= #p=2 11=p m X @ 12m+1 ()2 dxA m =0 =0 0Z02"n;1 n;1 =2#p= 11=p X X 2 = j1m+1j()2 @ dxA m= 0n0;1"=0 2 n;1 p=2 #=p11= Z X X 2 = dx A @ j1m+1j()2 =0 0 m= 11= nX !1= 0 Z2 ;1 ()2kf ; S2 (f)kp B@ (t)t; wk+ (f t)p dtCA : 1
1
=0
1=2n
?-D I7 I8 , (4). 8 2 ..
465
6 # 3 . ) +
I9 =
Z
(t)wk + (f t)p dt +
0
Z2
(t)t; wk + (f t)p dt:
m , m1+1 6 < m1 . 8 # 1 m X X I9 1 ()wk + (f 1 )p + m; 1()wk + (f 1 )p =m+1 =1
R
R
1=( ;1)
2
# 1(1) = (t) dt, 1 () =
(t) dt, = 2 3 : : :. 8 f 1 1= 0 4 . -): I9 + +
(
2 Mk ,
1=p X 1=p) 1 p (k++1)p;2 p p ;2 1 () an n + an n + =m+1 n=1 n = +1 ( 1=p m X X ; ;( k + ) p ( k + +1) p ;2 m 1 () an n + =1 n =1 ) X 1=p 1 p p ;2 an n = I10 + m; I11: n= +1 1 X
F ,
I10
+ +
;(k+)
1 X
=m+1 1 X
=m+1 1 X
=m+1
X
1 ()
;(k+)
1 () ;(k+) 1 ()
X 1
n=
X m
apnn(k++1)p;2
n=1X
n=m+1
=p
apnn(k++1)p;2
apn+1(n + 1)p;2
=p
+
=p
+
= I12 + I13 + I14:
? I12, I13 I14 . E I12. A fn g, I12 ;
X m
n=1
apn n(+1)p;2 pn
=p
:
> p, , - -2 B # I13 I14, : I13
X 1
n=m+1
apn n(k++1)p;2
X 1
=n
1()
;(k+)
p= !=p X 1
n=m+1
apnpn np;2
!=p
"
466 I14
. . , . .
X 1 n=m+1
apn+1 (n + 1)p;2
8 - ,
X n
I10
=m+1
X 1 n=m+1
8 I11 . F , I11 + +
m X
m =1 X m =1 X =1
1()
;k
1() 1()
1()
X
X mn=1
p= !=p X 1
apnpn np;2
apn n(k++1)p;2
apn+1 (n + 1)p;2
n=1
X
n=m+1
!=p
=p
=p
apn+1 (n + 1)p;2
n=m+1
an pn np;2
!=p
:
:
+ +
=p
= I15 + I16 + I17:
? I15 , I16 I17. 8 p 6 , , B # ,
I15 I16
X m
n=1
X m n=1
apn n(k++1)p;2
X m
apn+1(n + 1)p;2
=n
1()
X n =1
;k
1 ()
p= !=p X m
n=1
p= !=p mX+1
n=2
apnn(+1)p;2 pn apnpn n(+1)p;2
A fng, - I17 8 - , I11
m
X 1 n=m+2
m
X 1
n=m+2
apnpn np;2
apnnp;2 pn
=p mX +1 +
n=1
=p
:
apn pn n(+1)p;2
=p
?-D I10 I11 , : I
1= 9
4 . )
m
mX +1 n=1
apnpn n(+1)p;2
1=p X 1 +
I91= w (' )p
n=m+2
apnpn np;2
1=p
:
:
!=p
!=p
" :
467
(4). ) 3 .. G -) 4 # . 8 4 0, 3, 4
. -) 4 . ).
7 )
1. ; (t) = t;r;1 k > r > 0, # w (' )p , 1, 2, 3 ), -), ), # , - 55]. 2. H # - 55] .2 . () | 50 2] , - .2 (1 ) 6 C1 (2 ) 0 6 1 6 2 6 2 (2) 6 C2() 0 6 6 # C1 C2 1 , 2 , . ?- k ) | H | f(x) 2 Lp P W(pA (x), , 1 ( f) , m=0 m '(x) 2 Lp " Hp | @ # | f(x) 2 Lp , w (f )p ()" WH( p k) | H -@ # , . . f(x) 2 W(p k ) , w (' )p ()" BH( p k) | f(x) 2 Lp ,
8 Z2 91= Z < = ; w (f t) dt + (f t)p dt
(t)t
(t)w p k + k + :
(): 0
8 # , 2, 0 .2 0 W H( p k) BH( p k). I : 1). ; max(2 p) 6 < 1, WH( p k) BH( p k): 2). ; 1 < p 6 < 1, Mk \ WH( p k) Mk \ BH( p k): 3). ; 2 6 < 1, 3 \ WH( p k) 3 \ BH( p k): (t) . (2). 8 # 0 :
468
. . , . .
4). ; 0 < 6 min(p 2),
BH( p k) W H( p k):
5). ; 0 < 6 p < 1,
Mk \ BH( p k) Mk \ WH( p k):
6). ; 0 < 6 2,
3 \ BH( p k) 3 \ W H( p k):
7). J WH( 2 2 k) BH( 2 2 k)
.. 8). J Mk \ WH( p p k) Mk \ BH( p p k)
.. 9). J 3 \ WH( p 2 k) 3 \ BH( p 2 k)
.. 3. 0 < 6 min(p 2) 0 k (t) - . = (k+) . 1 = f1n g, # (n = 1 2 3 : : :)
;
n = n 1
Z2 1=n
;
(t)t
(k+)
dt + n
Z1=n
(k+)
(t)t
dt
1=
:
0
; f(x) 2 Lp ,
Z2 0
(t)wk + (f t)p dt < 1
2 '1 (x) 2 Lp , (1 f)
8Z 91= Z2 < = w ('1 )p : (t)wk + (f t)p dt + (t)t; wk + (f t)p dt : 0
4. ; f(x) 2 Mk+ \ Lp , , 0 2 0 < 6 p < 1:
5. ; f(x) 2 3 \ Lp , , 0 2 0 < 6 2:
*
469
1] ., . . ! // . ($%). | 1979. | 3 (16) (31). | 295{312. 2] Littlewood J. E., Paley R. E. Theorems on Fourier series and power series // J. London Math. Soc. | 1931. | V. 6. | P. 230{233. 3] Marcinkiewcz J. Sur une nouvelle condition pour la convergence presque partout des series de Fourier // Ann. Scuola norme. Pisa. | 1939. | V. 8. | 239{240. 4] 2 . 3. 4 ! 5$ % 67. | 8. 39:9;9 22.06.1981, N 3031{81. 5] . ., . 4 < % ! -: 7$ 3!-: 7$ // 3. . -. 2. 1. . . | 1992. | N 4. | 44{53. ' ( 1995 .
- - . .
e-mail: [email protected]
- , ! " # . $
-
. %& & # ' ( -) (
, & ' ! -) ! . * , "##
( + , " ' "## + .
Abstract G. E. Puninski, Serial Krull-Schmidt rings and pure-injective modules, Fundamentalnaya i prikladnaya matematika 1(1995), 471{489.
A ring is called Krull-Schmidt if every 5nitely presented module over it can be decomposed into direct sum of modules with local endomorphism rings. The serial Krull-Schmidt rings are described as rings with the weak invariance condition. The classi5cation of indecomposable pure-injective modules over uniserial ring is simpli5ed and criteria for the existence of superdecomposable pure-injective module is given for semi-invariant case. Let T be the theory of all modules over e6ectively given invariant uniserial ring R with in5nite residue skew 5eld. It is shown that T is decidable if the question of invertibility of element from R can be solved e6ectively.
1
- 9]. , , ! " # " " " $%#. & "" (". (), *"+ ",( $ # , ( . - "" # "" !" ", " 9], " , 7 # ' 8 '! ! # 7! (! JBX100). 1995, 1, N 2, 471{489. c 1995 , ! \# "
472
. .
" " # (,. $ # ! "
- "" (" "" . 0 , ", 1 % 2 7], 3], 4], 14] ! ""% # (, !"-*, . 5 " ! , , # "", , % # 6 $ ". 0 + " ! $ 6 $ " " " " ! " ( "6 ( $ . 7#", ! , " ! ,, , $ " ( "+" " . , 14] # , ! ! ! " " - . 0 "+ (, ! ( . 8 (, ! " " - $ " " ". , " - , . 9 , ! # 5# -:% 1], 17] " , ! R " " - , " R=rR, r 2 R $%#. " 5] "+" , " R " # ( ! " R=rR " $%#. <, ! 8, 8 11] "% " "+" " $%#. " 5" 6, p. 204] # , ! "+" # ( " $%# # + " 8 . 0 6 , ! ( , " ! ,. , ! " :% 17, p. 189] "" # ( ! " " , " " . 0 " 2] ! "+" " # ( (. . # , # (, , " ,) !"-* . 8 ! $ # , # , ! R "+", " " R #" "" @ $ -A! (". 10]). 0 + " ! ( ) " "+" . 7" # - " # #- % $ # "+" " # " 2]. 8 ! "" " #6" ", . 7, (, ! \$%% # " " "! ! ", #6 , " (
-
473
$%% 6 " " $ . 9" $%% # " #(" " % " "! !" , !" , ! " " #6 .
2
0" "" " "" " 1, | . 8 # " ( ), " 6 " (" ), , " # " " , . R # " ( ) , " RR ( ), ! " () " . E () # ! , ! $ " " , ". F " " ( ) , ! "", "( , . " R $ ! , , e1 : : : en 2 R, ! e1 + : : : + en = 1 " ei R, Rej , i j = 1 : : : n . 5 R " ei Rei . < ( ) #" M R ". 10]. , ! P # " , " jP j > 2 , $ a < b 2 P " c 2 P , ! a < c < b.
2.1
10, p. 177, Prop. 1.13]. M
, M . I# J(R) (J(M)) # ! 5(" R ( M). < " " J() R Tn n , 6 , : ( J(0) = J(R), J( + 1) = J() T J() = < J() , 6 ,. " U(R) # ! , $ R.
2.2
12, Prop. 5.5]. ! " , # J() . 8 ! " " " " , " $%#. E # ! , ! " # !, " \$". E , # " \$" " # ! \ " " $%#".
R # " -$ 9], " ! " R # " "
474
. .
" $%#. 0 " 9, Thm. 2.3] $ " - "! $ " + : ! ( % # , R , ! $ %. 0 , # , ( 13]. " R # . % - % x (1--% ) '(x) # " % # R 9yK (Ky A = xKb), A | k l , Kb " l R, y = hy1 : : : yk i " #",. 5 M R $ m 2 M 6 M j= '(m) (M ! '(m)), " " $ mK = hm1 : : : mk i # M, ! mA K = mKb. 9 , ! " % ' $ # ! #6" "" , (" A) $ " $ $ " " x. 7 , -% ( + " " !" , ,. $ ! " # " A j xKb (A xKb). 5 1--% ' 6 ' ! , " $ m # M # M j= '(m) M j= (m). 5 1--% ' # " & , # !, ' , " ' ! ! '. 8(" ", 1--% R, % # 6 $ " , # 6 L(R) " ! !, ! "! $ 6 | " * ""+, % . L" M R ' " 1--% , '(M) = fm 2 M j M j= '(m)g # " - (-% ') . 9 , ! - M " $ M (" ", , , ! !, # 6 L(M), +" % # 6 L(R). 5 ( 1--% ' = \A j xKb" " 1--% D' = \9zKt AKz t = 0 ^ x = KbzKt". , -% xa = 0 $ -% a j x, '(x) = \b j x" $ " D' bx = 0. 0 13, Ch. 8] ( ' 7! D' # #%# 6 , , 1--% R, # " \ "" " ". hM mi, M ! " , m 2 M # " 1--% ', " M j= '(m) 1--% # M j= (m) ' ! . N 1--% " # . , " # 1--% a j x ^ xb = 0 hR=abR ai. 8(" 1--% # " "", " #" , " " M $ m 2 M , ! M j= '(m) -% ' # $ (" . 8("
-
475
", 1--% p(x), +," $ m M, # " 1-- # ! " ppM (m). 9 , ! 1-- $ !" " "" (" 1--% . 0 ( , f : M ! N # " # , " f('(M)) = '(N) \ f(M) 1--% '. 1 " ! " !, $ " 15]. 8 M # " !"-*, " * " ", !", ( . 1 $ " " " " N, M "(" !" . 5 M "+" " (" !" #%# M) !"-* N "( + M !" !" " " $ " " ( " N 0, M "(" !" , "+" !" ( # N N 0 , " + " M). " # " # -' # M # ! " PE(M). 2.3 9]. #- " # -' " # , &( .
5 1-- p ( "+" !"-* M, #+ p $ m " " " ": " N j= p(n) $ n !"-* N, "+" !" ( M N, + m n. E " " !" #%# m, # " # -' # 1-- p # ! " PE(p). N # ( !"-* #% !"-* ! 1-- " $ . 5 !" M, ( $ m, PE(M) = PE(p), p = ppM (m).
3
-
Q" " $ " "" , e1 : : : en R , ! ei R Rei . R + ", $%# %" # ( ! " .
3.1.
% R r 2 ei Rej , ei ej 2 R . ) & "* : 1) ei R=rR &(2) %%- & ei ei R=rR 3) ei R=rR & -
476
. .
4) ei R=rR &(5) J(ei Rei )r rej Rej 6) ei Rei r rej Rej rej Rej ei Rei r.
. 8( "! eiR=rR ! eiR , . . 0 6= r 2 J(R). " M = ei R=rR p = ppM (ei ). " M ! " , 2.3 M $%# , PE(M) # (. E ei ( M, " " $ # (" - p. 7 1) , 2). 1) ) 3). " 7, Thm. 1.9] Mei $", ( " # " + # R" 16, p. 300, Cor. 1]: " . 9 , ! $%# M # " ( $ s 2 ei Rei , ! sr 2 rR (" $%# M ( ei . L" s 2 U(ei Rei ) sr = rt t 2 U(ej Rej ), ", ! ( s # %# M. 3) ) 4). " S = End(MR ) f g 2 S " ( $ s t 2 ei Rei . ( " ( "! , ! h(s) = t h 2 S. E !, ! hf = g S " " . 5 (, ! S | " . " f g 2 S 6 " " R ( "! , ! su = t u 2 ei Rei . ( " $ h 2 S, ! h(ei ) = u h(u) = ei . L" h(ei ) = u, fh = g, ! " . S", ! u 2 J(R) " ! h(u) = ei #(. $ # 6 # " ( , ! u 2 U(ei Rei ) h(u) = ei . " v | u $ ei Rei . E h(ei ) = h(uv) = h(u)v = ei v = v, " h " M ( $ v. , s = tv, $ f = gh. S", ! 4) ) 1). 3) ) 5). " s 2 J(ei Rei ) "" ei s $ M. ( " f g 2 S, ! f(s) = ei , g(ei ) = s. " s 2 J(R), ei 2= J(R), " ! #(. 0 " ! 0 = g(0) = g(r) = sr M, sr 2 rR. 5) ) 6). (". 5, Lem. 7.2]) L" # , ! , r = gru r = vrh g v 2 ei Rei , u h 2 ej Rej , ! g h 2 J(R). ( gvr = rt t 2 ej Rej . E r = gvrhu = rthu thu 2 J(ej Rej ), r = 0 | !. 6) ) 1). L" ei Rei r rej Rej , $ ei Rei " $%# M. E S " % # ei Rei , " , ( ( ) . 7 ! rej Rej ei Rei r. E ! 5, Lem. 7.12] ( # , ! J(ei Rei )r rJ(ej Rej ).
-
477
L" S = End(MR ) , " $ u 2 ei Rei , ! u ei ; u " ( %# M. L" u 2 J(ei Rei ), , (, ur = rt t 2 J(ej Rej ). E (ei ; u)r = r(ej ; t) ej ; t 2 U(ej Rej ), " ( (ei ; u) " %# M | !. V ! #( " ! ei ; u 2 J(ei Rei ). 7 , u (ei ; u) 2 U(ei Rei ). R ! ur 2 rU(ej Rej ) (ei ; u)r 2 rU(ej Rej ) #( ( !. R , rR = urR + (ei ; u)rR rJ(R) rR, !. 2 # R , " ei ej # 6 "" $ r 2 ei Rej ei Rei r rej Rej , rej Rej ei Rei r.
3.2. 3 "* R: 1) R -$ 2) R . . 7# 5# -:% 1], 17] " , ! # ( ! " #% ei R=rR, r 2 ei Rej ei ej # 6 "" . <" " 3.1. 2 9 , ! " " " " - , " $%#. R + # , ! $ + " ! . 3.3. % V = Zi](2;i) 4 4 # , & 2 ; i R 4 R = r0 +r1 x+r2x2 +: : :, r0 2 V , ri 2 Qi] i > 1, rx = xr (\ " | ). ) R .
. F" R " "". 5 , " (2 + i);1x 2= xR x(2 + i);1 2= Rx, $ . 2 9 , ! R | " #" 2 (" , " # % 2.1).
