This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
048 841 052 271 000
39 69 156 625 03
~
< q > =nearest integer to q. Compiled from G. Blanch and I. Rhodes, Table of characteristic values of Mathieu’s equation for large values of the parameter, Jour. Wash. Acad. Sci., 45, 6, 1955 (with permission).
749
MATHIEU FUNCTIONS
CHARACTERISTIC VALUES, JOINING FACTORS, SOME CRITICAL VALUES
Table 20.1
ODD SOLUTIONS r 2
4 0
20
0 5 10 15 20 25
r
4
1
0
15
000 922 946 229 286 004
( 1)1.00000 00
br 1.00000 5.79008 13.93655 22.51300 31.31338 40.25677
000 060 248 350 617 898
1.00000 00
25.00000 25.51081 26.76642 27.96788 28.46822 28.06276
000 605 636 060 133 590
+
-
5 10 15 20 25 5
100.00000 100.12636 100.50676 101.14517 102.04839 103.22568
-
25 10
045 824 680 325 062
+
5 10 15
-
0 5 10 15 20 25
000
sei(tn, 4 ) -2.00000 00 -3.64051 79 -4.86342 21 -5.76557 38 -6.49075 22 -7.10677 19
se;(O, 4) 2.00000 00 -1) 7.33166 22
br 4.00000 2.09946 2.38215 8.09934 14.49106 21.31486
9.73417 9.44040 9.11575 8.75554 8.35267
Se;(O,
32 54 13 51 84
11
1 -1.00000 00
1 -1.02396 46 1 -1.04539 48 1 -1.06429 00 1)-1.08057 24 ( 1)-1.09413 54
1.00000 1.33743 1.46875 1.55011 1.60989 1.65751
00 39 57 51 16 04
1.00000 9.06077 -11 8.46038 -1 8.37949 -11 8.63543 -1) 8.99268
00 93 43 34 12 33
-3 5.07788 49 -31 2.04435 94
00 00 68 65 69 62
-1
0
5 10 15 20 25
226.40072 004
3.91049 85
11 1.51800 43 111 1.56344 50 11) 1.62453 03
23)2.30433 72 23) 2.31909 77
se,(ta, 9 )
9)
5.00000 4.33957 3i40722 2.41166 1.56889 (-1) 9.64071
6.38307 - -.... . 65 --
( 1) 1.40643 73
1.59576 2.27041 2,63262 2.88561 3.08411 3.24945
91 76 99 87 21 50
-1.00000 00
19 3.73437 81 191 3.78055 49
(-1)-9.46708 70
19)4.06462 83
2.54647 91
hr+2q-(4r-2) J; -0.25532 -0.25393 -0.25257 -0.25126 -0.25000
For
go,
5
2
1 0.16 0.12 0.08 0.04 0.00
994 098 851 918 000
-1.30027 -1.28658 -1.27371 -1.26154 -1.25000
164 971 191 161 000
-11.53046 -11.12574 -10.78895 -10.50135 -10.25000
10 855 983 146 748 000
-51.32546 -56.10964 -51.15347 -47.72149 -45.25000
and j , , see 20.8.12.
< q > =nearest integer to q.
875 961 975 533 000
-
15
55.93485 -108.31442 -132.59692 -114.76358 -105.25000
112 060 424 461 000
39 69 156 625 m
MATHIEU FUNCTIONB COEFFICIENTS 8, AND R,,
Table 20.2
Anl
9=5 0
ni\r
2 +0.43873 +0.65364 -0.42657 +0.07588 -0.00674 +0.00036 -0.00001
7166 0260 8935 5673 1769 4942 3376 +O.OOOOO 0355 -0.00000 0007
10 +o.ooooo 1679
ni\,i
3619 2987 4807 5121 5640 6780 2962 9166 +o.ooooo 4226 -0.00000 0071 +o.ooooo 0001
3 5 7 9 11 13 15 17 19 21 23 25
1
+0.00003 +0.00064 +0.01078 +0.13767 +0.98395 -0.11280 +0.00589 -0.00018
1
5
+O. 76246 3686 +0.07768 5798 -0.63159 6319 ~0.139684806 -0.01491 5596 +0.00094 4842 -0.00003 9702 +o.ooooo 1189 -0.00000 0027 +o.ooooo 0001
~0.303751030 +0;92772 8396 -0.20170 6148 +0.01827 4579 -0.00095 9038 +0.00003 3457 -0.00000 0839 +O.OOOOO 0016
15 0.00000
0000
+O.OOOOO +O.OOOOO
0106 4227 8749 1393 2014 4092 7946 6409 6394 1092 0014
+o.ooooo 0002 +0.00014 +0.00428 +0.08895 +0.99297 -0.07786 +0.00286 -0.00006 +O.OOOOO
-0.00000
q=25 2
10
2 4 6 8 10
-0.69199 +0.36554 -0.13057 +0.03274 -0.00598 12 +0.00082 14 -0.00008 16 +O.OOOOO 18 -0.00000 20 +o.ooooo 22 -0.00000 24 26
9610 4890 5523 5863 3606 3792 7961 7466 0514 0029 0001
-0.04661 4551 -0.64770 5862 +0.55239 9372 -0.22557 4897 +0.05685 2843 -0.00984 6277 +0;00124 8919 -0.00012 1205 +o.ooooo 9296 -0.00000 0578 +o.ooooo 0030 -0.00000 0001
28
1
ni\,r
0 +0.42974 1038 +0.33086 5777 +O. 00502 6361
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
+0.02075 4891 +0;07232 7761 +0.23161 1726 +0.55052 4391 +0.63227 5658 -0.46882 9197 +0.13228 7155 -0.02206 0893 +0.00252 2374 -0.00021 3672 +0.00001 4078 -0.00000 0746 +O.OOOOO 0032 -0.00000 0001
5
t0.39125 2265 -0.74048 2467 +0.50665 3803 -0.19814 2336 ~0.05064 0536 -0.00910 8920 +0.00121 2864 -0.00012 4121 +0.00001 0053 -0,00000 0660 +O.OOOOO 0036 -0.00000 0002
+0.65659 0398 +0.36900 8820 -0,19827 8625 -0.48837 4067 +0.37311 2810 -0.12278 1866 +0.02445 3933 -0.00335 1335 +0.00033 9214 -0.00002 6552 +o.ooooo 1661 -0.00000 0085 +O;OOOOO 0004
15 +o.ooooo 4658
+0.00003 7337 +0.00032 0026 +0.00254 0806 +0;01770 9603 +0.10045 8755 +0.40582 7402 +0.83133 2650 -0.35924 8831 +0.06821 6074 -0.00802 4550 +0.00066 6432 -0.00004 1930 +O.OOOOO 2090 -0.00000 0085
+o;ooooo
0005
Bm
q=5 ni\r 2 4 6 8 10 12 14 16 18
2 +0.93342 -0.35480 t0.05296 -0.00429 +0.00021 -0.00000
94'42 3915 3730 5885 9797 7752 +b.ooooo 0200 -0.00000 0004
20 22
10 +0.00003 3444 +0.00064 2976 +0.01078 4807 t0.13767 5120 +0.98395 5640 -0.11280 6780 +0.00589 2962 -0.00018 9166 +O.OOOOO 4227 -0.00000 0070 +o.ooooo 0001
1
ni\r
1 3 5 7 9 11 13 15 17 19 21 23 25
+0.94001 -0.33654 +0.05547 -0.00508 +0.00029 -0.00001
9024 1963 7529 9553 3879 1602 +O.OOOOO 0332 -0.00000 0007
5 +0.05038 +0.29736 +0.93156 -0.20219 +0.01830 -0.00096 +0.00003 -0.00000 +O.OOOOO
2462 5513 6997 3638 5721 0277 3493 0842 0017
16 -_ 0.00000 0000 +O.OOOOO 0002 e0.00000 0106 +O.OOOOO 4227 +0.00014 8749 +0.00428 1392 +0;08895 2014 +0.99297 4092 -0.07786 7946 +0;00286 6409 -0.00006 6394 +O.OOOOO 1093 -0,00000 0013
q=25 ni\r
2 4 6 8 10 12 14 16 18 20 22 24 26
For
2 +0.65743 9912 -0.66571 9990 ~0.33621 0033 -0.10507 3258 +0.02236 2380 -0.00344 2304 r0.00040 0182 -0;00003 6315 +O.OOOOO 2640 -0.00000 0157
+o;ooooo 0008 A,
10 +0.01800 3596 +0;07145 6762 +0.23131 0990 +0.55054 4783 +0;63250 8750 -0.46893 3949 +0.13230 9765 -0;02206 3990 +0.00252 2676 -0.00021 3694 +o;ooooi 4079 -0.00000 0746 +O.OOOOO 0033
and B, see 20.2.3-20.2.11
1
9 11 13 15 17 19 21 23 25 27 29 31
+0.81398 3846 -0.52931 0219 +0.22890 0813 -0.06818 2972 +0.01453 0886 -0.00229 5765 +0.00027 7422 -0.00002 6336 +O.OOOOO 2009 -0.00000 0126 +O.OOOOO 0007
5 +0.30117 4196 ~0.627198468 +0.17707 1306 -0.60550 5349 +0.33003 2984 -0.09333 5984 +0.01694 2545 -0.00217 7430 +0.00021 0135 -0.OWO1 5851 +O.OOOOO 0962 -0.00000 0048 +o.ooooo 0002
15 +O.OOOOO
+0.00003 +0.00032 +0.00254 +0.01770 +0.10045 +0.40582 +0.83133 -0.35924 +0.06821 -0.011802
+0.00066 -0.00004 +O.OOOOO
-0.00000 tO.00000
3717 7227 0013 0804 9603 8755 7403 2650 8830 6074 4551 6432 1930 2090 0086 0003
Compiled from National Bureau of Standards, Tables relating to Mathieu functions, Columbia Univ. Press, New York, h.Y., 1951 (with permission).
21. Spheroidal Wave Functions ARNOLDN. LOWAN'
Contents Mathematical Properties, , , . . . . . . . . . . . . . . . . . 21.1. Definition of Elliptical Coordinates . . . . . . . . . . 21.2. Definition of Prolate Spheroidal Coordinates . . . . . . 21.3. Definition of Oblate Spheroidal Coordinates. . . . . . . 21.4. Laplacian in Spheroidal Coordinates . . . . . . . . . . 21.5. Wave Equation in Prolate and Oblate Spheroidal Coordinates 21.6. Differential Equations for Radial and Angular Spheroidal Wave Functions . . . . . . . . . . . . . . . . . . 21.7. Prolate Angular Functions . . . . . . . . . . . . . . 21.8. Oblate Angular Functions . . . . . . . . . . . . . . 21.9. Radial Spheroidal Wave Functions . . . . . . . . . . 21.10. Joining Factors for Prolate Spheroidal Wave Functions . 21.11. Notation . . . . . . . . . . . . . . . . . . . . . . References
,
,
,
,
.
,
., ., .
Table 21.1. Eigenvalues-Prolate m=0(1)2, n=m(l)m+4 ~ ~ = 0 ( 1 ) 1 6~-'=.25(--.01)0, ,
. . . . . . . . . . . . . . and Oblate . . . . . . . . . . . ,
752 752 752 752 752 752 1
753 753 756 756 757 758
1
,1
759 760
4-6D
Table 21.2. Angular Functions-Prolate m=0(1)2, %=m(1)3, 7 =0(.1)1 e=oo(ioo)900, C= 1(1)5, 2-4D
and Oblate
. . . . .
Table 21.4. Oblate Radial Functions-First m=O, 1, n = m ( l ) m + 2 ; m, n = 2 ,$=O, .75, c=.2, .5, .8, 1(.5)2.5, 5s Table 21.5. Prolate Joining Factors-First m=O, 1, n=m(l)m+2; m, n = 2 c=1(1)5, 4s
766
768
. . . .
769
. . . . . . . . . .
769
and Second Kinds
Kind
I
. ..
Table 21.3. Prolate Radial Functions-First and Second Kinds m=0(1)2, n=m(1)3 ,$=1.005, 1.02, 1.044, 1.077, c=1(1)5, 4s
1 Yeshiva University. Standards.) (Deceased.)
Page
(Prepared under contract with the National Bureau of 751
21. Spheroidal Wave Functions Mathematical Properties 21.1. Definition of Elliptical Coordinates 21.1.1
Z=T
rl and r2 are the distances to the foci of a family of confocal ellipses and hyperbolas; 2f is the distance between foci. a=jI, b = j m ,
21.1.2
e=-f a
cos 4; x=r sin 4; 0 1 4 5 2 ~
where [,7and 4 are oblate spheroidal coordinates. Relations Between Carteeian gnd Oblate Spheroidal Coordinates
21.3.2 x = j t q sin 4; y = j J ( I ~ - I > ( I - ~ ~ )z=jIq ; cos Q,
a=semi-major axis; b=semi-minor axis; e=eccentricity.
21.4. Laplacian in Spheroidal Coordinates 21.4.1
Equation of Family of Confocal Ellipses
Equation of Family of Confocal Hyperbolas
Relations Between Cartesian and Elliptical Coordinates
21.2. Definition of Prolate Spheroidal Coordinates
Metric doefficients for Prolate Spheroidal Coordinates
If the system of confocal ellipses and hyberbolas referred to in 21.1.3 and 21.1.4 revolves around
21.42
the major axis, then x2 ra -+---=pi €2 €2-1
21.2.1
y = r cos 4;
22 -.---
72
Z=T
ra 1-72
-$
Metric Coefficientu for Oblate Spheroidal Coordinates
sin 4; 0 1 4 1 2 ~
21.4.3
where f , 7 and 4 are prolate spheroidal coordinates. f
Relations Between Cartesian and Prolate Spheroidal Coordinates
21.2.2
21.5. Wave Equation in Prolate and Oblate Spheroidal Coordinates Wave Equation in Prolate Spheroidal Coordinates
21.5.1 21.3. Definition of Oblate Spheroidal Coordinates If the system of confocal ellipses and hyperbolas referred to in 21.1.3 and 21.1.4 revolves around the minor axis, then 762
(c=k *See page 11.
jk)
753
SPHEROIDAL WAVE FUNCTION&
Wave Equation in Oblate Spheroidal Coordinates
21.5.2
(21.6.3 may be obtained from 21.6.1 by the transformations [+&it, c 4 T i c ; 21.6.4 may be obtainedfrom21.6.2 by the transformation c+Fic.) 21.7. Prolate Angular Functions 21.7.1 7) =
S%C,
21.5.2 may be obtained from 21.5.1
transforms,tions
[+*it,
21.7.2
21.6. Differential Equations for Radial and
SZi(c, 7>=
Angular Prolate Spheroidal Wave Functions @=Rmn(c, E)fJmn(C,7)
cos
(7)
=Prolate angular function of the first kind
by the
c+i=ic.
If in 21.5.1 we put
5 dY ( 4 E+,
r=O, 1
m4
then the “radial solution” Rmn(c,E ) and the “angular solution” Smn(c,7) satisfy the differential equations
=Prolate angular function of the second kind ( e ( q ) and @(q) are associated Legendre functions of the first and second kinds respectively. However, for - 12Z< 1, = ( z ) =(1-Zz)m’2dmPn( z ) / dzm(see 8.6.6). The summation is extended over even values or odd values of r.)
Recurrence Relations Between the Coefficients
21.6.1
21.6.2
2’ dY”’c)QE+,(tl)
r=--oo
ffk=
(2m+k+2) (2m+k+l)c2 (2 m+2k+3) (2 m+2k+5)
fik=(m+k)(m+k+l) 2(m+k)(m+k+l)-2m2-1
-k (2m+2k-l)(2m+2k+3) where the separation constants (or eigenvalues) A,, are to be determined so that Rmn(c,E) and Smn(c, 7) are finite at E=&1 and 7 = & 1 respectively. (21.6.1 and 21.6.2 are identical. Radial and angular prolate spheroidal functions satisfy the same differential equation over different ranges of the variable.)
‘”(2m+2k-3)
k(k-l)c2 (2m +2k- 1)
Transcendental Equation for A,,”
Differential Equations for Radial and Angular Oblate Spheroidal Functions
21.6.3
21.6.4
(The choice of r in 21.7.4 is arbitrary.)
c2
754
SPHEROIDAL WAVE FUNCTIONS Power Serieo Expansion for A.,
21.7.5
+
zo=n (n 1)
Id=
- (n- m+ 1) (n- m +2) (n+ m+ 1) (n+ m $2)
+
(n- m- 1) (n- m) (n+ m -1) (n+m)
2(2n+ 1) (2n+3)3(2n+5)
+
2(2n-3) (2%- 1)'(2n+ 1)
+ +
le= (4m2- 1) (n- m 1) (n- m +2) (n m 1) (n+ m +2) (2n-l)(2n+l)(2n+3)'(2n+5)(%+7)
[
Z8=2(4ma-1)2A+A=
1
-
m) (n+ m I) (n+ m) (2n-5)(2n-3)(21t-1)6(%+l)(2n+3)
1
1
C+a D
+
+
+
+ +
(p- m- 1) (n- m) (n m -1)(n m) (n- m 1) (n- m +2) (n m 1) (n+ m +2) (2n- 5 ) (2n -3) (2.11-1)'I(271 1) (% 3) 2(%- 1)'(271 1) (2n 3) 'I(% 5 ) (2n 4-7) a
B= (n-
C=
1 16
- (n- m -I) (n-
' + + + + + m -3) (n- m -2) (n- m -1) (n- m ) (n+ m -3) (n+ m -2) (n+ m -1) (n+ m)
+
(2?a-7) (271-5) a (%-3) a (2n -1) (2n 1)
+1)'(n- m +2)a(n+m +1) (n+m +2) -(n- m -1)"n- m) "n+ m-1)a(n+m) a (2n+ 1) (271+3) (2n+ 5 ) (271-3) (2n-1) (2n +1) m - 1) (n- m)(n- m +1)(n- m +2) (n+ m -1) (n+m) (n+ m+ 1) (n+m +2) (2n- 3) (2n -1) (2n +1)'(2n+ 3) (2nf5)
(n-m
D= (n-
a
a
a
a
'I
Asymptotic Expaneion for A,
1
($+5)--64~
a
Refinement of Approximate Valuee of
21.7.6
hn(C)=cq+m2-g
'I
A-n
If G1iis an approximation to bnobtained either from 21.7.5 or 21.7.6 then
(f+ll-32m2)
1 --1024~' [5(q4+26qa+21) -384ma($+l)]
(33qb-k 1594@+5621q)
--ma (376+167q)+g
q]
128
1 -1 [(63q6+4940q4f43327 $+22470) c4 2562
-512 ma (115q4+1310$+735)+~
(q2+1)]
+...
(527q7+61529q6+1043961$ f2241599d-32.1024 ma +29895 1q)
(573fkf+127550@
+*512 (355 $+1505q) -%]+
0(c-")
q=2(n-m)+l
(2m+r)(2m+r-l)aa w=(2m+2r-1)(2m+2r+l)
d, d,-2
(r 2 2 )
r(r- 1 (2m +r) (2m +T- 11 ~ 4 $ 2 ~ - 1)2(2m.+2r+ 1) (2m f2r-3)
755
SPHEROIDAL WAVE FUNCTIONS
Evaluation of Coefficients
21.7.15 I--
Step 1 . Calculate NT's from
21.7.8 (n-m) even
21.?.16
-2"-m
(- 1) (n+r m+ 1)~ ! + ("-:-') + ! l(n-m) ) odd n-m-1
2
do and Step 2. Calculate ratios dl from dar &+I
21.7.9
$=($)($). . . vy)
(The normalization scheme 21.7.13 and 21.7.14 is also used in [21.10].)
("8> ym)
21.7.10
&=(5) 4p+i d3 & , . . A P + l and the formula for NY in 21.7.7. The coefficients d?" are determined to within the arbitrary factor do for r even and dl for r odd. The choice of these factors depends on the normalization scheme adopted. Normalization of Angular Functions Meixner- Schiifke Scheme
where the D,(z)'s are the parabolic cylinder functions (see chapter 19).
Stratton-More-Chu-Little-Corbat6Scheme
21.7.12
E' (r+2m)! r=o,1 r!
dr=-
and the Hr(x)are the Hermite polynomials (see chapter 22). (For tables of h i r & see [21.4].)
(n+m)!
(n-m)!
(This normalization has the effect that Smn(c,q)+ W O ) as O-+1.>
Epandon of Sln(c,
r))
in Powers of 7
21.7.18 Flammsr Scheme [21.4]
21.7.13
Smn(c,
T)=(l-+)m'a
+ +
2'
r=O, 1 PT(C)O'
+ +
(r 1) (r 2)p7;:;2(c) -[r(r+2m+ 1) m (m 1)
-X , n ( ~ ) ] p y " ( ~ ) -c*p??:-"2(c)=O (n-m) even
21.7.14 9l-Sll-1
(n-m) odd The above lead to the following conditions for
dY
(The derivation of the transcendental equation for A, is similar to the derivation of 21.7.4 from 21.7.3.)
756
SPHEROIDAL WAVE FUNCTIONS
gn = -2-%~[33q'+ 114q2+37 -2m2(23q2+25)
+ 13m4]
p;"" = -2-"[63
a'+
340q4+239q2+ 14
- 10mz(10q4+23q2+3) +m4(39qZ- 18) -2me] (n-m) even
gn=v(v+m)a;'+
(U+
q = n + l for (n-m)
c:: =
l)(v+m+l)a:l
even; q=n for (n-m) odd
(For the definition of aFr see 21.8.3.)
. rPk (2m+2r+1)! (2r+l)! (-r)k(m+-T+i)F:+, 2"k!(m+k)IC 1 OD
(n-m)
Asymptotic Expansion for Oblate Angular Functions
odd
. . . (.+k+l)
(4k=4a+1)(a+2)
21.8.3 ~ , , ~ - i c ,q)-(l--*)m/2
+ (-l)n-me-c(l+v)~(m) U + # [241+?)lj
Prolate Angular Functions-Second Kind
Expansion 21.7.2 ultimately leads to
2 AY {e-""-~'~lm,![2c(l-q)1
E--#
(The d:"'s are the coefficients in 21.7.1.)
where the L!m)(z)are Laguerre polynomials (see chapter 22) and
21.7.21
(Expressions of ayfrare given in [21.4].) (The coefficients dll.. are the same as in 21.7.1; the coefficients dz; are tabulated in [21.4].)
21.9. Radial Spheroidal Wave Functions 21.9.1
21.8. Oblate Angular Functions Power Series Expansion for Eigenvalues m
L n = k C=O
21.8.1
(-l)kL~2k
8-
where the Zk'S are the same as in 21.7.5. Asymptotic Expansion for Eigenvalues [21.4]
21.8.2 X,n=-cZ+2c(2v+m+
1)-2v(v+m+
1)
-(m+ 1) + A m n 1
v = ~(n-m) for (n-m) even;
v=2 1 (n-m-1) m
A -
mn-z
&"'c-~
for (n -m) odd
(Jn+*(z)and Y,++(z) are Bessel functions, order n+3, of the first and second kind respectively
(see chapter lO).) 21.9.2
R:~(c,t )=R:i(c, [) + i R g i ( ~[),
21.9.3
R$,(c, [)=R$,!(c,4) - ~ R $ ; ( c ,()
Asymptotic Behavior of
21.9.4
*See page
and R$i(cl €1
1
R $ ~ ( c , [ ) - - COS [c[-$(n+l)r] et-)-
21.9.5
Rgi(clE )
R:~(c,€)11.
c€
1
- sin [c[-$(n+l)r]
C€
SPHEROIDAL WAVE FUNCTIONS
21.10. Joining Factors for Prolate Spheroidal Wave Functions 21.10.1
(The expression for joining factors appropriate to the oblate case may be obtained from the above formulas by the transformation c + - k . )
757
21.11. Notation Notation for Prolate Spheroidal Wave Functions I
Ang. coord.
Stratton, Morse, Chu, Little and CorbaM
9
Flammer and this chapter
9
Chu and Stratton
9
Meixner and Schafke
9
Morse and Feshbach
*=cos 6
Page
€
IndeRad. coord. pendent variable
€
Ih
€
lk-
Ang. wave function
Rad. wave function
Eigenvalue
Xmn(c) R%c,
U
Normalization of angular functions
Remarks
Smn(c,O ) = e ( O ) (n-m) ever S&, 0 )=R' (0) (n- m) odc
A mt
2 =Flammer's n Aml=Xmn
9
IL
1=Flammer's aim=Xmn-C2
Notation for
n
we Functions
Stratton, Morse, Chu, Little and Corbatb
9
1 =Flammer's n
Flammer and this chapter
9
Smn( - ic,O) =e ( 0 )
Chu and Stratton
9
S!!,)(-ic, 0) = e + 1 ( 0 ) (1 even) 1=Flammer's n - m A'$)'( -ic, 0)=e k z ( 0 ) ( I odd) B I m = - Xm, n-m
Meixner and Schafke
9
Aml=Xmn
(n-m) even Smn(-icJ O ) = P f ( O ) (n- m)odd
w-9) -- 2 (n+m)! 2n+1 ( n - m ) ! -
~
Morse and Feshbach
Le'itner and Spence The notation
?=cos 6
1=Flammer's n Amz=Xmn
1)
1=Flammer's n aim=Xmn+*
I
this chapter closely follows the notation in [21.4].
SPHEROIDAL WAVE FUNCTIONS
759
References [21.1] M. Abramowite, Asymptotic expansion of spheroidal wave functions, J. Math. Phys. 28, 195-199 (1949). [21.2] G. Blanch, On the computation of Mathieu functions, J. Math. Phys. 25, 1-20 (1946). [21.3] C. J. Bouwkamp, Theoretische en numerieke
behandeling van de buiging door en ronde opening, Diss. Groningen, Groningen-Batavia, (1941). [21.4] C. Flammer, Spheroidal wave functions (Stanford Univ. Press, Stanford, Calif., 1957). [21.5] A. Leitner and R. D. Spence, The oblate spheroidal wave functions, J. Franklin Inst. 249, 299-321 (1950). [21.6] J. Meixner and F. W. Schafke, Mathieusche
Funktionen und Sphliroidfunktionen (SpringerVerlag, Berlin, Gottingen, Heidelberg, Germany, 1954).
[21.7] P. M. Morse and H. Feshbach, Methods of
theoretical physics (McGraw-Hill Book Co., Inc., New York, N.Y., 1953). [21.8] L. Page, The electrical oscillations of a prolate spheroid, Phys. Rev. 65, 98-117 (1944). [21.9] J. A. Stratton, P. M. Morse, L. J. Chu and R. A. Hutner, Elliptic cylinder and spheroidal wave functions (John Wiley & Sons, Inc., New York, N.Y., 1941). [21.10] J. A. Stratton, P. M. Morse, L. J. Chu, J. D. C. Little, and F. J. Corbitt6, Spheroidal wave functions (John Wiley & Sons, Inc., New York, N.Y., 1956).
760
SPHEROIDAL WAVE FUNCTIONS
EIGENVALUES-PROLATE
Table 21.1
AND OBLATE
PROLATE L n ( c ) -m(m f 1)
*
Xh(C)
0 0.000000 0.319000 0.611314 0.879933 1.127734
2.000000 2.593 084 3.172127 3.736869 4.287128
2 6.0 000 00 6.5 33471 7.084258 7.649317 8.225713
3 12.000000 12.514462 13.035830 13.564354 14.100203
4 20.000000 20.5 08274 21.020137 21.535636 22.054829
1.357356 1.571 155 1.771183 1.959206 2.136732
4.822809 5.343903 5,850492 6.342739 6.820888
8.810735 9.401958 9.997251 10.594773 11.192938
14.643458 15.194110 15.752059 16.31 7122 16.889030
22.577779 23.104553 23.635223 24.169860 24.708534
10 11 12 13 14
2.305040 2.465217 2.61 8185 2.764731 2.905523
7.285254 7,736212 8.174189 8.599648 9,013085
11.790394 12.385986 12.978730 13.567791 14.152458
17.467444 18.051962 18.642128 19.237446 19.837389
25.251 312 25,798254 26.349411 26.904827 27.46453 0
15 16
3.041137 3.172067
9.41 501 0 9.805943
14.732130 15.306299
20.441413 21.048960
28.028539 28.596854 [(-;)51
C2\n
0
I 2 3 4
1
[(-;PI
[(-:)21
[( - 2 9 1
C- '[Aon(c)]
c - 1\n
0.25 0.24 0.23 0.22 0.21
0 0.79301 6 0.802442 0.811763 0.820971 0.830059
2.451485 2.477117 2.503218 2.529593 2.556036
2 3.826574 3.858771 3.895890 3.937869 3.984499
3 5,26224 5.25133 5.25040 5.26046 5.28251
4 7.14921 7.05054 6.96237 6.88638 6.82460
0.20 0.19 0.18 0.17 0.16
0.83 9025 0.847869 0.856592 0.8652 00 0.873698
2.582340 2.608310 2.633778 2.658616 2.682743
4.035382 4.089903 4.147207 4.206229 4.265772
5.31747 5.3 6610 5.42883 5.50551 5.59516
6.77941 6.75360 6.75030 6.77286 6.82451
0.1 5 0.14 0.13 0.12 0.11
0.882095 0.890399 0.898617 0.906758 0.914827
2.706127 2.728784 2.750762 2.772133 2.792971
4.324653 4.381 878 4.436798 4.489168 4.539096
5.69566 5.80359 5.91452 6.023 83 6.12 806
6.90779 7.02356 7.16962 7.33916 7.52035
0.10 0.09 0.08 0.07 0.06
0.922830 0.930772 0.938657 0.946487 0.954267
2.813346 2.833316 2.852927 2.872213 2.891203
4.586895 4.632927 4.677506 4.720863 4.763160
6.22 577 6.31730 6.40385 6.48655 6.5661 8
7.69932 7.86638 8.01951 8.16148 8.29538
0.05 0.04 0.03 0.02 0.01 0.00
0.961998 Oi969683 0.977324 0.984923 0.992481 1.00 0000
2.909920 2.928382 2.946608 2.964611 2.982404 3.000000 [( -;)91
4.804519 4.845033 4.884779 4.923820 4.962212 5.000000
6.643 26 6.71 812 6.79104 6.86221 6.93182
8.42315 8.54 594 8.66452 8.77945 8.891 16 9.00000 [( -;)41
*See page 11.
1
761
SPHEROIDAL WAVE FUNCTIONS
EIGENVALUES-PROLATE
AND OBLATE
Table 21.1
OBLATE Am"(
-ic) - m(m i o n ( ic)
-
+ 1)
*
0 1 2 3 4
0 0.000000 -0.348602 -0.729391 -1.144328 -1.594493
1 2.000000 1.393206 0.773097 +0.140119 -0.505243
6.000000 5.486800 4.996484 4.531027 4.091509
3 12.000000 11.492120 10.990438 10.494512 10.003863
4 20.000000 19.495276 18.994079 18.496395 18.002228
5 6 7 8 9
-2.079934 -2.599668 -3.1 51 841 -3.733981 -4.343292
-1.162477 -1.831050 -2.510421 -3.200049 -3.899400
3.677958 3.289357 2.923796 2.578730 2.251269
9.51 7982 9.036338 8.558395 8.083615 7.611465
17.511597 17.024540 16.541110 16.061382 15.585448
10 11 12 13 14
-4.976895 -5.632021 -6.306116 -6.996903 -7.702385
-4.607952 -5.325200 -6.05 0659 -6.783867 -7.524384
1.938419 1.637277 1.345136 1.059541 0.778305
7.141 427 6.6730 01 6.205705 5.739084 5.272706
15.1 13424 14.645441 14.1 81652 13.722230 13.267364
15 16
-8.420841 -9.150793
-8.271 79 5 -9.02571 0
0.499495 0.221407
4.8061 65 4.339082
12.817261 12.3721 44
c2\,n
~
4
1
"-;)'I
2
~ C-'[Xon(
3
1
[(-:)*I
"-:)7
-ic)]
0.25 0.24 0.23 0.22 0.21
-0.571924 -0.585248 -0.599067 -0.613 349 -0.628058
1 -0.564106 -0.579552 -0.595037 -0.610591 -0.626242
+O. 013837 -0.009136 -0.031481 -0.053477 -0.075480
3 0.2711 92 0.213225 0.157464 0.103825 0.052196
4 0.77325 0.67822 0.58772 0.50191 0.42099
0.20 0.19 0.18 0.17 0.16
-0.643161 -0.658625 -0.674418 -0.690515 -0.706891
-0.642016 -0.657938 -0.674031 -0.690310 - 0.7 06792
-0.097943 -0.121 428 -0.146603 -0.174201 -0.204894
+O. 002437 -0.045635 -0.092251 -0.137692 -0.182301
0.34521 0,27490 0.21043 0.15215 0.10020
0.15 0.14 0.13 0.12 0.11
-0.72353 0 -0.740416 -0.757541 -0.774896 -0.792476
-0,723486 -0.740399 -0.757535 -0.774894 -0.792476
-0.2391 09 -0.276886 -0.317881 -0.361548 -0.407352
-0.226469 -0.2 70627 -0.31 5206 -0.360594 -0.407081
0.05428 +0.01332 0.02 476 -0.06337 -0.10723
0.10 0.09 0.08 0.07 0.06
-0.81 0279 -0.828301 -0.846539 -0.864992 -0.883657
-0.810279 -0.828301 -0.846539 -0.864992 -0.883657
-0.454896 -0.503937 -0.554337 -0.606021 -0.658931
-0.454839 -0.503928 -0.554337 -0.606021 -0.658931
-0,16065 -0.22419 -0.2951 3 -0.37117 -0.45125
0.05 0.04 0.03 0.02 0.01 0.00
-0.902532 -0.921 616 -0.940906 -0.960402 -0.980100 -1.0 00000
-0.902532 -0.921616 -0.940906 -0.960402 -0.980100 -1.000000
-0.713025 -0.768262 -0.824608 -0.882031 -0.940503 -1.000000 [( -;)41
-0.713025 -0.768262 -0.824608 -0.882031 -0.940503 -1.000000
-0.53495 -0.62200 -0.71218 -0.80533 -0.90131 -1.000 00
c - l\n
0
'See puge 11.
2
-
I":-
762
SPHEROIDAL WAVE FUNCTIONS
Table 21.1
EIGENVALUES-PROLATE
AND OBLATE
PROLATE Am.(C)--m(?n+l) X,n(c) - 2
2
* * 4
4
1 0.000000 0.195548 0.382655 0.5 6 19 75 0.734111
4.000000 4.424699 4.841 7 18 5.251162 5.653149
3 10.000000 10.467915 10.937881 11.409266 11.881493
18.000000 18.481696 18.965685 19.451871 19.940143
5 28.000000 28.488065 28.977891 29.469456 29.962738
5 6 7 8 9
0.899615 1.058995 1.21 2711 1.361183 1.504795
6.047807 6.435272 6.815691 7.1 89213 7.555998
12.354034 12.826413 13.2 98196 13.768997 14.238466
20.430382 2 0.922458 21.416235 21.911569 22.40 8312
30.457716 30.954363 31.452653 31.952557 32.454044
10 11 12 13 14
1.643895 1.778798 1.909792 2.037141 2.1 61081
7.916206 8.2 70004 8.617558 8.959038 9.294612
14.706292 15.172199 15.635940 16.097297 16.556078
22.906311 23.405410 23,905451 24.406277 24.907729
32.957080 33.461629 33.967652 34.475109 34.983956
15 16
2.281832 2.399593
9.624450 9.948719 [(-;v]
17.012115 17.465260
25.409649 25.911881
35.494147 36.005634
c2\
n
0 1 2
3
"-:"I
[( -,4)41
[(-:)31 C'[Xln(c)
-21
[(-:PI
*
1
2
3
4
0.25 0.24 0.23 0.22 0.21
0.599898 0.613295 0.627023 0.641073 0.655431
2.487179 2.491544 2.497852 2.506130 2.51 63 83
4.36631 5 4.338520 4.315609 4.297923 4.285792
6.47797 6.38296 6.29522 6.21556 6.14494
5 9.00140 8.80891 8.62445 8.44916 8.28436
0.20 0.19 0.18 0.17 0.16
0.670084 0.685014 0.7 002 04 0.715632 0.731281
2.528591 2.542705 2.558644 2.576296 2.595516
4.279522 4.279366 4.285495 4.297965 4.316672
6.08438 6.03498 5.99788 5.97420 5.96496
8.1 3 163 7.99282 7.87010 7.76598 7.68328
0.15 0.14 0.13 0.12 0.11
0.747129 0.763159 0.779353 0.795696 0.812174
2.616135 2.637968 2.660829 2.684536 2.708934
4.341320 4.371397 4.406191 4.444844 4.486445
5.97090 5.99230 6.02874 6.07889 6.1 4051
7.62508 7.59446 7.59407 7.62539 7.68773
0.10 0.09 0.08 0.07 0.06
0.828776 0.845493 0.86231 6 0.879237 0.896251
2.733891 2.759305 2.785099 2.811212 2.837600
4.530151 4.575277 4.621329 4.667984 4.71 5031
6.21063 6.28624 6.36482 6.44473 6.52505
7.77728 7.88714 8.00897 8.1 3 579 8.26355
0.05 0.04 0.03 0.02 0.01 0.00
0.913352 0.930535 0.947796 0.965129 0.982531 1.000000
2.864224 2.891056 2.91 8069 2.945243 2.972 5 5 8 3.000000
4.762333 4.809790 4.857332 4.904906 4.952472 5.000000
6.60532 6,68528 6.76480 6.84378 6.92219 7.00000
8.39048 8.51592 8.63963 8.76153 8.88164
c-l\n
i
[( - p 4 1 *See page 11.
763
SPHEROIDAL WAVE FUNCTIONS
EIGENVALUES-PROLATE
Table 21.1
AND OBLATE
OBLATE
- 7n(mt 1) XI .c- ic) - 2
Xm"(-ic)
*
*
0 1 2 3 4
1 0.00 0000 -0.204695 -0.419293 -0.644596 -0.881446
2 4.000000 3.567527 3.127202 2.678958 2.222747
3 10.0 00000 9.534818 9.0731 04 8.615640 8.1 63245
18.000000 17.520683 17.043817 16.569461 16.097655
5 28.000000 27.51 3713 27.029223 26.546548 26.065 706
5 6 7 8 9
-1.130712 -1.3 93280 -1.670028 -1.961809 -2.2 69420
1.758534 1.286300 0.806045 +O. 317782 -0.1 78458
7.716768 7.277072 6.845015 6.421425 6.007074
15.628426 15.161 786 14.697727 14.236229 13.777252
25.586715 25.109592 24.634357 24.161031 23.689634
10 11 12 13 14
-2.593577 -2.934882 -3.293803 -3.670646 -4.065548
-0.68263 0 -1.194673 -1.714511 -2.242055 -2.777205
5.602649 5.208724 4.825732 4.453947 4.093464
13.320743 12.866634 12.414640 11.965266 11.517803
23.220190 22.752726 22.287271 21.823856 21.362516
15 16
-4.4 78470 -4.909200
-3.319848 -3.869861 [(-$)l]
3.744202 3.405903
11.072331 10.628718
20.903290 20.446222
c2 \n
"-:"I
4
~ c-"[X1,(-ic)
-21
3
1
~ 2 3 1
*
0.25 0.24 0.23 0.22 0.21
.1 -0.306825 -0.318148 -0.330984 -0.345469 -0.361702
2 -0.241866 -0.266693 -0.291340 -0.31 5894 -0.34 0450
3 0.21286 0.17062 0.1 3125 0.09476 0.06107
4 0.66429 0.57759 0.49460 0.41533 0.33974
5 1.2778 1.1420 1.0120 0.8879 0.7697
0.20 0.19 0.18 0.17 0.16
-0.3 79735 -0.399564 -0.4211 25 -0.444308 -0.468974
-0.365113 -0.389998 -0.415222 -0.440907 -0.4671 66
0.03001 +O.O 0127 -0,02563 -0.05142 -0,07710
0.26779 0.19942 0.13449 0.07282 +0.01411
0.6575 0.5515 0.4520 0.3591 0.2735
0.15 0.14 0.13 0.12 0.11
-0.494976 -0.522180 -0.550474 -0.579775 -0.610027
-0.4941 04 -0.521805 -0.550335 -0.579732 -0.61 0016
-0.1 0406 -0.13412 -0.16924 -0.21076 -0.25868
-0.04205 -0.09625 -0.14929 -0.20210 -0.25572
0.1958 0.1271 0.0680 +0.0183 -0.0250
0.10 0.09 0.08 0.07 0.06
-0.641193 -0,673251 -0.706186 -0.739985 -0.774638
-0.641191 -0.673251 -0.706186 -0.739985 -0.774638
-0,31185 -0.36901 -0.42934 -0.49242 -0.55807
-0.31111 -0.36888 -0.4293 2 -0.49242 -0.55807
-0.0685 -0.1219 -0.1907 -0.2714 -0.3598
0.05 0.04 0.03 0.02 0.01 0.00
-0.810135 -0.846468 -0.883628 -0.921608 -0.960401 -1.000000
-0.810135 -0.846468 -0.883628 -0.921608 -0.960401 -1.000000
-0.62616 -0.69657 -0.76923 -0.84406 -0.92100 -1.00000
-0.62616 -0.69657 -0.76923 -0.84406 -0.92100 -1.0 0000
-0.4542 -0.5540 -0.6588 -0.7682 -0.8820 -1.0000
c-l\n
*See page XI.
"-:)21
764
SPHEROIDAL WAVE FUNCTIONS
Table 21.1
EIGENVALUES-PROLATE
AND OBLATE
PROLATE
Ln.(C)-m((m+l)
*
-6
*
bn(C)
0 1 2 3 4
2 0.000000 0.140948 0.2 78219 0.41 2 006 0.542495
3 6.000000 6.331101 6.657791 6.980147 7.2982 50
4 14.0000 00 14.402353 14.804100 15.205077 15.605133
5 24.000000 24.436145 24.872744 25.309731 25.747043
6 36.000000 36.454889 36.910449 37.366657 37.823486
5 6 7 8 9
0.669857 0.794252 0.91 5832 1.034738 1.151100
7.61 21 79 7.922016 8.227840 8.5 29734 8.827778
16.004126 16.401931 16.798429 17.193516 17.587093
26.184612 26.6 22373 27.060261 27.498208 27.936151
38.280913 38.738910 39.197451 39.656510 40.116059
10 11 12 13 14
1.265042 1.376681. 1.486122 1.593469 1.698816
9.122052 9.412636 9.699610 9.983 052 10.263039
17.979073 18.3 69377 18,757932 19.144675 19.529549
28.374023 28.811761 29.249302 29.686584 30.123544
40.576070 41.036514 41.497364 41.958589 42.420160
15 16
1.802252 1.903860
10.539650 10.812958
19.91 2501 20.293486
30.5601 25 30.996267
42.882048 43.344222
cz\n
c-'[bn(c) -61 c-'\n
*
0.25 0.24 0.23 0.22 0.21
2 0.475965 0.489447 0.503526 0.518220 0.533551
3 2.703239 2.683149 2.665356 2.650003 2.637236
4 5.073371 4.994116 4.919290 4.849313 4.784640
5 7.74906 7.58138 7.41971 7.26479 7.11743
0.20 0.19 0.18 0.17 0.16
0.549534 0.566185 0.583513 0.601526 0.620224
2.627196 21620017 2.615819 2.614701 2.616735
4.725757 41673177 4.627427 4.589031 4.558480
6.97858 6184931 6.73081 6.62442 6.53155
9.5023 9.2649 9.0409 818323 8.6417
0.15 0.14 0.13 0.12 0.11
0.639604 0.659659 0.680376 0.701737 0.723722
2.621954 2.630349 2.641862 2.656384 2.673764
4.536196 4.522485 4.517479 4,521086 4.532956
6.45371 6.39236 6.34878 6.32389 6.31794
8.4718 8.3260 8.2078 8.1208 8.0678
0.10 0.09 0.08 0.07 0.06
0.746308 0.769471 0.793186 0.817429 0.842175
2.693817 2.716339 2.741120 2.767960 2,796673
4.552484 4.578871 4.611219 4.648642 4.690346
6.33030 6.35935 6.40263 6.45738 6.52096
8.0507 8.0688 8;1184 8.1932 8.2864
0.05 0.04 0.03 0.02 0.01 0.00
0.867402 0.893087 0.919209 0.945747 0.972684 1.000000
2.827089 2.859059 2.892449 2,927138 2.963019 3.000000
4.735658 4.784022 4.834980 4.888160 4.943252 5.000000
6.591 27 6.66670 6.74607 6.82 849 6.91 330
8.3919 8.5057 8.6249 8.7477 8.8730
*See page 11.
6 10.8360 10.5536 10.2781 10.0103 9.7512
765
SPHEROIDAL WAVE FUNCTIONS
EIGENVALUES-PROLATE OBLATE
hmm(-i c )
-m(m+ 1)
b r n ( - i ~-6 ) c2\n
AND OBLATE
Table 21.1
* *
4
0 1 2 3 4
2 0.000000 -0.14483 7 -0.293786 -0.447086 -0.604989
3 6.000000 5.664409 5.324253 4.979458 4.629951
14.000000 13.597220 13.194206 12.791168 12.388328
5 24.000000 23.564371 23.129322 22.694912 22.2 61201
6 36.0 00000 35.545806 35.092330 34.639597 34.187627
5 6 7 8 9
-0.767764 -0.935698 -1.1 09090 -1.288259 -1,473539
4.275662 3.916525 3.552475 3.183450 2.809393
11.985928 11.584224 11.183489 10.784014 10.3 86106
21.828245 21.396098 20.964812 20.534436 20.105013
33.736444 33.286069 32.836522 32.387826 31.940000
10 11 12 13 14
-1.665278 -1.863838 -2.069595 -2.2 82933 -2.504245
2.430250 2.045970 1.656508 1.261822 0.861875
9.990084 9.596286 9.205059 8.816762 8.431761
19.676587 19.249195 18.822869 18.397640 17.973532
31.493066 31.047043 30.601952 30.157814 29.714648
15 16
-2.733927 -2.972375 (-y]
0.456635 0.046076
8.050424 7.673121
17.550565 17.128753
29.272476 28.831317
[
[1(-:)71
~ c - ~ [Xi.(
5
-i ~-)61
1 l':-C
*
c - 1\n 0.25 0.24 0.23 0.22 0.21
2 -C.185773 -0.190754 -0.196680 -0.203790 -0,212386
3 +0.002879 -0.030028 -0.062228 -0.093813 -0.124893
4 0.47957 0.41280 0.34933 0.28933 0.23297
5 1.07054 0.95365 0.84167 0.73461 0.632 51
6 1.8019 1.6261 1,4577 1.2965 1.1428
0.20 0.19 0.18 0.17 0.16
-0.222841 -0.235596 -0.251126 -0,269873 -0.292149
-0.155607 -0.1 86120 -0.216631 -0.247375 -0.278624
0.1 8049 0.13215 0.08816 0.04864 +O. 01342
0.53537 0.44322 0.35607 0.2 7389 0.19662
0.9964 0.8574 0.7260 0.6022 0.4863
0.15 0.14 0.13 0.12 0.11
-0.318047 -0.347414 -0.379928 -0.41 5213 -0.452947
-0.310677 -0.343847 -0.378432 -0.414688 -0.452800
-0.01 813 -0.04727 -0.07609 -0.10778 -0.14643
0.12409 ~0.05600 -0.00822 -0.06954 -0.12937
0.3785 0.2795 0.1901 0.1120 +0.0470
0.10 0.09 0.08 0.07 0.06
-0,492902 -0.534942 -0.578991 -0.625006 -0.672956
-0.492871 -0.534937 -0.578991 -0.625006 -0.672956
-0.19508 -0.25333 -0.31876 -0.38955 -0.46494
-0.18959 -0.2521 7 -0.31861 -0.38955 -0,46494
-0,0051 -0.0517 -0.1076 -0.1844 -0.2768
0.05 0.04 0.03 0.02 0.01 0.00
-0.722813 -0.774556 -0.828164 -0.883618 -0.940902 -1.000000
-0.722813 -0.774556 -0.828164 -0.883618 0.94 0902 -1.000000
-0.54456 -0.62821 -0.71571 -0.80691 -0.901 71 -1.00 000
-0.54456 -0.62821 -0.71571 -0.80691 -0.90171 -1.00000
-0.3791 -0.4895 -0.6073 -0.7319 -0.8629 -1.0000
+See psge 11.
-
766
SPHEROIDAL WAVE FUNCTIONS
Table 21.2
ANGULAR FUNCTIONS-PROLATE
AND OBLATE
PROLATE
Smn(c,cos e) m
n
c\e
0"
10"
20"
30"
40"
0
0
1 2 3 4 5
0.8481 0.5315 0.2675 0.1194 0.0502
50"
60"
0.8525 0.5431 0.2815 0.1312 0.0585
0.8651 0.5772 0.3242 0.1689 0.0861
0.8847 0.6320 0.3967 0.2379 0.1419
70"
80"
90"
0.9091 0.7032 0.4980 0.3442 0.2380
1 2 3 4 5
0.9046 0.6681 0.4034 0.2042 0.0916
0.8936 0.6665 0.4099 0.2138 0.1001
0.8602 0.6598 0.4273 0.2415 0.1262
0.8035 0.6429 0.4489 0.2833 0.1703
0.7225 0.6081 0.4630 0.3294 0.2279
0.9815 0.9355 0.8805 0.8271 0.7776 0.3381 0.3270 0.3110 0.2929 0.2752
1.000 1.000 1.000 1.000 1.0 00
1
0.9606 0.8654 0.7571 0.6589 0.5742 0.4878 0.4540 0.4068 0.3566 0.3104
0.9952 0.9831 0.9682 0.9530 0.9383
0
0.9354 0.7842 0.6226 0.4885 0.3839 0.6169 0.5472 0.4543 0.3618 0.2840
0.1731 0.1717 0.1695 0.1669 0.1643
0
2
1 2 3 4 5
1.022 1.064 1.041 0.8730 0.6018
0.9795 1.030 1.023 0.8768 0.6233
0.8553 0.9271 0.9640 0.8787 0.6792
0.6621 0.7579 0.8497 0.8513 0.7407
0.4198 0.5296 0.6660 0.7549 0.7537
0.1556 0.2602 0.4104 0.5553 0.6494
-0.0988 -0.0192 +0.1061 0.2512 0.3844
-0.3105 -0.2668 -0.1938 -0.0998 +0.0008
-0.4509 -0.4385 -0.4171 -0.3879 -0.3542
0
3
1 2 3 4 5
0.9892 0.9590 0.9090 0.8197 0.6650
0.9042 0.8864 0.8546 0.7877 0.6560
0.6692 0.6816 0.6957 0.6868 0.6183
0.3400 0.3840 0.4485 0.5087 0.5245
-0.0045 +0.0560 0.1501 0.2591 0.3482
-0.2816 -0.2261 -0.1364 -0.0215 + 0.0 971
-0.4259 -0.3907 -0.3319 -0.2514 -0.1575
-0.4085 -0.3949 -0.3714 -0.3376 -0.2952
-0.2467 -0.2447 -0.2412 -0.2361 -0.2293
0.1578 0.1194 0.0776 0.0449 0.0239
0.3134 0.2437 0.1654 0.1018 0.0588
0.4643 0.3757 0.2724 0.1832 0.1179
0.6067 0.5149 0.4030 0.2994 0.2162
0.7355 0.6562 0.5546 0.4537 0.3650
0.8450 0.7892 0.7144 0.6353 0.5602
0.9290 0.9000 0.8597 0.8150 0.7698
0.9819 0.9740 0.9627 0.9497 0.9361 0.5119 0.5088 0.5039 0.4979 0.4911
1
1
1 2 3 4 5
1
2
1 2 3 4 5
0 0 0 0
0.4788 0.3896 0.2780 0.1762 0.1011
0.9054 0.7509 0.5538 0.3683 0.2254
1.232 1.052 0.8148 0.5813 0.3896
1.417 1.253 1.030 0.7968 0.5906
1.435 1.316 1.149 0.9643 0.7879
1.276 1.212 1.118 1.008 0.8957
0.9562 0.9335 0.8992 0.8575 0.8127
0
-0.50 00 -0.5000 -0.5000 -0.5000 -0.5000 0
0 0 0
0
1,000 1.000 1.000 1.000 1.000 0 0 0 0 0
1
3
1 2 3 4 5
0 0 0 0 0
0.9928 0.9559 0.8745 0.7393 0.5662
1.745 1.710 1.611 1.418 1.146
2.075 2.092 2.063 1.934 1.691
1.903 1.998 2.097 2.128 2.047
1.280 1.432 1.640 1.841 1.975
0.3775 0.5298 0.7606 1.032 1.299
-0.5521 -0.4541 -0.2972 -0.0951 +0.1319
-1.244 -1.214 -1.174 -1.097 -1.017
-1.500 -1.500 -1.500 -1.500 -1.500
2
2
1 2 3 4 5
0 0
0 0 0
0.0844 0.0690 0.0500 0.0328 C.0198
0.3295 0.2744 0.2051 0.1405 0.0898
0.7111 0.6092 0.4773 0.3487 0.2414
1.189 1.054 0.8738 0.6876 0.5212
1.710 1.572 li380 1.171 0.9701
2.211 2.101 1.944 1.764 1.580
2.627 2.566 2.475 2.367 2.251
2.903 2.886 2.859 2.827 2.791
3.000 3.000 3.000 3.000 3.000
1 2 3 4 5
0 0 0 0 0
0.4222 0.3597 0.2765 0.1934 0.1244
1.570 1.358 1.070 0.7758 0.5226
3.116 2.755 2.255 1.723 1.243
4.596 4.175 3.576 2.909 2.269
5.530 5.170 4.641 4.025 3.395
5.548 5.327 4.994 4.588 4.150
4.501 4.417 4.286 4.122 3.936
2.522 2.510 2.491 2.466 2.437
2
3
0 0 0 0 0
From C. Flammer, Spheroidal wave functions. Stanford Univ. Press, Stanford, Calif., 1957 (with permission).
767
SPHEROIDAL WAVE FUNCTIONS
ANGULAR FUNCTIONS-PROLATE OBLATE Smn(-%
m 0
n 0
AND OBLATE
Table 21.2
11)
c\tl
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
1
1.000 1.000 1,000 1,000 1.000
1.002 1.008 1.022 1.047 1.083
1.007 1.032 1.089 1.191 1.341
1.016 1.073 1.205 1.449 1.835
1.028 1.132 1.377 1.854 2.648
1.044 1.210 1.617 2.452 3.952
1.064 1.310 1.940 3.319 6,000
1.088 1.434 2.366 4.557 9.211
0.1001 0.1004 0.1011 0.1016 0.1032
0.2009 0.2034 0.2079 0.2150 0.2252
0.3027 0.3114 0.3273 0.3526 0.3884
0.4065 0.4274 0.4664 0.5298 0.6252
0.5128 0.5542 0.6338 0.7681 0.9804
0.6222 0.6952 0.8398 1.096 1.525
0.7353 0.8539 1.098 1.552 2.369
0.8530 1.035 1.425 2.195 3.684
0.9760 iI241 1.842 3.105 5.741
1.105 ~ _ . _ 1.484 2.378 4.396 8.970
2
3 4 5
0.8 1.115 1.585 2.923 6.323 14.23
0.9
1.0
1.147 1.767 3.648 8.837 22.11
1.183 1.986 4.589 12.42 34.48
0
2
1 2 3 4 5
-0.5000 -0.5000 -0.5000 -0.5000 -0.5000
-0.4863 -0.4897 -0.4943 -0.4994 -0.5061
-0.4450 -0.4585 -0.4766 -0.4966 -0.5234
-0.3757 -0.4052 -0.4448 -0.4891 -0.5495
-0.2779 -0.3277 -0.3952 -0.4716 -0.5780
-0.1507 -0.2231 -0.3223 -0.4356 -0.5977
+0.0070 -0.0872 -0.2183 -0.3681 -0.5869
0.1965 +0.0849 -0.0721 -0.2485 -0.5067
0.4197 0.2999 +0.1311 -0.0458 -0.2880
0.6784 0.5660 0.3845 0.2868 0.1892
0.9749 0.8930 0,7958 0.8201 1.132
0
3
1 2
0 0
4 5
0 0
-0.1477 -0.1480 -0.1486 -0.1495 -0.1504
-0.2810 -0.2839 -0.2885 -0.2949 -0.3033
-0.3855 -0.3947 -0.4097 -0.4306 -0.4589
-0.4466 -0.4668 -0.4998 -0.5415 -0.6123
-0.4491 -0.4839 -0.5421 -0.6270 -0.7489
-0.3768 -0.4275 -0.5140 -0.6432 -0.8356
-0.2130 -0.2757 -0.3841 -0.5540 -0.8080
+0.0600 -0.0015 -0.1091 -0.2765 -0.5447
0.4613 0.4274 Oi3711 0.2912 0.1715
1.011 1.051 lil38 1.327 1.723
0.9961 0.9994 1.006 1;020 1.041
0.9838 0.9973 1.025 1.079 1.174
0.9628 0.9923 1.055 1.178 1.406
0.9316 0.9827 1.093 1.319 1.776
0.8884 0.9652 1.135 1.498 2.242
0.8299 0.9340 1.172 1.708 2.878
0.7506 0.8802 1.188 1.920 3,642
0.6402 0.7864 1.149 2.067 4.400
0.4731 0.6118 0.9724 1.950 4.651
0 0 0 0 0
0.2987 0.2985 0.3005 0.3022 0.2990
0.5897 0.5950 0.6043 0.6213 0.6400
0.8643 0.8815 0.9140 0.9640 1.040
1.113 1.153 1.228 1.349 1.537
1.322 1.398 1.541 1.780 2.165
1.478 1.600 1.837 2.250 2.947
1.554 1.730 2.082 2.723 3.868
1.508 1.734 -- 2.200 3.092 4.786
1.247 1.487 2;ooo 3.033 5.138
0 0
0 0 0
3
1
1
1 2 3 4 5
0
1.000 1.000 1.000 1.000 1.000
5
0
~
1
3
1 2 3 4 5
-1,500 -1.500 -1.500 -1.500 -1.500
-1.421 -1.431 -1.447 -1.467 -1.486
-1.189 -1.228 -1.289 -1.364 -1.442
-0.8136 -0.8941 -1.024 -1.184 -1.353
-0.3165 -0.4427 -0.6502 -0.9148 -1.198
0.2710 +0.1060 -0.1738 -0.5415 -0.9435
0.9015 0.7174 +0.3916 -0.0538 -0.5506
1.501 1.329 1.006 0.5403 0.0161
1.946 1.826 1.572 1.177 0.7471
1.988 1.951 1.834 1.619 1.439
0 0 0 0 0
2
2
1 2 3 4 5
3.000 3.000 3.000 3.000 3.000
2.972 2.979 2.992 3.013 3.052
2.889 2.915 2.965 3.052 3.211
2.748 2.805 2.915 3.111 3.469
2.549 2.644 2.830 3.170 3.813
2.291 2.425 2.693 3.200 4.202
1.970 2.138 2.481 3.157 4.564
1.585 1.770 2.161 2.966 4.746
1.131 1.305 1.687 2.512 4.460
0.6041 0.7234 0.9944 1;615 3.188
0 0
1.486 1.488 1.494 1.498 1.509
2.886 2.906 2.943 2.996 3.073
4.115 4.180 4.295 4.475 4.738
5.086 5.226 5.482 5.891 6.515
5.704 5.954 6.413 7.166 8.347
5.877 6.251 6.951 8.132 10.07
5.503 5.982 6,904 8.515 11.28
4.477 4.990 6.008 7.857 11.21
2.683 3.077 3.879 5.408 8.354
0 0 0 0 0
0
0 0
i
768
SPHEROIDAL WAVE FUNCTIONS
PROLATE RADIAL FUNCTIONS-FIRST
Table 21.3
n 0
c\t
0
0
1
1 2 3 4 5
m
0
2
0
3
1
1.005
-1)3.153 -1 5.289 -1 6.064 -1 5.892 -1 5.381
/i
1.020
1.044
-1 3.190 -1 3.249 1-11 5.298 1-11 5.308 -1 5.960 -1 5.786 -1 5 612 -1 5 162 -11 4:888 -11 4:125
[
[
1.077
/ [
-1 3.328 -11 5.311 -1 5.529 -1 4.542 -11 3.137
AND SECOND KINDS
1.005
1.020
/
;:?!I 0 -1.133
1
[
-1 -6 741 -1) -4:293
[
1%;
-1 -7.365 -1 -3.528 -11-1.390
1.044
1
I?:67?
-1 -4.987 -1 -11534 -21 3.87
1.077
0 2 920 1-11 19:216 -1 -3.207
):1
-!:;94
1-2)4.470
4 1-112.107 3 -2 9.956 5
1
1
1
2
1
3
2
2
2
3
-1 3.298
1 (-4)6.612
-4 3.845 -4 8.736 1-91 2.896 1-31 6.525 -3 8.889 -2 1.974 -2) 11862 -21 47048 -2 3.150 -2 6.657
From C. Flammer, Spheroidal wave functions. Stanford Univ. Press, Stanford, Calif., 1957 (with permission).
769
SPHEROIDAL WAVE FUNCTIONS
OBLATE RADIAL FUNCTIONS-FIRST
AND SECOND KINDS
REi(-ic, it)
Rzi(-ic, it) nL
n
c\l
0
0
0.2 0. 5 0.8 1.0 1.5 2. 0 2.5
0
1
0.2 0.5 0.8 1.0 1.5 2. 0 2.5
0
2
0.2 0. 5 0. 0 1.0 1.5 2.0 2.5
1
1
0. 2 0.5 0. 0 1. 0 1.5 2.0 2.5
1
2
0.2 0.5 0. 8 1. 0 1.5 2. 0 2.5
1
3
0.2 0. 5 0. 8 1.0 1.5 2.0 2.5
2
2
0.2 0. 5 0. 0 1. 0 1.5 2.0 2.5
0
-2 -1 -1 -1 -1 -1 -1
0.75
0
0.75
6.6454 1.6336 2.5333 3.0762 4.1700 4.8229 5.0170 0 0 0 0 0 0 0
-1) -3.3594
PROLATE JOINING FACTORS-FIRST C
Table 21.4
11
KIND
Table 21.5
K$~(c)
p 13
(1)
K22
From C. Flammer, Spheroidal wave functions. Stanford Univ. Press, Stanford, Calif., 1957 (with permission),
.
22 Orthogonal Polynomials URS W. HOCHSTRASSER
Contents Mathematical Properties . . . . . . . . . . . . . . . . . . . . 22.1. Definition of Orthogonal Polynomials . . . . . . . . . . 22.2. Orthogonality Relations . . . . . . . . . . . . . . . . 22.3. Explicit Expressions . . . . . . . . . . . . . . . . . . 22.4. Special Values . . . . . . . . . . . . . . . . . . . . . 22.5. Interrelations . . . . . . . . . . . . . . . . . . . . . 22.6. Differential Equations . . . . . . . . . . . . . . . . . 22.7. Recurrence Relations . . . . . . . . . . . . . . . . . 22.8. Differential Relations . . . . . . . . . . . . . . . . . 22.9. Generating Functions . . . . . . . . . . . . . . . . . 22.10. Integral Representations . . . . . . . . . . . . . . . 22.11. Rodrigues' Formula . . . . . . . . . . . . . . . . . . 22.12. Sum Formulas . . . . . . . . . . . . . . . . . . . . 22.13. Integrals Involving Orthogonal Polynomials . . . . . . . 22.14. Inequalities . . . . . . . . . . . . . . . . . . . . . 22.15. Limit Relations . . . . . . . . . . . . . . . . . . . 22.16. Zeros . . . . . . . . . . . . . . . . . . . . . . . . 22.17. Orthogonal Polynomials of a Discrete Variable . . . . . . NumericalMethods . . . . . . . . . . . . . . . . . . . . . . 22.18. Use and Extension of the Tables . . . . . . . . . . . . 22.19. Least Square Approximations . . . . . . . . . . . . . 22.20. Economization of Series . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . Table 22.1. Coefficients for the Jacobi Polynomials Pg*fl)(z) . . . . .
Page
773 773 774 775 777 777 781 782 783 783 784 785 785 785 786 787 787 788 788 788 790 791 792 793
n=0(1)6
Table 22.2. Coefficients for the Ultraspherical Polynomials CP)(2) and for znin Terms of Cg)(z). . . . . . . . . . . . . . . . . . . .
794
n=0(1)6
Table 22.3. Coefficients for the Chebyshev Polynomials T,(z) and for z n i n Terms of T,,,(z) . . . . . . . . . . . . . . . . . . . . .
795
n=0(1)12
Table 22.4. Values of the Chebyshev Polynomials T,,(z) . . . . . . . n=0(1)12. z=.2(.2)1, 10D Table 22.5. Coefficients for the Chebyshev Polynomials U ,(z) and for z"in Terms of U,,,(z) . . . . . . . . . . . . . . . . . . . . n=0(1)12
.
Table 22.6. Values of the Chebyshev Polynomials U&) n=0(1)12. z=.2(.2)1, 10D
795
796
. . . . . .
796
.
1 Guest Worker. National Bureau of Standards. from The American University (Preaently. Atomic Energy Commission. Switzerland.) 77 1
772
ORTHOGONAL POLYNOMIALS
Table 22.7. Coefficients for the Chebyshev Polynomials C,(z) and for z" in Terms of C,(z) .....................
Page
797
n=0(1)12
Table 22.8. Coefficients for the Chebyshev Polynomials S,(z) P i n T e r m s of S,(z) . . . . . . . . . . . . . . . . . .
and for
...
797
n=0(1)12
Table 22.9. Coefficients for the Legendre Polynomials P,(z) and for z" in Terms of P,(z) . . . . . . . . . . . . . . . . . . . . . .
798
n=0(1)12
Table 22.10. Coefficients for the Laguerre Polynomials L,(z) and for z" in Terms of L,(z) . . . . . . . . . . . . . . . . . . . . . .
799
n=0(1)12
Table 22.11. Values of the Laguerre Polynomials L,(z) . . . . . . . n=0(1)12, 2=.5, 1, 3, 5, 10, Exact or lOD Table 22.12. Coefficients for the Hermite Polynomials El&) and for zn in Terms of H,(z) . . . . . . . . . . . . . . . . . . . . . .
800
801
n=0(1)12
Table 22.13. Values of the Hermite Polynomials HJx) n=0(1)12, z=.5, 1, 3, 5 , 10, Exact or 11s
. . . . . . .
802
22. Orthogonal Polynomials Mathematical Properties where g(z) is a polynomial in x independent of n.
22.1, Definition of Orthogonal Polynomials
A system of polynomialsf,(z), degree [fn(z)]=n, is called orthogonal on the interval u < z < b , with respect to the weight function w(x), if
{g}
The system
consists again of orthogonal
polynomials.
22.1.1
l
W(z>jn(z>jm(z>dz=O (n#m;n,m=O,1,2,.
. .)
The weight function w(z)[w(z) 201 determines the systemfn(z) up to a constant factor in each polynomial. The specification of these factors is referred to as standardization. For suitably standardized orthogonal polynomials we set 22.1.2
1
w(z)f?,(z)dz=hn,fn(x)=knz"+k~sn-l+. . . (n=O,1,2,
* *
.)
These polynomials satisfy a number of relationships of the same general form. The most important ones are: Differential Equation
22.1.3
g,(z))f::+gl(s>f:+a~n=o
where g&), gr(x)are independent of n and un a constant depending only on n. Recurrence Relation
where 22.1.5
-I
Rodriguea' Formula
FIGURE 22.1. Jacobi Polynomials P!ei e)(x>, a=1.5, 8=-.5,
n=1(1)5. 773
22.2. Orthogonality Relations Standardization
. m e of Polynomial 22.2.1
lacobi
22.2.2
lacobi
22.2.3
Ultraspherical (Gegenbauer)
1
-1
0 -1
(I - 2 ) q
k,=
-q>
1
(1 -2')-t =( n
+
1
( I -2')-t
Tn(l)= 1
Chebyshev of the first kind
-1
22.2.5
Chebyshev of the second kind
-1
1
(1-2')t
Un(1)=nfl
22.2.6
Chebyshev of the first kind
-2
2
( -$)-t
C,(2)=2
22.2.7
Chebyshev of the second kind
-2
2
(1
22.2.8
Shifted Chebyshev of the first kind
1
(2- 2') -t
-$)#
Sn(2)= n + 1
2T
7
a=O
5X
nfo
a-
n=O
a2
223.9
Shifted Chebyshev of the second kind
22.2.10
Legendre (Spherical)
22.2.11
Shifted Legendre
*See page
11.
0
-1
0
1
(x-
1
1
1
1
2') t
T,*(l)= 1
G'r(l)=n+l
Pn(l)= 1
nfo n=O
4%
8aa%
0
8>-1 - 1 , q>o
a>-+
:7
2 C?)(I)=-, n C?)(l)=l
22.2.4
Remarks
z>-l,
+Z)b
1 1
h.
5
n#O
a-
n=O
* -
*
8
2
2n+l 1 2n+ 1
22.2. Orthogonality Relations-Gntinued Generalized Jiaguerre
0
L.(z)
Iapuerre
0
ff,(z)
Hermite
-m
Hermite
-m
L:'
22.2.12 22.2.13 22.2.14
I
1
(2)
*See page 11.
a>-l
I
22.3. Explicit Expressions
f n k ) =dn
N
cngr(z) m=O
-__
Reinarks 22.3.1
u>-l,@>-l
22.3.2
a>-1,@>--1
22.3.3
1
p-q>-l,
a > - 5 '1 a f O
22.3.4 22.3.5
1
22.3.6
n 2
22.3.7
1
22.3.8
q>o
2" n
nfO
n#O, Cho'(l)=l
2"
1 -
2"
22.3.9
1
2"
22.3.10
n!
( 2 4 n-*-
2"
22.3.11
n!
Zn-Zm
1
n!
a>-I
see 22.11
776
ORTHOGONAL POLYNOMIALS 2xplicit Expressions Involving TrigonometricFunctions
I
n
fn(coa
12.3.12
c:)
(COS
~ ~ 3 . 1 3 P,(COS
e)=C U,,, m=O
00s (n-2rn)e
r ( a+m) r (a+ n -m) m!(n- m)![r(U)12
e)
1 2m 2n-2m G ( m > ( n-m
e)
C
a#O
1
IXl
X
FIQURE 22.3. Jacobi Polynomials P!O.p)(z), a=1.5, @=-.8(.2)0, n=5.
FIQURE 22.4. Gegenbaw (Ultrasphehal) Polynomials C~u)(~), a=.5, n=2(1)5.
ORTHOGONAL POLYNOMIALS
777
22.4. S icial Values
.io(z) -
fn(1)
(?)
22.4.1
*
1
(0,n = 2 m + 1 22.4.2
(- 1)" C t ' ( 2 )
("+:--':
1
2a2
1
22
(-l)m, n=2m 0, n = 2 m + l
1
2
(- l ) m , n = % m 0, n = 2 m + l
1
22
1
t
22.4.7
1
-x+a+l
22.4.8
1
22
2, n#O
22.4.3
[o, n = 2 m + 22.4.4
1
22.4.5
n+l
22.4.6
1
I I
1
10, n = 2 m + 1
CA"'(
X)
22.5. Interrelations
t
I ci"
Interrelations Between Orthogonal Polynomials of the Same Family
Jacobi Polynomials
22.5.1
22.5.2
(see [22.21]).
22.5.3
Fn(p,q,z)=(-l)"n!
r (P) P $ J - ~ ~ ~ - 1 ) ( 2 x - l ) F(a+n>
(see [22.13]). Ultraspherical Polynomials
22.5.4
1
C~o)(z)=lim - Cp)(z) a-ma
Chebyshev Polynomiab
FIQURE 22.5. Gegenbaw (Ultraephericd) Polynomials Cia)(z), a=.2(.2)1, n=5. 'See page U.
778
ORTHOOONAL POLYNOMIALS
PionO) (5) =Pn (3)
32.5.24 22.5.9
Un(5)=S,(25)=U::
Ultraspherical Polynomiah
22.5.25
22.5.11
22.5.28
Chebyshev Polynomials
Generalized Laguerre Polynomials
22.5.16 22.5.17
Q)
(z)=L,(z)
d" z m [Ln+m(s)I
Limn,(~)=(-l)"
Hermite Polynomials
22.5.18
He ,,(5)=2-"'* H,
(see [22.20]).
22.5.19
(3
H , ( 5 )=2"We, (zJz>
(see [22.13], [22.20]). Interrelations Between Orthogonal Polynomials of Ditrerent Families Jacobi Polynomials
22.5.20
22.5.21
FIQURE 22.6.
Chebyshev Polynomials T,(x), n= 1(1)5.
*See page 11.
779
ORTHOGONAL POLYNOMIALS U&)
I
t
Legendre Polynomials
22.5.35
P.(s)=PAo*o)(z)
22.5.36
P,(z)=cy)(z)
22.5.37
d"
[ P n ( ~ ) ] = 1 *. 3. . (2m-1)C$!+,+)(z)
(mI n )
Generalized Laguerre Polynomials
L i - 1 1 4 ) ( ~ ) HZ,(@) =s
22.5.38
t::
FIGURE 22.7. Chebyshev Polynomials Un(x),
LA1/a)(z)=nhit!&
22.5.39
H2n+l(&5)
n= 1(1)5. Hermite Polynomials
22.5.33 22.5.M 22.5.34
U,(2) =Cil)(5)
22.5.41
Ham(%)= (-l)m2"m!L~-1'a'(~2)
HZ,+~(S)= (-1)"2"+'m!~L"'~' m
(z2>
Orthogonal Polynomials as Hypergeometric Functions (see chapter 15) f n ( z ) = W a , b; C; g(z))
For each of the listed polynomials there are numerous other representations in terms of hypergeometric functions. d
b
a
22.5.42
-n
n+a+a+l
22.5.43
-n
-n--a
22.5.44
-n
-n-8
22.5.45
-n
-n--a
22.5.%
-n
n+2-a
22.5.47
-n
n
22.5.48
-n
n+2
22.5.49
-n
n+l
22.5.50
-n
-n
22.5.51
--n
I-fl -
22.5.52
-n
n+3
22.5.53
-n
n+%
2
*See page 11.
2
*
780
ORTHOGONAL POLYNOMIALS
Orthogonal Po!ynomials as Confluent Hypergeometric Functions (see chapter 13)
Orthogonal Polynomials as Parabolic Cylinder Functions (see chapter 19)
22.5.55 22.5.56
Orthogonal Polynomials as Legendre Functions (see chapter 8)
H , ( 2 )= 2 W Hz,(~)=(--1)"7 ('m)! M ( - m ,
i,
22.5.57
* Hzm+,(4=(-1)"
22.5.60
( ' m + 1 ) ! 2 % ~ (- m, m!
x2)
c p ( x )=
i,
x2)
Ln (XI
3
-2
t
I FIQURE 22.9. Lagwrre Polynomials Ln(X), n=2(1)5.
FIGURE 22.8. Legendre Polynomials P,(x), n=2(1)5. *See page n.
FIGURE 22.10. Hermite Polynomiale n=2(1)5.
H n(x),
7
ORTHOGOXAL POLYNWIALS
22.6. Differential h u a t i o n s
Q Z ( 4 Y' '
+
QI(2)
Y'
+ g o ( 4 Y =o
Y 22.6.1
1- 2 2
8-
22.6.2
1-22
a-p+
22.6.3
1
0
22.6.4
1
0
a-
(aS8-t 2)x (a+B-
n ( n + a + 8 + 1)
2)x
+ (n+-)' 22.6.5
1-2'
- (2a+ 1 )
n(nt2a)
22.6.6
1-21
(20-3)z
(n+ 1 ) (n 2a - 1 )
22.6.7
1
0
22.6.8
1
0
22.6.9
1-21
-2
nz
22.6.10
1
0
n1
22.6.11
1-21
- 3x
nz- 1
22.6.12
1-21
- 32
22.6.13
1-21
-2l.
22.6.14
1
0
22.6.15
I:
a+1-2
22.6.16
1:
2+
22.6.17
1
0
2 n + ~ + l 1-az 22 42'
22.6.18
1
0
4n t 2a
22.6.19
1
- 2z
2n
22.6.20
1
0
2n+
22.6.21
1
-z
n
*See pnge I I
+
It
1 ~
1 4
+ 2-z*+- 1 -4x24a2
1-21
782
ORTHOGONAL POLYNOMIALS
22.7. Recurrence Relations Recurrence Relations With Respect to the Degree n alnfn+l(x)
=
= (aan+ asnr)f n(z) -arnfn-l(x)
aa n
aa n 22.7.1
2(n+l)(nSa+8+1) (2n+ a + 8 )
22.7.2
(2n+ P - 2)4(2n+ P - 1 )
22.7.3
n+1
22.7.4
1
22.7.5
1
22.7.6
1
22.7.7
1
22.7.8
1
22.7.9
1
22.7.10
n+l
22.7.11
n+l
22.7.12
n+l
1
ad
4n+2
n
-1
n+a
22.7.13
2
2n
22.7.14
1
n
Miscellaneous Recurrence Relations Jacobi Polynomials
22.7.15
(l--s)Pp+"~'(Z) = (n+a+l)P,'~~8'(5)-(n+l)P',";81'(2)
22.7.16
(l+z)Pp+4+1)(5)
(n+;+;+l)
= (n+B+Z)P?fl)(4
22.7.17
+(n+l>P2ml9
Chebyshev Polynomials
22.7.24
+
(1-,)Pp+l*fl) (5) (1+z)Pp*fl+" (5)=2Pp'fl) (5)
22.7.18 (2n+ a+
+a +B)Pp*B'
B)Pp-1*8) (5)= (n
(5)
- (n+B)PZ!'(s) 22.7.19 (2n+ a
22.7.20
+B)Pp
8-1) (2) = (n+
a
+g)PpJ)
(5)
+(n+a)P2?(5)
P ~ @ - " (-Pp-'*b'(~) Z) =P!.,a)
(2)
*Bee page
11.