4 # $ -
, " ""% # (, !"-*, R. 5 # ( -
478
. .
ei 2 R hI J i, I ei R , J Rei R, # " ei - . ( I = ei R n I, J = Rei n J. 5 ( ei - (" 1--% J =I = fxr = 0 ^ s j x : r 2 I s 2 J g f: sr j xr : r 2 I s 2 J g " ! " """ # ! # ( 1-- p = p(I J), ! # ! " " # ( 1-- R 7, Thm. 2.7]. # ei - 1-- R, , ! ei j x 2 p. 7 , ( "" ei - p = p(I J) ( " # ( !"-* N = N(p), " # ( !"-* R ! " "". & 7, Thm. 2.10], "", ei - p = p(I J) ej - p0 = p(I 0 J 0) ""+ N = N(p) N 0 = N(p0) #% , " $ r 2 ei Rej , r0 2 ej Rei , ! ) r 6= 0, I = rI 0 Jr = J 0 , ) r0 6= 0, r0I = I 0 J = J 0 r0 . 0# + $ 6 $ " (" e- # ! !# . :" """ ei - p(I J) # " " + " 4, . 2]: s r 6= s r + sr ", r 2 I r 2 I s 2 J s 2 J
()
" s = r = 0 " " , ! " ": s r 6= 0 ", r 2 I s 2 J
()
5 , 7, Thm. 3.2], 3, R . . 3] : # " " () """
ei - p(I J). 0 " + " " " .
4.1. 3 "* -
R:
1) ) () () " ei - 2) R -$ .
hI J i-
. 0 3.2 R " - , R , , ei - p = ppM (ei ) M = ei R=rR, r 2 ei Rej # (. " " 7, Cor. 2.6] $ : ab j xb 2 p " " a j x 2 p xb = 0 2 p a 2 Rei , b 2 ei R. 9 , ! a j x xb = 0 ! ab j xb " . 1) ) 2). 5" ! # (" ei - p = ppM (ei ) M = ei R=rR, r 2 ei Rej . 7 ! (". 6) abjeib 2 p
-
479
ajx xb = 0 2= p , a 2 Rei , b 2 ei R. 7# abjei b gab = b + rh , g h 2 R. " xb = 0 2= p, " , b 2= rR, "
r = bt t 2 J(R), b = ;bth + gab. " I = rR, J = J(Rei ), " " () ei hI J i. 5 " , " s r = 0 r 2 I , s 2 J , ds = ei d 2 R, " , r = 0 2 I, !. " hI J i " " (). ( r = ;bth, r = b, s = ga s = ei . S", ! r 2 I, r 2 I , s 2 J s r = s r + sr . E ( ga 2 J , a 2 J . Ra = Rei ajei 2 p, !. 2) ) 1). " ei - hI J i " (), " (), " s r = s r + sr , $ r 2 I, r 2 I , s 2 J, s 2 J ( "! , ! r r 2 ei Rej , s s 2 ek Rei . E r = r h s = gs , g 2 J(ek Rek ), h 2 J(ej Rej ), " (ek ; g)s r = s r h. " ( "! , ! s r ej Rej ek Rek s r . E # " R, ! 5, Lem. 7.12] J(ek Rek )s r s r J(ej Rej ), (ek ; g)s r = s r u u 2 U(ej Rej ) s r = 0. !. 2 R + ( ! ""% # (, !"-*, , 4] " ! .
4.2.
8 * # ( 4 # -' 4 R ( - ei - hI J i c (), ( " & . 9 # -' M ei 2 R , # Mei 6= 0, I = fr 2 ei R j mr = 0g J = fs 2 Rei j m 2 = Msg, m " & Mei .
9 , ! " " () !" ".
5 1--
0" $ % R . 5 a b 2 R ( '(a b) = \ab j xb". 9 , ! a 2 U(R) $ % (" " , a = 0 + " % xb = 0. R + # 2] # "".
480
. .
5.1. : '(a b) & a b
-
R # 4 1--( R. . 0 " 3, R . . 1] 1--% R $ ! * 1--% '(ai bi) , ai bi 2 R. 7 , " % ' = '(a b) # ( Vn "! #, ( "! , ! '(a b) = i=1 '(ai bi) " " . ( 'i = '(ai bi). "" " + ", ! D' ! D'1 + : : : + D'n . L" D' ! D'i i, , " "" , 'i ! ', ! #(. 7 , ( "! , ! D' 6! D'i ", i. 9 , ! % D' " # hM bi, M = R=Rab " ( 3.2) $%#. % 2.3 1-- p = ppM (b) # (. E D'i 2= p, " 13, Thm. 4.29] " 1--% 2 p, ! (D'1 ^ ) + : : : + (D'n ^ ) 2= p. 3, E. 1] 6 1--% " , $ ^ (D'1 + : : : + D'n ) 2= p, D'1 + : : : + D'n 2= p. !. 2 5.2. % I , J # ai bi, i 2 I , cj dj, j 2 J & R. ; ^ '(ai bi) ! ^ '(cj dj )
i2I
j 2J
, * f : J 7! I , # '(af (j ) bf (j )) ! '(cj dj ) 4 j 2 J .
5.3.
< & a b c d R, c 2 J(R), '(a b) ! '(c d)
, d 2 bR a 2 Rc, ad = 0.
. R " " " D'(c d) ! D'(a b), ( # " cx = 0 ^ d j x ! ax = = 0 ^ b j x. 0 " 5.2 $ " , , # !, #(" : 1) cx = 0 ! ax = 0 cx = 0 ! b j xW 2) d j x ! ax = 0 d j x ! b j xW 3) cx = 0 ! ax = 0 d j x ! b j xW 4) d j x ! ax = 0 cx = 0 ! b j x. 0 " ! 1), "" $ 1 R=Rc ! a 2 Rc gc + bh = 1 , g h 2 R. " c 2 J(R), b 2 U(R), ! "", d 2 bR. V ! " ! 2), "" $ d R, ! ad = 0 d 2 bR. E ( ""( # , ! d 2 bR a 2 Rc " ! 3)W ad = 0 b 2 U(R) " ! 4). 2 5 , $ a b R ( a 6r b, " b 2 aR a r b, " aR = bR. 8(" R, % # 6 r ,
-
481
# Lr , #% ! ! (" , R. V ! " Ll . 5 # L !# Lb # ! L "!, " $ Lb | $ # L " +," (" L = A B , ! A " ", a 2 A, b 2 B a < b, ! # : hA B i 6 hA0 B 0 i, " A A0 ( , $ , B 0 B). I# 1 # ! "!, A = L. 5 "! bl = hA B i ( A(bl ) = A B(bl ) = B. S", ! Lb " 6 $ 1, , (" $ l 2 L " "! hA(l) B(l)i, A(l) = fa 2 L j a 6 lg, B(l) = L n A(l), ( "! , ! L Lb . L" L "( 6 $ l0 , l0 = 1 "" $ (" . # "" R hI J i, I "" , J "" R. 5.4. % f : Lr 7! Lbl "* ( , f(0r ) = 1 f(1r ) 6= 1. % I(f) = fb 2 R j A(br ) = A(f(br )) = 1g, I (f) = R n I(f), J(f) = fa 2 R j al 2 B(br ) 4 b 2 I (f)g, J (f) = R n J(f). ) hI(f) J(f)i | R. . " b 2 I(f) c 2 R. E # b 6r bc % f A(br ) A(bcr ). " f(br ) = 1, f(bcr ) = 1 bc 2 I(f). " R 0 2 I(f), I(f) R. E f(1r ) 6= 1, 1 2= I(f). E B(br ) " ", $ b 2 I (f) 6= ?, 0 2 J(f). L" I(f) , dal 2 A(br ) b 2 I (f). E al 6l dal , al 2 A(br ) a 2 J (f), !. E (" A(1r ) ", 1l 2 A(1r ), " 1 2 I (f), 1 2= J(f), " J(f) "" . 2 " p 1-- R. R( " p 6 '(p) (" R, ( b'(p)a a b 2 R, " '(a b) 2 p. " ( a " b " $ % '(a b) , $ -% , '(p) 6 # Lr Ll , " # ( # !. < p % f = f(p) : Lr 7! Lbl , ( br 2 Lr A(br ) = A(f(br )) = fal 2 Ll j b'(p)ag: R",
B(br ) = B(f(br )) = Ll n A(br ) (#( "). 1 , " # " " "(, "" , br al . " cl 6l al al 2 A(br )
482
. .
, $ a b c 2 R. E '(a b) 2 p, 5.3 '(a b) ! '(c b), '(c b) 2 p, " cl 2 A(br ). , b 2 R -% '(1 b) (" " , $ 1l 2 A(br ) 6= ? " ! % Lbl . 5.5. < " 1-- p R ( f = f(p) f(0r ) = 1. = - p , f(1r ) 6= 1. . " b d 2 R , ! br 6 dr , ! f(br ) 6 f(dr ), " A(br ) A(dr ). " al 2 A(br ), " '(a b) 2 p. 5.3 ! '(a b) ! '(a d), al 2 A(dr ) % f . E ", a 2 R % '(a 0) = \0 j x 0" (" " , A(0r ) = 1. L" - p , '(0 1) = \x = 0" 2= p, $ 0l 2= A(1r ) A(1r ) 6= 1. 2 " f = f(p) 1-- p. ( I(p) = I(f), I (p) = I (f) J(p) = J(f), J (p) = J (f). 9 , ! I(f) = fb 2 R j xb = = 0 2 pg. 5.6. % p 1-- R. ) hI(p) J(p)i R, # s r 6= 0 4 r 2 I (p), s 2 J (p). . R"" hI(p) J(p)i " # 5.4 5.5. (, ! ab = 0 , b 2 I (p), a 2 J (p). E al 2 A(dr ) d 2 I (p). L" $ b 6r d, # ab = 0 ! ad = 0. E al 2 A(dr ), '(a d) = \xd = 0" 2 p, d 2 I(p) | !. 7 ! d
5.7.
8 * # 1-- R ( f : Lr 7! Ll , "* "* : 1) f - 2) f(0r ) = 1 f(1r ) 6= 1- 3) s r 6= 0 4 r 2 I (f), s 2 J (f). 3 : p 7! f(p) : f 7! p(f).
b
. 0 " 5.5, 5.6 % f(p) 1-- p " 1){3). , # " # ", ! (
-
483
# . <" " , ! % f, + " 1){3), -% p f: '(c d) j '(c d) 2= pg, p = p(f) "". " $ . " ! (" $ (" "". 0 # " ", " # , # ( "! , ! "( . 5.1, ! '(a b) ! '(c d), '(a b) 2 p, '(c d) 2= p. 0 " " 5.3 b 6r d , # " : c 6l a ad = 0. p = p(f) ! al 2 A(br ) cl 2= A(dr ). 7# f f(br ) 6 f(dr ). L" c 6l a, cl 2 A(dr ), !. 7 ! a
6 ' $ -
, ! # " " # (, " "( , # (, , " , ( ! "", " # () 1-- p , " N(p). R (, ! 1--% 6 p, " 2= p , 1--% '1 '2 2= p ,, ! ! '1 '2 " 1--% ' 2 p, ! ('1 ^ ')+('2 ^ ') 2= p. 0 " 13, Thm. 9.16] 1-- # " # ( , 6, % . R + , " # "" 6 1--% 3, E. 1] 3, R . . 1].
6.1.
% p 1-- 2 = p 1--( . ) p '1 + '2 2 = p " 4 1--( '1 = '(a b) '2 = '(c d) 2= p 4, # ! '1 '2.
R + ( # # ! % " # (, 1--. 6.2. 3 "* 1-- p R:
484
. .
1) p 2) ( f = f(p) 1){3) 5.7 , , 4) a b 2 R al 2 = A(br ), c 2 R , # f(br ) < f(cr ) al 2= A(cr ).
. 1) ) 2). ( , ! al 2= A(br ) a b 2 R "+" c 2 R , ! f(br ) < f(cr ) al 2= A(cr ). E al 2= A(br ), '(a b) 2= p b 2 I (p). (, ! 1--% '(a b) 6 p, ! " ( !. 0 " 6.1 " ! " , ! '(c d) + '(e f) 2= p ", 1--% '(c d) '(e f) 2= p ,, ! '(a b) ! '(c d) '(e f). 7 cl 2= A(dr ), el 2= A(fr ), ! "", d f 2 I (p). , " " 5.3, ! b 6r d f, A(br ) A(dr ) A(fr ) f. g = minl (c e), h = maxr (d f), 3, N. 1] '(g h) = = '(c d) + '(e f). S", ! h 2 I (p). L" a 2 J(p), a 2 B(sr ) ", s 2 I (p), " , ( A(br ) = A(dr ) = A(fr ) = A(hr ). " g l c g l e, gl 2= A(hr ) '(g h) 2= p, ! " . 7 ! a 2 J (p). E 3) 5.7 ! ad af ah 6= 0 5.3 c e 6l a. E g 6l a h >r b. L" al 2 A(dr ), , " c 6l a, ! cl 2 A(dr ), ! #(. 7 , al 2= A(dr ) ! al 2= A(fr ) A(hr ). ( % f A(br ) = A(dr ) = = A(fr ) = A(hr ). E cl el 2= A(dr ) = A(fr ), gl 2= A(hr ), '(g h) 2= p. 2) ) 1). 5" ! "" 6 1--% p. ( . 3, R . . 1] ( "! , ! = '(a b). 0 ! "", al 2= A(br ). 4) d 2 R , ! f(br ) < f(dr ) al 2= A(dr ). 0 cl 2 A(dr ) n A(br ). S", ! c
% R . ) 4 & I R , # R=I . , I , .
.
S", ! 0 2 I. L" a 2 I, b 2 R an = 0, # " Ra aR aR Ra ! (ab)n = (ba)n = 0. R , I | . " cd 2 I c d 2 R, " (cd)m = 0. L" d 2 R , d2 2 Rcd, $ d 2 I # 6. V ! c 2 I, " c 2 dR. 0 " ! c = gd d = ch g h 2 J(R), c = gch, c = 0 5) 3.1.
-
485
(, ! I ( T J = n I n . E J 6= I. 0 " 5, Thm. 1.15] R=J " . E r 2 I rn = 0 n, r 2 J, I = J, !. 2
6.4.
8 "* & : 1) R 2) R # -' .
R
. 1) ) 2). (, ! Lr Ll "( $# ! , !" hQ 6i Lr Ll , ! q2 6= 0 q 2 Q. 5 ( $ Lr . L" I, 6.3, , R=I " # #"
. 5 " , , ! R | " , " # 6.3. L" R=I #" , % T 2.2 ! J() I , J( + 1) n I n = 0, R #"
( , ! #(. 0 " % 2.1 Lr "( , #% ! , !" . S", ! q2 6= 0 q 2 Q $ " ! . 7 ! 6.3 I 2 = I 6= 0. " r 2 I c r2 6= 0. E " R ! r = r0 r1 , r0 r1 2 I. 7 r0R rR. S", ! r02 r12 6= 0. 5 " , " r02 = 0, r2 = r0 r1r0r1 = 0 " R. 9 6 r0 = r00r01, r1 = r10r11 rij 2 I. E ! r00R r0R r0r10R rR. ( ( #, ! ( (. 7 , "! , ! hQ 6i Lr Ll . 5 br 2 Lr q 2 Q ( br r q, " ( br q $ # Q, ! 6 l . E # # $, 6 , !, " # ! " ( . < % f : Lr 7! Lbl . L" br r q q 2 Q, A(br ) " * A(abl ) ,, ! al r q. 0 " ! " A(br ) " * A(abl ) ,, ! al # Q "!, 6 ""+ "!, # Q $ br . S", ! f(q) < f(q0 ) ", q q0 2 Q ,, ! q < q0 . <" " , ! " % " 1){4) # 5.7 ( 6.2. :" 1){2) "" # . 3). S", ! I(f) = fb 2 R j b >r q ", q 2 Qg J(f) = fa 2 R j a >l q ", q 2 Qg. L" b 2 I (f), a 2 J (f), br
486
. .
2) ) 1). L" R " # ( !"-* M, 0 6= m 2 M, - p = ppM (m) " # (. 1. 5 % '(a b) 2= p , ! b 2 I (p), a 2 J (p), " $ d 2 I (p), c 2 J (p) , ! b
-
7 ) * +
487
A "" " ! + " # ! #6" ", . " R0 = Zhx0 x1 : : :i " , !" Z "! !" +, ,. R (, ! R &(( , " ( " % R0 , ! " , $ R ( $%% 6 . L" R , !" R0 ! R0 = Zx0 x1 : : :] !" "! (" +, ,. 9 , ! " ! " , #6" ", T(R) R, " "!" R # ! "!" # , " r = s R $ R0 " , T (R) j= \8x xr = xs". !, " "+" $%% " ( " " " ". 8 # #" $ " " "" #6" \$%% # "". R " ! " # ! .
! " 7.1.
) 4 &(( # .
. , ! $ " ! " "" " 8] ( $%% " . 2 5 , 1--% ' ,, ! ! ' M Inv(' M) !" $ '(M)= (M), " ! " 1 " ! . S", ! " Inv(' ) > n # " " 89- (, ( # " . R + % ( ! $ ", -% . 7.2 (
$ ) 13, Cor. 2.13]. !"
& 4 .
! " 7.3.
< &(( ( 7.2 & 4 &(( .
. 1 " # # ! " "" " T (R) (# ! 7.1). 2 F R # " , " a 2 R Ra = aR, " R " .
488
. .
7.4.
% R # # R=J(R). ) " 4 1--( ' 4, # ! ' " M , Inv(' M) > 1, #.
. " R "!, " ! # , ! '(M) M 1--% '. 3, R . . 1] ( "! , ! ' = '(a b) , a b 2 R. " m 2 '(M), " m0 ab = mb m0 2 M r 2 R. " R ! rb = bs abs = tab , s t 2 R. E m0 tab = m0 abs = mbs = mrb mr 2 '(M). 2
7.5. % R &(( # # & R &(( . ) T (R) 4 R .
. ( # R ( $%% " $ , ( ( 7.3). 7.4 " "!, $ ( $ ( Inv(' ) > 1. 7 , ( "! , ! " ( Inv(' ) > 1 1--% ' . 7# # " Vi '(ai3,bi), . |1] , ! ( $%% "
' Vj '(cj dj). 0 " 5.1 " Inv(' ) > 1 # 6" ( '(a b) ! '(c d). 5.3 " ! $%% 6 " d 2 bR ! " " ". 0" $ 6 , ! "" : br0, br1, : : : dr0, dr1, : : :. L" d = bri i, ( !. L" b = drj j, 6 " " rj . L" \ ", d 2 bR, d 2= bR, " \". E R , , # $, " ! # "". 2 7.6. % R &(( # # " & R , . ) 4 R . . 0 " 7.5 " ! $%% , $ a 2 R . " "" ar0 ar1 : : : (ri 2 R ) "" 0, 1. 0 " ! $ a , | . 2
,
1] . . . // . . | 1975. | ". 18, %&. 5. | '. 707{710.
-
489
2] +,-. /. 0. ',&1 2--4% , ,% %. // ' . . 1. | 1992. | ". 31, N 6. | '. 655{671. 3] +,-. /. 0. 71 2--4% , & . // ", -. . -%. | 1994. | ". 56. | '. 1{13. 4] +,-. /. 0. 2 2--4% , &,& . // 9-& . ,. | 1994. | ". 49, %& 5. | '. 171{172. 5] Bessenrodt K., Brungs H. H., T:orner G. Right serial rings. Part 1. | Preprint. | 1990. 6] Camps R., Dicks W. On semilocal rings. // Israel J. Math. | 1993. | V. 81. | P. 203{211. 7] Eklof P., Herzog I. A Some model theory over a serial ring. | Preprint. | 1993. 8] Eklof P., Sabbagh G. Model completions and modules. // Ann. Math. Logic. | 1971. | V. 2, N 3. | P. 251{295. 9] Herzog I. A test for ;nite representation type. | Preprint. | 1993. 10] McConnell J. C., Robson J. C. Noncommutative noetherian rings. | New York, 1988. 11] Mohamed S. H., M:uller B. J. Continuous and discrete modules. | Cambridge, 1990. 12] M:uller B. J., Singh S. Uniform modules over serial rings. // J. Algebra. | 1991. | V. 144. | P. 94{109. 13] Prest M. Model theory and modules. | Cambridge, 1988. 14] Puninski G. E. Pure-injective modules over right noetherian serial rings. // Comm. Algebra, to appear. 15] Rothmaler Ph. A trivial remark on purity. // Seminarber. Fachber. Humbold Univ. Berlin. | 1991. | V. 112. | P. 112{127. 16] Stephenson W. Modules whose lattice of submodules is distributive. // Proc. Lond. Math. Soc., Ser. 3. | 1974. | V. 28, N 2. | P. 291{310. 17] War;eld R. B. Serial rings and ;nitely presented modules. // J. Algebra. | 1975. | V. 37, N 3. | P. 187{222. % & 1995 .
.
e-mail: [email protected]
P | , N , ( !). P # # $% &#, , %
% %
!% %
. ' # $% &,
# ( . ) #
! $% & .
Abstract Bl. Sendov, Compulsory congurations of points in the plane, Fundamentalnaya i prikladnaya matematika 1(1995), 491{516.
Let P be a set of N points in a general position (no three points are collinear) on the plane. A subset of P may form a speci0c con0guration, say obtuse triangle or convex pentagon. There exist con0gurations of points, that compulsory emerge in every point set of great enough cardinality. In this paper, such compulsory con0gurations of points on the plane are considered.
1
P = fp1 p2 p3 : : : pN g , ( ). . P , - !" P, jP j = N | " P. $!" q 2= P, !" P . % P = P q , , !% , P " , P " . $ " % " . &" C - , ! C % . $ C - '%!(. Ck | k- . ) Ck !* , k > 3 , * , !% k-!%" . 1995, 1, N 2, 491{516. c 1995 !", #$ \& "
492
.
Ck (I) |
k- , 0! ! , , !% k-!%" , , % ! 1% k-!%" ! ! * I. &, C5 (0) | 1 ! !%" , ! " % % , . . . C3 | > . 3* , * " !% ", , !* '%!(* C3 . 4 > 2 , C3 . & '%!(* C , !" n, " ", n ! C - '%!(*. & ", n, * 1 , N(C ). &, C3=3 | " '%!(, N(C3=3 ) = 2. 3% ", C4 " '%!( N(C4) = 4. 4 C " '%!(, ! " N(C ) = 1. , ! k-!%" ( % ) ! " '%!(. & P '%!( C , P ! !* ! : a) P '%!(* C , b) * q 2= P P = P q '%!(* C . & ",!* '%!( C N(C ). &", '%!( C , , N(C ). ) " , N(C ) 6 N(C ) '%!( C . " '%!( C , N(C )=N(C ). 3% !", N(C3) = N(C3) = 2 N(C4) = N(C4) = 4 . . ! k-!%" k = 3 4 * %! '%!(. 6 '%!( C35=9 %! , N(C35=9 ) = 4 N(C35=9 ) = 3. 7, % !%" !* C35=9 .
I.
2 Ck
7 \ " '%!( Ck * !" k?" 0 6 ;5]. $ " ",% f(k), %, ,
493
", f(k) , ," k , !* ! %!%" . , f(3) = 2. 0 6 ! , f(4) = 4, 4. > , f(5) = 8. f(k) k > 6 . $. 0, A. ), ;4], ;5] , * ;4 2k;2 6 f(k) 6 2k (2.1) k;2 : A $. 0, A. ), , f(k) = 2k;2, " k = 3 4 5. $ (2.1) , '%!( Ck " k > 3. $ " 1% ' ;4]. C *% " % , % m P1 P2 : : : Pm , , " , ! , - % . 7" ( . & '%!(* Pi1 Pi2 Pi3 : : : Pi !, !% Pi1 Pi2 Pi2 Pi3 : : : Pi ;1 Pi ! *, % !, *. $!" f1 (u v) | ", , " u , !* !!* '%!(*, v , !* % !!* '%!(*. % f1 (u v) = f1 (u ; 1 v) + f1 (u v ; 1) ; 1: (2.2) f1 (u ; 1 v) . 4 " v , !* % !!* '%!(*, (2.2) . 4 , ! '%!(, u ; 1 . E ** ! 1 ! '%!( !%!* ! % . % % !!* '%!(* v , ! , % !!* '%!(* v ; 1 . $ " ** !, !! " ,% . ! Q = fQigri=1 , r = f1 (u v ; 1) , ! '%!(, u ; 1 . 7 Q u , !* !!* '%!(*, % , ! , v ; 1 , !* % !!* '%!(*. Q1 ! '%!(, u ; 1 . $!" Q0 | Q1 1 '%!(. 4 !% Q0Q1 ",, ! Q1Q2 , Q2 u ; 1 !* !!* '%!(* u F !% ",, Q0 Q1 Q2 Q3 : : : !* % !!* '%!(* v . (2.2). s
s
s
494
.
G % f1 (3 n) = n (2.2) !( !, 2n ; 4 f1 (n n) = n ; 2 + 1: (2.3) G f(n) = f1 (n n) ; 1 (2.3) ! (2.1). 3 (2.1) 2n;2 , ! n-!%" ;5]. 2.1
7 1 %' , ! '%!( Ck Ck (I)
, ! '-
%!( C3 . $!" | l | , ! ! . $ l " !. 4 l, !" h( l), !* , !"*, !%!* !" h( l) !"*. $!" % P ^ l) " ", u, , ! h( l) u = C(PF ! p q ! u P, !* ! (u + 2)-!%" , pq | , ! !% , p q , + < . , ^ l ) = C(PF ^ l). l " l P h( l ), C(PF ^ ^ $ P C(P F l) = C(PF ) " . P ^ F ) ! !" (u v) = C(PF ), % u = C(P ^ v = C(P F ;). P ", k = C(P), , k P, !* ! k-!%" . 3% !", (u v) = C(PF ), maxfu vg 6 C(P) 6 u + v ; 2: I p = (p F u v), % p | , | u v | !" , , P " !"* C(PF ) = (u v). p , | , (u v) | ! p = (p F u v). A' ! ! " p, % " ! ( p u v !* .
495
, p = (p F u v) = (p ;F v u). & . 1 !: A, B, C : D, E. > %!%" ABC | ! !%" , 5 , A, 4 , B ! , ! C. C , " , , %!%" ABC \" ! ! C. > %!%" AECD . 1 ! 11-!%" , AED | ! 7-!%" . 4
t
C
3
t
D 3@@5 A t
t
E
4;;2 B t
2. 1
( ) ! p = (p F u v) ", ( ",) n = jpjmax (jpjmin ), , P jP j = n, * " !* !" (u v). , ! ! P " !"* , ! ! !% " . 3% ! ", ! p = (p F u v) jpjmin = u + v ; 2: 7 ! '! " ! ! 0, ), ;4] !* . C ! p = (p F u v) u + v ; 2 jpjmax = (2.4) u;1 :
& . 2a ! Pa , '%!( C2n+1, . 2b | ! Pb , '%!( C2n. 3% !", ! %!%" , Pa ! m-!%" , % m 6 2n. > " Pa
496
.
2n 2
2 2n
s
s
2n-2 4 s
4 2n-2 s
2n-4 6
6 2n-4
s
s
s
s
s
s
2. 2a
% (2.4)
jPaj = 2n + 2n + 2n + : : : +
1
3
5
2n = 22n;1: 2n ; 1
2n-1 2 s
(2.5)
s
2n-3 4 s
3 2n-2 s
2n-5 6 s
5 2n-4 s
s
s
s
s
2. 2b
C Pb . 2b jPbj = 2n ; 1 + 2n ; 1 + 2n ; 1 + : : : + 1 = 22n;2: 1 3 5
(2.6)
G (2.5) (2.6) ! " (2.1).
3 Ck (I ) $. 0, '%!( Ck (I) ! I: k- , . . ! !% !% k-!%" . $!" ! I = q , k- q. 7 ;6] , N(C3 (0)) = 2 N(C4 (0)) = 4 N(C5 (0)) = 9:
497
C k > 7 C . C. K ;7] , N(Ck (0)) = 1, . . Ck (0) " '%!( k > 7: , Ck (q) | " '%!(, Ck (q+1), '%!( Ck (q) " , '%!( Ck (q ;1) " . C !" C . C. K ;7]:
3.1. k + 2 = 4m + r, r = 0 1 2 3 k Ck ((r + 4)2m;1 ; 4m ; r ; 1) .
> 7 -
# . $!" k + 2 = 4m + r, r = 0 1 2 3. )! C . C. K ! ;7], " % n 2n P = fp0 p1 p2 : : : p2 ;1 g * k-!%" , P ! (k + 4)2m;1 ; 4m ; r P. $!" an;1(i)an;2 (i) : : : a1(i)a0 (i) | " (% i, 0 6 i < 2n, . . n
i = an;1(i)2n;1 + an;2(i)2n;2 + : : : + a1(i)21 + a0 (i)20 :
(3.7)
$!" c = 2n + 1, d(i) = an;1(i) + an;2(i)c + : : : + a1 (i)cn;2 + a0 (i)cn;1
(3.8)
P = fpi = (i d(i)) : i = 0 1 2 : :: 2n ; 1g: (3.9) $ * ;7]: a) L = fpi : i = 0 1 2 : :: 2n;1 ; 1g | P. b) R = fpi : i = 2n;1 2n;1+1 : : : 2n;1g | P | ! L. c) B = fpi : i = 0 2 4 : :: 2n ; 2g | P . d) T = fpi : i = 1 3 5 : :: 2n ; 1g | P | ! B. e) 7 L R B T * , !% !%. &, ! c B L. f) $ !% (c=2 ; 1 (cn ; 1)=2(c ; 1)) ! T B. g) 7 T , * , * B. L % B * , * T. h) 4 i j (mod 2s ), s | !" h 6 i (mod 2s), s+1 (' h *, , , * pi pj , ph .
498
.
" ! k-!%" Q P . > ", Q "* T , B. G , Q B, , * B L. $ 1 Q ! k-!%" L. L % , Q T, , * T L. M! " 1! (!!, Q T, B. $!" pi1 pi2 : : : pi pi +1 pi +2 : : : pi + | Q B, % i1 < i2 < : : : < ix < ix+1 < : : : < ix+y d(i1 ) > d(i2 ) > : : : > d(ix ) < d(ix+1 ) < : : : < d(ix+y;1 ): $!" pi pi +1 (mod 2s ;1 )F l = 1 2 : : : x ; 1. %, ! h) !" Q, s1 < s2 < : : : < sx;1 an;s (il ) = 1 an;s (il+1 ) = 0: 0 , ", l ; 1 (' az (il ) s1 6 z < sl !*. ) " , ", 2l;1 ; 1 B n Q , pl pl+1 . % % e) B ! Q ",, 20 ; 1+21 ; 1+: : :+2x;2 ; 1+20 ; 1+21 ; 1+: : :+2y;1 ; 1 = 2x;1 +2y ; x ; y ; 1: 7 0! g)0 T ! Q 2x ;1 + 2y ; x0 ; y0 ; 1, % x + y + x0 + y0 = k. & (, P ! Q ",, 2x;1 + 2y + 2x0 ;1 + 2k;x;y;x0 ; k ; 2 > (r + 4)2m;1 ; 4m ; r % k + 2 = 4m + r r = 0 1 2 3, 1 ( . . 0 C . C. K ;7] , '%!( C7(0) " . &, % * , '%!( Ck ((r+4)2m;1;4m;r) " k > 6. 0 % * C . C. K ;7] , C6(0) | " '%!(. 7 " C6(0) . ) "* % "* % % " % !% !% " C. ;8] ! 20 , ! ! 6-!%" , , '%!( C6(0) " , N(C6(0)) > 20: (3.10) x
l
x
x
x
y
l
l
l
l
499
$ (. 3) \ " 20 , ! ! 6-!%" , (3.10) , N(C6(0)) 6 20: s s s
s
s
s
s s s s
s
s s s
s s s
s
s
s
2. 3. 4 20 ,
! !! 6-%
.
$!" ! I 0(modq) : k- q. L. M, $. C M. 7 ;1] ! %! , '%!( Ck (0 mod q)) " * !" q k > 3, k > q + 3 k 2 (mod q):
4 C3
N '%!( C3 " 2(0 )? G! 1% 3. >. M* ;2] $. 0, A. ), ;5]. C , '%!( C3 " * < . 3% ", '%!( C3 " < , f() = N(C3 ) lim!;0 f() = 1. $. 0, A. ), ;4] , '%!( C3 " * < . 0 N(C3 ) N(C3 ), " % !" $. 0, A. ), ;4], ;5]. G 3. >. M* *" ",% (N), %, * '%!( N
500
.
, * !% > (N)F 0 6 < : 4 (N), % N(C3 ). &! " (3) = 31 (4) = 21 (5) = 53 (6) = 23 " , N(C3=3 ) = 2 N(C3=2 ) = 3 N(C33=5 ) = 4 N(C32=3 ) = 2: &" , (7) = (8) = 23 :
0 $. 0,. G , N = 3 4 5 6 ! ! PN ( , " % !% N-!%" ), PN '%!(* C3 = (N), '%!( C3 > (N). C N = 7 8 1 . 7 1 ! % > 0 PN , PN '%!(* C3 , % = (N) + , '%!( C3 , % > (N) + . > ", N = 7 8 ! ! 1" . 7 A. ), ;14], $. 0, A. ), ;5] , (2n ) = (1 ; 1=n)
(4.11)
(2n + 1) > (1 ; 1=n) : $. 0, A. ), ;5] %*, 1 (N) = 1 ; n 2n;1 < N 6 2n: 7 ;9], ;10] , (9) = (10) = 75 (11) = (12) = : : : = (16) = 34 : 0 % %! (4.12) N = 11 12 : :: 16. & ;12], ;13] !*!* !.
(4.12)
4.1.
1 (N) = 1 ; n
2n;1 + 2n;3 < N 6 2n
(4.13)
2 (N) = 1 ; 2n + 1
2n < N 6 2n + 2n;2
501 (4.14)
2 1 1 ; 2n + 1 < 6 1 ; n
1 2 n n ;2 N(C3 ) = 2 + 2 ; 1 1 ; n < 6 1 ; 2n + 1 : I " (4.13) (4.14),
. 0 '%!( * 1" 1 , % (N). 0 '%!( 6 .
4.1
N(C3 ) = 2n ; 1
M! " ( ). I !" 1, "!
. % 4.1. ! C = fc1(o1 r1) c2(o2 r2) : : : cM (oM rM )g | # oi ri. $ # C % , # , # % C , , % % . & C 1, % . & C k, , # % , k ; 1. & , # , . ! # , , .
& . 4 !! !% . 6!% ( o1 o2 o3 * % 1. 6!% ( o4 o5 o6 o7 o8 * % 2, !% ( o3 o7 o8 o9 : : : o15 . % 4.2. ( V = fP C g = fp1 p2 : : : pN F c1 c2 : : : cM g,
N = jP j
M = jC j > N , , , , : a) &# P
C . + k,
k. b) , % 1. c) &# C # % .
502
.
r
O3 =P1
r
O14 =P9 r
O6
r
O13 =P8 r
r
O15 =P10 rO 4
r
O9 =P4
r
O1 O12 =P7
O8 =P3 r O2
r
O r 5 r
O10 =P5
r
O7 =P2 r
O11 =P6
2. 4
, *% % !% " '%!( ( P !% C, ! % !%) ! !* '%!(*. & . 4 '%!( 10 P1 : : : P10 15 !%. ) !% ( o1 ! !* '%!(* 7 10 !%. 3*!* !* '%!(* " !* '%!(* !% , !% . % 4.3. ! p q |
V = fP C g, o(pF q) | , #
p # q, o(qF p) | , # q # p. GD(pq) p q o(pF q)o(qF p),
,
GD(pq) = G(pq) = D(o(pF q)o(qF p)): & . 4 o(p4 F p2) = o1 o(p2 F p4) = o2 GD(p2 p4) = D(o2 o1 ).