22.7.31 22.7.29
Llp
L?+’)(z)=;1 [ (n+a+l)L?’h)
+ +
1
+
= ; [ (5-n)L f ) (2) (a n)Lfi$(z)]
1) (2)
- (n+l)Llp!l (z)]
22.7.32 1
22.7.30
i
fn
Bo
+8 ) (1- x * )
+B)zl
+
22.8.1
(2n+
22.8.2
1-22
-nz
n+2a-l
22.8.3
1-22
-nz
n
22.8.4
1-21
-na
n+l
22.8.5
1-21
-nx
n
22.8.6
2
n
-(n+a)
22.8.7
I
0
2n
22.8.8
1
0
n
U
n[a- B- (2n+
a
2(n a)(n+ i3)
22.9. Generating Functions
Remarks
+
22.9.1
R-’ (1 - z
22.9.2
R - ~ ( ~ - z I +R)+-”
22.9.3
1
22.9.4
R)-a(
1
+ r + R) -8
R-h --In Ra
22.9.5
X=COS n
a2.9.6
L
22.9.7
$(;)
22.9.8
-1
e
(?+1)
n
1-3 In R’
1
1-21 R’
-1<2<1
22.9.10
R-’
-
22.9.11
B1
-1<2<1
22.9.9
do= I
-l
14<1 (l-~z+R)-”*
14<1 ‘See page
n.
784
ORTHOGONAL POLYNOMIALS
22.9. Generating Functions-Continued
R 4-222 + 2' Remarks
an
--
R-1
22.9.12
1
22.9.13
J
22.9.14
1
22.9.15
1
22.9.16
r(n+ a
22.9.17
1 nl
1
(1 - I)-=-I exp 1
(2)
+ 1) elaa-al
(-.l)n
22.9.18
(an)! (-1)"
22.9.19
(2n+ l)!
22.10. Integral Representations go(4
fn(z)=,,i
Contour Integral Representations
sc
[gl(zJ z)pg& z)dt where C is a closed contour taken around z=a in the positive sense
a
Bo(4
22.10.1 22.10.2
-
(1 Z ) ' (
1
1
-
+
1
(1- 2)'(1+
ZIP
G
& 1 outside C
3
Both zeros of 1-%t+ aloulside C,
D
Both zeros of 1- &z E) outside C
2-2
2)
(1-22?+
zf)-az-l
Remarks
a>O 1-21
- &2+
22.10.3
I( 1
22.10.4
1
22.10.5
1
22.10.6
5
22.10.7
e'z-'
22.10.8
1
22.10.9
n!
1
1
I( 1- 8 2
29
+ IS)
-1 (1-222+2')-1~* 2
1 *
O
+ Both zeros of 1- 2 z z + zf outgide C
0
Both zeros of 1-&E+ z* outside C
z
2-2
e-a
2
Zero outside C
0
E= - 2
2--T
E
Miscellaneous Integral Repreeentationr
0
outside C
785
ORTHOGONAL POLYNOMIALS
22.10.12 Pn(cos e)=;
'6'
(cos e+i sin e cos +)"d4
lrn ? !lrn fi
22.10.14 L ~ ) ( z ) =ez2-9 n! 22.10.15
Hn(s)=ez2
e-'t"+f Ja(2&)dt
e-"tn cos (2zt-i x ) dt
22.11. Rodrigues' Formula
The polynomials given in the following table are the only orthogonal polynomials which satisfy this formula.
22.11.1
Pf' U ) (2)
(1 -X)"(l
22.11.2
c y (2)
(1-22).-1
1-21
22.11.3
T.(z)
(1 - 2 y t
1-22
22.11.4
U.(z)
(1 -2*y
1-21
22.11.5 22.11.6 22.11.7 22.11.8
Pn(z)
Lp)( 2 )
I $i!$)
22.12. Sum Formulas Christoffel-Darboux Formula
22.12.1
Miscellaneous Sum Formulas (Onlv a Limited Selection
22.13.2
22.12.2 n-1
22.12.3 22.12.4 22.12.5 22.12.6 22.12.7 22.12.8
*See page
11.
+r)b
1-22
1
1-21
e-*P
2
p 2 e-.2/2
1
1
786
ORTHOGONAL
OLYNOMIALS
22.14. Inequalities
22.13.8
22.14.1
22.13.9
d maximum point nearest to (x>-2) 22.13.10
22.13.11
IC F (4II
("+;-'> IC?)(z')I
~
(a>O)
(-l
x'=O if n=2m; z'=maximum point nearest zero if n='2m 1
+
22.14.5
22.13.18
t
22.14.2
a-a
a+8+1
ldql sn2
(- 15 25 1)
787
ORTHOGONAL POLYNOMIALS
22.14.15 22.14.16
(H2,(z)I I ez2l22"m!
22.15.2
n+a
(2m+2)! (m+l>!
IHz,+l(z)lI s e z z / 2
( 2 20)
k= 1.086435
22.14.17
lim
22.15. Limit Relations
22.15.4 lim
[$ L p ) (;)]=~-~"Ja(2&"
[w (&)I=$ H2n+l
2 sin z
n+ m
22.15.5
22.15.1 22.15.6
lim PF,6) (1 -$)=@)(,)
8-1=
lim 1 C'?) ajm
an/z
(%)=1 H,(z) n!
For asymptotic expansions, see [22.5] and [22.17].
z 2 ) m t h zero of fn(z)(z,'")
2:,,,+l(o<e!w)<ep<
,
. .
. . . <ep
j , , , mth positive zero of the Bessel function J&) o<j,,<j,z< Relation
22.16.1 22.16.2 22.16.3 22.16.4 22.16.5
22.16.6
22.16.7
22.16.8
For error estimates see t22.61.
...
788
ORTHOGONAL POLYNOMIALS
C w * ( z t ) is finite. The constant factor which is
22.17. Orthogonal Polynomials of a Discrete Variable
1
still free in each polynomial when only the orthogonality condition is given is defined here by the explicit representation (which corresponds to the Rodrigues' formula)
In this section some polynomialsf,(z) are listed which are orthogonal with respect to the scalar product 22.17 1
(fa, fm)
=?w*
(5t)fn
f,(z)=-
22.17.2
(z t)fm (zt )
1
raw*(x)
A"[w*(z)g(s,n ) ]
where g(s,n)=g(s)g(s-1) . . . g(z-n+l) g ( t ) is a polynomial in s independent of n.
The st are the integers in the interval a<si
and
Name
b
a
-
Remarks
tn
Chebyshev
0
N-1
1
Krawtchouk
0
N
p=qN-=
Charlier
0
m
(-
Meixner
0
m
C"
Hahn
0
m
n!
(3
l/n!
(3
qnz!
(- l)nn!
Pl q>O; p+q=l
(x-n)!
l)nda.n!
Z!
a>O
(2-n)! Z!
b>Ol O
(x-n)! x!r(b+x) (z - n) !r(b z- n)
+
For a more complete list of the properties of these polynomials see [22.5] and [22.17].
Numerical Methods 22.18. Use and Extension of the Tables
Evaluation of an orthogonal polynomial f o r which the coefiients are given numerically. Example 1. Evaluate Le(1.5) and its first and second derivative using Table 22.10 and the Horner scheme. 1
-36
450 1. 5
2=1.5 1 1.5
-34.5 1. 5
1 1.5
-33.0 1. 5
1
-31.5
- 2400
5400
- 4320
720
-51. 75
597.375
-2703. 9375
4044. 09375
-413. 859375
398. 25
- 1802. 625
2696.0625
-275. 90625
306. 140625
-49. 5
523. 125
348. 75
- 1279. 500
-47, 25
452. 250
301. 50
-827. 250
- 1919. 25 776.8125 - 1240. 875
- 464.0625
1165. 21875
306. 140625 720 =. 42519 53
L6=
889. 3125 t
889. 3125 720 = 1.23515 625
Le=-
[ - 46406251 720 = 1I . 28906 25
L;'=2
789
ORTHOGONAL POLYNOMIALS
Evaluation of an orthogonal polynomial using the explicit representation when the coeficients are not given numerically. If an isolated value of the orthogonal polynomial fn(z)is to be computed, use the proper explicit expression rewritten in the form f&) =dn(4ao(x) and generate ao(z)recursively, where bm a m - l ( z ) ~ l - - - - f ( ~ ) a m ( z )(m=n, n - I , . . ., 2 , 1 , a , ( z ) = l ) . Cm
The o!,,(x), b,, c , , f ( z ) for the polynomials of this chapter are listed in the following table: bm
(n- m+ 1)(a+ P+ n+
m am bm Cm
8 1 18
136
4
2m(a+ m)
2(n-m+ l ) ( a + n + m - 1)
m(2m-1)
2(n-m+l)(a+n+m)
m(2m+ 1)
2(n- m+ 1)(n+ m- 1)
m(2m- 1)
2 (n - m+ 1)(n+ m)
m@m+ 1)
2(n-m+1)(n+m)
m(2m- 1)
2(n--++)(n+m+l)
m(2m+l)
(n- m+ 1)(2n+2m- 1)
m(2m- 1)
(n-m+1)(2n+2m+1)
m@m+ 1)
n-m+l
m(u+m)
2(n-m+ 1)
m(2m- 1)
2(n-m+ 1)
m(2m+ 1)
7
6
5
4
3
2
1
1. 132353 34 105
1. 366667 48 78
1. 841026 60 55
3.008392 70 36
6.849651 78 21
26.44156 84 10
223. 1091 88 3
n Ci*)(2.5)
2 3. 65625
3 13. 08594
4
-50. 87648
5 207. 0649
6 867.7516
0
6545.533 90 0
790
ORTHOGONAL POLYNOMIALS Change of Interval of Orthogonality
In some applications it is more convenient to use polynomials orthogonal on the interval [O, 11. One can obtain the new polynomials from the ones given in this chapter by the substitution x=2Z- 1. The coefficients of the new polynomial can be computed from the old by the following recursive scheme, provided the standardization is not changed. If n f n ( ~ ) = C
m=O
n
amxm, f : ( ~ ) = f n ( 2 ~ - I ) = C n:xm m ==O
then the a: are given recursively by the am through the relations
* .
m=n-1, n-2, . . ., 9 ; 3=0, 1 , 2, u & - ~ ) = u , /m=O, ~, 1 , 2, . . R. a ~ ’ ) = 2 4 z a , , j = 01,, 2, . . ., n and aLm:’=a:; m=O, I , 2, . m
. . *,n
.)
Example 4.
. ., n.
Given T5(x)=5x-20x3+16~5,find Tg(s).
\m
\
1
0
2.5=aj-’)
0
a
-1 16 32 64 128 256 512=a;
- 16 - 64 - 192 - 512 - 1280=a;
4
-4 56 304 1120= a;
-l=a;
1 50=a;
-48
-400=~;
Hence, T,*(x)=512x6-1200x4+1120x3-400x2+50x-l. D a Continuous Interval
22.19. Least Square Approximations
Problem: Given a function f(s) (analytically or in form of a table) in a domain D (which may be a continuous interval or a set of discrete points).2 Approximate j ( z ) b y a polynomial Fn(z) of given degree n such that a weighted sum of the squares of the errors in D is least. Solution: Let w(x)>O be the weight function chosen according to the relative importance of the errors in different parts of D. Let fm(x) be orthogonal polynomials in D relative to w(x), i.e. (fm, fn)=O for m # n , where
Example 5.
Find a least square polynomial of
degree 5 f o r J ( z ) = L , in the interval 2 5 x 1 5 , 1 +x
using the weight function 1
w(x) = J(z-~)(~-z) which stresses the importance of the errors a t the ends of the interval. Reduction to interval [-1, 11, t=-
(fl
s) =
12
if D is a continuous irterval w(zm>j(zm)g(zm> if D is a set of N discrete points x m.
From 22.2, f m ( t )= Tm(t)and
Tm(t)dt
*f(z) has t o be square integrable, see e.g. [22.17]. *See page 11.
22-7 3
( m ZO)
791
ORTHOGONAL POLYNOMIAL&
Evaluating the integrals numerically we get - -1 . 2 3 5 7 0 3 - . 0 8 0 8 8 O T ~ ( ~22-7 )+.013876T~ l+x
( 722-7 )-.002380T3
(3) 22 7
+.000408T, ( 722-7 )-.000070T,
(T) 22 7
D a Set of Diecrete Points
If zm=m(m=O, 1, 2, . . ., N ) and w(x)=l, use the Chebyshev polynomials in the discrete range 22.17. It is convenient to introduce here a slightly different standardization such that nfm
j n ( x ) =m-0k ( - 1 ) m ( t ) ( (fn, f n ) =
2
10 12 14
16 18
0
.3162 .2887 .2673 .2500 . 2357
4
5
2. 5
3. 5
f(X)
f(x)
.271580
+
+
1 -2 0 2 -1
- 117
-
f*(3
fn)
G)
1
fi(Z)
i
.fa
--11;
fo(D
(f j n ) (jni
fa@)
1 11; - 11;
1 1 1 1 1
1 2 3
1.3579 an=-
-m )!N!
fl(23
fo (2)
z=- 2-10 2
---
(2
(N+n+l)!(N--n)! (2n+l)(N!)2
-
f(4
)
z!(N-m)!
fa(3 10
,09985
.01525
,0031
.039940
.0043571
.000310
+
.27 158 .03994(3.5- .252) .0043571(23.5-3.5~$. 1259) ,0003l(266 -59.83332 +4.3752- .10417$) .59447- .043658~+.00190092a- .000032292$ 22.20. Economization of Series
Problem: Given f(x)= -1 I s 2 1 and R>O.
n
m -0
Then, since 1 T,,,(s)151(- 1S s 5 1)
a d m in the interval N
F i n d y ( z ) = C b,,,zmwithN m =O
as small as possible, such that ( j ( z )-j(s)l
within the desired accuracy if
J ( x ) is evaluated most conveniently by using the recurrence relation (see 22.7).
792
ORTHOGONAL POLYNOMIALS
Example 7. Economize f(z) = 1 +z/2 + 9 / 3 $214 4- x4/54-216 with R= .05.
so
References Texts [22.1] Bibliography on orthogonal polynomials, Bull. of the National Research Council No. 103, Washington, D.C. (1940). [22.2] P. L. Chebyshev, Sur l’interpolation. Oeuvres, vol. 2, pp. 59-68. i22.3) R. Courant and D. Hilbert, Methods of mathematical physics, vol. 1, ch. 7 (Interscience Publishers, Xew York, X.Y., 1953). [22.4] G. Doetsch, Die in der Statistik seltener Ereignisse auftretenden Charlierschen Polynome und eine damit eusammenhangende Differentialdifferenzengleichung, Math. Ann. 109, 257-266 (1934). [22.5] A. ErdBlyi et al., Higher transcendental functions, vol. 2, ch. 10 (McGrrtw-Hill Book Co., Inc., New York, N.Y., 1953). [22.6] L. Gatteschi, Limitazione degli errori nelle formule asintotiche per le funzioni speciali, Rend. Sem. Mat. Univ. Torina 16, 83-94 (1956-57). [22.7] T. L. Geronimus, Teoria ortogonalnikh mnogochlenov (Moscow, U.S.S.R., 1950). [22.8] W. Hahn, Vber Orthogonalpolynome, die qDifferenzengleichungen genugen, Math. Nachr. 2, 4-34 (1949). [22.9] St. Kaczmare and H . Steinhaus, Theorie der Orthogonalreihen, ch. 4 (Chelsea, Publishing Co., New York, N.Y., 1951). [22.10] M. Krawtchouk, Sur une g6nBralisation des polynomes d’Hermite, C.R. Acad. Sci. Paris 187, 620-622 (1929). [22.11] C. Lanceos, Trigonometric inteipolation of empirical and analytical functions, J. Math. Phys. 17, 123-199 (1938). [22.12] C. Lanczos, Applied analysis (Prentice-Hall, Inc., Englewood Cliffs, N.J., 1956). [22.13] W. Magnus and F. Oberhettinger, Formeln und Satze fiir die speziellen Funktionen der mathematischen Physik, ch. 5, 2d ed. (SpringerVerlag, Berlin, Germany, 1948).
[22.14] J. Meixner, Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion, J. London Math. Soc. 9, 6-13 (1934). [22.15] G. Sansone, Orthogonal functions, Pure and Applied Mathematics, vol. I X (Interscience Publishers, New York, N.Y., 1959). (22.161 J. Shohat, Thborie g6n6rale des polynomes orthogonaux de Tchebichef, MBm. Soc. Math. 66 (Gauthier-Villars, Paris, France, 1934). [22.17] G. Szego, Orthogonal polynomials, Amer. Math. Soc. Colloquium Publications 23, rev. ed. (1959). [22.18] F. G. Tricomi, Vorlesungen uber Orthogonalreihen, chs. 4, 5, 6 (Springer-Verlag, Berlin, Germany, 1955). Tables [22.19] British Association for the Advancement of Science, Legendre Polynomials, Mathematical Tables, Part vol. A (Cambridge Univ. Press, Cambridge, England, 1946). P,(z), z=0(.01)6, n=1(1)12, 7-8D. [22.20] N. R. Jorgensen, Undersogelser over frekvensflader og korrelation (Busck, Copenhagen, Denmark, 1916). He&), z=0(.01)4, n=1(1)6, exact. [22.21] L. N. Karmazina, Tablitsy polinomov Jacobi (Izdat. Akad. Nauk SSSR., Moscow, U.S.S.R., 1954). G , ( p , q, z), ~ = 0 ( . 0 1 ) 1 , q=.1(.1)1, p=1.1(.1)3, 7t=1(1)5, 7D. [22.22] National Bureau of Standards, Tables of Chebyshev polynomials S,(z) and C,,(z), Applied Math. Series 9 (U.S. Government Printing Office, Washington, D.C., 1952). 2=0(.001)2, n=2(1)12, 12D; Coefficients for Tn(z), U,,@), C,(z), S,(z) for n=0(1)12. [22.23] J. B. Russel, A table of Hermite functions, J. Math. Phys. 12, 291-297 (1933). e-z212Hn(z), z =O( .04)1 (. 1) 4(.2)7( .5)8, 7t =O( 1) 11, 5D. [22.24] N. Wiener, Extrapolation, interpolation and smoothing of stationary time series (John Wiley & Sons, Inc., New York, N.Y., 1949). L,(z), 7t= 0(1)5, Z= 0(.01).1 (. 1) 18(.2)20( .5)21(1)26(2)30, 3-5D.
n
Coefficients for the Jacobi Polynomials P$p)
c,(z-
(2)=U;' m=O
1)"
Table 22.1
794
ORTHOGONAL POLYNOMIALS
3 1
1%
1
6
t t
W 0
n
7 3 . W2
*
n
V
U
2
*
n
t t
W
n 3
V
n M
rg
rl
I (?
i;s
t
t
Y
k
Y
U m n
0
h rl
t
V
h
V
3
t
m
v
U
I!
a
U
V
rl
" U
M
H
-
rl
k 3
I
795
ORTHOGONAL POLYNOMIALS
Table 22.3 Coefficients for the Chebyshev Polynomials T,(z) and for z" in terms of T,(z)
Chebyshev Polynomials T,(z) 0.2
n\z
0
i
2 3 4 5
6 7 8 9 10 11 12
+ -. 1.00000 00000 -
.-
io.20000 -0.92000 -0.56800 t-0.69280 $0.84512 -0.35475 -0.98702 -0.04005 $0.97099 $0.42845 -0.79961 -0.74830
- . ..
ooooo
00000 00000 00000 00000 20000 08000 63200 82720 56288 60205 20370
0.4
+ 1.00000 00000 ~. ... . .
+o.40000 -0.68000 -0.94400 -0.07520 $0.88384 $0.78227 -0.25802 -0.98868 -0.53292 $0.56234 +0.98280 $0.22389
-
.
ooooo
00000 00000 00000 00000 20000 24000 99200 95360 62912 65690 89640
0.6
+ 1.00000 00000 +o:6oooo 00000
-0.28000 -0.93600 -0.84320 -0.07584 $0.75219 $0.97847 $0.42197 -0.47210 -0.98849 -0.71409 4-0.13158
00000 00000 00000 00000 20000 04000 24800 34240 65888 24826 56097
Table 22.4 0.8
+ 1.00000 00000
+o~sO000 00000
+0.28000 -0.35200 -0.84320 -0.99712 -0.75219 -0.20638 $0.42197 $0.88154 $0.98849 $0.70005 +0.13158
00000 00000 00000 00000
20000 72000 24800 31680 65888 13741 56097
1.0 1 1 1 1 1 1
1 1 1 1 1 1 1
796
ORTHOGONAL POLYNOMIALS
Table 22.5 Coefficients fordtheChebyshev Polynomials U,(%) and for
ua
I
I
-I
in terms of V,,,(Z)
4 11
-1 128 1 I
I
-32
----- -500 UII
I
I
-12
I I
280
1792
-2304
1024 1
11
- 1792
U11
- 5370
1120
----
Table 22.6
Chebyshev Polynomials U,(%)
n\z 0 1 2 3 4 5
0.2 +1.00000 +0.40000 -0.84000 -0.73600 +0.54580 +0.95424
0.4
00OOo OOO00
+1.00000 00000
OOOOO
-0.38000 -1.08800 -0.51040 +0.67908
ooOo0 00000 00000
+0.80000 OOo00
00OOO
00OOO 00000 OOOOO
7 8 9 10
11
-0.16390 40000 ._.. .... -1.01980 is000 -0.24401 00400 4-0.92219 49440 +0.61289 40176 -0.07703 70970
-0.92323 -0.90222 +0.20145 1.06338
12
-0.88370 94504
+0.04925 46703
0
~
+1.05414 40000
+o;iS383 SWO
+
U10
58400 38720 67424 92059
0.0
+l.ooOoO 00000 $1.20000 00OOO
0.8
-1.24040 00000 -0.82308 00000
+l.OooOo o0000 +1.m 00o00 +1.66OOO OOO00 +0.89600 o0000 -0.12840 OoooO -1.09824 00000
+0.25798 40000
-1.63078 40000
$0.44000 00000 -0.67200 ooOo0
+i;i33i6 OsoOo
+1.10192 $0.18905 -0.87506 - 1.23913
89800 39520 42176 10131
-0.61189
29981
-i;siioi
eujoo
-0.78083 +0.25207 +1.19015 1.05217
90400
19360 41370 40842
+ + 1.45332 53571
1.0 1 2 3 4 5 6
7 8 9 10 11 12 13
797
ORTHOGOKAL POLYNOMIALS
*See page XI
cs(2) =zS -62( +922-
2
zS=lOCu+ 15G+ 6C4+ Cs
Coefficients for the Chebyshev Polynomials Sn(z) and for z" in terms of &(z)
&(Z) =zS'See page
n.
5244- W- 1
zS= 5so
+9&+
5s4
+ss
Table 22.8
798
ORTHOGONAL POLYNOMIALS
K
0
H
z "H
-
k
k
c
H
"H
0
H
k
k
ta
k
k
-
B
k k
H
Coe5cients for the Laguerre Polynomials L,,(z) and for 2" in terms of Lm(z) 9l
L.(x) =a;1
93
d
d,L,(z)
x"=
CA?
m-0
a.
m=O
d
2'
2
Table 22.10
382880
6
36Z&XlO(
389153001
479001800
~~
-4
1
______ 2
2
61
61
-4 -181
1
2 9 1-1
-18
-6
-1200
-96 1
2
4
25
-36
7350
-882
176400
10800
-im
450
-176400
-1IUw)
tj00
-I
1o5840
10800
1200
144
18
-35280
-4320
-600
-96
-4320 1
- 1 W
35280
120 49
-1
-5040
-322x30 1128wIo
-27.57W 2822u)o
-2257920 1128860
--322560
-32851)20 13083680 -30481920
45722880 -45722880 30181920
-13063680
-100
M8856ooo
-15jeirgSeo
--a161410560
L&)
=m 1 [a9-3~+4w-240+54w-43202+7201
1 1 m13280
--2813600
614718120
-75271680
34=720&-4320L1+
183350
--6050 -2oou)(1
10800La- 14400&+ 10soOIy-4320L~+720L~
800
ORTHOGONAL POLYNOMIALS
Laguerre Polynomials L,(z)
Table 22.11 n\z
0.5
0
+ 1.00000 00000
1.0
2 3 4 5
4-0.50000 4-0.12500 -0.14583 -0.33072 -0.44557
00000 00000 33333 91667 29167
6 7 8 9 10 11
-0.50414 -0.51833 -0.49836 -0.45291 -0.38937 -0.31390
49653 92237 29984 95204 44141 72988
12
-0.23164 96389
1
+ 1.00000.00000 0.00000 -0.50000 -0.66666 -0.62500 -0.46666
00000 00000 66667 00000 66667
-0.25694 -0.04047 +0.15399 +0.30974 +0.41894 $0.48013
44444 51905 30556 42681 59325 41791
$0.49621 22235
3.0
5.0
10.0
+-2.00000 1.00000 00000 00000
+-4.00000 1.00000 00000 00000
-0.50000 1.00000 1.37500 +0.85000
++
00000 00000 00000 00000
+3.50000 +2.66666 1.29166 -3.16666
-
00000 66667 66667 66667
+-9.00000 1.00000 00000 00000
-45.66666 66667 4- 11.00000 00000 4-34.33333 33333
-0.01250 -0.74642 -1.10870 -1.06116 -0.70002 -0.18079
00000 85714 53571 07143 23214 95130
-2.09027 +0.32539 t2.23573 +2.69174 1.75627 +0.10754
77778 68254 90873 38272 61795 36909
-3.44444 -30.90476 16.30158 -f 14.79188 +27.98412 t 14.53695
i-0.34035 46063
- 1.44860
42948
+
-t31.00000 00000
-
44444 19048 73016 71252 69841 68703
-9.90374 64593
Coefficients for the Hermite Polynomials H,,(z) and for Z" in terms of H,,,(x)
11
bm
2
16 2
Ho HI H2
-4 I 12 ,
H4
1-
I
Hi1
1-
6o 121
- 160
120
-1680
3360 - 13440
30240
-80640
1 1 1
-665280
1I
1 ;:
1-1
1680
1 1
I
13440
32
1
-1344
I
1 1
I
180
48384
1
a9
1
I
-3584
128 1
1
H~(z) =W 4802'4- 7209 - 120
56
I
I
* 30240
j
1
I 506880 1 26
I I
1512 2520
1 256
I
90 512
1 1024 1
I -56320 28
I 332640
I
I
4096 665280
55440
3960
I
1-1
I
1 *=[12OHo+ 180Hz+30H4+ He] 64
1
H2 H3 H4
Hs
110880
He
H7 5940
H8 Ho -
132
- 135168 lp14096 ZQ
I I
__
__
110
2048
Ha HI
1 1 I
72
1520640 27
2048
75600
-23040
-7096320
a9
I
1-1 1995840 I 277200 I 25200 I I 831600
3360
-9216
I -1774080 I 24
12 1 1
161280
13305600
-7983360
64
I
I
1024
15120
I
- 403200
2217600
2'
-480
I
302400
I
32
- 48
- 30240
HIZ 665280
I 6I
1
-12
I I
He
1
720
I 1680
H8
4
- 120
H7
Hio
1
-2
H3
__
2
12
Table 22.12
I
His Hit
1
ORTHOGONAL POLYNOMIALS
Hermite Polynomials Hn(x)
Table 22.13 nb
0.5
2 3 4 5
++11.ooooo .00000 - 1.00000 - 5.00000 + 1.ooooo (1)+4.10000
6 7 8 9 10 11
(1)+3.10000 (2) - 4.61000 (2) -8.95000 (3) +6.48100 (4) +2.25910 (5) - 1.07029
12
(5) -6,04031
0 1
1.o
++2.00000 1.oO000
3.0
5.0
++6.00000 1.00000 00 00
(2)3.98000 00000 (3j7.88000 00000 (5)1.55212 00000 (6)3.04120 00000 (7)5.92718 80000 (9)1.14894 32000 (iom.21490 57680 (iij4.24598 06240 (12)8.09327 82098 (14) 1.53373 60295 (15)2.88941 99383
00 00 00 00
00 00
(4j - i.07200
00 --
(3) 4-8.22400 (5) $2.30848
(4) +l.41360 (4) $3.90240 14) +3.62400 - ----(5) -4.06944 (6) -3.09398 (7) - 1.04250
00 40 24
(5)7.17880 00000 (6)6.21160 00000 m5.20656 80000 (8j4.2ii7i 20000 (9)3.27552 97600 (10)2.43298 73600
(5) $2.80768
(6)+5.51750 40
(11)1.71237 08128
+
(2) 1.84000 (2) $4.64000 (3) - 1.64800
\-, 1
1.ooooo OOOOO
1.00000 00000 (1)l.OOOOO OOOOO (1)9.80000 00000 (2j9.40000 00000 (3)8.81200 00000 (4)8.06000 00000
(1) +3.40000 (2j +i.8oooo (2) +8.76000 (3) +3.81600
+2.00000 -4.00000 (1) -2.00000 (0) -8.00000
10.0 ( 1)2.00000 00000
23. Bernoulli and Euler PolynomialsRiemann Zeta Function EMILIE V. HAYNSWORTR' AND KARLGOLDBERQ~
Contents Mathematical Properties . . . . . . . . . . . . . . . . . . . . 23.1. Bernoulli and Euler Polynomials and the Euler-Maclaurin Formula.. . . . . . . . . . . . . . . . . . . . . 23.2. Riemann Zeta Function and Other Sums of Reciprocal Powers.. . , . . . . . . .. . . . . . . , . . . References . , . . . . , . . . . . . . . . . . . . . . . . . .
.
,
804
807
808 809
... .. . ..
810
. ... . . . . . . ..
811
Table 23.2. Bernoulli and Euler Numbers , . . . . B, and E,, n=O, 1, 2(2)60, Exact and B, to 10s
.
804
.. .
Table 23.1. Coefficients of the Bernoulli and Euler Polynomials B,(z) and E,(%),n=0(1)15
Table 23.3. Sums of Reciprocal Powers
Page
n=1(1)42
Table 23.4. Sums of Positive Powers m
k -1
., ., . ., .
,
..
. ..
813
. . .
,
.. . . ..
818
,
k",n=1(1)10, m=1(1)100
Table 23.5. z"/n!, z=2(1)9, n=1(1)50,
10s
, ,
The authors acknowledge the aasistance of Ruth E. Capuano in the preparation and checking of the tables.
1 National Bureau of Standards. ZNational Bureau of Standards.
(Presently, Auburn University.)
23. Bernoulli and Euler Polynomials-Riemann
Zeta
Function Mathematical Properties 23.1. Bernoulli and Euler Polynomials and the Euler-Maclaurin Formula Generating Functions
tezt
23.1.1 -et-1
-2B n ( 5 ) at" n = ~
n=O, 1, .
Bn=B,(O)
23.1.2
1 1 23.1.3 Bo= 1, B,=-s, B2=-, 6
Bd=--
..
1 30
n=O, 1 , . . .
E,=2"En Eo=l, E2=-1, E4=5
(For occurrence of B, and E, in series expansions of circular functions, see chapter 4.) Sums of Powers
23.1 5 Bk (Z)=nBn - 1 (2)
B,(Z+~)-B,(Z)=~S"-'
23.1.6
.. 1, . . .
.. 1,. . .
R=I, 2 , .
E:n(s)=nEn-1(2)
n=1,2,
n=O,
En(~+l)+En(~)=22"
n=O,
n=o, 1, *
*
..
n=O, 1 , . . .
23.1.8
B, (1-S ) =(- 1)"B, (z)
23.1.9
(-l)"Bn(-2)=Bn(2)+nzn-'
.. 1 , .. .
n=O, I , . n=o,
En(1-~)=(-1)"En(~)
n=O, 1 , . . .
(- l)"+'E,(-2)=En (z) -22"
n=O, 1 , . . .
23.1.10
n=O, 1 , . . . m=1,2,.
m=1, 3 , . . .
.. 2 n+l
E, (mz)=-- mn
5'(-1)k~,+' (z+k) k=O
n=O, 1 , . . . m=2,4,. 804
..
805
BERNOULLI AND EULER POLYNOMIALS, RIEMANN ZETA FUNCTIOPU'
Integrals
23.1.11 23.1.12
B,(t)dt=
(2)-B n + 1 (a)
n+l
l1
m !n!
B,(t)~,,,(t)dt=(-l)"-' -B m + n (m+n)! m , n = l , 2, . .
.
I
m,n=O, 1 , . , .
(The polynomials are orthogonal for m + n odd.) Inequalities
23.1.13
IB2nl>lBzn(~)I n=1, 2,
. . .,
1>~>0
23.1.14
n=1,2,.
.
.)
$>x>O
23.1.15
n=1,2,.
..
Fourier Expansions
23.1.16
B,(s)=-2
,n ! (2.rr)
z
= cos (2nkx-47rn)
kn n>l, 1 2 x 2 0
n>o, 1 2 x 2 0
n=l,l>z>O
n=O, 1>x>O
23.1.17
(-1)*2(2n-l)! B2n-1(4=
(27r)2"-1
= sin 2k7rz
zkz"-l n>l, 1 2 i 2 0 n=l,l>z>O
Ezn-1(4=
(- 1)"4(2n-l)!
n=1,2,.
.
.)
12220
23.1.18
n=1,2,..
9 )
n>O, 1 2 x 2 0 n=o, l>x>O
12x20 Special Values
23.1.19
BZ,+'=O
n=1,2,.
..
23-1-20 B, (0) = (- 13"B,(1) =B,
23-1-21 B, (4)=- (1-21-n) B,
Ezn+i=O
n=O,l,.
..
n=1,2,.
,
E m =-E, n=O,l,.
..
n=O,l,.
..
(1) = -2(n+l)-'(2n+l-1)
E, (3) =2 -"E,
B,+'
n=O, 1,
.
23.1.22
23.1.23
B, (+>= (- 1 )"B,(3) = -2-n(l--21-") Ba--n4-"Ea..1 n=1,2,.
&a
- 1(3) =-&a - 1 (3) =- (2n)- ( 1-3 1-2n) (2'"- 1 )B,,
..
n=1,2,.
..
B2,(+>=B2,(#) =-2-1(1-31-2a
)BZa
n=o, 1 , .
* *
23-1-24 Bz, (6) =Bzn(#) =2- 1( 1 -21-2n >(1-3'-'")Bzn
n=O,l,.
..
Symbolic Operations
+
23.1.25
p(B(z) 1 ) -p(B(z)) =P'(z)
23.1.26
B,(z+h)=(B(~)+h)" n=O, 1,
...
Herep($) denotes a polynomial in z and after expanding we set {B(z)}"=B,(z)and {E(z)}"=E,(z). Equivalent to this is
Relations Between the Polynomials
23.1.27 23.1.31
23.1.28
n=2,3,
...
23.1.29 A
Euler-Maclaurin Formulas
Let F(z) have its first 2n derivatives continuous on an interval (a, b ) . Divide the interval into m equal parts and let h=(b-a)/m. Then for some 8, l>8>0, depending on F(2a)(z)on (a, b ) , we have
Let B,(z) =Ba(z- [z]). The Euler Summation Formula is 23.1.32
23.1.30 m
hk-I
F(a+kh)=kl F ( t ) d t + ~ ~ { F ( b ) + F ( a ) ]
k- 0
-E P! h2 +-(2n)! BznE' F('"'(a+kh+8h) k-O
s' 0
&,(u-t)
{5' F(P)(a+kh+th) k=O
p52n11 I: 020
BERNOULLI AND EULER POLYNOMIALS, RIEMANN ZETA FUNCTION
23.2. Riemann Zeta Function and Other Sums of Reciprocal Powers 23.2.1
~(s)= k-*C
as>1
k= 1
23.2.2
f'(0) = - 3 In 2~
23.2.13 23.2.14
m
=II (l-p-')-l
Ws>l
P
(product over all primes p )
807
[(-2n) =O
..
n=l,2,.
-BZ" 2n
.
23-2-15 5 (1-2n) =
n=1,2,.
(242" 23-2-16 f ( 2 n ) = 7 IBZn( 2(2n).
n=1,2, * . .
23.2.17 23.2.3
sZ1, n=1,2,
*
. , ,,
..
n=2,3,.
..
,$?ts>-2n S u m s of Reciprocal Powers
23.2.4
The sums referred to are
23.2.5
23.2.18
where
23.2.19
r(n)
=gk-" k=l
Y,,=
-(In k)"
lim
k
m+ m
m
(In m)"+l} n+l
=2?rS'-'
23.2.7
1 =-$ r(s)
k-1
23.2.8
-
eE-1
(2k
X (n)= I
xa-l
-dx
23.2.20 m
sin ( 3 ~ s r) (1-8) f ( 1-8)
-
n=1,2,. . .
q ( n ) = C (- l)'+lk-"= (1-21qn) f(n)
as>o 23.2.6
n=1,2,.
as>1
1 (1-2 -a ) r (S)
23.2.9
+1)- =(1-2 -") f (n)
n=2,3,
...
23.2.21
B(n)
=5(- 111:(2k+1)
n=1,2,.
--(L
k-0
.,
These sums can be calculated from the Bernoulli and Euler polynomials by means of the last two formulas for special values of the zetrt function (note that q(l)=ln 2), and
23.2.10
product over all zeros p of f(s) with 9 ' p > O . The contour C in the fourth formula starts at infinity on the positive real axis, circles the origin once in the positive direction excluding the points f 2 n h for n=1, 2, . . ., and returns to the starting point. Therefore f(s) is regular for all values of s except for a simple pole at s = l with residue 1.
23.2.23
n=1,2,.
B(2) is known as Catalnn's constarit. Some other special values are 23.2.24
Special Values
23.2.11
..
f(0) = - 3 23.2.25
{(2)=1+-+3+ 1 1 22 3
..-
1 1 {(4)=1+7+7+ 2 3
. , . =a
=7rz
6 7r4
808
BERNOULLI AND EULER POLYNOMIALS, R I E M A " ZETA FUNCTION
23.2.26
1 1 7(2)= 1- -+ 7 22 3
23.2.27
1 7(4)=1--+724
23.2.28
1 1 X(2)=1+-+-3+ 32 5
1
3
7 2 _-12 ...-
23.2.29
71r4 _-720 . . .-
23.2.30
. . . =-f8
23.2.31
1 X(4)=1+7+3
1
54 + . . . =z
1 1 ,8(1)=1--+-3 5 ,9(3)=1--+~1 1 33 5
lr4
?r . . . -_ 4
-_??
' * *
-32
References Texts
Tables
[23.1] G. Boole, The calculus of finite differences, 3d ed. (Hafner Publishing Co., New York, N.Y., 1932). [23.2] W. E. Briggs and S. Chowla, The power series coefficients of {(s), Amer. Math. Vonthly 62, 323-325 (1955). [23.3] T. Fort, Finite differences (Clarendon Press, Oxford, England, 1948). [23.4] C. Jordan, Calculus of finite differences, 2d ed. (Chelsea Publishing Co., New York, X.Y., 1960). (23.51 K. Knopp, Theory and application of infinite series (Blackie and Son, Ltd., London, England, 1951). [23.6] L. M. Milne-Thomson, Calculus of finite differences (Macmillan and Co., Ltd., London, England, 1951). [23.7] N. E. Xorlund, Vorlesungen uber Differenzenrechnung (Edwards Bros., Ann Arbor, Mich., 1945). [23.8] C. H. Richardson, An introduction to the calculus of finite differences (D. Van Nostrand Co., Inc., New York, N.Y., 1954). [23.9] J. F. Steffensen, Interpolation (Chelsea Publishing Co., New York, N.Y., 1950). [23.10] E. C. Titchmarsh, The zeta-function of Riemann (Cambridge Univ. Press, Cambridge, England, 1930). [23.11] A. D . Wheelon, A short table of summable series, Report No. SM-14642, Douglas Aircraft Co., Ino., Santa Monica, Calif. (1953).
[23.12] G . Blanch and R. Siegel, Table of modified Bernoulli polynomials, J. Research NBS 44, 103-107 (1950) RP2060. [23.13] H. T. Davis, Tables of the higher mathematical functions, vol. I1 (Principia Press, Bloomington, Ind., 1935). [23.14] R. Hensman, Tables of the generalized Riemann Zeta function, Report KO.T2111, Telecommunications Research Establishment, Ministry of Supply, Great Malvern, Worcestershire, England (1948). {(s, a), s=-10(.1)0, a=0(.1)2, 5D; ( ~ - l ) r ( ~U ),, ~ = 0 ( . 1 ) 1 ,~ = 0 ( . 1 ) 2 , 5D. [23.15] D. H. Lehmer, On the maxima and minima of Bernoulli polynomials, Amer. Math. Monthly 47, 533-538 (1940). [23.16] E. 0. Powell, A table of the generalized Riemann Zeta function in a particular case, Quart. J. Mech. Appl. Math. 5, 116-123 (1952). f(3, a ) , a= 1 (.01)2(.02)5(.05)10, 10D.
809
ZETA FUNCTION
BERNOULLI AND EULER POLYNOMIALS, R I E M A "
COEFFICIENTS bk OF THE BERNOULLI POLYNOMIALS B, (x)= $ bkxk
Table 23.1
k=O
n\k
o
0
1
1
-12
-
1
-1
0
6
0
1
-+ +
0
1 42
0
-+
0
0
1
-+
1
-&
5
0
8
- -30
1
0
9
0
-1
10
5
0
11
0
5
0
12
-m
0
5
66
-2
1 6
15
0
8
9
3
-+
0
-3
0
0
0
2
-3
0
-+
-%
11
12
13
1 3 - 2 2
1
14
15
3 0
- 2
-+
1
-U 3
-4
0
6
5
0
-7
0
0
11
0
- 11
- -33
O 9
0
0
15. 2
1
5
0
- f30i
0
-3
O
22
0
2
-m 10
0
O
- 455
b
-9
0
9
o y -3.P o 0
- 2m
1
_ 29_
1
l+ - 5
-4
1
0
1
1
-1
2
3
4
5
6
7
b
2
O
l1
-?
0
0
1 -6
0-1001
y
0
9 1 - 7 6
30
0y2
k=O
0
1
2i-11
0
COEFFICIENTS ek OF THE EULER POLYNOMIALS E, (x)= n\k
10
1
-3
0
2730
14
7
1
f
. 3
6
O
6
1
10
13
5
4
1
T
3 4
3
1
+
2
2
0 - - a
0
2
1
25-15. 2
2
1
ekxk
8
10
9
11
12 13
14
15
1
2 2
0
3
1
0
0
1
0
0
3
0
4 5
-1
1
-5
4
-+
1 -2
1
-3-
1
b
0
-3
0
5
0
-3
1
7
17 8
0
-y
0
5
0
-3
1
8
0
17
0
- 28
0
14
0
-4
21
0
9
-5
0
10
0
0 691
l1
0 0
O
12
0
2073
13
- 5461
0
14
0
- 38227
15
929569
0
2
16
9
-155
7-
-63
-9 0 -
255 4
0
0
30
0
-5
1
- 231
0
-165 4
0
-5
0
1683
7
- 396
0
55
0
22165 2
0
7293
0
1287 2
0
lp
62881
0
0
7293
0
155155
0
109395
0
30!3
7
8
0943215 7 4 573405
-126
1
0
-3410
2 0
0
0 2 8 0 5
1
_ -29
-31031 0
7-
-1001
0
1 1
-6
o - + 91 0
1 0 -7
9
0-
1
15 2
1
810
BERNOULLI AND EULER POLYNOMIALS, RIEMANN ZETA FUNCTION
BERNOULLI AND EULER NUMBERS B,=NID
Table 23.2
N
D
0
1
1
1 2 4 6 8
-1 1 -1 1 -1
2 6 30 42 30
10 12 14 16 18
5 -691 7 -3617 43867
66 2730 6 51 0 798
74611 54513 64091 53103 61029
330 138 2730 6 870
58412 76005 93210 41217 76878 58367 30534 77373 39138 41559
14322 510 6 19 19190 6
n
20 22 24 26 28
-1 8 -2363 85 -2 37494
30
861 -770 257 -26315 27155 2 92999
32 34 36 38 40 42 44 46 48
-2 15 -278 5964 -560 94033
61082 20097 33269 51111 68997
71849 64391 57930 59391 81768
64491 80708 10242 21632 62491
22051 02691 35023 77961 27547
13530 1806 690 282 46410
05241 35489 84862 26753 41862
07964 95734 42141 68541 04677
82124 79249 81238 57396 59940
77525 91853 12691 63229 36021
66 1590 798 870 354
60 -121 52331 40483 75557 20403 04994 07982 02460 41491
567 86730
50 52 54 56 58
49 -80116 29 14996 -2479 39292 84483 61334
50572 57181 36348 93132 88800
B7l (
0) 1.0000 00000
( - 21 -3.3333 33333
( 34)-2.1399 94926
1 -1 5 61 1385
-
- 50521
10
12 14 16 18
27 -1993 1 93915 -240 48796
20 22 24 26 28
37037 11882 37525
30 32 34 36 38 40 42 44 46 48 50
52 54 56 58 60
-44 17751 -80 72329 41222 06033 -234 89580 52704
1 48511 50718 -1036 46227 33519 7 94757 94225 97592 -6667 53751 66855 44977 60 96278 64556 85421 58691 -60532 85248 650 61624 86684 -7 54665 99390 08739 9420 32189 64202 41204 -126 22019 25180 62187 19903
18862 60884 09806 20228 40923
18963 77158 14325 623% 72874
14383 70634 65889 90583 89255
02765 60981 12145 75441
15438 93249 93915 79539 92358 87898 95177 02122 31082 52017
02310 28943 06216 34707 82857
45536 66647 82474 96712 61989
82821 89665 53281 59045 47741
11498 61211 70360 43502 68574
00178 93979 80405 84747 28768
77156 57304 10088 73748 43153
78140 58266 74518 59763 07061 95192 19752 41076 97653 90444
84425 10201 73805 84661 35185
78511 08082 73674 22720 48234
16490 29834 42122 93888 10611
88103 83644 40024 52599 91825
49822 23676 71169 64600 59406
51468 15121 53855 76565
98586 45581
93949 05945 99649 20041
181089 11496 57923 04965 45807 74165 21586 88733 48734 92363 14106 00809 54542 31325
From H.T. Davis, Tables of the higher mathematical functions, vol. 11. Principia Press, Bloomington, Ind., 1935 (with permission).
BEWOULLI AND EULER POLYNOMIALS, R I E M A "
SUMS OF RECIPROCAL POWERS
ck - n k= W
n
811
ZETA FUNCTION
Table 23.3
c (-1)k-lk-n k=l 0)
c(n)=
v(n)=
1
1 2 3 4 5 6
1.64493 1.20205 1.08232 1.03692 1.01734
40668 69031 32337 77551 30619
48226 59594 11138 43369 84449
43647 28540 19152 92633 13971
0.69314 0.82246 0.90154 0.94703 0.97211 0.98555
71805 70334 26773 28294 97704 10912
59945 24113 69695 97245 46909 97435
30942 21824 71405 91758 30594 10410
7 8 9 10 11 12
1.00834 1.00407 1.00200 1.00099 1.00049 1.00024
92773 73561 83928 45751 41886 60865
81922 97944 26082 27818 04119 53308
82684 33938 21442 08534 46456 04830
0.99259 0.99623 0.99809 0.99903 0.99951 0.99975
38199 30018 42975 95075 71434 76851
22830 52647 41605 98271 98060 43858
28267 89923 33077 56564 75414 19085
13 14 15 16 17 18
1.00012 1.00006 1.00003 1.00001 1,00000 1.00000
27133 12481 05882 52822 76371 38172
47578 35058 36307 59408 97637 93264
48915 70483 02049 65187 89976 99984
0.99987 0.99993 0.99996 0.99998 0.99999 0.9f3999
85427 91703 95512 47642 23782 61878
63265 45979 13099 14906 92041 69610
11549 71817 23808 10644 01198 11348
19 20 21 22 23 24
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
19082 09539 04769 02384 01192 00596
12716 62033 32986 50502 19925 08189
55394 87280 78781 72773 96531 05126
0.99999 0.99999 0.99999 0.99999 0.99999 0.99999
80935 90466 95232 97616 98808 99403
08171 11581 58215 13230 01318 98892
67511 52212 54282 82255 43950 39463
25 26 27 28 29 30
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
00298 00149 00074 00037 00018 00009
03503 01554 50711 25334 62659 31327
51465 82837 78984 02479 72351 43242
0.99999 0.99999 0.99999 0.99999 0.99999 0.99999
99701 99850 99925 99962 99981 99990
98856 99231 49550 74753 37369 68682
96283 99657 48496 40011 41811 28145
31 32 33 34 35 36
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
00004 00002 00001 00000 00000 00000
65662 32831 16415 58207 29103 14551
90650 18337 50173 72088 85044 92189
0.99999 0.99999 0.99999 0.99999 0.99999 0.99999
99995 99997 99998 99999 99999 99999
34340 67169 83584 41792 70896 85448
33145 89595 85805 39905 18953 09143
37 38 39 40 41 42
1,00000 1.00000 1.00000 1.00000 1.00000 1.00000
00000 00000 00000 00000 00000 00000
07275 03637 01818 00909 00454 00227
95984 97955 98965 49478 74738 37368
0.99999 0.99999 0.99999 0.99999 0.99999 0.99999
99999 99999 99999 99999 99999 99999
92724 96362 98181 99090 99545 99772
04461 02193 01084 50538 25268 62633
Q)
For n > 4 2 , f(n+l) = [ 1t {(n)] 7 (n+ 1)=f [1t v @ ) ] From H. T. Davis, Tables of the higher mathematical functions, vol. 11. Principia Press, Bloomington, Ind., 1935 (with permission).
812
BERNOULLI AND EULER POLYNOMIALS, R I E M A "
SUMS OF RECIPROCAL POWERS
Table 23.3 n
ZETA FUNCTION
x(n)=
5 (2k+l)
-?I
k=O
P(n)=
5 (-l)k(2k+l)-"
k=O
1 2 3 4 5 6
1.23370 1.05179 1.01467 1.00452 1.00144
05501 97902 80316 37627 70766
36169 64644 04192 95139 40942
82735 99972 05455 61613 12191
0.78539 0.91596 0.96894 0.98894 0.99615 0.99868
81633 55941 61462 45517 78280 52222
97448 77219 59369 41105 77088 18438
310 015 380 336 064 135
7 8 9 10 11 12
1.00047 1.00015 1.00005 1.00001 1.00000 1.00000
15486 51790 13451 70413 56660 18858
52376 25296 83843 63044 51090 48583
55476 11930 77259 82549 10935 11958
0.99955 0.99984 0.99994 0.99998 0.99999 0.99999
45078 99902 96841 31640 43749 81223
90539 46829 87220 26196 73823 50587
909 657 090 877 699 882
13 14 15 16 17 18
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
06280 02092 00697 00232 00077 00025
55421 40519 24703 37157 44839 81437
80232 21150 12929 37916 45587 55666
0.99999 0.99999 0.99999 0.99999 0.99999 0.99999
93735 97910 99303 99767 99922 99974
83771 87248 40842 75950 57782 19086
841 735 624 903 104 745
19 20 21 22 23 24
1.00000 1.00000 1.00000 1.00000 1.00000 1,00000
00008 00002 00000 00000 00000 00000
60444 86807 95601 31866 10622 03540
11452 69746 16531 77514 20241 72294
0.99999 0.99999 0.99999 0.99999 0.99999 0.99999
99991 99997 99999 99999 99999 99999
39660 13213 04403 68134 89377 96459
745 274 029 064 965 311
25 26 27 28 29 30
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
00000 00000 00000 00000 00000 00000
01180 00393 00131 00043 00014 00004
23874 41247 13740 71245 57081 85694
0.99999 0.99999 0.99999 0.99999 0.99999 0.99999
99999 99999 99999 99999 99999 99999
98819 99606 99868 99956 99985 99995
768 589 863 288 429 143
31 32 33 34 35 36
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
00000 00000 00000 00000 00000 00000
00001 00000 00000 00000 00000 00000
61898 53966 17989 05996 01999 00666
0.99999 0.99999 0.99999 0.99999 0.99999 0.99999
99999 99999 99999 99999 99999 99999
99998 99999 99999 99999 99999 99999
381 460 820 940 980 993
37 38 39 40 41 42
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
00000 00000 00000 00000 00000 00000
00000 00000 00000 00000 00000 00000
00222 00074 00025 00008 00003 00001
0.99999 99999 99999 998 0.99999 99999 99999 999
Q)
BERNOULLI A X D EULER POLYNOMIALS, R I E M A ”
813
ZETA FUNCTION
Table 23.4
SUMS OF POSITIVE POWERS g k n k=l
m\n 1 2 3 4 5
1 1 3 6 10 15
1 5 14 30 55
3 1 9 36 100 225
4 1 17 98 354 979
5 1 33 276 1300 4425
6 1 65 794 4890 20515
6 7 8 9 10
21 28 36 45 55
91 140 204 285 385
441 784 1296 2025 3025
2275 467 6 8772 15333 25333
12201 29008 61776 1 20825 2 20825
67171 1 84820 4 46964 9 78405 19 78405
11 12 13 14 15
66 78 91 105 120
506 650 819 1015 1240
4356 6084 8281 11025 14400
39974 60710 89271 1 27687 1 78312
16 17 18 19 20
136 153 171 190 210
1496 1785 2109 2470 2870
18496 23409 29241 36100 44100
2 3 4 5 7
21 22 23 24 25
231 253 276 300 325
3311 3795 4324 4900 5525
26 27 28 29 30
351 378 406 435 465
31 32 33 34 35
2
3 6 10 15 22
81876 30708 02001 39825 99200
37 67 115 190 304
49966 35950 62759 92295 82920
43848 27369 32345 62666 22666
33 47 66 91 123
47776 67633 57201 33300 33300
472 713 1054 1524 2164
60136 97705 09929 55810 55810
53361 64009 76176 90000 1 05625
9 17147 11 51403 1 4 31244 17 63020 2 1 53645
164 215 280 359 457
17401 71033 07376 70000 35625
3022 4156 5636 7547 9988
21931 01835 37724 40700 81325
6201 6930 7714 8555 9455
1 23201 1 42884 1 64836 1 89225 2 16225
26 31 37 44 52
10621 42062 56718 63999 73999
576 719 891 1096 1339
17001 65908 76276 87425 87425
13077 16952 21771 27719 35009
97101 17590 07894 31215 31215
496 528 561 595 630
10416 11440 12529 13685 14910
2 46016 2 78784 3 14721 3 54025 3 96900
61 72 84 97 112
97520 46096 32017 68353 68978
1626 1961 2353 2807 3332
16576 71008 06401 41825 63700
43884 54621 67536 82984 1 01367
34896 76720 44689 49105 14730
36 37 38 39 40
666 703 741 780 82 0
16206 17575 19019 20540 22140
4 4 5 6 6
43556 94209 49081 08400 72400
129 148 169 192 217
48594 22755 07891 21332 81332
3937 4630 5423 6325 7349
29876 73833 09001 33200 33200
1 23134 1 48792 1 78901 2 14089 2 55049
97066 23475 59859 03620 03620
41 42 43 44 45
861 903 946 990 1035
23821 25585 27434 29370 31395
7 8 8 9 10
41321 15409 94916 80100 71225
246 277 311 348 389
07093 18789 37590 85686 86311
8507 9814 11284 12934 14779
89401 80633 89076 05300 33425
3 3 4 4 5
07861 39605 02654 16510 82135
46 47 48 49 50
1081 1128 1176 1225 1275
33511 35720 38024 40425 42925
11 68561 1 2 72384 1 3 82976 15 00625 1 6 25625
02550 57440 20654 93217 76254
16838 96401 6 70997 79031 7 78789 94360 19132 41408 9 01095 84824 21680 45376 1 0 39508 72025 24505 20625 11 95758 72025 27630 20625 From H. T. Davis, Tables of the higher mathematical functions, vol. 11. Principia Press, Bloomington,
Ind., 1935 (with permission).
434 483 536 594 656
63767 43448 51864 16665 66665
814
BERNOULLI AND EULER POLYNOMIALS, RIEMA"
Table 23.4
SUMS OF POSITIVE POWERS
ZETA FUNCTION
gk*
k=l
51 52 53 54 55
1 1326 1378 1431 1485 1540
2 45526 48230 51039 53955 56980
17 18 20 22 23
3 58276 98884 47761 05225 71600
724 797 876 961 1052
4 31866 43482 33963 37019 87644
31080 34882 39064 43656 48688
45876 49908 45401 10425 94800
13 15 17 20 23
6 71721 69427 91071 39020 15826
59826 69490 30619 41915 82540
56 57 58 59 60
1596 1653 1711 1770 1830
60116 63365 66729 70210 73810
25 27 29 31 33
47216 32409 27521 32900 48900
1151 1256 1369 1491 1620
22140 78141 94637 11998 71998
54196 60213 66776 73925 81701
26576 18633 75401 99700 99700
26 29 33 37 42
24236 67201 47888 69693 36253
61996 09245 01789 35430 35430
61 62 63 64 65
1891 1953 2016 2080 2145
77531 81375 85344 89440 93665
35 38 40 43 46
75881 14209 64256 26400 01025
1759 1906 2064 2232 2410
17839 94175 47136 24352 74977
90147 99309 1 09233 1 19971 1 31573
96001 28833 65376 07200 97825
47 53 59 66 73
51457 19459 44694 31889 86078
09791 45375 47584 24320 14945
66 67 68 69 70
2211 2278 2346 2415 2485
1 1 1 1
98021 02510 07134 11895 16795
48 51 55 58 61
88521 89284 03716 32225 75225
2600 2802 3015 3242 3482
49713 00834 82210 49331 59331
1 1 1 1 2
44097 57598 72137 87778 04585
30401 55508 89076 20425 20425
82 91 101 111 123
12617 17201 05876 85057 61547
64961 47130 29754 92835 92835
71 72 73 74 75
2556 2628 2701 2775 2850
1 1 1 1 1
21836 27020 32349 37825 43450
65 69 72 77 81
33136 06384 95401 00625 22500
3736 4005 4289 4589 4905
71012 44868 43109 29685 70310
2 2 2 2 3
22627 41976 62707 84897 08627
49776 67408 39001 45625 92500
136 150 165 181 199
42550 35691 49033 91098 70883
76756 46260 72549 62725 78350
76 77 78 79 80
2926 3003 3081 3160 3240
1 1 1 1 1
49226 55155 61239 67480 73880
85 90 94 99 104
61476 18009 92561 85600 97600
5239 5590 5961 6350 6760
32486 85527 00583 50664 10664
3 3 3 4 4
33983 61051 89922 20693 53461
17876 02033 76401 32800 32800
218 239 262 286 312
97883 82106 34102 64977 86417
06926 87015 87719 43240 43240
81 82 83 84 85
3321 3403 3486 3570 3655
1 1 1 2 2
80441 87165 94054 01110 08335
110 115 121 127 133
29041 80409 52196 44900 59025
7190 7642 8117 8615 9137
57385 69561 27882 15018 15643
4 5 5 6 6
88329 25403 64793 06614 50985
17201 15633 56276 75700 28825
341 371 404 439 477
10712 50779 20183 33163 04658
79721 51145 24514 56130 71755
86 87 88 89 90
3741 3828 3916 4005 4095
2 2 2 2 2
15731 23300 31044 38965 47065
139 146 153 160 167
95081 53584 35056 40025 69025
9684 10257 10856 11484 12140
16459 06220 75756 17997 27997
6 98027 99001 7 47870 08208 8 00643 27376 8 56483 86825 9 15532 86825
517 560 607 657 710
50331 86593 30633 00446 14856
06891 07900 94684 85645 85645
91 92 93 94 95
4186 4278 4371 4465 4560
2 2 2 2 2
55346 63810 72459 81295 90320
175 183 191 199 207
22596 01284 05641 36225 93600
12826 13542 14290 15071 15885
02958 42254 47455 22351 72976
9 10 11 11 12
77936 43844 13413 86803 64181
08276 23508 07201 47425 56800
766 827 892 961 1034
93549 57099 27001 25699 76617
37686 39030 22479 03535 94160
96 97 98 99 100
4656 4753 4851 4950 5050
2 3 3 3 3
99536 08945 18549 28350 38350
216 225 235 245 255
78336 91009 32201 02500 02500
16735 17620 18542 19503 20503
07632 36913 73729 33330 33330
13 14 15 16 17
45718 31592 21984 17083 17083
83776 24033 32001 32500 32500
1113 1196 1284 1379 1479
04195 33915 92339 07141 07141
83856 88785 69649 19050 19050
m b
5
815
BERNOULLI AND EULER POLYNOMIALS, RIEMANN ZETA FUNCTION
SUMS OF POSITIVE POWERS
1 2 3 4 5
Table 23.4
9
8
7 1 129 2316 18700 96825
m\n
Sh
k=l
1 513 20196 2 82340 22 35465
1 257 6818 72354 4 62979
6 7 8 9 10
3 12 32 80 180
76761 00304 97456 80425 80425
21 79 246 677 1677
42595 07396 84612 31333 31333
123 526 1868 5743 15743
13161 66768 84496 04985 04985
11 12 13 14 15
375 733 1361 2415 4124
67596 99404 47921 61425 20800
3820 8120 16278 31035 56664
90214 71910 02631 91687 82312
39322 90920 1 96965 4 03575 7 88009
52676 33028 32401 79185 38560
16 17 18 19 20
6808 10911 17034 25972 38772
56256 94929 14961 86700 86700
1 2 4 7
99614 69372 79571 49407 05407
49608 07049 67625 30666 30666
14 26 46 78 129
75204 61082 44675 71552 91552
15296 91793 82161 79940 79940
21 22 23 24 25
56783 81727 1 15775 1 61640 2 22675
75241 33129 58576 30000 45625
10 16 24 35 50
83635 32394 15504 16257 42136
90027 63563 48844 63020 53645
209 330 510 774 1155
34353 07045 18572 36647 83620
26521 44313 05776 46000 11625
26 27 28 29 30
3 4 5 7 9
02993 07597 42526 15025 33725
55801 09004 37516 13825 13825
71 99 137 187 252
30407 54702 32722 35186 96186
18221 54702 53038 65999 65999
1698 2461 3519 4969 6938
78656 34631 19191 90651 20651
90601 75588 28996 04865 04865
31 32 33 34 35
12 15 19 25 31
08851 52448 78633 03866 47259
27936 66304 09281 59425 56300
338 448 588 767 992
25097 20213 84299 42238 60992
03440 31216 49457 54353 44978
9582 13100 17741 23813 31695
16872 60593 75437 45365 01751
65536 54368 56321 22785 94660
36 37 38 39 40
39 48 60 73 90
30901 80219 24375 96685 35085
20396 97529 80121 86800 86800
1274 1625 2060 2595 3251
72091 96886 74807 94900 30900
52434 06355 44851 05332 05332
41851 54847 71368 92241 1 18456
01318 18716 79729 63340 03340
63076 58153 21001 79760 79760
41 42 43 44 45
109 132 160 191 229
82628 88021 06208 98986 35680
60681 93929 05036 14700 67825
4049 5018 6186 7591 9273
80152 06672 88675 70911 22165
34453 30869 08470 33686 24311
1 1 2 3 3
51194 91861 42120 03932 79600
22684 36523 62642 81037 87463
73721 23193 60036 69540 47665
46 47 48 49 50
272 323 382 450 528
93857 60088 30771 13002 25502
25041 45504 87776 60625 60625
11277 13659 16477 19800 23706
98287 11154 03958 33264 58264
56247 18008 47064 16665 16665
4 5 7 8 10
71819 83732 18993 81834 77147
89090 93821 48427 84406 34406
16721 19488 14176 24625 24625
816
BERNOULLI A I D EULER POLYNOMIALS, R I E M A "
SUMS OF POSITIVE POWERS
Table 23.4
ZETA FUNCTION
-5.b
h=l
51 52 53 54 55
617 720 838 972 1124
99609 80326 27437 16689 41042
38476 41004 80841 90825 25200
28283 33629 39855 47085 55458
8 37709 34995 31899 51512 90891
87066 18522 29883 69019 59644
13 15 19 23 27
10563 88554 18530 08961 69498
9 86137 44973 80891 40014 05854
15076 50788 52921 66265 50640
56 57 58 59 60
1297 1492 1713 1962 2242
11990 60965 40807 27322 20922
74736 67929 35481 20300 20300
65130 76273 89079 1 03762 1 20559
64007 55578 86395 90771 06771
33660 45661 63677 67998 67998
33 39 46 55 65
11115 46261 89027 55326 63096
00335 19889 07286 65472 25472
95536 79593 24521 79460 79460
61 62 63 64 65
2556 2908 3302 3742 4232
48350 64496 54303 34768 57047
56321 62529 01696 12800 03425
1 39729 1 61563 1 86379 2 14526 2 46391
79901 80957 38760 88527 36656
65279 50175 17696 28352 18977
77 90 106 124 145
32510 86219 49600 51040 22232
86401 51863 93432 78527 06906
13601 77153 30976 12960 03585
66 67 68 69 70
4778 5384 6056 6801 7624
08654 15770 45658 09190 63490
04481 09804 28236 80825 80825
2 3 3 4 4
82395 23002 68718 20098 77746
42718 19494 51890 35635 36635
88673 45314 98690 27331 27331
168 196 227 262 303
98500 19153 27863 73072 08433
07044 51006 53971 32327 02327
03521 98468 28036 04265 04265
71 72 73 74 75
8534 9537 10641 11857 13191
14692 20822 94807 07610 91497
39216 43504 62601 35625 07500
5 6 6 7 8
42321 14542 95188 85107 85220
71947 13310 14229 61631 53135
73092 81828 75909 79685 70310
348 400 459 526 601
93283 93152 80311 34352 42821
09511 87653 54736 62487 25280
53296 82288 50201 29625 26500
76 77 78 79 80
14656 16261 18017 19938 22035
43442 28675 84364 23453 38653
79276 46129 01041 87200 87200
9 11 12 14 15
96524 20097 57109 08819 76592
01010 63925 07632 95731 11731
25286 72967 56103 62664 62664
686 781 888 1007 1142
01885 17055 03947 89106 10879
63746 08237 17370 77196 57196
04676 76113 60721 79040 79040
81 82 83 84 85
24323 26815 29529 32480 35686
06578 92048 52558 42905 19993
42161 98929 88556 44300 72425
17 19 21 24 27
61894 66308 91537 39413 11903
13620 22206 44528 33638 86142
14505 69481 08522 91018 81643
1292 1459 1646 1854 2086
20343 82298 76323 97898 59593
10166 14263 66939 52248 15080
78161 86193 26596 56260 59385
86 87 88 89 90
39165 42938 47024 51447 56230
47815 02610 78207 91556 88456
94121 81904 18896 14425 14425
30 33 36 40 45
11121 39333 98967 92626 23094
78853 46007 98488 86545 07545
47499 84620 39916 41997 41997
2343 2629 2945 3296 3683
92334 46750 94588 30228 72277
88197 30627 48916 85991 75991
23001 52528 18576 03785 03785
91 92 93 94 95
61398 66976 72993 79478 86462
49475 96076 96947 74541 11837
50156 73804 34561 53825 63200
49 55 60 66 73
93346 06565 66147 75716 39136
60306 47620 28587 22441 65570
93518 69134 19535 30351 20976
4111 4583 5104 5677 6307
65257 81394 22502 21982 46923
77288 10154 40039 62325 59571
92196 48868 36161 52865 62240
96 97 98 99
93976 1 02056 1 10737 1 20058 1 30058
59315 42160 67693 33041 33041
74016 52129 76801 67500 67500
80 88 96 106 116
60526 44269 95032 17777 17777
23468 59412 61670 31113 31113
59312 36273 54129 33330 33330
7000 7760 8593 9507 10507
00323 23429 98205 49930 49930
17816 04362 25663 00499 00499
42496 07713 57601 98500 98500
7
m\n
100
BERNOULLI AND EULER POLYNOMIALS, R I E M A ”
SUMS OF POSITIVE POWERS g k n
Table 23.4
k=l
m\n I
51 52 53 54 55
613 757 932 1143 1396
10 38941 75112 94452 34603 83199 38258 66451 30907 95967 52098
62626 19650 32699 53275 93900
40451 15700 57524 41925 41925
56 57 58 59 60
1700 2062 2493 3004 3608
26516 29849 10270 21945 88121
43060 57628 26623 59629 59629
08076 99325 05149 46550 46550
10 1 1025 60074 11 08650 108 74275
1 2 3 4 5 6 7 8 9 10
713 3538 14275 49143 1 49143
817
ZETA FUNCTION
m\n
11 12 13 14 15
4 10 24 52 110
08517 27691 06276 98822 65326
66526 30750 22599 77575 68200
61 62 63 64 65
4322 5161 6146 7299 8645
22412 52349 45378 37528 64962
76258 34941 53759 99828 44456
29151 69375 60224 07200 97825
16 17 18 19 20
220 422 779 1392 2416
60442 20381 25054 35716 35716
95976 96425 23049 80850 80850
66 67 68 69 70
10213 12036 14150 16596 19421
98650 82430 74713 94119 69368
53564 99082 00654 07202 07202
93601 55050 65674 25475 25475
21 22 23 24 25
4084 6740 10882 17223 26760
34526 33754 98866 32676 06992
59051 50475 64124 29500 70125
71 72 73 74 75
22676 26420 30718 35642 41273
93723 84347 46930 45970 81117
17301 43545 40581 14140 23612
06676 94100 51749 29125 94750
26 27 28 29 30
40876 61465 91085 1 33156 1 92205
77949 89270 56937 29270 29270
23501 18150 13574 13775 13775
76 77 78 79 80
47702 55029 63365 72833 83570
70010 38057 15640 43249 85073
47012 72874 85236 11504 11504
36126 36775 36199 83400 83400
31 32 33 34 35
2 3 5 7 10
74168 86758 39916 46353 22208
12139 11208 01061 78601 52136
94576 37200 01649 61425 77050
81 82 83 84 85
1 1 1 1
95728 09473 24989 42479 62166
51619 31932 36051 48338 92382
02074 38034 10093 76074 16796
12201 70825 24274 16050 81675
36 37 38 39 40
13 18 24 33 43
87824 68682 96503 10544 59120
36537 80261 98741 59593 59593
40026 57875 46099 37700 37700
86 87 88 89 90
1 2 2 2 3
84297 09139 36989 68171 03039
08171 42312 52073 24066 08467
04827 96263 05665 05327 05327
52651 21500 33724 17325 17325
41 42 43 44 45
57 74 95 122 156
01386 09406 70554 90290 95353
52694 33911 57044 66428 55588
90101 67925 52174 70350 85975
91 92 93 94 95
3 3 4 4 5
41980 85419 33817 a7679 47552
69648 54190 77262 28403 97795
23434 47066 26359 21259 59638
62726 76550 94799 64975 55600
46 47 48 49 50
199 251 316 396 494
37428 97341 89847 69074 34699
30416 52774 73860 36836 36836
62551 92600 37624 49625 49625
96 97 98 99 100
6 6 7 8 9
14036 87778 69485 59924 59924
24155 65424 93493 14243 14243
51139 46067 33614 42419 42419
60176 86225 75249 24250 24250
818
BERNOULLI AND EULER POLYNOMIALS, RIEMANN ZETA FUNCTION
Table 23.5 nb
n!
2
3
5
4
I- 1
0 1.0125 00000 1 4.3392 85714
-
0 1.2232 47480 115.0968 64499
4 2.0527 69883 5i4.8300 46785
I- 1
-10 2.0473 98767 11 2.7919 07410
26 27
1-191 1.6640 28884 -20 1.2326 13988
-11) 1.1167 10881
I- 1
1 3 5.6630 23524 -14 8.8484 74256
I 1 41 42
1-381 6.5735 64027 -39 3.1302 68584
For x = 1, see Table 6.3.
-25 4.0348 -26 3.2715 2.5827 1.9867 1.4900
74405 19788 78780 52907 64681
1.0902 7.7877 5.4333 3.7045 2.4697
91230 94498 44998 53408 02272
1.6106 1.0280 6.4255 3.9340 2.3604
75395 90678 66735 20450 12270
1.2694 1.3724 1.4446 1.4816 1.4816
76128 06625 38553 80567 80567
I 1
-17 3.9118 75343 -18 5.2863 1 8 0 3 1
BERNOULLI AKD EULER POLYNOMIALS, R I E M A "
xn/n! 6
n\x
1 (
5
0)6.0000 1.8000 3.6000 5.4000 6.4800
00000 00000 00000 00000 00000
( ( ( ( (
7 0 7.0000 00000 112.4500 00000 1 2 2 1.4005 83333
[
1)4.9536 20388 2.8896 11893
I
( (
6 7 8 9
10
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
819
ZETA FUNCTION
Table 23.5 8 0) 8.0000 00000 1
9 (
0 9.0000 114. 0500 2) 1.2150 2 2.7337 214.9207
00000 00000 00000 50000 50000
24. Combinatorial Analysis K. GOLDBERO,~ M. NEW MAN,^ E. HAYNSWORTH~
Contents Mathematical Properties. . . . . . . . . . . . . 24.1. Basic Numbers . . . . . . . . . . . . . 24.1.1 Binomial Coefficients . . . . . . . 24.1.2 Multinomial Coefficients . . . . . . 24.1.3 Stirling Numbers of the First Kind . 24.1.4 Stirling Numbers of the Second Kind 24.2. Partitions . . . . . . . . . . . . . . . 24.2.1 Unrestricted Partitions . . . . . . . 24.2.2 Partitions Into Distinct Parts . . . . 24.3. Number Theoretic Functions . . . . . . . 24.3.1 The Mobius Function . . . . . . . 24.3.2 The Euler Function . . . . . . . . 24.3.3 Divisor Functions . . . . . . . . . 24.3.4 Primitive Roots . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . Table 24.1. Binomial Coefficients
.
.
.
.
.
.
.
. . , . . a
.
a
s
.
.
.
.
a
.
. . . . .
.
.
.
. . . .
. . . . .
. . . .
.
.
.
.
.
.
. . . . .
. . . .
.
.
.
. . . . . .
.
.
.
.
a
. . . . .
.
. . . . .
. . . . .
.
.
. . . . .
.
. . . .
. . . .
.
. . . . . . . * . ..
a
*
*
PBge
822 822 822 823 824 824 825 82 5 825 826 826 826 827 827 827 828
n150, mS25
Table 24.2. Multinomials (Including a List of Partitions)
. . . .
I
83 1
I
833
n510
Table 24.3. Stirling Numbers of the First Kind SArn)..
.. .. .
n525
. .. ... .
835
. .
836
. ... .... ... .....
840
....................
844
... . .....
864
. ... . ............. .. ...
870
Table 24.4. Stirling Numbers of the Second Kind S;;'") n525
Table 24.5. Number of Partitions and Partitions Into Distinct Parts Ph),
n5500
Table 24.6. Arithmetic Functions
$44, uo(n),U l h ) , n 5 1000 Table 24.7. Factorizations n<10000
Table 24.8. Primitive Roots, Factorization of p - 1 n<10000
Table 24.9. Primes p_<106
1.
* National Bureau of Standards.
* National
Bureau of Standards. (Presently, Auburn University.) 82 1
24. Combinatorial Analysis Mathematical Properties In cnch sub-section of tliis clinptcr we use a fi\etl formfit wliicli eliiplinsiscs t tic usc t l t i t l inet Iiotls of c\tciiding tlic iic~c.ortil)iiii~.il~~ t n1)lcs. Tlir foriiint follows tliis for111 : I . Definition4
A . ('oni1)inatorial B. Genernting functions C. Closed form
n specinl n n t l easily recogniznhle syrnhol, nnd
sytiihol tnust 1)c easy to write. R r have n sc8r;pt capital 3 without any certainty t l i n t we liave settled tliis quest ion prrriinriently . \.Ye fcel tlint t h e subscript-superscrir,t notation crnplinsixes tlic gcncrnting friiictioris (which :we pbwers of niiitiinlly itiversc. functions) froin wliich most of the iriiportnnt relations flow.
yet
tlint
settlctl
011
11. Relations
24.1. Basic Numbers
A. Recurrences B. Checks in computing C. Basic use in numerical nnalysis
24.1.1
Binomial Coefficients I. Definitions
111. Asymptotic and Special Values
In genernl the notations uscd are standard. This includes the difference operator A tlcfincd on functions of x by AJ(z) = f ( r i - 1) -.f(x), A"+!f(rr) =A(Anf(x)), the Kronecker delta a,, the Rieniann zetn functioii { ( s ) and the greatest common divisor symbol ( m ,n). The range of tliesunimands for a sumination sign without limits is esplained to the riglit of the formula. The notations whicli are not standard arc those for the multinomials whicli nre arbitrary sliorthand for use in this chapter, and those for the Stirling numbers whicli have never been standardized. A short table of various notations for these numbers follows :
A.
(i) is tlie number of
Fzrsl Kind
SA*) s;m'
n=O,l,. .
8; S:
W'
* *
C. Closed form
11. Relations
A . Recurrences
0::
n>m>l s(n, m)
(-l)n-mSl(n-l,n-rn)
S(n-m+l,
n)
S(n, m)
&(m, n-m)
=(:)+( m--1 )'--l)+
...
n> m +("im)
,S"
B. Checks u (n , m )
We feel that a capital S is natural for Stirling numbers of the first kind; i t is infrequendy used for other notation in this contest. B u t once it is used we have difficulty finding a suitable symbol for Stirling numbers of the second kind. The numbers are sufficiently important to warrant 822
n2m
-n(n-1) . . . ( n - m + l )m!