503
! V = fP C g V 0 = fP 0 C 0g |
. - , V V 0 ' (V V 0 ),
pi p0i # P P 0, % i j G(pi pj ) G(p0i p0j ) .
% 4.4.
C ! 1 '%!( V V 0 ! " " pi p0iF i = 1 2 : : : N. % 4.5. / p q r, 0 , A(p q r) < . 1 GA(p q r) # 0
2 ;0 ) # G(qp) G(qr). / l l
0 < A(l l ) < , #
l l .
& . 4 GA(p2 p4 p8) = A(o1 o2 o4o6 ): % 4.6. 1 A(P )
P . 1 GA(V ) = GA(fP C)g
V = fP C g:
)!* . * 4.1.
V = fP C g V 0 = fP 0 C 0g p q r 2 C p0 q0 r0 2 C 0 | ,
,
GA(p q r) = GA(p0 q0 r0)
GA(fP C g) = GA(fP 0 C 0g):
% 4.7. ! dk (fP C g) | # % k
V = fP C g. 1 V h- , 0 < h < 21 , d1(fP C g) = 1 k C r(k) = hdk (fP C g). * 4.2. ! V = # 0 < h < 21 0 V .
fP C g
| . 2 V (h),
h-
# . , * t > 0 a b = tx + a, = ty + b !* !*
504
.
'%!(* 1 !* !* '%!(*. $!" fP (1) C (1)g = fP C g d1 (fP (1) C (1)g) = 1:
& ,% " !% ci (oi ri) % 1 C (1) ! % = h(x ; xi)=ri + xi = h(y ; yi )=ri + yi % oi = (xi yi). 0 , P (1). 4 !% % 1 C (1), !* !* '%!(* fP (2) C (2)g = fP (1) C (1)g = fP C g
k = 1. & ,% k ! !% cj (oj rj ) % k C (k) = hk (x ; xj )=rj + xj = hk (y ; yj )=rj + yj % oj = (xj yj ) hk = hdk (fP (k) C (k)g): 4 m | " % !% P, '%!( V (h) = = fP (m) C (m) g ! h- " ! ! * . * 4.3. P | V = fP C g | h- # # P , % % p q r P
jA(p q r) ; GA(p q r)j < 2 h
jA(P) ; GA(fP C g)j < 2 h:
# . 4 p q * % 1, % * % GD(pq) D(pq). 4 p q * % k ! % % !% % k ; 1, GD(pq) = D(pq). 4 p q * % * % k, ! !% % k ; 1, % !% ! D(pq) GD(pq) , h. 0 , " . % 4.8.
(N) = inf fA(P) : P = fp1 p2 : : : pN gg G(N) = inf fGA(fP C g) : P = fp1 p2 : : : pN gg: 3 #
P
C.
505
4.2.
! #
N
G(N) = (N):
(4.15)
# . 7 '%!( !% " % 1 !% !* !%. G 1% !, G(N) 6 (N): (4.16) C , " (4.15) ",
G(N) > (N):
(4.17)
C! %, % % !" % N " > 0, G(N) < (N) ; :
(4.18)
G (4.18) !, ! ! '%!(
fP C g,
GA(fP C g) < (N) ; , '%!( P = fp1 p2 : : : pN g GA(fP C g) < A(P ) ; : (4.19) )% 4.2 4.3 ! ! h- " '%!( fP C g, 1 fP C g, GA(fP C g) = GA(fP C g) > A(P) ; 2 h:
(4.20)
& (4.20) (4.19) h, (4.17) . )% 4.2 (N) ", " '%!( , ", '%!( . 7% 1% * , '%!( ! 1" 1 V = fP C g jP j = N, GA(V ) = G(N) = (N): )! 1" 1 ;13]. 4.2
& ! $. 0, A. ), ;5] % %'. $!" K (N ) | %' N (%' N , , * , ). I ( ) ( %' G ! !", ( ) .
506
.
)! ;5], %' G * G = G1 + + G2 + : : : + Gn %' Gi !* : Gi , %' G, %' G " Gi (Gi " ). , Gi ( . 7 ;5] ;14] !* . * 4.4. K (N ) = G1 + G2 + : : :+ Gn |
n ,
N 6 2n : # . C " 1% !". $"! G1 ( , " , %' K (N ) A B, N1 N2 , , , %' G1 ! A B. & % G1 + G2 + : : : + Gn !(! G02 + G03 + : : : + G0n %' K 0 = K (N ) jA, K 0 | %' N1 , * !( N1 6 2n;1. L % N2 6 2n;1, ! N = N1 + N2 6 2n. G % ! " " E. & F 0 6 < 2 E | 1 o(0 0) ei ! . % 4.9. ! | 0 6 < 2 . $ #
T( ) = fz : z = aei' a real 6 ' < + gno(0 0) % . &#
% ( % ), % . (#, # Q %. T , Q 0 .
)!* . * 4.5. # Q # T % p q r Q D(pq) D(qr) #
# T ,
A(p q r) > ; : V = fP C g
* 4.6. ! , Q P
# , Q, # % % T1 (1 ), T2 (2 ),: : : , Tk (k ). GA(Q) 6 ; jQj 6 2k : (4.21)
507
$!" K (k) | %' , Q Gi, i = 1 2 : : : k | %' , Q, , * , ! % T (i ). > ! , K (k) = G1 +G2 +: : : Gk . C " , %' Gi (, 1 ( ! " % T(i ). & % 4.5 1 ! ! (4.21). " (4.21) ! 4.4. # .
% 4.10. 4 k
0 , # k+1 # 0 % 0
. % 4.11. 1 , .
0 -
$!" V = fP C g | '%!(. M! " V "* ( o1 o2 : : : os !% % 1 "* li 1 li 2 : : : li k(i), ( oi !% ci , i = 1 2 : : : s, " , P, ! ci . I , P , ! ci, k(i). & . 5 , '%!( 4 ( !* . * 4.7.
V = fP C g = fo1 o2 : : : osF li 1 li 2 : : : li k(i)F i = 1 2 : : : sg , 0
N = jP j
N = 2k(1) + 2k(2) + : : : + 2k(s): # . 4 !%! % 1 ! , ! 1% !% V . $!" k ; 1 !" ! % !% % 1 !% % 2, ! 1 !% ! k ; 1 2k;1 . O !% % 2 * ! !* !% % 1 k ; 1 , " !% % 2. ) " , ! !%! % 1 ! k 2k V . $ !( .
508
.
l4 1 O4 r r
O1
r
r
O3 l3 1
O2
l3 2
l2 1
l1 1 l l1 3 1 2 2. 5
* 4.8.
!
V = fP C g = fo1 o2 : : : osF li 1 li 2 : : : li k(i)F i = 1 2 : : : sg , Q = fo1 o2 : : : os g | #
1 V , = A(Q), Pi P | # ci , i = GA(Pi ) = maxf1 2 : : : sg 'i | # fli j F j = 1 2 : : : k(i)g foioj F i 6= j = 1 2 : : : sg, ' = minf'1 '2 : : : 'sg: +
GA(V ) = maxf ; 'g: # . $!" p q r | P, GA(p q r) = = GA(V ): 4 1 ! !% % 1, GA(p q r) = : 4 1 !% % 1, " | !% !% % 1, GA(p q r) = ; ': 4 ! % % !%, GA(p q r) = : 0 , " . * 4.9. l1 l2 : : : lk | , o c ,
A(li li+1 ) > 5 i = 1 2 : : : kF lk+1 = l1 , 2k Q c V = fQ C g,
GA(V ) 6 ; : # . $ , ! !% c 1. & ,% o1 1 o1 2 l1 = l1 1 , jo ; o1 1j = jo ; o1 2j = 2;1 c1 i = c(o1 i 3;1)F i = 1 2:
509
& ,% l2 i F i = 1 2 | , ( o1 i F i = 1 2 " l2 . o2 1 o2 2 l2 1, jo1 1 ; o2 1j = jo1 1 ; o2 2j = 2;2 , o2 3 o2 4 l2 2 , jo1 2 ; o2 3j = jo1 2 ; o2 4j = 2;2 c2 i = c(o2 i 3;2)F i = 1 2 3 4 = 22: & ,% k 2k pi = ok iF i = 1 2 : : : 2k !! !* ! !% , * !* !* '%!(* V , GA(V ) 6 ; . * 4.10. ! V = fP C g = fo1 o2 : : : osF li 1 li 2 : : : li k(i)F i = 1 2 : : : sg |
, Ni , i = 1 2 : : : s | % ci = c(oi ri) 1, Li = fti 1 ti 2 : : : ti s;1g | , oi oj 5 j 6= i, 'i j = A(ti j ti j +1)5 j = 1 2 : : : s ; 1, ti s = ti 1 , 'i 1 + 'i 2 + : : : + 'i s;1 = 1 GA(V ) = (1 ; 2=u) : +
0
Ni 6 2k (i)
k0(i)=(;u'i 1=2] ; 1)+ +(;u'i 2=2] ; 1)+ +: : :+(;u'i s;1=2] ; 1)+ : (4.22) # . $!" fi 1 i 2 : : : i q g f'i 1 'i 2 : : : 'i s;1g | !% f'i l g, !* ! (4.22) !* i j = 'i l > 4=u: $ ;ui j =2] ; 1 T( (Pi j + 2k=u)F 2 =u)F k = 1 2 : : : ;ui j =2] ; 1 (4.23) !% 2 =u, % Pi j 2 ;0 ) | !% ti m , 'i m !% i j . )% 4.8 * ! p p0 P, ! !% ci, GD(pp0 ) (4.23). $1! 4.6 ! (4.22). , ( ( ! !% ci " (Pi j + 2k=u)F j = 1 2 : : : q k = 1 2 : : : ;ui j =2] ; 1. li j , 1 6 j 6 k0 (i), % j " % . % % 4.9 , '%!( V = fP C g = fo1 o2 : : : osF li 1 li 2 : : : li k0(i) F i = 1 2 : : : sg '%!( ",, ! V , GA(V ) = GA(V ): , !* . * 4.11. 2
V = fP C g
V = fP C g = fo1 o2 : : : os F li 1 li 2 : : : li k0(i)F i = 1 2 : : : sg jP j > jP j GA(V ) = GA(V ):
510
.
" " k(i) 4.7 k0 (i) 4.10. & (, 4.11 ! 4.3. 2 # N G(N) = (N) = inf fGA(fP C g) : jP j = N fP C g
g:
)% 4.3 G(N) = (N) " " , '%!(. 6 , '%!( V = fP C g = fo1 o2 : : : osF li 1 li 2 : : : li k(i)F i = 1 2 : : : sg "* ( !% % 1 "* !* . 4.3 * 4.12. !
V = fP C g = fo1 o2 : : : osF li 1 li 2 : : : li k(i)F i = 1 2 : : : sg | , GA(V ) = (1 ; 2=u) ;u=2] = n = u=2 ; n. + jP j 6 2n 0 6 < 1=2 2n 6 u < 2n + 1
jP j 6 2n + 2n;2
1=2 6 < 1
2n + 1 6 u < 2n + 2:
# . )% 4.7
N = jP j =
s X i=1
2k(i)
4.10 k(i) = (;u'i 1=2] ; 1)+ + (;u'i 2=2] ; 1)+ + : : : + (;u'i s;1=2] ; 1)+ : M! %", ( , k(1) > k(2) > : : : > k(s) !(* s. a) 4 s = 2 '1 1 = '2 1 = 1, k(1) = k(2) = n ; 1
jP j = 2n:
b) 4 s = 3, !% * '1 1 '1 2 = 1 ; '1 1 '2 1 '2 2 = 1 ; '2 1 '3 1 = 1 ; '1 1 ; '2 1 '3 2 = '1 1 + '2 1 k(1) = (;u'1 1=2] ; 1)+ + (;u(1 ; '1 1 )=2] ; 1)+ k(2) = (;u'2 1=2] ; 1)+ + (;u(1 ; '2 1 )=2] ; 1)+ k(3) = (;u('1 1 + '2 1)=2] ; 1)+ + (;u(1 ; '1 1 ; '2 1 )=2] ; 1)+
4
511
2=u 6 '1 1 + '2 1 6 1 ; 2=u:
(4.24)
n ; 2 > k(1) > k(2) > k(3) jP j 6 3:2n;2 < 2n:
$!" k(1) = n ; 1. 0 " %, % '1 1 6 n + : (4.25) !. b.1) 4 0 6 < 1=2, (4.25) !, '1 1 = 2n1+1 . G (4.24) ! '2 1 > n +1 ; 2n 1+ 1 > 2n 1+ 1 ! n ; 2 > k(2) > k(3) jP j 6 2n;1 + 2:2n;2 = 2n: 7 1 ! ! %, k(1) = n ; 1 k(2) = k(3) = n ; 2: b.2) $ 1=2 6 < 1, k(2) = n ; 2 , jP j 6 2n;1 + 2:2n;2 = 2n: $!" k(1) = k(2) = n ; 1. % % (4.25) '1 1 < n +1 1 '2 1 < n +1 1
512
.
(4.24) ! ) " ,
2=u 6 '1 1 + '2 1 < n +2 1 :
k(3) = (;u=(n + 1)] ; 1)+ + (;u(1 ; 2=u)=2] ; 1)+ = ;u=2] ; 2 = n ; 2
jP j 6 2:2n;1 + 2n;2 = 2n + 2n;2:
c) 4 s = 4, !. c.1) 4 0 6 < 1=2, ! jP j % k(1) = n ; 1 k(2) = n ; 2 k(3) = k(4) = n ; 3 %
jP j 6 2n: c.2) 4 1=2 6 < 1, ! jP j %
k(1) = n ; 1 k(2) = k(3) = n ; 2 k(4) = n ; 3 %
jP j = 2n + 2n;3 < 2n + 2n;2: $!" s ; 1, % s !. s.1) 4 0 6 < 1=2, ! jP j %
k(1) = n ; 1 k(2) = n ; 2 : : : k(s ; 1) = k(s) = n ; s + 1 %
jP j 6 2n;1 + 2n;2 + : : : + 2n;s+1 + 2n;s+1 = 2n: s.2) 4 1=2 6 < 1, ! jP j %
k(1) = n ; 1 k(2) = n ; 2 : : : k(s ; 2) = k(s ; 1) = n ; s + 2 %
k(s) = n ; s + 1
jP j = 2n;1 + 2n;2 + : : : + 2n;s+2 + 2n;s+2 + 2n;s+1 = 2n + 2n;s+1 6 2n + 2n;2:
0 , " . % 4.12. 1 N() , , V = fP C g, jP j = N() GA(V ) 6 :
513
, '! ( (N) N() ! *. G 4.12 ! * 4.13. = (1 ; 2=u) ,
N() 6 2n 2n 6 u < 2n + 1
N() 6 2n + 2n;2 2n + 1 6 u < 2n + 2: C ! !. * 4.14. = (1 ; 2=u) ,
N() > 2n 2n 6 u < 2n + 1
(4.26)
N() > 2n + 2n;2 2n + 1 6 u < 2n + 2: (4.27) # . $!" V | '%!( N ! !% % 1. G 4.7 4.10 s = 2 (. . 6) N = 2(u=2];1 + 2(u=2];1 = 2n ! ! (4.26).
O1
r
r
O2
2. 6
$!" V | '%!( N !% % 1. $!" o1 = (;1 0), o2 = (1 0) o3 = (0 tg 2n+1 ) | ( 1 ! (. . 7). % '1 1 = '2 1 = 2n 1+ 1 '1 2 = '2 2 = 1 ; 2n 1+ 1
514
.
r
O1
O3
r
r
O2
2. 7
'3 1 = 2n 2+ 1 '3 2 = 1 ; 2n 2+ 1 2n + 1 6 u < 2n + 2: (;u'i 1=2] ; 1)+ = 0 i = 1 2 3 (;u'i 2=2] ; 1)+ = n ; 1 i = 1 2 (;u'3 2=2] ; 1)+ = n ; 2: )% 4.7 4.10 , !, N = 2n;1 + 2n;1 + 2n;2 = 2n + 2n;2: , (4.27) . & (, 4.13 4.14, , '! ( (N) N() , (N()) = , ! !*!* !. 4.4. (N) | , , N # , > (N)F 0 6 6 ,
2 (N) = 1 ; 2n + 1
(N) = 1 ; n +1 1
2n < N 6 2n + 2n;2
2n + 2n;2 < N 6 2n+1:
1 . $!" m (N) | ", , , * -
515
'%!( N m- , * !% > m (N)F 0 6 6 : $ m (N) " . " , m (m + 1) = =3: )! % $. 0, A. ), ;5], 3. C ( M. A* ! ;3] , m (2m ) = =2: & m (N) m > 2 ! N. &, =3 < 3(5) = arccos 71 < =2 " 3(6) = 3(7) = =2 .
1] A. Bialostocki, P. Dierker and B. Voxman. Some notes on the Erdos { Szekeres theorem // Discrete Mathematics. |1991. | V. 91. | P. 231{238. 2] Blumenthal L. M. Metric methods in determinant theory // Amer. Journal of Math. | 1939. | V. 61. | P. 912{922. 3] Danzer L., B. Grunbaum U ber zwei Probleme bezuglich konvexer Korper von P. Erdos and V. L. Klee // Math. Zeitschr. | 1962. | V. 79. | P. 95{99. 4] Erdos P., G. Szekeres A Combinatorial Problem in Geometry // Compositio Math. | 1935. | V. 2. | P. 463{470. 5] Erdos P., G. Szekeres On Some Extremum Problems in Elementary Geometry // Ann. Univ. Sci. Budapest. | 1960. | V. 3{4. | P. 53{62. 6] Harborth H. Konvex Funfecke in ebenen Punctmengen // Elem. Math. | 1978. | V. 33. | P. 116{118. 7] Horton J. D. Sets with no Empty 7-gons // C. Math. Bull. | 1983. | V. 26. | P. 482{484. 8] Rappaport D. Computing the Largest Empty Convex Subset of a Set of Points. | 1985. | ACM 0-89791-163-6/85/006/0161. | P. 161{167. 9] Sendov Bl. On a Conjecture of P. Erdos and D. Szekeres // Comptes Randus de l'Acad. Bulgare de Sci. | 1992. | V. 45. | N 12. | P. 17{20. 10] Sendov Bl. Optimal disposition of points in the plane with respect to the angles, determined by them // Discret Mathematics and Applications, Ed. K. Chimev & Sl. Shtrakov. | Blagoevgrad, 1993. | P. 10{24.