(24.91 Milne-Thomson
[24.15] Riordan [24.1] Carlitz} [24.3) Gould Miksa (Unpublished tables) (24.171 Gupta
I
,4<1
Second Kind
yy1 E:;
m
ohjects froill i i collection of n cliqtinct objects wit Iiout rcgnrcl to order. 13. Generating fuiictioiis
Notations for the Stirling Numbers
Reference This chapter [24.2] Fort 24.71 Jordan [24.10] hloser and Wyman
\ynys of clloosing
'Set' page 11.
r
r>
)i
$1
823
COMBINATORIAL ANALYSIS
where
f:
m = kC= O mkpk
n = k=O C nkpk,
(;)f'x-m'
m=0
m
OD
p h , , nk 20
n-k-1
I
C. Numerical analysis
f (x-s)
8-k
k=O
s
111. Special Values
(3 (3 =
=1
2"(2n-l)(2n-3) n!
. . . 3.1
Multinomial Coefficients
24.1.2
I. Definitions
A. (n;n1,.n2, . . ., n,) is the number of ways of putting n=nl+nz+. . . +nm different objects into m different boxes with nk in the k-th box, k = 1 , 2 , . . ., m. (n; al, az, . . ., an)* is the number of permutations.of n=a1+2a2+ . . . +na, symbols composed of ak cycles of length k for k=1, 2 , . . ., n. (n; a ] , az, . . ., an)' is the number of ways of partitioning a set of n=al+2az+. . . +na, different objects into ak subsets containing k objects for k=1, 2 , . . ., n.
B. Generating functions (q+xz+
. . . +xm)"=z(n;n,, n2, . .
(29
tk)l=m!Z,z
(g2
m
tk)
t"
., n,)x;l@
. . . x:m
summed over nl+n2+.
z(n;a,, a2, . . .,an)*z:lz;a. , . zn:
summed over a1+2az+ and al+az+
t"
=m! n-m
7 z(n; al,az, , . ., an)'z;lz;s , . .x:n
. . +n,=n
. . . +na,=n
. . . +an=m
72.
C. Closed forms
nl+n2+. . .+nm=n a1+2q+ . . .+na,=n a1+2a2+. . . +nan=n
(n;nl,n2,. . ., n m ) =n!/nl!n2! . . . n,! (n;a ] ,a2, . . .,a,) *=n!/l"la1!2"2az! . . . nGa,! . . . (n!)".a.! (n;al,Q . ~ ,, . ., an)'=n!/(l!)'lal!(2!)"~a2! 11. Relations
A. Recurrence (n+m;nl+1,n2+1, . . .,n,+l)=C
rmn
B. Checks
*
Z(n;nl,Q,. .,nm)= m! $:m) I
m
k-1
all ni 3 1
2(n;al,a2,. . ., an)*=(-l)n-mSkm' Z(n;al,az,. . .,a,)'= BAm)
(n+m-l; nl+l,
..
1
.,nk-l+l,nk,nk+l+l, .
summed over nl+nZ+ . . . +n,,,=n
summed over al+2az+
. . . +na,=n
C. Numerical analysis (Fah di Bruno's formula)
dn
-j(g(z))=
dz"
Cn f ( " ) ( g ( z ) ) Wa;] , . . ., an)' { g'(z)
m=O
summed over a1+2az+ 'See page U.
a2,
. . . +na,=n
. . ,71m+l)
and
)"I
{ g"(z)
al+q+.
}"z
. . . { g("'(z) )"*
. . +an=m.
and al+az+.
. . +an=m
COMBINATORIAL ANALYSIS
824 0
P I
2
P 2
PI
Pn-1
summed over a 1 + 2 6 + sum equal n!Zzlzz . . . z, 24.1.3
*.. ...
1
0
... ...
Pn-2
...
0
. ..
n-1
...
P I
. . . +mn=n;
e.g. if P k = 2 j - l x ~ for k = l , 2, . . ., n then the determinant and the latter sum denoting then-th elementary symmetric function of zl, xz, . . ., xr.
Stirling Numbers of the First Kind
-
I SArn)I
I. Definitions
111. Asymptotic8 and Special Values
(n- 1) !(y+ln n)m-l/(m -1) ! for m=o(ln n)
A. (- l)n-mSim)is the number of permutations of n symbols which have exactly m cycles. B. Generating functions x(x-1).
n
. . ( x - n + l ) = Cm-0
Sim)xm
C. Closed form (see closed form for
@hm))
82'=1
11. Relations
A. Recurrences S(m) -S~m,m-I)-nS~m) n+l-
24.1.4 Stirling Numbers of the Second Kind I. Definitions
A. B;&%sthe number of ways of partitioning a set of n elements into m non-empty subsets. B. Generating functions B. Checks n
sp=0 m-1
n
xn=C
m-0
@Lm)x(x-1)
(eZ-l)m=m!
. . . (z--m+l)
m
BAm'2 2"
n-m
Ixl<m-l
C. Numerical analysis
C. Closed form if convergent.
825
COMBINATORIAL ANALYSIS
B. Generating function Ixl
B. Checks n (-l)n-mrn!
m-0
p - 2 4
giap)=l
where
( ( s ) ) = x - [ z ] - 3 if z is not an integer if x is an integer =O 11. Relations
A. Recurrence
C. Numerical analysis Amf(x)=m!
sim)
m
n-m
-f(")(x) n!
if convergent
B. Check 111. Asymptotics and Special Values
-
lim m-*Ig$,m)= n+
m1-1
111. Asymptotics
man
SATmwS
1
P(4- -
for n=o(m*)
*m.\l;s
4 n a e
24.2.2 Partitions Into Distinct Parts I. Definitions
A. q(n) is the number of decompositions of n into distinct integer summands without regard to order. E.g., 5=1+4=2+3 so that q(5)=3. B. Generating function m
24.2. Partitions 24.2.1 Unrestricted Partitions
n =O
a
m
q(n)xn=nn= l (l+zn)= nni l (1-xZn-l)-l
I4<1
C. Closed form
I. Definitions
A. p (n ) is the number of decompositions of n into integer summands without regard to order. E.~.,5=1$4=2+~=1+1+3=1+2+2=1+1+ 1+2=1+1+1+1+1 so that p(5)=7.
where &(x) is the Bessel function of order 0 and A2k-l(n)was defined in part I.C. of the previous subsection.
826
COMBINATORIAL ANALYSIB 11. Relations
A. Recurrences
and if
=O otherwise
If(mnz)I =Euo(n)If(nz) 1 converges.
m-1 n-1
n-1
The cyclotomic polynomial of order n is II (f- l ) d n / d ) dln
B. Check O
111. Aeymptotice
(-l)kq(n-(3P&k))=1 if n=-
P-T
2
=O otherwise. 111. Asymptotics
24.3. Number Theoretic Functions
24.3.2 The Euler Totient Function
24.3.1 T h e Mobius Function
I. Definitions
I. Definitions
A. p(n) is the number of integers not exceeding and relatively prime to n. B. Generating functions
A. p(n)=l
if n=l = (- l ) k if n is the product of
k distinct primes =O if n is divisible by a square >1. B. Qenerating functions
2 P(nM-a=l/t(s)
0-1
9s>l
C. Closed form 11. Relations
A. Recurreme
over distinct primes p dividing n.
r(mn)=p(m)p(n) if ( m , n)=1
=O
if ( m , n)>l
B. Check
11. Relations
A. Recurrence (P(mn)=(P(m)(PP(n)
p(d)=L
C. Numerical analysis g(n) f(d) for all n if and only if
(m,n)=l
B. Checks
=F n
f ( n ) = Z rc(d)g(n/d)for all n g(n)=11 f(d) for all n if and only if dln f(n) =11 g(n/d)r(')for all n
a*(")= 1(mod n)
dln
g(z)
=gf(z/n) for all z>O if and only if
111. Asymptotice
n-1
nek-1
(a, n)=1
COM3INATORIAL ANALYSIS
24.3.3
Divisor Functions
l nu,(m,=$+O
I. Definitions
n2 m-1
'
A. uk(n)is the sum of the k-th powers of the divisors of n . Often uo(n)is denoted by d(n), and u*(n>by d n ) . B. Generating functions
2 uk(n)n-*=5.(s)5.(s-k)
n-1
9s>k+l
C. Closed form
24.3.4
(k)
827
Primitive Roots I. Definitions
The integers not exceeding and relatively prime to a fixed integer n form a group; the group is cyclic if and only if n = 2 , 4 or n is of the form p k or 2p' where p is an odd prime. Then g is a primitive root of n if it generates that group; i.e., if g, g2, . . ., g V ( " ) are distinct modulo n . There are cp(cp(n)) primitive roots of n . 11. Relations
A. Recurrences. If g is a primitive root of a prime p and gp-' $ l(mod p2) then g is a primitive root of p k for all k. Jf g P - l = 1(mod p 2 ) then g+p is a primitive root of p' for all k. If g is a primitive root of p' then either g or g+pk, whichever is odd, is a primitive root of 2pk. B. Checks. If g is a primitive root of n then g' is a primitive root of n if and only if (k, cp(n))= 1, and each primitive root of n is of this form.
11. Relations
A. Recurrences (mn)=uk(m)uk(n)
(my n)= 1
References Texts
124.11 L. Carlitz, Note on Norlunds polynomial Bt), Proc. Amer. Math. SOC.11, 452-455 (1960). [24.2]T. Fort, Finite differences (Clarendon Press, Oxford, England, 1948). (24.31 H . W. Gould, Stirling number representation problems, Proc. Amer. Math. Soc. 11, 447-451 (1960). [24.4]G. H.Hardy, Ramanujan (Chelsea Publishing Co., New York, N.Y., 1959). [24.5] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th ed. (Clarendon Press, Oxford, England, 1960). [24.6]L. K. Hua, On the number of partitions of a number into unequal parts, Trans. Amer. Math. Soc.
51, 194-201 (1942). [24.7]C. Jordan, Calculus of finite differences, 2d ed. (Chelsea Publishing Co., New York, N.Y.,
1960). [24.8]K. Knopp, Theory and application of infinite series (Blackie and Son, Ltd., London, England,
1951). [24.9]L. M. Milne-Thomson, The calculus of finite differences (Macmillan and Co., Ltd., London, England, 1951). [24.101 L. Moser and M. Wyman, Stirling numbers of the second kind, Duke Math. J. 25, 29-43 (1958). [24.111 L. Moser and M. Wyman, Asymptotic development of the Stirling numbers of the first kind, J. London Math. Soc. 33, 133-146 (1958). P4.121 H. H. Ostmann, Additive Zahlentheorie, vol. I (Springer-Verlag, Berlin, Germany, 1956).
[24.13]H . Rademacher, On the partition function, Proc. London Math. Soc. 43, 241-254 (1937). [24.14]H. Rademacher and A. Whiteman, Theorems on Dedekind sums, Amer. J. Math. 63, 377-407 (1941). [24.15]J. Riordan, An introduction to combinatorial analysis (John Wiley & Sons, Inc., New York, N.Y., 1958). [24.16]J. V. Uspensky and M. A. Heaslet, Elementary number theory (McGraw-HB1 Book Co., Inc., New York, N.Y., 1939). Tables
[24.17]British Association for the Advancement of Science, Mathematical Tables, vol. VIII, Number-divisor tables (Cambridge Univ. Press, Cambridge, England, 1940). n1lO'. [24.18]H.Gupta, Tables of distributions, Res. Bull. East Panjab Univ. 13-44 (1950);750 (1951). [24.19]H. Gupta, A table of partitions, Proc. London Math. Soc. 39, 142-149 (1935) and 11. 42, 546-549 (1937). p ( n ) , n=1(1)300; p ( n ) , n=301
(1)600. [24.20]G. KavBn, Factor tables (Macmillan and Co., Ltd., London, England, 1937). n 1256,000. [24.21]D. N. Lehmer, List of prime numbers from 1 to 10,006,721,Carnegie Institution of Washington, Publication No. 165, Washington, D.C. (1914). [24.22]Royal Society Mathematical Tables, vol. 3, Table of binomial coefficients (Cambridge Univ. Press, Cambridge, England, 1954). (:).for r s i n 5 100. [24.23]G. N. Watson, Two tables of partitions, Proc. London Math. Soc. 42, 550-556 (1937).
828
COMBINATORIAL ANALYSIS
BINOMIAL COEFFICIENTS
Table 24.1
(i)
n\m
o
1
2
3
4
5
1 2 3 4 5
1 1 1 1 1
1 2 3 4 5
1 3 6 10
1 4 10
1 5
1
6 7 8 9 10
1 1 1 1 1
6 7 8 9 10
15 21 28 36 45
20 35 56 84 120
15 35 70 126 210
6 21 56 126 252
1 7 28 84 210
1 8 36 120
1 9 45
11 12 13 14 15
1 1 1 1 1
11 12 13 14 15
55 66 78 91 105
165 220 286 364 455
330 495 715 1001 1365
462 792 1287 2002 3003
462 924 1716 3003 5005
330 792 1716 3432 6435
165 495 1287 3003 6435
16 17 18 19 20
1 1 1 1 1
16 17 18 19 20
120 136 153 171 190
560 680 816 969 1140
1820 2380 3060 3876 4845
4368 6188 8568 11628 15504
8008 12376 18564 27132 38760
11440 19448 31824 50388 77520
12870 24310 43758 75582 1 25970
21 22 23 24 25
1 1 1 1 1
21 22 23 24 25
210 231 253 276 300
1330 1540 1771 2024 2300
5985 7315 8855 10626 12650
20349 26334 33649 42504 53130
54264 74613 1 00947 1 34596 1 77100
26 27 28 29 30
1 1 1 1 1
26 27 28 29 30
325 351 378 406 435
2600 2925 3276 3654 4060
14950 17550 20475 23751 27405
65780 80730 98280 1 18755 1 42506
2 2 3 4 5
31 32 33 34 35
1 1 1 1 1
31 32 33 34 35
465 496 528 561 595
4495 4960 5456 5984 6545
31465 35960 40920 46376 52360
1 2 2 2 3
69911 01376 37336 78256 24632
36 37 38 39 40
1 1 1 1 1
36 37 38 39 40
630 666 703 741 780
7140 7770 8436 9139 9880
58905 66045 73815 82251 91390
3 4 5 5 6
41 42 43 44 45
1 1 1 1 1
41 42 43 44 45
820 861 903 946 990
10660 11480 12341 13244 14190
101270 111930 123410 135751 148995
7 8 9 10 12
a
6
1 1 2 3 4
16280 70544 45157 46104 80700
2 3 4 7 10
03490 19770 90314 35471 81575
30230 96010 76740 75020 93775
6 8 11 15 20
57800 88030 84040 60780 35800
15 22 31 42 58
62275 20075 08105 92145 52925
7 9 11 13 16
36281 06192 07568 44904 23160
26 33 42 53 67
29575 65856 72048 79616 24520
78 105 138 181 235
88725 18300 84156 56204 35820
76992 35897 01942 75757 58008
19 23 27 32 38
47792 24784 60681 62623 38380
83 102 126 153 186
47680 95472 20256 80937 43560
302 386 489 615 769
60340 08020 03492 23748 04685
49398 50668 62598 86008 21759
44 52 60 70 81
96388 45786 96454 59052 45060
224 269 322 383 453
81940 78328 24114 20568 79620
955 1180 1450 1772 2155
48245 30185 08513 32627 53195
46 1 46 1035 15180 163185 13 70754 93 66819 535 24680 2609 32815 47 1 47 1081 16215 178365 15 33939 107 37573 628 91499 3144 57495 48 1 48 1128 17296 194580 17 12304 122 71512 736 29072 3773 48994 49 1 49 1176 18424 211876 19 06884 139 83816 859 00584 4509 78066 50 1 50 1225 19600 230300 21 18760 158 90700 998 84400 5368 78650 From Royal Society Mathematical Tables, vol. 3, Table of binomial coefficients. Cambridge Univ. Press, Cambridge, England, 1954 (with permission).
829
COMBINATORIAL ANALYSIS
BINOMIAL COEFFICIENTS 9
10
9 10
1 10
1
11 12 13 14 15
55 220 715 2002 5005
16 17 18 19 20
11440 24310 48620 92378 1 67960
(i)
Table 24.1
11
12
13
11 66 286 1001 3003
1 12 78 364 1365
1 13 91 455
1 14 105
8008 19448 43758 92378 1 84756
4368 12376 31824 75582 1 67960
1820 6188 18564 50388 1 25970
560 2380 8568 27132 77520
21 22 23 24 25
2 4 8 13 20
93930 97420 17190 07504 42975
3 6 11 19 32
52716 46646 44066 61256 68760
3 7 13 24 44
52716 05432 52078 96144 57400
2 6 13 27 52
93930 46646 52078 04156 00300
2 4 11 24 52
03490 97420 44066 96144 00300
26 27 28 29 30
31 46 69 100 143
24550 86825 06900 15005 07150
53 84 131 200 300
11735 36285 23110 30010 45015
77 130 214 345 546
26160 37895 74180 97290 27300
96 173 304 518 864
57700 83860 21755 95935 93225
104 200 374 678 1197
00600 58300 42160 63915 59850
31 32 33 34 35
201 280 385 524 706
60075 48800 67100 51256 07460
443 645 925 1311 1835
52165 12240 61040 28140 79396
846 1290 1935 2860 4172
72315 24480 36720 97760 25900
1411 2257 3548 5483 8344
20525 92840 17320 54040 51800
2062 3473 5731 9279 14763
53075 73600 66440 83760 37800
36 37 38 39 40
941 1244 1630 2119 2734
43280 03620 11640 15132 38880
2541 3483 4727 6357 8476
86856 30136 33756 45396 60528
6008 8549 12033 16760 23118
05296 92152 22288 56044 01440
12516 18524 27074 39107 55868
77700 82996 75148 97436 53480
23107 35624 54149 81224 1 20332
89600 67300 50296 25444 22880
41 42 43 44 45
3503 4458 5639 7089 8861
43565 91810 21995 30508 63135
11210 14714 19173 24812 31901
99408 42973 34783 56778 87286
31594 42805 57520 76693 1 01505
61968 61376 04349 39132 95910
1 1 2 2
78986 10581 53386 10906 87600
54920 16888 78264 82613 21745
1 2 3 5 7
76200 55187 65768 19155 30062
76360 31280 48168 26432 09045
46 47 48 49 50
11017 13626 16771 20544 25054
16330 49145 06640 55634 33700
40763 51780 65407 82178 1 02722
50421 66751 15896 22536 78170
1 1 2 2 3
33407 74171 25952 91359 73537
83196 33617 00368 16264 38800
3 5 6 9 12
89106 22514 96685 22637 13996
17655 00851 34468 34836 51100
10 14 19 26 35
17662 06768 29282 25967 48605
30790 48445 49296 83764 18600
830
COMBINATORIAL ANALYSIS
BINOMIAL COEFFICIENTS
Table 24.1
14 15
14 1 15
16 17 18 19 20
120 680 3060 11628 38760
n?m
15
16
1 18 171 1140
1 19 190
1 20
54264 1 70544 4 90314 1 3 07504 32 68760
20349 74613 2 45157 7 35471 20 42975
5985 26334 1 00947 3 46104 10 81575
1330 7315 33649 1 34596 4 80700
21 0 1540 8855 42504 1 77100
1
26 27 28 29 30
96 200 401 775
57700 58300 16600 58760
77 173 374 775 1551
26160 83860 42160 58760 17520
2651 82525 4714 35600
3005 5657 10371 is559 32479
40195 22720 58320 43160
55679 93641 1 54712 2 51408 4 02253
02560 99760 86560 40660 45056
1 2 3 6
73078 28757 22399 77112 28521
72110 74670 74430 60990 01650
8188 _ - _ _ 09200 ~
13919 75640 23199 59400 97200 86800 54100 04396 29840
19
17 153 969 4845
16280 19770 17190 61256 57400
37962 61070 96695 1 50845 2 32069
18
16 136 816 3876 15504
*
1 3 8 19 44
36 37 38 39 40
17
1
21 22 23 24 25
31 32 33 34 35
(z)
11735 37895 21755 63915 22675
31 84 214 518 1197
24550 36285 74180 95935 59850
15 46 131 345 864
62275 86825 23110 97290 93225
6 22 69 200 546
57800 20075 06900 30010 27300
3005 40195 6010 80390 11668 03110 22019 6i430 40599 28950
2651 5657 11668 23336 45375
82525 22720 03110 06220 67650
2062 4714 10371 22039 45375
53075 35600 58320 61430 67650
1411 3473 8188 18559 40599
20525 73600 09200 67520 28950
85974 1 59053 2 87811 5 10211 8 87323
96600 68710 43380 17810 78800
90751 1 76726 3 35780 6 23591 11 33802
35300 31900 00610 43990 61800
85974 76726 53452 89232 12824
96600 31900 63800 64410 08400
53 130 304 678 1454
67520
41 42 43 44 45
3 5 7 11 16
52401 28602 83789 49558 68713
52720 29080 60360 08528 34960
6 9 15 22 34
74896 27616 56696 17056 25584
10 16 26 41 64
30774 65097 51821 67148 66264
46706 21602 49218 05914 22970
15 25 42 68 110
15844 46619 11716 63537 30686
80450 27156 48758 97976 03890
20 35 60 102 171
21126 36971 83590 95306 58844
40600 21050 48206 96964 94940
46 47 48 49 50
23 34 48 67 93
98775 16437 23206 52488 70456
44005 74795 23240 72536 56300
51 17387 60544
99 150 225 334 492
14938 32326 48489 81089 36896
48554 09098 13647 92991 95575
174 274 424 649 984
96950 11888 44214 92703 73793
26860 75414 84512 98159 91150
281 456 730 1155 1805
89530 86481 98370 42584 35288
98830 25690 01104 85616 83775
nm \
20
20
1
21 22 23 24 25
34322 86724 15326 99116 48674
21
22
21 231 1771 10626 53130
1 22 253 2024 12650
23 276 2300
24 300
1 25
26 27 28 29 30
2 8 31 100 300
30230 88030 08105 15005 45015
65780 2 96010 11 84040 42 92145 143 07150
14950 80730 3 76740 1 5 60780 58 52925
2600 17550 98280 4 75020 20 35800
325 2925 20475 1 18755 5 93775
31 32 33 34 35
846 2257 5731 .. 13919 32479
72315 92840 66440 -. . .. 75640 43160
36 37 38 39 40
73078 1 59053 3 35780 6 89232 1 3 78465
72110 68710 00610 64410 28820
443 1290 3548 9279 23199
52165 24480 17320 83760 59400
1 2 6 13
55679 28757 87811 23591 12824
02560 74670 43380 43990 08400
23
1 3 6 13
24 46626 70200
415 697 1154 1885 3040
42466 31997 18478 16848 59433
71960 70790 96480 97584 83200 25
24
1
201 645 1935 5483 14763
1 1
26 351 3276 23751 1 42506
60075 12240 36720 54040 37800
78 280 925 2860 8344
88725 48800 61040 97760 51800
26 105 385 1311 4172
29575 18300 67100 28140 25900
7 33 138 524 1835
36281 65856 84156 51256 79396
37962 97200 93641 99760 2 22399 74430 5 io2ii i 7 8 i o 11 33802 61800
23107 61070 1 54712 3 77112 8 87323
89600 86800 86560 60990 78800
12516 35624 96695 2 51408 6 28521
77700 67300 54100 40660 01650
6008 18524 54149 1 50845 4 02253
05296 82996 50296 04396 45056
41 42 43 44 45
26 51 96 176 316
91289 37916 05669 10393 98708
37220 07420 18220 50070 30126
26 53 105 201 377
91289 82578 20494 26164 36557
37220 74440 81860 00080 50150
24 51 105 210 411
46626 37916 20494 40989 67153
70200 07420 81860 63720 63800
20 44 96 201 411
21126 67753 05669 26164 67153
40600 10800 18220 00080 63800
15 35 80 176 377
15844 36971 04724 10393 36557
80450 21050 31850 50070 50150
46 47 48 49 '50
560 976 1673 2827 4712
82330 24796 56794 75273 92122
07146 79106 49896 46376 43960
694 1255 2231 3904 6732
35265 17595 42392 99187 74460
80276 87422 66528 16424 62800
789 1483 2738 4969 8874
03711 38976 56572 48965 98152
13950 94226 81648 48176 64600
823 1612 3095 5834 10804
34307 38018 76995 33568 32533
27600 41550 35776 17424 66600
789 1612 3224 6320 12154
03711 38018 76036 53032 86600
13950 694 41550 1483 83100 3095 18876 6320 36300 12641
316 98708 30126 35265 38976 76995 53032 06064
80276 94226 35776 18876 37752
I
831
COMBINATORIAL ANALYSIS
Table 24.2
Multinomials and Partitions
. . ., nan, n=a1+2az+ . . . +m,, m=al+h+ . . . +an Ml= (n; nl, %, . . ,, n,) =n!/(1!)01(2!)a2 . . . (n!)”* M2= (n; al, az, . . ., U*)*=n!/lala1!2”2az! . . . nonan! Ma=(n; al, az, . . ., ~,)’=n!/(l!)~ia~!(2!)”2~~2! , . . (n!>”*a,! r=1a1,
n 1
m 1
2
1 2
7r
1
2 12
202,
Mi
Ma
Ma 1 1 2
1 1 1
1
n 8
m 1 2
1 1
3 3
4
1 2 3
3 192
1 2
4 1, 3 22 12, 2
3 4 5
1 2 3
4 5 6
1 2
3 4 5 6 7
1 2 3
4
1 3 6
2 3 1
1 3 1
1 4 6 12 24
6 8 3 6 1
1 4 3 6 1
5 L4 2, 3 12, 3 1,2a 18, 2 1’
1 5 10 20 30 60 120
24 30 20 20 15 10 1
1 5 10 10 15 10 1
6 1, 5 21 4 32 12, 4 192, 3 28 13, 3 l2,22 14, 2
1 6 15 20 30 60 90 120 180 360 720
120 144 90 40 90 120 15 40 45 15 1
1 6 15 10 15 60 15 20 45 15 1
1 7 21 35 42 105 140 210 210 420 630 840 1260 2520 5040
720 840 504 420 504 630 280 210 210 420 105 70 105 21 1
1 7 21 35 21 105 70 105 35 210 105 35 105 21 1
18
14
16
7 1, 6 295 3,4 18, 5 1, 294 1, 32 22, 3 18, 4 1 2 , 2, 3 1, 28 14,3 18, 21 16, 2 17
4
5 6
7 8 9
1 2
3
4
5
6 7 8 9
7r
8 1, 7 296 3, 5 42 l’, 6 1,2, 5 1,3,4 22, 4 2,3a 18, 5 12, 2, 4 12, 32 1 22, 3 25 14,4 18, 2, 3 1 2 , 28 l’, 3 1 4 , 22 16, 2 l8
9 1, 8 2, 7 3, 6 4, 5 12,7 1, 2 , 6 1,3, 5 1,42 22, 5 2,3,4 38 13, 6 1 2 , 2, 5 1’,3,4 1, 22, 4 1, 2, 32 28, 3 14,5 13, 2, 4 18, 32 12,2a,3 i,24 l’, 4 14,2 , 3 18, 28 16, 3 1 6 , 23 17,2 19
Mi
Ma
M3
1 8 28 56 70 56 168 280 420 560 336 840 1120 1680 2520 1680 3360 5040 6720 10080 20160 40320
5040 5760 3360 2688 1260 3360 4032 3360 1260 1120 1344 2520 1120 1680 105 420 1120 420 112 210 28 1
8 28 56 35 28 168 280 210 280 56 420 280 840 105 70 560 420 56 210 28 1
1 9 36 84 126 72 252 504 630 756 1260 1680 504 1512 2520 3780 5040 7560 3024 7560 10080 15120 22680 15120 30240 45360 60480 90720 181440 362880
40320 45360 25920 20160 18144 25920 30240 24192 11340 9072 15120 2240 10080 18144 15120 11340 10080 2520 3024 7560 3360 7560 945 756 2520 1260 168 378 36 1
1 9 36 84 126 36 252 504 315 378 1260 280 84 756 1260 1890 2520 1260 126 1260 840 3780 945 126 1260 1260 84 378 36 1
1
I
832
COMBINATORIAL ANALYSIS
Multinomials and Partitions
Table 24.2
n
m
U
10
1 2
10 1, 9 2, 8 3, 7 4, 6 52 12, 8 1, 2, 7 1, 3, 6 1,4, 5 22, 6 2, 3, 5 2, 42 32, 4 13,7 12;2, 6 12, 3, 5 1 2 , 42 1, 22, 5 1, 2 , 3 , 4 1, 33
3
4
'See page 11.
Mi 1 10 45 120 210 252 90 360 840 1260 1260 2520 3150 4200 720 2520 5040 6300 7560 12600 16800
M2
M3
1 362880 10 403200 45 226800 120 172800 210 151200 126 72576 45 226800 360 259200 840 201600 181440 1260 630 75600 *120960 2520 1575 56700 50400 2100 120 86400 151200 1260 120960 2520 1575 56700 3780 90720 151200 12600 22400 2800
n
m
10 5
6
7 8
9 10
n
Mi
M2
M3
23,4 18900 18900 3150 22, 32 25200 25200 6300 5040 25200 210 14,6 15120 60480 2520 13,2, 5 50400 4200 25200 13,3,4 12, 22, 4 *37800 *56700 9450 50400 50400 12600 12, 2, 32 75600 25200 12600 I , 23,3 113400 945 945 25 16, 5 30240 6048 252 75600 18900 3150 14,2,4 100800 8400 2100 14, 3 2 13, 22, 3 151200 25200 12600 226800 4725 4725 12~24 151200 16, 4 1260 210 302400 5040 2520 1 6 , 2, 3 453600 3150 3150 14,23 604800 240 120 17, 3 907230 630 630 1 6 , 22 1814400 45 45 18, 2 1 1 110 3628800
833
COMBINATORIAL ANALYSIS
STIRLING NUMBERS OF THE FIRST KIND Sim)
11 12 13 14 15
-120 720 -5 040 40320 -3 62880
274 -1764 13068 -1 09584 10 26576 -106 1205 - 14864 1 98027 -28 34656
8 71782 91200 -130 2092 - 35568 6 40237 -121 64510
16 17 18 19 20 21 22 23 24 25
24
1 -3 11 -5 0
-6
6 7 8 9 10
76743 27898 74280 37057 04088
68000 88000 96000 28000 32000
2432 90200 81766 40000
- 51090 94217 17094 40000
1 11 24000 72777 76076 80000 -41 965 -258 52016 73888 49766 40000 6204 48401 73323 94393 60000 -23427
91630 42823 55905 80585 68176
01600 93600 79200 21600 38400
94803 81078 77933 65249 39871
67616 01702 54547 30662 85664
00000 40000 20000 40000 00000
-8752 86244 48476 38966 87216
35 -225 1624 _._ - 13132 1 18124 -11 72700 127 -1509 19315 -2 65967 39 21567 -616 10299 -1 82160 34 01224 -668 60973
-1 0
1
6 7 8 9 10
85 -_ -735 6769 - 67284 7 23680
-1 5 175 -1960 22449 -2 69325
53576 17976 59552 17056 97824
58176 14720 22448 37120 24446 24640 95938 22720 03411 53280
5
4 5
6
1
-84 1052 - 14140 2 03137 -31 09892
11 12 13 14 15
34 -459 6572 - 99577 15 97216
09500 58076 14888 53096 60400
-270 4836 .- - - 90929 17 95071 -371 38478
505 69957 03824
16
-.-. . .--
17
-R707 7 7, A R R 75904 ._,-.
18 19 20
1 58331 39757 27488 -30 32125 40077 19424 610 11607 57404 91776
- I
21 22 2 23 -65 24 1573 25 -39365
1 -6
28640 43840 42880 59040 47360
433 -7073 1 22340 -22 37698 431 56514
4
n\m
3
2
1 1 -1 2
n\m 1 2 3 4 5
Table 24.3
12870 84093 48684 75898 61409
93124 31590 85270 28594 13866
51509 18114 30686 15107 31181
88800 68800 97600 32800 31200
-1 42 -1050 26775
8037 81664 80722 05310 03356
81182 97952 86535 75591 42796
68133 60092 - - - .99058 22809 73452 26450 06970 71471 74529 03823
From unpublished tables of Francis L. Miksa, with permission.
1 -2 1 322 -4536 63273 -9 133 -2060 33361 -5 66633
16930 95730 06836 03756 05680 45600
-33424 - .- .
44112 21504 28000 51776 76096 42912 -20 84576 507 62624 -13237
100 -1886 3690i -7 55152 161 42973 -3599 83637 21687 79532 14091
97951 38169 37691 53430 57918
02055 39535 70150 18786 66760
96721 15670 26492 75920 65301
07080 58880 34384 63024 18960
79476 95448 06827 28501 58577
07200 02976 41568 98976 60000
834
COMBINATORIAL ANALYSIS Table 2.1.3
STIRLINC NUMBERS OF THE FIRST KIND S',") 1
n
1 -2 8 546 -9450
-3 6 870
c
n\m 7 8 9 10
11 12 13 14 15
1 -26 449 -7909 1 44093
-27 537 - 11022 2 35312 -52 26090
28032 45234 84661 50405 33625
10680 77960 84200 49984 12720
21 22 23 24 25
1206 64780 37803 58339 73354 7 20308 21644 09246 -185 88776 35505 19497 4969 10165 05554 96448
73360 47760 53696 76576 36800
- 28939
n\ rn
I
11 12 13 14
- 55770
5 -114 2487 - 55792 12 95363
29553 83528 97936 47048 43896
-311 33364 31613 7744 65431 01695 -1 99321 97822 i k i 53 04713 71552 54458 -1459 01905 52766 26492
90640 76800 37360 12976 88000
14 74473 -373 12275
15
-10 276 -7707 2 20984 -65 08376
21 22 23 24 25
-2 57 -1471 38192
9280 30571 79248 07534 20555
95740 59840 94833 08923 02195
14229 01910 40110 45497 17966
98655 92750 12973 94337 81468
11450 35346 61068 ii3G 50000
n\ rn 13 14 15
-2 83 -2996 1 02469 -34 22525
16 17 18 19 20
n\m
21 _22_ 23 13 24 -640 25 29088
17 1 -153 13566 -9 20550 533 27921 67171 05903 66798
7 49463 -166 69653 3684 11615
- 82076
18 -430 10241 -2 50385 63 -1634 43714 -12 04749 342 18695
03081 98069 22964 26016 95940
59531 81053 77407 87554
28000 77553 01929 32658 67550
20992 72465 95944 17376 71489
94896 83456 12832 32496 92880
11
12
1 -6 6 2717 - 91091 27 49747
1 -7 8 3731 -1 43325
-785 21850 -6 02026 166 15733 -4628 06477
58480 31420 93980 86473 51910
30753 60053 23088 71136 52782
40395 59745 49736 04996 37300
50105 50868 11859 85742 52146
48 -1569 48532 -14 75607 446 52267
99622 52432 22764 03732 5i38i
- 13558 51828 99530 4 -129 4070 -1 30770
15482 00665 38405 92873
38514 98183 70075 67558
30525 31295 69521 73500
16
15
14
13 1 -91 5005
-105
1
18400 94022 50806 37272 11900
6580 23680 96582 89282 33630
-120 8500 -4 68180 223 23822 -9739 41900
1131 02769 95381 - 37310 09998 02531 12 36304 58470 86207 -413 35671 43013 14056 13990 94520 02391 06865
17 18 19 20
1 -37 1103 - 33081 10 14945
1320
- 32670
57423 26634 36473 53775
46311 69012 18452 16815 69899
-5 5 1925
16 17 18 19 20
1 -45
- 18150
3 -69 1350 - 26814
10
10
21 22 23 24 25
1
57773 37558 90231 43153 22928
16 17 18 19 20
9
1
-3 138 -5497 2 06929 -75 2718 97125 34 70180 -1246 20006
-
61111 86118 04609 64487 90702
84500 69881 39913 04206 15000
4 -159 6238 -2 40604 92 44691
in
19
20
1 -171 16815
1 -190
1
27946 -12 56850 20615 67686 797 21796 -16 89765 45460 47198 1168 96626 -22 57942 1684 24 12764 43496 - 72346 69596 36096 67135 -1219 12249 80000 41 49085 13800 -1 12768
01717 97183 24164 60386 13761
-210 25025 40315 23871 -29 42500 2388
1 -136
ioaii
-6 62796 349 16946
- 16722
52896 60911 25118 63218
80820 68850 03430 00831 64500
23
24
25
1 1 -231 -253 1 30107 1 35926 -276 32776 10495 -37 95000 42550 3 0 0
1
71630 88730 21941 44556 73550
21
7 -325 13727 -5 70058
22
835
COMBINATORIAL ANALYSIS
ll\ttll
1 2 3 4 5
1 1 1 1 1
STII{LIM; \ L ' ~ ~ B E HOSF T I I E SECOND K I N D
ap)
2
s
:I
1
3 7 15
1 6 25
1 10
I
6 7 8 9 10
1 1 1 1 1
31 63 127 255 511
90 301 966 3025 9330
11 12 13 14 15
1 1 1 1 1
1023 2047 4095 8191 16383
28501 86526 2 61625 7 88970 23 75101
16 17 18 19 20
1 1 1 1 1
32767 65535 1 31071 2 62143 5 24287
21 22 23 24 25
1 1 1 1 1
11'
10 20 41 83 167
71 214 644 1934 5806
48575 97151 94303 88607 77215
1 6 25 103 423
45750 11501 32530 91745 55950
1717 6943 27988 1 12596 4 52321
98901 37290 06985 66950 15901
18 72 291 1168 4677
15090 77786 63425 10566 12897
m 1 28 462 5880
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
41686 57825 39010 48101 06446
17423 43625 52280 79450 1 56863 35501 4 70632 00806 14 11979 91025
7 8 9 10
2 19 149 1114
6 57 493 4087
63987 27396 15424 29280 41333
32818 57081 74624 29246 35540
82604 04786 83400 34839 45652
1 18 209 2166
8231 09572 14948 60276 23799 67440 4 38264 19991 17305 31 67746 38518 04540 227 83248 29987 16310
1 9 82 690
1
65 350 1701 7770 34105
15 140 1050 6951 42525 2 13 75 400 2107
70050 23825 74750 34501 38810
46730 79400 08501 75035 66920
1 13 93 634 4206
79487 23652 21312 36373 93273
10961 90550 56527 51651 2 89580 95545 1 4 75892 84710 74 92060 90500
27349 1 75057 11 06872 69 30816 430 60788
26558 49898 51039 01779 95384
379 1913 9641 48500 2 43668
12625 78219 68881 07834 49741
9
1 36 750
1 45
16 17 18 19 20
289 5120 83910 12 94132 190 08424
21 22 23 24 25
2682 68516 89001 36628 25008 70286 4 86425 13089 51100 63 10016 56957 75560 802 35590 44384 62660
)I
ttt
1
16 17 18 19 20
120 7820 3 67200 139 16778 4523 29200
21 22 23 24 25
tl
1 30874 34 56159 847 94044 19582 02422 4 29939 46553
62580 43200 29331 47080 47200
3251 0239 1195 1828 2372
10153 90799 50199 21583 11183
47084 91620 00400 20505 68583
1 12 120 1167
12327 24196 32006 62257 92145.
24764 33035 88117 43260 10929
20
llt
20
1
21 22 23 24 25
210 23485 1 8 59550 1169 72779 62201 94750
30420 33560 27734 45907 07848
1 136 9996 5 27136 223 50954 44464 74004 27264 65555 95960
65204 33920 96900 9 72500 108 73005 1203
7118 83514 59340 25408 16339
71322 37993 12973 17849 21753
1 105 2 84 2435 63025
6020 49900 08778 77530 24580
14 93040 51652 91758 10216 03608
04500 81331 07115 41000 96000
28924 1258 39160 54638 6 10686 60380 120 2249 40128 6 88883 114 48507
49092 68618 25603 60579 33437
18331 68481 41390 22000 44260
I? 1 153 12597 7 41285 349 52799 14041 42047 4 99169 88803 161 09499 36915 4806 33313 93110
21
22
1 231 28336 24 54606 1685 19505
1 253 33902 32 00450
10 533 23648 9 24849 327 56785
23
1 276 40250 . ..
91275 77954 13460 31500 87500
II
1 65620 49 10178
From unpublished tables of Francis L. Miksa, with permission. 'See page U.
47 72970 33785 591 75849 64655
91 4550
57118 22324 28866 51300 33391 30178 51137 83930 58260 74680
1937 54990 27583 34150
13
16
8099 60465 23611 71824 51616
1
3 71121 63803
27 620 12563 2 34669 41 10166
2 76 2067 52665
10
8207 84250 95288 22303 1 0 61753 95755 114 46146 26805 1201 12826 44725
64053 95028 65010 03480 62679
1 .i
15
62804 45225 83405 84530 02430
55 1705 39325 7 52752 126 62650
21417 04159 90360 97510 09326
683 10882 1 67216 24 93020 362 26262
56794 53393 98579 60360 70000
1155 22275 3 59502 51 35130 671 28490
1 78 3367 1 06470
36908 60978 04908 17791 29486
2658 16330 99896 6 09023 37 02641
11880 59027 99612 12320 27840
2 18 170 1517
1 66 2431 66066 14 79478
68401 12055 84100 95250 10751
8
12 11 12 13 14 15
1 21 266 2646 22827
329
6862 1 36209 25 95811
18
19
1 171 15675
1 190
23435 74629 85369 25445 94925
13 797 38807 16 62189
24
1 300
19285 89850 81779 39170 69675
2.5
1
*
COMBINATORIAL ANALYSIS A ( VRER O F I'AK'L'l'flO\S A V I ) l'AR'fl'1'lOAS 1\'1'0 1)IS'llhC'l PARTS !I
d,O voo
0
II
II
d/O
/ ~ O l )
dl1)
2 2 2 3 3
04226 39943 81589 29931 86155
3658 4097 4582 5120 5718
100 101 102 103 104
1905 2144 2412 2712 3048
69292 81126 65379 48950 01365
4 4 5 5 6
44793 83330 25016 70078 18784
150 151 152 153 154
4 4 4 5 6
08532 50606 96862 47703 03566
35313 24582 88421 36324 73280
194 207 222 238 255
06016 92120 72512 53318 40982
1 2 3 5
1 2 2
50 51 52 53 54
9
7 11 15 22 30
3 4 5 6 8
55 56 57 58 59
4 5 6 7 8
51276 26823 14154 15220 31820
6378 7108 7917 8808 9792
105 106 107 108 109
3423 3842 4311 4835 5419
25709 76336 49389 02844 46240
6 7 7 8 9
71418 28260 89640 55906 27406
155 156 157 158 159
6 7 8 8 9
64931 32322 06309 87517 76627
82097 43759 64769 78802 28555
273 292 ' 313 335 358
42421 64960 16314 04746 39008
10 11 12 13 14
42 56 77 101 135
10 12 15 18 22
60 61 62 63 64
9 11 13 15 17
66467 21505 00156 05499 41630
10880 12076 13394 14848 16444
110 111 112 113 114
6071 6799 7610 8513 9520
63746 03203 02156 76628 50665
10 10 11 12 13
04544 87744 77438 74118 78304
160 161 162 163 164
10 11 i2 14 15
74381 81590 99139 27989 69194
59466 68427 04637 95930 75295
383 409 438 468 500
28320 82540 12110 28032 42056
15 16 17 18 19
176 231 297 385 4YO
27 32 38 46 54
65 66 67 68 69
20 23 26 30 35
12558 23520 79689 87735 54345
18200 20132 22250 24576 27130
115 116 117 118 119
10641 11889 13277 14820 16536
44451 08248 10076 74143 68665
14 16 17 18 20
90528 11388 41521 81578 32290
165 166 167 168 169
17 18 20 22 25
23898 93348 78904 82047 04389
00255 22579 20102 32751 25115
534 571 610 651 695
66624 14844 00704 39008 45358
20 21 22 23 24
627 792 1002 1255 1575
64 76 89 104 122
70 71 72 73 74
40 46 53 61 70
87968 97205 92783 85689 89500
29927 32992 36352 40026 44046
120 121 122 123 124
18443 20561 22913 25523 28419
49560 48051 20912 38241 40500
21 23 25 27 29
94432 68800 56284 57826 74400
170 171 172 173 174
27 30 33 36 39
47686 13848 04954 23268 71250
17130 02048 99613 59895 74750
742 792 845 901 962
36384 29676 43782 98446 14550
25 26 27 28 29
1958 2436 3010 3718 4565
142 165 192 222 256
75 76 77 78 79
81 92 106 121 138
18264 89091 19863 32164 48650
48446 53250 58499 64234 70488
125 126 127 128 129
31631 35192 39138 43510 48352
27352 22692 64295 78600 71870
32 34 37 40 43
07086 57027 25410 13544 22816
175 i76 177 178 i79
43 47 52 57 62
51576 67158 21158 17016 58467
97830 1 0 2 6 57290 1 0 9 4 31195 1 1 6 6 05655 1 2 4 3 53120 1 3 2 5
14114 20549 58616 54422 35702
30 31 32 33 34
5604 6842 8349 10143 12310
296 340 390 448 512
80 81 82 83 84
157 180 205 233 265
96476 04327 06255 38469 43660
77312 84756 92864 101698 111322
130 131 132 133 134
53713 59645 66208 73466 81490
15400 39504 30889 29512 40695
46 50 53 58 62
54670 10688 92550 02008 40974
180 181 182 183 184
68 74 81 89 98
49573 94744 98769 66848 04628
90936 1412 11781 1 5 0 4 08323 1 6 0 2 17527 1 7 0 7 80430 1818
31780 73568 93888 27424 10744
35 36 37 38 39
14883 17977 21637 26015 31185
585 668 760 864 982
85 86 87 88 89
301 342 388 441 499
67357 62962 87673 08109 95925
121792 133184 145578 159046 173682
90358 36076 135 136 1 00155 81680 137 1 10976 45016 1 3 8 1 22923 41831 139 1 36109 49895
67 72 77 83 89
11480 15644 55776 34326 53856
185 186 187 188 189
107 117 128 139 152
18237 14326 00110 83417 72735
74337 92373 42268 45571 99625
82642 84096 58315 51098 10816
40 41 42 43 44
37338 44583 53174 63261 75175
1113 1260 1426 1610 1816
90 91 92 93 94
566 641 725 820 926
34173 12359 33807 10177 69720
189586 206848 225585 245920 267968
1 4 0 1 50658 141 1 66706 142 1 84402 143 2 03909 144 2 25406
78135 89208 93320 82757 54445
96 103 110 118 127
17150 27156 86968 99934 69602
190 191 192 193 194
166 182 198 216 236
77274 07011 72768 86271 60227
04093 2642 88462 00652 2811 38048 56363 2990 i b 6 0 8 05469 3179 04256 41845 3381 04630
45 46 47 18 49
89134 105558 124754 147273 173525
2048 2304 2590 2910 3264
95 96 97 98 99
1046 1181 1332 i50i 1692
51419 14304 30930 98136 29875
291874 317788 345856 376256 409174
145 2 49088 58009 146 2 75170 52599 147 3 03886 71978 1 4 8 3 35494 1 9 4 9 7 149 3 70273 55200
136 146 157 168 181
99699 94244 57502 93952 08418
195 196 i97 198 199
258 281 306 334 364
08402 45709 88298 53659 60724
12973 87591 78530 83698 32125
50
204226
3658
100
1905 69292
444793
150
194 06016
200
397 29990 29388
1 2 3 4 5 6 7 8
1 1
4 08532 35313
1935 2060 2193 2334 2484
3594 3820 4060 4315 4584
44904 75868 72422 13602 82688
4870 67746
values of /)Or) from H. Gupta, A table of partitions, Proc. London Math. Soc. 39, 142-149, 1935 and 11. 12,546-549, 1937 (with permission),
837
COMBINATORIAL ANALYSIS
Table 24.5
NUMBER OF PARTITIONS .4ND PARTITIONS INTO DISTINCT PARTS
s(n)
n
PO1 1
n
4(n)
200 201 202 203 204
397 432 471 513 559
29990 83636 45668 42052 00883
29388 58647 86083 87973 17495
4870 5173 5494 5834 6195
67746 61670 62336 73184 03296
250 251 252 253 254
23079 24929 26923 29072 31389
35543 14511 27012 69579 19913
64681 68559 52579 16112 06665
85192 89949 94961 1 00243 1 05807
80128 26602 58208 00890 47264
205 206 207 208 209
608 662 720 784 852
52538 29877 68417 06562 85813
59260 08040 06490 26137 02375
6576 6980 7408 7862 8341
67584 87424 90786 12446 94700
255 256 257 258 259
33885 36574 39472 42593 45954
42642 95668 36766 30844 57504
48680 70782 55357 09356 48675
1 1 1 1 1
11669 17844 24348 31199 38413
59338 71548 95064 20928 23582
21 0 211 212 213 214
927 1008 1096 1191 1295
51025 50658 37072 66812 00959
75355 85767 05259 36278 25895
8849 9387 9956 10558 11195
87529 48852 45336 52590 55488
260 261 262 263 264
49574 53471 57667 62183 67044
19347 50629 26749 74165 81230
60846 08609 47168 09615 60170
1 1 1 1 1
46009 54008 62428 71293 80624
65705 01856 82560 59744 90974
215 216 217 218 219
1407 1528 1660 1802 1957
05456 51512 15981 81825 38561
99287 48481 07914 16671 61145
11869 12582 13336 14133 14977
49056 38720 40710 83026 05768
265 266 267 268 269
72276 77905 83961 90476 97483
09536 06295 17303 01083 43699
90372 62167 66814 16360 44625
1 2 2 2 2
90446 00783 11660 23106 35150
44146 03620 75136 91192 17984
220 221 222 223 224
2124 2306 2502 2715 2945
82790 18711 58737 24089 45499
09367 73849 60111 25615 41750
15868 16811 17807 18860 19973
61606 16852 51883 61684 57056
270 271 272 273 274
1 1 1 1 1
05019 13123 21837 31205 41274
74899 85039 43498 18008 95651
31117 38606 44333 16215 73450
2 2 2 2 3
47820 61149 75170 89917 05427
61070 71540 53882 72486 58738
225 226 227 228 229
3194 3464 3756 4071 4413
63906 31263 11335 80636 29348
96157 22519 82570 27362 84255
21149 22392 23705 25091 26556
65120 29960 13986 98528 84608
275 276 277 278 279
1 1 1 1 2
52098 63729 76227 89656 04082
04928 39693 84330 41035 58525
51175 37171 57269 91584 75075
3 3 3 3 3
21738 38889 56923 75883 95815
19904 46600 20960 26642 57440
230 231 232 233 234
4782 5182 5613 6080 6585
62397 00518 81486 61354 15859
45920 38712 70947 38329 70275
28103 29737 31462 33284 35207
94454 72212 84870 23936 06304
280 281 282 283 284
2 2 2 2 2
19578 36221 54095 73287 93892
63116 91453 25900 31835 97939
82516 37711 45698 47535 29555.
4 4 4 4 5
16768 38791 61938 86265 11828
26624 78240 97032 19094 44672
235 236 237 238 239
7130 7719 8356 9043 9786
41855 58926 11039 68396 29337
14919 63512 25871 68817 03585
37236 39379 41639 44025 46543
75326 02688 89458 67324 00706
285 286 287 288 289
3 3 3 3 4
16013 39758 65243 92592 21938
78671 40119 08360 21614 85285
48997 86773 71053 89422 87095
5 5 5 6 6
38689 66911 96562 27710 60430
49522 97084 52987 98024 42088
240 241 242 243 244
10588 11454 12388 13397 14486
22467 08845 84430 82593 76924
22733 53038 77259 44888 96445
49198 52000 54955 58073 61360
87992 62976 97248 01632 27874
290 291 292 293 294
4 4 5 5 6
53425 87203 23437 62299 03976
31269 80564 10697 26919 38820
00886 72084 53672 50605 95515
6 7 7 8 8
94797 30892 68798 08604 50401
40554 09120 39744 19136 45750
245 246 247 248 249
15661 16929 18297 19772 21363
84125 67223 38898 65166 69198
27946 91554 54026 81672 20625
64826 68481 72335 76397 80679
71322 72604 19619 50522 55712
295 296 297 298 299
6 6 7 8 8
48667 96585 47956 03024 62049
41270 01441 50785 83849 62754
79088 95831 10584 43040 65025
8 9 9 10 10
94286 40360 88727 39499 92791
47940 04868 65938 71456 76298
250
23079 35543 64681
85192 80128
300
9 25308 29367 23602
11 48724 72064
838
COMBINATORIAL ANALYSIS
Table 24.5
NUMBER OF PARTITIONS AND PARTITIONS INTO DISTINCT PARTS
?I
3 00 301 302 3 03 304
P(l1)
9 25308 9 93097 10 65733 11 43554 12 26921
29367 23924 12325 20778 80192
23602 03501 48839 22104 29465
d.1
9(.) 11 48724 72064 12 07425 10607 12 69025 30816 1 3 33663 83848 14 01485 59930
n 350 3 51 352 353 354
279 298 318 340 363
36332 33006 55597 12281 11751
84837 30627 37883 00485 20481
02152 58076 29084 77428 10005
126 132 139 145 152
91829 93477 22769 80938 69267
24648 19190 71520 18816 15868
72642 47292 25601 07743 93899
18618 17536 42890 43642 64242
355 356 357 358 359
387 413 441 471 502
63253 76618 62298 31406 95756
29190 09333 19293 42683 65060
29223 42362 58437 98780 00020
159 167 175 183 192
89096 41824 28907 51867 12289
56578 09148 55072 38752 32216
84259 79022 78394 82593 91846
79304 32212 72390 94656 82870
360 361 362 363 3 64
536 572 610 651 695
67907 61205 89840 68887 14371
03106 88980 37518 99972 34589
91121 37559 84101 06959 46040
201 210 __ 220 230 241
11827 52205 35221 62751 36750
04478 02772 50410 50210 01278
29 22603 40224
365 366 367 368 369
958 72869 79123 38045
252 264 276 289 302
59255 32392 58376 39517 78222
33946 51488 86784 78822 57408
77000 38466 65347 60483 26834
44480 77248 41118 21048 76992
305 306 307 308 309
17 41418 01331 47295
14 15 16 17 17
310 311 312 313 314
18 20 21 23 24
67148 01742 45809 00000 65010
82996 67625 60373 66554 61508
00364 76945 52891 87337 30490
18 19 20 21 22
315 316 317 318 319
26 28 30 32 34
41580 30502 32618 48829 80095
76335 03409 19898 33514 48694
66326 96003 42964 66654 40830
320 321 322 323 324
37 39 42 45 49
27440 91956 74807 77235 00564
57767 55269 80359 85435 36352
48077 99991 54696 78028 37875
325 326 327 328 329
52 56 60 64 68
46204 15660 10534 32537 83488
42288 21128 98396 46091 59460
28641 74289 66544 14550 73850
330 331 332 333 334
73 78 84 90 96
65328 80125 30081 17543 45011
78618 53026 56362 49805 01922
50339 66615 25119 49623 02760
49 51 54 57 59
335 336 337 338 339
103 110 117 126 134
15146 30786 94949 10851 81918
63217 04252 15461 78337 06233
340 341 342 343 344
144 154 164 175 188
11793 04359 63747 94355 00864
345 346 347 348 349
200 214 229 244 261
88255 61829 2i228 90453 57890
350
d?l)
370 371 372 373 374
1022 1089 1161 1238 1319
14122 65764 53783 05779 51059
83673 44243 48499 41191 97274
45362 99782 62850 25085 73500
316 331 346 362 379
375 376 377 378 379
1406 1498 1596 1701 1812
20744 47874 67527 16942 35649
65614 35905 44907 79758 97394
84054 81081 56791 13525 72950
796 61401 30794
28759 15040 85792 13990 87918
380 381 382 383 3 84
1930 2056 2190 2332 2484
65607 51347 40133 82119 30529
23504 53366 24237 a5438 42654
65812 33805 65131 92336 18180
496 518 542 566 592
35325 92772 13972 96355 01520
62 87095 13216 65 91563 14788
69 i03i2 43iO
72 43991 92576 75 93279 10200
385 386 387 388 389
2645 41834 Ziib 75950 2998 96444 3192 70751 3398 70404
65278 73795 91657 98104 70522
73832 76030 61044 22753 92980
79 83 87 91 95
23110 64940 06890 94270 92704
390 391 392 393 394
3617 3850 4098 4361 4640
62876 97432 687iZ 74553 73511
83159 86299 iii50 82406 44125
100 58620 35461 105 30799 17632 iio 4 i i 9 2 ko9ii 115 66794 79970 121 16645 56454
395 396 397 398 399
279 36332 84837 02152
126 91829 24648
400
30 32 33 35 37
67552 19458 78644 45449 20225
58118 99993 53293 18543 96286
58881 41536 42016 61123 99699
32574 41664 88192 47722 12608
71276 53843 03453 10617 71312
06887 63701
32179 42792
02629 61523 20259 83119 54565
40968 80864 26436 27092 72864
619 39246 14094
77364 52194 a4335 32826 13581 60275
38676 46674 56265 07622 46996
04423 29186 94791 84114 23515
772 807 843 881 920
37784 10844 35537 18291 65799
71936 79444 42947 29614 74150
961 85031 43424
1604 Giii 32444
1049 67982 04736 1096 47115 85280 1145 28826 89344 6727 09005 17410 41926
1196 21634 00706
'
839
COMBINATORIAL ANALYSIS
NUMBER OF PARTITIONS AND PARTITIONS INTO DISTINCT PARTS n
PO!)
/I
Table 24.5 901)
400 401 402 403 404
6727 7154 7608 8091 8603
09005 64022 80284 20027 55175
17410 41926 26539 42321 33398 79269 64844 65581 93486 55060 1422 86674 81438
450 451 452 453 454
405 406 407 408 409
9147 9725 10339 10990 11682
67906 51251 09726 60006 31627
88591 37420 71239 37759 71923
17602 21729 47241 26994 17780
1485 1551 1619 1691 1765
75420 34186 74236 07292 45549
52794 29884 54282 29128 15430
455 456 457 458 459
1 1 2 2 2
79855 90581 01933 13948 26665
91645 04044 37928 90703 62143
39582 26519 51146 27330 58313
67598 31034 88629 69132 45565
410 411 412 413 414
12416 13196 14023 14902
67740 25896 78888 15629
31511 69254 35188 03099
90382 35702 47344 48968
1843 1923 2008 2096 2187
01696 88934 20999 12178 77334
07104 65516 30208 16576 80960
460 461 462 463 464
2 2 2 2 3
40123 54365 69435 85381 02253
65561 39575 60521 55524 16287
39251 85741 29549 19619 25766
92081 14888 91233 20640 99975 15506 48874 75476 94471 86287 36605
2283 2382 2486 2594 2707
31930 92048 74417 96435 76199
70488 69148 20078 42056 52640
465 466 467 468 469
415 416 417 418 419
9893 10307 10739 11188 11656
14440 93957 65687 96810 57102
61528 13070 10144 43072 54336
12143 12649 13176 13724 14295
19032 57862 51755 81881 32530
12544 22432 08648 00782 93376
420 421 422 423 424
22755 24167 25664 27253 28938
29021 05302 64021 16454 03725
65800 14413 38377 62304 70847
25259 63961 14846 21739 98150
2825 2947 3075 3208 3347
32529 84998 53960 60580 26867
77152 62528 09352 00384 45954
470 471 472 473 474
425 426 427 428 429
30724 32620 34629 36760 39020
98514 06861 70071 66724 14800
70950 74102 39035 18315 02372
51099 32189 75934 27309 59665
3491 3642 3i99 3962 4132
75707 60097 30895 45254
iiiii 07136
60256 14146 86891 79000
475 476 477 478 479
5 5 6 6 7
58055 23018 37870 67318 66282
99675 52926 28583 07232 38005
27271 28385 29543 30747 31998
99448 57585 43443 28468 90573
23232 65430 69603 94368 73738
430 431 432 433 434
41415 43955 46647 49501 52527
73920 47717 86328 89040 07072
71023 05181 42292 94051 91082
58378 16534 67991 50715 40605
4310 4495 4687 4888 5096
24877 03113 51640 01685 85706
85006 72460 62334 40672 20480
480 481 482 483 484
7 51666 00419 49931 7 95317 79841 47582 8 41457 02874 28236 a 90222 78495 19280 9 41761 78911 49976
25591 32180 49455 88294 98055
33300 34652 36059 37521 39040
14373 91433 20520 07873 67468
57056 03468 80640 43946 62530
435 436 437 438 439
55733 59131 62733 66549 70593
46514 71430 07137 43656 39364
46362 91696 60430 69662 65621
86656 18645 79215 97367 35510
5314 5540 5776 6022 6278
37439 91949 85678 56498 43769
57460 44512 02880 45546 39520
485 486 487 488 489
9 10 11 11 12
96228 53787 14608 78875 46778
80660 07886 77893 49115 71600
85734 24553 64264 57358 12729
11012 46513 84248 02646 19665
40620 42261 43968 45741 47585
21308 99712 41621 94910 16717
45496 45764 12802 51264 64998
440 441 442 443 444
74878 79418 84227 89322 94720
24841 06934 73040 95632 37025
94708 86233 64434 02240 77294 99781 13536 45667 78934 71820
6544 6822 7111 7411 7725
88391 32867 21361 99762 15750
85792 92200 67457 56080 89318
490 491 492 493 494
13 13 14 15 16
18520 94313 74382 58964 48308
40161 50322 57204 37499 54706
22702 44478 03639 49778 61724
33223 16939 53132 06173 38760
49500 51491 53560 55709 57943
73777 42772 16694 75216 45082
62304 84172 36938 10170 47040
00437 06493 12906 19698 26891
54417 05190 52519 71278 54269
17528 52391 91961 27202 09814
8051 8390 8743 9111 9494
18865 60575 94352 75744 62459
81728 94564 40798 62854 05984
495 496 497 498 499
17 18 19 20 21
42678 42351 47619 58791 76192
27774 03350 31798 47204 51543
77609 31598 76580 28849 92874
81187 91466 64007 01563 61625
445 446 447 448 449
1 1 1 1 1
47604 18581 03354 05954 18000
450 1 34508 18800 15729 23840 9893 14440 61528
24180 69iii 9SSG
25171 11509 01902 26201 03821 12696 66337 99397 34350 71304 10369
12186 20478 76365 20389 79823
500 23 00165 03257 43239 95027
840
COMBINATORIAL ANALYSIS
ARITHMETIC FUNCTIONS
Table 24.6
4 . 1
00
UI
1 2 3 4 5
1 1 2 2 4
1 2 2 3 2
1 3 4 7 6
51 52 53 54 55
32 24 52 18 40
6 7 8 9
2 6 4 6 4
4 2 4 3 4
12 8 15 13 18
56 57 58 59 60
24 8 120 36 4 80 28 4 90 58 2 60 16 12 168
106 52 4 162 107 106 2 108 108 36 12 280 109 108 2 110 110 40 a 216
11 10 12 4 13 12 14 6 15 8
2 6 2 4 4
12 28 14 24 24
61 62 63 64 65
60 30 36 32 48
2 62 4 96 6 104 7 127 4 84
111 72 112 48 113 112 114 36 115 88
16 8 17 16 18 6 19 18 20 8
5 2 6 2 6
31 18 39 20 42
66 67 68 69 70
20 66 32 44 24
8 144 2 68 6 126 4 96 8 144
116 117 118 119 120
21 22 23 24 25
12 10 22 8 20
4 4 2 8 3
32 36 24 60 31
71 72 73 74 75
70 2 72 24 12 195 72 2 74 36 4 114 40 6 124
121 110 122 60 123 80 124 60 125 100
26 27 28 29 30
12 18 12 28 8
4 4 6 2 8
42 40 56 30 72
76 77 78 79 80
36 6 140 60 4 96 24 8 168 78 2 80 32 10 186
31 32 33 34 35
30 16 20 16 24
2 6 4 4 4
32 63 48 54 48
81 82 83 84 85
36 37 38 39 40
12 36 18 24 16
9 2 4 4 8
91 38 60 56 90
41 42 43 44 45
40 12 42 20 24
2 8 2 6 6
46 47 48 49 50
10
4 72 6 98 2 54 8 120 4 72
101 100 102 32 103 102 104 48 105 48
2 8 2 8 8
102 216 104 210 192
151 150 152 72 153 96 154 60 155 120
2 8 6 8 4
152 300 234 288 192
156 48 12 392 157 156 2 158 158 78 4 240 159 104 4 216 160 64 2 378
201 202 203 204 205
132 4 272 100 4 306 168 4 240 64 12 504 160 4 252
206 102 4 312 207 132 6 312 208 96 10 434 209 180 4 240 210 48 16 576 2 6 4 4 4
212 378 288 324 264
166 82 4 252 167 166 2 168 168 4a 16 480 169 156 3 183 170 64 8 324
216 72 16 217 180 4 218 108 4 219 144 4 220 80 12
600 256 330 296 504
171 108 172 84 173 172 174 56 175 120
4 0 2 8 4
152 248 114 240 144
161 132 162 54 163 162 164 80 165 80
56 6 72 6 58 4 96 4 32 16
210 182 180 144 360 133 186 168 224 156
4 0 2 6 8
192 363 164 294 288
~
211 212 213 214 215
210 104 140 106 168
6 6 2 8 6
260 308 174 360 248
221 192 4 252 222 72 8 456 223 222 2 224 224 96 12 504 225 120 9 403
126 36 12 312 127 126 2 128 128 64 8 255 129 84 4 176 130 48 8 252
176 80 10 177 116 4 178 88 4 179 178 2 180 48 18
372 240 270 180 546
226 112 4 342 227 226 2 228 228 72 12 560 229 228 2 230 230 88 8 432
54 5 121 40 4 126 82 2 84 24 12 224 64 4 108
131 130 2 132 132 40 12 336 133 108 4 160 134 66 4 204 135 72 8 240
181 180 182 72 183 120 184 88 185 144
2 8 4 8 4
182 336 248 360 228
231 232 233 234 235
86 87 88 89 90
42 4 56 4 40 8 88 2 24 12
132 120 180 90 234
136 64 8 137 136 2 138 44 8 139 138 2 140 48 12
186 60 187 160 188 92 I85 ioi 190 72
8 384 4 216 6 336
42 96 44 84 7a
91 92 93 94 95
72 44 60 46 72
112 168 128 144 120
141 92 4 192 142 70 4 216 143 120 4 168 144 48 15 403 145 112 4 180
191 190 2 192 192 64 14 508 193 192 2 194 194 96 4 294 195 96 8 336
22 4 72 48 46 7 16 16 124 42 3 57 20 6 93
96 97 98 99 100
146 72 4 147 84 6 148 72 6 149 148 2 150 40 12
196 84 9 399 197 196 2 198 198 -60 12 468 199 198 2 200 200 80 12 465
4 6 4 4 4
32 12 252 96 2 98 42 6 171 60 6 156 40 9 217
3 4 4 6 4
270 138 288 140 336
222 228 266 150 372
8 lio
8 360
120 8 384 112 8 450 232 2 234 72 12 546 184 4 288
236 116 6 237 156 4 238 96 8 239 238 2 240 64 20
420 320 432 240 744
241 242 243 244 245
240 110 162 120 168
2 6 6 6 6
242 399 364 434 342
246 247 248 249 250
80 216 120 164 100
8 4 8 4 8
504 280 480 336 468
From British Association for the Advancement of Science, Mathematical Tables, vol. VIII, Number-divisor tables. Cambridge Univ. Press, Cambridge, England, 1940 (with permission).
,
I
841
COMBINATORIAL ANALYSIS
ARITHMETIC FUNCTIONS
251 252 253 254 255
250 2 252 72 ia 728 220 4 2aa 126 4 384 128 8 432
Table 24.6
)(. 400 224 300 226 2aa
n 301 302 303 304 305
r(n)
n
r(n)
no
UI
252 4 352 150 4 456 200 4 408 144 10 620 240 4 372
351 352 353 354 355
8 Go 12 352 2 116 a 280 4
560 756 354 720 432
401 402 403 404 405
400 132 360 200 216
2
402 a16 448 714 726
n 451 452 453 454 455
8 720 4 456 6 1080 2 410 a 756
456 457 458 459 460
144 16 1200 456 2 458 228 4 690 2aa 8 720 176 12 iooa
no
01
216
a
4 6 0
256 128 9 257 256 2 258 a4 a 259 216 4 260 96 12
511 258 528 304 588
306 307 308 309 310
96 12 702 306 2 308 120 12 672 204 4 416 120 a 576
356 357 358 359 360
176 6 630 192 8 576 178 4 540 358 2 360 96 24 1170
406 407 408 409 410
168 360 128 408 160
272 4 204 6 348 4 i32 12 328 4
-0
9
4 6 4 4 8
504 798 608 684 672
261 262 263 264 265
168 130 262
6 4 2 ao 16 208 4
390 396 264 720 324
311 312 313 314 315
310 2 312 96 16 840 312 2 314 156 4 474 144 12 624
361 362 363 364 365
342 3 180 4 220 6 144 12 288 4
3 81 546 532 784 444
411 412 413 414 415
552 728 480 936 504
461 462 463 464 465
460 2 462 120 16 1152 462 2 464 224 10 930 240 a 768
266 267 268 269 270
108 a 176 4 132 6 268 2 72 16
480 360 476 270 720
316 317 318 319 320
156 6 316 2 104 8 280 4 128 14
560 318 648 360 762
366 367 368 369 370
120 a 366 2 176 10 240 6 144 a
744 368 744 546 684
416 192 12 882 417 276 4 560 418 i a o a 720 419 418 2 420 420 96 24 1344
466 467 468 469 470
232 4 702 466 2 468 144 ia 1274 396 4 544 184 a a64
271 272 273 274 275
270 2 272 128 10 558 144 a 448 136 4 414 200 6 372
321 212 4 432 322 132 8 576 323 288 4 360 324 ioa 15 847 325 240 6 434
371 372 373 374 375
312 4 120 12 372 2 160 a 200 a
432 a96 3 74 648 624
421 422 423 424 425
420 210 276 208 320
2 4 6 8 6
422 636 624 558
471 472 473 474 475
312 232 420 156 360
376 377 378 379 380
184 a 336 4 ioa 16 378 2 144 12
720 420 960 380 840
426 427 428 429 430
140 360 212 240 168
4 6
a
a64 496 756 672 792
476 477 478 479 480
192 12 1008 312 6 702 238 4 720 478 2 480 128 24 1512
512 576 3a4 1020 576
431 432 433 434 435
430 2 432 144 20 1240 432 2 434 iao 8 768 224 a 720
481 4a2 483 484 485
432 240 264 220 384
162 12 1092 486 2 4aa 240 a 930 324 4 656 168 12 1026
276 88 12 277 276 2 278 138 4 279 180 6 280 96 16
672 278 420 416 720
326 327 328 329 330
162 216 160 276
ao
4 492 4 440 a 630 4 384 16 a64
a a
aio
4
a 4 a
6
4 4
632 900 528 960 620
281 282 283 284 285
280 92 282 140 144
2 8 2 6
282 576 284 504 a 480
331 332 333 334 335
330 164 216 166 264
332 5aa 494 504 408
381 382 383 384 385
252 4 190 4 382 2 128 16 240 a
286 287 288 289 290
120 a 504 240 4 336 96 18 819 272 3 307 112 a 540
336 337 338 339 340
96 20 992 336 2 338 156 6 549 224 4 456 128 12 756
386 387 388 389 390
192 4 582 252 6 572 192 6 686 388 2 390 96 16 ,1008
436 216
6
770
437
396
4
480
i 8aa 439 438 2 440 440 160 16 ioao
486 487 4aa 489 490
291 292 293 294 295
192 144 292
392 578 294 684 360
341 342 343 344 345
300
4 384 12 780 294 4 400 168 a 660 176 a 576
391 392 393 394 395
352 4 168 12 260 4 196 4 312 4
432 a55 528 594 480
441 442 443 444 445
252 9 741 192 a 756 442 2 444 144 12 1064 352 4 540
491 492 493 494 495
490 2 492 160 12 1176 448 4 540 216 a a40 240 12 936
296 297 298 299 300
144 I80 148 264
8 570
ia
1092 398
446 447 448 449 450
222 4 672 296 4 600 192 14 1016 448 2 450 120 i a 1209
496 497 498 499 500
240 10 992 420 4 576 164 a 1008 498 2 500 200 12 1092
4 6 2 a4 12 232 4
80
a iao
4 450 4 336 18 868
2 6 6 4 4
ioa
346 172 4 522 347 346 2 348 348 iiZ 12 840 349 348 2 350 350 120 12 744
396 120 397 396 398
198
399 2i6
2 4
i
400 160 15
600 -__
640 961
4ia i 4 4
a
9 4
532 726 768 931 5aa
COMBINATORIAL ANALYSIS
ARITHMETIC FUNCTIONS
'Table 24.6 n v(.> UI, QI 672 4 501 332 756 4 502 250 2 504 503 502 504 144 24 1560 612 4 505 400
n v(n> an Q l 600 4 551 504 552 176 16 1440 640 4 553 468 4 834 554 276 912 8 555 288
n 601 602 603 604 605
~ ( n )an 600 252 396 300 440
2 8 6 6 6
dn)
QO
602 1056 884 1064 798
651 652 653 654 655
360 324 652 216 520
8 6 2 8 4
1024 1148 654 1320 792
n ~ ( n ) an QI 701 700 2 702 702 216 16 1680 703 648 4 760 704 320 14 1524 705 368 8 1152
QI
QI
506 507 508 509 510
220 312 252 508 128
8 864 6 732 6 896 2 510 1 6 1296
556 557 558 559 560
276 556 180 504 192
6 2 12 4 20
980 558 1248 616 1488
606 607 608 609 610
200 606 288 336 240
8 1224 2 ,608 1 2 1260 8 960 8 1116
656 657 658 659 660
320 432 276 658 160
10 6 8 2 24
1302 962 1152 660 2016
706 707 708 709 710
511 512 513 514 515
432 256 324 256 408
4 10 8 4 4
592 1023 800 774 624
561 562 563 564 565
320 280 562 184 448
8 4 2 12 4
864 846 564 1344 684
611 612 613 614 615
552 192 612 306 320
672 4 1 8 1638 2 614 4 924 8 1008
6 6 1 660 662 330 663 384 664 328 665 432
2 4 8 8 8
662 996 1008 1260 960
7 1 1 468 712 352 713 660 714 192 715 480
6 1040 8 1350 4 768 1 6 1728 8 1008
516 517 518 519 520
168 460 216 344 192
12 4
1232 576 8 912 696 4 1 6 1260
566 567 568 569 570
282 324 280 568 144
4 10 8 2 16
852 968 1080 570 1440
616 617 618 619 620
240 616 204 618 240
16 2
8
666 667 668 669 670
216 616 332 444 264
12 4 6 4 8
1482 720 1176 896 1224
716 717 718 719 720
356 476 358 718 192
6 4 4 2 30
1060
2 12
1440 618 1248 620 1344
521 522 523 524 525
520 168 522 260 240
2 12 2 6 12
522 1170 524 924 992
571 572 573 5 74 575
570 240 380 240 440
2 12 4 8 6
572 1176 768 1008 744
6 2 1 396 622 310 623 528 624 192 625 500
8 4 4 20 5
960 936 720 1736 781
6 7 1 600 672 192 673 672 674 336 675 360
4 24 2 4 12
744 2016 674 1014 1240
721 722 723 724 725
612 342 480 360 560
4 6 4 6 6
832 1143 968 1274 930
526 527 528 529 530
262 480 160 506 208
4 4 20 3 8
792 576 1488 553 972
576 577 578 579 580
192 576 272 384 224
21 2 6 4 12
1651 578 921 776 1260
626 627 628 629 630
312 360 312 576 144
4 8 6 4 24
942 960 1106 684 1872
676 677 678 679 680
312 676 224 576 256
9 2 8 4 16
1281 678 1368 784 1620
726 727 728 729 730
220 726 288 486 288
12 2 16 7 8
1596 728 1680 1093 1332
531 348 532 216 533 480 534 176 535 424
6 12 4 8 4
780 1120 588 1080 648
58 1 582 5 83 5 84 585
492 192 520 288 288
4 8 4 8 12
672 1176 648 1110 1092
631 632 633 634 635
630 312 420 316 504
2 8 4 4 4
632 1200 848 954 768
681 682 683 684 685
452 300 682 216 544
4 8 2 18 4
912 1152 684 1820 828
731 732 733 734 735
672 240 732 366 336
4 12 2 4 12
792 1736 734 1104 1368
536 537 538 539 540
264 356 268 420 144
8 4 4 6 24
1020 720 810 684 1680
586 587 588 589 590
292 4 586 2 168 18 540 4 232 8
882 588 1596 640 1080
636 637 638 639 640
208 504 280 420 256
12 6 8 6 16
1512 798 1080 936 1530
686 687 688 689 690
294 456 336 624 176
8 4 10 4 16
1200 920 1364 756 1728
736 737 738 739 740
352 660 240 738 288
12 4 12 2 12
1512 816 1638 740 1596
541
24 4 12 4
-542
641 640 642 212 643 642 644 264 645 336
2 8 2 12 8
642 a296 644 1344 1056
692 693 694 695
344
2 16 8
792 1178 594 1440 864
690
816 728 1134 660
591 392 592 288 593 592 594 180 595 384
691
543 544 545
540 270 360 256 432
360 346 552
2 6 12 4 4
692 1218 1248 1044 840
741 742 743 744 745
432 312 742 240 592
8 8 2 16 4
1120 1296 744 1920 900
546 547 548 549 550
144 546 272 360 200
16 2 6 6 12
1344 548 966 806 1116
596 597 598 599 600
296 396 264 598 160
6 4 8 2 24
1050 800 1008 600 1860
646 647 648 649 650
8 2 20 4 12
1080 648 1815 720 1302
696 697 698 699 700
224 640 348 464 240
1 6 1800 4 756 4 1050 4 936 18 1736
746 747 748 749 750
372 492 320 636 200
4 1122 6 1092 12 1512 4 864 1 6 1872
542
4 10
288 646 216 580 240
352 600 232 708 280
4 4 12 2 8
1062 816 1680 710 1296
1260 960 720 2418
COMBINATORIAL ANALYSIS
ARITHMETIC FUNCTIONS n
~ ( n )Qn
751 752 753 754 755
750 2 368 10 500 4 336 8 600 4
756 757 758 759 760
n
801 802 803 804 805
528 6 1170 400 4 1206 720 4 888 264 12 1904 528 8 1152
851 852 853 854 855
V(") Qo Cl 792 4 912 280 12 2016 852 2 854 360 8 1488 432 12 1560
901 902 903 904 905
216 24 2240 756 2 758 378 4 1140 440 8 1152 288 16 1800
806 807 808 809 810
360 8 536 4 400 8 808 2 216 20
1344 1080 1530 810 2178
856 857 858 859 860
424 8 1620 856 2 858 240 16 2016 858 2 860 336 12 1848
761 762 763 764 765
760 2 762 252 8 1536 648 4 880 380 6 1344 384 12 1404
811 812 813 814 815
810 2 812 336 12 1680 540 4 1088 360 8 1368 648 4 984
861 862 863 864 865
766 767 768 769 770
382 4 1152 696 4 840 256 18 2044 768 2 770 240 16 1728
816 817 818 819 820
256 20 2232 756 4 880 408 4 1230 432 12 1456 320 12 1764
771 772 773 774 775
512 . 4 1032 384 6 1358 772 2 774 252 12 1716 600 6 992
821 822 823 824 825
776 777 778 779 780
384 8 432 8 388 4 720 4 192 24
1470 1216 1170 840 2352
781 782 783 784 785
QI
4qn)
Qfl
Ql
n
v(n)
Ql
n
972 1512 1408 1710 1092
951 952 953 954 955
632 4 1272 384 16 2160 952 2 954 312 12 2106 760 4 1152
906 907 908 909 910
300 8 906 2 452 6 600 6 288 16
1824 908 1596 1326 2016
956 957 958 959 960
478 ..-
4.
6 1680 8 1440 1 - 4. 4. 0816 4 1104 256 28 3048
480 8 1344 430 4 1296 862 2 864 288 24 2520 688 4 1044
911 912 913 914 915
910 2 912 288 20 2480 820 4 1008 456 4 1374 480 8 1488
961 962 963 964 965
930 432 636 480 768
3 8 6 6 4
866 867 868 869 870
432 4 1302 544 6 1228 360 12 1792 780 4 960 224 16 2160
916 917 918 919 920
456 6 1610 780 4 1056 288 16 2160 918 2 920 352 16 2160
966 967 968 969 970
264 16 2304 966 2 968 440 12 1995 576 8 1440 384 8 1764
820 2 822 272 8 1656 822 2 824 408 8 1560 400 12 1488
871 872 873 874 875
792 432 576 396 600
952 1650 1274 1440 1248
921 922 923 924 925
612 4 1232 460 4 1386 840 4 1008 240 24 2688 720 6 1178
971 972 973 974 975
970 2 972 324 18 2548 828 4 1120 486 4 1464 480 12 1736
826 827 828 829 830
348 8 1440 826 2 828 264 18 2184 828 2 830 328 8 1512
876 877 878 879 880
288 12 2072 876 2 878 438 4 1320 584 4 1176 320 20 2232
926 927 928 929 930
462 4 1392 612 6 1352 448 12 1890 928 2 930 240 16 2304
976 977 978 979 980
480 10 1922 976 2 978 324 8 1968 880 4 1080 336 18 2394
700 4 864 352 8 1296 504 8 1200 336 15 1767 624 4 948
831 832 833 834 835
552 4 1112 384 14 1778 672 6 1026 276 8 1680 664 4 1008
881 882 883 884 885
880 2 882 252 18 2223 882 2 884 384 12 1764 464 8 1440
931 932 933 934 935
756 464 620 466 640
1140 1638 1248 1404 1296
981 982 983 984 985
648 6 1430 490 4 1476 982 2 984 320 16 2520 784 4 1188
786 787 788 789 790
260 786 392 524 312
1584 788 1386 1056 1440
836 837 838 839 840
360 12 1680 540 8 1280 418 4 1260 838 2 840 192 32 2880
886 887 888 889 890
442 4 1332 886 2 888 288 16 2280 756 4 1024 352 8 1620
936 937 938 939 940
288 24 2730 936 2 938 396 8 1632 624 4 1256 368 12 2016
986 987 988 989 990
448 8 1620 552 8 1536 432 12 1960 924 4 1056 240 24 2808
791 792 793 794 795
672 4 912 240 24 2340 720 4 868 396 4 1194 416 8 1296
841 842 843 844 845
812 420 560 420 624
871 1266 4 1128 6 1484 6 1098
891 892 893 894 895
540 10 1452 444 6 1568 828 4 960 296 8 1800 712 4 1080
941 942 943 944 945
940 2 942 312 8 1896 880 4 1008 464 10 1860 432 16 1920
991 992 993 994 995
990
796 797 798 799 800
396 6 1400 796 2 798 216 16 1920 736 4 864 320 18 1953
846 847 848 849 850
276 12 1872 660 6 1064 416 10 1674 564 4 1136 320 12 1674
896 897 898 899 900
384 16 2040 528 8 1344 448 4 1350 840 4 960 240 27 2821
946 947 948 949 950
420 8 1584 946 2 948 312 12 2240 a64 4 1036 360 12 1860
996 997 998 999 1000
8 2 6 4 8
.
3
4
4 8 6 8 8
832 400 504 448 720
Qo
4 8 8 8 4
752 488 008 ~ . 260 912
6 6 4 4 8
476 560
993 1596 1404 1694 1164
7
997
12 660 4 420 8 792 4
20ib 1328 1728 1200
480
328 12 2352 996 2 998 498 4 I500 648 8 i5i0 400 16 2340
!
2.5 3-5 2-3-5 2'.5 2.8 3-3.5 2.5.7 2'*5 2.32.5 21.5' 2.5.11 2'.3-5 2-5-13 3-5-7 2-3.8 25-5 2-5-17 3.32.5 2.5.19 28.5' 2.3-5-7 3 - 5 . 11 2.5.23 24-3-5 2-5' 2'-5-13 2-3'-5 2"5.7 2-5.29 3.3.5' 2-5.31 26-5 2-3.5.11 3-5-17 2-9.7 28-32-5 2.5-37 22-5.19 2.3-5-13
P.8 2.5-41 3.3-5.7 2.5-43 2'-5.11 2-32-5' 3.5-23 2.5-47 25-3-5 2.5-7'
I I1 3.7 31 41 3.17 61 71 34 7-13 101 3-37 11' 131 3.47 151 7.23 32-19 181 191 3.67 211 13.17 3.7.11 241 251 32-29 271 281 3-97 7-43 31 1 3.107 331 11-31 3'. 13 19 7.53 3-127 17-23 401 3.137 421 431 32-7' 11.41 461 3.157 13.37 491
2 21.3 2.11 25 2-3-7 3-13 2-31 28-32 2-41 3-23 2-3-17 24-7 2.61 3-3-11 2-71 2'019 2-34 3.43 2-7-13 Y.3 2-101 3.53 2-3-31 28.29 2-11' 3.32.7 2.131 2'-17 2-3-47 3.73 2-151 2'.3-13 2-7-23 3-83 2-3'-19 25.11 2.181 P.3-31 2.191 2a-p 2-3-67 3-103 2-211 2'-3' 2-13-17 22-113 2.3-7.11 2'.59 2-241 21-3-41
*
3 13 23 3-11 43 53 3-7 73 83 3-31 103 113 3.41 7-19 11-13 3.17 163 173 3-61 193 7.29 3-71 223 233 35 11-23 263 3-7-13 283 293 3-101 313 17.19 32-37 7' 353 3.11' 373 383 3-131 13.31 7.59 32-47 433 443 3.151 463 11.43 3-7-23 17-29
3 2-7 2a.3 2.17 3-11 2.3' 26 2-37 2'.3*7 2-47 2'*13 2-3-19 3-31 2.67 2'-3' 2-7-11 22-41 2-3.29 2'-23 2-97 3.3-17 2-107 25-7 2.3'.13 3.61 2.127 2'-3-11 2-137 3-71 2.3-'P 24.19 2-157 3-34 2.167 2'-43 p.59 '-7-13 2.1 1-17 27.3 2.197 21-101 2-32-23 2'.53 2-7-31 3.3-37 2.227 24-29 2-3-79 3.11' 2-13-19
5 3.5 52 5.7 32-5 5-11 5.13 3.52 5-17 5-19 3.5.7 5-23 5s 38.5 5-29 5-31 3-5-11 52.7 5.37 3-5-13 5-41 5.43 32.52 5.47 5.72 3-5-17 5.53 52-11 3.5-19 5.59 5.61 32.5-7 52.13 5.67 3.5-23 5.71 5-73 3.5' 5-7-11 5.79 34-5 5.83 52.17 3-5.29 5.89 5.7.13 3.5.31 52-19 5.97 3'-5-11
2.3 2' 2-13 22-32 2-23 2'-7 2-3-11 22-19 2-43 25.3 2-53 22-29 2.32.7 2'-17 2.73 3-3-13 2.83 24.11 2-3.31 22-7' 2.103 2a.3' 2-113 22-59 2-3-41 28 2-1-19 22-3-23 2.11.13 2'-37 2.3'.17 2'-79 2.163 24.3.7 2-173 3.89 2.3-61 2'-47 2-193 3.32-11 2.7.29 25-13 2-3-71 2'.109 2-223 2'-3-19 2-233 22-7-17 2-35 2'-31
7 17 3'
37 47 3-19 67 7-11 3-29 97 107 3'-13 I27 137 3.7' 157 167 3.59 11.17 197 32-23 7.31 227 3.79 13-19 257 3.89 277 7.41 3'- 1 1 307 317 3-109 337 347 3-7.17 367 13.29 32-43 397 11-37 3.139 7-61 19.23 3.149 457 467 32.53 487 7.71
23 2.32 22-7 2.19 24.3 2.29 2'-17 2.3.13 23.11 2.72 2'.3' 2.59 27 2.3-23 22.37 2.79 23-3-7 2.89 22.47 2.32.11 2'.13 2.109 22.3-19 2.7-17 2'.31 2-3.43 22-67 2-139 25-32 2-149 3.7-11 2-3-53 2'.41 2.13' 22.3-29 2.179 2'-23 2.3'-7 22-97 2-199 28.3-17 2-11-19 22.107 2-3-73 26.7 2.229 2'-3'-13 2.239 2'.61 2.3.83
KI
32 19 29 3-13 72 59 3.23 79 89 32.11 109 7.17 3.43 139 149 3-53 132 179 33.7 199 11-19 3-73 229 239 3.83 7.37 269 3'.31 172 13-23 3.103 11-29 7.47 3.113 349 359 3'.41 379 389 3.7.19 409 419 3-11-13 439 449 3'- 17 7-67 479 3.163 499
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
P -
.
8
2. !a E.
8m % r 5
rp
g
50 51 52 53 54
2'. 5' 2-3.5.17 2"5- 13 2.5-53 22-38-5
3.167 7.73
55 56 _. 57 58 59
2.52-11 2'.5-7 2-3.5-19 22-5-29 2-5.59
19.29 3.11.17
60 61 62 63 64
2"3-5' 2.5-61 22.5.31 2.32-5-7 27-5
65 66 67 68 69 70 71 72 .~ 73 74
242.13 22.3.5711 2.5.67 2'-5.17 2.3-5.23 F.52-7 2.5-71 24.32.5 2-5.73 2'-5.37
75 76 77 78 79
2.3-5s 23-5-19 2.5.7.11 2'-3.5.13 2.5.79
80
84
25.52 2.3'-5 2'.5.41 2.5-83 23.3-5.7
85 86 87 88 89
2.5'.17 2'.5.43 2-3-5.29 24.5.11 2.5.89
23.37 3-7.41 13-67
90 91 92 93 94
22.32.52 2-5-7-13 2'-5.23 2.3.5.31 2'.5-47
17-53
95 96 97 98 99
2.5'-19 26.3.5 2.5.97 22.5.72 2.32.5.1 1
~~
81
82 83
521
33.59 541
571
7-83 3-197 601
13-47 3'-23 631 641
3-7-31 661 _ _ ~
11-61 3-227 691 701
32-79 7.103 17.43 3.13.19 751 761
3-257 11-71 7.113 32.89 811 821
3-277 2g2
881
3'. 11 911
3-307 72-19 941
3.317 3 l2 971 3'.109 991
2.251 29 2-32-29 P-7-19 2-271 23-3-23 2.281 22.11-13 2-3-97 2'-37 2-7-43 22-3'- 17 2.311 23-79 2-3-107 22.163 2-331 25.3.7 2-11.31 22-173 2.38.13 2'-89 2.192 22.3.61 2-7.53
503
3'-19 523
13-41 3.181 7-79 563
3-191 11-53 593
3'-67 613
7-89 3.21 1 643 653
3-13-17 673 683
3'.7.11 19.37 23.31 3-241 733 743
2'.3'-7 2-257 22.131 2.3.89 2'-17
5.101 5.103 3-52.7 5-107 5.109
2-11-23 2'.3.43 2.263 23-67 2.3.7-13
3.13' 11-47 17.31 3-179
2-277 22-3-47 2-7.41 2a.73 2.33-11
3.5.37 5.113 52.23 3'.5.13 5.7.17
22.139 2.283 26.32 2.293 22.149
557
2'-151 2-307 24.3.13 2.317 F-7.23
5.11' 3.5-41 5-127 3.5-43
2-3.101 23.7-11 2.313 2'.3.53 2-17.19
2.3-109 23-83 2.337 22.3'-19 2.347 26-11 2.3-7.17 22.181 2.367 2'-3-31
5.131 5.7.19 31.52 5.137 5.139 3.5.47 5.11.13 5'.29 3.5.72 5.149
2'-41 2.3'.37 22.132 2.73 23-3-29 2.353 22.179 2.3-1l2 25.23 2.373
32.73 23-29
2.13.29 22.191 2.3'-43 2'.7' 2.397
5.151 32.5.17 5'.31 5.157 3.5.53
22.33-7 2-383 23.97 2-3.131 22.199
757
2'-3.67 2.11.37 23.103 2-3.139 22.211
5.7.23 5-163 3.52.11 5.167 5-13'
2-13.31 2'.3.17 2.7.59 22.11.19 2-32-47
32.5.19 5.173 53.7 3-5.59 5-179
Z3- 107 2.433 22.3+73 2.443 27.7
54
2'.47 2-3-127 22.193 2-17.23 2'.3?.11
3.251 7.109
2-401 2'-7.29 2.3.137 2c.13 2-421
11.73 3.271
2'-3.71 2-431 23.109 2.32.72 2'.223
853 863
19-47
2.7.61 25-33 2.19.23 22.13.17 2.3.149
2.11.41 2'-3. 19 2.461 22.233 2-3.157
3-7.43 11.83 13.71 3.311 23-41
23.113 2-457 22-3.7-11 2.467 2'.59
5.181 3.5.61 52-37 5.11-17 33.5.7
2.3.151 22.229 2.463 28-32-13 2.1 1-43
23.7-17 2.13-37 22.35 2.491 25.31
953
2.3'.53 22-241 2.487 23.3.41 2-7-71
5.191 5.193 3.52.13 5.197 5.199
2'.239 2-3-7.23 2'.61 2-17.29 22.3.83
773
3'.29 13-61
823
7'-17 3-281
32.97 883
3'-107 7.139 983
3-331
547
34.7 577 587
3-199 607 617
3.11.19 7'. 13 647
677
3.229 17.41 7.101 3.239 727
11.67 3'.83 13.59 3.7.37 787 797
3.269 19.43 827
33.31 7.11' 857
3.172 877 887
3-13.23
2'.127 2.7.37 2'.3-11 2.269 2'.137 2.3'.31 23.5 1 2.17' 22.3.72 2.13.23 25-19 2.3.103 22.157 2.11.29 23.34 2.7.47 P-167 2.3.113 2'-43 2.349 2Y3-59 2.359 23.7.1 3 2.32.4 1 2'. 11-17 2-379 28.3 2.389 22-197 2-3.7.19 23.101 2.409 22.32.23 2-419 2'.53 2-3.11.13 2'-7.31 2.439 23-3.37 2.449
937 947
22.227 2.33.17 25.29 2-7-67 22-3-79
3-11.29
2.479
967 977
22.13.19 2-3.163
907
7.131 3'.103
3-7.47 997
23.112
2.4'39
509
3-173 2327'.11 3'.61
50 51 0 52 53 54
13-43
55
569
3.193 19-31 599
3.7.29 619
17-37 3'.71 11-69 659
3I223 7-97 13.53 3.233 709 719 36
739
7.107
60 ~.
61 62 63 64 65 66 67 d
69 68
0
52
70 71 72 73 74
60" 0$ 2.
3-11.23 769
19.41 3.263 17.47
77 78 79
809
80 81 82 83 84
3 2 - 7. I
:I
829 839
3.283 859 11 -79
85 86 87 88 89
3 2 -10 1
919 929 3.31 3
90 91 92 93
13.73
94
7-137 3 . I 7.1 9
95
1 I -8!1 2:i. 4:<
97
3.293 7.1 27 29-31
33.:;7
oa-
g
3 5
E
4
!)(i
; p m9 o o c s 4
b P 0 7
N
0
1
2
3
4
5
6
7
8
9
N
'c3 Zm $;
oz (P
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
2'.5' 2-5-101 3-3.5.17 2-5-103 24-5-13 2.3.P-7 22-5-53 2-5-107 2'-3'-5 2.5-109 22.51.11 2-3-5-37 26-5-7 2.5-113 22-3.5-19 2-53.23 28-5-29 2-3'.5.13 3-5-59 2.5.7.17 3.3.5s 2-5-11' 2'.5.61 2-3.5.41 2'.5.31 2.5' 22.32-5-7 2.5-127 2 8 -5 2-3-5-43 3-51-13 2.5.131 2'.3.5-11 2.5.7-19 P.5.67 2-3'6' 2'-5-17 2.5-137 22-3.5-23 2-5-139 2'-53.7 2-3.5-47 3-5-71 2-5.11.13 26-3'.5 2-53.29 22-5-73 2-3.5.7' 2'-5.37 2-5.149
9-11-13 3-337 1021 1031 3-347 1051 1061 32-7-17 23-47 1091
3.367 11-101 19.59 3-13-29 7-163 1151 38.43 1171 1181 3-397 1201 7-173 3-11-37 1231 17-73 32.139 13.97 31-41 3-7-61 1291 1301 3-19-23 1321 118 3'-149 7-193 1361 3.457 1381 13-107 3.467 17-83 72.29 38-53 11-131 1451 3.487 1471 1481 3-7-71
2-3-167 22-11-23 2-7-73 28-3-43 2-521 22.263 2-32-59 3-67 2-541 22-3-7-13 2.19-29 2'-139 2-3-11.17 2'-283 2.571 2l-3' 2-7-83 P-293 2.3-197 2'-149 2-601 22.3-101 2-13-47 3-7-11 2.3'-23 P.313 2-631 2"3-53 2-641 21-17-19 2.3.7.31 25.41 2-661 2'-32-37 2-11-61 28.132 2-3.227 2'. 73 2-691 2'*3-29 2.701 P.353 2-3-79 2'-179 2-7.103 P-3-11' 2-17-43 3.23 2.3-13-19 22-373
17-59 1013 3-11-31 1033 7-149 3'.13 1063 29-37 3-19' 1093 1103 3.7-53 1123 11-103 32-127 1153 1163 3.17-23 7-13' 1193 3-401 1213 1223 32- 137 11.113 7-179 3-421 19-67 1283 3.431 1303 13-101 38-72 31.43 17-79 3-11-41 29.47 1373 3.461 7.199 23-61 3'- 157 1423 1433 3-13-37 1453 7-11-19 3-491 1483 1493
22-251 2-3-13' 2'0
2-11-47 3-32-29 2-17-31 2a-7-19 2-3-179 3.271 2-547 2'-3.23 2.557 22.281 2-3'-7 2'- 11.13 2.577 22-3.97 2.587 2'.37 2-3-199 P-7.43 2.607 23-32-17 2.617 22.311 2.3-11.19 24-79 2-7'.13 22.3.107 2.647 23.163 2.3'-73 P-331 2-23-29 P-3-7 2-677 3-11-31 2.3-229 25.173 2-17-41 22-3'-13 2-7-101 2'49 2-3.239 3-19 2.727 2'.3-61 2-11-67 22-7-53 2.32.83
3.5-67 5-7-29 52-41 32-5.23 5-11-19 5-211 3.5.71 58-43 5.7.31 3.5.73 5.13-17 5-223 32.53 5.227 5-229 3.5-7-11 5-233 52.47 3.5-79 5-239 5.241 35-5 52.72 5.13-19 3-5.83 5-251 5.11-23 3-52.17 5-257 5.7.37 3'-5.29 5.263 58.53 3.5-89 5-269 5.271 3-5-7-13 5%11 5-277 3'.5-31 5-281 5.283 3-52-19 5-7.41 5-175 3.5-97 5-293 58.59 33-5-11 5-13-23
2-503 28.127 2.3'019 3-7-37 2-523 26-3-11 2-13-41 22-269 2-3.181 2"137 2.7-79 22-32.31 2-563 2'.71 2.3.191 2s.172 2.11.53 2"3*72 2-593 22.13-23 2-3'-67 28-19 2.613 22-3-103 2-7-89 2'-157 2.3.21 1 22-11.29 2.643 2'-3' 2-653 22-7.47 2-3-13.17 2'-167 2-673 22-3-113 2-683 25-43 2.3'-7-11 22-349 2.19-37 2'.3-59 2-23.31 22.359 2-3-241 3.7.13 2-733 3-3-41 2.743 2'- 11-17
19-53 32-113 13-79 17-61 3.349 7-151 11-97 3.359 I087 1097 38-41 1117 72-23 3-379 31.37 13-89 3.389 11.107 1187 3'-7-19 17-71 1217 3.409 1237 29-43 3.419 7.181 1277 32-11.13 1297 1307 3.439 1327 7.191 3-449 23.59 1367 3'.17 19-73 11.127 3-7-67 13-109 1427 3-479 1447 31.47 3'.163 7-211 1487 3-499
24.32-7 2.509 22-257 2-3.173 2*.131 2.232 22-3-89 2-7'-11 2"17 2-3'.61 2'-277 2-13-43 2'-3-47 2-569 22.7-41 2.3-193 24.73 2-19.31 22-33-11 2.599 23.151 2.3-7-29 2'-307 2.619 2'03.13 2-17-37 2'-317 2.3'-71 2'.7-23 2-11-59 22.3.109 2.659 2'.83 2-3-223 2'.337 2-7-97 28-32-19 2-13-53 2'-347 2-3.233 27.11 2.709 3-3.7.17 2-719 2'-181 2-38 2'.367 2-739 2'-3.31 2-7-107
1009 1019 3.7' 1039 1049 3.353 I069 13.83 32. 112 7-157 1109 3.373 1129 17.67 3-383 19-61 7-167 3'-131 29.41 11.109 3-13-31 23.53 1229 3.7-59 1249 1259 3"47 1279 1289 3.433 7-11-17 1319 3-443 13-103 19-71 3'.151 372 7.197 3-463 1399 1409 3-11.43 1429 1439 3'-7.23 1459 13:113 3-17-29 1489 1499
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
2.761 21-383 2-3-257
31.167 17-89 1523 3-7-13 1543
2"47 2-757 21-3-127 2-13-59 2l.193
5.7-43 3-5-101 55-61 5.307 3.5.103
2.3-251 22.379 2-7-109 2'-3 2-773
11-137 37-41 3.509 29.53 1-13-17
21.13-29 2-3-1 1-23 20-191 2.769 21.32-43
3.503 71-31 11.139 34-19 1549
150 151 152 153 154
3e.11.47 7-223 1571 3-17-31 37-43
2'-97 2-11-71 3.3-131 2-7-113 20.199
1553 3.521 112-13 1583 3a.59
2.3-7.37 21-17-23 2-787 24-32-11 2-797
5-311 5-313 32.52.7 5-317 5-11-29
2'-389 2.38.29 2a-197 2-13-61 P.3-7-19
32.173 1567 19-83 3.23' 1597
2-19-41 25.72 2-3-263 21.397 2.17-47
1559 3-523 1579 7.227 3-13.41
155 156 157 158 159
20.55 2.5.7.23 22-34-5 2-5-163 20-5.41
1601 32.179 1621 7.233 3-547
2-32-89 3-13-31 2.811 26-3-17 2-821
7-229 1613 3-541 23-71 31.53
22.401 2.3-269 23-7-29 2-19-43 3.3-137
3-5-107 5-17-19 9-13 3-5-109 5-7.47
2-11 -73 24.101 2-3-271 2'.409 2.823
1607 3-72.11 1627 1637 3'-61
23-3-67 2-809 22. 11-37 2-32-7.13 2 ' . 103
1609 1619 38.181 11-149 17.97
160 161 162 163 164
165 166 167 168 169
2-3-55.11 21-5-83 2.5.167 24.3.5-7 2-5-13'
13.127 11-151 3-557 411 19.89
21-7-59 2.3.277 2*11- 19 2-29 21-32-47
3-19-29 1663 7-239 32-1 1.17 1693
2-827 2l.13 2.3'-31 21.421 2-7-11'
5-331 3.5-37 52.67 5-337 3-5-113
25-32-23 2-72-17 22-419 2-3-281 25-53
1657 1667 3.13.43 7-241 1697
2-829 22-3-139 2.839 23.211 2.3.283
3.7-79 1669 23.73 3-563 1699
165 166 167 168 169
170 171 172 173 174
21-55-17 23-5-19 23.5-43 2-5.173 21-3.5-29
35.7 29-59 1721 3-577 1741
2-23-31 24-107 2.3.7-41 21-433 2-13.67
13.131 3-571 1723 1733 3-7-83
2s-3-71 2.857 P.431 2.3-17' 24.109
5-11 -31 5-73 3.9-23 5.347 5.349
2.853 22-3.11-13 2-863 23.7.31 2-32-97
3-569 17.101 11-157 3'-193 1747
3-7-61 2-859 26-33 2.11.79 2'*19-23
1709 32-191 7.13-19 37.47 3.11 -53
170 171 172 173 174
175 176 177 178 179
2-8-7 2'-5-11 2-3.5.59 22.5.89 2.5-179
17.103 3.587 7-11 -23 13.137 32-199
20.3.73 2.881 22-443 2.34-11 28.7
1753 41.43 32-197 1783 11.163
2-877 22.32-P 2-887 2.223 2.3.13-23
33.5-13 5.353 52-71 3-5-7.17 5.359
22-439 2-883 2'.3.37 2-19-47 22-449
7.251 3-19-31 1777 1787 3-599
2-3.293 23-13-17 2.7-127 3.3.149 2-29-31
1759 29.61 3-593 1789 7.257
175 176 177 178 179
180 181 182 183 184
23.32-52 2-5.181 21-5-7-13 2.3.5-61 2'.5-23
1801 1811 3.607 1831 7-263
2-17-53 2'.3.151 2-911 2'-229 2-3-307
3.601 71-37 1823 3.13-47 19-97
22.11-41 2-907 25.3-19 2-7.131 22-461
5-19' 3-5-11' 52-73 5.367 32.5.41
2-3-7043 23-227 2.11.83 22-33.17 2.13-71
13-139 23-79 32-7-29 11-167 1847
2'.113 2-32.101 3.457 2-919 23.3.7.11
33-67 17.107 31-59 3-613 432
180 181 182 183 184
185 186 187 188 189
2.52.37 21-3.5.31 2.5-11-17 23.5.47 2-38.5.7
3.617 1861 1871 32-11-19 31-61
22.463 2.72.19 24-32-13 2-941 22.11.43
17.109 3'-23 1873 7.269 3.631
2-32-103 23-233 2-937 22.3-157 2.947
5-7-53 5-373 3-54 5-13.29 5.379
28.29 2-3.311 31-7-67 2-23-41 23.3.79
3-619 1867 1877 3.17-37 7.271
2-929 22-467 2.3-313 25-59 2.13.73
11.13' 3.7-89 1879 1889 32.211
185 186 187 188 189
190 191 192 193 194
3-51-19 2.5-191 27.3-5 2-5-193 21-5-97
1901 3.72-13 17.113 1931 3-647
2-3-317 2'.239 2-31' 22-3-7-23 2.971
11-173 1913 3.641 1933 29.67
24.7.17 2-3-11.29 3-13-37 2-967 2a. 36
3-5-127 5-383 52-7-11 32.5-43 5-389
2-953 22-479 2.32-107 2.7.139
1907 33.71 41-47 13-149 3.11-59
23.83 19-101 3-643 7-277 1949
190 191 192 193 194
195 196 197 198 199
2.3-55-13 23.5-79 2.5-197 22-32-5. 1I 2.5-199
1951 37-53 33-73 7-283 11.181
25-61 2.32-109 3.17-29 2-991 21.3.83
39-7-31 13-151 1973 3.661 1993
2.977 22.491 2.3-7-47 28-31 2-997
5.17.23 3.5.131 52-79 5.397 3-5.719
3-3-163 2-983 3-13-19 2.3.331 3.499
19.103 7-281 3-659 1987 1997
150 151 152 153 154
22-34? 205.151 2'.5.19 2-3~.5.17 21-5-7. 11
19-79 1511 3-13 1531 23-67
155 156 157 158 159
2.52.31 23.3-5.13 2.5-157 21-5-79 2-3-5053
160 161 162 163 164
2.751 21-3-7
24.112
22-32-53 2-7-137 23-241 2-3-17-19 22-487 2.11 -89 2'.3.41 2-23.43 22.7-71 2.33.37
3-653 11-179 1979 32-13.17 1999
-
N
0
1
2
3
4
5
6
7
8
9
N
m3c3 00 8OS m 00 A
rn
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
P-52 2.3.5.67 22.5-101 2-5.7.29 3-3.5.17 2.52-41 22.5.103 2.32-5.23 2'.5.13 2.5.11-19 22-3.52.7 2.5-211 23-5-53 2.3.5.71 2'-5.107 2-52-43 2'.3'.5 2-5.7.31 23-5.109 2.3-5.73 3.52.11 2.5.13.17 3-3.5.37 2.5-223 2'-5-7 2.32-53 22.5-113 2.5.227 23.3.5.19 2.5.229 22.52-23 2.3.5.7.11 2'.5.29 2-5-233 2"-32-5.13 2.5-47 3-5-59 2-3.5.79 3.5.7.17 2.5.239 2'.3-5 2.5.241 22-5-11' 2-3'.5 3-5-61 2.51.72 22.3-5-41 2.5-13.19 2'-5-31 2.3-5.83
3.23.29 2011 43.47 3-677 13-157 7.293 32.229 19.109 2081 3-17-41 11-191 2111 3.7-101 2131 2141 3'-239 2161 13.167 3.727 7-313 31.71 3.11-67 2221 23.97 33-83 2251 7-17-19 3-757 2281 29.79 3.13-59 2311 11.211 39.7.37 2341 2351 3.787 2371 2381 3.797 7' 241 1 32.269 11.13.17 2441 3-19.43 23-107 7.353 3-827 47.53
2-7-11-13 22-503 2.3-337 24.121 2.1021 22.33.19 2-1031 2'-7.37 2.3.347 22-523 2.1051 2O-3-11 2.1061 22-13-41 2-3'.7.17 23.269 2.23-47 3.3-181 2-1091 24. 137 2.3.367 22.7-79 2.11.101 23-32-31 2.19.59 22.563 2.3.13.29 25.71 2.7.163 22.3-191 2-1151 3.172 2.3"43 22-11-53 2.1171 24-3-72 2.1181 22-593 2-3-397 23.13-23 2.1201 22s-32.67 2.7.173 27-19 2-3-11.37 22-613 2.1231 3-3.103 2.17-73 21-7-89
2003 3-11-61 7-172 19.107 3'.227 2053 2063 3.691 2083 7-13-23 3-701 2113 11-193 33.79 2143 2153 3-7-103 41.53 37-59 3-17-43 2203 2213 P.13.19 7-11-29 2243 3-751 31-73 2273 3-761 2293 72-47 32-257 23-101 2333 3-11.71 13-181 17-139 3.7-113 2383 2393 33.89 19-127 2423 3.811 7-349 11.223 3-821 2473 13-191 32.217
22.3.167 2-19.53 23.11-23 2-3-113 22.7.73 2-13-79 24.3-43 2.17.61 22-521 2-3.349 3.263 2-7-151 Z2-3'-59 2.11-97 25.67 2-3.359 22.541 2.1087 23.3.7.13 2-1097 3.19-29 2-33*41 24.139 2-1117 22-3-11-17 2.7'-23 23-283 2.3.379 2'.571 2-31-37 28-32
2-13-89 23.7.83 2.3.389 23-293 2.11-107 22-3-197 2.1187 24.149 2.32-7-19 22-601 2-17-71 23-3.101 2-1217 23-13-47 2.3-409 2'.7-11 2-1237 2-33-23 2-29-43
5.401 5-13.31 34.52 5.11.37 5-409 3.5-137 5.7.59 52-83 3.5-139 5-419 5-421 32-5-47 53.17 5-7.61 3-5.11-13 5-431 5.433 3-52.29 5.19-23 5.439 32.5.72 5.443 52-89 3.5.149 5.449 5-11-41 3.5-151 52.7.13 5.457 33.5-17 5.461 5-463 3.52-31 5-467 5.7.67 3.5.157 5-11-43 51-19 32.5-53 5.479 5.13-37 3-5-7-23 8-97 5.487 3.5.163 5.491 5.17-29 32-52.11 5.7-71 5.499
2.17.59 25-32-7 2-1013 22.509 2.3.1 1-31 23-257 2.1033 2'.3.173 2-7.149 2'.131 2-3'-13 22.232 2.1063 2'-3-89 2.29-37 2'-7'. 11 2-3-199 Z7-17 2.1093 2'.32.6 1 2-1103 23.277 2.3.7.53 22-13-43 2.1123 24.3.47 2-11-103 22.569 2-32-127 23.7-41 2.1153 22-3.193 2.1163 25-73 2.3-17-23 22-19.31 2.7-13' 23.33.11 2.1193 22.599 2-3.401 2'.151 2-1213 22.3.7-29 2-1223 23-307 2-3'-137 22.619 2.11-113 2O.3-13
32-223 2017 2027 3.7-97 23.89 112-17 3.13.53 31-67 2087 32-233 72.43 29-73 3-709 2137 19.113 3-719 11.197 7.311 37 133 2207 3.739 17-131 2237 3.7.107 37.61 2267 3-11-23 2287 2297 3.769 7.331 13-179 3.19.41 2347 2357 32-263 2377 7-11-31 3-17-47 29-83 2417 3.809 2437 2447 33.7.13 2467 2477 3-829 11-227
23.251 2.1009 22-3-132 2-1019 2" 2-3-73 2'.11.47 2.1039 23-32. 29 2-1049 22.17.31 2-3-353 2'-7-19 2.1069 2'-3.179 2.13.83 23.271 2-32-11' 22.547 2.7-157 25-3.23 2.1109 22.557 2.3-373 23.281 2-1129 22-3'-7 2-17-67 2'-11.13 2.3-383 22.577 2.19.61 23-3.97 2-722-587 167 2.32-131 26.37 2-29-41 2'.3.199 2-11-109 23.7.43 2.3-13-31 22.607 2-23-53 2'-32-17 2-1229 22.617 2.3.7.59 23.311 2.1249
72.41 3-673 2029 2039 3-683 29.71 2069 33.7.11 2089 2099 3.19.37 13.163 2129 3.23-31 7-307 17.127 32.24 1 2179 11.199 3-733 472 7.317 3.743 2239 13.173 3'.251 2269 43.53 3.7-109 112-19 2309 3-773 17.137 2339 3'.29 7-337 23-103 3.13.61 2389 2399 3.11.73 41-59 7.347 32.271 31.79 2459 3-823 37.67 19-131 3.72.17
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
g
2.7-179 22.17-37 ~. _ _ 2-3-421 2'.317 2-19.67
23-109 3-839 7-19 43.59 3'.283
22-3.11.19 2-1259 25-79 2*3',47 22.72-13
13.193 11-229 32.281 2539 2549
250 251 8 252 253 254
5.7-73 3'.5-19 52.103 5.11.47 3-5.173
22-32-71 2.i283 2'.7-23 2-3.431 22-11.59
2557
17-151 3-859 13-199 72.53
2.1279 23-3-107 2.1289 2'.647 2-3-433
3.853 7.367 2579 3.863 23.113
255 256 257 258 259
22.3.7-31 2.1307 26-41 2-3.439 22-661
5-521 5.523 3.53.7 5-17-31 5-23'
2.1303 2'.3. 109 2.13.101 2'.659 2-33-72
3.11-79 2617 .37-71 3'-293 2647
2'.163 2-7.11.17 22-32.73 2-1319 23.331
2609 33.97 11.239 7.13.29 3.883
260 261 262 263 264
7-379 2663 35-11 2683 2693
2-1327 2a-32-37 2-7-191 22-11-61 2-3.449
32.5.59 5.13.41 5'.107 3.5-179 5-7'-11
25.83 __ 2-31.43 22-3-223 2.17.79 23.337
2657 3-7-127 2677 2687 3-29-31
2-3-443 22.23.29 2.13-103 27-3.7 2.19.71
2659 17.157 3.19-47 2689 2699
265 266 267
3.17.53 2713 7-389 3-911 13.211
24.138 - -_ 2-23.59 22-3-227 2.1367 23.73
5.541 3.5-181 52. 109 5-547 3'-5.61
2.3-11-41 2'.7-97 2-29.47 2'-32.19 2.1373
2707 11-13.19 3'.101 7.1723 41-67
2'.677 2.3'.151 23.11.31 2.37' 22.3.229
32.7-43 2719 2729 3.11-83 2749
2753 3'-307 47.59 112-23 3-7'.19
2-34-17 - -. 2'-691 2.19.73 25.3-29 2-11-127
5.19.29 5.7.79 3.52.37 5.557 5.13.43
22.13.53 2.3.461 23.347 2.7.199 22-3-233
3.919 2767 2777 3.929 2797
2.7.197 2'. 173 2-3.463 2'.17.41 2-1399
31-89 3.13.71 7.397 2789 3'-311
2.3-467 22-19-37 2-17.83 2'.3-59 2-72-29
2803 29-97 3-941 2833 2843
22.701 2.3.7.67 23.353 2-13-109 2*-3'.79
3.5-11-17 5.563 8.113 34-5.7 5.569
2-23.61 28.11 2.3'.157 22.709 2.1423
7-401 3'.313 11.257 2837 3.13.73
23.33.13 2.1409 2'.7.101 2-3.11.43 25.89
532 2819 3.23.41 17.167 7-11-37
280 281 282 283 284
2-11-131 22-3-241
3'-317 7-409 132-17 3-31' 11-263
2.1427 2'-179 2-3-479 2'.7.103 2-1447
5.571 3.5.191 53-23 5.577 3-5-193 .
2'-3.7-17 2.1433 22.719 2-3-13-37 2'.181
2857 47.61 3-7.137 2887 2897
2.1429 2'.3.239 2-1439 23.1~2 2.32-7-23
3.953 19.151 2879 33.107 13-223
285 286 287 288 289
2909 3-7.139 29.101 2939 3.983
290 ~. 291 292 293 294
250 251 252 253 254
22.54 2-5-251 2'-32-5-7 2-5-11-23 22.5-127
41-61 3'-31 2521 2531 3-7-1 1 2
2-3'-139 2'-157 2-13-97 22-3-211 2-31-41
2503 7.359 . __. 3-29 17.149 2543
255 256 257 258 259
2-3.5'.17 20-5 2-5.257 2'-3.5.43 2-5.7.37
2551 Ei97 3.857 29-89 2591
2'-11-29 2-3-7-61 22-643 2-1291 2'.3'
3-23.37 11-233 31-83 3'-7.41 2593
2.1277 22-641 2-3'-11.13 2'- 17-19 2.1 297
260 261 262 263 264
2'.52-13 2.38.5-29 22-5-131 2-5.263 2'-3.5- 11
32.17a 7.373 . 2621 3-877 19.139
2.1301 22.653 2-3-19-23 2'*7-47 2-1321
19-137 3-13-67 43-61 2633 3.881
2.52.53 22-5-7-19 2.3.5-89 2'.5.67 2-5-269
11-241 3.887 _ ___ 267 1 7-383 32-13-23
22.3-13-17 2.1_ -1' 24-167 2-3'-149 22-673
265 ~
.
266 267 268 269
_
~
3-5.167 5-503 52.101 3-5-13' 5-509
~
270
22.38. .5t
272 273 274
2.51271 2'.5.17 2-3-5-7.13 22-5-137
37-73 2711 3.907 2731 2741
275 276 277 278 279
2.58.11 2'.3-5.23 2.5.277 2'.5.139 2-3'.5.31
3-7.131 ~-~ 11.251 17.163 3"103 2791
280 281 282 283 284
24.52.7 2.5.281 2.3.5.47 2.5-283 2'.5-71
2801 3-937 7.13.31 19-149 3.947
285 286 287 288 289
2.3.FiZ-19
290 1 29 ~. 292 293 294
22.fi2.29 2.315.97 23.5-73 2.5.293 22.3-5.72
3.987 - _._ 41.71 23.127 3.977 17-173
2.1451 25.7-13 2-3.487 22-733 2-1471
2903 3.971 37.79 7.419 33-109
23.3-11 2 2-31.47 22-17-43 2.3'.163 27-23
5-7.83 5-11.53 31-52.13 5.587 5.19.31
2.1453 22-30 2.7.11.19 23.367 2.3.491
32.17.19 2917 2927 3.11.89 7.421
22.727 2.1459 2'.3-61 2.13.113 22.11.67
295 296 297 298 299
2.52-59 2'.5-37 2.33.5.11 22.5.149 2.5-13.23
13.227 32-7-47 2971 11-271 3.997
23.32-41 2-1481 2'.743 2.3.7.71 2'- 11-17
2953 2963 3-991 19-157 41-73
2.7.211 2'.3.13.19 2.1487 23.373 2.3.499
3.5-197 5.593 52.7.17 3-5-199 5.599
22.739 2-1483 25.3.31 2.1493 22-7-107
2957 3.23.43 13.229 29.103 34-37
2.3.17.29 23-7.53 2-1489 22.3243 2.1499
5ii
~
~
2.7.193 ~. ~ . 2'-3.1 13 2-1361 22.683 2-3.457
23.313 2-3.419 - ~~. 22.631 2-7-181 2'.3.53
26.43 2-1381 22.3'-7.11 2-13.107 2'.349
_2851 _ _-
2861 32-11-29 43-67 72-59
_
~
1 1.289 ~ . ~~
2969 32-331 72-61 2999
.
c;l
o"4 00 N
0
1
2
3
4
5
6
7
8
9
N S E (P
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 236 337 338 339 340 341 342 343 344 345 346 347 348 349
2a.3.5' 2.5.7-43 22-5.151 2.3.5.101 2'-5-19 2-51-61 22.3'-5-17 2-5-307 2'*5.7.11 2.3-5.103 22-9-31 2-5-311 2'-3.5.13 2-5-313 4-5-157 2.3-52-7 2'-5-79 2-5.317 22.3.5.53 2-5-11.29 27.9 2-3.5-107 2'-5-7-23 2-5-17-19 2'-3'-5 2-5a-13 22-5.163 2-3.5.109 2'-5.41 2-5.7.47 22-3.52.11 2.5-331 2'-5.83 2-3'-5-37 22.5-167 2-52.67 25-3.5-7 2-5.337 22-5.13' 2-3.5-113 2'-52-17 2.5-11.31 22-3'.5-19 2-5-72 2'.5-43 2-3-52.23 4-5-173 2-5-347 2'-3.5-29 2.5-349
3001 3011 3-19-53 7-433
3041 3'.113
3061 37.83 3.13.79 11.281 7.443 3-17-61
3121 31-101 3-349 23-137 29.109 3-7-151
3181 3191 3-11-97 13'-19
3221 35-359 7.463
3251 3.1087
3271 17-193 3-1097
3301 7-11-43 3'-41
3331 13-257 3-1117
3361 3371 3-7"23
3391 19.179 32-379 11.311 47-73 3-31.37 7-17-29
3461 3-13-89 59
3491
2-19-79 4.3-251 2.1511 2l.379 2-32-13' 22-7-109 2.1531 2'0.3 2.23-67 22.773 2.3-11-47 2'.389 2-7-223 22-3l-29 2.1571 2'-197 2-3.17-31 4-13.61 2-37-43 28-3-7-19 2.1601 22.11.73 2-3'-179 25.101 2-1621 22-3-271 2.7-233 2a-409 2-3-547 22-823 2-13-127 2'-3'.23 2-11.151 22-7'*17 2-3-557 21.419 2.411 22-3-281 2-19-89 28-53 2-35-7 22.853 2-29.59 2"3-11-13 2.1721 22.863 2-3-577 Y.7-31 2.1741 9-32-97
3.7-11-13 23-131
3023 32.337 17.179 43-71 3-1021 7.439
3083 3.1031 29-107 11.283 32-347 13.241 7-449 3.1051
3163 19.167 3.1061 31-103
3203 38-7-17 11-293 53-61 3-23-47
3253 13.251 3-1091 72-67 37-89 3'-367
3313 3323 3-11.101
3343 7-479 3-19-59
3373 17.199 3'*13-29 41.83
3413 3-7-163
3433 11.313 3-1151
3463 23.151 34-43 7-499
22.751 2.11-137 24-3-3-7 2-37-41 22.761 2-3-509 2'.383 2-29-53 22-3.257 2-7.13-17 25-97 2.3'-173 22.11-71 2.1567 25-3.131 2-19.83 22.7-113 2-3-23' 2'.199 2.1597 22-3'-89 2.1607 2"13.31 2-3.7'-11 22.811 2.1627 28.3-17 2-1637 21-821 2.33-61 23.7.59 2-1657 22-3.277 2-1667 2'-11.19 2-3-13.43 P.292 2.7-241 2'-3'-47 2.1697 22.23-37 2-3-569 25-107 2-17.101 2'.3.7.41 2.11.157 2'-433 2-3'.193 22-13-67 2-1747
5-601 3'-5.65 52.112 5-607 3-5.7-29 5-13-47 5-613 3-52.41 5.617 5-619 3a-5-23 5.749 55 3.5-11-19 5-17-37 5.631 3-5-211 52-127 5-7'-13 38-5-71 5-641 5.643 3-52.43 5.647 5-11-59 3-5-7-31 5-653 52.131 32-5-73 5-659 5.661 3-5-13.17 52-7-19 5.23.29 3-5-223 5.11.61 5-673 3a-53 5-677 5-7-97 3.5.227 5.683 5'*137 3-5.229 5.13.53 5-691 3'-5-7-11 52-139 5-17-41 3.5-233
2.32.167 2'.13-29 2-17-89 22-3-11-23 2.1523 2'.191 2-3.7-73 22.769 2.1543 2'.3'-43 2-1553 22-19-41 2-3.521 26-72 2.112-13 22.3-263 2-1583 23*397 2-P.59 22-17.47 2-7.229 2'-3-67 2.1613 2'4309 2-3.541 2"11-37 2-23-71 2'.3'-7.13 2.31-53 25.103 2-3-19-29 22-829 2-1663 23-3.139 2-7-239 2'.839 2.32.11-17 24-211 2-1693 22-3-283 2-13-131 2'-7-61 2-3-571 21-859 2.1723 27-38 2.1733 2*.11*79 2-3-7433 2'-19*23
31-97 7-431 3-1009
3037 11-277 3-1019
3067 17.181 3'.78 19-163 13-239 3.1039 53-59
3137 3.1049 7.11.41
3167 32-353
28-47 2.3-503 2'-757 2-7r-31 2'-3.127 2.1 1.139 2'-13.59 2.3'.19 2'.193 2.1549 2'.3.7*37 2.1559 23.17-23 2.3-523 22-787 2-1579 25-32-11 2-7-227 2'-797
3187 23-139 3-1069
3217 7.461 3-13-83 17.191
3257 35-11' 29.113 19-173 3.7.157
3307 31-107 3-1109 47-71
3347 32.373 7-13-37 11.307 3-1129 43-79
3407 3.17-67 23-149 7.491 31.383
3457 3467 3-19.61 11.317 13-269
2.3-13-41 23.401 2.1609 2'.3.269 2-1619 2'.7-29 2*3'-181 22.19-43 2.1 1.149 2'.3.137 2.17-97 2'*827 2.3-7.79 28-13 2-1669 22.3"31 2-23.73 2-3.421 2.3-563 22-7.112 2-1699 2'-3-71 2.1709 22.857 2-32.191 2'.431 2-7-13-19 22-3-1 7' 2-37-47 2'.109 2.3.11-53
3-17-59
3019 13-233 3.1013
3049 7-19-23 3'-11-31
3079 3089 3-1033
3109 3119 3.7.149 43-73 47.67 3'013
3169 11.172 3-1063 7-457
3209 3.29.37
3229 41.79 3'.19
3259 7-467 11.13.23 3.1093
3299 3.1103
3319 3329 32-7.53 17.197
3359 3.1123 31.109
3389 3.11.103 7.487 13-263 3'.127 19-181
3449 3.1153
3469 P.71 3.1163
3499
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 33 1 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 g
8
350 351 352 353 354
22.53-7 2.33-5.13 28-5.11 2-5.353 22.3-5-59
32-389 3511 7-503 3-11-107 3541
2-17-103 2"439 2-3.587 22-883 2.7.11.23
31.113 3.1171 13-271 3533 3.1181
24.3.73 2.7.251 22-881 2.3.19.31 2'.443
5.701 5-19-37 3-52-47 5.7-101 5.709
2.1753 22-3.293 2-41-43 24.13.17 2.3'-197
3.7-167 3517 3527 33.131 3547
22.877 2-1759 23.32.72 2.29.61 2'.887
1 12.29 3'-17.23 3529 3539 3-7.13'
350 351 8 352 353 354
355 356 357 358 359
2.9.71 2"5-89 2-3-5.7-17 2'-5.179 2-5-359
53.67 3-1187 3571 3581 3'-7.19
2'.3-37 2-13-137 22-19-47 2.3'.199 21.449
11.17-19 7-509 32.397 3583 3593
2.1777 22.3'.11 2-1787 29-7 2.3.599
32-5.79 5.23.31 5'. 11.13 3.5-239 5.719
22.7-127 2.1783 2'.3.149 2-11.163 22-29.31
3557 3-29.41 72-73 17.211 3.11.109
2.3-593 2'.223 2.1789 2'.3.13.23 2-7.257
3559 43.83 3.1193 37.97 59.61
355 356 357 358 359
360 361 362 363 364
2'.32.53 2.5-19 22.5-181 2.3-5.11' 28.5.7.13
13.277 23-157 3-17-71 3631 11.331
2.1801 21-3-7-43 2.1811 2'-227 2-3.607
3-1201 3613 3623 3.7-173 3643
22.17-53 2-13.139 23.3.151 2-23.79 22-911
5.7.103 3.5-241 53-29 5.727 38-5
2.3.601 25.113 2*7'.37 22.32.101 2.1823
3607 3617 3'.13-31 3637 7.521
2'.11.41 2-33.67 22.907 2-17.107 26.3.19
8'.401 7.11-47 19.191 3.1213 41-89
360 361 362 363 364
365 366 367 368 369
2.9.73 22-3.5-61 2-5.367 25.5.23 2-32.5-41
3.1217 7.523 3671 3'-409 3691
22.11.83 2-1831 2'-3'.17 2-7-263 2'.13.71
13-281 32.1 1.37 3673 29-127 3-1231
2-3'-7-29 2'-229 2-11-167 22.3.307 2.1847
5.17-43 5.733 3.52.72 5-11.67 5-739
23.457 2.3.13.47 22.919 2.19.97 2'.3.7.11
3.23-53 19-193 3677 3.1229 3697
2.31.59 2'.7.131 2.3.613 2'.461 2.432
3659 3-1223 13-283 7-17.31 33.137
365 366 367 368 369
370 371 372 373 374
2'052.37 2.5-7-53 28.3.5.31 2-5.373 22.5-11-17
3701 3-1237 612 7-13-41 3.29-43
2.30617 27-29 2.1861 22-3-311 2-1871
7-23' 47.79 3-17-73 3733 19-197
2'.463 2.3-619 2'-7'- 19 2.1867 25.32.13
3.5.13.19 5.743 52.149 3'.5.83 5.7-107
2-17.109 2'.929 2.3'.23 23.467 2-1873
11-337 32.7.59 3727 37-101 3-1249
22.32.103 2.1 1.132 2'.233 2.3.7.89 22.937
3709 3719 3.11.113 3739 23.163
370 371 372 373 374
375 376 377 378 379
2.3.5' 2'-5-47 2-5.13.29 22.33.5.7 2-5.379
112-31 3761 32.419 19-199 17-223
2"7-67 2-32-11-19 22.23-41 2.31-61 2'.3-79
3a-139 53-71 7'.11 3-13.97 3793
2-1877 22.941 2.3-17.37 2a-11-43 2.7-271
5.751 3-5-251 52.151 5.757 3-5.11-23
22.3.313 2.7.269 28-59 2.3-631 22-13.73
13-17' 3767 3.1259 7.541 3797
2.1879 2'-3.157 2.1889 2'.947 2-32.211
3-7.179 3769 3779 32-421 29-131
375 376 377 378 379
380 381 382 383 384
2a-53-19 2-3-5.127 22.5-191 2.5-383 28.3-5
3-7-181 37-103 3821 3-1277 23-167
2-1901 2'-953 2.3-72-13 28-479 2-17-113
3803 3-31-41 3823 3833 32-7-61
22.3-317 2.1907 2'-239 2-3'-71 22.312
5-761 5-7.109 32.52-17 5.13.59 5.769
2.1 1.173 2'-32.53 2.1913 22.7.137 2.3.641
34.47 11-347 43.89 3-1279 3847
25.7.17 2-23-83 22.3.11-29 2.19.101 23.13.37
13.293 3-19.67 7.547 11.349 3.1283
380 381 382 383 384
385 386 387 388 389
2.53.7-11 22-5-193 2-32-5-43 2'-5.97 2.5.389
3851 3'- 11-13 72-79 3881 3.1297
22.32.107 2-1931 25.112 2-3-647 22.7.139
3853 3863 3-1291 11-353 17-229
2.41-47 2'-3-7.23 2.13-149 2'.971 2.3-11-59
3.5-257 5.773 53.31 3.5.7-37 5-19-41
24.241 2-1933 22.3.17.19 2.29-67 23.487
7.19.29 3-1289 3877 132.23 32.433
2.3.643 2'.967 2.7.277 24-35 2.1949
17-227 53.73 32.431 3889 7.557
385 386 387 388 389
390 391 392 393 394
22-3-9-13 2-5.17-23 24.5.72 2-3-5-131 3-5-197
47-83 391 1 3-1307 3931 7.563
2.1951 2'-3-163 2.37-53 22.983 2-3"73
3-1301 7-13-43 3923 32-19-23 3943
2l'-61 2.19-103 'La.32.109 2.7-281 2'-17-29
5.11.71 3"5-29 52.157 5-787 3-5.263
2.32.7.31 22-11449 2.13-151 25.3-41 2.1973
3907 3917 3-7-11.17 31.127 3947
22.977 2.3.653 2'.491 2-11.179 22.3-7.47
3-1303 3919 3929 3-13.101 11-359
390 391 392 393 394
395 396 397 398 399
2-53-79 2'. 32.5.11 2.5.397 22-5-199 2.3.5.7-19
32-439 17-233 11.19 3-1327 13-307
2'.13-19 2.7-283 22-3-331 2-11-181 2'-499
59.67 3.1321 29.137 7-569 3.11'
2-3.659 22.991 2.1987 2'-3-83 2.1997
5.7-113 5.13.61 3.52.53 5.797 5-17-41
22.23-43 2-3.661 28-7-71 2.1993 2'-3"37
3.1319 3967 41.97 32.443 7.571
2.1979 2'.31 2.32-13-17 22.997 2.1999
37.107 34.72 23-173 3989 3-31.43
395 396 397 W N 00 398 w rp Q, 3 9 9 g j C'L
400 40 1 402 403 404 405 406 407 408 409 410 41 1 412 413 414 415 416 417 418 419 420 42 1 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 44 1 442 443 444 445 446 447 448 449
25.53 2.5-401 22-3-5.67 2.5-13-31 2'-5-101 2.3'.52 22-5-7-29 2.5-11.37 2'.3.5.17 2.5.409 22.52-41 2.3.5.137 23-5.103 2.5-7.59 22.32.5.23 2.52433 26.5.13 2.3.5-139 22-5.11.19 2.5-419 2"3.52.7 2.5.421 22.5-211 2.32-5.47 2'.5-53 2.58.17 22.3.5.71 2.5.7.61 2'.5-107 2.3.5.11-13 22-52-43 2.5.431 25.3'.5 2-5.433 22.5.7-31 2-3.52-29 28.5-109 2.5.19-23 2'.3.5.73 2-5.439 24.52.11 2.32-5.72 22.5.13.17 2.5-443 2'.3-5-37 2.52-89 22-5-223 2-3-5.149 27.5-7 2.5.449
4001 3-7-191 4021 29.139 32-449 4051 31-131 3-23.59 7.11.53 4091 3-1367 4111 13.317 35-17 41.101 7.593 3.19.73 43-97 37.113 3-11.127 4201 4211 32-7.67 4231 4241 3-13-109 4261 4271 3.1427 7.613 11-17-23 32.479 29-149 61-71 3.1447 19.229 72*89 3-31-47 13.337 4391 3'.163 11.401 4421 3.7.211 4441 4451 3.1487 17-263 4481 32.499
2-3-23-29 22-17-59 2.2011 2'-3'-7 2.43.47 22.1013 2.3.677 23-509 2-13.157 2'.3-11.31 2-7.293 2'-257 2.32-229 3-1033 2-19.109 2a-3-173 2-2081 22-7-149 2.3-17.41 25.131 2-11-191 22-3'- 13 2-2111 28.232 2.3.7-101 22-1063 2.2131 2'-3-89 2.2141 22-29-37 2.32.239 2J.72.11 2-2161 22-3-19 2.13-167 26-17 2.3.727 22.1093 2.7-313 28-32-61 2-31-71 2'-1103 2.3.11.67 2'-277 2-2221 22-3.7-53 2-23-97 2'.13-43 2-3'43 22.1123
4003 4013 3'-149 37.109 13.311 3.7-193 17.239 4073 3-1361 4093 11-373 32.457 7-19-31 41 33 3.1381 4153 23-181 3-13-107 47-89 7.599 3'.467 11.383 41-103 3-17.83 4243 4253 3-72-29 4273 4283 34.53 13.331 19-227 3.1 1.131 7.619 43-101 3.1451 4363 4373 3'-487 23-191 7-17-37 3.1471 4423 11.13.31 3.1481 61.73 4463 3'-7-71 4483 4493
22.7-11-13 2-3'-223 2'.503 2-2017 22.3.337 2.2027 25-127 2-3.7-97 22-1021 2.23-89 2'.3'.19 2.112.17 22.1031 2-3-13-53 2'-7-37 2.31.67 22-3.347 2.2087 2'.523 2.32.233 22-1051 2.72-43 27.3.11 2.29.73 2'- 1061 2.3-709 23-13.41 2-2137 22.3'.7-17 2.19-113 2'.269 2.3-719 22-23.47 2.11.197 2'-3-181 2.7.311 22.1091 2.37 25.137 2-13' 2'.3.367 2.2207 23.7.79 2 - 3.739 22.11.101 2.17.131 2'.3'.31 2.2237 2'- 19-59 2.3.7.107
32.5-89 5.11.73 52.7-23 3.5-269 5-809 5.811 3-5.271 52.163 5.19-43 32-5-7.13 5.821 5-823 3.53-11 5-827 5.829 3-5.277 5.72.17 52.167 3'.5.31 5.839 5-29 3.5.281 52.13' 5.7-11' 3-5-283 5.23-37 5.853 32.52.19 5.857 5-859 3.5.7.41 5.863 5l.173 3.5.172 5.11-79 5.13.67 32-5.97 54.7 5.877 3-5-293 5.881 5.883 3.52.59 5.887 5.7.127 3'.5.11 5-19-47 52-179 3.5.13.23 5.29.31
2.2003 2'.251 2-3.11-61 2'.1009 2.7.17' 2'.3.132 2.19.107 2'-10 19 2.32-227 2'2 2-2053 22.3.73 2.2063 23-11.47 2.3.691 22.1039 2.2083 2'. 32.29 2-7.13.23 22-1049 2-3.701 23.17.31 2.2113 2'.3.353 2-11-193 25-7.19 2.33.79 22.1069 2.2143 2'.3.179 2-2153 2 2 - 13-83 2.3.7-103 2'.271 2-41-53 22.32.112 2.37-59 2'.547 2.3.17.43 22.7.157 2.2203 26-3.23 2.2213 22.1109 2-3'-13-19 2'.557 2.7.11-29 22.3.373 2.2243 24.281
4007 3.13.103 4027 11-367 3.19.71 4057 7'.83 3'.151 61.67 17-241 3.372 23-179 4127 3-7-197 11.13.29 4157 32.463 4177 53.79 3.1399 7-601 4217 3-1409 19-223 31.137 3'. 11.43 17.251 7.13.47 3.1429 4297 59-73 3.1439 4327 4337 3'.7.23 4357 11.397 3-1459 41.107 4397 3.13-113 7.631 19-233 32-17.29 4447 4457 3-1489 112-37 7.641 3-1499
23.3.167 2-72-41 22.19.53 2.3.673 2'-11-23 2-2029 2'.32.113 2.2039 23.7.73 2-3.683 22.13.79 2.29.71 25.3.43 2-2069 2'-17.61 2.3'-7.11 2'.521 2.2089 2'.3.349 2.2099 2'.263 2-3.19-37 2'.7.15 1 2.13.163 2'.32.59 2.2129 22.11.97 2.3.23-31 28.67 2.7.307 22.3.359 2.17-127 23.541 2.32.241 22.1087 2.2179 2'.3.7.13 2.1 1.199 22.1097 2.3.733 2'.19-29 2.472 22.33.4 2.7.317 1 25-139 2.3.743 22.1117 2.2239 23.3.11.17 2.13-173
19-211 4019 3.17.79 7.577 4049 32.1 1-41 13-313 4079 3-29.47 4099 7.587 3.1373 4129 4139 3'.461 4159 11-379 3.7-199 59-71 13.17.19 3.23-61 4219 4229 3'.157 7.607 4259 3.1423 11.389 4289 3.1433 31.139 7.617 3'.13.37 4339 4349 3.1453 17.257 29.151 3.7.11.19 53.83 4409 32.491 43.103 23.193 3.1483 73.13 41.109 3.1493 672 1 1.409
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 $ 449 8
450 451 452 453 454
22.32.5' 2-5-11.41 2'-5-113 2-3.5.151 22.5-227
7-643 13.347 3-11-137 23.197 19-239
2.2251 25-3-47 2.7-17-19 21.11-103 2-3-757
3-19-79 4513 4523 3.1511 7-11-59
23-563 2-37-61 21-3-13-29 2-2267 26-71
5.17-53 3-5-7.43 5a-181 5-907 3'-5-101
2-3.751 2'-1129 2-31-73 2'-3'.7 2-2273
4507 4517 3'.503 13.349 4547
21.72-23 2.3?-251 2'-283 2.2269 2'.3.379
33-167 4519 7.647 3-17-89 4549
453 454
455 456 457 458 459
2-52.7-13 2-3.5-19 2-5.457 21-5-229 2-3"5-17
3-37-41 4561 7-653 3'-509 4591
3"569 2-2281 2'.3'- 127 2-29-79 2'*7-41
29.157 3'-132 17.269 4583 3-1531
2-3'-11-23 21.7-163 2.2287 2'*3-191 2-2297
5.91 1 5.11-83 3.52-61 5.7-131 5.919
2'-17-67 2.3.76 1 25-11.13 2.2293 2'-3-383
3.7'-31 4567 23.199 3.1 1.139 4597
2.43.53 23.571 2.3.7.109 2'.31-37 2.1 12.19
47.97 3-1523 19-241 13-353 32.7.73
455 456 457 458 459
460 461 462 463 464
2W-23 2-5-461 22-3-5-7-11 2.5-463 2'-5-29
43-107 3-29-53 4621 11.421 3-7-13-17
2.3.13-59 P.1153 2-2311 2'-3.193 2.11.211
4603 7-659 3-23-67 41-113 4643
3.1151 2-3-769 2'. 17' 2-7-331 22-33-43
3-5.307 5-13-71 58-37 3'-5.103 5.929
2-72-47 2'-577 2-32-257 2'.19.61 2.23.101
17-271 35-19 7-661 4637 3.1549
29-32 2.2309 22.13.89 2-3.773 23-7.83
11-419 31-149 3.1543 4639 4649
460 461 462 463 464
465 466 467 468 469
2-3-9-31 9.5.233 2-5-467 2a-32*5-13 2-5-7-67
4651 59.79 3"173 31-151 4691
21.1163 2.32-7.37 28-73 2-2341 22-3.17-23
3"11-47 4663 4673 3-7.223 13-19'
2-13-179 2'. 11.53 2.3.19.41 21.1171 2-2347
5-7'-19 3.5.311 5'. 11-17 5.937 3-5-313
24.3-97 2.2333 22-7-167 2.3-11.71 23-587
4657 13-359 3-1559 43.109 7-11-61
2.17.137 2'.3-389 2.2339 2'.293 2-3'.29
3.1553 7.23.29 4679 32.521 37.127
465 466 467 468 469
470 471 472 473 474
21-55-47 2.3-5-157 24-5-59 2.5-11-43 3-3-5079
3-1567 7-673 4721 3-19.83 11.431
2-2351 2'-19*31 2-3-787 2'.7-13' 2.2371
4703 3-1571 4723 4733 32-17-31
25.3.7 2.2357 22-1181 2-32-263 2'-593
5.941 5.23.41 35-52.7 5-947 5.13.73
2-13-181 2'-3'.131 2.17-139 2'-37 2.3.7.113
32.523 53.89 29-163 3,1579 47-101
2'. 11.107 2-7-337 F.3-197 2.23.103 22.1187
17.277 3.1 12-13 4729 7-677 3-1583
470 471 472 473 474
475 476 477 478 479
2-5'.19 2*-5-7-17 2-3'-5-53 22-5-239 2.50479
4751 32.23' 13.367 7-683 3-1597
2'.3'.11 2-2381 2'.1193 2-3-797 2"599
72.97 11-433 3.37.43 4783 4793
2-2377 21.3-397 2.7-1 1-31 2'-13-23 2.3.17-47
3.5.317 5.953 5'.191 3.5-11-29 5.7.137
21-29.41 2-2383 23.3.199 2.2393 22.11.109
67.71 3-7.227 17-281 4787 3'-13.41
2.3-13-61 25.149 2.2389 21.32.7-19 2-2399
4759 19.251 34-59 4789 4799
475 476 477 478 479
480 481 482 483 484
2'-3-52 2.5.13-37 22.5.241 2-3-5.7.23 2*.5-112
4801 17-283 3-1607 4831 47-103
2*74 2"3-401 2.2411 2"151 2-3'-269
3.1601 4813 7-13-53 35.179 29.167
22-1201 2-29-83 23.32-67 2.2417 21-7.173
5.31' 3'.5.107 5'.193 5.967 3.5.17.19
2-33.89 2'-7.43 2-19-127 2'.3.13-31 2.2423
11-19.23 4817 3.1609 7-691 37.131
23-601 2-3-11-73 22.17.71 2.41.59 2'.3.101
3.7.229 61-79 11-439 3-1613 13.373
480 481 482 483 484
485 486 487 488 489
2-5'-97 21.35.5 2.5.487 2'-5.61 2.3-5-163
32-72.11 4861 4871 3-1627 67.73
22.1213 2-11-13.17 25.3-7-29 2-2441 21.1223
23-211 3.1621 11-443 19-257 3-7-233
2-3-809 28-19 2.2437 3 - 3 - 11-37 2.2447
5-971 5.7.139 3.P.13 5.977 5-11-89
2'-607 2.3-811 P.23-53 2.7-349 25.32.17
3-1619 31-157 4877 3'-181 59.83
2.7.347 2'-1217 2.3'.271 23-13.47 2.31-79
43-113 3'-541 7-17-41 4889 3.23-71
485 486 487 488 489
490 49 1 492 493 494
21.55-P 2-5-491 2'-3-5-41 2-5-17-29 3.5.13.19
13'029 3-1637 7-19.37 4931 3'-61
2-3.19.43 2'0307 2.23-107 21-3'-137 2-7-353
4903 175 32.547 4933 4943
2'*613 2-3'-7-13 21-1231 2.2467 2'-3-103
3'.5-109 5.983 51-197 3-5.7-47 5-23-43
2-11.223 2'-1229 2-3.821 2'.617 2-2473
7-701 3.1 1-149 13.379 4937 3.17.97
2'-3.409 2.2459 2O.7-11 2-3-823 2'-1237
4909 4919 3.31.53 11.449 '12.101
490 491 492 493 494
495 496 497 498 499
2-3'S.ll P-5.31 2.5.7-71 21-3.5.83 2-5-499
4951 11'-41 3-1657 17-293 7-23-31
2'-619 2.3-827 21.11-113 2.47* 53 2'-3-13
3-13-127 7-709 4973 3-11-151 4993
2-2477 21-17-73 2.3-829 2'07.89 2-11.227
5.991 3-5.331 55-199 5.997 33-5.37
21.3-7-59 2-13-191 2'-311 2.3'-277 21.1249
4957 4967 32.7.79 4987 19-263
2.37-67 23.38.23 2.19.131 22-29-43 2.3.72.17
3'-19.29 4969 13-383 3.1663 4999
495 496
N
0
1
2
3
4
5
6
7
8
9
g2 E *
N a& (P
500 501 502 503 504
23-54 2-3.5-167 22-5-251 2-5-503 24-32*5.7
3-1667 5011 5021 32-13.43 71,
2.41-61 22-7-179 2-34.31 2-17-37 2-2521
5003 32-557 5023 7-719 3.412
22.32-139 2.23-109 25. 157 2-3-839 3.13-97
5-7-11.13 5.17-59 3-52-67 5.19.53 5.1009
2.2503 23-3.11-19 2-7-359 3.1259 2-3-292
3-1669 29.173 11.457 3-23.73 72. 103
24.313 2-13-193 3-3-419 2.11-229 23-631
5009 3-7.239 47.107 5039 3'.11-17
500 501 502 503 504
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
2-5a-101 22-5-11-23 2.3.5.13' 21-5.127 2.5.509 3.3-52.17 2.5-7-73 21O.5 2-38-5-19 22.5.257 2-P-103 23.3-5.43 2-5.11.47 22-5-7.37 2-3.5-173 24-52-13 2-5-521 22.3'.5.29 2.5.523 21-5-131 2.3.5a.7 22-5.263 2-5.17-31 2'.3-5-11 2.5-232 3.52-53 2-32-5-59 23-5.7.19 2-5.13-41 22-3-5-89 2-52.107 24.5.67 2-3-5.179 22.5-269 2-5-72.11 21-33-52 2.5.541 22.5.271 2.3-5-181 26.5-17 2.52.109 22-3-5.7-13 2.5.547 23-5.137 2.32.5-61
5051 3.7.241 11.461 5081 3.1697 5101 19.269 3'-569 7.733 53.97 3-17.101 13-397 5171 3-11-157 29.179 7.743 3.193 23.227 5231 3-1747 59-89 5261 3-7-251 5281 11-13-37 32.19.31 47-113 17.313 3.1777 72.109 5351 3-1787 41.131 5381 32.599 11.491 7.773 3-13.139 5431 5441 3-23-79 43-127 5471 3'-7-29 172.19
22-3.421 2-2531 2'.317 2-3-7.11' 22-19-67 2-2551 21.32.71 2-13-197 22.1283 2-3.857 25-7-23 2-29-89 22-3-431 2-2591 23-11.59 2-32-172 22-1303 2-7-373 24.3-109 2-2621 22-13.101 2.3.877 3.659 2-19.139 3.33.72 2-11.241 28.83 2.3-887 22.31-43 2-2671 23-3-223 2.7-383 3.17-79 2-32-13.23 24.337 2-37.73 22.3-11-41 2-2711 23.7-97 2.3-907 22.29-47 2-2731 26.32-19 2.2741 22.1373
31-163 61-83 3-19-89 13-17-23 11.463 36-7 5113 47-109 3-29.59 37-139 5153 3-1721 7-739 71.73 32.577 112-43 13.401 3-1741 5233 72-107 3-17-103 19-277 5273 32.587 67-79 5303 3-7-11-23 5323 5333 3-13-137 53-101 31-173 33.199 7-769 5393 3-1801 5413 11-17-29 3.1811 5443 7.19.41 32.607 13-421 5483 3-1831
2-7.192 23.3.211 2.43-59 3.31-41 2.32.283 2'-11-29 2-2557 22-3.7.61 2.17-151 23-643 2.3-859 22.1291 2.13.199 26-34 2.72.53 22.1301 2.3-11-79 23-653 2-2617 22-3.19-23 2.37-71 24-7.47 2.32.293 22.1321 2-2647 23-3.13.17 2.2657 22-I 13 2.3.7.127 25-167 2.2677 22.32.149 2-2687 23-673 2-3-29-31 22-7-193 2.2707 2'-3-113 2.11.13.19 22.1361 2,33.101 23.683 2.7- 17-23 22-3-457 2.41-67
3-5-337 5.1013 52-7.29 32.5.113 5.1019 5.1021 3-5-11.31 53.41 5.13-79 3-5-73 5.1031 5-1033 32-52.23 5-17-61 5-1039 3-5.347 5.7.149 911.19 3.5.349 5-1049 5.1051 3'-5-13 52.211 5.7-151 3.5.353 5.1061 5. i063 3.52.71 5.11.97 5-1069 32.5.7-17 5-29-37 53.43 3-5-359 5.13443 5-23-47 3-5-192 52.7.31 5-1087 32.5-112 5.1091 5.1093 3.52.73 5-1097 5-7-157
2"79 2-17.149 3.33.47 2-2543 23-72-13 2.3-23-37 3-1279 2.1 1.233 2'.3.107 2-31.83 22.1289 2.32-7-41 23-647 2-2593 22.3.433 2.19-137 2'-163 2-3-13.67 22.7.11-17 2-43-61 3.32-73 2.2633 22-1319 2-3-881 2'.331 2.7.379 22.3-443 2-2663 23-23.29 2.35.11 22.13-103 2.2683 28.3.7 2.2693 22.19-71 2.3.17.53 23-677 2.2713 22.32-151 2.7,389 2'. 11.31 2.3-911 3.372 2-13.211 3-3.229
13-389 32.563 5077 5087 3.1699 5107 7.17.43 3.1709 11-467 5147 33.191 5167 31-167 3-7.13-19 5197 41-127 3.37.47 5227 5237 3 2 - 11.53 7.751 23.229 3.1759 17.311 5297 3.29.61 13-409 7.761 32-593 5347 11-487 3.1789 19.283 5387 3.7-257 5407 5417 3'-67 5437 13.419 3-17-107 7-11-71 5477 3-31.59 23-239
2.32-281 22-7-181 2-2539 25.3-53 2-2549 22.1277 2.3.853 23.641 2.7.367 22-32-11-13 2.2579 24.17-19 2.3.863 22-1297 2-23.113 23-3.7-31 2-2609 22.1307 2.33.97 2'- 41 2-11-239 22-3.439 2.7.13.29 23-661 2.3.883 22.1327 2.2659 24.32-37 2.17.157 22-7.191 2-3.19-47 3-11-61 2.2689 22.3.449 2.2699 25-1 3 2 2-3'-7.43 22-23-59 2.2719 23.3.227 2.2729 22.1367 2.3.11.83 2'.73 2-2749
5059 37.137 3-1693 7.727 5099 3.13.131 5119 23-223 32.571 19.271 7-11-67 3-1723 5179 5189 3.1733 5209 17-307 32.7-83 132.31 29-181 3-1753 11*479 5279 3.41.43 7.757 5309 33-197 732 19-281 3-1783 23.233 7-13-59 3.11-163 17-317 5399 32.601 5419 61.89 3-72.37 5449 53. i03 3-1823 5479 11.499 32.13-47
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 . ~ . 546 547 548 549 g
550 g 551 g 552 553 554
550 551 552 553 554
22-5'*11 2-5-19-29 2'-3-5.23 2-5.7-79 22-5-277
5501 3-11-167 5521 5531 3-1847
2-3-7-131 28-13.53 _ ~- ._ 2-11.251 3-3-461 2-17-163
5503 37-149 3.7-263 11-503 23.241
2'-43 2.3-919 2'.1381 2.2767 2'.3'-7-1 1
3-5.367 5.1103 P.13.17 3'-5-41 5.1109
2.2753 22-7-197 2.3'.307 25.173 2.47.59
5507 3'.613 5527 72.113 3.43'
22-3'.17 2.31-89 2'-691 2.3.13-71 22-19-73
7-787 5519 3-19-97 29-191 31-179
555 556 557 558 559
2.3-52-37 2"5-139 2-5-557 22.32.5.31 2.5.13-43
7-13-61 67-83 9.619 5581 5591
2'-347 2-38-103 2'-7-199 2.2791 2'*3.233
3'-617 5563 5573 3-1861 7-17.47
2.2777 22-13-107 2-3-929 2'.349 2.2797
5.11.101 3-5.7-53 5'-223 5.1117 3-5.373
2'-3-463 2.1 P.23 2'017-41 2-3.7'-19 2'. 1399
5557 19-293 3-1 1 . 1 3 2 37-151 29-193
2.7-397 26-3.29 2.2789 22-11.127 2.3'.311
3-17-109 5569 7.797 35.23 11.509
555 556 557 558 559
560 561 562 563 564
25.52.7 2-3-5.11-17 2'-5.281 2.5-563 2a.3.5.47
3-1867 31.181 7-11-73 3-1877 5641
2.2801 29.1I 2.7-13.31
13.431 3-1871 5623 43.131 3'- 11.19
2'.3-467 2-7.401 _ . ~.~ 2'019.37 2-3'-313 22-17-83
5-19-59 5.1123 32-54 5-72-23 5.1129
2.2803 2'3.13 2-29.97 2'. 1409 2.3.941
3'-7-89 41-137 ~ . 17-331 3-1879 5647
2'-701 2.532 2'.3.7-67 2.2819 2'.353
71.79 3-1873 13-433 5639 3-7-269
560 . ~ 561 562 563 564
565 566 567 568 569
2-5'-113 22-5-283 2.3'.5-7 2'.5-71 2.5.569
5651 32-17-37 53-107 13-19-23 3-7.251
22-32-157 2-19.149 2a-709 2-3-947 2'.1423
5653 7-809 3.3 1-61 5683 5693
2.1 1-257 25.3.59 2.3.13-73
3-5.13-29 - . 5.11-103 52.227 3.5-379 5.17-67
2'.7-101 2-2833 22.3.11.43 2.2843 26.89
5657 3-1889 7.811 112.47 3'.211
2.3-23-41 22.-13-109 2-17.167 23-32.79 2-7-11.37
5659 5669 3'-631 5689 41.139
565 566 567 568 569
3.1901 29.197 59.97 3'-72.13 5743
23-23.31 2.2857 22-33-53 2-47.61 2'.359
5.7-163 32.5-127 5'-229 5.31.37 3-5-383
2.32-317 2'.1429 2.7.409 2'.3-239 2-13'. 17
13.439 5717 35383 5737 7.821
2'.1427 2.3-9.53 _ - .__ 25.179 2.19-151 2'-3.479
3-11-173 7-19.43 . ~. __ 17-337 3-1913 5749
570 571 572 574
2.3.7.137 2"-11-131 2.2887 2'-3-241 2-2897
5.1151
2'-1439 2-3.312 24-19 2.1 1.263 22.32-7-23
3-19.101 73.79 53-109 3'.643 11.17.31
22.1447 2-13.223
13.443 32.641 5779 7-827 3.1933
578 579
5807 3.7.277 5827 13-449 3.1949
2'-3.112 2.2909 22.31.47 2-3.7.139 2j. 17-43
37.157 11-23' 3-29-67 5839 5849
580 581 582 583 584
~~
~~
.