516
.
11] Sendov Bl. Compulsory Congurations of Points in Euclidean Plane // Advances in Parallel Algorithms, Ed. I. Dimov and O. Tonev. | Amsterdam: IOS Press, 1994. | P. 194{201. 12] Sendov Bl. Angles in a Plane Conguration of Points // Comptes Randus de l'Acad. Bulgare de Sci. (To appear) 13] Sendov Bl. Minimax of the Angles in a plane conguration of points. (To appear.) 14] Szekeres G. On an extremum problem in the plane // Amer. Journal of Math. | 1941. | V. 63. | P. 208{210. ( 1995 .
. . , R8 , - .
Abstract V. E. Balabaev, On one system of equations in octaves in eight dimensional Euclidean space, Fundamentalnaya i prikladnaya matematika 1(1995), 517{521.
This paper deals with the boundary properties of functions with values in algebra of octaves and satisfying an equation system in R8 similar to the Cauchy-Riemann system.
, , {, ! "1, 2]. ' ! , ( ! R8, {. * ( (! - , ! . ' R8 ( . + ( )= 1 ( ) 2( ) 3( ) 4 ( ) | ( (1 0)( ), ( ! C 4 . 0( 14 2 3 1 11 ; 2 ; 3 ; 4 = 0 1 + 2 + 13 ; 4 = 0 2 1 4 3 (1) 1 1 2 3 4 13 ; 4 + 1 + 2 = 0 11 + 2 ; 3 + 4 = 0 1 1 1 g z
C
g
z g
G
z g
z g
z
G
G
@g
@g
@g
@g
@z
@z
@z
@z
@g
@g
@g
@g
@z
@z
@z
@z
@g
@g
@g
@g
@z
@z
@z
@z
@g
@g
@g
@g
@z4
@ z3
@ z2
@ z1
:
4 (1) { . 5 1 ( ) | ! C 4 , ( 1 ( ) 0 0 0) ! (1) ! . g
z
G
G
1995, 1, N 2, 517{521. c 1995 , ! \# !! "
g
z
518
. .
' C 4 8
, (8
z1
+
z2 j
=
q1 z3
+
= 29
z4 j
+
g1
q
g2 j
=
f1 g3
+
=
g4 j
(2)
f2
| ! . : (1) ( 1 2) ! ( H 2 (
) ( 2) 2 = 0 1 ( 1) ; ( (3) ( 2 ) 1 + 2 ( ) ( 1) = 0 1 1 ( 1) = 2 1 + 1 ( 2) = 2 1 + | (4) 1 2 3 4 ( , ( ) ( 1) ( ) ( 2) | ( , (8 , . = (3) , ( 1 0) (3) , 1 | ( ( ( ( 2 1) "2]. > ! ( (3) , (8 j
f f
G
f D D
D
0
q
00
0
q
@
@
@z
@z
q
D
f
j
00
f
D
q
f
0
D
00
q
q
D
@
@
@z
@z
0
q
j
D
00
q
f
f
q q
q1
+
q2 e
=
f1
z
+
f2 e
=
(5)
g
| ! , | . :( (3) ( ( D( ) = 0 (6) (7) D( ) = 21 " ( 1 ) + ( 2) ] e
z
g
g
z
z
D
0
q
D
00
q
e :
+ H 2
! K. A , , (6), ! , "1]. B C 4 ! , ! ! ! C4 Z 0 1 ^ 2 ^ 3 ^ 4 ^ 11 ^ 12 ^ 13 ^ 14 G
dz
dz
dz
dz
dz
dz
dz
dz
>
:
G
B ! C 4 . 4 ( , (6) ! , ! ( ( , ! ( ). C ( , (8 ( ). ' , ! (( , D , ' , +, C . G
HO G
HO G
519
B! ( ) ! : ( ) = ( 1) + ( 2) (8) ( 1) = 1 + 2 ( 2) = 3 + 14 (9) | ( G8 "3], | ! . ! z
! z
!
00
q
!
dz
00
q
dz j
j
!
!
0
g z
G
q
e
q
dz
dz j
e
1 (+). ( ) 2 D
0
( ).
HO G
- Z ( ) ( )=0 @D
g z ! z
(10)
:
@D
= (
.
2. ( ) 2
( ) - K, 4 Z " ( ) ( )]H( ) = ( ) 2 + (11) 4 0 2 g z
@G
( )
HO G
HO G
G
g !
g z
z
z
G
z
G
;
@G
H( ) | , 1 1 H( ) = 34 ( 1 ; 11 ) ; ( 2 ; 2 )j ;;"( j83 ; 3 ) + ( 4 ; 14 ) ] ! j ; j | ; . 3. ( ) - K. Z ( ) = 4 " ( ) ( )]H( ) z
z
z
z
j
z
z
z
z
j e
(12)
z
g z
@G
-
G
G z
g !
4
z
(13)
@G
(K n ) " . 2 (13) " # . + ( ! , 8 H( ) = ; j ;1 j6 D ( ) HO
z
@G
z
@G
z
520
. .
D ( ) | ( ! , (8 D( ). = (13) ( ( K. ( ! 8, ! 4 Z " ( ) ( )]H( ) 2 (14)
g !
4
@G
@G
(
Z 4 lim0 4 " ( ) ( )]H(
"!
g !
)
(15)
@ G"
0 ( . A | , 8 , 0 . C8 ( , ( ) 2 (0 )( ), (14) . 4. ( ) 2 (0 )( ), | ! $ % , Z +( ) = 1 ( ) + 4 " ( ) ( )]H( ) (16) 4 2 Z (17) ( ) = ; 21 ( ) + 44 " ( ) ( )]H( ) @G"
"
g
g
h
C
@G
" > h
C
@G
@G
@G
@G
G
g
g !
@G
;
G
g
g !
:
@G
& ( ) | ! (13), 2 2 . ( (8 ( ). 4 , ! , ( ) 4. 5. ' ! ( ) ! ! ( + ) ( , + ), "" , $ , 4 Z " ( ) ( )]H( ) = 0 $ 2 (18) G
z
G
@G
HO G
G
@G
g
@G
g
HO G
g !
4
G
z
z
G
;
:
@G
. * (18) +
Z ; 21 ( ) + 44 " ( ) ( )]H( ) = 0 $ 2 g
g !
@G
@G:
(19)
521
. : 5 , (-
G
+
. I (19) 0 ! 1 ( ) + 4 Z " ( ) ( )]H( ) = 0 2 4 2
;
G
g
g !
(20)
@G:
@G
6 (+ { +). , (14), - ( ), ., - (0 ) ( ), 0 1, (0 1 )( ), = 1, 0 .
G
C
C
;"
@G
h
h
@G
<
h
<
" >
1] . . :
: : : .
.- . !. | # . . | $. 14. | N 2.|
. 291{304. 2] + , . -. . / .0 { 1 2 // 45 1. | 1974. | $. 214. | N 3. | . 489{491. 3] 829 :-:9. . , . | #.: ;, 1961. | 240 .
% ! & 1995 .
- . .
-
,
- ( , ). ! "#" " : . A | l- ( ),
xm = 0. ! A " 2lm+1 m3 . - . # l-
xm = 0, $% %" & mm 2lm+1 m3 + m $.
Abstract
A. Ya. Belov, The Nagata-Higman theorem for semirings, Fundamentalnaya i prikladnaya matematika 1(1995), 523{527.
This paper contains the proof of the Nagata-Higman theorem for semirings (with non-commutative addition in general). The main results are the following: Theorem. Let A be an l-generated semiring with commutative addition in which the identity xm = 0 is satis'ed. Then the nilpotency index of A is not greater than 2lm+1 m3 . Nagata-Higman theorem for general semirings. If an l-generated semiring satis'es the identity xm = 0 than every word in it of length greater than mm 2lm+1 m3 + m is zero.
, .
. . | -
!. "# $ N. . % X x : : :x 2 ! x1 : : :xm = (1) (1) (m) 6=id
. $ 1. * , #+ $ . , #+ ( 1995, 1, N 2, 523{527. c 1995 ) * & +,, -. & \0 "
524
. .
1. A | , M = Var(A), a1 : : : as | A, R | , ai . v R !, w
" w. . * $ # 0 ,
1 2 #. $ , 1 $ $ R . 2 % + 2 2 0, # # # , 1 , M 0 1 A . 3 , #+ 2. A # PIdeg(M) > 1. (PIdeg(M) , . . # , ). R
. & !
, R # # . 2 4 S f = 0. 4 1 \ " f . (8 , , x3 = 0, x2y+ + xyx + yx2 = 0.) f $ 2. , #+
3. S # f(t x)=0. (' t ! # , ! # x.) f | m x. S # f~ | f x. . ; :
X f~ = f(t x1 + + xm ) ; f(t x1 + + xbi + + xm ) + +
X f(t x i<j
i
1
+ + xbi + + xbj + + xm ) ; + (;1)m;1
X f(t x ): k
k
(= b, , #+$ .) 2 , 1 0 - : X f~ + f(t x1 + + xbi + + xm ) + i
-
+
X f(t x
1
i<j
525
+ + xbi + + xbj + + xm ) + =
= f(t x1 + + xm ) +
X f(t x i<j
1
+ + xbi + + xbj + + xm ) + :
, f | , 1 , , , f,~ #. 8 f~ #. 2
4. ( xm = 0 P x : : :x m = 0: (1)
( )
2
. ) , . ) 4 , 2 # $ $ . > x = y # : # x + z = y + t, # , z = t = 0 ( # + !). 3 8 -@ . 5. A | l- (
# ), # xm = 0. A #) 2lm+1 m3 . . ; , $ . 4 v 2lm+1 m3 . 4 B1] m- , m-# . 41 v m- v = v0 v1v2 : : :vm , v1 v2 vm . 3 # 2 Sm = id v = v0 v(1) : : :v(m) 0 v, , v, #. , : v = v0 v1v2 : : :vm = v0 (v1 v2 : : :vm +
Xv
6=id
(1) : : :v(m) ) =
= v0 (
Xv
(1) : : :v(m) ) = v0 0 = 0:
4 v. 3 8 -@ . 2
. , + 1 2 + 2 , $ 2 2.
526
. .
.
% R | , (x + y ; x ; y)z = = (x + y)(z ; z) = 0. 41 (x + y)z = (y + x)z,
. * 2 . E ,
. #+ + 2 $ . 6. x + y = y + x0 = 0: a b ax + bx = bx + ax xa + xb = xb + xa. . 0 = (a + b)(x + y) = ax + bx + ay + by. $ , bx + ax + ay + by = bx + a(x + y) + by = b(x + y) = 0. 41 bx + ax + (a + b)y = ax + bx + (a + b)y. 4 (a + b)x0 ,
. > xa + xb = xb + xa . 2 , 8 -@
7.0 * W | # 2lm+1 m3 , x + y = y + x0 = 0, 0 W x = xW = W x = x W = 0. 2 4 xm = 0. > (x1 + + xm )m (xm + + x1)m . > 2 ( P m , P m | . ., | m- ). 4
mi=1 vi mi=1 vi0 , # + mm | 2 $ xi . 4 1 vi0 = vmm ;i . (% $
P ,
). 4
P ;1 v , s0 = Pmm m mm v , r0 = Pmm ;1 v0 . ,
0 sk = ki=1 v , r = i k i i=m ;(k;1) i k i=k i k i=1 sk + rk = rk0 + s0k = 0, sk + vk = sk+1 , vk;1 + rk = rk;1, vk + s0k = s0k+1 , rk0 + vk;1 = rk0 ;1. 8. W ) k 2lm+1 m3. Wsk = = Wvk = W rk = Ws0k = Wrk0 = 0. W sk , rk , s0k , rk0 vk . . *
# Wsk , Wrk Wvk . * $ k. F k = 1 7. * sk + rk = 0 # Wrk . 4 W = uW 0, juj = 2lm+1 m3 , jW 0j > (k ; 1) 2lm+1 m3 . 4 # W 0sk;1 = W 0 vk;1 = W 0 rk;1 = W 0 s0k;1 = W 0 rk0 ;1 = 0. 3
W 0sk = W 0 s0k = W 0 vk W 0vk + W 0 rk = W 0sk + W 0 rk = W 0(sk + rk ) = 0: H W 0rk0 + W 0 s0k = W 0rk0 + W 0 vk = W 0 rk0 + W 0 sk = 0. x = W 0 rk , y = W 0 sk , x0 = W 0rk0 + . 2
-
527
9. (3 8 -@ + .) * l- # xm = 0, # ) mm 2lm+1 m3 + m . . , k 1 Pmmmm . 4 mm 2lm+1 m3 #$ #$
i=1 vi #. 2
. ) , 2
, 0 m! lm+1 m3 + m. , 1 # ( m) . ) . , , 0 0 . + x2 = x3 ( +# 2 2 ). ) $ #. F
$, 0 2 . * , !
(. . $ #) 8 -@ . ) J , 6, # J1, 1 # 1 . J2 J1 - A=J1 . Jk +# $ m. , 5 $ 6, 7 , Jk A2kl +1 m3 #. H H. *. 2K .
B1] A. J. Belov. Some estimations for nilpotence of nill-algebras over a Neld of an arbitrary characteristic and height theorem // Comm. in Algebra. | 1992. | 20(10). | P. 2919{2922. 2 $ * 1995 .
. .
512.553
S UR MR T S HomR (M U ), ! .
"# $ , % . T
M
Abstract G. M. Brodskii, Annihilators and weak topologies on modules, Fundamentalnaya i prikladnaya matematika 1(1995), 529{532.
For a bimodule S R we characterize modules R and submodules of S HomR ( ) for which the double annihilator conditions hold. We study the weak topologies induced on by . U
M
T
M U
M
T
, . 1] " . # Y X $ , X=Y $ . %
" " $ : L(X ), Lf (X ) Lf (X ) | $$ $
$ *, * $
* Q * $ * X + X | 2 X , X = X . - MR , " S UR , H S - hU (M ) = = HomR (M U ) A M J H IS (U ) = = TIm(S ! EndR (U ))+ AnnH (A) = fg 2 H j Ker g Ag AnnM (J ) = = g2J Ker g. # . , $ UR H - , A 2 L(M ) U : M=A ! U 2 H ( 2 /), : M ! M=A |
.. 0 UR H -
, Im g $ g 2 H . - 0 ! M=A !i U n
(1) # U n | $, A 2 L(M ) $ , H - , 2 H k i 2 H (1 6 k 6 n), : M ! M=A |
., k | , 2 U n. 3 S UR H -
, H - (1)
1995, 1, N 2, 529{532. c 1995 , ! \# "
530
. .
: U n ! U , ik 2 IS (U ), 1 6 k 6 n, ik | , 2 U n. 3
.
:
MR , S UR
H
hU (M ) -
UR H - ! 2) AnnM (Ann H (A)) = A # A 2 L(M ). 1)
6 R S " S UR . %
MR ,
T hU (M ), , $, T -# 2] 8 M , T . - $ 2 $ M $ " " fAnnM (J ) j J 2 Lf (T )g. 0 * * hU (M ) " $ $ CT HomR (M U ). 9 , $ T CT HomR (M U ). , $ T - M * , T hU (M ) 2, . . AnnM (T ) = 0. #
1.
:
MR , S UR H hU (M ) -
H -
! AnnH (AnnM (J )) = J # J 2 Lf (H )! 3) H \ CT HomR (M U ) = T # T 2 L(H ). 1)
S UR
2)
P
. 1) =) 2). - J = nk=1 Sgk 2 Lf (H ) n
i: M= AnnM (J ) ! U k i = gk , k = 1 2 : : : n+ : M ! M= AnnM (J ) |
.+ k | , 2 U n. # J AnnH (AnnM (J )), " $ . - . ' 2 AnnH (AnnM (J )) ' = , : M= AnnM (J ) ! U . : H -
; S UR : U n ! U , i = ik 2 IS (U ), 1 6 kP6 n, ik | , 2 U n. < , $ ' = nk=1 ik gk 2 J . 2) =) 1). - H - (1) *P Sk i , $ A = AnnM (J ), J = nk=1 P 2 L #. f (H ). 2 AnnH (AnnM (J )) = J , $, = nk=1 k k i * 2* k 2 IS (U ). , $ = i, : U n ! U | , ik = k . 2) =) 3). # , $
CT HomR (M U ) =
J 2Lf (T )
Annh
U
(M ) (AnnM (J ))
" T
531
hU (M ) , ,
H \ CT HomR (M U ) =
J 2Lf (T )
AnnH (AnnM (J )):
(2)
= T H , 2 (2) 2) $, $ H \CT HomR (M U ) = T . 3) =) 2). #
3) T 2 Lf (H ) $ (2), $, $ AnnH (AnnM (T )) T . . S UR : 1) UR # ' S ! End R (U ) !
CT HomR (M U ) = T ( MR T hU (M )! CT HomR (M U ) = T ( MR # T hU (M ).