570 571 572 573 574
22-3.52-19 2.5.571 2'-5. 11.13 2.3-5.191 2'.5-7-41
5701 5711 3-1907 11.521 5741
2-2851 2'.3-7.17 2.2861 2'-1433 2.32.11-29
575 576 577 578 579
2.5'-23 2'.3'-5 2.5.577 2'.5.17' 2.3-5.193
3'.71 7.823 29.199 3.41.47 5791
23-71 - . -9_
2-43-67 2'-3-13-37 2-7'-59 25.181
11-523 3-17.113 23-251 5783 3.1931
580 581 582 583 584
23-52.29 2.5.7.83 2'-3.5.97 2-5.11-53 2'.5.73
5801 3.13.149 5821 7'-17 32-11.59
2.3.967 22-1453 2.41.71 2'-3' 2-23.127
7.829 5813 3'-647 19-307 5843
22.1451 2-3'.17-19 26.7-13 2-2917 2'-3487
5'.233 3-5-389 5.7.167
2.2903 23.727 2-3.971 22-1459 2-37-79
585 586 587 588 589
2-3'.5'-13 2'-5.293 2.5.58'7 2'.3.5-72 2.5.19-31
5851 5861 3-19.103 5881 43-137
2'.7-11-19 2.3.977 2'.367 2-17.173 22-3.49 1
3.1951 11-13-41 7-839 3.37.53 71.83
2.2927 23-733 2.3.1 1-89 2'.1471 2.7.421
5-1171 3-5.17.23 53-47 5-11-107 32-5-131
25-3.61 2.7-419 2'- 13.113 2-33.109 23-11-67
5857 5867 3'-653 7-29 5897
2.29.101 22.32.163 2-293928-23 2.3.983
3'.7.31 5869 5879 3.13.151 17-347
585 586 587 588 589
590 59 1 592 593 594
2'.52-59 2-3.5-197 25.5.37 2-5-593 2"-33-5.1 1
3-7-281 23.257 31.191 3'.659 13.457
2.13.227 2'.739 2.3'.7.47 2'.1483 2.2971
5903 34.73 5923 17.349 3.7-283
24-32-41 2-2957 22.1481 2-3.23.43 2'-743
5.1181 5-7.13' 3.52-79 5.1187 5.29.41
2.2953 22.3-17-29 2.2963 2'.7-53 2-3.991
3.1 1.179 61-97 5927 3-1979 19.313
2'-7-211 2.11.269 2'-3- 13-19 2.2969 22-1487
19-311 3.1973 72.112 5939 32.661
590 591 592 593 594
595 596 597 598 599
2.52.7.17 23.5.149 2.3.5.199 2'.5.13-23 2-5.599
11.541 3.1987 7.853 5981 3-1997
26.3-31 2.11-271 2'.1493 2.3.997 2'.7.107
5953 67.89 3-11-181 31.193 13.461
2-13-229 22-3-7.71 2.29.103 25-11.17 2.3'.37
3.5-397 - . 5.1193 5'-239 32.5.7.19 5.11.109
2'*1489 2.19.157 23.32.83 2.41.73 22.1499
7.23-37 3'. 13.17 43.139 5987 3.1999
2.32-331 2'.373 2.7'-61 2a.3-499 2-2999
59.101 47-127 3.1993 53-113 '7.857
595 596
~
~~
~~
5-13-89 5.19.61 33.5-43
5.1163
~~
~~~
.
~
0
2 E;I gJ
z m
2
856 Table 24.7 6000
COMBINATORIAL ANALYSIS
Factoriza tions 6499
2.3251 2'- 11-37 2-3.1087 2'.23.71 2.3271
7-929 3-13.167 11-593 47.139 3'-727
23.3-271 2.3257 2'.7.233 2.33-112 2'-409
5.1301 5-1303 3'.5'-29 5.1307 5.7.11-17
2.3253 Z2.3'.181 2.13.251 2-'-19.43 2.3-1091
33.241 73.19 61.107 3-2179
6553 6563
3.133
23.32.7.13 2.17-193 22-31-53 2-3.1097 2".103
3-7-313 29.227 19.347
2.29.113 22-3.547 2.19.173 Z3-823 2.3.7-157
3.5.19-23 5.13.101 52-263 3.5.439 5.1319
Z3.3.5'.11 2.5.661 22-5-331 2-3.5.13-17 2'- 5.83
7.23.41 11.601 3.2207 19.349 29.229
2.3301 22.3-19-29 2.7.1 1.43 Z3.829 2.3*-41
3.31.71 17.389 37.1 79 32-11-67 7.13.73
22.13.127 2.3307 25-32.23 2.31.107 22.11.151
665 666 667 668 669
2.52.7.19 22.32.5.37 2.5.23.29 Z3.5-167 2-3.5.223
32.739
2'-1663 2-3331 2'.3-139 2.13.257 22.7-239
6653
670 671 672 673 674
22.5'.67 2-5.11.61 26.3.5.7 2.5.6 73 2'.5.337
675 676 677 678 679
2.33.53 23-5-132 2.5-677 2'-3.5.113 2.5.7-97
3.37-61
680 681 682 683 684
2' -5217 2.3.5.227 22-5.11.31 2-5-683 23.32.5.19
3.2267 72.139 19.359 3'-11-23
685 686 687 688 689
2.5'.137 22.5.73 2.3.5.229 25-5.43 2.5.13.53
13.17.31 3-2287
690 691 692 693 694
22.3.52.23 2.5.691 Z3.5.173 2.3'-5.7.11 22.5-347
67.103
695 696 697 698 699
2.5'+139 2'.3.5.29 2.5.17-41 2'.5.349 2.3.5.233
3.7.331
650 651 652 653 654
22.53-1 3 2-3.5.7-31 2'-5.163 2.5-653 2'.3.5-109
3-11-197 17.383
655 656 657 658 659
2.5'.131 25.5.41 2.3'.5-73 22-5.7.47 2.5.659
6551 6571 6581
660 661 662 663 664
6521
3-7.311 31.211 3*
6661
7-953 3-17.131 6691 6701
3.2237 11.13.47 53.127 3'-7.107 43.157 6761 6781 6791
684 1
6871
7.983 3.2297 6911
3'.769 29.239 11-631 6961 6971
3.13.179 6991
2.3-1117 23.839 2.3361 Z2.3'-11.17 2.3371 25.211 2.3.72.23 22-1693 2.3391 2Y3.283 2.19.179 2'. 13.131 2.32-379 2'.7-61 2.11.311
3.2221 6673
41.163 3.23.97 6703
7'.137 3'.83 6733
11.613 3.2251 6763
13.521 3.7-17-19 6793 6803
32.757 6823 6833
3.2281
23.283 3.41-53
6547
2'.1627 2.3259 2l.3.17 2-7.467 2'. 1637
2'. 11.149 2.7'.67 2'.3-137 2.37.89 Z2-17.97
79-83 3-11.199 6577 7.941 32-733
2.3-1093 23-821 2.1 1.13.23 22.33.61 2.3299
7-937
5-1321 33.5.72 53.53 5.1327 3.5-443
2.3'.367 Z3-827 2.3313 Z2.3.7.79 2-3323
6607
13-509 3.472 172.23
2'.7.59 2.3-1103 2'. 1657 2.3319 23.3-277
2-3-1109 23.72-17 2.47.71 22.3.557 2-3347
5.113 5-31.43 3-5'-89 5.7.191 5.13.103
2'. 13 2.3.11.101 2'.1669 2.3343 23.33.31
3.7.317 59.113 11.607 32-743 37.181
2.3329 2'. 1667 2.32.7.53 25.11.19 2.17-197
2'.4 19 2.3'.373 22.412 2.7-13-37 Z3-3.281
3'.5.149 5.17-79 5'.269 3.5.449 5.19-71
2.7.479 22-23.73 2.3-19.59 2'.421 2.3373
19-353 3.2239 7.31' 3.13.173
22.3-13-43 2.3359 23.292 2.3.1123 2 2 - 7.2 4 1
2.11.307 22-19.89 2-3.1129 2'.53 2.43-79
5.7.193 3.5.11.41 52.271 5.23.59 32-5-151
Z2.3.563 2.17-199 23.7.11 2 2.T.13-29 2'.1€99
29.233 67.101 33.251 11.617 7.971
2.31-109 2'.32.47 2.3389 Z2.1697 2.3.11.103
Z2.35.7 2.3407 23-853 2.3.17-67 2'.29.59
5.1361 5.29.47 3-5'.7.13 5.1367 5.372
2.41.83 25.3.71 2.3413 22.1709 2.3-7-163
3-2269 17.401 3.43.53 41.167
23.23.37 2-7.487 2'.3.569 2.13-263 Z6. 107
3-5.457 5.1373 5'-11 3'-5-17 5.7.197
23.857 2.3433 22-32-191 2.11.313 2'.431
3'.7.109 13.232 71-97 3.112.19
22.3.571 2.47-73 23.859 2.3.31-37 2'.1723
3.29.79 61.113
2.23.149 24.3.11-13 2-7.491 2'.1721 2.3'.383
2-7.17-29 28.33 2.3461 2'.1733 2.3.13-89
3'.13.59 31-223 7.23-43 3.2311 53.131
Z3.863 2.3457 Z2.3.577 2.3467 25-7-31
5.1381 3.5.461 5'.277 5.19.73 3.5-463
2.3.1 151 22.7-13-19 2.3463 Z3.3.17' 2.23-151
Z3.1 1.79 2.59' 2'.3.7-83 2.3491 2'-19-23
17.409 3-11.211 19.367
2.3.19-61 2'.1741 2-11.317 23.32.97 2.13.269
5.13.107 5.7.199 32.52-31 5.1 1.127 5-1399
22.37.47 2.3'-43 Z6.109 2.7.499 2'-3.11.53
7.11.89 6863 6883
6983
33.7.37
6637
6737
6827
6857
6907 6917
3.2309 7.991 6947
32.773 6967 6977
3.17.137 6997
6529
13.503 3.37-59 6569
3'-17.43 11-599 6599
3.2203 6619
7.947 3.2213 61-109 6659
33.13.19 6679 6689
3-7.11-29 6709 6719
3-2243 23.293 17.397 3'-751 7-967 6779
3.31.73 13.523 11.619 3-2273 6829
7.977 32.761
2.33.127 52.17.101 2.19. I81 23-3-7.41 2.3449
3-2293 832
2'.11-157 2.3.1153 2'.433 2-3469 22.32-193
3-72.47 11.17.37 132-41 33.257
2.7'-71 23.13.67 2-3-1163 22.1747 2.3499
3-23-101 7.997 29.241 3-2333
1g3 6869 6899
6949 6959
650 651 g 652 653 654 655 656 657 658 659 660 66 1 662 663 664 665 666 667 668 669 670 671 672 673 674 675 616 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
N
0
1
2
3
4
5
6
7
8
9
2'-5'.7 2.5.701 22.33.5.13 2-5.19.37 27.5.11 2-3-52-47 22.5.353 2-5-7.101 2'.3.5-59 2-5.709 22.52.7 1 2-3'.5.79 2'-5.89 2-5.23.31 22.3.5.7.17 2.52-11.13 23.5-179 2.3.5.239 2'-5-359 2.5.719 2'-3'.52 2.5.7.103 22.5.192 2.3-5-241 2'-5-181 2-5'.29 22.3.5.11' 2-5-727 2'.5.7.13 2.36.5 22.52-73 2-5.17-43 23-3.5.61 2.5.733 22.5-367 2.3.5'.7' 26.5.23 2.5.11-67 22.32.5.41 2.5-739 23-52.37 2-3.5.13-19 22-5-7.53 2-5.743 2'.3-5.31 2-52-149 2'.5.373 2.3'-5-83 23-5-11.17 2-5-7.107
7001
2-32-389 2'. 1753 2-3511 Z3-3.293 2-7.503 22.41.43 2-3-11-107 25-13-17 2-3541 22-32-197 2-53.67 25-7-127 2-3.1187 2'- 1783 2-3571 2'.3.149 2.3581 22-11.163 2.3'-7-19 2'.29-31 2.13.277 2'.3.601 2-23-157 26-113 2.3-17-71 22-72.37 2-3631 23-32.101 2-11.331 22.1823 2-3-1217 2'.457 2.7.523 2'.3.13:47 2.3671 23-919 2-3'.409 Z2-19-97 2-3691 2'.3-7-11 2-3701 22-17.109 2.3-1237 2'-929 2.61' 22-3'-23 2-7-13-41 2'.467 2.3-29-43 22.1873
47-149
2'-17.103 2.3.7-167 2'-439 2.3517 2'.3.587 2.3527 2'.883 2.3'-131 22-7-11-23 2.3547 26-3-37 2.3557 22.13.137 2-3.29-41 23-19.47 2.7'-73 2'.3'-199 2.17-211 2'.449 2-3.11-109 22.1801 2-3607 2'.3.7.43 2.3617 22.1811 2.32-13-31 25-227 2-3637 22.3.607 2-7-521 23.11-83 2-3.23-53 22-1831 2-19.193 2'.3'-1 7 2-3677 22-7.263 2-3-1229 23-13-71 2-3697 22-3-617 2-11-337 28-29 2.35-7-59 2'- 1861 2.3727 2'-3-311 2.37-101 22-1871 2-3.1249
3.5-467 5.23.61 52.281 3.5-7-67 5-1409 5-17-83 3'.5-157 52-283 5.13-109 3-5011-43 5-7'-29 5-1423 3.5'-19 5.1427 5.1429 33-5-53 5.1433 52.7-41 3.5.479 5.1439 5.11-131 3.5-13.37 9-17' 5-1447 3'.5-7-23 5.1451 5-1453 3-52.97 5-31-47 5-1459 3-5.487 5.7.11-19 52.293 32.5.163 5-13-113 5.1471 3-5-491 55.59 5-7.211 3-5.17-29 5.1481 5.1483 3'-52. 11 5-1487 5-1489 3.5.7-71 5.1493 52.13.23 3-5.499 5-1499
2.31.1 13 23-877 2.3-1171 22.1759 2-13-271 24.32.72 2.3533 22-29-61 2-3-1181 23-887 2-11-17-19 P-3-593 2-7-509 25-223 2.3'.397 2'-1789 2.3583 23.3.13.23 2-3593 22-7.257 2.3-1201 2'-11-41 2.3613 22.3'.67 2.3623 23.907 2.3-7-173 22-17-107 2.3643 27.3-19 2.13.281 22.31.59 2-32-11.37 2'.7-131 2-3673 22.3.613 2.29-127 2'.461 2-3-1231 22.432 2.7-232 2a-32-103 2-47-79 22-11-13' 2-3-17.73 25-233 2.3733 3-3-7439 2-19-197 2'-937
72.11.13 3.2339
2'-3-73 2-1P.29 22-7.251 2.3'-17-23 23-881 2.3529 22-3.19.31 2.3539 2'-443 2.3-7-132 22.1777 2-3559 2'-3'-11 2-43-83 22.1787 2.3-1193 210.7 2-37-97 22-3.599 2-59-61 2'.17-53 2'.13.139 2.32.401
43-163
22 % 00
NoE
N I
700 701 702 703 704 705 706 707 708 709 710 71 1 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
32-19.41 7-17-59 79.89 3-2347 11-641 23.307 3.2357 73-97 7-1013 3'.263 13-547 7121
3.2377 37.193 7151
3.7-11-31 71.101 43-167 32.17-47 19-379 7211
3.29.83 7-1033 13-557 3-2417 53-137 11.661 3'.809 23-317 7'.149 3.2437 7321 7331
3-2447 7351
17.433 3'.7-13 112-61 19.389 3.2467 7411
41-181 3.2477 7.1063 7451
3'.829 31-241 7481
3-11.227
7013
3-2341 13-541 7043
3.2351 7-1009 11-643 32-787 41-173 7103
3.2371 17-419 7-1019 3.2381 23.31 1 13.19-29 32.797 11.653 7193
3.74 7213
31.233 3-2411 7243 7253
3'-269 7.1039 7283
3-11-13-17 67.109 71.103 3-2441 7333
7.1049 3'. 19.43 37-199 73-101 3-23-107 7393
11.673 3-7.353 13-571 7433
37.827 29-257 17.439 3-47-53 7-1069 59.127
7027
31-227 35.29 7057
37.191 3.7-337 19.373 47-151 3-23-103 11-647 7127
32*13-61 7-1021 17-421 3-2389 7177 7187
3.2399 7207
7-1031 3'-11-73 7237 7247
3-41-59 132-43 19.383 3-7.347 7297 7307
33.271 17.431 11-23-29 3.31.79 7-1051 53.139 3-2459 83.89 13-569 3'-823 7417
7-1061 3-37-67 11-677 7457
3-19-131 7477 7487 3 2 - 72.17
2.7.1 1.47 2'-3.151 2.19-191 2'.23.79 2-3-1213 23.911 2-41-89 22.32.7.29 2.3659 25.229 2.3-1223 22.11.167 2.13-283 23-3-307 2-7.17.31 22.1847 2.33-137 24-463 2-3709 22-3.619 2-3719 23-72-19 2-3-11-113 2'.1867 2.3739 2'-32- 13 2.23.163
7019
3'- 11-71 7039
7.19-53 3-13-181 7069 7079
3-17.139 31.229 7109
32-7-113 7129
112.59 3-2383 7159
67-107 3.2393 7-13-79 23-313 3'-89 7219 7229
3.19-127 11-659 7-17.61 3.2423 29.251 37.197 3'-811 7309
13.563 3-7.349 41.179 7349
3-11-223 7369
47-157 3'.821 7'-151 31-239 3.2473 17-19.23 43.173 3-13-191 7459
7-11-97 3'-277 7489 7499
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 ?22
$
~
7 $
8*
8 3
;;;
725 726 m 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 2 749 g
b $
g cc
B
750 2 751 8 752 753 754
750 751 752 753 754
2"3.5' 2.5.751 25.5.47 2-3-5-251 2'-5- 13.29
13.577 ~- ... 7-29-37 3-23-109 17.443 7541
2.1 lt.31 23-3.313 2-3761 2'-7-269 2.3*-419
3-41.61 11-683 7523 35-31 19.397
2'-7.67 2.13-17' 2'-3'-1 1-19 2-3767 23.23-41
5-19-79 3'-5*167 9-7.43 5.11.137 3-5-503
2-33.139 2'-1879 2.53.71 2'.3.157 2-73.1I
7507 7517 3.13-193 7537 7547
2'. 1877 2-3.7.179 23.941 2.3769 22-3.17-37
3.2503 73-103 7529 3-7.359 7549
755 756 757
759
2-5'. 15 1 23-33.5-7 2.5.757 22.5.379 2.3-5-11-23
3"839 7561 67-113 3-7-19' 7591
2'-59 2-19.199 2'-3-631 2.17-223 23-13-73
7-13-83 3.2521 7573 7583 3-2531
2-3-1259 F.31.61 2.7-541 2'.3.79 2-3797
5.1511 5.17.89 3-5'.101 5.37-41 5.7'.31
2'-1889 2-3.13-97 23.947 2.3793 22.32.211
3-11-229 7-23-47 7577 33.281 71.107
2.3779 2'.11-43 2.3'.42 1 22.7-271 2.29.131
7559 32-292 11.13.53 7589 3.17-149
755 756 757 758 759
760 76 1 762 763 764
2'.52*19 2-5.761 P-3.5.127 2-5.7.109 23.5-191
11-691 3-43.59 7621 13.587 33-283
2.3-7-181 2.37-103 2'.3'-53 2.3821
7603 23-331 3'-7.112 17-449 7643
2"1901 2*3'.47 Z3.953 2.11 -347 2"3.7'- 13
3'.5.13' 5-1523 53.61 3.5.509 5.11.139
2.3803 26-7.17 2.3.31.41 22.23.83 2.3823
7607 3-2539 29-263 7-1091 3.2549
23-3.317 2-13.293 2"1907 2.3-19.67 25-239
7-1087 19.401 3.2543 7639 7649
760 761 762 763 764
765 766 767 768 769
2-3'@- 17 P.5-383 2.5.13.59 2'-3-5 2.5-769
7-1093 47.163 3.2557 7681 7691
2'- 1913 2-3-1277 23-7-137 2.23.167 2'-3-641
3.2551 79.97 7673 3.13.197 7'. 157
2-43-89 2'.479 2.3-1279 22-17.113 2.3847
5.1531 3-5.7.73 5'-307 5-29-53 3'-5.19
23.3.11-29 2.3833 22-19.101 2.3'-7-61 2'.13.37
13-19.31 11.17-41 3'.853 7687 43.179
2-7.547 2=.33.71 2-11-349 23.312 2-3-1283
32.23.37 7669 7.1097 3.11.233 7699
765 766 767 . .. 768 769
770 771 772 773 774
2'.5'.7-11 2-3.5.257 23-5-193 2.5.773 2'.3'-5.43
3-17.151 11.701 7-1103 32.859 7741
2.3851 25.241 2-33-11-13 2'.1933 2-7'.79
7703 3'357 7723 11.19-37 3-2939
23.35.107 2.7.19-29 2"193 1 2.3.1289 28.112
5-23.67 5.1543 3.5'-103 5-7-13-17 5.1549
2.3853 2'- 3.643 2.3863 S.967 2.3.129 1
3.7.367 7717 7727 3.2579 61-127
22.41-47 2.17.227 2'-3-7.23 2.53-73 2'.13.149
13-593 3-31-83 59.131 71.109 33.7.41
770 771 772 773 774
775
23.337 3-13.199 19-409 31-251 3-72-53
2'-3.17- 19 2.3881 2'-29-67 2-3.1267 2'-487
7753 7-1109 3-2591 43-181 7793
2.3877 2'.3-647 2.13'.23 23-7-139 2.3'- 433
3.5.1 1.47 5.1553 5'-311 3'.5.173 5-1559
22-7.277 2.11-353 25.35 2.17.229 2'-1949
7757 3'.863 7-11-101 13.599 3-23-113
2.32-431 23.971 2.3889 22.3-11.59 2.7.557
7759 17-457 3.2593 7789 11.709
775
777 778 779
2.53-31 2'.5.97 2-3.5.7.37 2*.5.389 2-5-19-41
778 779
780 781 782 783 784
23.3-5l.13 2-5-11-71 2'.5.17.23 2-33.5.29 25.5.7'
29.269 73-107 3'*11.79 41-191 7841
2-47-83 2f-32-7.31 2.391 i 23-11.89 2.3-1307
33-172 13-601 7823 3.7.373 11-23-31
2"1951 2-3907 2'-3-163 2-3917 2'.37-53
5-7-223 3.5.521 5'.313 5-1567 3-5.523
2.3.1301 23.977 2-7.13.43 2'-3.653 2.3923
37.21 1 7817 17-461 7.19.59
27-61 2.3-1303 2'- 19.103 2-3919 23.3'.109
3.19-137 7.1117 7829 3'.13-67 47.167
780 781 782 783 784
785 786 787 788 789
2-5'-157 2'-3-5-131 2-5.787 23-5-197 2.3.5.263
3-2617 7.1123 17-463 3.37-71 13-607
2'.13-151 2-3931 26-3-41 2.7-563 22.1973
7853 3-2621 7873 7883 3'.877
2-3-7-11-17 2-31-127 22-33.73 2.3947
5-1571 5.1 12.13 32.53.7 5.19-83 5.1579
2'-491 2.3'- 19-23 22.11.179 2.3943 23-3.7.47
34-97 7867 7877 3-11.239 53.149
2.3929 22.7.281 2-3-13.101 2'.17-29 2.11.359
29.271 3.43.61 7879 7'-23 3.2633
785 786 787 788 789
790 79 1 792 793 794
b-5'-79 2-5-7-113
7901 33.293 89' 7-11.103 3-2647
2-3'-439 23.23*43 2-17.233 2'-3-661 2-11-19'
7.1129 41-193 3.19.139 7933 132.47
25.13.19 2.3.1319 22.7.283 2-3967 23.3.331
3-5-17.31 5.1583 5'.317 3-5-23' 5.7.227
2.59.67 22-1979 2.3.1321 28.31 2.29-137
7907 3-7.13.29 7927 7937 3'.883
2"3.659 2-37.107 23.991 2.3'. 7' 2'.1987
11-719 7919 3'.881 17.467 7949
790 791 792 793
795 796 797 798 799
2-3-5'.53 23-5-199 2-5-797 2'.3.5.7-19 2.5-17.47
7951 19-419 3-2657 23.347 61.131
24-7-71 2-3-1327 2'- 1993 2.13-307 23-3a-37
3-11-241 7963 7-17.67 3'.887 7993
2.41.97
5.37-43 33.5-59 52.11-29 5.1597 3.5-13-41
2'-3'.13*17 2.7.569 23.997 2-3-113 22.1999
73.109 3 1.257 3-2659 7'.163 11.727
2.23-173 2'.3.83 2.3989 22-1997 2.3.31 -43
3.7-379 13-613 79.101 3.2663 19.421
758
776
~
~~
~~
22- 11-173
~
23.983 .__
2..11.iSi 2.3'-443 2'.499 2-7-571
3.2609 - ~...
~~
d
0
2 2
E
2
i. 3*
;I?
cc
:
0 0 4
N
0
1
2
3
4
5
6
7
8
9
N
00
8k 0" 8
800 801 802 803 804 805 806 807 808 809
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
838 839 840 841 842 843 844 845 846 847 848 849
26-53 2.3'.5.89 2'-5-401 2-5-11-73 2a.3-5-67 2-5'.7-23 22.5-13-31 2-3-5-269 2'.5.101 2.5-809 22.34.52 2.5.811 23.5.7.29 2-3-5-271 22.5.1 1.37 2.5'. 163 25-3.5.17 2.5.19.43 2"5.409 2.32-5-7-13 2'-5'.41 2.5.821 2'.3-5.137 2.5.823 2'.5.103 2-3-53-11 2'-5*7-59 2-5-827 23.32-5-23 2.5.829 2'.5'-83 2-3.5-277 2'.5-13 2.5-7'- 17 2'.3.5.139 2.5'.167 23.5.1 1-19 2-33-5.31 2'.5-419 2-5.839 2'.3.5'-7 2.5.29' 2'-5.421 2.3.5.281 23.5.21 1 2-5'-13' 2'-3'.5-47 2-5.7.11' 25.5.53 2.3.5-283
3'-7-127 8011 13.617 3.2677 11.17.43 83-97 3.2687 7-1153 8081 3"-29-31 8101 8111 3.2707 47.173 7-1163 3.11-13-19 8161 8171 3'.101 8191 59-139 3.7-17-23 8221 8231 3-41-67 37-223 11.751 3'.919 7'-13' 8291 3.2767 8311 53.157 3.2777 19.439 7.1 193 3'.929 11.761 17'.29 3.2797 31.271 13.647 3-7.401 8431 23-367 33.313 8461 43-197 3.11-257 7-1213
2.4001 2'-2003 2.3-7-191 25.251 2.4021 2'-3-11-61 2.29.139 23.1009 2.3'-449 2'.7*17' 2-4051 24.3-13' 2.31.131 2'- 19-107 2-3-23-59 23*1019 2.7-11-53 2'-3'.227 2-4091 213 2-3.1367 2l.2053 2-4111 23-3-73 2.13.317 2'-2063 2-35.17 2'-11-47 2.41.101 2'-3-691 2.7.593 2'. 1039 2-3.19.73 2"2083 2-43-97 25-32.29 2.37-113 22*7-13*23 2.3-11.127 23-1049 2.4201 2f-3-701 2-4211 2'-17-31 2.3'-7-67 2f-2113 2.4231 23-3-353 2-4241 F.11.193
53-151 3-2671 71-113 29-277 3-7.383 8053 11.733 33-13-23 59.137 8093 3-37-73 7-19-61 8123 3.2711 17-479 31-263 3'-907 11.743 72-167 3.2731 13.631 43-191 3.2741 8233 8243 3"7.131 8263 8273 3.11.251 8293 19'-23 3.17-163 7-29.41 13.641 3'.103 8353 8363 3.2791 83-101 7-11.109 3-2801 47-179 8423 31.937 8443 79-107 3-7.13-31 37-229 17.499 3-19-149
22-3-23-29 2.4007 23-17.59 2.3-13-103 22.2011 2.4027 27.32.7 2.1 1.367 2'.43.47 2-3.19.71 23.1013 2-4057 2'.3-677 2-7'*83 2'-509 2.3j.151 2"13.157 2.61-67 2'-3-11-31 2.17.241 2'.7.293 2.3.37' 25.257 2.23.179 22-32-229 2-4127 23-1033 2.3-7.197 2'.19.109 2.11.13-29 2'.3.173 2.4157 22.2081 2-32.463 23-7.149 2.4177 2'.3.17.41 2.53-79 26.131 2-3.1399 2'-11.191 2.7.601 23-34.13 2.4217 22-2111 2-3-1409 2'.232 2-19-223 2'-3*7*101 2-31-137
5-1601 5.7.229 3-52-107 5.1607 5.1609 3'.5.179 5.1613 52.17-19 3-5.7'.11 5-1619 5.1621 3.5.541 5'.13 5.1627 3'.5- 181 5.7-233 5-23-71 3~5~.109 5.1637 5.11-149 3-5-547 5-31.53 52.7-47 33.5-61 5.17-97 5.13.127 3-5.19-29 5'-331 5.1657 3.5.7.79 5.11-151 5.1663 32.52.37 5.1667 5.1669 3-5.557 5.7.239 53.67 3-5.13-43 5-23.73 5-41' 32.5.11*17 52.337 5-7-241 3.5.563 5.19-89 5.1693 3.5'-113 5-1697 5.1699
2-4003 2'.3.167 2-4013 2'.7'-41 2.33.149 23-19-53 2-37.109 2'-3-673 2-13-311 25-11.23 2-3.7.193 P.2029 2.17-239 23.32.113 2-4073 2=.2039 2.3-1361 2'.7.73 2-4093 2'.3.683 2.11.373 23.13-79 2.3'-457 2'.29.7 1 2-7-19-31 26-3-43 2-4133 2'-2069 2.3.1381 23.17.61 2-4153 22-33.7-1 1 2.23-181 2'-521 2.3.1 3-107 2'.2089 2-47-89 23.3-349 2.7.599 2'.2099 2.3'.467 25-263 2-11-383 22.3.19-37 2.41.103 23.7-151 2.3- 17-83 2'.13-163 2-4243 2'.3'-59
3-17-157 8017 23-349 3'. 19-47 13-619 7-1151 3.2689 41-197 8087 3-2699 112.67 8117 33.7.43 79.103 8147 3.2719 8167 13-17.37 3.2729 7-1171 29-283 3'. 11.83 19.433 8237 3.2749 23.359 7-1181 3-31.89 8287 8297 3'.13.71 8317 11.757 3-7.397 17-491 61-137 3-2789 8377 8387 33.311 7-1201 19-443 3-53' 11-13.59 8447 3-2819 8467 7'- 173 3'.23.41 29-293
23.7.11-13 2-19.211 2'.3'-223 2.4019 2'-503 2.3.17.79 2'.2017 2-7.577 23-3-337 2-4049 2'.2027 2.32.11.41 26.127 2-13.313 2"3.7-97 2.4079 23.1021 2.3.29.47 2'.23.89 2-4099 2'.33.19 2.7.587 22.112.17 2.3.1 373 23.1031 2.4129 2'.3-13.53 2.4139 25.7.37 2-3'.461 2*.31-67 2.4159 23.3.347 2.1 1-379 22.2087 2.3.7-199 2'.523 2.59.71 22.32.233 2.13-17.19 23.1051 2-3-23-61 22-72-43 2.4219 28-3-11 2.4229 22.29.73 2-33.I57 23.1061 2.7.607
8009 36.11 7-31-37 8039 3.2683 8059 8069 3-2693 8089 7-13.89 3'-17.53 23.353 11.739 3.2713 29.281 41.199 3-7.389 8179 19.431 3'-9 11 8209 8219 3.13-211 7.1 1.107 73-113 3.2753 8269 17.487 33.307 43.193 7-1187 3.47.59 8329 3 1.269 3.1 12.23 13.643 8369 32.72.19 8389 37.227 3.2803 8419 8429 3.29.97 7-17-71 11-769 3"941 61-139 13.653 3.2833
800 801 802 803 804 805 806 807 808 809 810 81 1 812 813 814 815 816 817 818 819 820 821
tQ
c)
0
6
2
4
0" g
822 3. 823 824 825 826 (II p 827 4 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 2 849 g
g.
b
2
850 851 852 853 854
2'.53.17 26-23-37 2a.3-5-11 2-5-853 22.5.7.61
3-2837 8521 19-449 3'.13-73
2.3.13.109 26.7.19 . ~. 2.4261 2.3a-79 2-4271
11.773 8513 39.947 7.23-53 8513
2'-1063 2.3'. 11-43 F.2131 2.17.251 25-3449
35.5-7 5.13-131 5'-11-31 3-5.569 5.1709
2-4253 22.2129 2-3-72.29 23-11.97 2.4273
47.181 3.17.167 8527 8537 3.7-11-37
855 856 857 858 859
2-3'*5*-19 2'6. 107 2.5357 2'.3-5-11.13 2-5-859
17.503 7.1223 3.2857 8581 112.71
23-1069 2-3-1427 $-2143 2-7.613 2'-3-179
3-2851 8563 8573 3.2861 13-661
2-7-13-47 2'-2141 2-3.1429 23-29-37 2-4297
5-29-59 3-5-571 52.73 5-17.101 3l.5.191
22-3-23.31 2-4283 27.67 2.3'-53 2'-7.307
43.199 13-659 32.953 31.277 8597
2.11.389 23*32.7.17 2-4289 22.19.113 2.3.1433
33.317 11.19.41 23.373 3.7.409 8599
855 856 857 858 859
860 861 862 863 864
23-52-43 __ 2-3-5-7-41 2'. 5.431 2.5.863 2"3'-5
3-47-61 79.109 . _-.37.233 3'.7.137 864 I
2.1 1.17.23 2'-2153 2*3'.479 23-13-83 2.29.149
7-1229 33.11.29 8623 89.97 3.43.67
2'.3'-239 2-59-73 2'-7*-11 2-3-1439 2'-2 16 1
5-1721 5.1723 3-FY.23 5.11.157 5-7.13.19
2.13.331 2'-3-359 2-19.227 2'-17-127 2.3.11.131
3-19.151 7.1231 8627 3-2879 8647
25.269 2-31-139 2'.3.719 2-7.617 23.23.47
8609 3-13'-17 8629 53.163 32.312
860 86 1 862 863 864
2.F-173
2-3.5.17' 28-5.7-31 2.5.11-79
41-211 3.2887 13-23-29 8681 3-2897
2'-3.7.103 2.61.71 26-271 2-3-1447 2'-41-53
17-509 8663 3 -72.59 19-457 8693
2-4327 2'-3-19' 2-4337 2'-13-167 2.33.7-23
3 -5.577 5-1733 52.347 3'-5.193 5.37-47
2'-541 2.7-619 2'.3'.241 2.43-101 23.1087
11.787 3'. 107 8677 7.17-73 3-13.223
2.3'-13.37 2l.11.197 2.4339 2'-3.181 2.4349
7-1237 8669 3-11.263 8689 8699
865 866 867 868 869
2'.3*5'.29 2-5-13-67 2'.5-109 2.3'.5.97 F-5-19-23
7-11.113 31-281 33-17-19 8731 874 1
2.19-229 23-3'*11' 2.P-89 2'-37.59 2-3.31.47
3'-967 8713 11.13-61 3-41-71 7.1249
2Q.17 2-4357 2'-3-727 2-11.397 23-1093
5-1741 3.5.7.83 52-349 5-1747 3-5.11-53
2-3.1451 2'.2179 2-4363 25.3.7-13 2.4373
8707 23.379 3.2909 8737 8747
2'.7-311 2.3-1453 23.1091 2.17.257 2'.37
3.2903 8719 7-29-43 32.971 13-673
870 871 872 873 874
2*5'-7 28.3.5-73
3-2917 8761 7x.179 3-2927 59-149
2'447 2-13.337 2'-3.17-43 2.4391 2'-7-157
8753 3-23-127 31.283 8783 32.977
2-3-1459 2'-7-313 2-41-107 2'-3'.61 2.4397
5-17-103 5.1753 33-52-13 5-7.251 5.1759
21.1 1.199 2.3l.487 23.1097 2.23.191 2'.3.733
3'.7.139 11.797 67.131 3.29.101 19.463
2-29.151 Z'e.137 2.3.7.11.19 22.133 2.53.83
19.461 3-37.79 8779 11.17-47 3.7-419
879
13-677 3'. 11-89 8821 8831 3.7.421
2.33-163 2l.2203 2.11.401 27.3.23 2-4421
8803 7.1259 3-17.173 11l.73 37.239
2'-3 1 -71 2.3-13-113 23*1103 2-7.631 2'-3-11*67
3.5.587 5.41 -43 52.353 3.5-19-31 5.29.61
2.7.17.37 2'-19.29 2-3.1471 2l.47' 2.4423
8807 3.2939 7.13.97 8837 3'-983
23.3.367 2.4409 2.3'-491 2'.2207 2'.7.79
23.383 8819 3'.109 8839 8849
880 881 882 883 884
53-167
2'-2213 2.3-7-211 23.1109 2-4441 2'-3'-13.19
3.13-227 8863 19-467 31-7-47 8893
2-19.233 25-277 2-3*-17-29 21.2221 2.4447
5.7.1 1-23 3'.5-197 P.71 5-1777 3-5-593
23.33-41 2.11-13-31 2l.7.317
17.521 8867 3.1 1-269 8887 7-31.41
2-43.103 2'-3-739 2.23-193 23.11.101 2.3-1483
3-2953 72.181 13.683 3-2963 1 1-809
885 886 887 888 889
2.4451
25-3-7-53 2-4457 2'-23.97 2-3-1489 2'. 13-43
5-13.137 5.1783 3*5'.7-17 5.1787 5-1789
2.61-73 2'.3-743 2.4463 Z3.1117 2.3'.7.71
3.2969 37-241 79-113 33-331 23-389
2'- 17.13 1 2.73-13 2'.3'-3 1 2.41.109 Z2.2237
59.151 3'.991 8929 7.1277 3.19.157
890 89 1 892 893 894
2.11l.37 2'-3'.83 2-7-641 23-1123 2-3-1499
3'.5.199 5.11-163 52.359 3 -5.599 5.7.257
2'.2239 2.4483 2'.3.11-17 2.4493 22-13-173
2.3-1493 23-19*59 2.672 22.3.7.107 2-11-409
17l.31 8969 3.41-73 89.101 8999
865 866 867 868 869 870
__
871 -
872 873 874 875 876 877 878 879
2z.5-4.13 - -__
880 ~.~ 2 W -1 1 2.5.881 881 22.32.5.7' 882 245.883 883 2'45-13.17 884
885 886 887 888
889 890
__
89 -1
892 893 894 895 _..
896 897 898 899
8501 _ _ .~
~
2-3-5l.59 2'-5.443 - _ ___ 2-5.887 2'-3*5-37 2-5.7-127
3-2957 83.107 17-523
2'-5'.89 2.3'.5*11 2'.5-223 2-5-19.47 2'-36149
3'-23.43 7-19-67 11-811 3-13.229 8941
2.3-1487 2'.7-11-29 2-17.263
29.307 3-2971 8923 8933 3-11-271
2.5'- 179 28-5-7 2-3.5-13.23 2'.5-449 2.5.29-31
8951 3.29.103 8971 7.1283 35.37
25.3.373 2.4481 22.2243 2-3'*499 2'-281
7-1279 8963 32.997 13-691 17-23'
8861 __.-
24.557 __.
13'-53 3.72.61 - . .~ 47-191 11.19-43 3.2999
2'.3.709 2.4259 2'-13-41 2-3.1423 2'.2137
67-127 7-1217 3-2843 8539 83.103
850 851 8 852 $53 854
c1
0
2 52 2
5.
4
c3
U
cc
E
2
895 896 89700, lx 898 CO* Q, 899gj F
E
=e 00
N 900 901 902 903 904 905 906 907 908 909 910 91 I 912 913 914 915 916 917 918 919 920 92 1 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
0
1
2
3
4
5
23-3'.55 2.5.17.53 2'-5-11-41 2.3-5-7.43 24-5-113 2.5'. 181 22-3-5.151 2-5.907 23.5-227 2.32-5-101 2'.5'.7-13 2-5-911 25.3-5-19 2-5-11.83 2'.5.457 2.3.5'-61 23-5-229 2.5.7-131 2l-3a.5-17 2.5.919 2'-5'-23 2-3.5.307 2'.5-461 2.5-13-71 23.3.5.7.11 2-8-37 2'.5-463 2-3'.5.103 2'.5-29 2-5.929 2'.3.5"31 2-5-7'.19 23.5.233 2-3-5.311 2'. 5.467 2-5'-1 1-17 2'*3'.5.13 2-5-937 2'.5.7.67 2.3-5-313 2a-5'-47 2-5-941 2'-3-5-157 2-5-23-41 2'.5-59 2-3'.5'-7 2'-5-11.43 2-5.947 23-3.5-79 2.5.13.73
9001 9011 3-31.97 11-821 9041 3-7.431 13-17-41 47-193 3'.1009 9091 19.479 3-3037 7-1303 23.397 3.1 1.277 9151 9161 3'-1019 9181 7.13-101 3.3067 61,151 9221 3.17.181 9241 11-29' 38-73 73.127 9281 3-19.163 71-131 9311 3.13-239 7-31-43 9341 3'-1039 11-23-37 9371 3.53.59 9391 7-17.79 3-3137 9421 9431 3l.1049 13.727 9461 3.7-11.41 19-499 9491
2-7.643 2'-3-751 2.13-347 2'-1129 2.3-11-137 2'-31-73 2.23.197 2'.3'.7 2-19.239 2'-2273 2.3-37.41 2'-17-67 2-4561 2'.3.761 2-7-653 28.11.13 2.3'-509 2'-2293 2.4591 2'-3-383 2.43-107 2'.7'*47 2.3-29-53 2'.577 2-4621 2'.3'-257 2-11-421 23.19*61 2.3.7.13-17 2'.23- 101 2-4651 2'-3*97 2-59-79 21.2333 2.3'0173 2'-7-167 2-31-151 2'-3.11.71 2-4691 2'.587 2-3-1567 22-13.181 2-7.673 2**3'-131 2.4721 21-17-139 2.3-19-83 2'.37 2-11-431 2'-3-7-113
3.3001 9013 7-1289 3-3011 9043 1 1-823 3'.19-53 43.211 31-293 3-7.433 9103 13-701 3.3041 9133 41.223 3'.113 7'-11.17 9173 3-3061 29.317 9203 3-37.83 23-401 7-1319 3'- 13-79 19-487 59-157 3.1 1-281 9283 9293 3.7-443 67-139 9323 3'. 17-61 9343 47-199 3-3121 7.13-103 1 1-853 3.31-101 9403 9413 33.349 9433 7-19-71 3-23-137 9463 9473 3-29-109 11.863
22.2251 2-4507 28-3-47 2-4517 2'.7-17-19 2-3'.503 23.11.103 2-13.349 2'03-757 2.4547 2'-569 2.3.72-31 2'-2281 2.4567 23-31127 2-23-199 2'-29.79 2-3.11-139 25-7-41 2.4597 2'.3-13.59 2-17.271 2'-1153 2-35-19 2'.2311 2-7-661 2'.3-193 2-4637 22.11.21I 2.3.1549 23.1163 2.4657 2'-3'-7-37 2.13-359 27-73 2-3.1559 2'.2341 2-43-109 2'-3-17-23 2.7.11-61 2"2351 2.3"523 2'-19.31 2-53-89 2'-3-787 2-29-163 23-7-13' 2.3-1579 2'-2371 2-47-101
5-1801 3.5-601 52.19' 5-13-139 33.5.67 5-1811 5-72-37 3.-5'.11' 5-23-79 5-17-107 3.5.607 5.1823 53.73 3'05-7-29 5-31.59 5-1831 3-5.13-47 5'*367 5-11.167 3-5.613 5.7-263 5-19.97 3'-5'.41 5.1847 5.43' 3-5.617 5-17.109 52.7.53 3.5.619 5-11 -13' 5.1861 3'.5.23 52-373 5-1867 3-5.7.89 5-1871 5.1873 3-55 5.1877 5. I879 3*-5.11-19 5-7-269 5'-13-29 3-5-17.37 5.1889 5-31-61 3-5.631 52.379 5-7-271 3*-5.211
6 2-3-19-79 23.72.23 2.4513 2'-32.251 2-4523 25.283 2.3-151I 22.2269 2.7-11.59 23-3.379 2.29.157 2'4-53 2-33-132 2'.571 2-17.269 2'*3-7*109 2-4583 23.31-37 2.3-1531 22-1-12-19 2.4603 210.32 2.7.659 2'.2309 2.3.23.67 23-13.89 2.41-113 2=-3.773 2-4643 24-7.83 2-3'.11-47 22-17.137 2.4663 23-3-389 2.4673 22.2339 2-3.7.223 2"293 2-13-19' 2'.3'*29 2-4703 23.11.107 2.3-1571 2'-7-337 2.4723 2'-3-197 2-4733 2'-23-103 2.3'--17-31 23.1187
7
8
9
N
9007 71-127 3'- 17-59 7-1291 83-109 3.3019 9067 29-313 3-13-233 11-827 7.1301 3'- 1013 9127 9137 3.3049 9157 89.103 3-7.19-23 9187 17-541 3'-1 1.31 13.709 9227 3.3079 7-1321 9257 3.3089 9277 37.251 1033 41-227 7-113 3.3109 9337 13-719 3.3119 17-19-29 9377 3*-7-149 9397 23-409 3.43-73 11-857 9437 3-47-67 7'.193 9467 36-13 53-179 9497
2'.563 2-33-167 2'-37-61 2.4519 23-3.13-29 2.7-647 22-2267 2-3.17-89 27-71 2-4549 2'-3'-11-23 2.47-97 23-7.163 2.3.1523 2'-2287 2-19-241 2'.3-191 2.13.353 2=-2297 2.3'-7-73 23-1151 2.11-419 2'.3.769 2-31.149 25-172 2-3-1543 2'.7.331 2.4639
3'-7.11-13 29-311 9029 3-23-131 9049 9059 3.3023 7-1297 61-149 33.337 9109 11.829 3.17-179 13-19-37 7.1307 3-43-71 53-173 67-137 3'- 1021 9199 9209 3.7.439 11.839 9239 3-3083 47-197 13-23-31 3'- 1031
900 901 902 903 904 905 906 907 908 909 910 91 1 912 913 914 915
23.33.43 2-4649 2'-13-179 2-3-1553 2'. 1 1.53 2-7.23.29 22.3.19.41 2.4679 2.3'-521 23-1171
7-1327 17-547 3-29-107 9319 19-491 3.1 1-283 9349 7'.191 33.347 83-113 41-229 3.13-241 97' 9419 3-7.449 9439 11 2359 3'- 1051 17-557 9479 3-3163 7-23-59
2'.2347 2.37.127 26.3;72 2.17-277 2'.2357 2.3.112-13 23.1181 2-4729 2'.3"-263 2.7.677 2'-593 2.3-1583
80 a oz
E3
t4
z
$
O
3 52
918 919 920 921 922 923 924 925 926 m 927 928 929 930 93 1 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 g
2 $ 8 0
s. g cc
E
3.3167
950 951 952 953 954
22.53-19 2.3.5.317 24.5.7.17 2-5-953 22-32.5.53
33.353 7.29.47
955 956 957 958 959
2.9-191 23.5.239 2.3.5.11-29 22.5.479 2.5-7-137
3-3187 17.563 11-13.67 3.23.139
960 961 962 963 964
27-3-52 2-5-312 2'.5.13.37 2.32-5.107 2'.5.241
7-1373 32.1069
965 966 967 968 969
2.52.193 22.3.5-7.23 2.5.967 2'.5-112 2.3.5.17-19
970 971 972 973 974
22.52.97 2-5-971 23.35.5 2-5-7.139 22.5.487
975 976 977 978 979
2.3-53.13 25.5-61 2.5-977 22-3.5-163 2.5.11.89
72-199 43.227 3.3257
980 981 982 983 984
23.9.72 2-32-5-109 22-5.491 2-5.983 24.3.5-41
3 4 - 112
985 986 987 988 989
2.9-197 3.5-17.29 2-3-5.7.47 23.5.13-19 2-5.23-43
990 99 1 992 993 994
22.32.52.11 2-5-991 26.5.31 2-3.5-331 22-5.7-71
995 996 997 998 999
2.52.199 23.3.5.83 2.5.997 3-5-499 2-33-5-37
9511 9521
9551
9601 9631
31-311 3.3217 9661
19.509 3.7-461 114381 89-109 32.13.83 9721
37-263 3.17.191
9781 9791 9811
7.23.61 3-29-113 13.757 9851
3-19.173 9871
41.241 32-7.157 9901
11.17-53 3.3307 9931 9941
3-31-107 7-1423 132-59 32.1 109 97.103
5-1901 5.11-173 3-52.127 5.1907 5-23-83
2.75-97 3.3.13.61 2-11.433 26-149 2-3-37-43
3-3169 31-307 7-1361 3-11.172
3-3181
25-33-11 2.67.71 22.2381 2.3-7-227 2'-1193
2'.3-199 2.7.683 22-2393 2.3.1597 2". 11.109
41-233 73-131 3-3191 7-372 53.181
2.17.281 22.3-797 2-4787 2'.599 2-Y.13.41
3.5-7a-13 5-1913 52.383 3'.5-71 5.19-101
2'-2389 2.4783 23.32.7-19 2.4793 23-2399
19-503 32.1063 61-157
2.4801 3.3'.89 2.17-283 25-7.43 2.3.1607
32.11-97
9643
3.74 2.11-19.23 23.3.401 2.4817 22.2411
5-17.113 3.5.641 53.7.11 5.41-47 3-5.643
2.3.1601 2'.601 2-4813 3.3. 11-73 2-7-13.53
3.19-127 2.4831 23-3.13.31 2.47.103 22-2423
7'-197 3-3221 17-569 23.421 33-359
2-3-1609 28.151 2.7-691 22.32-269 2-37>131
5.1931 5-1933 32.52.43 5.13.149 5.7.277
2.32.72.11 2'.607 2-4861 3.3.811 2.4871
31.313 11.883 3-7-463 9733 9743
23.1213 2.3-1619 3-11.13.17 2.31.157 24.3-7-29
23-23.53 2-3-1627 3-7.349 2-67-73 26.32.17
3.3251 13.751 29.337 32-1087 7.1399
2-132.29 22-11-223 2-3-i637 23-1229 2-7-19-37
9803
2-4751 23.29.41 2.32.232 22-2383 2-13.367
13-17-43 32-7-151 89.107 9533
9613 9623
3.132.19
3-3271 11.19-47 9833
3.17.193
22-3-821 2-4931 24-617 2.34-61 22.2473
59.167 7.1409 32.1097
2.4951 23-3.7.59 2-112.41 22-13.191 2.3-1657
3-3301 23.431
25.311 2.17.293 22.32.277 2.7.23.31 23-1249
9883
13.761
9923
3.7.11-43 61-163 37.269 35.41 9973
67-149 3.3331
22.2377 2-4759 23.3.397 2.19.251 2'.7-11.31
37-257 3.19-167 13.733 3'- 1061
950 a 951 952 953 954
2-3'.59 25-13.23 2.4789 22.3.17.47 2.4799
112.79 7-1367 3-31-103 43.223 29-331
955 956 957 958 959
13-739 59.163 3-3209 23.419 11-877
2.3.7.229 23.1201
3.3203
960 961 962 963 964
23-17-71 2.33.179 22-41.59 2-29.167 25.3.101
32-29.37 7.1381
2.11-439 22.2417 2.3.1613 23.7-173 2.13-373
13.743 3.11.293
3.5-647 5-29-67 9.389 3-5-11.59 5.1949
2.23.21 1 22.7.347 2-3-1621 23.1217 2.11.443
17.571 3-41.79 71.137 7.13.107 33.192
22-3-809 2.43-113 2.32.54 29-191
7-19-73 32.23.47
22.2437
9739 9749
2-4877 22.2441 2.33: 181 23-1223 2-59.83
5.1951 32-5.7-31 9-17-23 5-19.103 3.5-653
22.32.271 2-19-257 2'.13.47 2-3-7-233 22.31-79
11-887
2-7-17-41 23.3-11-37 2-4889 22-2447 2.3-23.71
22-3.19-43 2.7-701 25-307 2.3-11-149 23.23-107
5.37-53 5.13.151 3-9-131 5-7-281 5-11-179
2.4903 23.3-409 2-173 22.2459 2-32-547
2-13.379 23.32.137 2-4937 22.7.3 53 2.3.17.97
33.5-73 5-1973 53.79 3-5.659 5-1979
27-7.11 2.4933 3-3.823 2.4943 23.1237
3-11-13.23 7.17.83
2'-619 2.4957 22.3-827 2.4967 23-11.113
5.7-283 3-5.661 52-397 5-1987 3 2 - 5.13-17
2.3.13.127 22.37-67 2-7-709 24.33.23 2-4973
47-211 32.1103 19-523 73.29
2.32-7.79 22.47. 53 2-4987 2'-3-13 2.19-263
5.11-181 5-1993 3-9.7-19 5-1997 5-1999
22-19-131 2.3.11.151 23-29-43 2-4993 3-3-72.17
9547
9587
3.7.457
9677
3-3229 9697
9767
3.3259 9787
97-101 3.7-467 9817
31.317 32.1093 43-229 9857 9887
3-3299 9907
3-3319 9967
11.907 3.3329 13-769
22-29.83 2.61.79 24.32.67
24-613 2-4909 3-33.7.13 2.4919 23.1231 2.3.31.53 22.2467 2.1 1.449 25.3.103 2-72-101
9539
9619 9629
3'-7-17 9649
9679 9689
3.53.61 9719
3.3253
965 966 967 968 969 970 971 972 973
cl
3 m
$. k'
9769
975 976
7.11.127 3.13.251 41.239
:;; 8 979
17.577 32.1091 9829
980 981 982 983 984
9839
3.72-67 9859
71.139 11-29-31 3.37.89 19-521
22.2477 2-32.19-29 23.17.73 2.4969 22.3.829
33.367 7.13.109
2-13.383 2'-7-89 2.3.1663 22.11-227 2-4999
23-433 3.3323 17.587 7-1427 31-11.101
9929
3.3313 9949
@
985 986 987 988 989 990 991 992 993 994 995 996 997
2
I+
m
5
g
* 8
864
COMBINATORIAL ANALYSIS
Table 24.8 Primitive Roots, Factorization of p-1 g, G denote the least positive and least negative (respectively) primitive roots of p .
P
-
P-1
3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79
83 89 97 1111 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 24 1 251 257 263 269 271 277 281 283 293 307 31 1 313 317 331 337 347 349 353
whether 10, -10 both or neither are primitive roots. -
2 22 2.3 2.5 2'.3 24 2.32 2.11 22.7 2.3.5 22.32 23.5 2.3.7
2.5.7 23.32 2.3.13 2.41 23.11 2s.3 22.yjs 2.3.17 2.53 22.33 2'.7 2.3'.7 2.5.13 23. I 7 2.3.23 22.37 2.3.52 22.3.13 2.3' 2.83 22.43 2.89 22.32.5 2.5.19 26.3 22.72 2.32.11 2.3.5.7 2.3.37 2.113 22.3.19 23.29 2.7.17 2'.3.5 2.53 28 2.131 2'.67 2.33.5 22.3.23 23.5.7 2.3.47 22.73 2.3'.17 2.5.31 23,3.13 22.79 2.3.5.1 1 24.3.7 2.173 2'*3.29 25.11
B
-G
_-2 1 2 2 3 2 2 3 2 2 3 3 2 4 2 5 2 2 3 7 2 2 6 6 3 9 5 2 2 2 2 3 2 2 2 4 7 2 5 5 2 3 2 3 3 3 5 5 2 2 5 2 2 3 6 6 3 3 9 3 2 3 3 3 2 4 2 2 6 5 5 5 4 2 2 5 2 2 2 3 2 2 2 19 5 5 2 2 2 3 4 2 3 9 2 3 6 6 3 3 7 2 7 7 6 3 3 3 5 2 2 2 6 2 5 5 3 3 3 6 2 2 5 7 2 17 10 10 2 2 5 3 10 10 2 3 2 2
a
3
E
- 10 -_-10
____
-___ f 10
10 10 f 10 - 10 -___
____
- 10
10 -___ 10 f 10 - 10 - 10
____
-___ - 10
P 359 367 373 379 383 389 397 40 1 409 419 421 431 433 439 443 449 457 46 1 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 63 1 641 643 647 653 659 661 673 677 683 691 701 709 719 727 733 739 743 751 757 76 1 769 773 787 797 809
811
P- 1 2.179 2.3.61 2'.3.31 2.3q.7 2.191 22.97 22.32.11 24.52 23.3.17 2.11.19 22.3.5.7 2.5.43 24.33 2.3.73
2.3.7.11 2.233 2.239 2.35 2.5.72 2.3.83 2,251 22.127 23.5.13 2.32.29 22.33.5 2.3.7.13 22.139 2.281 23.71 2.3.5.19 25.32 2.293 2'.37 2.13.23 23.3.52 2.3.101 22.32.17 23.79 11 2.3.103 2.32.5.7 27.5 2.3.107 2.17.19 22.163 2.7.47 22.3.5.11 26.3.7 2'. 13' 2.11.31 2.3.5.23 22.52.7 22.3.59 2.359 2.3.11' 22.3.61 2.32.41 2.7.53 2.3.53 22.33.7 23.5.19 28.3 22.193 2.3.13 1 22.199 23.101 2.34.5
Q
denotes
-
-
B
-G
B
-G
P
P- 1
- -
7 6 2 2 5 2 5 3 21 2 2 7 5 15 2 3 13 2 3 2 13 3 2 7 5 2 3 2 2 2 2 2 3 3 5 2 3 7
2 2 2 4 2 2 5 3 21 3 2 5 5 5 3 3 13 2 2 3 2 2 4 5 2 2 3 4 2 4 2 3 3 5 5 3
82 1 823 827 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 947 953 967 971 977 983 991 997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193 1201 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 1297
22.5.41 2.3.137 2.7.59 22.32.23 2.419 22.3.71 23.107 2.3.1 1.13 2.431 2'*3*73 24.5.11 2.32.7' 2.443 2.3.151 2.5.7.13 2.3'. 17 25.29 23.32.13 22.5.47 2.11.43 23.7.17 2.3.7.23 2.5.97 24.61 2,491 2.32.5.11 21.3.83
2 2 2 3 2 3 2 2 11 2 2 2 3 b 2 4 2 6 2 2 3 3 2 4 2 5 2 4 17 3 7 5 3 3 5 5 2 2 2 3 3 3 2 5 6 3 3 3 2 5 2 6 7 7 11 11 3 3 2 3 10 10 14 2 5 5 2 3 3 3 6 7 2 2 2 3 6 6 2 3 4 2 5 5 3 3 5 3 2 2 2 2 4 2 11 11 2 17 5 5 5 3 2 4 7 7 2 3 3 3 11 11 2 2 3 3 2 5 2 2 2 3 2 2
- -
7
3 2 3 2 3 3 11 5 2 2 2 5 2 5 3 2 2 11
5 6 3 5 3 2 6 I1 2 2 2 3 3
3
2 7 2 2 3 4 9 3 7 2 2 3 2 5 2 10 6 2 2 2
7 6 6 2 2 2
6
11 2 4 2 3
5
2.3a.59 22.3.89 2.3.181 2.5.109 22.3.7.13 25.137 2.19929 22.277 22.32.31 2.3.11.17
2.32.5913 22.5.59 2.593 22.3101 25.10 2.13.47 22.307 2.3.5.41 22.3.103 25.3.13 2.17.37 2'. 11.29 2.32.71 2.641 23.7.23 2.3.5.43 24-34
7
2 2 3 2 6 2 LO
7
3 2 2 3 6 4
10
865
COMBINATORIAL ANALYSIS
Table 24.8
Primitive Roots, Factorization of p-1 g,
G denote the least positive and least negative (respectively) primitive roots of p . e denotes whether 10, -10 both or neither are primitive roots. - - - P-1
P 1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511 1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637 1657 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 1741 1747 1753 1759 1777 1783 1787 1789 1801 1811 1823
22.52.13 2.3.7.31 2.653 2.659 23.3.5.11 2.3.13.17 24.5.17 2.683 22~7~ 22.3.5.23 2.3.233 2'. 11 2.32.79 2.23.31 21.3.7.17 23.179 2.719 2.3.241
~
2.743 24.3.31 22.373 2.7.107 2.5.15 1 2.761 2.32.5.17 2.3.257 22.3'. 43 24.97 2.19.41 2.38.29 2.5.157 2.3.263 2.7.113 22.3.7.19 26.52 2.11.73 23-3.67 22.13.31 2.809 22*3'.5 2.3.271 22.409 5.5.23 253.277 2.72.17 22.3.139 22.32.47 25.53 2.3.283 22.7.61 23.5.43 2.3.7.41 22.433 22.3.5.29
2'.3.37 2.3'*11 2.19.47 22.3.149 29.32.9 2.5.181 2.911
B
G
2 6 2 13 13 3
2 2 3 2 13 9 3 2 2 2 5
P- 1
- -
3 5 2
2
13 3 3 2 6 3 7 3 2 2
3 9
3
6 3 2 2 3 2 6 3 5 6 3 3 4 2 2 5 14 14 2 2 2 3 11 2 2 3 4 2 2 5 2 2 3 3 2 19 2 3 2 3 3 5 2 5 11 11 3 3 2 5 7 7 3 3 2 3 2 2 6 3 2 2 11 11 3 2 2 3 2 2 2 2 3 3 3 6 3 3 3 3 3 6 2 2 2 2 2 4 7 7 2 6 5 5 2 ia 2 3 6 6 11 11 6 3 e 2
1831 1847 1861 1867 1871 1873 10 _ _ _ _ 1877 1'879 10 _ _ _ _ 1889 1901 f10 1907 -10 1913 1931 ____ 1933 -10 1949 f10 1951 *lO 1973 -10 1979 10 1987 ____ 1993 -_-1997 ____ 1999 -10 _ _ _ _ 2003 2011 ____ 2017 10 2027 ____ _ _ _ _ 2029 2039 ____ 2053 -10 2063 -10 2069 10 2081 10 2083 f10 2087 f10 2089 -10 2099 10 2111 10 2113 10 2129 10 2131 2137 2141 10 2143 2153 2161 10 2179 f10 2203 2207 2213 2221 10 2237 -10 . _ _ _ _2239 2243 .____ 2251 f10 2267 .____ 2269 f10 2273 .____ 2281 .____ . _ _ _2287 _ 2293 f10 _ _ _ _ _ 2297 _ _ _ _ _ 2309 2311 -10 2333 f10 2339 10 2341 -10 2347 k10 2351 .___ _ 2357 10 2371 10
f10 10 -10 -10
____
____
_____
2.3.5.61 2.13.71 22.3.5.31 2.3.311 2.5.1 1.17 2'. 32.13 22.7.67 2.3.313 25.59 22.5'. 19 2.953 23.239 2.5.193 22.3.7.23 22,487 2.3.52.13 22.17.29 2.23.43 2.3.331 2Js3.83 22.499 2.33.37 2.7.11.13 2.3.5.67 25.32.7 2.1013 22.3.132 2.1019 22 38.19 2.1031 22.11.47 25.5.13 2.3.347 2.7.149 23.32.29 2.1049 2.5.211 26.3.11 24.7.19 2.3.5.71 23.3.89 22.5.107 2.32.7.17 23.269 2'.33.5 2.32.112 2.3.367 2.1103 22.7.79 22.3.5.37 22.13.43 2.3.373 2.19.59 2.32.53 2.1 i.103 2?.34.7 25.71 23.3.5.19 2.32.127 22.3.191 23.7.41 22.577 2.3.5.7.1 1 2'. 11.53 2.7.167 22.32.5.13 2.3.17.23 2.52.47 22.19.31 2.3.5.79
B
-G
3 5 2 2 14 10 2 6 3 2 2 3 2 5 2 3 2 2 2 5 2 3 5 3 5 2 2 7 2 5 2 3 2 5 7 2 7 5 3 2 10 2 3 3 23 7 5 5 2 2 2 3 2 7 2 2 3 7 19 2 5 2 3 2 2 7 3 13 2 2
9 2 2 4 2 10 2 2 3 2 3 3 3 5 2 2 2 3 4 5 2 5 3 5 5 3 2 2 2 2 2 3 4 2 7 3 2 5 3 4 10 2 9 3 23 5 7 2 2 2 2 2 3 5 3 2 3 7 7 2 5 2 2 2 3
-
P-1
-
7
6 3 2 4
____
I
2377 2381 2383 k 110 0 2389 -10 2393 -10 2399 f10 2411 ____ . _ _ _ 2417 _ _ _ _ 2423 2437 2441 -10 2447 k10 _ _ _ _ 2459 _ _ _ _ 2467 2473 f10 2477 2503 ____ 2521 10 2531 ____ _ _ _ - 2539 _ _ _ _ 2543 2549 -10 2551 -10 _ _ _ _ 2557 2579 f10 2591 -10 2593 f10 2609 -10 2617 ____ 2621 10 2633 f10 2647 ____ 2657 -10 _ _ _ _ 2659 2663 ____ 2671 10 2677 -10 2683 f10 _ _ _ _ 2687 _ _ _ _ 2689 2693 f10 2699 f10 2707 10 2711 f10 2713 ____ 2719 10 2729 -10 2731 10 _ _ _ _ 2741 2749 f10 2753 ____ 2767 -10 2777 -10 2789 10 2791 -10 2797 f10 2801 f10 2803 ____ 2819 2833 ____ 2837 f10 2843 f10 _ _ _ _ 2851 2857 ____ 2861 10 2879 f10 2887 -10 2897 -10 ____ 2903 2909 10
____
____
-2.3.397 22.3.199 23.13.23 2.11.109 2.5.241 2'*151 2.7.173 22.3.7.29 23.5.61 2.1223 2.1229 2.32.137 23.3.103 22.619 2.32.139 23.32.5.7 2.5.1 1.23 2.333 47 2.31.41 22.72. 13 2.3.52.17 22.32.71 2.1289 2.5.7.37 25.3' 24. 163 23.3.109 22.5.131 28.7.47 2.33.72 25.83 2.3.443 2.113
5.673 2.19.71 2.3.11.41 2.5.271 23.3.113 2.32.151 23.11.31 2.3.5.7.13 22.5.137 22.3.229 26.43 2% 46 1 28.347 22.17.41 2.32.5.31 22.3.233 24.52.7 C3Y467 2.1409 24.3.59 22.709 2.72.29 2:3; 51-19 23.3.7.17 22.5.11.13 2.1439 2.3.13.37 2'*181 2.1451 22.727
B
-G
5 3 5 2 3 11 6 3 5 2 6 5 2 2 5 2 3 17 2 2 5 2 6 2 2 7 7 3 5 2
5
-
3 3 3
2 5 7 2 2 5 19 2 2 2 7 5 3 3 3 2 6 3 3 3 2 6 2 3 2 2 5 2 2 2 11 2 7 5
3 5 2
3
13 2 3 2 3 3 2 2 6 2 3 4 5 2 2 17 3 4 2 2 2 2 3 2 7 3 5 2 3 2 3 4 2 5 2 4 3 19 2 3 4 2 5 2 3 5 2 6 3 9 3 2 7 2 3
4
3 5 2 4 4 11 2 2 2 3 2 2
866
COMBINATORIAL ANALYSIS
Primitive Roots, Factorization of p-1 Table 24.8 g, G denote the least positive and least negative (respectively) prjmitive roots of p .
whether 10, -10 both or neither are primitive roots. - - -
P -
P- 1
2917 2927 2939 2953 2957 2963 2969 2971 2999 3001 3011 3019 3023 3037 3041 3049 3061 3067 3079 3083 3089 3109 31 19 3121 3137 3163 3167 3169 3181 3187 3191 3203 3209 3217 3221 3229 3251 3253 3257 3259 3271 3299 3301 3307 3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413 3433 3449 3457 3461 3462 3467 346E 3491 349s 3511 3515
22.36 2.7.11.19 2.13.113 23.31.41 22.739 2.1481 28.7.53 2.33.5.1 1 29 1499 23.3.53 2.5.7.43 2.3.503 2,1511 22.3.11*23 25.5.19
2.3'.19 2.23.67 2'. 193 22.3.7.37 2,1559 24*3,5*13 28.7' 2.3.17.31 -21583 2'. 32.11 28.3.5.53 2.38.59 2.5.11.29 2.1601 23,401 2'.3.67 22.5.7.23 22.3.269 243.13 22.3.271 2'. 11.37 2.32.181 2.3.5.109 2.17.97 22.3.52.11 2.3.19.29 2'.32:23 2.3.7.79 2.11.151 28.13 2.31.5.37 2.3.557 2.7.239 2.23.73 25.3.5.7 2.8.337 22.3.28 1 22.7.112 2.395.113
2.ii.iii
2'.853 23.3.11.13 23.431 2'. 33 22.5.173 2.3.577 2.1733 22.3.172 2.5.349 2.3.11.53 2.33.5.13 22.3.293
Q
-G
5 5 2 13 2 2 3 10 17 14 2 2 5 2 3
5 2 3 13 2 3
I
- - 1-
3
5 2 14 3 4 2 2 3 11 11 6 6 4 2 2 6 2 3 3 3 6 6 2 7 7 7 3 3 6 3 2 5 7 7 7 7 4 2 11 5 2 3 3 3 5 5 10 10 6 6 6 3 2 2 3 3 5 3 3 5 2 3 6 6 4 2 10 10 2 6 3 2 3 3 5 3 5 11 3 2 2 11 22 22 3 2 5 5 3 3 5 3 2 5 2 2 5 5 3 3 7 7 2 2 9 3 2 3 2 2 2 3 2 4 7 2 2 2
_--10_- -_ -_ _ _ 10 __
3539 3541 3547 3557 3559 -10 3571 ____ 3581 10 3583 10 3593 10 3607 3613 .____ 3617 . _ _ _ _ 3623 .____ 3631 -10 3637 -10 3643 -10 3659 . _ _ _ _ 3671 3673 -10 3677 . _ - _ _ 3691 3697 f10 -10 3701 10 3709 .____ 3719 .____ 3727 . - - - - 3733 ----3739 -10 3761 3767 3769 3779 f10 3793 10 3797 _ _ _ _ _ 3803 3821 f10 10 3823 -10 3833 10 3847 3851 f10 -10 3853 3863 f10 _ _ _ - - 3877 -10 3881 - _ _ - _ 3889 10 3907 10 3911 -10 3917 -10 3919 -__-3923 10 3929 -__-3931 3943 -110 -10 3947 10 3967 ----3989 4001 310 _ _ _ - - 4003 --_-4007 4013 f10 10 4019 -10 4021 4027 f10 _ _ _ - _ 4049 _ _ _ _ _ 4051 4057 -10 _ _ _ _ _ 4073
__ __ __ __ __ * - - - -
1
Q
-G
5 17 2 2 7 2 2 3 2 2 3 3 5 2 3 5 15 2 2 2 13 5 2 2 5 2 2 7 3 2 7 3 5 7 2 5 2 2 3 3 3 5 2 2
2 10 17 2 ____ 3 10 7 -___ 4 -10 2 -___ 2 -10 10 4 2 f10 2 ____ 3 -110 11 10 2 3 f10 2 10 10 -10 2 4 -10 3 10 2 5 f10 2 4 5 2 f10 2 f10 2 -10 2 10 2 -___ 5 -___ 3 ---10 2 7 ---10 3 5 ---2 -___ 3 -10 3 f10 9 ____ 3 f l O 10 2 4 --__ 2 10 2 2 13 11 - - _ _ 4 -10 2 -10 2 2 ____ 3 -10 3 4 -_-_ 10 9 3 -10 10 2 2 f10 3 -___ 4 -___ 10 2 2 10 4 2 -___ 6 -10 3 ____ 1'0 5 5 flO 3 flO
2.41.43 23.32.72 22,883 2.29.61 22.3.5.59 2.3a.igi 21.7.127 2.3.593 2.3.5.7.17 22-5.179 2.32.199 23.449 2.3.601 22.3.7.43 25.113 2.1811 2.3.5.112 22.32.101 2.3.607 2.31359 2.5.367 239 33.17 22.919 2.3"5*41 2.432 22*5'.37 22.32.103 2.11.132 2.3'.23 22.3.311 293.7.89 2'.5.47 2.79269 23.3.157 2.1889 2'. 3.79 22.13.73 2.1901 22.5.191 2.3.72. 13 23.479 293,641 2.52.7.11 22.32.107 2,1931
2.5.17.23 22.11.89 2.3.653 2.37.53 23.491 2.3.5.131 2.33.73 2.1973 2.3.661 21.997 25.53 2.3.23.29 2.2003 22.17.59 2.72.41 22.3.5.67 2.3.1 1.61 2'*11.23 2.3'*5' 23.3.132 23.509
5
2 13 11 2 13 2 3 2 3 2 3 2 6 2 3 2 5 2 2 2 3 3 10 5 3
____
____
____ ____ __ __ __ __ ____
____ ____ ____ ____ ____
____
4079 4091 4093 4099 4111 4127 4129 4133 4139 4153 4157 4159 4177 4201 4211 4217 4219 4229 4231 4241 4243 4253 4259 4261 4271 4273 4283 4289 4297 4327 4337 4339 4349 4357 4363 4373 4391 4397 4409 4421 4423 4441 4447 4451 4457 4463 4481 4483 4493 4507 4513 4517 4519 4523 4547 4549 4561 4567 4583 4591 4597 4603 4621 4637 4639 4643 4649 4651 4657 4663
s
denotes - -
P-1
-
Q
-G
2,2039 2.5.409 21.3.11.31 2.3.683 2.3.5.137 2.2063 26.3.43 22.1033 2.2069 22.3.173 22.1039 2.38.7.11 24.32.29 2'. 3.52.7 2.5.42 1 28.17.31
11 2 2 2 12 5 13 2 2 5 2 3 5 11 6 3 2 2 3 3 2 2 2 2 7 5 2 3 5
2 3 2 4 2 2 13 2 3 5 2 2 5 11 3 3 4 2 2 3 4 2 3 2 3 5 3 3 5 2 3 5 2 2 4 2 2 2 3 3 7 21 2 3 3 2 3 4 2 4 7 2 9 3 3 6
2.2141 20.67 28.3.179 2.3.7.103 24,271 2.32.241 22.1087 2'.3a.1la 2.3.727 22.1093 2.59439 21.7.167 28.1929 21.5.13.17 2.3.11.67 28.3.5.37 2.32.13.19 2.52.89 28.557 2.23.97 27.5.7 2.38.83 2'.1123 2.3.751 25.3.47 22.1129 2.32.2 51 2.7.17.1 9 2.2273 22.3-379 24.3.5.19 2.3.761 2.29.79 2.33.5.17 22.3.383 293.13.59 22.3.5.7.11 22.19.61 2.3.773 2.11.211 23.7.83 2.3.54.31 24.3.97 2.32.7.37
3 3
10 2 2 2 2 14 2 3 3 3 21 3 2 3 5 3 2 2 2 7 2 3 5 2 6 11 3 5 11 5 2 2 2 3 5 3 3 15 3
-
11
7 2 2 5 4 2 2 2 3 3 5 15 9
e
867
COMBINATORIAL ANALYSIS
Primitive Roots, Factorization of p-1 g, G denote the least positive and least negative (respectively) primitive roots of p .
whether 10, -10 both or neither are primitive roots. - -
4673 4679 4691 4703 4721 4723 4729 4733 4751 4759 4783 4787 4789 4793 4799 4801 4813 4817 4831 4861 4871 4877 4889 4903 4909 4919 4931 4933 4937 4943 4951 4957 4967 4969 4973 4987 4993 4999 5003 5009 5011 5021 5023 5039 5051 5059 5077 5081 5087 5099 5101 5107 5113 5119 5147 5153 5167 5171 5179 5189 5197 5209 5227 5231 5233 5237 5261 5273 5279 5281
P-1 26.73 2,2339 2.5.7.67 2.2351 2'. 5.59 2.3.787 23.3.197 22.7.132 2.9.19 3.3.13.61 2.3.797 2.2393 2'.3'.7.19 23.599 2.2399 26.3.52 22.3.401 24.7.43 2.3.5.7.23 2'. 35.5 2y5.487 22.23.53 23.13.47 2.3.19.43 22.3.409 2.2459 2.5.17.29 22.32-137 23.617 2.7.353 2-32.52.11 22.3.7.59 2.13.191 28933.23 2'. 11 * 113 2.31.277 27.3.13 2-3.72.17 2.41.61 24.313 2.3.5.167 22.5.251 2.34.31 2.11.229 2.8.101 2 3 - 5.127
2.2543 2.2549 22.3.5'. 17 2.3.23.37 28.32.71 - - .2.3.853 2.31.83 28.7.23 2.32.7.41 2.5.11.47
2.3.13.67 2.5.523 24.3.109 22.7.11.17 22.5.263 23.659 2-7.13.29 26.3.5.11
Q
-G
- 3 3 2 11 2 3 2 5 6 6 4 2 17 17 5 5 3 19 5 3 2 6 2 3 2 2 3 3 2 7 7 7 2 2 3 3 2 3 11 11 11 3 2 2 3 3 2 3 6 6 2 13 6 3 2 2 3 3 2 7 2 6 2 2 5 2 11 11 2 2 4 2 5 5 3 9 2 3 3 3 4 2 3 3 2 3 2 11 3 2 4 2 2 2 3 3 5 2 2 3 6 6 2 4 19 19 2 3 2 3 5 5 6 11 4 2 4 2 2 2 7 7 17 17 2 4 2 7 10 10 3 3 2 2 3 3 7 3 7 7
d
P
-
P- 1
5297 5303 5309 5323 5333 5347 5351 5381 5387 5393 5399 5407 5413 5417 5419 5431 5437 5441 5443 5449 5471 5477 5479 5483 5501 5503 5507 5519 5521 5527 5531 5557 5563 5569 5573 5581 5591 5623 5639 5641 5647 5651 5653 5657 5659 5668 5683 5689 5693 5701 571 1 5717 5737 5741 5743 5749 5779 5783 5791 5801 5807 5813 5821 5827 5839 5843 5849 5851 5857 5861
2'.331 2.113241 22.1327 2.3.887 22.31.43 2.35.11 2.52.107 22.5.269 2.2693 2'.337 2.2699 2.3.17.53 22.3.11.41 28.677 2.32.7.43 2.3.5.181 23.32.151 28.5.17 2.3.907 23.3.227 2.5.547 22.372 2.3.11.83 2.2741 22.53.11 2.3.7.131 2.2753 2.31.89 2'*3*5.23 2.32.307 2.597.79 22.3.463 2.38.103 28.3.29 22.7.199 22.32.5.31 2.5.13.43 2.3.937 2.2819 28.3.5.47 2.3.941 2.53.113 22.32.157 28.7.101 2.3.23.41 22.13.109 2.3.947 28.32.79 22,1423 22.33.19 2.5.571 22.1429 28.3.239 22.5.7.41 2.3'. 11.29 22.3,479 2.33.107 2.72.59 2.3.5.193 23.52.29 2,2903 22-1453 21.3.5.97 2.3.971 2.3.7.139 2.23.127 28.17.43 2.32.8.13 26.3.61 P.5.293
Q
-G
3 5 2 5 2 3 11 3 2 3 7 3 5 3 3 3 5 3 2 7 7 2 3 2 2 3 2 13 11 5 10 2 2 13 2 6 11 5 7 14 3 2 5 3 2 3 2 11 2 2 19 2 5 2 10 2 2 7 6 3 5 2 6 2 6 2 3 2
3 2 2 10 2 6 2 3 3 3 2 2 5 3 5 2 8 3 4 7 3 2 2 3 2 9 3 2 11 2 5 2 4 13 2 6 2 2 2 14 2 3 5 3 4 3 4 11 2 2 3 2 5 2 2 2 4 2 2 3 2 2 6 4 2 4 3 4 7 3
- -
7 3
P- 1
-
Q
-G
2.7.419 22.32.163 2.2939 28.3.5.72 23.11.67 2.3.227 2-32.7.47 2.2963 2.2969 28.3.31 22.5.13.23 2.41.73 2.3.7.11.13 2.5.601 22.1 1,137 22.3.503 - - _.. 2.3.19.53 2.3023 22.17.89 2.32.337 28.3.11123 2.3.1013 2a.761 2.3.5.7.29 22.8.61 26.191 28.32.5.17 2.5.613 22.3.7.73 2.37.83 2.3.52.41 2.3.13.79 22.1543 22.1549 2.3.1033 2.7.443 2.33.5.23 23.3.7.37 22.59311 22.31.173 2.1.347 24.1723 2.31.101 22.1567 2.3.6.11.19 21.3.523 2.7.449 - . -.. 2.47.67 21.32.52.7 2.5.631 229 1579 229.109 28.7.113 26.31.11 2.3.7.151 2'*397 2.11.17' 23.3.5.53 2.3.1061 22.38.59 2.3.1063 22.1597 21.3.13-41 22.3.6.107 2.38.7.17 24.13.31 2.3.51.43 21.3.71.11 28.809 24.34.5
5 2 11 31 3 5 2 5 2 7 3 2 3 2 2 5 5 5 2 2 10 17 3 7 2 3 7 2 5 5 3 3 2 2 3 2 2 5 3 2 5 8 5 2 11 2 7 2 10 7 2 2 3 10 3 3 13 19 3 2 2 2 2 6 3 3 3 2 3 7
3 2 2 31 3 2 4 2 3 7 3 3 9 4 2 5 6 2 2 4 10 7 3 11 2 3 7 3 5 2 7 6 2 2 2 3 4 5 3 2 2 3 2 2 17 2 2 3 10 2 2 3 3 10 2 3 2 19 2 2 4 2 2 6 6 3 6 2 3
P 5867 5869 5879 5881 5897 5903 5923 5927 5939 5953 5981 5987 6007 6011 6029 6037 6043 6047 6053 6067 6073 6079 6089 6091 6101 6113 6121 6131 6133 6143 6151 6163 6173 6197 6199 6203 6211 6217 6221 6229 6247 6257 6263 6269 6271 6277 6287 6299 6301 6311 6317 6323 6329 6337 6343 6353 6359 6361 6367 6373 6379 6389 6397 6421 6427 6449 6451 6469 6473 6481
denotes - -
- -
P -
Table 24.8 a
~
-
7
€
868
COMBINATORIAL A N A L Y S I S
Primitive Roots, Factorization of p-1 Table 24.8 g, G denote the least positive and least negative (respectively) primitive roots of p . denotes whether 10, -10 both or neither are primitive roots. - - - P 649 1 6521 6529 6547 6551 6553 6563 6569 6571 6577 6581 6599 6607 6619 6637 6653 6659 6661 6673 6679 6689 6691 6701 6703 6709 6719 6733 6737 6761 6763 6779 6781 6791 6793 6803 6823 6827 6829 6833 6841 6857 6863 6869 687 1 6883 6899 6907 6911 6917 6947 6949 6959 6961 6!7!i7 6971 6977 6983 6991 6997 7001 7013 7019 7027 7039 7043 7057 7069 7079 7103 7109
P- 1 2.5.11.59 28.5.163 27.3.17 2.3.1091 2.5'. 131 2'.3'. 7.13 2.17.193 23.821 2.3l.5.73 2'. 3,137 22.5.7.47 2.3299 2.3l.367 2.3.1 103 22.3.7.79 22. 1663 2.3329 22*3"5*37 2'. 3.139 2.32.7.53 2'*11.19 2.3.5.223 22.5'- 67 2.3.1117 22.3.13.43 2.3359 3'. 3'. 11.17 24.421 23.5*132 2.3.72.23 2133892'.3*5*113 2.5.7.97 2'*3.283 2.19.179 2.32.379 2,3413 2l.3.569 24.7.61 28*32*5*19 28,857 2.47.73 2'. 17.101 2.3.5.229 2-3.31.37 2,3449 2.3.1151 295.691 2'*7*13.19 2.23.151 22.31.193 2.7'.71 24.3*5.29 2.3'.43 2.5.17.41 2'. 109 2,3491 2.3-5.233 2'.3*11*53 23.5a*7 22.1753 2.1 12.29 2.3.1171 2*32.17*23 2.7.503 24.32.72 22.3.19.31 2.3539 2953.67 2'*1777
B
2 6 7 2 17 10 5 3 3 5 14 13 3 2 2 2 2 6 5 7 3 2 2 5 2 11 2 3 3 2 2 2 7 10 2 3 2 2 3 22 3 6 2 3 2 2 2 7 2 2 2 7 13 5 2 3 5 6 5 3 2 2 2 3 2 5 2 7 5 2
I
-G
- -
-I-
3 _---6 _____ 7 _____ 4 2 -10 11 10 10 3 7 5 _____ 14 _ ~~~. ____ 2 -10 2 4 10 2 _____ 2 _____ 10 3 6 5 5 3 4 I0 1 1 2 f10 2 10 2 f10 2 -10 2 3 +lO 3 4 3 10 2 3 --_-10 f 1 0 3 -10 2 3 2 *to 3 f10 22 11 3 f10 2 10 2 f10 9 -10 4 -10 3 10 /I 4 ----2 -10 2 _____ 3 -10 2 *lO 3 -10 13 _ _ _ _ _ 11 13 10 4 10 3 f10 2 10 2 -10 5 3 _____ 2 3 10 4 _____ 2 -____ 4 5 f10 2 f10 2 -10 2 I0 2 f10
1
_____
~
_____
_____
1
I
_____
_____
_____
P-1 7121 7127 7129 7151 7159
7211 7213 7219 7229 7237 7243 7247 7253
7321 7331 7333 7349 7351 7369 7393 7411 7417 7433 7451 7457 7450 7477 748i 7487 7489 7499 7507 7517 7523 7529 7537 7541 7547 7549 7559 7561 7.573 7577 7583 7589 7591 7603 7607 7621 7639 7649 7669 7673 7681 7687 7691 7699 7703 7717 7723 7727
2'.5.89 2.7.509 2'.3'.11 2.51.1 1.13 2.3.1193 28.3.13.23 2.3593 23.29.31 2.3.1201 2.5.7 * 103 28.3.601 2.32.40 1
2.3623 22.72.37 2.11.33 1 27-3.19 2.13-281 22.3'.7.29 28.3.5.61 2.5-733 ~22.3.13.47 229 11 167 2 *3* 5'.7' 2'*3*307 9
23.5.11.17 2.19-197 20.329 13 2923,163 2.3'. 139 2211879 2.3761 2'*941 2'.3.157 22.5.13.29 2.78.11 22.3.17.37 2y3779 23.3'. 5.7 2'*3.631 23.947 2.17.223 22.7.27 1 2.3.5.li.23 2.3.7.181 2.3803 22.3.5.127 2.3.19.67 2.3821 26.239 2'.3'.7 1 2'.7.137 2'.3*5 2.32.7.61 2.5.769 2.3.1283 2.3851 22.3.843 2*3'*11.13 2.3863 ~
g
-G
3 5 7 7 3 10 2 3 3 2 5 2 2 2 2 5 2 2 5 2 6 7 2 6 2 6 7 5 2 5 3 2 3 2 2 A 5 7 2 2 2 2 3 7 2 2 2 13 13 2 3 5 2 6 2 5 2 7 2 3
3 2 ___-7 ----3 ___-2 -10 10 * l O 3 -10 3 f10 10 2 3 _____ 5 _____ 4 10 2 f10 2 4 -10 2 10 2 3 -10 5 3 -10 6 f10 7 ----4 __-_6 _____ 2 fl0 5 ----7 _____ 5 &lO 4 10 5 3 f10 4 10 3 f10 4 10 2 6 3 10 7 3 10 4 -10 2 3 -10 3 7 2 f10 3 -10 2 _____ 2 -10 13 2 _--__ 3 f10 2 10 2 2 -10 4 2 10 2 5 -10 3 -10 3 2 3 f10 17 2 10 10 3 5 10 2 10 2 6 _____ 2 10
-
2
3 17 6 2 3 5 2 3 5
P- 1
-
_____
_____ _____ _____
_____
__ __ __ __ __ _____ _____ _____ _____
_____ _____
_____
_____
__ __ __ __ __ _____ _____
7741 7753 7757 7758 7789 7793 7817 7823 7829 7841 7853 7867 7873 7877 7879 7883 7901 7907 7919 7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081 8087 8089 8093 8101 8111 8117 8123 8147 8161 8167 8171 8179 8191 8209 8219 8221 8231 8233 8237 8243 8263 8269 8273 8287 8291 8293 8297 8311 8317 8329 8353 8363 8369 8377 8387 8389
g
22.31.5.43 7 23.3 * I. 7. I 9 10 22.7.277 2 2.P.431 3 22.3.11159 2 24.487 3 2'*977 3 2.3911 5 22. 19.103 2 26.5.72 12 22.13.15 1 2 2.32.19.23 3 2'*3.41 5 22.11.179 2 2+3*13*101 3 2.7.563 2 2'. 52.79 2 2.59.67 2 2.37.107 7 2.3.1321 3 22.3.661 2 28.31 -~ 3 22.1987 2 2.3.5'. 53 6 2.3.1 327 5 2'.3'.37 5 2a.7.11.13 3 2.31.5.89 - - . -. 14 24.3-167 5 2,4019 11 22. 3.1 1 6 1 2 2.3.17.79 3 22.2017 2
3
2.5.811 22.2029 2.31-131 2.4073 25.3*5* 17 2.3.1361 2.5.19.43 2.3.29947 2.31.5.7.13 24.33. 19 2.7.587 22-3.5.137 2.5.823 2'*3*7' 22.29.71 2-13.317 2.3'. 17 21.3.13.53 24. 11.47 2.391381 2.5.829 2'. 1049 22.2099 2.3.5.277 22*3'*7*11 23.3.347 26.31.29 2937.1 13 24.523 23.3.349 2.7.599 22.32.233
-G
- -
5 17 2 6 11 2 2 2 7 3 2 2 17 7 2 2 11 10 2 2 3 2 3 3 2 2 3 3 6 7 5 2
3
5 2 6
7 10 2 2 2 3 3 2 2 12 2 6 5 2 2 3 2 3 2c 2 3 2 2 10 5 3
7
5 2 2 5 2 3 2
17 2 6 2 2 3 3 CI
6
3
4 11 7 3 2 2 10 2 3 2 2 3 7 3 2 3 2 6
7 5 3 3 5 3 6
869
COMBINATORIAL ANALYSIS
Primitive Roots, Factorization of p-1 g,
P 8419 8423 8429 8431 8443 8447 846 1 8467 8501 8513 8521 8527 8537 8539 8543 8563 8573 8581 8597 U599 8609 8623 8627 8630 8641 8647 8663 8669 8677 8681 8689 8693 8699 8707 8713 8719 8731 8737 8741 8747 8753 8761 8779 8783 8803 8807 8819 882 1 8831 8837 8839 8849 8861 8863 8867 8887 8893 8923 8929 8933
Table 24.8
G denote the least positive and least negative.(respectively) primitive roots of p . E denotes whether 10, -10 both or neither are primitive roots. - - -
P-1 2.3.23.61 2.4211 21.72.43 2-3.5.281 2.32.7-67 2.41.103 22.32.5.47 2.3.17-83 2'.58*17 26.7.19 28.3.5-71 2.3.72.29 28.11.97 2-3.1423 2.4271 2.3-1427 21.2143 24.3.5.11.13 21.7.307 2.3.1433 25.269 2-32.479 2.19.227 22.3.7 19 28.38.5 2.3.11.131 2.61.71 22. 11* 197 29.3'. 24 1 28.5.7.31 24.39181 22.41.53 2.4349 2.3.1451 2'.3'*11' 2.3.1453 2932.5.97 25.3.7.13 29.5.19.23 2.4373 24.547 28.3.5.73 2.3.7.11.19 2.4391 2.38.163 2.7-17.37 2,4409 2%3'.5.7' 2.5.883 22.47' 2.38.49 1 24.7.79 5.5.443 2.3.7.211 2.11.13.31 2.3.1481 29.32.13*19 -2.3. i487 25.32.31 22.7.1 1.29
B
3 5 2 3 2 5
6 2 7 5 13 5 3 2 5 2 2 6 2 3 3 3 2 6 17 3
I
-G
6 2
1
2 4 2 6 4 7 5 13 2 3 4 2 4 2 6 2 2 3 2 3 6
17 2 5 2 2 2 2 2 15 15 13 13 2 2 2 3 5 7 5 5 3 5 2 4 5 5 2 2 2 3 3 3 23 23 11 22 5 2 2 4 5 2 2 3 2 2 5 7 2 2 3 2 3 3 2 2 3 9 2 3 3 2 5 5 4 2 11 11 2 2
____
8941 8951 8963 f10 8969 -10 8971 -10 10 8999 9001 -10 9007 9011 f10 9013 *lO . _ _ _ _ 9029 9041 9043 f10 9049 9059 10 -10 9067 . _ _ - - 9091 _ _ _ _ _ 9103 _ _ _ - - 9109 _ _ _ _ _ 9127 9133 9137 10 9151 -10 _ _ _ _ _ 9157 9161 9173 10 10 9181 9187 f10 _ _ _ _ - 9199 9203 _ _ _ _ _ 9209 9221 9227 10 9239 -10 9241 k10 9257 -10 10 9277 _ _ _ _ _ 9281 9283 f10 -10 9293 9311 A10 _ _ _ _ _ 9319 9323 10 9337 9341 9343 10 10 9349 9371 f10 9377 -10 _ _ _ _ _ 9391 9397 -10 9403 9413 f10 9419 10 9421 -10 9431 10 - - _ - - 9433 - - - - - 9437 _ _ _ - - 9439 9461 10
_____
_____
_____
_____
_____
_____
_____
P-1 23.3.5.149 2.52.179 2,4481 28.19.59 2.3.5.13.23
22.3.751 22.37.61 24.5.113 2.3.1 1,137 28.3.13.29 2.7.647 2.3.1511 2*32.5.101 2.3.37.41 29.3'. 11* 23 2.3'. 13' 22.3.761 24.571 2.3.52.6 1 21.3.7.109 28.5.229 22.2293 2'. 38. 5.17 2.3.1531 2.32.7.73 2.43.107 2a.1151 20.5.46 1 2.7.659 2.31.149 2'. 3.5.7.11 2'. 13.89 22*3*77J 20.5.29 2.3.7.13-17 2'*23*101 2.5.7'. 19 2.3.1553 2.59.79 28.3.389 29.5.467 2*3'*173 2**3-19*41 2-5.937 28.293 2.3.5.313 2'*3'.29 2.3.1567 22.13-181 2.17.277 22.3.5.157 2.5.23.41 28.3'. 131 23.7.337 2.3.1 13.13 22.5.11-43
g
6 13 2 3 2 7 7 3 2 5 2 3 3
7 2 3 3 6 10 3 6 3 3 6 3 2 2 3 3 2 3 2 2 19 13 3 5 3 2 2 7 3 2 5 2 5 2 2 3 3 2 3 3 2 2 7 5 2 22 3
-
II
,G
- -
6 2 3 3 4 2 7 2 4 5 2 3 6 7 4 6 5 2 10 2 6 3 2 6 3 2 2 6 2 3 3 2 3 2 13 3 5 3 4 2 2 2 3 5 2 2 2 3 3 2 2 6 3 3 2 3 5 2 7 3
-
- -
II
1-
____
9463 9467 9473 _ _ - - 9479 10 11 9491 9497 -10 9511 _ _ _ _ 9521 10 9533 _ _ _ _ 9539 9547 f10 _ _ _ _ 9551 -10 9587 _ _ _ _ 9601 10 9613 -10 9619 _ _ _ _ 9623 10 9629 9631 &lO 9643 . _ _ _ _ 9649 9661 A10 9677 9679 9689 9697 9719 -10 9721 -10 9733 -10 9739 . - - - - 9743 9749 510 -10 9767 -10 9769 9781 9787 *10 _ _ _ _ _ 9791 9803 _ - - - - 9811 9817 -10 9829 -10 9833 -10 9839 9851 9857 *10 10 9859 9871 10 9883 9887 *10 -10 9901 9907 9923 9929 _ _ _ _ _ 9931 9941 &10 -10 9949 _ _ _ _ _ 9967 - - - _ - 9973 -10 -10
____
_____ _____ _____
_____ _____ __ __ __ __ __ _____
P- 1 2.3.19.83 2.4733 28.37 2.7.677 2.5.13.73 28.1187 2.3.5.317 24.5.7.17 21.2383 2919.251 2.3.37.43 2.5'. 191 2.4793 21.3.5' 29.38.89 2.3.7.229 2.17.283 20.29.83 2.32.5.107 2.3.1607 2'.3'.67 22-3.5.7.23 22.41.59 2.3.1613 28.7.173 25.3 * 10 1 2.43.113 28.3'. 5 22,32311 2.39.541 2,4871 29.2437 2.19.257 - _. ~. 2a.3.11.37 21.3.5.163 2.3.7.233 2.5.11.89 2.132.29 - ~. 2.3'. 5 * 109 28.3.409 22.38. 7* 13 28.1229 2.4919 2.52.197 21.7.1 1 2.3.31.53 2.3.5.7.47 2.34.6 1 2.4943 22.3'. 5'. 11 2.3.13.127 2.11'941 28.17.73 2.3.5.331 22.5.7.71 22.3.829 2.3.11.151 22.33.277
B
-G
- 3 2 3 7 2 3
3 3 2 2 2
9 3 3 2 3
3
11
9 3 2 3 4 2
3 10 17 7 2 3 5 2 5 13 6 3 11 2 3 5 10 3 7 2 5 2 3 2 5 2 2 2 3 10 2 2 3 11
13 2 4 3 2 9 4 7 2 2 2 3 10 3 7 2 5 2 2 2 13 6 6 2 3 5 5 10 3 2 4 5 4 2 4 2 2 4 3 3 5 2 2 2 11
2 13 2 2 5 2 3 2 7 2 2 3
3
- -
870
COMBINATORIAL ANALYSIS PRIMES
T a l i l ~24.9 0 2 3 5 7 11
16
17
22
23
24
1993 1997 1999 2003 2011
2749 2753 2767 2777 2789
3581 3583 3593 3607 3613
4421 4423 4441 4447 4451
5281 5297 5303 5309 5323
6143 6151 6163 6173 6197
7001 7013 7019 7027 7039
7927 7933 7937 7949 7951
8837 8839 8849 8861 8863
9739 9743 9749 9767 9769
10663 10667 10687 10691 10709
11677 11681 11689 11699 11701
12569 12577 12583 12589 12601
13513 13523 13537 13553 13567
14533 14537 14543 14549 14551
19 16411 16417 16421 16427 16433
21
1229 1231 1237 1249 1259
18 15413 15427 15439 15443 15451
20
547 557 563 569 571
17393 17401 17417 17419 17431
18329 18341 18353 18367 18371
19427 19429 19433 19441 19447
20359 20369 20389 20393 20399
21391 21391 21401 21407 21419
9 10
13 17 19 23 29
577 587 593 599 601
1277 1279 1283 1289 1291
2017 2027 2029 2039 2053
2791 2797 2801 2803 2819
3617 3623 3631 3637 3643
4457 4463 4481 4483 4493
5333 5347 5351 5381 5387
6199 6203 6211 6217 6221
7043 7057 7069 7079 7103
7963 7993 8009 8011 8017
8867 8887 8893 8923 8929
9781 9787 9791 9803 9811
10711 10723 10729 10733 10739
11717 11719 11731 11743 11777
12611 12613 12619 12637 12641
13577 13591 13597 13613 13619
14557 14561 14563 14591 14593
15461 15467 15473 15493 15497
16447 16451 16453 16477 16481
17443 17449 17467 17471 17477
18379 iZ97 18401 18413 18427
19457 i9463 19469 19471 19477
20407 20411 20431 20441 20443
21433 21467 21481 21487 21491
11 12 13 14 15
31 37 41 43 47
607 613 617 619 631
1297 1301 1303 1307 1319
2063 2069 2081 2083 2087
2833 2837 2843 2851 2857
3659 3671 3673 3677 3691
4507 4513 4517 4519 4523
5393 5397 5407 5413 5417
6229 6247 6257 6263 6269
7109 7121 7127 7129 7151
8039 8053 8059 8069 8081
8933 8941 8951 8963 8969
9817 9829 9833 9839 9851
10753 10771 10781 10789 10799
11779 11783 11789 11801 11807
12647 12653 12659 12671 12689
13627 13633 13649 13669 13679
14621 14627 14629 14633 14639
15511 15527 15541 15551 15559
16487 16493 16519 16529 16547
17483 17489 17491 17497 17509
18433 18439 18443 18451 18457
19483 19489 19501 19507 19531
20477 20479 20483 20507 20509
21493 21499 21503 21517 21521
16 17 18 19 20
53 59 61 67 71
641 643 647 653 659
1321 1327 1361 1367 1373
2089 2099 2111 2113 2129
2861 2879 2887 2897 2903
3697 3701 3709 3719 3727
4547 4549 4561 4567 4583
5419 5431 5437 5441 5443
6271 6277 6287 6299 6301
7159 7177 7187 7193 7207
8087 8089 8093 8101 8111
8971 8999 9001 9007 9011
9857 9859 9871 9883 9887
10831 10837 10847 10853 10859
11813 11821 11827 11831 11833
12697 12703 12713 12721 12739
13681 13687 13691 13693 13697
14653 14657 14669 14683 14699
15569 15581 15583 15601 15607
16553 16561 16567 16573 16603
17519 17539 17551 17569 17573
18461 18481 18493 18503 18517
19541 19543 19553 19559 19571
20521 20533 20543 20549 20551
21523 21529 21557 21559 21563
21 22 23 24 25
73 79 83 89 97
661 673 677 683 691
1381 1399 1409 1423 1427
2131 2137 2141 2143 2153
2909 2917 2927 2939 2953
3733 3739 3761 3767 3769
4591 4597 4603 4621 4637
5449 5471 5477 5479 5483
6311 6317 6323 6329 6337
7211 7213 7219 7229 7237
8117 8123 8147 8161 8167
9013 9029 9041 9043 9049
9901 9907 9923 9929 9931
10861 10867 10883 10889 10891
11839 11863 11867 11887 11897
12743 12757 12763 12781 12791
13709 13711 13721 13723 13729
14713 14717 14723 14731 14737
15619 15629 15641 15643 15647
16607 16619 16631 I6633 16649
17579 17581 17597 17599 17609
18521 18523 18539 18541 18553
19577 19583 19597 19603 19609
20563 20593 20599 20611 20627
21569 21577 21587 21589 21599
26 27 28 29 30
101 103 107 109 113
701 709 719 727 733
1429 1433 1439 1447 1451
2161 2179 2203 2207 2213
2957 2963 2969 2971 2999
3779 3793 3797 3803 3821
4639 4643 4649 4651 4657
5501 5503 5507 5519 5521
6343 6353 6359 6361 6367
7243 7247 7253 7283 7297
8171 8179 8191 8209 8219
9059 9941 9067 9949 9091 9967 9103 9973 9109 10007
10903 10909 10937 10939 10949
11903 11909 11923 11927 11933
12799 12809 12821 12823 12829
13751 14741 15649 16651 16657 14747 15667 15661 16661 13759 14753 13757 13763 14759 15671 16673 13781 14767 15679 16691
17623 17627 17657 17659 17669
18583 18587 18593 18617 18637
19661 19681 19687 19697 19699
20639 20641 20663 20681 20693
21601 21611 21613 21617 21647
31 32 33 34 35
127 131 137 139 149
739 743 751 757 761
1453 1459 1471 1481 1483
2221 2237 2239 2243 2251
3001 3011 3019 3023 3037
3823 3833 3847 3851 3853
4663 4673 4679 4691 4703
5527 5531 5557 5563 5569
6373 6379 6389 6397 6421
7307 7309 7321 7331 7333
8221 8231 8233 8237 8243
9127 9133 9137 9151 9157
10009 10037 10039 10061 10067
10957 10973 10979 10987 10993
11939 11941 11953 11959 11969
12841 12853 12889 12893 12899
13789 13799 13807 13829 13831
14771 14779 14783 14797 14813
15683 15727 15731 15733 15737
16693 16699 16703 16729 16741
17681 17683 17707 17713 17729
18661 18671 18679 18691 18701
19709 19717 19727 19739 19751
20707 20717 20719 20731 20743
21649 21661 21673 21683 21701
36 37 38 39 40
151 157 163 167 173
769 773 787 797 809
1487 1489 1493 1499 1511
2267 2269 2273 2281 2287
3041 3049 3061 3067 3079
3863 3877 3881 3889 3907
4721 4723 4729 4733 4751
5573 5581 5591 5623 5639
6427 6449 6451 6469 6473
7349 7351 7369 7393 7411
8263 8269 8273 8287 8291
9161 9173 9181 9187 9199
10069 10079 10091 10093 10099
11003 11027 11047 11057 11059
11971 11981 11987 12007 12011
12907 12911 12917 12919 12923
13841 13859 13873 13877 13879
14821 14827 14831 14843 14851
15739 15749 15761 15767 15773
16747 16759 16763 16787 16811
17737 17747 17749 17761 17783
18713 18719 18731 18743 18749
19753 19759 19763 19777 19793
20747 20749 20753 20759 20771
21713 21727 21737 21739 21751
41 42 43 44 45
179 181 191 193 197
811 821 823 827 829
1523 1531 1543 1549 1553
2293 2297 2309 2311 2333
3083 3089 3109 3119 3121
3911 3917 3919 3923 3929
4759 4783 4787 4789 4793
5641 5647 5651 5653 5657
6481 6491 6521 6529 6547
7417 7433 7451 7457 7459
8293 8297 8311 8317 8329
9203 9209 9221 9227 9239
10103 10111 10133 10139 10141
11069 11071 11083 11087 11093
12037 12041 12043 12049 12071
12941 12953 12959 12967 12973
13883 13901 13903 13907 13913
14867 14869 14879 14887 14891
15787 15791 15797 15803 15809
16823 16829 16831 16843 16871
17789 17791 17807 17827 17837
18757 18773 18787 18793 18797
19801 19813 19819 19841 19843
20773 20789 20807 20809 20849
21757 21767 21773 21787 21799
46 47 48 49 50
199 211 223 227 229
839 853 857 859 863
1559 1567 1571 1579 1583
2339 2341 2347 2351 2357
3137 3163 3167 3169 3181
3931 3943 3947 3967 3989
4799 4801 4813 4817 4831
5659 5669 5683 5689 5693
6551 6553 6563 6569 6571
7477 7481 7487 7489 7499
8353 8363 8369 8377 8387
9241 9257 9277 9281 9283
10151 10159 10163 10169 10177
11113 11117 11119 11131 11149
12073 12097 12101 12107 12109
12979 12983 13001 13003 13007
13921 13931 13933 13963 13967
14897 14923 14929 14939 14947
15817 15823 15859 15877 15881
16879 16883 16889 16901 16903
17839 17851 17863 17881 17891
18803 18839 18859 18869 18899
19853 19861 19867 19889 19891
20857 20873 20879 20887 20897
21803 21817 21821 21839 21841
51 52 53 54 55
233 239 241 251 257
877 881 883 887 907
1597 l60i 1607 1609 1613
2371 2377 2381 2383 2389
3187 3191 3203 3209 3217
4001 4003 4007 4013 4019
4861 4871 4877 4889 4903
5701 5711 5717 5737 5741
6577 6581 6599 6607 6619
7507 7517 7523 7529 7537
8389 8419 8423 8429 8431
9293 9311 9319 9323 9337
10181 10193 10211 10223 10243
11159 11161 11171 11173 11177
12113 12119 12143 12149 12157
13009 13033 13037 13043 13049
13997 13999 14009 14011 14029
14951 14957 14969 14983 15013
15887 15889 15901 15907 15913
16921 16927 16931 16937 16943
17903 17909 17911 17921 17923
18911 18913 18917 18919 18947
19913 19919 19927 19937 19949
20899 20903 20921 20929 20939
21851 21859 21863 21871 21881
56 57 58 59 60
263 269 271 277 281
911 919 929 937 941
1619 1621 1627 1637 1657
2393 2399 2411 2417 2423
3221 3229 3251 3253 3257
4021 4027 4049 4051 4057
4909 4919 4931 4933 4937
5743 5749 5779 5783 5791
6637 6653 6659 6661 6673
7541 7547 7549 7559 7561
8443 8447 8461 8467 8501
9341 9343 9349 9371 9377
10247 10253 10259 10267 10271
11197 11213 11239 11243 11251
12161 12163 12197 12203 12211
13063 13093 13099 13103 13109
14033 14051 14057 14071 14081
15017 15031 15053 15061 15073
15919 15923 15937 15959 15971
16963 16979 16981 16987 16993
17929 17939 17957 17959 17971
18959 18973 18979 19001 19009
19961 19963 19973 19979 19991
20947 20959 20963 20981 20983
21893 21911 21929 21937 21943
61 62 63 64 65
283 293 307 311 313
947 953 967 971 977
I663 1667 1669 1693 1697
2437 2441 2447 2459 2467
3259 3271 3299 3301 3307
4073 4079 4091 4093 4099
4943 4951 4957 4967 4969
58G1 5807 5813 5821 5827
6679 6689 6691 6701 6703
7573 7577 7583 7589 7591
8513 8521 8527 8537 8539
9391 9397 9403 9413 9419
10273 10289 10301 10303 10313
11257 11261 11273 11279 11287
12227 12239 12241 12251 12253
13121 13127 13147 13151 13159
14083 14087 14107 14143 14149
15077 15083 15091 15101 15107
15973 15991 16001 16007 16033
17011 17021 17027 17029 17033
17977 17981 17987 17989 18013
19013 19031 19037 19051 19069
19993 19997 20011 20021 20023
21001 21011 21013 21017 21019
21961 21977 21991 21997 22003
66 67 68 69 70
317 331 337 347 349
983 991 997 1009 1013
1699 1709 1721 1723 1733
2473 2477 2503 2521 2531
3313 3319 3323 3329 3331
4111 4127 4129 4133 4139
4973 4987 4993 4999 5003
5839 5843 5849 5851 5857
6709 6719 6733 6737 6761
7603 7607 7621 7639 7643
8543 8563 8573 8581 8597
9421 9431 9433 9437 9439
10321 10331 10333 10337 10343
11299 11311 11317 11321 11329
12263 12269 12277 12281 12289
13163 13171 13177 13183 13187
14153 14159 14173 14177 14197
15121 15131 15137 15139 15149
16057 16061 16063 16067 16069
17041 17047 17053 17077 17093
18041 18043 18047 18049 18059
19073 19079 19081 19087 19121
20029 20047 20051 20063 20071
21023 21031 21059 21061 21067
22013 22027 22031 22037 22039
71 72 73 74 75
353 359 367 373 379
1019 1021 1031 1033 1039
1741 1747 1753 1759 1777
2539 2543 2549 2551 2557
3343 3347 3359 3361 3371
4153 4157 4159 4177 4201
5009 5011 5021 5023 5039
5861 5867 5869 5879 5881
6763 6779 6781 6791 6793
7649 7669 7673 7681 7687
8599 8609 8623 8627 8629
9461 9463 9467 9473 9479
10357 10369 10391 10399 10427
11351 11353 11369 11383 11393
12301 12323 12329 12343 12347
13217 13219 13229 13241 13249
14207 14221 14243 14249 14251
15161 15173 15187 15193 15199
16073 16087 16091 16097 16103
17099 17107 17117 17123 17137
18061 18077 18089 18097 18119
19139 19141 19157 19163 19181
20089 20101 20107 20113 20117
21089 21101 21107 21121 21139
22051 22063 22067 22073 22079
76 77 78 79 80
383 389 397 401 409
1049 1051 1061 1063 1069
1783 1787 1789 1801 1811
2579 2591 2593 2609 2617
3373 3389 3391 3407 3413
4211 4217 4219 4229 4231
5051 5059 5077 5081 5087
5897 5903 5923 5927 5939
6803 6823 6827 6829 6833
7691 7699 7703 7717 7723
8641 8647 8663 8669 8677
9491 9497 9511 9521 9533
10429 10433 10453 10457 10459
11399 11411 11423 11437 11443
12373 12377 12379 12391 12401
13259 13267 13291 13297 13309
14281 14293 14303 14321 14323
15217 15227 15233 15241 15259
16111 16127 16139 16141 16183
17159 17167 17183 17189 17191
18121 18127 18131 18133 18143
19183 19207 19211 19213 19219
20123 20129 20143 20147 20149
21143 21149 21157 21163 21169
22091 22093 22109 22111 22123
81 82 83 84 85
419 421 431 433 439
1087 1091 1093 1097 1103
1823 1831 1847 1861 1867
2621 2633 2647 2657 2659
3433 3449 3457 3461 3463
4241 4243 4253 4259 4261
5099 5101 5107 5113 5119
5953 5981 5987 6007 6011
6841 6857 6863 6869 6871
7727 7741 7753 7757 7759
8681 8689 8693 8699 8707
9539 9547 9551 9587 9601
10463 10477 10487 10499 10501
11447 11467 11471 11483 11489
12409 12413 12421 12433 12437
13313 13327 13331 13337 13339
14327 14341 14347 14369 14387
15263 15269 15271 15277 15287
16187 16189 16193 16217 16223
17203 17207 17209 17231 17239
18149 18169 18181 18191 18199
19231 19237 19249 19259 19267
20161 20173 20177 20183 20201
21179 21187 21191 21193 21211
22129 22133 22147 22153 22157
86 87 88 89 90
443 449 457 461 463
1109 1117 1123 1129 1151
1871 1873 1877 1879 1889
2663 2671 2677 2683 2687
3467 4271 3469 4273 3491 4283 3499 4289 3511 2297
5147 5153 5167 5171 5179
6029 6037 6043 6047 6053
6883 6899 6907 6911 6917
7789 7793 7817 7823 7829
8713 8719 8731 8737 8741
9613 9619 9623 9629 9631
10513 10529 10531 10559 10567
11491 11497 11503 11519 11527
12451 12457 12473 12479 12487
13367 13381 13397 13399 13411
14389 14401 14407 14411 14419
15289 15299 15307 15313 15319
16229 16231 36249 16253 16267
17257 17291 17293 17299 17317
18211 18217 18223 18229 18233
19273
20219
19301 19289 19309 19319
20233 20231 20249 20261
2122l 21227 21247 21269 21277
22159 22171 22189 22193 22229
91 92 93 94 95
467 479 487 491 499
1153 1163 1171 1181 1187
1901 1907 1913 1931 1933
2689 2693 2699 2707 2711
3517 3527 3529 3533 3539
4327 4337 4339 4349 4357
5189 5197 5209 5227 5231
6067 6073 6079 6089 6091
6947 6949 6959 6961 6967
7841 7853 7867 7873 7877
8747 8753 8761 8779 8783
9643 9649 9661 9677 9679
10589 10597 10601 10607 10613
11549 11551 11579 11587 11593
12491 12497 12503 12511 12517
13417 13421 13441 13451 13457
14423 14431 14437 14447 14449
15329 15331 15349 15359 15361
16273 16301 16319 16333 16339
17321 17327 17333 17341 17351
18251 18253 18257 18269 18287
19333 19373 19379 19381 19387
20269 20287 20297 20323 20327
21283 21313 21317 21319 21323
22247 22259 22271 22273 22277
96 97 98 99 100
503 509 521 523 541
1193 1201 1213 1217 1223
1949 1951 1973 1979 1987
2713 2719 2729 2731 2741
3541 3547 3557 3559 3571
4363 4373 4391 4397 4409
5233 5237 5261 5273 5279
6101 6113 6121 6131 6133
6971 6977 6983 6991 6997
7879 7883 7901 7907 7919
8803 8807 8819 8821 8831
9689 9697 9719 9721 9733
10627 10631 10639 10651 10657
11597 11617 11621 11633 11657
12527 12539 12541 12547 12553
13463 13469 13477 13487 13499
14461 14479 14489 14503 14519
15373 15377 15383 15391 15401
16349 16361 16363 l63b9 16381
17359 17377 17383 17387 17389
18289 18301 18307 18311 18313
19403 19391
20333 20341
19417 19421 19423
20347 20353 20357
21341 21347 21377 21379 21383
22279 22283 22291 22303 22307
1
2 3 4 5 6 7
871
COMBINATORIAL ANALYSIS PRIM E;S 28513 28517 28537 28541 28547
:12 29453 29473 29483 29501 29527
27527 21529 27539 21541 27551
28549 28559 28571 28573 28579
26501 26513 26539 26557 26561
27581 27583 27611 27617 27631
25519 25583 25589 25601 25603
26513 26591 26597 26627 26633
24527 24533 24547 24551 24571
25609 25621 25633 25639 25643
23603 23609 23623 23627 23629
24593 24611 24623 24631 24659
22651 22669 22679 22691 22697
23633 23663 23669 23671 23677
36 37 38 39 40
22699 22109 22717 22721 22727
41 42 43 44 45
:%I
24.9
86
97
:I8
39
IU
11
12
48
14
43
4ti
4;
32611 32621 32633 32647 32653
33617 33619 33623 33629 33637
34651 34667 34613 34679 34681
35711 35797 35801 35803 35809
36787 36791 36793 36809 36821
31831 37847 37853 37861 37871
38923 38933 38953 38959 38911
39979 39983 39989 40009 40013
41113 41117 41131 41141 41143
42083 42089 42101 42131 42139
43063 43067 43093 43103 43117
44203 44201 44221 44249 44251
45317 45319 45329 45337 45341
46451 46457 46471 46477 46489
47533 41543 47563 41569 47581
31663 31661 31681 31699 31721
32687 32693 32707 32113 32717
33641 33647 33619 33703 33713
34693 34103 34721 34729 34739
35831 35837 35839 35851 35863
36833 36847 36857 36811 36877
37819 37889 37891 31907 37951
38977 38993 39019 39023 39041
40031 40037 40039 40063 40087
41149 41161 41117 41179 41183
42157 42169 42179 42181 42187
43133 43151 43159 43117 43189
44263 44267 44269 44273 44279
45343 45361 45371 45389 45403
46499 46501 46511 46523 46549
47591 47599 41609 47623 47629
30697 30103 30701 30713 30727
31123 31721 31129 31741 31751
32719 32149 32171 32779 32783
33721 33739 33749 33751 33757
34147 34757 34759 34763 34181
35869 35879 35891 35899 35911
36881 36899 36901 36913 36919
37957 37963 37967 37987 37991
39043 19047 39019 39089 39097
40093 40099 40111 40123 40127
41189 42193 41201 42197 41203 42209 41221 41213 42223 42221
43201 43207 43223 43237 43261
44281 44293 44351 44351 44371
45413 45427 45433 45439 45481
4h559 ... 46567 46573 46589 46591
47639 47653 47657 41659 47681
29633 29641 29663 29669 29671
30157 30763 30113 30781 30803
31769 31111 31193 31799 31817
32189 32797 32801 32803 32831
33761 33769 '33773 33791 33197
34807 34819 34841 34843 34847
35923 35933 35951 35963 35969
36923 36929 36931 36943 36941
31993 37997 38011 38039 38041
39103 39107 39113 39119 39133
40129 40151 40153 40163 40169
41227 41231 41233 41243 41251
42227 42239 42257 42281 42283
43271 43283 43291 43313 43319
44381 44383 44389 44417 44449
45491 45497 45503 45523 45533
46601 46619 46633 46639 46643
47699 47701 47711 47713 47717
28657 28661 28663 28669 28687
29683 29717 29123 29141 29753
30809 30811 30829 30839 30841
31841 31849 31859 31873 31883
32833 32839 32843 32869 32887
33809 33811 33821 33829 33851
34849 34811 34877 34883 34897
35977 35983 35993 35999 36107
36973 36919 36997 37003 37013
38053 38069 38083 38113 38119
39139 39157 39161 39163 39181
40111 40189 40193 40213 40231
41263 41269 41281 41299 41333
42293 42299 42307 42323 42331
43321 43331 43391 43397 43399
44453 44483 44491 44497 44501
45541 45553 45551 45569 45587
46649 46663 46619 46681 46681
47137 47141 41143 47117 47779
27743 27749 27151 27763 27767
28697 28703 28711 28723 28729
29759 29761 29789 29803 29819
30851 30853 30859 30869 30871
31891 .31907 31957 31963 31973
32909 32911 32911 32933 32939
33857 33863 33871 13aa9
34913 34919 34939 14949
36011 36013 36011 36131 36961
37C19 37321 31039 3794') 37357
38149 39153 38157 ?5177 39a3
59131 39199 39219 33217 57227
40237 40241 40253 40277 40283
41341 41351 41351 41381 41387
42337 42349 42359 42373 42379
43403 43411 43421 43441 43451
44501 44519 44531 44533 44537
45589 45599 45613 45631 45641
46691 46103 46723 46121 46747
47791 47797 41807 47809 47819
26713 26717 26123 26129 26731
27773 27719 27791 27793 27799
28751 28153 28759 28771 28789
29833 29831 29851 29863 29867
30881 30893 30911 30931 30937
31981 31991 32003 32009 32027
32941 32951 32969 32971 32983
33911 33923 33931 33937 33941
34963 34981 35023 35027 35051
36067 36013 36083 36097 36107
37061 37087 37091 37117 37123
38189 38197 38201 38219 38231
39229 39233 39239 39241 39251
40289 40343 40351 40351 40361
41389 41399 41411 41413 41443
42391 42397 42403 42407 42409
43457 43481 43487 43499 43511
44543 44549 44563 44579 44587
45659 45667 45673 45611 45691
46151 46757 46769 46771 46807
47831 41843 47851 47869 47881
25759 25763 25711 25793 25199
26737 26759 26177 26783 26801
27803 27809 27817 27823 27821
28793 28807 28813 28811 28837
29873 29879 29881 29917 29921
30941 30949 30971 30977 30983
32029 32051 32057 32059 32063
32987 32993 32999 33013 33323
33961 33967 33997 34019 34031
35053 35059 35069 35081 35083
36109 36131 36137 36151 36161
37139 37159 37171 37181 37189
38237 38239 38261 38273 38281
39293 39301 39313 39317 39323
40367 40423 40427 40429 40433
41453 41461 41479 41491 41507
42433 42437 42443 42451 42457
43541 43543 43573 43577 43579
44617 44621 44623 44633 44641
45697 45707 45731 45151 45757
46811 46817 46819 46829 46831
47903 47911 47917 47933 41939
24781 24793 24799 24809 24821
25801 25819 25841 25847 25849
26813 26821 26833 26839 26849
21847 27851 27883 21893 21901
28843 28859 28867 28871 28819
29927 29947 29959 29983 29989
31013 31019 31033 31039 31051
32069 32077 32083 32089 32099
33029 33031 33349 33053 33011
34033 34039 34051 34061 34123
35089 35099 35101 35111 35117
36187 36191 36209 36211 36229
37199 37201 37217 37223 37243
38287 38299 38303 38317 38321
39341 39343 39359 39361 39371
40459 40471 40483 40487 40493
41513 41519 41521 41539 41543
42461 42463 42461 42473 42487
43591 43597 43607 43609 43613
44647 44651 44657 44683 44687
45763 45767 45779 45817 45821
46853 46861 46867 46877 46889
47947 47951 47963 47969 47977
23789 23801 23813 23819 23821
24841 24847 24851 24859 24677
25861 25873 25889 25903 25913
26861 26863 26879 26861 26891
27917 27919 27941 27943 27947
28901 28909 28921 28927 28933
30011 30013 30029 30047 30059
31063 31069 31079 31081 31091
32117 32119 32141 32143 32159
33073 33083 33391 33101 33113
34121 34129 34141 34147 34157
35129 35141 35149 35153 35159
36241 36251 36263 36269 36277
37253 37273 37271 37307 37309
38327 38329 38333 38351 38311
39373 39383 39391 39409 39419
40499 40507 40519 40529 40531
41549 41579 41593 41591 41603
42491 42499 42509 42533 42557
43627 43633 43649 43651 43661
44699 44701 44711 44129 44141
45823 45827 45833 45841 45853
46901 46919 46933 46957 46993
47981 48011 48023 48029 48049
22853 22859 22861 22811 22817
23831 23833 23851 23869 23873
24889 24907 24917 24919 24923
25919 25931 25933 25939 25943
26893 26903 26921 26927 26947
27953 21961 21967 27983 27997
28949 28961 28979 29009 29011
30071 30089 30091 30097 30103
31121 31123 31139 31147 31151
32173 32183 32189 32191 32203
33119 33149 33151 33161 33179
34159 34171 34183 34211 34213
35111 35201 35221 35227 35251
36293 36299 36307 36313 36319
37313 38377 39439 40543 40559 37337 37321 38393 38431 39451 39443 40577 37339 38441 39461 40583 37351 38449 39499 40591
41609 41611 41611 41621 41621
42569 42571 42577 42589 42611
43669 43691 43711 43117 43721
44753 44771 44773 44777 44189
45863 45869 45887 45893 45943
46997 47017 41041 47051 47057
48073 48019 48091 48109 48119
56 57 58 59 60
22901 22907 22921 22937 22943
23879 23887 23893 23899 23909
24943 24953 24961 24971 24977
25951 25969 25981 25997 25999
26951 26953 26959 26981 26987
28001 28019 28021 28031 28051
29021 29023 29027 29033 29059
30109 30113 30119 30133 30131
31153 31159 31117 31181 31183
32213 32233 32237 32251 32251
33181 33191 33199 33203 33211
34217 34231 34253 34259 34261
35257 35267 35219 35281 35291
36341 36343 36353 36313 36383
37361 37363 37369 31319 37397
38453 38459 38461 38501 38543
39503 39509 39511 39521 39541
40597 40609 40621 40631 40639
41641 41647 41651 41659 41669
42641 42643 42649 42667 42617
43753 43159 43777 43781 43783
44791 44809 44819 44839 44843
45949 45953 45959 45971 45979
47059 47087 47093 47111 47119
48121 48131 48157 48163 48179
61 62 63 64 65
22961 22963 22973 22993 23003
23911 23917 23929 23957 23971
24979 24989 25013 25031 25033
26003 26017 26021 26029 26041
26993 27011 27017 27031 27043
28057 28069 28081 28087 28097
29063 29071 29101 29123 29129
30139 30161 30169 30181 30187
31189 31193 31219 31223 31231
32261 32297 32299 32303 32309
33223 33247 33287 33289 33301
34267 34213 34283 34291 34301
35311 35317 35323 35321 35339
36389 36433 36451 36457 36461
37409 37423 37441 37447 31463
38557 38561 38567 38569 38593
39551 39563 39569 39581 39601
40693 40697 40699 40109 40739
41681 41687 41719 41129 41737
42683 42689 42697 42101 42703
43787 43789 43793 43801 43853
44851 44867 44879 44887 44893
45989 46021 46027 46049 46051
47123 47129 41131 4i143 47147
48187 48193 48197 48221 48239
66 67 68 69 70
23011 23017 23021 23027 23029
23977 23981 23993 24001 24007
25037 25057 25073 25087 25097
26053 26083 26099 26107 26111
27059 21061 21067 27013 27377
28099 28109 28111 20123 28151
29131 29137 29147 29153 29161
30191 30203 30211 30223 30241
31237 31241 31249 31253 31259
32321 32323 32327 32341 32353
33311 33311 33329 33331 33343
34303 34313 34319 34327 34331
35353 35363 35381 35393 35401
36469 36413 36479 36493 36491
37483 31489 37413 37iCi 37507
36b33 3ab99 38611 36b29 38t39
33619 31623 31631 33059 39007
40151 40759 40763 40771 40787
41759 41761 41171 41177 41801
42709 42119 42727 42737 42743
43867 43889 43891 43913 43933
44909 44917 44927 44939 44953
46061 46073 46091 46093 46099
47149 47161 47189 47207 47221
48247 48259 48271 48281 48299
71 72 73 74 75
23039 23041 23053 23057 23059
24019 24023 24029 24043 24049
25111 25117 25121 25127 25147
26113 26119 26141 26153 26161
21091 27103 27107 27109 27127
28163 28181 28183 28201 28211
29173 29179 29191 29201 29201
30253 30259 30269 30271 30293
31261 31271 31277 31301 31319
32359 32363 32369 32371 32377
33341 33349 33353 33359 33371
34351 34361 34361 34369 34381
35407 35419 35423 35431 35447
36523 36527 36529 36541 36551
37511 37517 37529 37531 37547
38651 38653 38669 38611 38677
39611 39679 39103 39709 39719
40801 40813 40819 40823 40829
41809 41813 41843 41849 41851
42751 42767 42773 42787 42793
43943 43951 43961 43963 43969
44959 44963 44911 44983 44987
46103 46133 46141 46147 46153
47237 47251 47269 47219 47287
48311 48313 48337 48341 48353
76 77 78 79 80
23063 23071 23081 23087 23099
24061 24071 24077 24083 24091
25153 25163 25169 25171 25183
26171 26171 26183 26189 26203
27143 21179 27191 27197 27211
28219 28229 28277 28279 28283
29209 29221 29231 29243 29251
30307 30313 30319 30323 30341
31321 31327 31333 31337 31357
32381 32401 32411 32413 32423
33391 33403 33409 33413 33427
34403 34421 34429 34439 34451
35449 35461 35491 35507 35509
36559 36563 36571 36583 36587
37549 37561 31567 37571 31573
38693 38699 38707 38711 38713
39727 39133 39149 39761 39769
40841 40841 40849 40853 40867
41863 41879 41887 41893 41897
42197 42821 42829 42839 42841
43973 43987 43991 43997 44017
45007 45013 45053 45061 45077
46111 46181 46183 46187 46199
47293 47297 41303 47309 47311
48371 48383 48397 48407 48409
81 82 83 84 85
23117 23131 23143 23159 23167
24091 24103 24107 24109 24113
25189 25219 25229 25237 25243
26209 26221 26237 26249 26251
21239 27241 21253 21259 21211
28289 28297 28301 28309 28319
29269 29287 29291 29303 29311
31341 30367 30389 30391 30403
31319 31387 31391 31393 31397
32429 32441 32443 32467 32479
33457 33461 33469 33419 33487
34469 34471 34483 34487 34499
35521 35527 35531 35533 35537
36599 36601 36629 36637 36643
31579 37589 37591 37601 37619
38723 38129 38137 38747 38749
39119 39791 39199 39821 39821
40819 40883 40897 40903 40927
41903 42853 41911 42859 41927 42863 41941 42901 42899
44021 44027 44029 44041 44053
45083 45119 45121 45127 45131
46219 46229 46237 46261 46271
47339 47351 47353 47363 41381
48413 48437 48449 48463 48473
86 87 88 89 90
23113 23189 23197 23201 23203
24121 24133 24137 24151 24169
25247 25253 25261 25301 25303
26261 26263 26267 26293 26291
27217 21281 27283 27299 21329
28349 28351 28387 28393 28403
29327 29333 29339 29347 29363
30421 30431 30449 30461 30469
31469 31471 31481 31489 31511
32491 32491 32503 32507 32531
33493 33503 33521 33529 33533
34501 34511 34513 34519 34531
35543 35569 35513 35591 35593
36653 36671 36677 36683 36691
37633 31643 37649 37657 31663
38767 38783 38191 38803 38821
39829 39839 39841 39841 39857
40933 40939 40949 40961 40973
41953 41957 41959 41969 41981
42923 42929 42937 42943 42953
44059 44011 44087 44089 44101
45137 45139 45161 45179 45181
46273 46279 46301 46301 46309
47387 41389 47407 47417 47419
48419 48481 48487 48491 48497
91 92 93 94 95
23209 23227 23251 23269 23279
24119 24181 24197 24203 24223
25307 25309 25321 25339 25343
26309 26317 26321 26339 26341
27331 21361 27367 27397 27407
28409 28411 28429 28433 28439
29383 29381 29389 29399 29401
30491 30493 30491 30509 30511
31513 31517 31531 31541 31543
32533 32531 32561 32563 32569
33541 33563 33569 33571 33581
34543 34549 34583 34589 34591
35597 35603 35617 35611 35611
36691 36709 36713 36121 36139
31691 37693 37699 31117 37747
38833 38839 38851 38861 38867
39863 39869 39811 39883 39887
40993 41011 41017 41023 41039
41983 41999 42013 42011 42019
42961 42967 42979 42989 43003
44111 44119 44123 44129 44131
45191 45191 45233 45247 45259
46321 46331 46349 46351 46381
47431 41441 41459 41491 47497
48523 48527 48533 48539 48541
96 97 98 99 100
23291 23293 23291 23311 23321
24229 24239 24247 24251 24281
25349 25357 25367 25373 25391
26351 26371 26387 26393 26399
27409 21427 27431 21437 27449
28447 28463 28411 28493 28499'
29411 29423 29429 29431 29443
30529 30539 30553 30551 30559
31547 31567 31513 31583 31601
32513 32579 32581 32603 32609'
33581 33589 33599 33601 33613
34603 34601 34613 34631 34649
35729 35731 35741 35753 35759
36149 36161 36767 36779 36781
37181 37183 31799 37811 37813
38813 38891 38903 38917 38921
39901 39929 39931 39953 39911
41041 41051 41057 41071 41081
42023 42043 42061 42011 42013
43013 43019 43031 43049 43051
44159 44171 44179 44189 44201
45263 45281 45289 45293 45307
46411 46439 46447 46441
.
47501 47507 41513 47521 87521
48563 48571 48589 48611 48593
25
26
21
28
%Y
:I0
1 2 3 4 5
22343 22349 22367 22369 22381
23327 23333 23339 23357 23369
24317 24329 24337 24359 24371
25409 25411 25423 25439 25447
26407 26417 26423 26431 26437
27457 27479 27481 27487 27509
6 1 8 9 10
22391 22397 22409 22433 22441
23371 23399 23411 23431 23447
24373 24379 24391 24407 24413
25453 25457 25463 25469 25411
26449 26459 26419 26489 26497
11 12 13 14 15
22441 22453 22469 22481 22483
23459 23473 23497 23509 23531
24419 24421 24439 24443 24469
25523 25537 25541 25561 25577
16 11 18 19 20
22501 22511 22531 22541 22543
23537 23539 23549 23557 23561
24473 24481 24499 24509 24517
21 22 23 24 25
22549 22567 22511 22573 22613
23563 23561 23581 23593 23599
26 27 28 29 30
22619 22621 22637 22639 22643
31 32 33 34 35
30577 30593 30631 30637 30643
31 31607 31627 31643 31649 31657
29531 29531 29567 29569 29573
30649 30661 30671 30611 30689
28591 28597 28603 28607 28619
29581 29587 29599 29611 29629
21641 27653 27673 27689 27691
28621 28621 28631 28643 28649
26641 26647 26669 26681 26683
21697 27701 21733 27131 27139
25657 25667 25673 25679 25693
26687 26693 26699 26701 26711
24671 24677 24683 24691 24691
25103 25711 25733 25741 25747
23687 23689 23719 23741 23143
24709 24733 24749 24763 24167
22739 22741 22751 22769 22777
23147 23753 23161 23767 23773
46 47 48 49 50
22783 22781 22807 22811 22811
51 52 53 54 55
1
872
COMBINATORIAL ANALYSIS I’RIMES
‘lallll* 24.9
69 69497 69499
70663 10667 70681 10109 10111
11 11119 71741 71161 71717 11189
72 12859 12869 12811 72883 12889
13999 14011 14021 14021 14041
75109 15133 15149 15161
67339 68413 69653 67343 68417 69661 67349 68483 69617 67369 68489 69691
70129 10153 10769 10183 70193
11807 11809 11821 71831 11843
12893 12901 12901 72911 12923
14051 14011 14011 14093 14099
75161 15169 15181 15193 15209
66211 67391 68491 69697 66293 61399 68501 69109 66.301 61409 68501 69731 66337 61411 68521 69139 66343 67421 68531 69761
10823 10841 10843 70849 10853
11849 71861 11867 11879 71881
72931 12931 12949 12953 12959
14101 14131 74143 14149 14159
15211 15211 15223 15221 15239
66347 66359 66361 66373 66311
68567 69119 68581 69809 68597 69821
10867 10817 10819 10891 10901
71887 11899 11909 11911 11933
12913 12911 12991 13009 13013
14161 14161 14111 14189 14191
15253 75269 15217 15289 15307
68611 68633 68639 68659 68669
69827 69829 69833 69841 69851
70913 10919 10921 10931 10949
71941 71947
71963
11911 11983
73019 13037 13039 13043 13061
14201 74203 14209 14219 74231
15323 15329 15337 15347 15353
68683 69859 68687 69877 68699 69899 68711 69911 68713 69929
10951 10951 10969 10919 70981
11981 71993 71999 12019 12031
13063 13079 73091 13121 73127
74251 14279 14281 74293 14291
15361 15311 15389 15391 15401
31 48941 49991 51131 52147 53233 54311 55469 56509 57551 58603 59663 60821 61987 63131 64217 65393 66509 61559 68129 69931
10991 10991 70999 71011 11023
12043 12041 12053 12013 12011
13133 13141 13181 73189 13231
14311 14311 14323 14353 14357
15403 15401 15431 15431 15419
60913 62053 63247 64301 65449 66571 61619 68191 70009 60917 62051 63211 64303 65479 66587 61631 68813 10019 60919 62071 63281 64319 65497 66593 67651 68819 10039
11039 71059 71069 71081 71089
12089 72091 72101 12103 12109
13243 13259 73217 13291 13303
14363 14311 14381 14383 14411
15503 15511 15521 15521 15533
53 51811 51821 51829 51839
54
55
56
57
62 G3 64 61 57193 58243 59369 60509 61631 62791 63823 51203 58211 59377 60521 61643 62801 63839 57221 58309 59387 60527 61651 62819 63841 57223 58313 59393 60539 61651 62821 63853 51241 58321 59399 60589 61661 62851 63851 58
59
60
65 66 67 68 65011 66107 61247 68389 65089 66109 67261 68399 65099 66137 67271 68437 65101 66161 61273 68443 65111 66169 61289 68441
48619 48623 48641 48649 48661
49661 49669 49681 49691 49111
$2 50161 50113 50171 50189 50821
6 48613 1 48611 8 48619 9 48131 10 48133
49121 49139 49141 49141 49751
50833 50839 50849 50851 50861
51859 51869 51811 51893 51899
52913 54059 55171 56249 52981 54083 55201 56263 52999 54091 55201 56261 53003 54101 55213 56269 53011 54121 55211 56299
11 12 13 14 15
48151 48751 48161 48161 48719
49183 49781 49189 49801 49801
50813 50891 50893 50909 50923
51901 51913 51929 51941 51949
53041 53051 53069 53017 53081
54133 54139 54151 54163 54161
55219 55229 55243 55249 55259
56311 56333 56359 56369
16 17 18 19 20
48781 48187 48799 48809 48817
49811 49823 49831 49843 49853
50929 51911 50951 51913 50951 51911 50969 51991 50911 52009
53089 53093 53101 53113 53111
54181 54193 54217 54251 54269
55291 55313 55331 55333 55331
56383 51349 58421 59491 60661 61813 62911 64019 56393 57367 58439 59509 60679 61819 62981 64033 56401 51313 58441 59513 60689 61837 62983 64037 56417 51383 58451 59539 60703 61843 62987 64063
21 22 23 24 25
48821 49811 50989 52021 53129 54211 55339 56431 57397 58411 59561 60127 61871 63029 64081 65269 66383 48823 49817 50993 52021 53141 54281 55343 56443 57413 58481 59567 60133 61879 63031 64091 65281 66403 48847 49891 51001 52051 53149 54293 55351 56453 51421 58511 59581 60131 61909 63059 64109 65293 66413 48851 49919 51031 52051 53161 54311 55373 56461 51451 58537 59611 60157 61921 63067 64123 65309 66431
Ni ..
1 2 3 4 5
51.