. 1) =) 2). : 3, 2.1] 1. 2) =) 3). $ . 3) =) 1). > i: MR ! UR 2 T = Si hU (M ). # T - M , hU (M ) = CT HomR (M U ) = T . > , UR ; . ? , $ $, MR = UR , i |
. UR , * EndR (U ) = IS (U ). 2. MR, S UR H hU (M ) 2)
3)
:
H -
, UR H - H - MR AB 5 ! 2) AnnM (AnnH (A)) = A AnnH (AnnM (J )) = J ( A M J H.
. 1) =) 2). @ , 1 H - $
UR , " , $ " AnnH : L(M ) ! L(H ) AnnM : L(H ) ! L(M ) " $$ $
* Lf (M ) Lf (H ). $ AB 5 M , 2:19 3]. 2) =) 1). $ , $ M AB 5 . > 1 $ H - $
UR . - , g 2 H Ker g = AnnM (Sg) M $ , Sg H $ . # (E )2 | ; * "$ *L * * * R- U = 2 E. # S EndR (U ) | , "
s 2 EndR (U ), 2 : $ P2 2E/.
Cs /, $ s(E ) @ " S UR , 1)
S UR
s
532
. .
MR D(M ) P S - hU (M ), 2 * * g: U ! M , $ Im g 2 E * 2 $ Dg /. : $ 2 ,
4] g
3.
MR : M AB 5 ! 2) Ann M (Ann D (M ) (A)) = A AnnD (M ) (Ann M (J )) = J ( A M J D(M )! 3) ) V V N , * L(M ) L(N ) 1)
' .
. : $ 2) =) 3) 3) =) 1) $ , $ 1) =) 2). 9 , $ UR D(M )- $
. ,
17.12 1], , $ UR D(M )-" 2. L 6 , D(M )-
; S UR ; 2 E " $ D /. . >
* " | 3{7]. L " L. :. 0*M
" .
1] Wisbauer R. Foundations of Module and Ring Theory. | Philadelphia, 1991. 2] Chase S. U. Function topologies on abelian groups // Ill. J. Math. | 1963. | V. 7. | N 4. | P. 583{608. 3] . . Hom !"#$ // %. . "&. ')$*&. | 1983. | %. 46. | +. 164{186. 4] . . , -"&. * "#/. #* AB 5 // 0!$. "&. &. | 1983. | %. 38. | N 2. | +. 201{202. 5] Wu L. E. T. A characterization of self-injective rings // Ill. J. Math. | 1966. | V. 10. | N 1. | P. 61{65. 6] Chandler R. E., Koh K. Applications of a function topology on rings with unit // Ill. J. Math. | 1967. | V. 11. | N 4. | P. 580{585. 7] . . , #&' . !#1/. * "#/. // %!#12$&/ $'&: %$-. #$4. &2. '). 5$!'#. 6# . | 76$*, 1988. | +. 16. % & 1995 .
. .
,
.
Abstract
V. V. Dubrovskii, Non-classical applications of Laplace operator, Fundamentalnaya i prikladnaya matematika 1(1995), 533{534.
Di%erentiable function is expanded on over&owing system in such a way that the expansion may be di%erentiated termwise in'nitely.
(
= ; + ( ) = f0 ) 2 1 ( ). : ( 0) = ( ++ : ( ) = (0 ) ( ) = (0 ) ( 0) = (0 ) = ; ( ) ( )=; ( ;; : tU
q x y
U
q x y U
<
x
<
0
a
<
y
<
b
g,
C
U a y @U
U
+; :
y
@x
U a y
+:
)
@U @y
(
U x b
x b
U x
) = ; ( 0) ) = ; ( 0) @U
x b
(
y
@U
a y
@x U
U
@y
U x b
a y
@x
@U
@y
U x
x
( ) = (0 ) ( ) = ; ( 0) (0 ) = ; ( ) ( ) = ; ( 0) (0 ) = ; ( ) ; ( ) = ( 0)
@U
;
@U
) ( ) 0)
U x b
x
@y
U a y
(0 ) = ; ( ( ) = (0 )
@U
@U
y
@x
y
U x
y
@U
a y
@x
U
@x
y
@U
@x
y
U a y @U
y
@x
@U @y
x b
U x b @U
a y
@U
@y
@y
U x
@U
x b
@y
x
x
:
!" ##$%$ &$ ' ()$ , *+ ($$ )$$' #$% ($$$) ( ()$ n, . - ( ; )+ ( )+ ( ; ; )+ ( ; ) ++ ( ) = 4 ( ) + ( ; ) ; ( ; ; ); ( ; ) +; ( ) = 4 t
I
f
x y
f
x y
f a
f x y
x y
f a
u
f x y
f a
x b
y
f x b
y
x y
f a
x b
y
f x b
y
( ) \+, ("
1995, 1, N 2, 533{534. c 1995 , !" \$ "
534
. .
(
f;; x y
+ (x y
f;
1
)= ( )= (
); ( ;
x y
); ( ;
x y
f x y
f x y
f a
f a
++ (x b) = f++ (x 0) @f++ (x b) = @f++ (x 0)
f
@y
@y
)+ ( ; 4 ); ( ; 4 f a
x b
; ); (
; )
f a
x b
; )+ (
; )
y
f x b
y
f x b
y
y
:
++ (a y) = f++ (0 y) @f++ (a y ) = @f++ (0 y) .
f
@x
@x
2, $", 2 2N , . . + $"$' ")$' f
C
1 +2 f (x y ) @x1 @y 2 @
ZZ
1 + 2 6 2
N
++ (x y)U++n (x y) dx dy =
f
RR
= 4,
f
++ (x y)tU++n (x y) dx dy
(
f x y
n++
) = ++ ( f
x y
) + +; ( f
=
x y
RR N t f
:::
++ (x y)U++n (x y) dx dy
=
) + ;+ ( f
x y
)+
(
N n++
f;; x y
. ".
)=
1 (tN U )U + X 1 (tN U )U + ++ n++ n++ +; n+; n+; N N n++ n+; X 1 X 1 N + (tN;+ Un;+ )Un;+ + N N (t;; Un;;)Un;; n;+ n;; =
X
" > 2 " $$ '+' ' ( ), max j nj 6 n " $ (6 . 2 ")$ n %$*' &, n, ' &$ "$$ ##$% " . . 1$, )' $ 7. 8. 9" \;' " <"", ")' $$ ' ' $$$ (. 7 & ($ >. 7. ?$ ) "+ (. n
U
C
CN
N
U
U
x
y
1] . . { . | : , 1992.
& ' 1995 .
. .
.
Abstract
V. P. Elizarov, Systems of linear equations over quasi-Frobenius rings, Fundamentalnaya i prikladnaya matematika 1(1995), 535{539.
A criterion of compatibility for a system of linear equations over quasi Frobenius ring is obtained.
R |
Am n X # = B # | (1) R. (1) ,
~ 2 Rm : (C~ A = ~0) =) (C~ B # = 0): 8C (n1) !
(n1) " (1), # R | " . $#
x1 x = x2
.
R = Z=2&x1 x2] (x21 x1x2 x22):
() )": M , " *+ (1) ) M
(n1) " . ! M ) &1]: R # M, + : 1) *+ a b 2 R ajb, bja2) a b 2 R , " ) ca = 0 cb = 0 c 2 R,
ax = b - # # M. .) /0 ) # , " 0
# M. 1 R ) ) 2+ (QF - ), *+0 0 0 I *+0 0 J Annr Annl I = I Annl Annr J = J . 3 ) 2+ )# &2, 0. 24] &3, 0. 13]. 1995, 1, N 2, 535{539. c 1995 , ! " \$ "" "
536
. .
1. 1. $ " ) , " QF - R # M (2 " jRj < 1 &4], ) 2 " 8 &5]). 1 0 QF - &2, . 337]. ( : ) * (1)
Y~ Am n = D~ (10 ) R ) , " (n1)
~ # = 0) 8C # 2 R(n) : (AC # = 0# ) =) (DC (n10 ) * " ) (1) (10) 0 0, 0 R | QF - . ; ) A#1 : : : A#n 2 R(m) A~ 1 : : : A~ m 2 Rn " ) ~ 1 : : : A~ m i +) " ) R(Rm) R Rn , # hA#1 : : : A#ni hA *: . . R | QF - , (1) (n1) m = 1 n = 1. . m = 1. ; c 2P Rn cA~ 1 = ~0 T n 8 c 2 i=1 Annl a1i R = Annl i=1 a1i R. 30 (n1)
Annl Pni=1 ai1 R Annl b1R. < R | QF - , b1 2 b1R Pni=1 ai1R
, ,
A~ 1 X # = b1 . n = 1. m = 1
a11x = b1 . ( " , b1 = a111 0 1 2 R. = ,
(n1) (1), *+
. = " , m = 2 (1) # ) a x=a 11 11 1 a21 x = a212:
u = c1 a11 = c2 a21, . . u 2 Ra11 \ Ra21, (c1 ;c2 ) 2 Annl aa11 . 21 <
(n1), c1a12 1 +(;c2 )a212 = 0, c1a12 (1 ; 2) = 0
1 ; 2 2 Annr (Ra11 \ Ra21) = Annr Ra11 + Annr Ra21 (
0 &3, 13.2.1 12.4.2]). / ui 2 Annr Rai1, i = 1 2, / 1 + u1 = 2 + u2 | 8
(1).
, ) m 1 + u1 = : : : = = m;1 + um;1 | 8
, : ) m ; 1 (1), 1 + u01 = m + um | 8
, : ) 1-0
537
QF-
m-0 (1), ui 2 Annr Rai1, i = 1 m, u01 2 Annr Ra11. ; (1) " ), "
1 + u01 + (Annr Ra11 \ Annr Ra1m )
" u1;u01 2 Annr
mX ;1 i=1
\
1 + u1 +
Rai1 +Annr (Ra11+Ram1 ) = Annr
m\ ;1 i=1
mX ;1 i=1
Annr Rai1 = 6 ?
Rai1\(Ra11+Ram1 ) :
g1 a11 + gm am1 = h1 a11 + + hm;1 am;1 1 . .) (h1 ; g1 )a11 + h2a21 + + hm;1 am;1 1 + (;gm )am1 = 0 0 (n1) " (h1 ; g1)a11 1 + h2a212 + + hm;1 am;1 1m;1 + (;gm )am1 m = 0:
# i " ) 1,
((h1 ; g1 )a11 + h2a21 + + hm;1 am;1 1 + (;gm )am1 ) 1 + + h2 a21u1 + + hm;1 am;1 1 u1 + (;gm )am1 u01 = 0
, +, (h2 a21 + + hm;1 am;1 1)u1 = gm am1 u01: !* (g1a11 + gm am1 )(u1 ; u01) = gm am1 u1 ; (h2 a21 + + hm;1 am;1 1)u1 = = (g1 + h1 )a11u1 = 0 " +. . R : 1) R | QF - 2) 8m n 2 N, 8A#1 : : : A#n 2 R(m) 8A~ 1 : : : A~ m 2 Rn Annr Annl hA#1 : : : A#ni = hA#1 : : : A#ni Annl Annr hA~ 1 : : : A~ m i = hA~ 1 : : : A~ m i~ 2 Rn (1) 3) 8m n 2 N, 8A 2 Rm n , B # 2 R(m) , D !" !", !" (n1), (10 ) !" !", !" (n10 ). . 2) =) 1). # m = 1 ) 2)
538
. .
n = 1 | , " Annr Annl I = I
Annl Annr J = J *+0 0 I 0 J R. 1 R ) &3, 13.2.1 13.2.3]. 2) =) 3). @
(n1) 8 Annl hA#1 : : : A#n i Annl hB # i. <0 " B # 2 hB # i Annr Annl hB # i Annr Annl hA#1 : : : A#ni = hA#1 : : : A#n i " ) " (1). 1 0 " ) (n10 ) (10). 3) =) 2). Annl hA#1 : : : A#niF # = 0, # (A1 : : : A#n)X # = F #
(n1). = " , F # = A#1 d1 + + A#n dn # # # di 2 R. 3 , F 2 hA1 : : : An i
Annr Annl hA#1 : : : A#n i hA#1 : : : A#ni: < + *"
" , " ) 2). ( ) / 0 " . 1) =) 2). n = 1 F # 2 Annr Annl hA#1 i )
3) =) 2) " , " A#1 X = F #
(n1). F # 2 hA#1 i , , Annr Annl hA#1 i = hA#1 i. n = 2
F # 2 Annr Annl (hA#1 i + hA#2 i) = Annr (Annl hA#1 i \ Annl hA#2 i) : ~ C~ 2 Annl hA#1 i ) B~ A#2 = C~ A#2 B~ ; C~ 2 Annl hA#1 i \ ; B ~ # = C~ F #. B ) ) \ Annl hA#2 i. + F # 0 BF # # # ~ #2 ) = BF ~ # . < +#
': Annl hA1 iA2 ! Annl hA1 iF # , # '(BA # # Annl hA1 iA2 | R ' | 02 ) R- , ~ #2 ) = BA ~ #2d, B~ 2 Annl hA#2 i &3, 13.2.1 : / d 2 R, " '(BA # # ~
12.4.2]. < +), B (F ; A2d) = 0, Annl hA#1 i(F # ; A#2 d) = 0, F # ; A#2 d 2 Annr Annl hA#1 i = hA#1 i F # 2 hA#1 i + hA#2i. ., Annr Annl hA#1 A#2 i = hA#1 A#2 i: ;
" ) 2). ( ) / " 0 " )
0 0 .
1] Camion P., Levy L. S., Mann H. B. Linear equations over a commutative ring // J. Algebra. | 1971. | V. 18. | N 3. | P. 432{446. 2] . : , !"# # $##. %. II. | &.: , 1979. 3] ' . &!"# # . | &.: , 1981.
QF-
539
4] ()* . . +#,,- ",$,- .!*$,$# ,! */#0,#"*- # # // 2.3# $ . ,". | 1993. | %. 48. | N 3. | 4. 197{198. 5] ()* . . ,),- */#0,#"*- !"#, .#6,#7 ! # #,,- ",$ // ",! ,$,7 # .#!,7 $ $#. | 1995. | %. 1. | N 1. | 4. 229{254. & " ' 1995 .
. .
. . .
,
.
Abstract
N. K. Ioudu, Algorithmic solvability of zero divisor recognition in a certain class of algebras, Fundamentalnaya i prikladnaya matematika 1(1995), 541{544.
It is proved that the property of an element to be a one-side zero divisor is recognizable in algebras with one-side bounded conversion.
f A . 1], , , - . # A- , $% f , &$%. ' A - k: A = khx1 : : : xd i=I . * & X , +$% - , $
hX i. - , . I , N (h), h 2 khX i khX i = N k I , k, N | khX i. N (h) , . ( . 2]). # 1. A , $ u v 2 N \ hX i, N (uv) = N (uy)v , v = yv , y 2 X .
A = khX i=I , I = fxixj = ij xk xl ij 6= 0g $ $% . # L1 & , L2 | + , R1 | & , R2 | + . 4 (1). L1 , R1 , R2, L2 + | & & & $% $%. ', $% $, 0
1995, 1, N 2, 541{544. c 1995 , !" \$ "
0
542
. .
+ . 7 , 8 : A = khX i=I , X = Y Z , Y \ Z = ?, I = fyi zj = yk zl g, Y = L1 = R1, Z = L2 = R2. 4 (2). 9 I $ fxixj = ij xk xl ij 6= 0g
R2V \ F = ?, F & + ( .), V | & , & : V = fxi j 9j xj xi 62 F g.
1. , , f . . , ! (2), f . . 4& $
+ (2) : + R2 \ L1 = ?, F L1 L2 , R2 V \ F = ?. & $: N (uv) = N (N (uy)v ), u v v 2 hX i \ N , y 2 X : N (uy) = uy, N (uv) = uv, + $ , %$ . 7 N (uy) = uy , y 2 R2 , u 2 N , uy 62 N . v = tv (v 62 ?, & ), v = ytv t 2 V . ; y t 2 N $ R2V \ F = ?, N (uy)v = uy tv . . A = = Ln=0 An & A0 = k: fg = 0 =) f (0) = g(0) = 0, fP (0) = '(f ), ' : A ! A=A+ = k. g & di=1 xi gi . < , $% . 0
0
0
0
0
00
0
00
0
0
0
00
1
1. " piP = N (fxi ). # ! gi 2 khX i, P d i=1 pi gi = 0 N di=1 xi gi 6= 0, ! -
h 2 khX i n I , N (fh) = 0.
. & , $% .
(=)) h N
Pd
x g , h 2 khX i n I i i i=1
543
d d d X X X N (fh) = N f xigi = N N (fxi )gi = N pigi = N (0) = 0: i=1
i=1
i=1
((=) & , h N (h) = = Pdi=1 xi hi, N Pdi=1 xihi 6= 0, h 62 I . ; gi & hi . < , d d d X X X 0 = N (fh) = N f xihi = N N (fxi )hi = pi hi i=1
i=1
i=1
. % pi khX i = T $%. - fpi gi=1d ( &, ) | fqigi=1d , 3. < , ( 2), , , & 1. 2. $ qi , i = 1 d =) qi-, , T . hX i: u < v =) uw < vw $ u v w 2 hX i, 1 $ , & , $% $ 2. ; . , & fpi gi=1d .
3. " fqig fpig T , fqigi=1d % () fpigi=1d T . T -P di=1 pigi = 0 ST MT = fp1 : : : pd gT . + + B . 4. " ST MT % B bj#, qi = 0.
544
. .
< & \ ". T = khX i | 78@ +, T - ST , T d MT rkST = d ; s, s | fqigi=1d , P ST = ker, : T d ! MT : (b1 : : : bd ) 7! di=1 pi bi. # 2. " N (fx1 ),: : : , N (fxd ) & fqigi=1d 1, . # P f | (Ann f )A % A di=1 xibij , bij 2 B , j 2 1 d , qj = 0. ) g (Ann f )A mdm+1 +1, m = deg f .