54001 55109 56191 54011 54013 54031 54049
55111 55127 55147 55163
56201 56209 56237 56239
62861 62869 62873 62897 62903
48869 49921 51041 48811 49931 51059 48883 49939 51061 48889 49943 51011 30 48907 49951 51109 48953 48913 48989 48991
49993 49999 50021 50023
51133 51131 51151 51151
52069 52081 52103 52121 52121 52153 52163 52111 52181
53113 53189 53191 53201 53231 53239 53261 53269 53219
54323 54331 54341 54361 54361 54311 54401 54403 54409
55399 55411 55439 55441 55451
58331 58363 58367 58369 58319
59407 59417 59419 59441 59443
60601 61673 60607 61681 60611 61687 60611 61703 60623 61717
51287 51301 57329 57331 56377 51347
58391 58393 58403 58411 58417
59441 59453 59461 59411 59473
60637 61729 62927 63971 60647 61751 62929 63997 60649 61151 62939 64007 60659 61781 62969 64013
63901 65123 66119 63907 65129 66191 63913 65141 66221 63929 65141 66239
60631 61723 62921 63949 65167 65111 65173 65119 65183
65203 65213 65239 65251 56431 51389 58453 59551 60119 61861 62989 64067 65267
55487 55501 55511 55529
56411 56419 56489 56501 56503 56519 56521 56531 56533
57481 51493 51503 51527 57529 51559 57511 57587 51593
58549 58561 58573 58519 58601
58613 58631 58657 58661
36 49003 50033 51169 52183 53281 54413 55541 56543 57601 58619 31 49009 50041 51193 52189 53299 54419 55541 56569 51637 58687 3 8 49019 50051 51197 52201 53309 54421 55519 56591 51641 58693 39 49031 50053 51199 52223 53323 54431 55589 56591 51649 58699 40 49033 50069 51203 52231 53321 54443 55603 56599 57653 58111
59621 59621 59629 59651 59659
60763 61949 63079 64153 60113 61961 63091 64157 60719 61967 63103 64171 60793 61979 63113 64187 60811 61981 63121 64189
59669 60859 61991 63149 59671 60869 62003 63119 59693 60887 62011 63197 59699 60889 62017 63199
59101 59123 59129 59143 59141
69539 69557
69593
63863 65119 66173 61301 68449 69623
51251 51259 51269 57211 51283
67427 67429 61433 61441 67453
67477 67481 67489 61493 48859 49921 51043 52061 53111 54319 55381 56413 57461 58543 59617 60761 61933 63073 64151 65323 66449 67499
26 21 28 29
32 33 34 35
52931 52951 52951 52963 51853 52961
64223 64231 64237 64271
65327 65353 65351 65311 65381 65407 65413 65419 65423
66457 66463 66467 66491
67511 61523 67531 61531 66499 61547 66523 66529 66533 66541
61561 61517 61579 61589
68539 69763 68543 69161
68737 68143 68749 68167
69941 69959 69991 69997
60899 62039 63211 64279 65437 66553 67601 68771 70001
60901 62047 63241 64283 65441 66569 67607 68177 10003
70
i:i
i4 75083
41 49031 42 49043 43 49051 44 49069 45 49081
50011 50081 50093 50101 50111
51211 51229 51239 51241 51251
52249 52253 52259 52261 52289
53353 54449 55609 56611 57661 58121 59753 60923 62081 63299 64327 65519 66601 67619 68821 70051 53359 54469 55619 56629 51679 58133 59111 60931 62099 63311 64333 65521 66617 61699 68863 70061 53311 54493 55621 56633 51689 58141 59119 60943 62119 63313 64313 65537 66629 67709 68879 10067 53381 54491 55631 56659 57691 58151 59791 60953 62129 63317 64381 65539 66643 61723 68881 70019 53401 54499 55633 56663 57109 58763 59191 60961 62131 63331 64399 65543 66653 61733 68891 10099
71119 11129 11143 11141 71153
12139 72161 12161 72169 12173
13309 13321 13331 13351 13361
14413 14419 14441 14449 74453
15539 15541 15553 15551 15511
46 49103 4 1 49109 48 49111 49 49121 50 49123
50119 50123 50129 50131 50141
51263 51283 51281 51301 51329
52291 52301 52313 52321 52361
53401 54503 55639 56611 5 3 4 1 1 54511 55661 56681 53419 54521 55663 56687 53431 54539 55667 56101 53441 54541 55673 56711
59809 61001 62137 63337 64403 65551 66683 67741 68897 70111
71161 71167 11171 71191 11209
72211 12221 72223 72227 12229
73363 13369 73319
73387 13411
14471 14489 14501 74509 14521
15571 15583 75611 15611 15619
51 52 53 54 55
50153 50159 50111 50201 50221
51343 51341 51349 51361
52369 52319 52381 52391
53419 53503 53501 53521
54559 54563 54511 54581
55691 55691 55711 55111
56731 56131 56141 56767
57173 51181 51781 57191
71233 11237 71249 11251 11261
12251 72253 12269 12211 72211
13421 13433 73453 13459 73471
14521 74531 74551 14561 14561
15629 15641 15653 75659 15679
56 49193 50221 51383 51 49199 50231 51401 58 49201 50261 51413 59 49201 50263 51419 60 49211 50273 51421
52433 52453 52451 52489 52501
53549 53551 53569 53591 53593
54583 54601 54617 54623 54629
55721 55133 55763 55787 55193
56773 56119 56183 56807 56809
51793 51803 51809 57829 51839
11263 71287 71293 71317 71321
12281 72301 12313 72337 12341
13411 73483 13517 73523 13529
14573 14581 14597 74609 14611
75683 15689 15103 15101 75709
61 62 63 64
52511 52511 52529 52541 52543
53591 53609 53611 53611 53623
54631 54647 54667 54613 54619
55199 55807 55813 55811 55819
56813 56821 56827 56843 56851
51841 51853 51859 51881
58979 58991 58991 59009 57899 59011
60031 60041 60077 60083 60089
61211 61223 61231 61253 61261
53629 54109 53633 54113 53639 54721 53653 54121 53651 54151
55823 55829 55837 55843 55849
56813 56891 56893 56891 56909
51901 51911 51923 51943 51947
60091 60101 60103 60107 60121
61283 61291 61297 61331
49139 49151 49169 49111 49111
49223 49253 49261 49271 65 49219
50281 50291 50311 50321 50329
57113 57119 51727 51731 51131
58171 58181 58789 58831 58889
59833 61007 62141 63347 64433 65551 66691 61151 68899 10117 59863 61021 62143 63353 64439 65563 66701 61157 68903 10121 59819 61031 62111 63361 64451 65519 66113 61759 68909 70123 59881 61043 62189 63361 64453 65581 66721 61763 68917 10139
51341 52363 53453 54541 55681 56113 51151 58897 59921 61051 62191 63317 64483 65587 66133 67117 68927 10141
51421 51431 51431 51439 51449
58901 58901 58909 58913
59929 59951 59951 59971
61057 61091 61099 61121
62201 62207 62213 62219
63389 64489 65599 66139 67783 68947 70151
63391 64499 65609 66749 61189 68963 70163 63397 64513 65611 66751 67801 68993 10111 63409 64553 65629 66763 61807 69001 70181
58921 59981 61129 62233 63419 64567 65633 66791 61819 69011 70183
58937 59999 61141 62273 63421 64517 65647 66191 61829 69019 10199
58943 60313 61151 62297 63439 64519 65651 66809 61843 69029 70201 58963 60017 61153 62299 63443 64591 65657 66821 67853 69031 10207 58961 60029 61169 62303 63463 64601 65677 66841 67867 69061 70223
67891 67901 61921 67931
67883 69067 69073 69109 69119
10229 10237 10241 70249 69127 70271
lb29 71333 71339 11341 11347
12353 72361 12379 12383 12421
13547 13553 13561 13511
73583
74623 74653 14681 14699 14101
15121 15131 75743 75161 15173
69143 10289
11353 11359 71363 71381
13589 13591 13607 73609 73613
74113 74111 14119 74729 14131
15181 75187 15193 15191 15821
13631 13643 13651
14141 14159 74761 74771 14719
15833 15853 15869 15883 15913
49291 49301 49331 493j3 49339
50333 51461 52553 50341 51413 52561 50359 51419 52567 50363 51481 52571 50317 51481 52519
63521 64661 65117 63527 64663 65719 63533 64667 65729 63541 64619 65731 63559 64693 65761
66889 66919 66923 66931 66943
61933 61939 67943 61957 67961
69149 10291 69151 10309 69163 70313 69191 10321
11 12 13 74 15
49363 49361 49369 49391 49393
50383 51503 52583 53681 54161 55811 56911 51913 59063 60133 61339 62467 63577 64709 65177 50381 51511 52609 53693 54173 55889 56921 57911 59069 60139 61343 62473 63587 64111 65789 50411 51511 52627 53699 54179 55891 56923 57991 59017 60149 61351 62477 63589 64747 65809 50417 51521 52631 53117 54181 55901 56929 58013 59083 60161 61363 62483 63599 64763 65827 50423 51539 52639 53719 54199 55903 56941 58027 59093 60167 61379 62491 63601 64781 65831
66941 66949 66959 66973 66971
61967 61979 61987 61993 68023
69193 69191 69203 69221 69233
51551 52661 51563 52613 51571 52691 51581 52691 80 49433 50503 51593 52109
53131 53159 53113 53111 53183
81 19451 50513 51599 82 49459 50521 51601 83 49463 50539 51613 84 49411 50543 51631 85 49481 50549 51631
53191 53813 53819 53831
56951 56957 56963 56983 56989
11431 11443 71453 11411 11473
12551 12559 72571 12613 12611
73699 13109 13121
14197 14821 74821 74831 14843
15931 15931 15941 75961 15919
70451 10459 70481 10481
12623 12643 12641 72649 72661
73121 73151 13757 13171 13783
14851 74861 74869 74873 74881
75983 15989 15991 15991 76001
63649 64853 63659 64811 63667 64877 63611 64819 63689 64891
67057 68099 69313 67061 68111 69311 67073 68113 69337 67079 68141 69341 67103 68147 69371
70489
71479 71483 71503 71521 11537
60317 61493 60331 61507 60337 61511 60343 61519 60353 61543
62617 62621 62633 62639 62653
63691 64901 65951 67121 63691 64919 65957 67129 63103 64921 65963 61139 63709 64927 65981 67141 63719 64937 65983 67153
68161 68171 68207 68209 68213
69379 10501 69383 70507 69389 10529 69401 10531 69403 10549
11549 11551 11563 11569 71593
12671 12613 12679 12689 12101
13819 73823 73841 73849 13859
14891 74897 14903 74923 14929
76003 16031 16039 76079 76081
58171 59239 60313 61547 62659 63127 64951 65993 67157 61169 67181 67187 61189
68219 68227 68239 68261 68219
69421 69431 69439 69457 69463
10571 10573 70583 70589 10607
11597 11633 71647 71663 71671
12101 12719 12721 12733 72739
13861 73811 73897 13901
74933 74941 14959 75011 75013
16091 16099 16103 16123 76129
50683 51161 52883 53939 55051 56131 51149 58211 59333 60443 61603 62731 63781 65021 66067 67211 50101 51169 52889 53951 55061 56149 51163 58211 59341 60449 61609 62743 63793 65029 66071 67213 50123 51181 52901 53959 55073 56167 57113 58229 59351 60457 61613 62153 63799 65033 66083 61217 50141 51197 52903 53987 55019 56171 51179 58231 59357 60493 61627 62761 63803 65053 66089 67219 50153 51803 52919 53993 55103 56179 51191 58237 59359 60497 61631 62773 63809 65063 66103 67231
68281 68311 68329 68351 68371
69467 69413 69481 69491 69493
70619 10621 70627 70639 10657
71693 11699 71707 71711 11113
12763 12761 72791 72811 12823
13939 73943 73951 73961 73913
15011 75029 15037 15041 75079
16147 16151 16159 16163 76201
49541 50599 51691 52811 53897 55001 56093 51101 49549 50627 51113 52831 53899 55009 56099 51119 49559 50641 51119 52859 53911 55021 56101 57131 49591 50651 51121 52861 53923 55049 56113 57139 49603 50671 51749 52819 53921 55051 56123 51143 49613 49627 49633 49639 49663
68059 69257 10429
73673 13619
62563 62581 62591 62597 62603
58067 58073 58099 58109 58111
59149 59159 59161 59183 59191
59201 59209 59219 59221 90 49531 50593 51683 52813 53891 54983 56081 51097 58169 59233
96 97 98 99 100
72493 12491 12503 72533 12541
61463 61469 61471 61483 61487
56993 56999 57031 51041 53849 54941 56009 51041 55967 55981 55991 56003
86 49499 50551 51641 52151 53857 54949 56039 51059 58129 87 49523 50581 51659 52769 53861 54959 56041 51073 58141 88 49529 50581 51613 52183 53881 54973 56053 51077 58151 89 49531 50591 51619 52801 53881 54979 56081 57089 58153
91 92 93 94 95
11399 71411 11413 71419 11429
67003 68041 69239 10393
54881 54901 54911 54919
58031 59101 60169 58043 59113 60209 58049 59119 60211 58057 59123 60223 58061 59141 60251
10321 70351 10373 70319 10381
63607 64783 65837 63611 64193 65839 63617 64811 65843 63629 64817 65851 63647 64849 65861
52111 52121 52121 52133 52141
55921 55927 55931 55933 55949
71389
12431 72461 72467 72469 72481
61381 62501 61403 62507 61409 62533 61411 62539 61441 62549
50441 50459 50461 50491
54829 54833 54851 54869 54811
62383 62401 62417 62423 61333 62459
63467 64609 65681 66851 63473 64613 65699 66853 63487 64621 65701 66863 63493 64627 65107 66877 63499 64633 65713 66883
66 61 68 69 70
1 6 49409 11 49411 18 49411 79 49429
59021 59023 59029 59051 59053
62311 62323 62327 62347 62351
60257 60259 60211 60289 60293
65881 65899 65921 65921 65929
67021 67033 67043 67049
58189 59243 60383 61553 62683 63737 64969 66029 58193 59263 60397 61559 62687 61743 64997 66037 58199 59213 60413 61561 62701 63761 65003 66041 58201 59281 60427 61583 62723 63773 65011 66041
68053 69247 10423 68071 69259 10439 68087 69263 10451
13681 73693
73883
873
COMBINATORIAL ANALYSIS
‘rsilit- 21.9
PHlhlES 76
7i
79
80
81
85
2 3 4 5
76231 76243 76249 76253
77369 77377 77383 77417
78497 78509 78511 78517
79631 79633 79657 79669
80747 80749 80761 80777
81839 81847 81853 81869
82913 82939 82963 82981
84137 84143 84163 84179
85247 85259 85297 85303
86389 86399 86413 86423
87559 87583 87587 87589
88811 88813 88817 88819
89891 89897 89899 89909
90997 91009 91019 91033
92179 92189 92203 92219
93199 93229 93239 93241
94379 94397 94399 94421
92 95443 95461 95467 95471 95479
6 7 8 9 10
76259 76261 76283 76289 76303
77419 77431 77447 77471 77477
78539 78541 78553 78569 78571
79687 79691 79693 79697 79699
80779 80783 80789 80803 80809
81883 81899 81901 81919 81929
82997 83003 83009 83023 83047
84181 84191 84199 84211 84221
85313 85331 85333 85361 85363
86441 86453 86461 86467 86477
87613 87623 87629 87631 87641
88843 88853 88861 88867 88873
89917 89923 89939 89959 89963
91079 91081 91097 91099 91121
92221 92227 92233 92237 92243
93251 93253 93257 93263 93281
94427 94433 94439 94441 94447
95483 95507 95527 95531 95539
96667 96671 96697 96703 96731
97859 97861 97871 97879 97883
99013 99017 99023 99041 99053
11 12 13 14 15
76333 76343 76367 76369 76379
77479 77489 77491 77509 77513
78577 78583 78593 78607 78623
79757 79769 79777 79801 79811
80819 80831 80833 80849 80863
81931 81937 81943 81953 81967
83059 83063 83071 83077 83089
84223 84229 84239 84247 84263
85369 85381 85411 85427 85429
86491 86501 86509 86531 86533
87643 87649 E7671 87679 87683
88883 88897 88903 88919 88937
89977 89983 89989 90001 90007
91127 91129 91139 91141 91151
92251 92269 92297 92311 92317
93283 93287 93307 93319 93323
94463 94477 94483 94513 94529
95549 95561 95569 95581 95597
96737 96739 96749 96757 96763
97919 97927 97931 97943 97961
99079 99083 99089 99103 99109
16 17 18 19 20
76387 76403 76421 76423 76441
77521 77527 77543 77549 77551
78643 78649 78653 78691 78697
79813 79817 79823 79829 79841
80897 80909 80911 80917 80923
81971 81973 82003 82007 82009
83093 83101 83117 83137 83177
84299 84307 84313 84317 84319
85439 85447 85451 85453 85469
86539 86561 86573 86579 86587
87691 87697 87701 87719 87721
88951 88969 88993 88997 89003
90011 90017 90019 90023 90031
91153 91159 91163 91183 91193
92333 92347 92353 92357 92363
93329 93337 93371 93377 93383
94531 94541 94543 94547 94559
95603 95617 95621 95629 95633
96769 96779 96787 96797 96799
97967 97973 97987 98009 98011
99119 99131 99133 99137 99139
21 22 23 24 25
76463 76471 76481 76487 76493
77557 77563 77569 77573 77587
78707 78713 78721 78737 78779
79843 79847 79861 79867 79873
80929 80933 80953 80963 80989
82013 82021 82031 82037 82039
83203 83207 83219 83221 83227
84347 84349 84377 84389 84391
85487 85513 85517 85523 85531
86599 86627 86629 86677 86689
87739 87743 87751 87767 87793
89009 89017 89021 89041 89051
90053 90059 90067 90071 90073
91199 91229 91237 91243 91249
92369 92377 92381 92383 92387
93401 93419 93427 93463 93479
94561 54573 94583 94597 94603
95651 95701 95707 95713 95717
96821 96823 96827 96847 96851
98017 98041 90047 98057 98081
99149 99173 99181 99191 99223
26 27 28 29 30
76507 76511 76519 76537 76541
77591 77611 77617 77621 77641
78781 78787 78791 78797 78803
79889 79901 79903 799P7 79939
81001 81013 81017 81019 81023
82051 82067 82073 82129 82139
83231 83233 83243 83257 83267
84401 84407 84421 84431 84437
85549 85571 85577 85597 85601
86693 86711 86719 86729 86743
87797 87803 87811 87833 07853
89057 89069 89071 89083 89087
90089 90107 90121 90127 90149
91253 91283 91291 91297 91303
92399 92401 92413 92419 92431
93481 93487 93491 93493 93497
94613 94621 94649 94651 94687
95723 95731 95737 95747 95773
96857 96893 96907 96911 96931
98101 98123 98129 98143 98179
99233 99241 99251 99257 99259
31 32 33 34 35
76543 76561 76579 76597 76603
77647 77659 77681 77687 77689
78809 78823 78839 78853 78857
79943 79967 79973 79979 79987
81031 81041 81043 81047 81049
82141 82153 82163 82171 82183
83269 83273 83299 83311 83939
84443 84449 84457 84463 84467
85607 85619 85621 85627 85639
86753 86767 86771 86783 86813
87869 87877 87881 87887 87911
89101 89107 89113 89119 89123
90163 90173 90187 90191 90197
91309 91331 91367 91369 91373
92459 92461 92467 92479 92489
93503 93523 93529 93553 93557
94693 94709 94723 94727 94747
95783 95789 95791 95801 95803
96953 96959 96973 96979 96989
98207 98213 98221 98227 98251
99277 99289 99317 99347 99349
36 37 38 39 40
76607 76631 76649 76651 76667
77699 77711 77713 77719 77723
78177 78887 78889 78893 78901
75197 79999 80021 80039 80051
31071 81077 81083 81097 81101
82189 82193 82207 82217 82219
83341 83357 83383 83389 83399
84481 84499 84503 84509 84521
85643 85661 85667 85669 85691
86837 86843 86851 86857 86861
87917 87931 87943 87959 87961
89137 89153 89189 89203 89209
90199 90203 90217 90227 90239
91381 91387 91393 91397 91411
92503 92507 92551 92557 92567
93559 93563 93581 93601 93607
94771 94777 94781 94789 94793
95813 95819 95857 95869 95873
96997 97001 97003 97007 97021
98257 98269 98297 98299 98317
99367 99371 99377 99391 99397
41 42 43 44 45
76673 76679 76697 76717 76733
77731 77743 77747 77761 77773
78919 78929 78941 78977 78979
80071 80077 80107 80111 80141
81119 81131 81157 81163 81173
82223 82231 82237 82241 82261
83401 83407 83417 83423 83431
84523 84533 84551 84559 84589
85703 85711 85717 85733 85751
86869 86923 86927 86929 86939
87973 87977 87991 88001 88003
89213 89227 89231 89237 89261
90247 90263 90271 90281 90289
91423 91433 91453 91457 91459
92569 92581 92593 92623 92627
93629 93637 93683 93701 93703
94811 94819 94823 94837 94841
95881 95891 95911 95917 95923
97039 97073 97081 97103 97117
98321 98323 98327 98347 98369
99401 99409 99431 99439 99469
46 47 48 49 50
76753 76757 76771 76777 76781
77783 77797 77801 77813 77839
78989 79031 79039 79043 79063
80147 80149 80153 80167 80173
81181 81197 81199 81203 81223
82267 82279 82301 82307 82339
83437 83443 83449 83459 83471
84629 84631 84649 84653 84659
85781 85793 85817 85819 85829
86951 86959 86969 86981 86993
88007 88019 88037 88069 88079
89269 89273 89293 89303 89317
90313 90353 90359 90371 90373
91463 91493 91499 91513 91529
92639 92641 92647 92657 92669
93719 93739 93761 93763 93787
94847 94849 94873 94889 94903
95929 95947 95957 95959 95971
97127 97151 97157 97159 97169
98377 98387 98389 98407 98411
99487 99497 99523 99527 99529
51 52 53 54 55
76801 76819 76829 76831 76837
77849 77863 77867 77893 77899
79087 79103 79111 79133 79139
80177 80191 80207 80209 80221
81233 81239 81281 81283 81293
82349 82351 82361 82373 82387
83477 83497 83537 83557 83561
84673 84691 84697 84701 84713
85831 85837 85843 85847 85853
87011 87013 87037 87041 87049
88093 88117 88129 88169 88177
89329 89363 89371 89381 89387
90379 90397 90401 90403 90407
91541 91571 91573 91577 91583
92671 92681 92683 92693 92699
93809 93811 93827 93851 93871
94907 94933 94949 94951 94961
95987 95989 96001 96013 96017
97171 97177 97187 97213 97231
98419 98429 98443 98453 98459
99551 99559 99563 99571 99577
56 57 58 59 60
76847 76871 76873 76883 76907
77929 77933 77951 77969 77977
79147 79151 79153 79159 79181
80231 80233 80239 80251 80263
81299 81307 81331 81343 81349
82393 82421 82457 82463 82469
83563 83579 83591 83597 83609
84719 84731 84737 84751 84761
85889 85903 85909 85931 85933
87071 87083 87103 87107 87119
80211 88223 88237 88241 88259
89393 89399 89413 89417 89431
90437 90439 90469 90473 90481
91591 91621 91631 91639 91673
92707 92717 92723 92737 92753
93887 93889 93893 93901 93911
94993 94999 95003 95009 95021
96043 96053 96059 96079 96097
97241 97259 97283 97301 97303
98467 98473 98479 98491 98507
99581 99607 99611 99623 99643
61 62 63 64 65
76913 76919 76943 76949 76961
77983 77999 78007 78017 78031
79187 79193 79201 79229 79231
80273 80279 80287 80309 80317
81353 81359 81371 81373 81401
82471 82483 82487 82493 82499
83617 83621 83639 83641 83653
84787 84793 84809 84811 84827
85991 85999 86011 86017 86027
87121 87133 87149 87151 87179
88261 88289 88301 88321 88327
89443 89449 89459 89477 89491
90499 90511 90523 90527 90529
91691 91703 91711 91733 91753
92761 92767 92779 92789 92791
93913 93923 93937 93941 93949
95027 95063 95071 95083 95087
96137 96149 96157 96167 96179
97327 97367 97369 97373 97379
98519 98533 98543 98561 98563
99661 99667 99679 99689 99707
66 67 68 69 70
76963 76991 77003 77017 77023
78041 78049 78059 78079 78101
79241 79259 79273 79279 79283
80329 80341 80347 80363 80369
81409 81421 81439 81457 81463
82507 82529 82531 82549 82559
83663 83689 83701 83717 83719
84857 84859 84869 84871 84913
86029 86069 86077 86083 86111
87181 87187 87211 87221 87223
88337 88339 88379 88397 88411
89501 89513 89519 89521 89527
90533 90547 90583 90599 90617
91757 91771 91781 91801 91807
92801 92809 92821 92831 92849
93967 93971 93979 93983 93997
95089 95093 95101 95107 95111
96181 96199 96211 96221 96223
97381 97387 97397 97423 97429
98573 98597 98621 98627 98639
99709 99713 99719 99721 99733
71 72 73 74 75
77029 77041 77047 77069 77081
78121 78137 78139 78157 78163
79301 79309 79319 79333 79337
80387 80407 80429 80447 80449
81509 81517 81527 81533 81547
82561 82567 82571 82591 82601
83737 83761 83773 83777 83791
84919 84947 84961 84967 84977
86113 86117 86131 86137 86143
87251 87253 87257 87277 87281
88423 88427 88463 88469 88471
89533 89561 89563 89567 89591
90619 90631 90641 90647 90659
91811 91813 91823 91837 91841
92857 92861 92863 92867 92893
94007 94009 94033 94049 94057
95131 95143 95153 95177 95189
96233 96259 96263 96269 96281
97441 97453 97459 97463 97499
98641 98663 98669 98689 98711
99761 99767 99787 99793 99809
76 77 78 79 80
77093 77101 77137 77141 77153
78167 78173 78179 78191 78193
79349 79357 79367 79379 79393
80471 80473 80489 80491 80513
81551 81553 81559 81563 81569
82609 82613 82619 82633 82651
83813 83833 83843 83857 83869
84979 84991 85009 85021 85027
86161 86171 86179 86183 86197
87293 87299 87313 87317 87323
88493 88499 88513 88523 88547
89597 89599 89603 89611 89627
90677 90679 90697 90703 90709
91867 91873 91909 91921 91939
92899 92921 92927 92941 92951
94063 94079 94099 94109 94111
95191 95203 95213 95219 95231
96289 96293 96323 96329 96331
97501 97511 97523 97547 97549
98713 98717 98729 98731 98737
99817 99823 99829 99833 99839
81 82 83 84 85
77167 71171 77191 77201 77213
78203 78229 78233 78241 78259
79397 19399 79411 79423 79427
80527 80537 80557 80567 80599
81611 81619 81629 81637 81647
82657 82699 82721 82723 82127
83873 83891 83903 83911 83921
85037 85049 85061 85081 85087
86201 86209 86239 86243 86249
87337 87359 87383 87403 87407
88589 88591 88607 88609 88643
89633 89653 89657 89659 89669
90731 90749 90787 90793 90803
91943 91951 91957 91961 91967
92957 92959 92987 92993 93001
94117 94121 94151 94153 94169
95233 95239 95251 95261 95261
96337 96353 96377 96401 96419
97553 97561 97571 97577 97579
98773 98779 98801 98807 98809
99859 99871 99877 99881 99901
86 87 88 89 90
77237 77239 77243 77249 77261
78277 78283 78301 78307 78311
79433 79451 79481 79493 79531
80603 80611 80621 80677 80629
81649 81667 81671 81677 81689
82729 82757 82759 82763 82781
83933 83939 83969 83983 83987
85091 85093 85103 85109 85121
86257 86263 86269 86287 86291
87421 87427 87433 87443 87473
88651 88657 88661 88663 88667
89671 89681 89689 89753 89759
90821 90823 90833 90841 90847
91969 91997 92003 92009 92033
93047 93053 93059 93077 93083
94201 94207 94219 94229 94253
95273 95279 95287 95311 95317
96431 96443 96451 96457 96461
97583 97607 97609 97613 97649
98837 98849 98867 98869 98873
99907 99923 99929 99961 99971
91 92 93 94 95
77263 77267 77269 77279 77291
78317 78341 78347 78367 78401
79537 79549 79559 79561 79579
80651 80657 80b69 80671 80677
81701 81703 81707 81727 81737
82787 82793 82799 82811 82813
84011 84017 84047 84053 84059
85133 85147 85159 85193 85199
86293 86297 86311 86323 86341
87481 87491 87509 87511 87517
88681 88721 88729 88741 88747
89767 89779 89783 89797 89809
90863 90887 90901 90907 90911
92041 92051 92077 92083 92107
93089 93097 93103 93113 93131
94261 94273 94291 94307 94309
95327 95339 95369 95383 95393
96469 96479 96487 96493 96497
97651 97673 97687 97711 97729
98887 98893 98897 98899 98909
99989 99991
96 97 98 99 100
77317 77323 77339 77347 77351
78427 78437 78439 78467 78479
79589 79601 79609 79613 79621
80681 80683 80687 80701 80713
81749 81761 81769 81773 81799
82837 82847 82883 82889 82891
84061 84067 84089 84121 84127
85201 85213 85223 85229 85237
86351 86353 86357 86369 86371
87523 87539 87541 87547 87553
88771 88789 88793 88799 88801
E9819 89821 89833 89839 89849
90917 90931 90947 90971 90977
92111 92119 92143 92153 92173
93133 93139 93151 93169 93179
94321 94327 94331 94343 94349
95401 95413 95419 95429 95441
96517 96527 96553 96557 96581
97771 97777 97787 97789 97813
98911 98927 98929 98939 98947
75
78
X2
83
84
86
87
88
89
90
91
1 76213 77359 78487 79627 80737 81817 82903 84131 85243 86381 87557 88807 89867 90989 92177 93187 94351
96587 96589 96601 96643 96661
94 97829 97841 97843 97847 97849
96 98953 98963 98981 98993 98999
94
i
25. Numerical Interpolation, Differentiation, and Integration PHILIPJ. DAVIS AND IVAN POLONSKY *
Contents Formulas 25.1. Differences . . . . . . . . , 25.2. Interpolation . . . . . . . . 25.3. Differentiation , . , , . . . 25.4. Integration . . . . . . . . . 25.5. Ordinary Differential Equations
. . . . . . . . . . . . . . . . .., . , . . . .
. . . . . . . . . . . . . . .. . . . . . . . .
.. . . .. . . . . ..
. . . . . .
. . . .
..
Table 25.1. *Point Lagrangian Interpolation Coefficients (3 < n 5 8 )
..
References
.
,
n=3,4, p = n=5,6, p = n=7,8, p = -
,
., .. . .. .
[“;‘I [“;‘I E]! [“;‘I E],
, ,
- (.01) [;I1
Exact
- (.01)
10D
-
(.1)
. . . . . .
Page
877 878 882 885
896 898 900
10D
Table 25.2. *Point Coefficients for k-th Order Differentiation (15k15). . . . . . . . . , . , . . . , . . . . . , . . . . k= 1, n=3(1)6, Exact k= 2 (1)5, n=k 4-1(l)6, Exact
914
. .
915
Table 25.3. n-Point Lagrangian Integration Coefficients (3 I n 2 10) n=3(1) 10, Exact
Table 25.4. Abscissas and Weight Factors for Gaussian Integration (2In596). . , . . . . . . , , . . . . . , . , . . . . . . . n=2(1)10, 12, 15D n = 16(4)24(8)48 (16)96, 21D Table 25.5. Abscissas for Equal Weight (2In19). . . . . . . . , , . . . . n=2(1)7, 9, 10D
.
Chebyshev ,
916
Integration
. . . . . . . . .
920
Table 25.6. Abscissas and Weight Factors for Lobatto Integration (31nI10). . . . . . . . . , , . , , , . . . . . . . . . . . n=3(1)10, 8-10D
920
Table 25.7. Abscissas and Weight Factors for Gaussian Integration for Integrands with a Logarithmic Singularity (2 I n 1 4 ) . . . . . n=2(1)4, 6D
920
a
National Bureau of Standards. National Bureau of Standards. (Presently, Bell Tel. Labs., Whippany, N.J.) 875
I
NUMERICAL ANALYSIS
876
Table 25.8. Abscissas and Weight Factors for Gaussian Integration of Moments(lSn18). . . . . . . . . . . . . . . . . . . . . . k=0(1)5,
n=1(1)8,
Page
921
10D
Table 25.9. Abscissas and Weight Factors for Laguerre Integration ( 2 5 7 ~ 5 1 5 ) .. . . . . . . . . n=2(1)10, 12, 15, 12D or S
. . . . . . . . . . . . . . . .
923
Table 25.10. Abscissas and Weight Factors for Hermite Integration (257~520).. . . . . . . . . . . . n=2(1)10, 12, 16, 20, 13-15D or S
. . . . . . . . . . . . .
Table 25.11. Coefficients for Filon’s Quadrature Formula (05051) 8= O ( .Ol). 1(.1) I , 8D
924
.
,
924
25. Numerical Interpolation, Differentiation,and Integration Numerical analysts have a tendency to accumulate a multiplicity of tools each designed for highly specialized operations and each requiring special knowledge to use properly. From the vast stock of formulas available we have culled the present selection. We hope that it will be useful. As with all such compendia, the reader may miss his favorites and find others whose utility he thinks is marginal. We would have liked to give examples to illuminate the formulas, but this has not been feasible. Numerical analysis is partially a science and partially an art, and short of writing a textbook on the subject it has been impossible to indicate where and under what circumstances the various formulas are useful or accurate, or to elucidate the numerical difficulties to which one might be led by uncritical use. The formulas are therefore issued together with a caveat against their blind application.
8i,=Af(n-k) if n and Forward Differences
k are of same parity.
Central Differences
xo f o
2-1
f-1
XfJ
fo
A0
A:
fl
Formulas
21
Notation: Abscissas: xo<x~< . .; functions: j , g, . . .; values: j ( x t ) T,Y(X!) =f;. Y, ... indicate lBt,2d, . . . erivatives. If abscissas are equally spaced, xr+l-xi=h and f p = (xo+ph) ( p not necessarily integral). R , R , in icate remainders.
22
f2
x3
f3
G
A1
A1
6-4
6; 6;
64 21
fl
52
f 2
6:
A2
6312
d
Mean Differences
25.1. Differences
25.1.3
p(f
n)
=3 (fn +t +f n -1)
Forward Differences
25.1.1 Divided Differences
[xo,a]=-=
25.1.4
[ X I , 201
[zoo,211- [ x 1 , 5 2 1 -[&,
[ZO,XI,
*
. .,Xk]--
* * -,xk-l]-[xl,
* *,zk]
Tn-xk
Divided Differences in Terms of Functional Values
25.1.5
It
[&,XI,
fk
. l x n l = k-0 X - *A(xk)
877
878
NUMERICAL ANALYSIS
where T,(z)=(z-zo) and a:(z) is its derivative:
25.1.6
(2-21)
. . . (z-z,)
Remainder in Lagrange Interpolation Formula
25.2.3
25.1.7
Rn(4=a*(d "&,%
a;(zk)=(2k-20)
*
*
*
(w-zk-l)(Zk--k+l>
...
* *
.,2,,4
(Zt-2,)
Let D be a simply connected domain with a piecewise smooth boundary C and contain the points zo, , . ., z, in its interior. Let f(z) be analytic in D and continuous in D+C. Then,
25.2.4
25.2.5 (t-z)(t-zoCo). f(t)
. . (t-2,)
dt
k=O
25.1.9
Aa=hflfc"'([)
(z~<[
The conditions of 25.1.8 are assumed here. Lagrange Interpolation, Equally Spaced Abscissas
25.1.10
n Point Formula
25-2-6
f(zo+ph)=T A;(p)fk+R,-i
25.2.11 [ 5- ,
2- ,+l
8;" , . . .,Zo,. . .,2,]=h2" (2n)!
For n even,
(-;
(n-2>
Reciprocal Differences
25.1.12 25.2.7
n even.
n odd.
25.2.8
(XO<S<Xd
k has the same range as in 25.2.6. Lagrange T w o Point Interpolation Formula (Linear Interpolation)
879
NUMERICAL ANALYSIS
Lagrange Three Point Interpolation Formula
25.2.11
+
f (20 ph) =A - if-
1
--
+Aofo +Alfl+
25.2.18 RdP) = .0049hsf@'(f)= .0049A6 (O
.0071h6f'"(~)z .0071A6
RZ P(P+ 1)f l
.024hBf'"([) =.024A6
(-l
l
(-2
2
25.2.12
Rz(p)= .065hy3'([) = .065A3
Lagrange Seven Point Interpolation Formula
(1~15 1)
Lagrange Four Point Interpolation Formula
25.2.13
3
25.2.20
R6(P)=
25.2.14 R3(P) = .024h4f(4)(()= .024A4 (O
f ( z o + P h ) = C Atft+R~
25-2-19
i=-3
I
.0025h7f(7)(f)A .0025A7
(Ipl
.0046h?f'7'(5)c.O046A7
(1
.019h7f'7)(i)= .019A7
(2
<
23)
Lagrange Eight Point Interpolation Formula
l
(z-1 < E < a )
25.2.21 25.2.22
.OO1lhsf's)(f)= .0011A8
Lagrange Five Point Interpolation Formula
(O
25.2.15
f(G+Ph)=
5 AJt+R4
i=-2
-- (P"-l)P(P-2)f-z-
24 (P2- 1)(P2-4) + 4
f o-
(P-l)P(P2-4) 6 (P+ 1)P(P2-4)f1 6
f-l
R7 (PI =.
(X-3<E<X4)
Aitken's Iteration Method
Let ~ ( Z ~ Z .~ ., ,,zJ ~ ~ ,denote the unique polynomial of kth degree which coincides in value with f(s) a t xo, . . ., zr. 25.2.23
880
NUMERICAL ANALYSIS
Everett's Formula
Taylor Expansion
25.2.24
25.2.31 (2-
4
f ( x ) = j o + ( x - Z O v ; + ~ jP+
25.2.25
*
..
f
(xo+ Ph) =(1-p)jo+pf1-
P(P-1) (P--2) 3!
*;
(x-t)"
at R n = lj("+l) ( t ) n!
x1
fl
6:
6:
25.2.32
Relation Between Everett and Lagrange Coe5cients
25.2.33
Ez =Af 1
E4=AB_2
FZ=A:
F,=A:
EB=A!a F6=&
Everett's Formula With Throwback (Modified Central Difference)
25.2.34 j(so+ ph) = (1-p)jo+pfi
25.2.35 25.2.36 25.2.37
(G
Xn)
Relation Between Newton and Lagrange Coefficients
25.2.30
e)=-Atl(p)
6;=62-
+&&,o+ F&,1+R ,18464
+
R = .000451p6;( .0006ll6fl
Simultaneous Throwback
25.2.54
m=2n+l
25.2.43
(k=O,l,. 25.2.55
. .,n)
m=2n
12n-1 ak=; f, cos kx,;
br=-
r=O
(k=O,1, . . .,n)
12n-1
n
r=O
f, sin kx,
(k=O,1, . . .,n-I)
b, is arbitrary. Subtabulation
Let f(z) be tabulated width h. It is desired intervals of width hlm. differences with respect
initially in intervals of to subtabulate f(x) in Let A and designate to the original and the
final intervals respectively. Thus
ao=f
-.f(z,). Assuming that the original 5th order differences are zero,
25.2.56
-
1 1-m Ao=- m Ao+- 2m2
2- XI
(l-~n)(1-2m)~! Em3
+(l-m)(l-2m)(1-3m1 24m4
&
(For reciprocal differences, p , see 25.1.12.) Trigonometric Interpolation
25.2.52
-
1
G = s A!+
3(1-m) 2m4 &
From this information we may construct the final tabulation by addition. For m=10, sin #(Z-S+~) . . . sin $(z-zZn) sin + ( ~ - a + . . ~. sin) +(zk-x2,J
25.2.57
.045$+ .02854-- ,02066A; .009&+.007725g &= ,OOlA!-.OO135&
-$=.Ol$-
t,(z) is a trigonometric polynomial of degree n such that t,(zn)=fk (k=0,1, , . .,2n)
-A:=
Harmonic Analysis
Equally spaced abscissas q=O,
51,
-
-Ao=.lAo-
.OOOlA$ Linear Inverse Interpolation
. , ~ m - 1 , ~ m = 2 ~
Find p , givenf,(=f(G++ph)).
25.2.53
Linear
1
n
f (2)“5 a o + C (akcos kx+bb sin kz) k=l
25.2.58
p = fp -fo fl
-fo
882
NUMERICAL ANALYSIS
Quadratic Inverse Interpolation
+
+
(f1- 2O f +f- 1)p2 (fi -f- 1)p 2 (fo
-fp>
=0
Three Point Formula (Linear)
25.2.65
Inverse Interpolation by Reversion of Series OD
25.2.60
Given f ( x o + p h ) = f p = ~akpk k-0
25.2.61
. . ., h=(fP-ao)/al
p=h+c2h2+c3h3+
+ +
Bivariate Interpolation
25.2.59
f($O+Ph, Y O +
25.2.62 cz= -az/al
!?w=(1 -2)-
dfo, 0
+Pfl, o+
+
do,1 O(h2)
Four Point Formula
25.2.66 c4=-+----a4
al
5aza3 5ai a: a:
-a5
6aza4 3ai
C S = - + T + - - T + -
a,
a,
a:
21a:a3 14a: a, a:
Inversion of Newton’s Forward Difference Formula
25.2.63
ao=fo
!
(Used in conjunction with 25.2.62.) 25.2.64
Inversion of Everett’s Formula
ao=fo
s:
a,----+
-2
s: s:
s:
--3 6 +-+-+ 20 30 8:
=6,
8: 24
9
.
*
...
25.3. Differentiation Lagrange’s Formula
. ..
a,=,+ 8:
25.3.1
aa=- -4+a:+
120
(See 25.2.1.) ’
*
(Used in conjunction with 25.2.62.)
883
NUMERICAL ANALYSIS
25.3.3
25.3.10
hyi2)=At-A:+z
11
25.3.11
h3fia)=A:-l
7 A:+- 4 A:-
15 8 g+
,
.
Equally Spaced Abscissas 25.3.12
Three Points
h4ji4)=~-2g+
25.3.4
7 6g-z~;+ .,.
17
25.3.13
h‘fi”=Ai--
5 25 35 At+- A;--- 6 A:+ 2 6
. ..
Everett’s Formula
25.3.14
hf’(q+ph)
=-fo+fi-
3p2-6p+2 6
-5p4-20p3+ 120 1 5 ~ ~ f 1 0 p - 66;+ Five Points
6
f-2
- 1+2P3-5Pfo -4pa-3P2-8P+4f 2 6 -4p3+3p2- 8 p -4f1
Differences in Terms of Derivatives
25.3.16
6
For numerical values of differentiation coefficients see Table 25.2. Markoff’r Formulas
25.3.18
(Newton’s Forward Difference Formula Differentiated)
25.3.19
25.3.7 f ’ ( o o + P h1) = ~ p2p-1 o++4
25.3.20
6:
5p4-15pa+4 6: 120
25.3.15
25.3.6
f:=f
I 3p2--I
+
884
NUMERICAL ANALYSIS
25.3.26
25.3.22
0
I.
t
+
25.3.23
25.3.27
+ + -b2fo* O- =I c i l , 0 tfI , o+ fo,I +fo, axay 2h2
-2fo,o-fi,
25.3.24
-1 i
-f - I, -1)
+0(h')
25.3.28
$-;a O - k
25.3.29
25.3.25
b;2-
---
3;a (fl.I - 2 f 0 , 1
+f- 1,1+fl.
+fi,-1-2fo.
0-2f0, -i+f-1,
o t f - l,o -1)
+O(h2)
+
cf2,0-4f1,0+6f0.0- 4 f - I ,~+f2.0) 0 (ha)
+ Laplacian
25.3.30
ss5
NUMERICAL hNALYSIS
25.3.33 0 0
0
0
0
Extended Trapezoidal Rule
25.4.2 Biharmonic Operator
25.3.32 Error Term in Trapezoidal Formula for Periodic Functionlr
If f(z) is periodic and has a continuous kth derivative, and if the integral is taken over a period, then constan t 25.4.3 IErrorl S mk Modifled Trapezoidal Rule
25.4.4
886
NUMERICAL ANALYSIS
Simpson's Rule
25.4.5
(See Table 25.3 for Af(m).) Newton-Cotes Formulas (Closed Type)
(For Trapezoidal and Simpson's Rules see 25.4.125.4.6.) 25.4.13
(Simpson'e 5 3 rule)
25.4.14
(Bode's rule)
Extended Simpson's Rule
25.4.6
+32j3+7fJ Euler-Maclaurin Summation Formula
-
8f(6) (0h7 945
25.4.15
25.4.7
25.4.16
(For B2k,Bernoulli numbers, see chapter 23.) Ifj('"+"(z) and f(2k+4)(z) do not change sign for xo
25.4.8 25.4.18
(See 25.2.1.) 25.4.9
[f(z)
+
4h dz= 14175 (989fo 5888f1-928fi
+10496f3-4540f4 +1O496f a-928f 25.4.19
e+5888f7
887
NUMERICAL ANALYSIS
25.4.20
-[f(zo+ih)+f(zo-ih)l}
+R
IR(I-1h17Max If'e)(z)I, S designates the square
-32691 1346350 8592
f(l2)
(€)h13
1890 r e 5 with vertices zo+ikh(k=O, 1,2,3);hcan be complex. Chebyshev's Equal Weight Integration Formula
Newton-Coter Formulas (Open Type)
25.4.21
Abscissas: xi is the it"zero of the polynomial part of x" exp -n n n .. 4 - 5 2 6.72'
[=----- .]
(See Table 25.5 for s,.)
For n=8 and n 2 1 0 some of the zeros are complex. Remainder:
25.4.23
where [=[(z) satisfies O ~ [ < Z and O l & l r i (i=l, . . . ,n)
Integration Formulas of Gaussian Type
(For Orthogonal Polynomials see chapter 22) Gaurr' Formula
Related orthogonal polynomials: Legendre polynomials p , ( ~ P,(l)=l ), Abscissas: zf is the ithzero of P,(z) Weights: wi=2/(1-23 [pk(zr)la (See Table 25.4 for zi and w,.)
Gauss' Formula, Arbitrary Interval
Yf=(q)
b 2,-
ih *See page 11.
Z*+(T)b+a
*
888
*
NUMERICAL ANALYSIS
Related orthozonal polynomiak: P,(s),P , ( l ) = l Abscissas: xi is the Ith zero of P,(+) Weights: w,=2/( 1-2;) [P:(zr)]'
s,'
25*4*33
z l f ( x ) d z = 2 w,f(x,)
+R.
1-1
Related orthogonal polynomials: qn(Z)=4 k f 2 n
+U'$*
O)
(1-22)
(For the Jacobi polynomials PAr,o'see chapter 22.) Radau's Integration Formula
Abscissas :
25.4.31
x, is the i* zero of q,(z) Weights :
*
Related polynomials: (See Table 25.8 for q and w,.) Remainder :
Abscissas: xi is tho ithzero of
R,= (k+2n+1)(2n)! f (2n)(5) r!(k+n),!] (kf2n).
Pn-l(z) +Pn(s) 2+1
(O
25.4.34
Weights : 1
1--21
1
1
w'=n2 [P.- 1(x,) 12- 1-2, [Pn-1(2r)l2 Remainder:
Lobatto's Integration Formula
25.4.32
Abscissas: x,=l--f: where tt is the ithpositive zero of P2n+l(x). Weights: w,=2t2tw,( 2 n + l ) where W I ( ~ ~ + ~ are ) the Gaussian weights of order 2nf 1. Remainder:
25.4.35
Related polynomials: Pb-, (2) Abscissas: xi is the (i-l)Ot zero of Ph-,(z) Weights :
Related orthogonal polynomials: (See Table 25.6 for xr and wt:) Remainder :
(-1<E<1> *See page 11.
where tt is the ith positive Abscissas: x,=l-[: zero of P2n+l(x). Weights: wI=2t:wP'+l) whe.re w P + ~ are) the Gaussian weights of order 2nf 1.
889
NUMERICAL ANALYSIS
Abscissas: (2i-1)A 2n
xi=cos Related orthogonal polynomials: ~2~
Weights: A
(JCX), P2n(l)=1
Abscissas: zi=l-[: where tt is the ith positive zero of P Z n ( z ) . Weights: wi=2wPn),wiz") are the Gaussian weights of order 2n. Remaicder :
U);=-
n
25.4.40
Related orthogonal polynomials: Chebyshev Polynomials of Second Kind * [(n+l) arccos x] un (x) =sin sin (arccos x) Abscissas: Y
i lr xi=cos 1
71+
yt=a+ @-a) zi
Weights: wi=-
Related orthogonal polynomials:
-
*
i sin' -A n+l n+l A
p z n CJ 1-2) 7 PZn (1) =1 Abscissas: xi=l-[: where t t is the ithpositive zero of Pzn(x). Weights: w,=2wj2"), wjzn' are the Gaussian weights of order 2n.
b+a
y*=-+- 2
Related orthogonal polynomials: Chebyshev Polynomials of First Kind Tn(x) 9 Tn(1) ~
1
sin [ (n+ 1) arccos sin (arccos x>
un(x)=
xi =cos
(2i-1)A 2n
xi=cos
?r
Wf=-
n
25.442
J1 0
j(x,J-
A
n+l
-A Y
n+l
i sin2 -a n+l
5d z = k 1-x
wJ(x,)+R,
i-1
Related orthogonal polynomials:
25.4.39
b+a
yi=-+--z; 2
b-a 2
Related orthogonal polynomials:
* *
wi=-
Remainder:
XI
Abscissas: Weights :
Weights:
2 zi
Related orthogonal polynomials:
2 n - 1
Abscissas:
b-a
Abscissas:
-
2i-1 A xi=cos2 - 2n+l 2
Weights : wi=*See page 11.
2s 2n+1"
*
890
NUMERICAL ANALYSIS
Remainder:
Rn=- n!JT
2 fl (2n)!f'2"'(t) (-
25.4.47
CO<(<
->
Filon's Integration Formula 8
Related orthogonal polynomials: 1 Tin+l(rn
Abscissas:
2i-1 * xt=cos2 -* 2n+l 2
Weights :
Related orthogonal polynomials: polynomials orthogonal with respect to the weight function -In x Abscissas: See Table 25.7 Weights: See Table 25.7 25.4.45
Related orthogonal polynomials: Laguerre polynomials L,(z). Abscissas: xr is the it"zero of Ln(z) Weights:
For small e we have 25.4.53
28a
205
(See Table 25.9 , for xf and w t . ) Remainder :
Related orthogonal polynomials: Hermite polynomials H,(z). Abscissas: xt is the ithzero of H,(x) Weights : 2"-1n!J;; n2[H,-1(2,)12 (See Table 25.10 for xt and wt.)
207
"'
fl=7+---+2 2e2 4e4 2ea3
15
25.4.54
105 567
e4
' '
e6
+m ... ~=3-15+2104 2e2
25.4.46
I
"==-a 4725
* For certain difficulties associated with this formula, see the article by J. W. Tukey, p. 400, <'On Numerical Approximation," Ed. R. E. L,anger, Madison, 1959.
NUMERICAL ANALYSIS
n
25-4-57
CLn-l=x j%, COS (t~zt-1) 1- 1
(See Table 25.11 for a,8,y.) Iterated Integrals
25.4.58
=-
1
JZ
(n-l)!
(x-t),-If(t)dt
0
25.4.59
=-(n- 1) !
l1
t~-tf(x-(x-u)t)dt
Multidimensional Integration
Circumference of Circle
r: x2+y2=h2.
25.4.60
1
27rh -
s
1 am r j ( x , y)ds=%
2f(h cos
nn
h sin m
+O(h2"-? Circle C:x2+y21ha, 25.4.61
891
i
892
NUMERICAL ANALYSIS
( f f , f % ) 116
(f$h,O)
118
R=O(h6)
For regions, such as the square, cube, cylinder, etc., which are the Cartesian products of lower dimensional regions, one may always develop integration rules by “multiplying together” the lower dimensional rules. Thus
16+4 360 (k=1,
. . JO)
R=O(h’O)
if
is a one dimensional rule, then
becomes a two dimensional rule. Such rules are not necessarily the most “economical”.
893
NUMERICAL ANALYSIS
10181 1 0/8l Equilateral Triangle T
Radius of Circumscribed Circle=h 25.4.63
I
((-OF) h,O)
Regular Hexagon H
(-3'h fh943)
(-2)&2 h h 43)
Radius of Circumscribed Circle=h 1/12
3/60 8/60
R=o(A~)
25.4.64
894
NUMERICAL ANALYSIS
(x*,Y t> (090) 10
(Ifrh
9)o)
Wt
258/1008 12511008
R =O(h9
125/1008
Surface of Sphere 2 : x2+y2+z2=h2 25.4.65
401840
895
NUMERICAL ANALYSIS
c f , = s u m of values off a t the 6 points midway from the center of C to the 6 faces. cf,=sum of values of f at the 6 centers of the faces of C. cfw=sumof values off a t the 8 vertices of C. c f e = s u m of values off at the 12 midpoints of edges of C. cfa=sum of values of f a t the 4 points on the diagonals of each face at a distance of
J f i h from the center of the face. 2
25.4.67
Tetrahedron: 925.470
+terms of 4thorder where
V: Volume of 9-
Cf,,:Sum of values of the function at the vertices of 9-.
25.4.69
Cf6:Sum of
where fm=f(Ol
0,O).
See footnote to 26.4.62.
values of the function a t midpoints of the edges of 9-. Cf,: Sum of values of the function at the center of gravity of the faces of 9-. fm: Value of function at center of gravity of 9-.
896
NUMERICAL ANALYSIS
25.5. Ordinary Differential Equations'
First Order: y'=f(z, y) Point Slope Formula
Yn+1 =Y
25.5.1
O(h2)
+ +O(h3)
Y
25.5.2
.+hY: +
=Y%- 1 2hy:
Trapezoidal Formula
h
25-5-3
Y~+I=Y%+~ (yb+l+yb)
+O(h3)
Adams' Extrapolation Formula
25.5.4
h
+ g (55Yb- 59y:-
Y n + lnY'
+37yb-2-
1
9y:-3)
+O(h6)
Adams' Interpolation Formula
25.5.5
h
Yn+lnY'
(%b+
I
+19yb- 5Yb-
1
-2)
+0(h')
Runge-Kutta Methods Second Order
25.5.6
Yn+l=Yn+;
1 ~ n + i = ~ n + s
(k1+k2)+O(h3)
+ +
k1 =hf(zn ,Yn) ,kz= hf(2, h,Yn k,) 25.5.7 Yn+ I
~n
+kz +0(ha) Third Order
25.5.8
~
The reader is cautioned against possible instabilities especially in formulas 25.5.2 and 25.5.13. See, e.g.
[25.11], I25.121.
(k,+2
(1-4) kz
NUMERICAL ANALYSIS
Systems of Differential Equations
*
First Order: y’= f ( 2 ,y , z ) , z’=g(z, y , 2). Second Order Runge-Kutta
25.5.17
1 Yn+l=Yn+Z (kl+kz) +o(h3), 1 zn+l=zn+g (Zl+Zz)
897
+0(h3)
*See page XI.
898
NUMERICAL ANALYSIS
References Texts
(For textbooks on numerical analysis, see texts in chapter 3) [25.1] J. Balbrecht and L. Collatz, Zur numerischen Auswertung mehrdimensionaler Integrale, Z. Angew. Math. Mech. 38, 1-15 (1958). [25.2] Berthod-Zaborowski, Le calcul des intkgrales de
la forme:
L1
f(x) log x dx.
H . Mineur, Techniques de calcul numkrique, pp. 555-556 (Librairie Polytechnique Ch. BBranger, Paris, France, 1952). [25.3] W. G. Bickley, Formulae for numerical integration, Math. Gaz. 23, 352 (1939). [25.4] W. G. Bickley, Formulae for numerical differentiation, Math. Gaz. 25, 19-27 (1941). [25.5] W. G. Bickley, Finite difference formulae for the square lattice, Quart. J. Mech. Appl. Math., 1 , 35-42 (1948). [25.6] G. Birkhoff and D. Young, Numerical quadrature of analytic and harmonic functions, J. Math. Phys. 29,217-221 (1950). [25.7] L. Fox, The use and construction of mathematical tables, Mathematical Tables vol. I, National Physical Laboratory (Her Majesty’s Stationery Office, London, England, 1956). [25.8] S. Gill, Process for the step-by-step integration of differential equations in a n automatic digital computing machine, Proc. Cambridge Philos. SOC. 47, 96-108 (1951). [25.9] P. C. Hammer and A. H. Stroud, Numerical evaluation of multiple integrals 11, Math. Tables Aids Comp. 12, 272-280 (1958). [25.10] P. C. Hammer and A. W. Wymore, Numerical evaluation of multiple integrals I, Math. Tables Aids Comp. 11,59-67 (1957). [25.11] P. Henrici, Discrete variable methods in ordinary differential equations (John Wiley & Sons, Inc., New York, N. Y., 1961). [25.12] F. B. Hildebrand, Introduction to numerical analysis (McGraw-Hill Book Co., Inc., New York, N.Y., 1956). [25.13] Z. Kopal, Numerical analysis (John Wiley & Sons, Inc., New YorL, N.Y., 1955). [25.14] A. A. Markoff, Differenzenrechnung (B. G. Teubner, Leipzig, Germany, 1896). [25.15] S. E. Mikeladze, Quadrature formulas for a regular function, SoobSE. Akad. Nauk Gruzin. SSR. 17, 289-296 (1956). [25.16] W. E. Milne, A note on the numerical integration of differential equations, J. Research NBS 43, 537-542 (1949) RP2046. [25.17] D. J. Panov, Formelsammlung zur numerischen Behandlung partieller Differentialgleichungen nach dem Differenzenverfahren (Akad. Verlag, Berlin, Germany, 1955). t25.18) R. Radau, gtudes sur les formules d’approximation qui servent A calculer la valeur d’une intBgrale dbfinie, J. Math. Pures Appl. (3) 6, 283-336 (1880).
[25.19] R. D. Richtmeyer, Difference methods for initialvalue problems (Interscience Publishers, New York, N.Y., 1957). [25.20] M. Sadowsky, A formula for approximate computation of a triple integral, Amer. Math. Monthly 47, 539-543 (1940). [25.21] H. E. Salzer, A new formula for inverse interpolation, Bull. Amer. Math. Soc. 50, 513-516 (1944). I25.221 H. E. Salzer, Formulas for complex Cartesian interpolation of higher degree, J. Math. Phys. 28,-200-203 (1949). [25.23] H . E. Salzer, Formulas for numerical integration of first and second order differential equations in the complex plane, J. Math. Phys. 29, 207-216 (1950). [25.24] H. E. Salzer, Formulas for numerical differentiation in the complex plane, J. Math. Phys. 31, 155-169 (1952). [25.25] A. Sard, Integral representations of remainders, Duke Math. J. 15,333-345 (1948). [25.26] A. Sard, Remainders: functions of several variables, Acta Math. 84, 319-346 (1951). [25.27] G. Schulz, Formelsammlung zur praktischen Mathematik (DeGruyter and Co., Berlin, Germany, 1945). [25.28] A. H . Stroud, A bibliography on approximate integration, Math. Comp. 15, 52-80 (1961). [25.29] G. J. Tranter, Integral transforms in mathematical physics (John Wiley & Sons, Inc., New York, N.Y., 1951). [25.30] G. W. Tyler, Numerical integration with several variables, Canad. J. Math. 5, 393-412 (1953).
Tables [25.31] L. J. Comrie, Chambers’ six-figure mathematical tables, vol. 2 (W. R. Chambers, Ltd., London, England, 1949). [25.32] P. Davis and P. Rabinowitz, Abscissas and weights for Gaussian quadratures of high order, J. Research NBS 56, 35-37 (1956) RP2645. [25.33] P. Davis and P. Rabinowitz, Additional abscissas and weights for Gaussian quadratures of high order: Values for n=64, 80, and 96, J. Research NBS 60, 613-614 (1958) RP2875. [25.34] E. W. Dijkstra and A. van Wijngaarden, Table of Everett’s interpolation coefficients (Elcelsior’s Photo-offset, The Hague, Holland, 1955). [25.35] H. Fishman, Numerical integration constants, Math. Tables Aids Comp. 11, 1-9 (1957). [25.36] H . J. Gawlik, Zeros of Legendre polynomials of orders 2-64 and weight coefficients of Gauss quadrature formulae, A.R.D.E. Memo (€3) 77/58, Fort Halstead, Kent, England (1958). [25.37] Gt. Britain H.M. Nautical Almanac Office, Interpolation and allied tables (Her Majesty’s Stationery Office, London, England, 1956).
NUMERICAL ANALYSIS
[25.38] I. M. Longman, Tables for the rapid and accurate numerical evaluation of certain infinite integrals involving Bessel functions, Math. Tables Aids Comp. 11, 166-180 (1957). [25.39] A. N. Lowan, N. Davids, and A. Levenson, Table of the zeros of the Legendre polynomials of order 1-16 and the weight coefficients for Gauss' mechanical quadrature formula, Bull. Amer. Math. soc.48, 739-743 (1942). [25.40] National Bureau of Standards, Tables of Lagrangian interpolation coefficients (Columbia Univ. Press, New York, N.Y., 1944). [25.41] National Bureau of Standards, Collected Short Tables of the Computation Laboratory, Tables of functions and of zeros of functions, Applied Math. Series 37 (U.S.Government Printing Office, Washington, D.C., 1954). [25.42] P. Rabinowitz, Abscissas and weights for Lobatto quadrature of high order, Math. Tables Aids Comp. 69, 47-52 (1960). [25.43] P. Rabinowitz and G. Weiss, Tables of abscissas and weights for numerical evaluation of integrals of the form OD
e- "2"f(2)dz,
Msth. Tables Aids Comp. 68, 285-294 (1959).
899
[25.44] H. E. Salzer, Tables for facilitating the use of Chebyshev's quadrature formula, J. Math. Phys. 26, 191-194 (1947). [25.45] H. E. Salzer and R. Zucker, Table of the zeros and weight factors of the first fifteen Laguerre polynomials, Bull. Amer. Math. Soc. 55, 10041012 (1949). [25.46] H. E. Salzer, R. Zucker, and R. Capuano, Table of the zeros and weight factors of the first twenty Hermite polynomials, J. Research NBS 48, 111-116 (1952) RP2294. [25.47] H. E. Salzer, Table of coefficients for obtaining the first derivative without differences, NBS Applied Math. Series 2 (U.S. Government Printing Office, Washington, D.C., 1948). [25.48] H. E. Salzer, Coefficients for facilitating trigonometric interpolation, J. Math. Phys. 27,274-278 (1949). [25.49] H. E. Salzer and P. T. Roberson, Table of coefficients for obtaining the second derivative without differences, Convair-Astronautics, San Diego, Calif. (1957). [25.50] H. E. Salzer, Tables of osculatory interpolation coefficients, NBS Applied Math. Series 56 (US.Government Printing Office, Washington, D.C., 1958).
900
NUMERICAL ANALYSIS
Table 25.1
THREE-POINT LAGRANGIAN INTERPOLATION COEFFICIENTS
P
A- I
0.00 0.01 0.02 0.03 0.04
-0.00000
Ao
A1 0.00000
-0.00495 -0.00980 -0.01455 -0.01920
1.00000 0.9 9990 0.99960 0.99910 0.99840
0.05 0.06 0.07 0.08 0.09
-0.02375 -0I02820 -0.03255 -0.03680 -0.04095
0.10 0.11 0.12 0.13 0.14
A0
A1
0.00505 0.01020 0.01545 0.02080
0.50 0.51 0.52 0.53 0.54
-0.1250 0 -0.12495 -0.12480 -0.12455 -0.12420
0.75000 0.73990 0,72960 0,71910 0.70840
0.37500 0.38505 0.3952 0 0.40545 0.41580
0.99750 0.99640 0.99510 0.99360 0.99190
0.02625 0.03180 0.03745 0.04320 0.04905
0.55 0.56 0.57 0.58 0.59
-0.12375 -0.12320 -0.12255 -0.12180 -0.12095
0.69750 0.68640 0.67510 0.66360 0.65190
0.42625 0.43680 0.44745 0.45820 0.4 6905
-0.04500 -0.04895 -0.05280 -0.05655 -0.06020
0.99000 0.98790 0.98560 0.98310 0.98040
0.05500 0.06105 0.06720 0.07345 0.07980
0.60 0.61 0.62 0.63 0.64
-0.12000 -0.11895 -0.11 780 -0.11655 -0.11520
0.64000 0.62790 0.61560 0.60310 0.59040
0.48000 0.49105 0.50220 0.51345 0.52480
0.15 0.16 0.17 0.18 0.19
-0.06375 -0.06720 -0.07055 -0.07380 -0.07695
0.97750 0.97440 0.97110 0.96760 0.96390
0.08625 0.09280 0.09945 0.10620 0.11305
0.65 0.66 0.67 0.68 0.69
-0.11375 -0.11220 -0.11055 -0.10880 -0.10695
0.57750 0.56440 0.55110 0.53760 0.52390
0.53625 0.54780 0.55945 0.57120 0.58305
0.20 0.21 0.22 0.23 0.24
-0.08000 -0.08295 -0.08580 -0.08855 -0.09120
0.96000 0.95590 0.95160 0.94710 0.94240
0.12000 0.12705 0.13420 0.14145 0.14880
0.70 0.71 0.72 0.73 0.74
-0.10500 -0.10295 -0.10080 -0.09855 -0.09620
0.51000 0.49590 0.48160 0.46710 0.4 5240
0.59500 0.60705 0.61920 0.63145 0.64380
0.25 0.26 0.27 0.28 0.29
-0.09375 -0.09620 -0.09855 -0.10080 -0.10295
0.93750 0.93240 0.92710 0.92160 0.91590
0.15625 0.16380 0.17145 0.17920 0.18705
0.75 0.76 0.77 0.78 0.79
-0.09375 -0.09120 -0.08855 -0.08580 -0,08295
0.43750 0.42240 0.40710 0.39160 0.37590
0.65625 0.66880 0.68145 0.69420 0.70705
0.30 0.31 0.32 0.33 0.34
-0.10500 -0.10695 -0.10880 -0.11055 -0.11220
0.91000 0.90390 0.89760 0.89110 0.88440
0.195 00 0.20305 0.21120 0.21945 0.22780
0.80 0.81 0.82 0.83 0.84
-0.08000 -0.07695 -0.07380 -0.07055 -0.06720
0.36000 0.34390 0.32760 0.31110 0.29440
0.72000 0.73305 0;74620 0.75945 0.77280
0.35 0.36 0.37 0.38 0.39
-0.11375 -0.11520 -0.11655 -0.11780 -0.11895
0.87750 0.87040 0.86310 0.85560 0.84790
0.23625 0.24480 0.25345 0.26220 0.27105
0.85 0.86 0.87 0.88 0.89
-0.06375 -0,06020 -0.05655 -0.05280 -0.04895
0.27750 0.26040 0.24310 0.22560 0.20790
0.78625 0.79980 0.81345 0.82720 0.84105
0.40 0.41 0.42 0.43 0.44
-0.12000 -0.12095 -0.12180 -0.12255 -0.12320
0.84000 0.83190 0.82360 0.81510 0.80640
0.28000 0.28905 0.29820 0.30745 0.31680
0.90 0.91 0.92 0.93 0.94
-0.04500 -0.04095 -0.03680 - 0.0 3255 -0.02820
0.19000 0.17190 0.15 360 0.13510 0.11640
0.85500 0.86905 0.88320 0.89745 0.91180
0.45 0.46 0.47 0.48 0.49
-0.12375 -0.12420 -0.12455 -0.12480 -0.12495
0.79750 0.78840 0.77910 0.76960 0.75990
0.32625 0.33580 0.34545 0.3552 0 0.365 05
0.95 0.96 0.97 0.98 0.99
-0.02375 -0.01920 -0.01455 -0.00980 -0.00495
0.09750 0.07840 0.05910 0.03960 0.01990
0.92625 0.94080 0.95545 0.97020 0.98505
0.50
-0.12500
0.75000
0.37500
1.00
-0.00000 A1
0.00000
1.00000
-P
A1
Ao
A- 1
P
-P
8-1
Ao
8-1
See 25.2.6. Compiled from National Bureau of Standards, Tables of Lagrangian interpolation coefficients. Columbia Univ. Press, New York, N.Y., 1944 (with permission).