1] . . , . . , . . . . 2] .
.
! " , 1995, !%. .
'
(.
)
*.
|
.:
-*)- ./, 1988.
& ' 1995 .
. .
, A | , A = C T1 : :: Tm ] , C | 6 1, Sp2r (AX1 : : : Xn ]) (r > 2) ! " .
Abstract
V. I. Kopeiko, On the structure of the symplectic group over polynomial rings with regular coecients, Fundamentalnaya i prikladnaya matematika 1(1995), 545{548.
In this note we prove the following result. Let A be a ring of the geometric type or A = C T1 : : : Tm ] , where C is a regular ring and dim C 6 1. Then the group Sp2r (AX1 : : : Xn ]) (r > 2) is generated by elementary symplectic matrices.
1]. , ! 1. 1. , (X ) 2 Sp2r (AX1 : : : Xn]), r > 2, : 1. A | k, . . A = S ;1 C , C = kT1 : : : Tm ]=I | k- S | C 2. A = C T1 : : : Tm ] , C | " 6 1, K1 Sp(C ) = 0. #, (0) = 12r , $ " % $&
& .
(0) (0 : : : 0) (Xi ! 0, i = 1 n). ' . ( 1 2 A | . *! B | A, s 2 B | 0 A, , + B=sB ! A=sA, ! , +. , ! ! , ! ! : B ! A # # Bs ! As . , B=sB = A=sA, Bb = Ab, b (s)-
. . , s | 0 A. 1995, 1, N 2, 545{548. c 1995 , !" \$ "
546
. .
1 ( ). , ' (B A s) (
, 2 Sp2r (A), r > 2. ) s 2 Ep2r (As ), " * : = , 2 Sp2r (B ), 2 Ep2r (A). 2 ! 2.4 5]. . , 1 ! ! ! 5, 3.3] ! 4( ! !
1]. 2 ( 5). A |
B -, B A, 2 Sp2r (AX ]), r > 2, (0) = 12r . ) M 2 Ep2r (AM X ]) ( M 2 Max(B ), 2 Ep2r (AX ]). 6! A = B 1], 4 ! ! . 2 2 ! ! m. 7 m = 0, ! 2] ( 1.2 3]). * , m > 0. * 5 , C | . * T = Tm , A0 = AX ] ( 4 AX1 : : : Xn ] AX ]), B = C T1 : : : Tm;1 ] T X1 : : :Xn ]. . , (B A0 T ) !! !. 8 C T ] | ! 6 2 T | , 5.2 4, . IV] C T ] T | ( . ; , K1 ;Sp C T ] T = 0, , ! T 2 2 Ep2r C T ] T T1 : : : Tm;1 ] X ] = Ep2r (A0T ). 6 , 9 = , 2 Ep2r (A0 ), 2 Sp2r (B ). * ! , (0) = 12r , (0) = (0);1 2 Ep2r (A). :: = = = (0)] (0);1 ] 2 Ep2r (A0) = Ep2r (AX ]), (0);1 2 Ep2r (B ) Ep2r (A0 ) !. . + & $ 1, K1 Sp (C ) = 0 2, : Sp2r (AX1 : : : Xn ]) = Sp2r (A) Ep2r (AX1 : : : Xn]) : , , " Sp2r (A) = Ep2r (A) ! Sp2r (AX ]) = Ep2r (AX ]),
$' , " " . + , & , : K1 Sp (A) = K1 Sp (AX1 : : : Xn ]).
2 ! 2 , , ! (0);1, , (0) = 12r , , 5 2 Ep2r (AX ]) , C | . ' ; ! . !, ! 5, 6], !
547
2. C | " 6 1,
SK1 (C ) = 0, A = C T1 : : : Tm ] , 2 Shr (AX1 : : : Xn ]), r > 3. ) (0) = 1r , $ " % $& . . 8 2 5, 3.1] !, C = k | = ;, , ! (0) = 12r 9. > 4 , ! (0) = 12r 9, C | . 4 !, ;++, 4 , !. 3. ) ;C | , A = C T1 : : : Tm ], r > 2 Sp2r AX11 : : : Xs1 Y1 : : : Yn] % $ . 8 C= Nil(C )
; ! , ! , C = k | . ; ! ! ! s. 7 s = 0, 9. * , s > 0, ! 2 Sp2r (As n]) ( 4 As n] ! AX11 : : : Xs1 Y1 : : : Yn]). * X = Xs , B = As ; 1 n] S+ ( S; ) ! ! ! AX X ;1 ], 4! ( ! ( AX ] ( AX ;1]). ? U+ ( U; ) ! ! ! B X X ;1 ], 4! ( ! ( B X ] ( B X ;1 ]). . , S+ U+ , S; U; . @ ! :
B X X ;1 ] = As n] S+;1 AX X ;1 ]s ; 1 n] U+;1B X X ;1 ]: k(X ) T1 : : : Tm ] , k(X ) | ( 8 S+;1 AX X ;1 ] = +! X , !, ; ; Sp2r S+;1 AX X ;1 ]s ; 1 n] = Ep2r S+;1 AX X ;1 ]s ; 1 n] :
*;! 2 Ep2r S+;1 AX X ;1]s ; 1 n] ;, , 2Ep2r U+;1 B X X ;1 ] . ? ,; 2 Ep U;;1B; X X ;1 ] , , 2r 4.1 1], 2 Ep2r B X X ;1 ] = Ep2r AX11 : : : Xs1 Y1 : : : Yn] . ;
;
1] . . ! // #. . | 1978. | (. 106. | N 1. | . 94{107.
548
. .
2] . . . ! 6 1// /#0. | 1992. | (. 47. | N 4. |
. 193{194. 3] Grunewald F., Mennicke J., Vaserstein L. On symplectic groups over polynomial rings // Math. Z. | 1991. | V. 206. | P. 35{56. 4] Lam T.-Y. Serre's conjecture // Lect. Notes Math. V. 635. | 1978. | P. 3{210. 5] Vorst T. The general linear groups of polynomial rings over regular rings // Commun. Algebra. | 1981. | V. 9. | N 5. | P. 499{509. 6] 5. 5. . ! // !. 50
6. . . | 1977. | (. 41. | N 2. | . 235{252. & ' 1995 .
. .
, 1], 2n , pn. " 1] \ " ,
%&& . ' pn .
Z
Z
Z
Abstract
A. S. Kuzmin, Polynomials of maximal period over primary residue rings, Fundamentalnaya i prikladnaya matematika 1(1995), 549{551.
The maximalitycriterion for the period of a polynomialover primary residue ring is proved. This criterion generalize the results of the paper 1], where the case of polynomials over 2n was considered, to the case of arbitrary primaryring pn. The criterion is based on the concept of \marked polynomial introduced in 1] and allows to verify the maximality of the period of a polynomial using only its coe.cients. Some su.cient conditions of maximality of the period of a polynomial over pn are given. R = pn |
pn, p | -
Z
Z
Z Z
. G(x) R ! " , #$ %&& , $ R. T(G) " G(x) ! R'x] ! # t $ : G(x) xt ; e (e | R). *! '2], G(x) R T (G) = T (G mod p) p " , 0 6 < n, T (G mod p) | G(x) mod p GF (p). - T (G) = T (G mod p) (. . = 0), G(x) ! '1]. *! (1) , ! G(x) m R pn;1 (pm ; 1). - T(G) = pn;1 (pm ; 1), G(x) ! ( ) '1]. /! 0
$ $ !
$ '1]. 1 '2] ! , " ! R 1995, 1, N 2, 549{551. c 1995 , ! " \$ "" "
550
. .
p2 , p > 3, 8, p = 2. 1 '1] 0 %&& $ Z2n, !5$ " . - p > 3 F(x) | $ R, , F (x) p, " & $ F (x) + p D(x) deg D(x) < deg F(x) = m D(x) 6 0 (mod p) & ! " " p2. 1. F (x) | m R = Zpn , p > 3, F (x) mod p GF (p). F(x) | R , pY ;1 F(xp ) = F(x k ) k=0
| S R xp ; e = (x ; e) (x ; ) (x ; 2) : : : (x ; p;1 ): ! & " " "" #" S R, F(x) " $ 0 5 % 0 $ . 75 #" S ! 8 {:!#$. ;" !, ! F (x) mod p , F(x) # S m ! $ 1 : : : m
Y F(x k) = pY;1 Ym (x k ; ) = Ym (xp ; p ):
p;1
k=0 j =1
k=0
j
j =1
j
% $ F(x) % m Y F(x) = (x ; jp ):
j =1 P 2. G(x) = mk=0 gk xk | m R = Zpn , p > 3, G(x) | R
, : ) G(x) mod p | pm ; 1 GF(p), m X Y p! p ) G(x ) 6 P (gk xk )jk (mod p2): j ! : : : j ! P m k=0 m j =p m kj 0 (mod p) 0 k=0 k
k=0
k
551
=$ ! 1 & (1), (2) !", p2 . > 2Q ! " %&& G(x k ) p2.
. G(x) =
Pm
xk | m R = Zpn, p > 3, T (G mod p) = pm ; 1" G(x) , # $p : ) g0 6 g0 (mod p2 ), ) m > p, G(x) | % . . ?! k=0 gk
! 5" $ 8 , % '1] " p = 2.
1] . . // . . | 1993. | #. 184. | N 3. | &. 21{56. 2] Ward M. The arithmetical theory of linear recurring series // Trans. Amer. Math. Soc. | 1933. | V. 35. & " ' 1995 .
. . , R S R. ! S , " .
Abstract
V. L. Kurakin, Binomial presentation of linear recurring sequences, Fundamentalnaya i prikladnaya matematika 1(1995), 553{556.
It is proved that any linear recurring sequence over commutative local Artinian ring R can be presented as a linear combination of binomial sequences over some Galois extension S of R. If the roots of the binomial sequences belong to the +xed coordinate set of S , then this presentation is unique.
u = (u(0) u(1) : : :) | S e. G(x) = cm xm + c1 x+c0 S!x] u # v = G(x)u, v(i) = cm u(i + m) + + c1 u(i + 1) + c0 u(i) i > 0: % Ann(u) = G(x) S!x] G(x)u = 0 # u. & Ann(u) ' ( ( )** e) G(x), u # (+, ), G(x) | . - LS (G) . ' / +, S / G(x). ak] (a S, k > 0), #0
(# ak] (i) = 0 0 6 i < k ak] (i) = ki ai;k i > k ( a0 = e), a. 1. a S , m > 1. LS ((x a)m ) | S - a0] : : : am;1] . . %
( (x a)a0] = 0, (x a)ak] = ak;1] , k > 1, , a0] : : : am;1] LS ((x a)m ). # +, 2
f
2
j
g
2
2
;
;
2
;
;
1995, 1, N 2, 553{556. c 1995 , ! " \$ "" "
554
. .
u LS ((x a)m ) ## u(0 m 1) = (u(0) : : : u(m 1)). 3# , ak] (0 m 1) = = (0 : : : 0 e : : : ), e / # k , k 0 m 1. 2. u = c0 a0] + + cm;1 am;1] , a ck S . c = (c0 : : : cm;1 0 0 : : :). Ann(u) = = H(x a) H(x) Ann(c) . . H(x) = h0 + h1x + S!x]. 4 mX ;1 X H(x a)u = ht (x a)t ck ak] = 2
;
;
;
;
2
;
2
f
;
j
2
g
2
;
;
t>0
k=0
=
;1 mX ;1 X mX ;1 X mX ht ck ak;t] = ai] ht ci+t = v(i)ai] t>0
i=0
k=t
t>0
i=0
v = H(x)c. 5, H(x a)u = 0 , v(0) = : : : = v(m 1) = 0 , ) , v = H(x)c = 0. u LS (F ), F (x) = (x a1)m1 : : :(x ar )m (x ai )m , i 1 r, . 6 !1] LS (F ) = LS ((x a1)m1 ) LS ((x ar )m ) u = u1 + + ur , ui LS ((x ai)m ), Ann(u) = Ann(u1) : : : Ann(ur ) = Ann(u1) : : : Ann(ur ): (1) 4 1, 2 0, +, u ## . / aik] , i = 1 r, 0 6 k < mi , ) 0 ' # +, u. 8 +, . / / ' # #, . , 9 / F(x) . R | e, J = RadR, R = R=J. : G(x) R!x] # ;, G(x) R. 8 ) S = R!x]=(G(x)) . : ' , R S. < S ( ; R !2]. ' R
' R, = R ) 0 J. 3. u | ! R. "# $ % S
& R, ! u '(( & S . ) ;
;
2
;
i
;
r
;
2
;
2
\
;
r
i
;
\
2
B
B
B
* , * (
* B & S , .
555
. u LR (H). 69 ( ; S R, H(x) (x a)m : : :(x c)l (mod J1!x]), ) a : : : c S 0 J1 = RadS. : ' , a : : : c . J1n = 0. 4 H(x) F(x) = (x a)mn : : : (x c)ln , , u LS (F ). ;# (x a)mn ,: : :, (x c)ln ( 0 J1 !x]), 3 ' . 4 3 . # #, R | . u . / # *
' u. 6
(# (1) (2) #0 . 0 +, u # . : ' / +, R . R-.
'# '# '# . ># U V
. UV 0 . ' / +, uv, u U, v V . | ' , '9 0 ' ; R, / 0 J!x]. : ' , x . x,
' = M M = LR (G1 ) = LR (G) LR (G1 ) = LR (Gk ): 2
;
;
2
2 B
;
;
2
;
;
L
2 L
2
2
H
2 H
G
M
M
H nf
g
N
G2G
G2G
k>1
. ' ( # G
4. R-
N.
M = LR ((x ; e)1 )
L
N
).
:
. + , = LR (x1 )
L
= LR (x1 )
,
M
LR (x1 ) '#. u v . 4 . # +, u, v ##0# . # a = 0. 5, ) # +, uv. ) uv , '#. 4 . , LR (x1 ), | . . ,#, , . # LR (G1 ), LR ((x e)1 ), LR (G), LR (G1 ) = LR ((x e)1 ) LR(G), G . 6 , = LR ((x e)1 ) .
## /, . ## . 8 #0# # . 3 . 1{4 . .90# k- (# 3, 4 | ) . 3 k-+, . !3]. L
M
2 M
6
2 M
M
M
L
;
;
2 G
M
;
N
556
. .
1] . . // . . | 1991. |
. 3. | ". 4. | $. 105{127.
2] Ganske G., McDonald B. R. Finite local rings // Rocky Mountain J. of Math. | 1973. | V. 3. | N 4. | P. 521{540. 3] . . + ,- / // 01 . . | 1993. |
. 48.
| ". 3. |
$. 197{198.
& " ' 1995 .
PI- , . .
. . .
: P I - R M , N . , , R- M N !, R , M .
Abstract V. T. Markov, On P I -rings having a faithful module with Krull dimension, Fundamentalnaya i prikladnaya matematika 1(1995), 557{559.
The main result: if a P I -ring R has a faithful left module M with Krull dimension, then its prime radical N is nilpotent. Moreover if the left modules M and N are )nitely generated then R has left Krull dimension which is equal to Krull dimension of the module M .
1] , PI- R M, rad(R)
R= rad(R)
. 2] P I-, , ! Kdim(RR) = Kdim(M) ( Kdim(M) | $% % M, &' ( 3]). * %+ %% %:
1. R | PI - , M | R-
. : (a) rad(R) | ! (b) " R- M (rad(R)) #, R
Kdim(RR) = Kdim(M). - % %
(
1. $
, " . *+ , ! * , , ( 093-1544), 0! , * ( JBX100), ! INTAS. 1995, 1, N 2, 557{559. c 1995 !, "# \% "
558
. .
- PI- % , %0+
( !11
, ' 1 (. 4]). 34 , 0&% PI-& %% % PI-
. | 1, | , . 5 N & % ( ' ( ' . 5 (a) 1 0+ 1 & &+ ( %. 2. N | - R, M | R, %
, % f(x1 : : : xd ) &'', " 1, f(a1 : : : ad)m = 0 )" a1 ::: ad 2 R m 2 M . % n 2 N, N nM = 0. 7 ( % 2 % d f. - 1
d % % % $% Ndim(M), % % %
( , % M ('4 , Ndim(M) + , + Kdim(M)). 8 % ( 0+% 1. 5]. $ M | , %
, 0 = B1 B2 : : : M | %, M S=1 M1 M2 : : : | )% M , M = i=1 Bi , % i j 2 N, Mi Mi+1 + Bj . 7% (&) 1 % 0+% % 1]: N = rad(R), R0 = R=N. : N n = 0 % n 2 N. -( M 0 = (M=NM) (NM=N 2M) N n;1M. * , M 0 ( R0-, ( $%, M. ; % %, M 0 | R0 -, M N | (
, M 0 ( . -( 1, 1, ( 1 0, R | , 2. R | * M | # R- . R ' '" M . ; 2 ( % 3 2] 0+ &0 %:
( <) %% %
( <).
PI-,
559
. P I- ( 2 (. 6]). * + , 0+' +
(
' . 1. $ R & %, 0- + $% , + ( . . 0+
0 $%) R-. - F | , V | & fe1 e2 : : :g, T = F x]] | 1 '
' %. - V T -, % xe1 = 0, xei = ei+1 i > 1. ?+ & ' !
y1 = x y2 : : : T , (
% & R = Fy1 y2 : : :] $%, V | R-. 2. P I- R, 0+ , R= rad(R) $%. - fy0 y1 : : :g | ( !
T ,
1, V 0 = V Ff. @ 0 ! 1 f'i i = 1 2 : : :g V 0 ,
' 0+ & : 'i (f) = ei , 'i (ej ) = yi ej . : & EndF (V 0), (
% f'i g, &
. 3. $ R, 0+
, rad(R)
. 7 ! 1 f'i g + 0+: 'i (f) = ei , 'i (ej ) = ej ;1 1 < j < i + 1, 'i (ej ) = 0 j = 1 j > i. A & $. 8. B &( % .
1] . . P I - // . . 8. | !, 1989. | C. 99{103. 2] Amitsur S. A., Small L. W. Finite-dimensional representations of P I -algebras // J. Algebra. | 1990. | V. 133. | N 2. | P. 244{248. 3] Gordon R., Robson J. C. Krull dimension. | Mem. Amer. Math. Soc., 133. | 1973. 4] Procesi C. Rings with polynomial identities. | N. Y. et al.: Marcel Dekker, 1973. 5] Lenagan T. H. Reduced rank in rings with Krull dimension // Ring Theory (Antwerp 1978). | N.Y.: Marcel Dekker, 1979. | Lecture Notes in Pure and Appl. Math. V. 51. | P. 123{131. 6] /0 1. 2., . . 3 P I -, 45 0 ! 6!4 17, 7 7!7 8 // 9!: . . | 1993. | . 48. | N 6. | ;. 141{142. ' ( 1995 .
. , .
345 . . , -
. , , , . !.
Abstract D. Mikhalin, I. Nikonov, The false coin identication problem, Fundamentalnaya i prikladnaya matematika 1(1995), 561{563.
The problem of how to identify a false coin using minimal number of weighings on a balance (with scales and without weights) is under consideration. It is unknown whether the false coin is heavier or lighter. Determining the di*erence in weight is not required.
, , . " # , , , | ,
, | . % &. '. ( ). '. ( \" +". - , # , : . / , n 3 2; 3 . " #
, . 2 # , : & , ,
, , . & n ? (5 , ) 2 : , n , 3 2; 1 . (& , ! 1995, 1, N 2, 561{563. n
n
c 1995 " # $ % &', () % \+ "
562
. , .
n 3 2; 1 .) : , . & , , n 3 2; 1 . " , k n . ; n . 2 j (1 6 j 6 n) | . 2 (a1 a2 : : : a ) # k . - a 0, i- = 1, = ;1, . : + , , . 5 # n , . . n 6 3 . > , , , 3 2; 3 . 2 , , , ,
3 ; 3. ? , 24, , 14 . 5
? ? ,
,
. ? # . 2 (0 0 : : : 0) . :
, n ; 1 ,
. 2 (j i), j | , i | (i = ;1, , i = 1, ). B n ; 1 2(n ; 1) . C , + . : # - ,
,
. C (j1 i1) (j2 i2), j1 6= j2 ,
- , j1 j2
, ,
. n
n
k
i
k
k
k
563
% 2(n ; 1) . 5 (j1 i1) (j2 i2), j1 = j2 i1 6= i2
- . : , . + , . : # , .: ,
. : , . : , , 2(n ; 1) 6 3 ; 1. , n 6 3 2+ 1 . : ,
+ +. 5 n = 3 2+ 1 . 5 . 5 : , , , . 5 m1 m2 |
;1 . 5 m1 > 3 2 + 1 . : , , # m1 , k ; 1 ;1 . , m1 6 3 2 + 1 . : m2 > 3 ;1. : m2 ,
m2 > 3 ;1. % , . : m2 . 2 3 ;1 , # . :
, , , , m2 . : m2 , , 1 ;1, 2m2 6 2 3 ;1. , m2 6 3 ;1. 2 m2 > 3 ;1. 5 . , k n , n 6 3 2; 1 . " > : ). (. / . k
k
k
k
k
k
k
k
k
k
k
k
- ! ! $. # 1995 .
. .
. . .
512.55
A , " A((x')) %& % % , % A | & . ( ) * &, A((x')) | & . + &,- & % %& & % '.
Abstract
K. I. Sonin, Von Neumann regular skew-Laurent series rings, Fundamentalnaya i prikladnaya matematika 1(1995), 565{568.
Let ' be an automorphism of 2nite order. Then the skew-Laurent series ring A((x')) is von Neumann regular i3 A is semisimple Artinian. The third equivalent condition is that A((x')) is semisimple Artinian. The same result for strong regularity is proved in the case of an arbitrary automorphism '.
. A((x ')) A c ' P!1, . 101] , i 1 i=m ai x , x | , m 2 Z , ai 2 A, c ' ( (, :
1 X i=t
ai xi
1 X j =r
bj xj =
1 X X
k=t+r i+j =k
ai 'i (bj ) xk :
!3] ' 1. ,
1.
'n
2.
& :
1 : (1) A((x ')) | !" (2) A((x ')) | " (3) A | . (1) (2) (3)
n > 1,
A((x ')) | !" A((x ')) | ' ( A | ' ( .
"
1995, 1, N 2, 565{568. c 1995 !, "# \% "
-
566
. .
/ 1, 2 ('1 ( .
1 !2, . 2.13]. A0 A1 A2 : : : | ' ) ! A, fei j 0 6 iL <m1g A, ' * m i=0 ei A = Am .
2. A | !, ' | +( A, I | * , , , A '(I ) I , A * ' P fei j 0 6 i < 1g, ' 'i (ei ) 2= ik;=01 'k (ek )A i.
. 2 ( 3 ( 1 L '1 , fas j s 2 S g, ' J = s2S as A IAP,1 , J | A,
' k=0 'k (J ) I 6= A. b0 fas j s 2 S g, bi fas j s 2 S g n fb0 ::: bi;1g , ' bi 2= Ji , P P
Ji = ik=0 ij;=01 'k (bj )A 6= A. 2 m- (m > 1) 3 bm (, as fas j s 2 S g n fb0 ::: bm;1g 'm (as)2 Jm , J ( ' ( ';m (Jm ), ' ' A. 2 ei , 0 6 i < 1, ' Ld 1 Ld b A d. 2 i >1, ' e A = i i i=0 P i=0 P i ; 1 i k ' (ei ) 2 k=0 ' (ek )A, 'i (ei ) 2 Ji , 'j (ej ) 2 'j jk=0 bk A Ji , P 0 6 j 6 i ; 1, , 'i (bi ) 2 Ji ( 'i (eq ) 2 'i qk=0 bk A Ji
q 6 i ; 1), ' ' bi .
3. R = A((x ')) | !, A * ' , P fei j 0 6 i < 1g, , ' 'i (ei ) 2= ik;=01 'k (ek )A.
.P/ ,
, 1i=0 'i (ei )xi
( z = 2 R . 4 P j (t 6 0), ' gR = zR, gz = z , g = 1 g x j j =t 5 xi : gt'i (ei;t ) + ::: + g0 'i (ei ) + ::: + gi'i (e0 ) = 'i (ei ), 0 6 i < 1. 7 , ' g0 'i (ei ) = 'i (ei ). 8 ( 5 h 2 R, ' Pg r = zh , , h0 ::: hPr r 2 A, ' g0 = k=0 'kP (ek )hk . 2': 'r+1 (er+1 ) = g0'r+1 (er+1 ) = k=0 'r (ek )hk 'r+1 (er+1 ) 2 rk=0 'k (ek )A, '
' .
4. A | !, R = A((x ')) | .
567
. : , ' bA | A, b 2 A, bR | R. ; , ' ' | A.
5. ! A((x ')) ( . ), ! A ( . ). <( . 1. (1) ) (3): A 5, , ' A , AT J . 2 I = nk=0 'k (J ) A '(I ) I , 5 2 1 fei j 0 6 i < 1g, P ' 'i (ei ) 2= ki;=01 'k (ek )A, 3 5 ' A((x ')). (3) ) (2): ' ' 4. (2) ) (1): . ) R ( ' Rop ), (
, ( 5 a b 2 Rop : a b = ba, ba | 1 .
6. - ! Aop ((x ';1 )) (+ ! A((x '))op . <( . 2. (1) ) (3): A((x ')) , ( A((x '))op , , ', 6, Aop ((x ';1 )). 2 A L fas j s 2 S g, ' J = s2S asA | P i A. 2 (, ' 1 i=0 ' (J ) 6= A. 2 (, ' 5 Pt i , b0 : : : bt 2 A a0 : : : at fas g, ' i=0 ' (ai )bi = 1 ( ( ' ' ', A | , P bi = 0, i ). 2( z = ti=0 ai xi. > 5 AopP ((x ';1)), , 5 1 g = k=0 gk xk 2 Aop ((x ';1)), g0 6= 0, ' z g = 0, | ( 5 . 8 , , 5 1 x, ' : ';i (g0)ai = 0, 0 6 i 6 t, g01 = 0. ; ', A , '. / ' (1) ) (3) 1. , , ' ' . (3) ) (2): 1 , ' 1 ? . (2) ) (1): . @ @. . A1 @. @. 8 .
568
. .
1] L. H. Rowen. Ring Theory. | London: Academic Press, 1988. 2] K. R. Goodearl. Von Neumann Regular Rings. | London: Pitman, 1979. 3] . . . ! // #. $. %&. | 1995. | (. 1. | N 1. | . 315{318. ' ( 1995 .
=6 . .
517.95
= f( ) j 0 6 '(*$ + *$ , (*$ , $ - $ . -$ / 0 + = 0 , = 0 . !" | " (' 2",+% 2 1 ( ). 3 "-* , ,* 2 "* "'. + , 3 2, ' .-*/ , "& -*/ 2",+$ .
= 2 ( ), 6 p3 6 6 (2 ; p3) 3g. !" | $"%&$ H
x
y
u
H
y
=
u
p
L
L
D
T
D
u
@D
D
x y
H
P
D
T
P
>
=
p
Abstract I. V. Tomina, The rst regularized trace for a power of the Laplace operator on the rectangular triangle with the angle =6 in case of Dirichlet problem, Fundamentalnaya i prikladnaya matematika 1(1995), 569{572.
p
Consider the Hilbert space = 2 ( ), where = f( ) j 0 6 3 6 6 6 (2 ; p 3) 3g. Let be the self-adjointnon-negative operatorfrom to which is generated by the spectral Dirichlet problem 0 + = 0 on = 0 on . For 2 1 ( ) let the operator : ! take each 2 to the product . In this paper concrete formulas for the 7rst regularized trace of the operator + , 3 2, are given for di8erent classes of essentially bounded functions . H
y
=
L
D
L
D
D
y
T
H
u
p
x y
P
H
H
u
f
D
x
H
u
@D
H
p
T
>
=
f
P
p
;u = u D u = 0 @D (1) p p D = f(x y) j 0 6 y 3 6 x 6 (2 ; y 3)=3g | . "# $ M(x y) 2 R2 p p 6 Mj (xj yj )p2 R2, j = p0 5, x0 = x, y0 = y, x1 = (x+y 3)=2, y1 = (x 3; y)=2,px2 = (x ; y 3)=2, y2 = (x 3 + y)=2 j 2 f0 1 2g xj +3 =p ; xj , yj +3 = = 3 ; yj . ) * +, g 2 L2 (K) K = -0 ] -0 = 3] | , H0 , j = 0 5 g(Mj ) = g(M) .. M 2 D. f 2 L2(D) fe(Mj ) = f(M) M 2 D j = 0 5/ , fe 2 H0. 0 h | * + K, ,1 2 : M 2 D n @D h(Mj ) = 1 j = 0 2 3 5 h(Mj ) = ;1 j = 1, 4/ M 2 @D j = 0 5 h(Mj ) = 0. 1995, 1, N 2, 569{572.
c 1995 !"#, $ \& "
570
. .
6 2 , f 2 L2 (D) (m n) 2 Z2
(hfe 'mn )1 = -1 + (;1)m+n ](f vmn)0
(2)
2 2 ( )0 ( )1 | 7 p L (D) L (K), 'mn (x y) = sin mx sin ny 3, vmn (x y) = 'mn (x y) ; 'mn (x1 y1 ) + 'mn (x2 y2 ) , # ,
vmn (x y) = 'mn (x y) ; 'm1 n1 (x y) + 'm2 n2 (x y)
(3)
m1 = (3n ; m)=2, n1 = (n + m)=2, m2 = (3n + m)=2, n2 = (n ; m)=2. 0 J = f(m n) 2 Z2 j n > m > 0 (;1)m+n = 1g, V = fvmn j (m n) 2 J g. 0 7 , (m n) 2 J vmn 2 * + $ (1), ,1 2 mn = m2 + 3n2 . 9 m +n (2), (3) hevmn vmn ( K (;1) p = 1), : vmn = ;vm1 n1 = vm2 n2 , ;b f(2 4 3=)'mn j m n > 0g | ()<0=) L2 (K), ,1, .
p 1. Vb f(2 12=)vmn j (m n) 2 J g 4
L2(D).
0 c 7 V L2 (D) -1], 7 V | -2]. > 7 1 $ 2 # -2]. 0 T | + 7$ # 7$ L2 (D), # 7$ $ $ (1)/ > 0 (m n) 2 J vmn 2 * + T , c ,1 2 mn . 0 P | # L2 (D) * +, p 2 L1 (D)/ (m n) 2 J ) (p) | 2 7 T + P , 7
(mn () 2 $ 2 , j mn (p) ; mn j 6 const. P bmn 2 ? i 2 f0 1 2g F Z $
9P i
2F
(mn)
(i)
2F bmn S 2 C (i- ), 2 7 i- 1-
() (mn)
. @ S (0) , S (1) , S (2) , * ( 7), 7 A
7 , S (i) = klim !1
X
bmn i 2 f0 2g/ S (1) = lim
M !1 N !1
(mn)2F m2 +(i+1)n2 6k
X
bmn :
(mn)2F jmj6M jnj6N
7 * 7 , :
X
(2)
()
2J f mn (p) ; mn ; mn (p)g = (p):
(mn)
(4)
p2. > 3=2 p 2 L1 (D)
571
(4), mn (p) = 8 3(Pvmn vmn )0 =2, (p) = 0. p p 7 -3] 1. 0 Eb = fp (2 4 3 m n =)emnjm n > 0g | )<0= L2 (K), emn (x y) = = cos mx cos ny 3, n = 1 n 6= 0 0 = 1=2.P -g] | $ $ C * + g 2 L2(K) )<0= Eb : g(x y) mn>0 m n amn (g)emn (x y), p amn (g) = 4 3(g emn )1 =2 / i 2 f0 1 2g Sg(i) (x y) i- -g], # i- Dgi R2. f 2 L2(D) (m n) 2 Z2 * (fe emn )1 = = -1+(;1)m+n ](f umn )0 , umn (x y) = emn (x y)+emn (x1 y1 )+emn (x2 y2) = = emn (x y) + em1 n1 (x y) + em2 n2 (x y). 9 umn = um1 n1 = um2 n2 , (;1)m+n = 1 umn 2 H0, g 2 H0 (;1)m+n = ;1 amn (g) = 0. 2 D vmn = (wmn + 2umn )=4, wmn = 3 ; u2m0 ; u3n;m0 ; ;pu3n+m0 ; u02n ; u0n+pm ; u0n;m + u2m2n + 2u3nm, (m n) 2 J 8 3(Pvmn vmn)0 =2P= (2 3=2 )(p wmn)0 + amnP (~p)=2. 0 G(g) (2) a (g), B (g) mn k n>m>0 n>0 n aknn(g) g 2 H0 , k 2 f0 1g. g 2 H0, X R2, i 2 f0 1p2g : g 2 Qi -X], -g] i- X/ Xk f(t kt= 3) j 0 6 t 6 =(k+1)g, X 0 = X0 X1 . 3. 1) g 2 H0, (0 0) 2 Dg2 k = 0 1 9Bk (g) 2 C , G(g) = -2Sg(2) (0 0) ; 3B0 (g) ; 3B1 (g) + 2 5a00(g)]=6 2) g 2 Qi-X 0 ] p R (i) i 2 f0 1 2g, k = 0 1 Bk (g) = 2 0 Sg (t kt= 3) dt. . > 3=2, p 2 L1 (D). 1) 9G(~ p) 2 C , (4) p ZZ 2 mn (p) = 23 p(x y)wmn (x y) dx dy (p) = G(~p)=2: (5) D 2) (0 0) 2 Dp2~ p~ 2 Qi -X 0 ] - i 2 f0 1 2g, 9G(~ p) 2 C (p) (5) ! " p 1 Z S (i) (M)(M) ds + 5 3 ZZ p(x y) dx dy (6)
(p) = 61 Sp(2) (0 0) ; ~ 2 X p~ 2 D p (M) = 3 X1 , (M) = 1 X0 @D n X1 . , , p ! @D, . . " M 2 @D lim p(M 0) = D 3M !M = p(M), (6) Sp(~i) (M) # p(M) X 0 | @D. . >P3=2, p ! D ! % &: a) p~ 2 Q2-D], b) jamn(~p)j < 1, c) p # ( mn>0 C (D) -4] > 1 @p=@ = 0 @D ( | @D). * 0
0
572
. .
Sp(~i) p, X 0 | @D.
(4) mn (p) (5) (p) (6)
&
Sp(2) ~
. F 1 7 , p
p
Ub f(2 4 12=) m n =mn umn j n > m > 0 (;1)m+n = 1g
)<0= L2 (D), 1 2 7 * +$ $ < $ ;u = u D @u=@ = 0 @D (7) ,1 2 7 mn = m2 + 3n2/ A mn $ + 7 0, n ; m m2 + n2 . ),, 7: , 1, -3] *
< $ (7). 0 A $ # , :7 7 D -1]. F 2 G. G. 2 2 .
-1] H F. C. I 6 . | ".: G71 : , 1991. -2] Makai E. // Studia Scientiarum Mathematicarum Hungarica. | 1970. | N 5. | P. 51{62. -3] 2 $ G. G. // R><.| 1991. | D. 46. | G7. 3. | =. 187{188. -4] 9 G. F., 0 T. I. ) 7 . U.2. | >.: < , 1973. ( ) 1995 .