901
NUMERICAL ANALYSIS
FOUR-POINT LAGRANGIAN INTERPOLATION COEFFICIENTS A:(p) A-1
=(- l)k+2
Table 25.1
P (P2- 1 ) (P - 2) (1 + k ) !(2- k ) ! ( p- k )
Az
0. 00 0. 01 0. 02 0. 03 0. 04
0.00000 -0.00328 -0,00646 -0.00955 -0.01254
00 35 80 45 40
Ao 1.00000 0.99490 0.98960 0.98411 0.97843
00 05 40 35 20
0.00000 0.01004 0,02019 0.03043 0.04076
00 95 60 65 80
0.00000 -0.00166 -0.00333 -0.00499 -0.00665
00 65 20 55 60
1.00 0.99 0.98 0.97 0. 96
0. 05 0. 06 0. 07 0. 08 0. 09
-0.01543 -0.01823 -0.02094 -0.02355 -0.02607
75 60 05 20 15
0,97256 0.96650 0.96027 0.95385 0.94726
25 80 15 60 45
0.05118 0.06169 0.07227 0.08294 0.09368
75 20 85 40 55
-0.00831 -0.00996 -0.01160 -0.01324 -0. 01487
25 40 95 80 85
0.95 0.94 0.93 0.92 0. 91
0.10 0.11 0.12 0.13 0.14
-0.02850 -0.03083 -0.03308 -0,03524 -0.03732
00 85 80 95 40
0,94050 0.93356 0.92646 0.91919 0.91177
00 55 40 85 20
0.10450 0.11538 0.12633 0.13735 0.14842
00 45 60 15 80
-0.01650 -0.01811 -0.01971 -0.02130 -0.02287
00 15 20 05 60
0.90 0.89 0.88 0. 87 0.86
0.15 0.16 0.17 0.18 0.19
-0.03931 -0.04121 -0,04303 -0.04477 -0.04642
25 60 55 20 65
0.90418 0.89644 0.88855 0.88051 0.87232
75 80 65 60 95
0.15956 0.17075 0.18199 0.19328 0.20462
25 20 35 40 05
-0,02443 -0.02598 -0.02751 -0,02902 -0.03052
75 40 45 80 35
0. 85 0.84 0.83 0.82 0.81
0.20 0. 21 0.22 0. 23 0. 24
-0.04800 -0.04949 -0.05090 -0.05224 -0.05350
00 35 80 45 40
0.86400 0.85553 0.84692 0.83818 0.82931
00 05 40 35 20
0.21600 0.22741 0.23887 0.25036 0.26188
00 95 60 65 80
-0.03200 -0.03345 -0.03489 -0.03630 -0.03769
00 65 20 55 60
0. 80 0.79 0.78 0.77 0.76
0. 25 0. 26 0.27 0, 28 0.29
-0. 05468'75 -0.05579 60 -0.05683 05 -0.05779 20 -0.05868 15
0,82031 0.81118 0.80194 0.79257 0.78309
25 80 15 60 45
0.27343 0.28501 0.29660 0.30822 0,31985
75 20 85 40 55
-0.03906 -0,04040 -0.04171 -0.04300 -0.04426
25 40 95 80 85
0.75 0.74 0.73 0.72 0.71
0.30 0. 31 0. 32 0. 33 0.34
-0,05950 -0,06024 -0. 06092 -0.06153 -0,06208
00 85 80 95 40
0.77350 0.76379 0,75398 0.74406 0.73405
00 55 40 85 20
0.33150 0.34315 0.35481 0.36648 0.37814
00 45 60 15 80
-0.04550 -0.04670 -0.04787 -0,04901 -0.05011
00 15 20 05 60
0. 70 0. 69 0. 68 0.67 0. 66
0.35 0. 36 0.37 0. 38 0.39
-0.06256 -0,06297 -0,06332 -0,06361 -0.06383
25 60 55 20 65
0,72393 0.71372 0,70342 0.69303 0.68255
75 80 65 60 95
0.38981 0.40147 0.41312 0.42476 0.43639
25 20 35 40 05
-0.05118 -0.05222 -0.05322 -0.05418 -0.05511
75 40 45 80 35
0. 65 0. 64 0. 63 0.62 0.61
0.40 0.41 0.42 0. 43 0.44
-0.06400 -0,06410 -0.06414 -0.06413 -0,06406
00 35 80 45 40
0.67200 0.66136 0.65064 0.63985 0.62899
00 05 40 35 20
0.44800 0.45958 0.47115 0,48269 0.49420
00 95 60 65 80
-0.05600 -0.05684 -0.05765 -0.05841 -0. 05913
00 65 20 55 60
0. 60 0. 59 0. 58 0.57 0.56
0.45 0. 46 0.47 0.48 0. 49
-0.06393 -0.06375 -0.06352 -0.06323 -0.06289
75 60 05 20 15
0.61806 0.60706 0.59601 0.58489 0.57372
25 80 15 60 45
0.50568 0.51713 0.52853 0.53990 0.55122
75 20 85 40 55
-0.05981 -0.06044 -0.06102 -0.06156 -0.06205
25 40 95 80 85
0. 55 0. 54 0.53 0.52 0.51
0. 50
-0.06250 00 Aa
P
A1
0.56250 00 A1
0.56250 00 Ao
-0,06250 00 A-i
0.50 P
902
NUMERICAL AN.4LYSIS
Table 25.1
FOUR-POINT LAGRANGIAN INTERPOLATION COEFFICIENTS Ai(p)=(-l)k+2-- P W - 1)(P- 2) (1 k ) !(2 - k ) ! ( p- k )
+
A-1
Ao 0.00000 00
95 60 65 80
A1 1.00000 1.00489 1.00959 1.01408 1.01836
00 95 60 65 80
0.00000 0,00338 0.00686 0,01045 0.01414
00 35 80 45 40
0.01 0. 02 0.03 0. 04
-0.04868 -0IO5809 -0.06737 -0IO7654 -0.08558
75 20 85 40 55
1,02243 1,02629 1,02992 1.03334 1.03653
75 20 85 40 55
0.01793 0.02183 0.02584 0.02995 0.03417
75 60 05 20 15
0. 05 0.06 0. 07 0. 08 0. 09
00 15 20 05 60
-0.09450 -0,10328 -0.11193 -0.12045 -0.12882
00 45 60 15 80
1.03950 1.04223 1. 04473 1.04700 1,04902
00 45 60 15 80
0.03850 0. 04293 0,04748 0.05214 0.05692
00 85 80 95 40
0.10 0.11 0.12 0.13 0.14
0,02443 0,02598 0.02751 0.02902 0.03052
75 40 45 80 35
-0.13706 -0.14515 -0.15309 -0.16088 -0.16852
25 2.0 35 40 05
1.05081 1.05235 1.05364 1.05468 1.05547
25 20 35 40 05
0. 06181 0,06681 0,07193 0.07717 0. 08252
25 60 55 20 65
0.15 0.16 0.17 0.18 0.19
1.20 1.21 1.22 1.23 1.24
0.03200 0.03345 0.03489 0,03630 0.03769
00 65 20 55 60
-0.17600 -0.18331 -0.19047 -0.19746 -0.20428
00 95 60 65 80
1.05600 1,05626 1.05627 1.05601 1.05548
00 95 60 65 80
0.08800 0,09359 0,09930 0.10514 0.11110
00 35 80 45 40
0.20 0.21 0.22 0.23 0. 24
1.25 1. 26 1.27 1.28 1.29
0,03906 0.04040 0.04171 0.04300 0,04426
25 40 95 80 85
-0,21093 -0.21741 -0,22370 -0,22982 -0.23575
75 20 85 40 55
1.05468 1.05361 1.05225 1.05062 1.04870
75 20 85 40 55
0.11718 0.12339 0,12973 0,13619 0.14278
75 60 05 20 15
0.25 0. 26 0.27 0.28 0.29
1.30 1.31 1.32 1.33 1.34
0. 04550 0,04670 0.04787 0.04901 0,05011
00 15 20 05 60
-0.24150 -0.24705 -0.25241 -0.25758 -0.26254
00 45 60 15 80
1,04650 1.04400 1.04121 1,03813 1,03474
00 45 60 15 80
0.14950 0.15634 0,16332 0,17043 0.17768
00 85 80 95 40
0.30 0. 31 0. 32 0.33 0.34
1.35 1.36 1.37 1. 38 1. 39
0.05118 0.05222 0.05322 0.05418 0.05511
75 40 45 80 35
-0.26731 -0I27187 -0.27622 -0,28036 -0,28429
25 20 35 40 05
1.03106 1.02707 1.02277 1.01816 1.01324
25 20 35 40 05
0.18506 0,19257 0.20022 0.20801 0.21593
25 60 55 20 65
0.35 0.36 0. 37 0.38 0.39
1.40 1.41 1.42 1.43 1.44
0,05600 0.05684 0.05765 0,05841 0.05913
00 65 20 55 60
-0.28800 -0.29148 -0.29475 -0.29779 -0.30060
00 95 60 65 80
1.00800 1.00243 0,99655 0.99034 0.98380
00 95 60 65 80
0.22400 0.23220 0.24054 0,24903 0.25766
00 35 80 45 40
0.40 0.41 0.42 0.43 0.44
1.45 1.46 1.47 1.48 1.49
0.05981 0.06044 0.06102 0.06156 0,06205
25 40 95 80 85
-0.30318 -0.30553 -0.30763 -0.30950 -0.31112
75 20 85 40 55
0.97693 0.96973 0.96216 0,95430 0.94607
75 20 85 40 55
0.26643 0.27535 0.28442 0,29363 0.30299
75 60 05 20 15
0. 45 0.46 0.47 0.48 0.49
1.50
0.06250 00
0.31250 00 -4-1
0. 50
P 1. 00 1. 01 1.02 1. 03 1. 04
0.00000 0.00166 0,00333 0.00499 0.00665
00 65 20 55 60
-0,00994 -0.01979 -0. 02953 -0.03916
1. 05 1. 06 1. 07 1. 08 1. 09
0.00831 0.00996 0.01160 0,01324 0,01487
25 40 95 80 85
1.10 1.11 1.12 1.13 1.14
0.01650 0,01811 0.01971 0,02130 0.02287
1.15 1.16 1.17 1.18 1.19
A2
-0.31250 00 AI
A2
0.93750 00
Ao
0. 00
-P
903
NUMERICAL ANALYSIS
FOUR-POINT LAGRANGIAN INTERPOLATION COEFFICIENTS
Table 25.1
P 1.50 1. 5 1 1.52 1.53 1.54
A-1 0.06250 0.06289 0,06323 0,06352 0.06375
00 15 20 05 60
Ao -0.31250 -0.31362 -0.31449 -0.31511 -0.31546
P (P2- 1) ( P - 2) (1 k ) !(2- k)!Cp - k ) A1 00 0.93750 00 45 0,92857 45 60 0.91929 60 15 0.90966 1 5 80 0,89966 80
1. 55 1.56 1.57 1.58 1.59
0.06393 0.06406 0.06413 0.06414 0.06410
75 40 45 80 35
-0.31556 -0.31539 -0.31495 -0,31424 -0.31326
25 20 35 40 05
0.88931 0.87859 0,86750 0.85604 0.84421
25 20 35 40 05
0,36231 0.37273 0.38331 0.39405 0.40494
25 60 55 20 65
0.55 0.56 0. 57 0.58 0. 59
1. 60 1.61 1. 62 1. 63 1. 64
0.06400 0,06383 0.06361 0.06332 0.06297
00 65 20 55 60
-0.31200 -0,31045 -0,30863 -0.30652 -0,30412
00 95 60 65 80
0.83200 0.81940 0.80643 0.79307 0.77932
00 95 60 65 80
0,41600 0,42721 0.43858 0.45012 0,46182
00 35 80 45 40
0. 60 0. 6 1 0.62 0. 63 0.64
1. 65 1.66 1. 67 1. 68 1. 69
0.06256 0.06208 0.06153 0.06092 0,06024
25 40 95 80 85
-0,30143 -0.29845 -0,29516 -0.29158 -0.28769
75 20 85 40 55
0.76518 0.75065 0,73571 0,72038 0,70464
75 20 85 40 55
0.47368 0,48571 0.49791 0,51027 0.52280
75 60 05 20 15
0. 65 0. 66 0. 67 0.68 0.69
1. 70 1. 7 1 1. 72 1.73 1.74
0.05950 0.05868 0.05779 0.05683 0,05579
00 15 20 05 60
-0.28350 -0.27899 -0.27417 -0.26904 -0.26358
00 45 60 15 80
0.68850 0.67194 0.65497 0.63759 0.61978
00 45 60 15 80
0.53550 0,54836 0.56140 0,57461 0,58800
00 85 80 95 40
0.70 0. 7 1 0.72 0.73 0. 74
1.75 1. 76 1. 77 1. 78 1.79
0.05468 0,05350 0.05224 0.05090 0.04949
75 40 45 80 35
-0.25781 -0.25171 -0.24528 -0.23852 -0.23143
25 20 35 40 05
0.60156 0.58291 0.56383 0.54432 0.52438
25 20 35 40 05
0.60156 0.61529 0.62920 0.64329 0.65755
25 60 55 20 65
0.75 0.76 0.77 0.78 0.79
1.80 1.81 1.82 1.83 1.84
0,04800 0,04642 0.04477 0.04303 0,04121
00 65 20 55 60
-0.22400 -0,21622 -0.20811 -0.19965 -0.19084
00 95 60 65 80
0.50400 0.48317 0.46191 0,44020 0.41804
00 95 60 65 80
0.67200 0.68662 0,70142 0.71641 0.73158
00 35 80 45 40
0.80 0. 8 1 0.82 0.83 0.84
1. 85 1.86 1. 87 1. 88 1.89
0.03931 0.03732 0.03524 0.03308 0.03083
25 40 95 80 85
-0.18168 -0.17217 -0,16229 -0.15206 -0.14146
75 20 85 40 55
0,39543 0.37237 0.34884 0.32486 0.30041
75 20 85 40 55
0.74693 0.76247 0.77820 0.79411 0,81021
75 60 05 20 15
0.85 0. 86 0.87 0.88 0.89
1.90 1.91 1.92 1.93 1.94
0,02850 0.02607 0,02355 0.02094 0.01823
00 15 20 05 60
-0.13050 -0.11916 -0,10745 -0.09537 -0.08290
00 45 60 15 80
0.27550 0.25011 0.22425 0.19792 0.17110
00 45 60 15 80
0.82650 0.84297 0.85964 0.87650 0.89356
00 85 80 95 40
0.90 0. 9 1 0.92 0.93 0.94
1.95 1.96 1.97 1.98 1.99
0.01543 0,01254 0.00955 0.00646 0.00328
75 40 45 80 35
-0.07006 -0.05683 -0.04321 -0.02920 -0.01480
25 20 35 40 05
0.14381 0.11603 0.08776 0.05900 0.02975
25 20 35 40 05
0.91081 0.92825 0.94589 0.96373 0,98176
25 60 55 20 65
0.95 0.96 0.97 0.98 0.99
2. 00
0.00000 00 A2
1.00000 00 A-1
1.00 -P
A:(p) =(-l)k+2
+
0.00000 00 A1
0.00000 00 Ao
A2 0,31250 0,32215 0.33196 0,34192 0.35204
00 85 80 95 40
0.50 0.51 0.52 0.53 0.54
904
NUMERICAL ANALYSIS
Table 25.1
FIVE-POINT LAGRANGIAN INTERPOLATION COEFFICIENTS
A ~ ( P :)( =- l ) k f 2
P ( P 2 - 1 ) (94) (2+ k ) !(2 -k ) !( p - k ) Ao A1
0.01 0. 02 0. 03 0. 04
A-2 0.00000 00000 0.00082 90838 0.00164 93400 0.00246 02838 0.00326 14400
A-i 0.00000 00000 -0.00659 98350 -0.01306 53600 -0. 01939 56350 -0.02558 97600
1.00000 0.99987 0.99950 0.99887 0.99800
00000 50025 00400 52025 06400
0.00000 0.00673 0.01359 0.02059 0.02772
00000 31650 86400 53650 22400
A2 0.00000 -0.00083 -0.00168 -0.00253 -0.00339
00000 74163 26600 52163 45600
0. 00 0. 01 0. 02 0. 03 0. 04
0. 05 0. 06 0. 07 0. 08 0. 09
0.00405 0.00483 0.00560 0.00635 0.00710
23438 25400 15838 90400 44838
-0.03164 -0.03756 -0.04334 -0.04898 -0.05448
68750 61600 68350 81600 94350
0.99687 0.99550 0.99388 0.99201 0.98989
65625 32400 10025 02400 14025
0.03497 0.04236 0.04987 0.05750 0.06526
81250 18400 21650 78400 75650
-0.00426 -0. 00513 -0.00600 -0.00688 -0.00777
01563 14600 79163 89600 40163
0. 05 0. 06
0.10 0.11 0.12 0.13 0.14
0.00783 0.00855 0.00926 0.00995 0.01063
75000 76838 46400 79838 73400
-0.05985 -0.06506 -0.07014 -0.07508 -0.07987
00000 92350 65600 14350 33600
0.98752 0.98491 0.98205 0.97894 0.97559
50000 16025 18400 64025 60400
0.07315 0.08115 0.08927 0.09751 0.10587
00000 37650 74400 95650 86400
-0.00866 -0.00955 -0.01044 -0.01134 -0.01223
25000 38163 73600 25163 86600
0.10 0. 11 0.12 0.13 0. 14
0.15 0.16 0.17 0.18 0.19
0.01130 0.01195 0.01258 0.01320 0.01381
23438 2'6400 78838 77400 18838
-0.08452 -0.08902 -0.09338 -0.09760 -0.10167
18750 65600 70350 29600 40350
0.97200 0.96816 0.96408 0.95976 0.95520
15625 38400 38025 24400 08025
0.11435 0.12294 0.13164 0.14045 0.14937
31250 14400 19650 30400 29650
-0.01313 -0.01403 -0.01492 -0.01582 -0.01671
51563 13600 66163 02600 16163
0. 15 0.16 0. 17 0.18 0. 19
0.20 0.21 0.22 0. 23 0. 24
0.01440 0.01497 0.01552 0.01606 0.01658
00000 17838 69400 51838 62400
-0.10560 -0.10938 -0.11301 -0.11650 -0.11984
00000
06350 57600 52350 89600
0.95040 0.94536 0.94008 0.93457 0.92882
00000 12025 56400 46025 94400
0.15840 0.16753 0.17676 0.18610 0.19554
00000 23650 82400 57650 30400
-0.01760 -0.01848 -0.01936 -0. 02024 -0.02110
00000 47163 50600 03163 97600
0.20 0.21 0.22 0. 23 0. 24
0. 25 0. 26 0. 27 0. 28 0. 29
0.01708 0.01757 0.01804 0.01849 0.01892
98438 57400 36838 34400 47838
-0.12304 -0.12609 -0.12900 -0.13176 -0.13438
68750 89600 52350 57600 06350
0.92285 0.91664 0.91020 0; 90353 0.89664
15625 24400 36025 66400 32025
0.20507 0.21470 0.22443 0; 23425 0.24415
81250 90400 37650 02400 63650
-0.02197 -0.02282 -0.02367 -0.02451 -0.02534
26563 82600 58163 45600 37163
0. 25 0.26 0.27 0.28 0. 29
0.30 0. 32 0. 33 0. 34
0.01933 0.01973 0.02010 0.02046 0.02079
75000 13838 62400 18838 81400
-0.13685 -0.13917 -0.14135 -0.14338 -0.14527
00000 40350 29600 70350 65600
0.88952 0.88218 0.87462 0.86683 0.85884
50000 38025 14400 98025 08400
0.25415 0.26422 0.27439 0.28463 0.29495
00000 89650 10400 39650 54400
-0.02616 -0.02697 -0.02776 -0.02854 -0.02931
25000 01163 57600 86163 78600
0. 30 0. 31 0. 32 0.33 0.34
0.35 0. 36 0.37 0. 38 0. 39
0.02111 0.02141 0.02168 0.02194 0.02218
48438 18400 89838 61400 31838
-0.14702 -0.14862 -0.15008 -0.15139 -0.15256
18750 33600 14350 65600 92350
0.85062 0.84219 0.83356 0.82471 0.81565
65625 90400 04025 28400 86025
0.30535 0.31582 0.32636 0; 33697 0.34765
31250 46400 75650 94400 77650
-0.03007 -0.03081 -0.03153 -0.03224 -0.03293
26563 21600 55163 18600 03163
0. 35 0.36 0. 37 0: 38 0. 39
0. 40 0. 41 0. 42 0. 43 0. 44
0.02240 0.02259 0.02277 0.02292 0.02306
00000 64838 25400 80838 30400
-0.15360 -0.15448 -0.15523 -0.15584 -0.15631
00000
94350 81600 68350 61600
0.80640 0.79693 0.78727 0.77742 0.76737
00000 94025 92400 20025 02400
0.35840 0.36920 0.38006 0.39098 0.40195
00000 35650 58400 41650 58400
-0.03360 -0.03425 -0.03487 -0.03548 -0.03607
00000 00163 94600 74163 29600
0. 40 0. 41 0. 42 0. 43 0.44
0. 45 0. 46 0. 47 0. 48 0. 49
0.02317 0.02327 0.02334 0.02339 0.02342
73438 09400 37838 58400 70838
-0.15664 -0.15683 -0.15689 -0.15681 -0.15659
68750 97600 56350 53600 98350
0.75712 0.74669 0.73607 0.72527 0.71428
65625 36400 42025 10400 70025
0.41297 0.42404 0.43516 0.44632 0.45751
81250 82400 33650 06400 71650
-0.03663 -0.03717 -0.03768 -0.03817 -0.03863
51563 30600 57163 21600 14163
0.45 0. 46 0. 47 0. 48 0. 49
0. 50
0.02343 75000 A2
-0.03906 25000 A -2
0. 50 -P
P 0. 00
0. 31
-0.15625 00000 A1
0.70312 50000 Ao
0.46875 00000 A-1
0. 07 0.08 0. 09
NUMERICAL ANALYSIS
FIVE-P 'OINT LAGRANGIAN INTERPOLATION COEFFICIENI T S P ( P 2 - 1 ) (P2-4) A ! ( p ) = ( - 1 ) k + 2 (2+ k ) !(2- k ) !( p - k )
Tab1le 25.1
P 0.50 0.51 0.52 0.53 0.54
A -2 0.02343 75000 0.02342 70838 0.02339 58400 0.02334 37838 0.02327 09400
-0.15625 -0.15576 -0.15515 -0.15440 -0.15352
00000 68350 13600 46350 77600
0.70312 0.69178 0.68027 0.66860 0.65675
50000 80025 90400 12025 76400
0.46875 0.48001 0.49131 0.50263 0.51398
00000 61650 26400 63650 42400
-0.03906 -0.03946 -0.03983 -0.04017 -0.04048
25000 44163 61600 67163 50600
0. 50 0. 51 0. 52 0.53 0. 54
0.55 0.56 0.57 0.58 0.59
0.02317 0.02306 0.02292 0.02277 0.02259
73438 30400 80838 25400 64838
-0.15252 -0.15138 -0.15012 -0.14874 -0.14723
18750 81600 78350 21600 24350
0.64475 0.63258 0.62026 0.60779 0.59516
15625 62400 50025 12400 84025
0.52535 31250 0.53673 98400 0.54814 11650 0.5595,5 38400 0.57097 45650
-0.04076 -0.04100 -0.04120 -0.04137 -0.04150
01563 09600 64163 54600 70163
0.55 0. 56 0. 57 0. 58 0. 59
0.60 0.61 0.62 0.63 0.64
0.02240 0.02218 0.02194 0.02168 0.02141
00000 31838 61400 89838 18400
-0.14560 -0.14384 -0.14197 -0.13998 -0.13787
00000 62350 25600 04350 13600
0.58240 0.56948 0.55644 0.54325 0.52994
00000 96025 08400 74025 30400
0.58240 0.59382 0.60525 0.61667 0.62808
00000 67650 14400 05650 06400
-0.04160 -0.04165 -0.04165 -0.04163 -0.04156
00000 33163 58600 65163 41600
0. 60 0. 61 0. 62 0. 63 0. 64
0. 65 0.66 0.67 0.68 0.69
0.02111 0.02079 0.02046 0.02010 0.01973
48438 81400 18838 62400 13838
-0.13564 -0.13330 -0.13085 -0.12829 -0.12562
68750 85600 80350 69600 70350
0.51650 0.50293 0.48925 0.47545 0.46154
15625 68400 28025 34400 28025
0.63947 0.65085 0.66222 0.67355 0.68486
81250 94400 09650 90400 99650
-0.04144 -0.04128 -0.04107 -0.04082 -0.04051
76563 58600 76163 17600 71163
0. 65 0. 66 0. 67 0. 68 0. 69
0.70 0.71 0.72 0.73 0.74
0.01933 0.01892 0.01849 0.01804 0.01757
75000 47838 34400 36838 57400
-0.12285 -0.11996 -0.11698 -0.11389 -0.11070
OOUOO
0.44752 0.43340 0.41918 0.40487 0.39046
50000 42025 46400 06025 64400
0.69615 0.70739 0.71860 0.72976 0.74088
00000 53650 22400 67650 50400
-0.04016 -0.03975 -0.03929 -0.03878 -0.03822
25000 67163 85600 68163 02600
0. 70
76350 17600 42350 69600
0.73 0.74
0.75 0.76 0.77 0.78 0.79
0.01708 0.01658 0.01606 0.01552 0.01497
98438 62400 51838 69400 17838
-0.10742 -0.10404 -0.10056 -0.09699 -0.09334
18750 09600 62350 97600 36350
0.37597 0.36140 0.34675 0.33203 0.31725
65625 54400 76025 76400 02025
0.75195 0.76296 0; 77392 0.78481 0; 79564
31250 70400 27650 62400 33650
-0.03759 -0.03691 -0.03617 -0.03538 -0.03452
76563 77600 93163 10600 17163
0.75 0. 76 0.77 0. 78 0. 79
0.80 0.81 0.82 0.83 0.84
0,01440 0.01381 0.01320 0.01258 0.01195
00000 18838 77400 78838 26400
-0.08960 -0.08577 -0.08185 -0.07786 -0.07379
00000 10350 89600 60350 45600
0.30240 0.28749 0.27253 0.25752 0.24246
00000 18025 04400 08025 78400
0.80640 0.81708 0.82768 0.83820 0.84863
00000 19650 50400 49650 74400
-0.03360 -0.03261 -0.03156 -0.03044 -0.02926
00000 46163 42600 76163 33600
0. 80 0. 81 0. 82 0.83 0. 84
0.85 OI86 0.87 0.88 0.89
0.01130 OI01063 0.00995 0.00926 0.00855
23438 73400 79838 46400 76838
-0.06964 -0.06542 -0.06113 -0.05677 -0.05234
68750 53600 24350 05600 22350
0.22737 0.21225 0.19709 0.18192 0.16673
65625 20400 94025 38400 06025
0.85897 0.86922 0.87936 0.88940 0.89933
81250 26400 65650 54400 47650
-0.02801 -0.02668 -0.02529 -0.02382 -0.02228
01563 66600 15163 33600 08163
0. 85 0. 86 0. 87 0. 88 0.89
0.90 0.91 0.92 0.93 0.94
0.00783 0.00710 0.00635 OI00560 0.00483
75000 44838 90400 15838 25400
-0.04785 -0.04329 -0.03868 -0.03401 -0.02929
00000 64350 41600 58350 41600
0.15152 0.13631 0.12109 0.10588 0.09068
50000 24025 82400 80025 72400
0.90915 0.91884 0.92841 0.93786 0.94717
00000 65650 98400 51650 78400
-0.02066 -0.01896 -0.01719 -0.01533 -0.01340
25000 70163 29600 89163 34600
0.90 0. 91 0. 92 0.93 0.94
0.95 0.96 0.97 0.98 0.99
0.00405 0.00326 0.00246 0.00164 0.00082
23438 14400 02838 93400 90838
-0,02452 -0.01970 -0.01483 -0.00992 -0.00498
18750 17600 66350 93600 28350
0.07550 0.06033 0.04519 0.03009 0.01502
15625 66400 82025 20400 40025
0.95635 0.96538 0.97427 0: 98300 0.99158
31250 62400 23650 66400 41650
-0.01138.51563 -0.00928 25600 -0.00709 42163 -0.00481 86600 -0.00245 44163
0.95 0: 96 0.97 0.98 0.99
1.00
0.00000 00000
1.00000 00000
0.00000 00000
1.00
A2
A-1
0.00000 00000 A1
Ao
0.00000 00000 Ao
A1
A-1
Az
A-2
0. 71 0. 72
-P
NUMERICAL ANALYSIS
FIT‘E-POINT LAGRANGIAN INTERPOLATION COEFFICIENTS
Table 25.1
4(P) P
A -2
-4-1 0.00000 00000
=(- l)k+2
P ( P 2 - 1) (P2-4) (2 k) !( 2-k ) !( p-k )
+
Ao 0.00000 00000
A1 00000
A2
91650 66400 73650 62400
0.00000 0.00254 0.00518 0.00791 0.01074
00000 60838 53400 92838 94400
1.00 1.01 1.02 1.03 1. 04
0.00501 0. U1006 0.01513 0.02023
61650 26400 63650 42400
-0.01497 -0.02989 -0.04474 -0.05953
39975 19600 77975 53600
1. OOPOO 1.00824 1.01632 1.02422 1.03194
01563 14600 79163 89600 40163
0.02535 0.03048 0.03564 0; 04080 0.04597
31250 98400 11650 38400 45650
-0.07424 -0,08888 -0.10342 -0.11787 -0.13222
84375 07600 59975 77600 95975
1.03947 1.04681 1.05396 1.06089 1.06763
81250 78400 01650 98400 15650
0.01367 0.01670 0.01983 0.02306 0.02639
73438 45400 25838 30400 74838
1.05 1.06 1. 07 1.08 1. 09
-0.00866 -0; 00955 -0.01044 -0.01134 -0.01223
25000 38163 73600 25163 86600
0.05115 0.05632 0.06150 0.06667 0.07183
00000 67650 14400 05650 06400
-0.14647 -0.16060 -0.17462 -0.18850 -0.20225
50000 73975 01600 65975 99600
1.07415 1.08044 1.08652 1.09237 1.09798
00000 97650 54400 15650 26400
0.02983 0.03338 0.03704 0.04080 0.04468
75000 46838 06400 69838 53400
1.10 1.11 1.12 1.13 1.14
1.15 1.16 1.17 1.18 1.19
-0.01313 -0.01403 -0.01492 -0.01582 -0.01671
51563 13600 66163 02600 16163
0.07697 0.08210 0.08722 0,09230 0.09736
81250 94400 09650 90400 99650
-0.21587 -0.22934 -0,24265 -0.25580 -0.26879
34375 01600 31975 55600 01975
1.10335 1.10847 1.11334 1.11796 1.12231
31250 74400 99650 50400 69650
0.04867 0.05278 0.05700 0.06135 0.06581
73438 46400 88838 17400 48838
1.15 1.16 1. 17 1.18 1.19
1.20 1.21 1.22 1.23 1. 24
-0.01760 -0.01848 -0.01936 -0.02024 -0.02110
00000 47163 50600 03163 97600
0.10240 0.10739 0.11235 0.11726 0.12213
00000 53650 22400 67650 50400
-0.28160 -0.29422 -0.30666 -0.31890 -0.33094
00000 77975 63600 83975 65600
1.12640 1.13020 1.13373 1.13697 1.13992
00000 83650 62400 77650 70400
0.07040 0.07510 0.07994 0.08490 0.08999
00000 87838 29400 41838 42400
1.20 1.21 1.22 1.23 1. 24
1.25 1.26 1.27 1.28 1.29
-0.02197 -0.02282 -0.02367 -0.02451 -0.02534
26563 82600 58163 45600 37163
0.12695 0.13171 0.13642 0.14106 0.14564
31250 70400 27650 62400 33650
-0.34277 -0.35438 -0.36576 -0.37691 -0.38781
34375 15600 33975 13600 77975
1.14257 1.14492 1.14696 1.14868 1.15008
81250 50400 17650 22400 03650
0.09521 0.10056 0.10605 0.11167 0.11743
48438 77400 46838 74400 77838
1.25 1.26 1.27 1.28 1.29
1. 30 1.31 1. 32 1.33 1.34
-0.02616 -0. 02697 -0.02776 -0.02854 -0.02931
25000 01163 57600 86163 78600
0.15015 0.15458 0.15893 0.16320 0.16738
00000 19650 50400 49650 74400
-0.39847 -0.40887 -0.41901 -0.42887 -0.43845
50000 51975 05600 31975 51600
1.15115 1.15188 1.15227 1.15232 1.15201
00000 49650 90400 59650 94400
0.12333 0.12937 0.13556 0.14189 0.14836
75000 83838 22400 08838 61400
1. 30 1.31 1.32 1.33 1.34
1.35 1. 36 1.37 1.38 1. 39
-0.03007 -0.03081 -0.03153 -0.03224 -0.03293
26563 21600 55163 18600 03163
0.17147 81250 0.17936 65650 0.18315 54400 0.18683 47650
-0.44774 -0.45674 -0.46543 -0.47381 -0.48187
84375 49600 65975 51600 23975
1.15135 1.15032 1.14891 1.14713 1.14496
31250 06400 55650 14400 17650
0.15498 0.16176 0.16868 0.17577 0.18300
98438 38400 99838 01400 61838
1.35 1. 36 1.37 1.38 1.39
1.40 1. 41 1.42 1.43 1.44
-0.03360 -0.03425 -0.03487 -0.03548 -0.03607
00000 00163 94600 74163 29600
0.19040 0.19384 0.19716 0.20036 0.20342
00000 65650 98400 51650 78400
-0.48960 -0.49698 -0.50403 -0.51072 -0.51704
00000 95975 27600 09975 57600
1.14240 1.13943 1.13607 1.13229 1.12809
00000 95650 38400 61650 98400
0.19040 0.19795 0.20566 0.21354 0.22159
00000 34838 85400 70838 10400
1.40 1.41 1.42 1.43 1.44
1.45 1.46 1.47 1.48 1.49
-0.03663 -0.03717 -0.03768 -0.03817 -0.03863
51563 30600 57163 21600 14163
0.20635 0.20913 0.21177 0.21425 0.21658
31250 62400 23650 66400 41650
-0.52299 -0.52857 -0; 53375 -0.53853 -0.54291
84375 03600 27975 69600 39975
1.12347 1.11842 1; 11293 1.10699 1.10060
81250 42400 13650 26400 11650
0.22980 0.23818 0.24673 0.25545 0.26436
23438 29400 47838 98400 00838
1.45 1.46 1.47 1. 48 1.49
1.50
-0.03906 25000
0.27343 75000
1. 50
1.00 1.01 1.02 1. 03 1. 04
0.00000 -0.00083 -0.00168 -0.00253 -0.00339
00000 74163 26600 52163 45600
1. 05 1.06 1.07 1. 08 1.09
-0.00426 -0.00513 -0.00600 -0.00688 -0.00777
1.10 1.11 1.12 1.13 1.14
A2
0: 17547 26400
0.21875 00000 A1
-0.54687 50000 Ao
1.09375 00000 A-1
A-z
-P
907
NUMERICAL ANALYSIS
FIVE-POINT LAGRANGIAN INTERPOLATION COEFFICIENTS =( - l ) k + 2
P
A -z
A-1 00000
1.50 1.51 1.52 1.53 1.54
-0.03906 -0.03946 -0.03983 -0.04017 -0.04048
25000 44163 61600 67163 50600
0.21875 0.22074 0.22257 0.22422 0.22569
1.55 1. 56 1.57 1. 58 1.59
-0.04076 -0.04100 -0.04120 -0.04137 -0.04150
01563 09600 64163 54600 70163
1. 60 1. 61 1.62 1. 63 1. 64
-0.04160 -0.04165 -0.04166 -0.04163 -0.04156
1.65 1.66 1. 67 1. 68 1. 69
Table 25.1
P (PZ- 1) (PZ-4) ( 2 +k) !( 2 - k)!( p - k )
Az
91650 66400 73650 62400
-0.54687 -0.55041 -0.55351 -0.55617 -0.55837
50000 09975 29600 17975 83600
1.09375 1.08643 1.07864 1.07036 1.06160
00000 21650 06400 83650 82400
0.27343 0.28269 0.29213 0.30175 0.31155
75000 40838 18400 27838 89400
1.50 1.51 1. 52 1.53 1.54
0.22697 0.22806 0.22896 0.22964 0.23013
81250 78400 01650 98400 15650
-0.56012 -0.56139 -0.56219 -0.56249 -0.56230
34375 77600 19975 67600 25975
1.05235 1.04259 1.03232 1.02154 1.01023
31250 58400 91650 58400 85650
0.32155 0.33173 0.34210 0.35267 0.36343
23438 50400 90838 65400 94838
1.55 1.56 1.57 1. 58 1. 59
00000 33163 58600 65163 41600
0.23040 0.23044 0.23027 0.22987 0.22923
00000 97650 54400 15650 26400
-0.56160 -0.56037 -0.55863 -0.55634 -0.55351
00000 93975 11600 55975 29600
0.99840 0.98602 0.97309 0.95962 0.94558
00000 27650 94400 25650 46400
0.37440 0.38556 0.39692 0.40848 0.42025
00000 01838 21400 79838 98400
1.60 1. 61 1. 62 1. 63 1. 64
-0.04144 -0.04128 -0.04107 -0.04082 -0.04051
76563 58600 76163 17600 71163
0.22835 0.22722 0.22584 0.22421 0.22231
31250 74400 99650 50400 69650
-0.55012 -0.54616 -0.54163 -0.53651 -0.53079
34375 71600 41975 45600 81975
0.93097 0.91579 0.90002 0.88367 0.86671
81250 54400 89650 10400 39650
0.43223 0.44443 0.45683 0.46945 0.48228
98438 01400 28838 02400 43838
1. 65 1.66 1.67 1. 68 1. 69
1. 70 1.71 1. 72 1.73 1.74
-0.04016 -0.03975 -0.03929 -0.03878 -0.03822
25000 67163 85600 68163 02600
0.22015 0.21770 0.21498 0.21197 0.20867
00000 83650 62400 77650 70400
-0.52447 -0.51753 -0.50996 -0.50176 -0.49290
50000 47975 73600 23975 95600
0.84915 0.83097 0.81217 0.79273 0.77266
00000 13650 02400 87650 90400
0.49533 0.50861 0.52210 0.53583 0.54978
75000 17838 94400 26838 37400
1. 70 1. 71 1.72 1.73 1.74
1.75 1.76 1.77 1.78 1. 79
-0.03759 -0.03691 -0.03617 -0.03538 -0.03452
76563 77600 93163 10600 17163
0.20507 0.20117 0.19696 0.19243 0.18758
81250 50400 17650 22400 03650
-0.48339 -0.47321 -0.46235 -0.45081 -0.43856
84375 85600 93975 03600 07975
0.75195 0.73058 0.70855 0.68584 0.66246
31250 30400 07650 82400 73650
0.56396 0.57837 0.59302 0.60791 0.62303
48438 82400 61838 09400 47838
1.75 1. 76 1.77 1.78 1.79
1.80 1.81 1.82 1. 83 1. 84
-0.03360 -0.03261 -0.03156 -0.03044 -0.02926
00000 46163 42600 76163 33600
0.18240 0.17688 0.17102 0.16482 0.15826
00000 49650 90400 59650 94400
-0.42560 -0.41191 -0.39750 -0.38234 -0.36642
00000 71975 15600 21975 81600
0.63840 0.61363 0.58817 0.56199 0.53510
00000 79650 30400 69650 14400
0.63840 0.65400 0.66986 0.68596 0.70232
00000 88838 37400 68838 06400
1.80 1.81 1. 82 1.83 1.84
1.85 1.86 1.87 1.88 1. 89
-0.02801 -0.02668 -0.02529 -0.02382 -0.02228
01563 66600 15163 33600 08163
0.15135 0.14407 0.13641 0.12838 0.11996
31250 06400 55650 14400 17650
-0.34974 -0.33229 -0.31404 -0.29500 -0.27515
84375 19600 75975 41600 03975
0.50747 0.47911 0.45001 0.42015 0.38953
81250 86400 45650 74400 87650
0.71892 73438 0.75290 89838 0. 77028 86400 0.78793 06838
1.85 1.86 1. 87 1. 88 1.89
1.90 1.91 1.92 1.93 1.94
-0.02066 -0.01896 -0.01719 -0.01533 -0.01340
25000 70163 29600 89163 34600
0.11115 0.10193 0.09232 0.08229 0.07184
00000 95650 38400 61650 98400
-0.25447 -0.23296 -0.21061 -0.18740 -0.16332
50000 65975 37600 49975 87600
0.35815 0.32598 0.29302 0.25927 0.22472
00000 25650 78400 71650 18400
0.80583 0.82401 0.84245 0.86117 0.88016
75000 14838 50400 05838 05400
1. 90 1.91 1.92 1. 93 1.94
1.95 1.96 1.97 1.98 1.99
-0.01138 -0.00928 -0.00709 -0. 00481 -0.00245
51563 25600 42163 86600 44163
0.06097 0.04967 0.03793 0.02574 0.01310
81250 42400 13650 26400 11650
-0.13837 -0.11252 -0.08577 -0.05811 -0.02952
34375 73600 87975 59600 69975
0.18935 0.15316 0.11614 0.07827 0.03956
31250 22400 03650 86400 81650
0.89942 0.91897 0.93880 0.95891 0.97931
73438 34400 12838 33400 20838
1.95 1. 96 1.97 1. 98 1. 99
1.00000 00000
2. 00
2.00
0.00000 00000 Az
0.00000 00000 Ai
0.00000 00000 Ao
0.00000 00000 A-i
0. 73578 93400
A-z
-P
908
NUMERICAL ANALYSIS
SIX-POINT LAGRANGIAN INTERPOLATION COEFFICIENTS
Table 25.1
A-2
4
0.02 0.03 0.04
0.00000 0.00049 0.00098 0.00146 0.00193
00000 57921 30066 14085 07725
A-I 0.00000 00000 -0.00493 33767 -0.00973 36932 -0.01440 12590 -0.01893 64224
An 1.00000 00000 0.99654 20858 0.99283 67064 0.98888 64505 0.98469 39648
0.00000 0.01006 0.02026 0.03058 0.04102
00000 60817 19736 41170 89152
A2 0.00000 00000 -0.00250 38746 -0.00501 43268 -0.00752 95922 -0.01004 78976
0.05 0.06 0.07 0.08 0.09
0.00239 0.00284 0.00328 0.00371 0.00413
08828 15335 25281 36794 48096
-0.02333 ._ ~ . .95703 . -0.02761 i i 2 7 b -0.03175 15567 -0.03576 13568 -0.03964 10640
0.98026 0.97559 0.97069 0.96555 0.96019
19531 31752 04458 66336 46604
0.05159 O;ObZ27 0.07306 0.08396 0.09496
27344
19048 27217 14464 43071
0.10 0.11 0.12 0.13 0.14
0.00454 0.00494 0.00533 0.00571 0.00608
57500 63412 64326 58827 45585
-0.04339 -0.04701 -0.05050 -0.05387 -0,05710
12500 25223 55232 09296 94524
0.95460 0.94879 0.94276 0.93652 0.93006
75000 81771 97664 53917 82248
0.10606 0.11726 0.12855 0.13994 0.15140
0.15 0.16 0.17 0.18 0.19
0.00644 0.00678 0.00712 0.00744 0.00776
23359 90995 47422 91654 22787
-0.06022 -0.06320 -0.06607 -0.06881 -0.07142
18359 88576 13273 00868 60096
0.92340 0.91652 0.90945 0.90217 0.89470
14844 84352 23870 66936 47517
0.20 0.21 0.22 0.23 0.24
0.00806 0.00835 0.00863 0.00890 0.00915
40000 42553 29786 01118 56045
-0.07392 -0.07629 -0.07854 -0.08067 -0.08269
00000 29929 59532 98752 57824
0.88704 0.87918 0.87114 0.86292 0.85452
0.25 0.26 0.27 0.28 0.29
0.00939 0.00963 0.00985 0.01006 0.01025
94141 15055 18513 04314 72328
-0.08459 -0.08637 -0.08804 -0.08960 -0.09104
47266 77876 60729 07168 28802
0.30 0.31 0.32 0.33 0.34
0.01044 0.01061 0.01077 0.01092 0.01106
22500 54844 69446 66459 46105
-0.09237 -0.09359 -0.09470 -0.09571 -0.09660
0.35 0.36 0.37 0.38 0.39
0.01119 0.01130 0.01140 0.01149 0.01157
08672 54515 84054 97774 96219
0.40 0.41 0.42 0.43 0.44
0.01164 0.01170 0.01175 0.01178 0.01180
0.45 0.46 0.47 0.48 0.49
0.01182 0.01182 0.01181 0.01179 0.01176
0.50
0.01171 87500
P 0.00 0.01
-43
0.00000 0.00033 0.00066 0.00099 0.00133
00000 32917 63334 88752 06675
1.00 0.99 0.98 0.97 0.96
-0.01256 7 4 6 0 9
0.00166 0.00199 0.00231 0.00264 0.00296
14609 10065 90557 53606 96742
0.95 0.94 0.93 0.92 0.91
75000 71904 95136 05758 64552
-0.02512 -0,02761 -0.03008 -0.03255 -0.03500
12500 05290 83968 30217 25676
0.00329 0.00361 0.00392 0.00424 0.00455
17500 0.90 13426 0.89 82074 0.88 21011 0.87 27815 0.86
0.16295 0.17457 0.18627 0.19803 0.20986
32031 68448 33805 87864 90158
-0.03743 -0.03984 -0.04224 -0.04461 -0.04695
51953 90624 23240 31332 96417
0.00486 0.00516 0.00546 0.00575 0.00604
00078 0.85 35405 0.84 31416 0.83 85746 0.82 96051 0.81
00000 59183 60264 38830 30848
0.22176 0.23370 0.24570 0.25775 0.26984
00000 76492 78536 64845 93952
-0.04928 -0.05157 -0.05383 -0.05606 -0.05826
00000 23583 48668 56760 29376
0.00633 0.00661 0.00689 0.00716 0.00743
60000 75284 39614 50719 06355
0.80 0.79 0.78 0.77 0.76
0.84594 0.83720 0.82828 0.81920 0.80996
72656 00952 52783 65536 76929
0.28198 0.29415 0.30635 0.31858 0.33083
24219 13848 20892 03264 18746
-0.06042 -0.06254 -0.06463 -0.06667 -0.06868
48047 94324 49783 96032 14711
0.00769 0.00794 0.00819 0.00843 0.00866
04297 42345 18324 30086 75510
0.75 0.74 0.73 0.72 0.71
37500 45385 64832 08458 89124
0.80057 0.79102 0.78132 0.77148 0.76150
25000 48096 84864 74242 55448
0.34310 0.35538 0.36768 0.37998 0.39229
25000 79579 39936 63433 07352
-0.07063 -0.07254 -0,07441 -0.07622 -0.07798
87500 96127 22368 48054 55076
0.00889 0.00911 0.00932 0.00953 0.00973
52500 58993 92954 52378 35295
0.70 0.69 0.68 0.67 0.66
-0.09740 -0.09809 -0.09867 -0.09916 -0,09955
19922 14176 85435 47468 14258
0.75138 0.74113 0.73075 0.72024 0.70962
67969 51552 46195 92136 29842
0.40459 0.41688 0.42917 0.44144 0.45369
28906 85248 33480 30664 33833
-0.08594 81254
0.00992 0.01010 0.01028 0.01044 0.01060
39766 63885 05783 63626 35618
0.65 0.64 0.63 0.62 0.61
80000 49786 06306 50351 82765
-0.09984 -0.10003 -0.10012 -0.10013 -0.10004
00000 19092 86132 15915 23424
0.69888 0.68802 0.67706 0.66599 0.65482
00000 43508 01464 15155 26048
0.46592 0.47811 0.49028 0.50241 0.51450
00000 86167 49336 46520 34752
-0.08736 -0.08870 -0.08998 -0.09120 -0.09234
00000 75421 90068 26598 67776
0.01075 0.01089 0.01102 0.01114 0.01125
20000 15052 19094 30487 47635
0.60 0.59 0.58 0.57 0.56
04453 16375 19546 15034 03961
-0.09986 -0.09959 -0.09923 -0.09879 -0.09826
23828 32476 64892 36768 63965
0.64355 0.63220 0,62075 0.60922 0.59762
75781 06152 59108 76736 01254
0.52654 0.53854 0.55048 0.56236 0.57418
71094 12648 16567 40064 40421
-0.09341 -0.09441 -0,09534 -0.09619 -0.09696
96484 95724 48621 38432 48548
0.01135 0.01144 0.01153 0.01160 0.01166
68984 93025 18292 43366 66877
0.55 0.54 0.53 0.52 0.51
0.01171 87500
0.50
A3
-0.09765 62500
A2
0.58593 75000 A1
0.58593 75000 A0
-0.09765 62500 8-1
-4-2
P
909
NUMERICAL ANALYSIS
SIX-POINT LAGRANGIAN INTERPOLATION COEFFICIENTS
P
A-2 00000 32917 63334 88752 06675
Ao
-4-1
A2 A3 0.00000 00000 0.00000 00000 0.00506 67067 -0,00050 41246 0.01026 69732 -0.00101 63266 0.01560 09890 -0.00153 63410 0.02106 89024 -0.00206 38925
00000 27517 86936 43870 64352
1.00000 1.00320 1.00616 1.00886 1.01130
00000 79192 33736 39545 73152
-0.04826 14844 -0.05747 62248
1.01349 1.01541 1.01707 1.01846 1.01958
11719 33048 15592 38464 81446
0.02667 08203 0.03240 68076
75000 26604 86336 24458 11752
1.02044 1.02102 1.02133 1.02136 1.02112
25000 50279 39136 74133 38552
-0.13312 -0.14066 -0ii48oi -0,15518 -0.16217
19531 19648 84505 87064 00858
1.02060 1.01979 1.01871 1.01734 1.01569
-0.16896 -0.17555 -0.18195 -0.18815 -0.19415
00000 59192 53736 59545 53152
0.05554 0.05729 0.05900 0.06065 0.06226
19922 -0.19995 69124 -0.20554 28458 -0.21092 84832 -0.21609 25385 -0.22105
0.06381 0.06531 0.06675 0.06813 0.06946
37500 08802 27168 80729 57876
0.00000 0.00249 0.00498 0.00745 0.00991
00000 55421 10068 46597 47776
1.00 1.01 1.02 1.03 1.04
0.00000 -0.00033 -0.00066 -0.00099 -0.00133
0.00000 -0.00993 -0.01972 -0.02938 -0.03889
1.05 1.06 1.07 1.08 1.09
-0.00166 14609
1.10 1.11 1.12 1.13 1.14
-0.00329 -0.00361 -0.00392 -0.00424 -0.00455
17500 13426 82074 21011 27815
0.02429 0.02661 0.02890 0.03116 0.03340
62500 43965 56768 84892 12476
-0.09276 -0.10118 -0.10942 -0.11750 -0.12540
1.15 1.16 1.17 1.18 1.19
-0.00486 -0.00516 -0.00546 -0,00575 -0.00604
00078 35405 31415 85746 96051
0.03560 0.03777 0.03990 0.04200 0.04405
23828 03424 35915 06132 99092
1.20 1.21 1.22 1.23 1.24
-0.00633 -0.00661 -0.00689 -0.00716 -0.00743
60000 75284 39614 50719 06355
1.25 1.26 1.27 1.28 1.29
-0.00769 -0.00794 -0.00819 -0.00843 -0,00866
04297 42345 18324 30086 75509
1.30 1.31 1.32 1.33 1.34
-0.00889 -0.00911 -0.00932 ..__-~ -0.00953 -0.00973
52500 58993 92954 52378 35295
1.35 1.36 1.37 1.38 1.39
-0.00992 -0,01010 -0.01028 -0.01044 -0.01060
39766 63885 05783 63626 35618
1.40 1.41 1.42 1.43 1.44
Table 25.1
86953 04535 88606 35994 43420
0.05 0.06 0.07
0.05669 0.06309 0.06963 0.07630 0.08311
12500 -0.00537 07500 70523 -0.00594 24737 64032 -0.00651 91526 90596 -0.00710 04152 47324 -0.00768 58785
0.10 0.11 0.12 0.13 0.14
16406 92448 52180 81864 68533
0.09005 0.09712 0.10432 0.11166 0.11912
30859 -0.00827 37376 -0.00886 62572 -0.00946 01668 -0.01006 49396 -0.01066
51484 78195 34747 16854 20112
0.15 0.16 0.17 0.18 0.19
1.01376 1.01153 1.00902 1.00622 1.00313
00000 64867 52536 53220 57952
0.12672 0.13444 0.14229 0.15028 0.15838
00000 -0.01126 47229 -0.01186 84332 -0.01247 04052 -0.01307 98624 -0.01367
40000 71878 10986 52443 91245
0.20 0.21 0.22 0.23 0.24
11719 13048 35592 58464 61446
0.99975 0.99608 0.99212 0.98786 0.98331
58594 47848 19267 67264 87121
0.16662 0.17498 0.18347 0.19208 0.20081
59766 78676 46029 51968 86102
-0.01428 -0.01488 -0.01548 -0.01608 -0.01667
22266 40255 39838 15514 61653
0.25 0.26 0.27 0.28 0.29
-0.22580 25000 -0.23033 30279 -0;23464 59136 -0.23873 94133 -0.24261 18552
0.97847 0.97334 0196791 0.96219 0.95617
75000 27954 43936 21808 61352
0.20967 0.21864 0.22774 0.23695 0.24628
37500 94685 45632 77758 77924
-0.01726 -0.01785 -0.01843 -0.01901 -0.01958
72500 42169 64646 33784 43305
0.30 0.31 0.32 0.33 0.34
0.07520 09929
-0.24626 -0.24968 -0.25288 -0.25586 -0.25860
16406 72448 72180 01864 48533
0.94986 0.94326 0.93636 0.92917 0.92169
63281 0.25573 32422 29248 0.26529 26976 61855 0.27496 46735 64664 0.28474 76268 42208 0.29463 99558
-0,02014 -0.02070 -0.02125 -0.02179 -0.02232
86797 0.35 57715 0.36 49379 0.37 54974 0.38 67544 0.39
-0.01075 -0.01089 -0.01102 -0.01114 -0.01125
20000 0.07616 00000 15052 0.07705 40096 19094 0.07788 20868 30487 0.07864 33273 47635 0.07933 68576
-0.26112 -0.26340 -0.26545 -0.26727 -0.26886
00000 44867 72536 73220 37952
0.91392 0.90585 0.89749 0.88885 0.87991
00000 44542 83336 24895 78752
00000 60392 62932 89215 20224
-0.02284 -0.02335 -0.02385 -0.02434 -0.02481
80000 85111 75506 43676 81965
0.40 0.41 0.42 0.43 0.44
1.45 1.46 1.47 1.48 1.49
-0.01135 -0.01144 -0.01153 -0.01160 -0.01166
68984 93025 18292 43366 66877
0.07996 0.08051 0.08100 0.08141 0.08176
-0.27021 -0.27133 -0.27221 -0.27285 -0,27326
58594 27848 39267 87264 67121
0.87069 0.86118 0.85139 0.84131 0.83095
55469 66648 24942 44064 38796
0.39918 37265
-0.02527 -0.02572 -0.02615 -0.02656 -0.02696
82578 37575 38871 78234 47286
0.45 0.46 0.47 0.48 0.49
1.50
-0.01171 87500
0.82031 25000
0.41015 62500
-0.02734
37500
0.50
-43
0.01235 96484 0.01478 75724
18359 74524 29296 75232 05223
0.08203 12500 -0.27343 75000
A2
A1
Ao
0.30464 0.31474 0.32495 0.33526 0.34568
8-1
-0.00259 -o:ooli4 -0.00368 -0.00424 -0.00480
0.00 0.01 0.02 0.03 0.04
A-2
0.08 0.09
-P
910
NUMERICAL ANALYSIS
Table 25.1
P
SIX-POINT LAGRANGIAN INTERPOLATION COEFFICIENTS
44-2
8-1
1.50 1.51 1.52 1.53 1.54
-0.01171 -0.01176 -0.01179 -0.01181 -0.01182
87500 03961 15034 19546 16375
0.08203 0.08222 0.08235 0.08240 0.08237
1.55 1.56 1.57 1.58 1.59
-0.01182 -0.01180 -0.01178 -0.01175 -0.01170
1.60 i;6i 1.62 1.63 1.64
-0.01164 -0.01157 -0.01149 -0.01140 -0.01130
80000 96219 97774 84054 54515
1.65 1.66 1.67 1.68 1.69
-0.01119 -0.01106 -0.01092 -0.01077 -0.01061
08672 46105 66459 69446 54845
1.70 1.71 1.72 1.73 1.74
-0.01044 -0.01025 -0.01006 -0.00985 -0.00963
22500 72328 04314 18513 15055
0.07154 0.07021 0.06879 0.06730 0.06573
1.75 1.76 1.77 1.78 1.79
-0.00939 -0.00915 -0.00890 -0.00863 -0.00835
94141 56045 01118 29786 42553
0.06408 0.06236 0.06056 0.05869 0.05674
95703 44224 32590 56932 13767
-0.27072 -0.26947 -0.26797 -0.26624 -0.26428
63281 09248 81855 84664 22208
0.76295 0.75066 0.73811 0.72529 0.71221
60156 90048 53530 75464 81883
0.51244 96721
0.08064 0.08008 0.07944 0.07873 0.07793
00000 12933 50268 10110 90976
-0.26208 -0.25964 -0.25697 -0.25406 -0.25092
00000 24542 03336 44895 58752
0.69888 0.68528 0.67143 0.65734 0.64299
00000 58217 86136 14570 75552
0.52416 0.53592 0.54775 0.55962 0.57155
00000 86554 25532 85377 33824
-0.24755 -0.24395 -0.24012 -0.23606 -0.23178
55469 46648 44942 64064 18796
0.58352 0.59553 0.60758 0.61967 0.63179
37891 63876 77354 43168 25427
87500 09477 55968 29404 32676
-0.22727 -0.22253 -0.21758 -0.21241 -0.20702
25000 99629 60736 27483 20152
0.55194 0.53597 0.51978 0.50338 0.48678
75000 65304 89536 91158 14952
0.64393 0.65610 0.66830 0.68050 0.69272
87500 92010 00832 75083 75124
-0.02972 -0.02949 -0.02923 -0.02893 -0.02858
02500 94834 81286 49649 87545
0.70 0.71 0.72 0.73 0.74
69141 42624 57427 18332 30604
-0.20141 -0.19559 -0.18956 -0.18332 -0.17688
60156 70048 73530 95464 61883
0.46997 0.45296 0.43575 0.41836 0.40079
07031 14848 87205 74264 27558
0.70495 0.71718 0.72942 0.74165 0.75387
60547 90176 22061 13468 20883
-0.02819 -0.02776 -0.02727 -0.02674 -0.02616
82422 21555 92045 80814 74609
0.75 0.76 0.77 0.78 0.79
-0.17024 -0.16339 -0.15635 -0.14911 -0.14168
00000 38217 06136 34570 55552
0.76608 0.77827 0.79043 0.80258 0.81469
00000 05717 92132 12540 19424
02344 09448 12617 48864 56471
0.82676 0.83879 0.85078 0.86272 0.87460
64453 98476 71516 32768 30590
-0.00454 57500 -0.00413 . . ..-. 48096 . .. . -0.00371 36794 -0,00328 25281 -0.00284 15335
0.03056 0.02777 0.02492 0.02201 0.01904
62500 85315 74368 42242 02076
-0.09330 75000 -0.08464 45304. .___ -0.07582 09536 -0.06684 11158 -0.05770 94952
08828 07725 14086 30066 57921
0.01600 0.01291 0.00976 0.00656 0.00330
67578 -0.04843 53024 -0.03900 73265 -0.02945 43732 -0.01975 80442 -0.00994
1.95 1.96 1.97 1.98 1.99
-0.00239 -0.00193 -0.00146 -0.00098 -0.00049
0.50 0;51 0.52 0.53 0.54
04453 0.08227 82765 0.08210 50350 0.08185 06306 0.08152 49786 0.08112
-0.13407 -0.12627 -0.11829 -0.11013 -0.10180
1.90 1.91 1.92 1.93 1.94
37500 40202 46566 47617 34225
25000 0.41015 62500 19629 0.42121 41848 40736 0.43235 51232 07483 0.44357 65921 40152 0.45487 60524
40234 01324 73971 68032 93898
-0.00644 -0.00608 -0.00571 -0.00533 -0.00494
A3 -0.02734 -0.02770 -0.02804 -0.02836 -0.02866
0.82031 0.80939 0.79819 0.78672 0.77497
0.04351 0.04106 0.03853 0.03594 0.03328
1.85 1.86 1.87 1.88 1.89
A2
A1
75000 07954 63936 41808 41352
1.80 1.81 1.82 1.83 1.84
2.00
Ao
12500 -0.27343 90640 -0.27337 33568 -0.27306 35567 -0.27252 91276 -0.27174
23359 45585 58826 64326 63412
0.00000 00000 -4 3
0.00000 00000
A2
07031 94848 07205 94264 07558
-0,02995 -0.03007 -0.03016 -0.03022 -0.03025
20000 0.60 36943 0.61 60826 0.62 81108 0.63 87085 0.64 0.65 0.66 0.67 0.68 0.69
0.80 0.81 0.82 0.83 0.84 78203 21015 56336 69274 44750
0.85 0.86 0.87 0.88 0.89
0.19698 25000 0.88642 12500 -0.01611 67500 0.17766 0.89817 25173 -0.01483 22067 - . . .. 04979 ... . . 0.15823 50336 0.90985 14432 -0.01347 92806 0.13871 32833 0.92145 25246 -0.01205 63882 0.11910 25752 0.93297 01724 -0.01056 19265
0.90 0.91 0.92 0.93 0.94
0.29179 0.27309 0.25425 0.23528 0.21619
99219 76248 82292 81664 40145
-0.02156 -0.02060 -0.01957 -0.01848 -0.01733
~
0.09941 0.07964 0.05981 0.03992 0.01998
03906 43648 22880 21064 19233
0.94439 0.95573 0.96696 0.97809 0.98910
87109 23776 53223 16068 52046
0.00000 00000 0.00000 00000 1.00000 00000
A1
0.55 0.56 0.57 0.58 0.59
Ao
8-1
-0.00899 -0.00735 -0.00563 -0.00383 -0.00195
42734 17875 28077 56534 86242
0.95 0.96 0.97 0.98 0.99
0.00000 00000 1.00 A-2 -P
911
NUMERICAL ANALYSIS
SIX-POINT LAGRANGIAN INTERPOLATION COEFFICIENTS
P
-4-2
-4-1
2.00 2.01 2.02 2.03 2.04
0.00000 0.00050 0.00101 0.00153 0.00206
00000 41246 63266 63410 38925
0.00000 -0.00335 -0.00676 -0.01021 -0.01371
2.05 2.06 2.07 2.08 2.09
0.00259 0.00314 0.00368 0.00424 0.00480
86953 04535 88605 35994 43420
2.10 2.11 2.12 2.13 2.14
0.00537 0.00594 0.00651 0.00710 0.00768
2.15 2.16 2.17 2.18 2.19
A1
A0
00000 0.00000 00000
A2
Table 25.1
A3
80392 42932 69214 40224
0.00000 0.01005 74108 -0.02001 0.02022 59064 -0.04005 0.03049 97755 -0.06011 0.04087 31648 -0.08017
00000 52433 52264 12080 42848
1.00000 1.01076 1.02140 1.03190 1.04226
00000 0.00000 97879 0.00204 82732 0.00416 90702 0.00638 57024 0.00868
00000 19592 90134 29427 55475
1.00 1.01 1.02 1.03 1.04
-0.01725 -0.02083 -0.02445 -0.02810 -0.03179
36328 37276 22191 69568 57264
0.05134 0.06189 0.07252 0.08323 0.09401
53906 52952 46033 37536 30179
1.05247 1.06252 1.07240 1.08211 1.09165
16016 01076 44679 78368 32752
86484 40865 37232 94406 31417
1.05 1.06 1.07 1.08 1.09
07500 24737 91526 04151 58785
-0.03551 -0.03926 -0.04304 -0.04684 -0,05066
62500 0.10485 75000 -0.20018 61847 0.11575 15021 -0.22003 31232 0.12669 29664 -0.23981 45921 0.13767 47167 -6.25951 80524 0.14868 94248 -0.27911
25000 1.10100 21346 1.11016 16864 1.11912 07492 1.12787 87448 1.13641
37500 21335 12032 36409 20324
0.02446 67500 oIolo52 i 4 8 i 4 0.03370 65686 0.03699 94615
1.10 1.11 1.12 1.13 1.14
0.00827 0.00886 0.00946 0.01006 0.01066
51484 78195 34747 16854 20112
-0.05451 -0.05837 -0.06224 -0.06612 -0.07002
08984 04576 39898 86868 16721 0.20399 00767
49219 83552 79445 24136 03092
1.14472 1.15281 1.16066 1.16827 1.17562
88672 65376 73385 34668 70208
0.04040 0.04391 0.04754 0.05129 0.05515
21953 68205 54091 00546 28726
1.15 1.16 1.17 1.18 1.19
2.20 2.21 2.22 2.23 .2.24
0.01126 0.01186 0.01247 0.01307 0.01367
40000 -0.07392 00000 71878 -0.07782 06554 10986 -0.08172 05532 52443 -0.08561 65377 91245 -0.08950 53824
0.21504 0.22606 0.23706 0.24801 0.25892
00000 -0.39424 00000 72433 -0.41289 96758 32264 -0.43137 73464 92080 -0.44966 08405 62848 -0.46773 78048
1.18272 1.18954 1.19609 1.20235 1.20832
00000 43042 17332 39865 26624
0.05913 0.06324 0.06747 0.07182 0.07631
60000 15959 18414 89394 51155
1;21 1.22 1.23 1.24
2.25 2.26 2.27 2.28 2.29
0.01428 0.01488 0.01548 0.01608 0.01667
22266 40255 39838 15514 61653
-0.09338 -0.09724 -0.10109 -0.10492 -0.10872
37891 83876 57353 23168 45427
0.26977 0.28055 0.29126 0.30188 0.31240
53906 72952 26033 17536 50179
-0,55457 94504
0.08093 0.08568 0.09057 0.09559 0.10076
26172 1.25 37145 1.26 06999 1.27 58886 1.28 16184 1.29
2.30 2.31 2.32 2.33 2.34
0.01726 0.01785 0.01843 0.01901 0.01958
72500 42169 64646 33784 43305
-0.11249 -0.11624 -0,11994 -0.12361 -0.12723
87500 12010 80832 55083 95124
0.32282 0.33312 0.34329 0.35333 0.36323
25000 41346 96864 87492 07448
-0.57114 -0.58741 -0.60337 -0.61900 -0.63429
75000 73671 52064 69817 84648
1.23748 1.24115 1.24446 1.24739 1.24994
62500 60498 13632 28571 10924
0.10607 0.11152 0.11712 0.12287 0.12878
02500 41668 57754 75053 18095
2.35 2.36 2.37 2.38 2.39
0.02014 0.02070 0.02125 0.02179 0.02232
86797 57715 49379 54974 67544
-0.13081 -0.13434 -0.13781 -0.14121 -0.14456
60547 0.37296 49219 10176 0.38253 03552 02060 0.39191 59445 93468 0.40111 04136 40883 0.41010 23092
-0.64923 -0.66380 -0.67798 -0.69177 -0.70513
52344 26752 59770 01336 99417
1.25209 1.25384 1.25519 1.25610 1.25659
65234 0.13484 11641 1.35 94976 0.14105 80685 1.36 02548 0.14743 50458 1.37 89268 0.15397 46426 1.38 55371 0.16067 94293 1.39
2.40 2.41 2.42 2.43 2.44
0.02284 0.02335 0.02385 0.02434 0.02481
80000 85111 75506 43676 81965
-0.14784 -0.15104 -0.15416 -0.15720 -0.16016
00000 25717 72132 92540 39424
0.41888 0.42743 0.43574 0.44380 0.45160
00000 16758 53464 88405 98048
-0.71808 -0.73057 -0.74260 -0.75416 -0.76522
00000 47083 82664 46730 77248
1.25664 1.25623 1.25536 1.25401 1.25219
00000 21204 15932 80027 08224
20000 49727 09894 27162 28435
1.40 1.41 1.42 1.43 1.44
2.45 2.46 2.47 2;48 2.49
0.02527 0.02572 0.02615 0.02656 0.02696
82578 37575 38870 78234 47286
-0.16302 -0.16579 -0.16845 -0.17101 -0.17345
64453 18476 51516 12768 50590
0.45913 0.46637 0.47331 0.47993 0.48623
57031 38152 12358 48736 14504
-0.77578 10156 -0.78580 79352 -0.79529 16683 -0.80421 51936 -0.81256 12829
1.24986 1.24704 1.24370 1.23983 1.23542
94141 0.20452 40859 30276 0.21245 91825 08004 0.22058 08967 17568 0.22889 20166 48077 0.23739 53552
1.45 1.46 1.47 1.48 1.49
2.50
0.02734 37500 -4 3
-0.17578
12500
0.49218 75000
-0.82031
1.23046 87500
A2
00781 43752 97708 98336 79854
A1
-0.10023 -0.12028 -0.14031 -0.16031 -0.18027
-0.29862 -0.31801 -0.33728 -0.35642 -0.37541
25000
Ao
A-1
0.01107 0.01356 0.01614 0.01881 0.02159
0.02744 22100
0.16755 0.17459 0.18181 0.18920 0.19677
0.24609 37500 -4-2
1.20
1.30 1.31 1.32 1.33 1.34
1.50
-P
912
NUMERICAL ANALYSIS
SIX-POINT LAGRANGIAN INTERPOLATION COEFFICIENTS
Table 25.1
(P-3)
k+3 P(P2-Q(P2-4)
(2+k) ! ( 3 4 ) !( p - k )
P 2.50 2.51 2.52 2.53 2.54
A-2 0.02734 37500 0.02770 40203 0.02804 46566 0.02836 47616 0.02866 34225
A- 1 -0.17578 12500 -0.17798 45173 -0.18005 94432 -0.18200 05246 -0.18380 21724
0.49218 0.49778 0.50302 0.50787 0.51233
75000 93671 32064 49817 04648
A1 -0.82031 25000 -0.82745 11996 -0.83395 95264 -0.83981 94142 -0.84501 25848
1.23046 1.22495 1.21886 1.21219 1.20492
87500 22660 39232 21734 53524
A3 0.24609 37500 0.25499 00635 0.26408 71834 0.27338 80221 0.28289 55175
1.50 1.51 1.52 1.53 1.54
2.55 2.56 2.57 2.58 2.59
0.02893 0.02919 0.02942 0.02962 0.02980
97109 26835 13812 48294 20377
-0.18545 -0.18696 -0.18831 -0.18949 -0.19051
87109 43776 33223 96068 72046
0.51637 0.51999 0.52317 0.52589 0.52815
52344 46752 39770 81336 19417
-0.84952 -0.85332 -0.85640 -0.85874 -0.86032
05469 45952 58095 50536 29742
1.19705 1.18855 1.17943 1.16966 1.15924
16797 92576 60710 99868 87533
0.29261 0.30254 0.31268 0.32305 0.33363
26328 23565 77026 17106 74461
1.55 1.56 1.57 1.58 1.59
2.60 2.61 2.62 2.63 2.64
0.02995 0.03007 0.03016 0.03022 0.03025
20000 36943 60826 81107 87085
-0.19136 -0.19202 -0.19249 -0.19277 -0.19285
00000 17879 62732 70702 77024
0.52992 0.53118 0.53193 0.53215 0.53181
00000 67083 62664 26730 97248
-0.86112 -0.86111 -0.86029 -0.85862 -0.85610
00000 63408 19864 67055 00448
1.14816 1.13639 1.12392 1.11076 1.09687
00000 12367 98532 31190 81824
0.34444 0.35548 0.36675 0.37825 0.39000
80000 64894 60574 98730 11315
1.60 1.61 1.62 1.63 1.64
2.65 2.66 2.67 2.68 2.69
0.03025 0.03022 0.03015 0.03004 0.02990
67891 12495 09704 48154 16317
-0.19273 -0.19239 -0.19183 -0.19104 -0.19002
16016 21076 24679 58368 52752
0.53092 0.52943 0.52735 0.52466 0.52133
10156 99352 96683 31936 32829
-0.85269 -0.84837 -0.84314 -0.83696 -0.82981
13281 96552 39008 27136 45154
1.08226 1.06690 1.05078 1.03389 1.01622
20703 16876 38166 51168 21240
0.40198 0.41420 0.42668 0.43940 0.45238
30547 88905 19134 54246 27520
1.65 1.66 1.67 1.68 1.69
2.70 2.71 2.72 2.73 2.74
0.02972 0.02949 0.02923 0.02893 0.02858
02500 94834 81286 49650 87545
-0.18876 -0.18725 -0.18548 -0.18346 -0.18116
37500 41335 92032 16409 40324
0.51735 0.51270 0.50736 0.50132 0.49456
25000 31996 75264 74142 45848
-0.82167 -0.81252 -0.80234 -0.79111 -0.77879
75000 96321 86464 20467 71048
0.99775 0.97846 0.95836 0.93741 0.91561
12500 87823 08832 35896 28124
0.46561 0.47911 0.49287 0.50689 0.52119
72500 23003 13114 77188 49855
1.70 1.71 1.72 1.73 1.74
2.75 2.76 2.77 2.78 2.79
0.02819 0.02776 0.02727 0.02674 0.02616
82422 21555 92044 80814 74609
-0.17858 -0.17572 -0.17257 -0,16912 -0.16535
88672 85376 53385 14668 90208
0.48706 0.47879 0.46975 0.45991 0.44925
05469 65952 38095 30536 49742
-0.76538 -0.75084 -0.73515 -0.71829 -0.70023
08594 01152 14420 11736 54067
0.89294 0.86939 0.84494 0.81958 0.79330
43359 38176 67873 86468 46696
0.53576 0.55061 0.56574 0.58116 0.59686
66016 60845 69793 28586 73228
1.75 1.76 1.77 1.78 1.79
2.80
0.02553 60000 -0.16128 -0.15687 -0.15213 -0.14706 -0.14163
00000 63042 97332 19865 46624
0.43776 0.42540 0.41217 0.39805 0.38301
00000 83408 99864 47055 20448
-0.68096 -0.66044 -0.63865 -0.61557 -0.59117
00000 05733 25064 09380 07648
0.76608 0.73789 0.70874 0.67861 0.64747
00000 96529 85132 13352 27424
0.61286 0.62915 0.64574 0.66264 0.67984
40000 65462 86454 40097 63795
1.80 1.81 1.82 1.83 1.84
2.85 2.86 2.87 2.88 2.89
0.02156 0.02060 0.01957 0.01848 0.01733
78203 21015 56335 69274 44751
-0.13584 -0.12969 -0.12316 -0.11625 -0.10895
92578 71676 96841 79968 31915
0.36703 0.35009 0.33217 0.31325 0.29330
13281 16552 19008 07136 65154
-0.56542 -0.53831 -0.50980 -0.47987 -0.44849
66406 29752 39333 34336 51479
0.61531 0.58212 0.54789 0.51259 0.47621
72266 91476 27329 20768 11402
0.69735 0.71518 0.73333 0.75180 0.77059
95234 72385 33502 17126 62087
1.85 1.86 1.87 1.88 1.89
2.90 2.91 2.92 2.93 2.94
0.01611 0.01483 0.01347 0.01205 0.01056
67500 22068 92806 63881 19265
-0.10124 -0.09312 -0.08458 -0.07562 -0.06621
62500 80498 93632 08571 30924
0.27231 0.25026 0.22711 0.20286 0.17746
75000 16321 66464 00467 91048
-0.41564 -0.38128 -0.34540 -0.30796 -0.26894
25000 86646 65664 88792 80248
0.43873 0.40014 0.36042 0.31955 0.27753
37500 35985 42432 91059 14724
0.78972 0.80917 0.82897 0.84911 0.86959
07500 92770 57594 41956 86135
1.90 1.91 1.92 1.93 1.94
2.95 2.96 2.97 2.98 2.99
0.00899 0.00735 0.00563 0.00383 0.00195
42734 17875 28077 56534 86242
-0.05635 -0.04604 -0.03525 -0.02399 -0.01224
65234 14976 82547 69268 75371
0.15092 0.12319 0.09425 0.06409 0.03268
08594 21152 94420 917.36 74067
-0.22831 -0.18604 -0.14210 -0.09647 -0.04911
61719 52352 68745 24936 32392
0.23432 0.18992 0.14430 0.09745 0.04936
44922 11776 44035 69068 12858 0.97735 34596
1.95 1.96 1.97 1.98 1.99
3.00
0.00000 00000 -43
A0
0.00000 00000 0.00000 00000
A2
A1
Az
0.00000 00000 0.00000 00000 1.00000 00000 2.00
Ao
A-1
A-2
-P
913
NUMERICAL ANALYSIS
SEVEK-POINT LAGRANGIAN INTERPOLATION COEFFICIENTS
P
A -3 0.00000 00000
0.00000
0.4
-0.00159 -0.00295 -0.00400 -0.00465
10125 68000 28625 92000
0.01409 0.02580 0.03445 0.03960
00000 18250 48000 94250 32000
0.00000 -0.06725 -0.11827 -0.15241 -0.16972
00000 64375 20000 66875 80000
1.00000 0.98642 0.94617 0.88062 0.79206
77500 60000 97500 40000
0.00000 0.08220 0.17740 0.28305 0.39603
00000 23125 80000 95625 20000
0 00000 -0'01557 -0:03153 -0.04662 -0.05940
51750 92000 15750 48000
0 00000 0'00170 0100337 0.00489 0.00609
0.5 0.6 0.7 0.8 0.9
-0.00488 -0.00465 -0.00400 -0.00295 -0.00159
28125 92000 28625 68000 10125
0.04101 0.03870 0.03291 0.02407 0.01283
56250 72000 24250 68000 78250
-0.17089 -0.15724 -0.13068 -0.09363 -0.04898
84375 80000 16875 20000 64375
0.68359 0.55910 0.42315 0.28089 0.13788
37500 40000 97500 60000 77500
0.51269 0.62899 0.74052 0 84268 0:93074
53125 20000 95625 80000 23125
-0.06835 -0.07188 -0.06835 -0 05617 -0:03384
93750 48000 65750 92000 51750
0.00683 0.00698 0.00643 0.00510 0.00295
59375
1.0 1.1 1.2 13 1:4
0.00000 0.00170 0.00337 0.00489 0.00609
00000 07375 92000 23875 28000
0.00000 -0.01349 -0.02661 -0 03824 -0:04730
00000 61750 12000 95750 88000
0.00000 00000
0.04980 0.09676 0.13719 0.16755
73125 80000 95625 20000
0.00000 -0.12678 -0.23654 -0.32365 -0.38297
00000 22500 40000 02500 60000
1.00000 1 04595 1:06444 1 05186 1:0053l
00000 35625 80000 33125 20000
0.00000 0 04648 0:10644 0.18031 0.26808
00000 68250 48000 94250 32000
0.00000 -0 00367 -0:00788 -0.01237 -0.01675
00000 00125 48000 48625 52000
1.0 11 1:2 1.3 1.4
1.5 1.6 1.7 1.8 1.9
0.00683 0.00698 0.00643 0.00510 0.00295
59375 88000 93875 72000 47375
-0.05273 -0.05358 -0.04907 -0.03870 -0.02227
43750 08000 85750 72000 41750
0.18457 0.18547 0.16813 0.13132 0.07488
03125 20000 95625 80000 73125
-0.41015 -0.40185 -0.35606 -0.27238 -0.15240
62500 60000 02500 40000 22500
0 92285 0:80371 0 64853 0145964 0.24130
15625 20000 83125 80000 35625
0 36914 0148222 0.60530 0.73543 0.86869
06250 72000 24250 68000 28250
-0 02050 -0102296 -0.02328 -0.02042 -0.01316
78125 32000 08625 88000 20125
15 1:6 1.7 1.8 1.9
2.0 0.00000 2.1 -0.00367 2.2 -0.00788 2.3 -0.01237 2.4 -0.01675
00000 00125 48000 48625 52000
0.00000 0.02739 0.05857 0.09151 0.12337
00000 08250 28000 64250 92000
0.00000 -0.09056 -0.19219 -0.29812 -0.39916
00000
0.00000 00000
0.17825 0.37273 0.57031 0.75398
77500 60000 97500 40000
0.00000 -0.25523 -0.51251 -0,75677 -0.96940
00000 26875 20000 04375 80000
100000 1:12302 1.23002 1.31173 1.35717
00000 38250 88000 54250 12000
0.00000 0.02079 0.05125 0.09369 0.15079
00000
64375 20000 16875 80000
67375 12000 53875 68000
2.0 2.1 2.2 2.3 2.4
-0.02050 -0.02296 -0 02328 -0102042 -0.01316
78125 32000 08625 88000 20125
0.15039 0.16773 0.16940 0.14810 0.09508
06250 12000 54250 88000 88250
-0.48339 -0.53580 -0.53797 -0.46771 -0.29867
84375 80000 66875 20000 64375
0 90234 0:98918 0.98296 0.84633 0.53555
37500 40000 97500 60000 77500
-1 12792 -1'20556 -1'17089 -0198739 -0.61307
96875 80000 04375 20000 26875
135351 1:28593 1 13743 0:88865 0.51770
56250 92000 64250 28000 58250
0.22558 0.32148 0.44233 0.59243 0.77655
59375 48000 63875 52000 87375
0.00000
00000
0.0
0.1 0.2 0.3
2.5 2.6 27 2:8 2.9
A-2
0.00000 00000
0.00000 00000
3.0
A-1
A0 00000
0.00000 00000
AI
A2
A3
AI
Table 25.1
A2
00000
0.00000 00000
0.00000 00000
A-1
A-2
Ao
'43
00000
0 0
07375 92000 23875 28000
0'1 012 0.3 0.4
0.5 0.6 93875 0.7 72000 0.8 47375 0.9 88000
2.5 2.6 2.7 2.8 2.9 1.00000 00000 3.0 A-3
-P
EIGHT-POIIVT LAGRANGIAN INTERPOLATION COEFFICIENTS
P
A-3
0o:
00000
A-2
A-1
64213 51200 57988 61600 14063
0.00000 0.00915 0.01634 0.02124 0.02376 0.02392
00000 96863 30400 99787 19200 57812
0.00000 0.00070 0 00135 0'00188 0:00226
00000 45912 16800 70638 30400
0.00000 -0.00652 -0.01241 -0.01721 -0.02050
00000
0.00000 00000
31512 85600 23088 04800
0.02888 0.05419 0.07408 0.08712
82412 00800. 77638 70400
0.00244 0.00239 0.00211 0.00160 0.00088
14062 -0.02197 26562
61600 57988 51200 64213
-0.02143 -0.01881 -0.01419 -0.00779
23200 34538 26400 59613
0.09228 0.08902 0.07734 0.05778 0.03145
2.0 0.00000 00000 2.1 -0.00099 61462 2.2 -0.00202 75200 2.3 -0.00300 53238 2.4 -0.00382 97600
0.00000 0.00867 0.01757 0.02592 0.03290
00000 37612 18400 96538 11200
45312 26400 35888 20800 83162
0.03759 0.03913 0.03670 0.02962 0.01743
0,00000 00000
0.00000 0.1 -0,00088 0 2. -0.00160 0'3 -0.00211 014 -0.00239 0.5 -0.00244
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.00000 -0.05246 -0.08988 -0.11278 -0.12220 -0.11962
00000 00213 67200 83487 41600 89062
An -1,
1.00000 0.96176 0 89886 0'81458 0:71285 0.59814
00000 70563 72000 25188 76000 45312
0.00000 00000 -0.09191 71312
A. *-1 '-2A . 0.00000 00000 0.00000 00000 0.10686 30063 -0.03037 15913 0.22471 68000 -0.05992 44800 0 34910 67938 -0.08624 99137 0'47523 84000 -0.10692 86400 0:59814 45313 -0.11962 89062
A3 00000
0.00000 0.00663 0.01284 0,01810 0.02193 0.02392
28763 09600 18337 40800 57812
A4 0.00000 00000 -0.00070 45913 -0.00135 16800 -0.00188 70638 -0.00226 30400 -0,00244 14062
1.0 0.9 0.8 0.7 0.6 0.5
00000
0.00000 00000
0.00000
84438 48000 69812 04000
0.06740 0.14902 0.24343 0.34850
98962 27200 12238 81600
0.00000 -0.01064 -0.02207 -0.03341 -0.04356
00000
-0'21846 39188 -0:24893 44000
1.00000 101108 0'99348 0'94667 0:87127
30362 74400 21288 35200
0.00099 0.00202 0.00300 0.00382
00000 61462 75200 53238 97600
0.0 -0.1 -0.2 -0.3 -0.4
51562 65600 41988 43200 26712
-0 25634 -0:24111 -0 20473 -0114981 -0.08001
76562 36000 46438 12000 11812
0 76904 0'64296 0'49721 0133707 0.16891
29688 96000 27062 52000 24938
0.46142 0.57867 0.69609 0.80898 0.91212
57812 26400 77888 04800 74662
-0.05126 -0.05511 -0.05354 -0.04494 -0.02764
95312 16800 59838 33600 02263
0.00439 0.00459 0.00432 0.00350 0.00206
45312 26400 35888 20800 83163
-0.5 -0.6 -0.7
0.00000 -0.03441 -0.06918 -0.10136 -0.12773
00000 52462 91200 13738 37600
0.00000 0.08467 0.16773 0.24238 0.30159
00000 24312 12000 58938 36000
3.00000 -0.16164 -0.30750 -0.42883 -0.51701
00000 73688 72000 65812 76000
1.00000 1.06687 1.10702 1.11497 1.08573
00000 26338 59200 51112 69600
0.00000 0.03951 0.09225 0.15928 0.24127
00000
38012 21600 21588 48800
0.00000 -0.00267 -0.00585 -0.00936 -0.01292
38662 -1.1 72800 -1.2 95388 -1.3 54400 -1.4
76562 72800 45088 17600 29512
-0.14501 -0.15002 -0.13987 -0.11225 -0.06570
95312 62400 39388 08800 88162
0.33837 0 34621 0:31946 0.25390 0.14727
89062 -0.56396 48438 44000 -0.56259 84000 51688 -0.50738 58562 08000 -0.39495 68000 83812 -0.22479 33188
1.01513 0.90015 0.73933 0.53319 0.28473
67188 74400 36762 16800 82038
0.33837 0.45007 0.57503 0.71092 0.85421
89062 87200 73038 22400 46112
-0.01611 -0.01837 -0.01895 -0.01692 -0.01109
32812 05600 72738 67200 36962
-1.5 -1.6 -1.7 -1.8 -1.9
0.00000 00000
0,00000 00000
-0 16558 08000
-0.8 -0.9
00000 -1.0
2.5 2.6 2.7 2.8 2.9
-0.00439 -0 00459 -0:00432 -0.00350 -0.00206
3.0 3.1 3.2 3.3 3.4
0.00267 0.00585 0 00936 0:01292
38662 72800 95388 54400
0.00000 -0.02238 -0.04888 -0.07796 -0.10723
00000 70762 57600 16338 32800
0.08354 0.18157 0.28827 0.39481
20162 56800 67388 34400
0.00000 -0.18415 -0 39719 -0'62605 -0:85155
17562 68000 55438 84000
0.00000 0.27184 0.57774 0 89825 1:20637
00000 30688 08000 36062 44000
-0.31138 -0.63551 -0 95353 -1:24084
38788 48800 07512 22400
1,00000 1.14174 1.27102 137732 1:44764
00000 08888 97600 21962 92800
0.00000 0.01812 0.04539 0.08432 0.13787
00000 28712 39200 58488 13600
-2.0 -2.1 -2.2 -2.3 -2.a
3.5 3.6 3.7 3.8 3.9
0 01611 0:01837 0.01895 0.01692 0.01109
32812 05600 72738 67200 36962
-0.13330 -0.15155 -0.15598 -0.13891 -0.09081
07812 71200 17788 58400 78862
0.48876 0.55351 0.56750 0.50356 0.32805
95312 29600 81738 99200 64462
-1.04736 -1.17877 -1.20148 -1.06014 -0.68695
32812 76000 12688 72000 58062
146630 1:63215 1.64647 1.43877 0.92383
85938 36000 43312 12000 71188
-1.46630 -1.59134 -1.56899 -1.34285 -0.84604
85938 97600 31862 31200 03088
1.46630 1.41453 1.27013 1.00713 0.59536
85938 31200 73412 98400 16988
0.20947 0.30311 0.42337 0.57550 0.76546
26562 42400 91138 84800 50412
-2.5 -2.6 -2.7 -2.8 -2.9
4.0
0.00000 00000
0.00000
00000
-3.0
A4
0.00000, 00000
0,00000 00000
A3
A2
00000
0,00000 00000
AI
A0
0.00000 00000
0.00000 00000
1.00000 00000
'4-1
A-2
A-3
P
914
NUMERICAL ANALYSIS
Table 2.5.2
COEFFICIENTS FOR DIFFERENTIATION
FIRST DERIVATIVE ( k = l )
*
j
-41
-40
A?
AJ
4
THIRD DERIVATIVE ( k = 3 )
A2
!k! Eror
j
do
0 1 2
-3 -1 1
0 1 2 3
-11 -2 1 -2
-
4 0 4
-1 1 3
1/3 -l/6 1/3
h3f (')
0 1 2 3
-1 -1 -1 -1
3 3 3 3
0 1 2
36 20
4
-10 -6 -2 2 6
-12 -28
0 1 2 3 4 5
-85 -35 -5 5 -5 -35
355 125 -5 -35 35 205
Four Point ( i n = 3 ) 18 -3 -6 9
-9 6 3 -18
0 1 2 3 4
-50 -6 2 -2 6
96 -20 -1 6 12 -32
0 1 2 3 4 5
-274 -24 6 -4
600 -130 -60 30 -40 150
(7)1=4)
-72 36 0 -36 72
32 -12 16 20 -96
-6 2 -2 6 50
1/5 -1/20 1/30 -1/20 1/5
6
-24
400 -120 120 40 -240 600
-150 40 -30 60 130 -600
24 -6 4 -6 24 274
-1 / 6 l)30 -1/60 6 1/60h -1 /30 lj6
-2
1
1
1
-2
1
2
1
-2
1
6 3 0 -3
-15 -6
0 1 2 3 4
35 11 -1 -1 11
-104 -2 0 16 4 -56
12 3
3
-6
12
-15
Five Point 114 6 -30 6 114
-48 -24 0 24 48
4
28 12 4 -20 -36
-
-590 -170 50 70 -110 -490
490 110 -70 -50 170 590
A:!
7/24 1/24 -1/24 1/24 7/24
-6 -2 2 6 10
4 (4)
h5f(5)
-5/l6 -1/48 1148 -1/46 1/48 5/16
35 5 -5 5 35 85
-205 -35 35 5 -125 -355
-4.j
Five Point
k!
6 (6)
0 1 2 3 4
1 1 1 1 1
0 1 2
15 10 5 0 -5 -10
-4 -4 -4
6 6 6 6 6
-4
-4
-44
*
It" Error
-I:,
k!
(it1=4)
-
-1/12 h 5 f ( 5 ) -1/24 -1/144 h 6 f(') 1/24 h 5 f ( 5 ) 1/12
1
4 4 -4 -4 -4
1
1 1 1
six Point (t)~=5)
Four Point (m=3) 0 1 2 3
-1/4 -1/12 l/lZh 1/4
FOURTH DERIVATIVE (k=4)
!!!Error
Three Point (in=2) 1
*
!!!Error k!
1 1 1 1
-3 -3 -3 -3
-41
-44
rl2
0
Aj
A4
(6)
SECOND DERIVATIVE (k= .I,
Ag
Six Point (1)1=5) h5f(5)
Six Point ())1=5) -600 240 -40 -120 120 -400
A?
Five Point (m=4)
2 -1 2 11
3
Five Point
AI
Four Point (m=3)
Three Point (in=2)
11/24 -1124 -1/24h 11/24
-3 0
3 6
*( 4 )
3
4 5
-7 0 -4 5 -2 0 5 30 55
130 80 30 -2 0 -7 0 -120
-120 -7 0 -2 0 30 80 130
55 30 5 -2 0 -4 5 -7 0
-1 0 -5 0 5 10 15
17/144 5ji44 -1/144 -1/144h 5/144 17/144
6 (6)
(tt1=4)
-56 4 16 -20 -104
-5/12 h 5 f ( 5 ) 1/24 1/ 18 0 h f (') -1/24 h 5 f ( 5 ) 5/12
11 -1 -1 11 35
FIFTH DERIVATIVE (k- 5 ) -41
A2
.l{
-44
.I-,
hk Error -
*
k!
Six Point ( ~ 5 ) 0 1 2 3 4
5
225 50 -5 0 5
-55
-770 -75 80
-5
-30 _-
305
1070 -20 -150 80 70
-780
-780 70 80
-150 -20
1070
305 -30 -5 80 -75 -770
-50 5 -5
137/360 -13/360 1/180 6 1/180h
50
-13/360
0
225
137j360
(6)
0 1 2
5
3
-1 -1 -1 -1
5 5 5
-10 -10 -10 -10
4
-1
5
-10
5
-1
5
-io
10 10 10 10 10 10
-5 -5 -5 -5 -5 -5
1
-1/48
1
-1/80
1 1 1
1
-1/240 6 1/24Ch 1/60 1/48
Compiled from W. G. Bickley, Formulae for numerical differentiation,Math. Gaz. 25, 19-27, 1941 (with permission). *See page I!.
(6)
915
NUMERICAL ANALYSIS
LAGRANGIAN INTEGRATION COEFFICIENTS
4
n m\k 3 -1
DAXm) 71 = odd 0
1
5
8
-1
251 -1 9
646 346
-264 456
106 -7 4
-1 9 11
65112 25128 -2760
-46461 46989 30819
37504 -16256 37504
-20211 7299 -6771
6312 -2088 1608
-863 271 -191
-4604594 5595358 3244786 -1752542 1638286 2631838 -216014 1909858
-5033120 1317280 -833120 2224480
3146338 -1291214 -755042 294286 397858 -142094 -425762 126286
312874 -68706 31594 -25706
-33953 7297 -3233 2497
-3
-4
-2
-3
5 -2 -1
7 -3 -2 -1
19087 -863 271
9 -4 -3 -2 -1
1070017 4467094 -33953 1375594 7297 -99626 -3233 36394
4
Table 25.3
-1
2
3
0
1
2
4
3
0
-2
-1
I1 12
1 0
720
2 1 0
60480
3 3628800 2 1 0 k\in
n = even
-4
n m\k 4 -1 0
-3
6 -2
-1 0
8 -3 -2 -1 0
36799 -1375 351 -191
0 19 13
1
2
9 -1
-5 13
1 -1
475 -2 7 11
1427 637 -9 3
-798 1022 802
482 -258 802
-173 77 -9 3
27 -11 11
139849 47799 -4183 1879
-121797 101349 57627 -9531
123133 -44797 81693 68323
-88547 26883 -20227 68323
41499 -11547 7227 -9531
-11351 2999 -1719 1879
-2
-1
3
4
5 1 0
1375 -351 191 -191
10 -4 2082753 9449717 -11271304 16002320 -17283646 13510082 -7394032 2687864 -583435 57281 3973310 -2848834 1481072 -520312 110219 -10625 6872072 -4397584 -3 -57281 2655563 3969 -2 10625 -163531 3133688 5597072 -2166334 1295810 -617584 206072 -42187 27467 -2497 462320 -141304 50315 -342136 3609968 4763582 -1166146 -1 -3969 0 2497 -28939 162680 -641776 4134338 4134338 -641776 162680 -28939 2497
2 1 0
1440
3 2 1 0
120960
4 7257600 3 2 1 0 k\m
5 4 3 2 1 0 -1 -2 -3 -4 Compiled from National Bureau of Standards, Tables of Lagrangian interpolation coefficients. Columbia Univ. Press, New York, N.Y., 1944 (with permission).
*See page
11.
U 24
916
NUMERICAL ANALYSIS Table 25.4
ABSCISSAS AND WEIGHT FACTORS FOR GAUSSIAN INTEGRATION 2= UI
Weight Factors=wi
Abscissas= i t i (Zeros of Legendre Polynomials) ixi
I1 =
n=2 0.57735 02691 89626
1.00000 00000 00000
n=3 0.00000 00000 00000 0.77459 66692 41483
0.33998 10435 84856 0.86113 63115 94053
0.65214 51548 62546 0.34785 48451 37454
.n=5 0.56888 88888 88889 0.47862 86704 99366 0.23692 68850 56189
0.00000 00000 00000 0.53846 93101 05683 0.90617 98459 38664
n=6 0.46791 39345 72691 0.36076 15730 48139 0.17132 44923 79170
0.23861 91860 83197 0.66120 93864 66265 0.93246 95142 03152 00000 51513 11855 79123
00000 77397 99394 42759
0.18343 0.52553 0.79666 0.96028
46424 24099 64774 98564
95650 16329 13627 97536
0.00000 0.32425 0.61337 0.83603 0.96816
00000 34234 14327 11073 b2395
00000 03809 00590 26636 07626
0.14887 0.43339 0.67940 0.86506 0.97390
43389 53941 95682 33666 65285
81631 29247 99024 88985 17172
0.12523 0.36783 0.58731 0.76990 0.90411 0.98156
34085 14989 79542 26741 72563 06342
11469 98180 86617 94305 70475 46719
0.88888 88888 88889 0.55555 55555 55556
n=4
0.00000 0.40584 0.74153 0.94910
wi
+xi
i
'U)
.
n ..2 7
0.41795 0.38183 0.27970 0.12948
91836 00505 53914 49661
73469 05119 89277 68870
8 0.36268 0.31370 0.22238 0.10122
37833 66458 10344 85362
78362 77887 53374 90376
0.33023 0.31234 0.26061 0.18064 0.08127
93550 70770 06964 81606 43883
01260 40003 02935 94857 61574
0.29552 0.26926 0.21908 0.14945 0.06667
42247 67193 63625 13491 13443
14753 09996 15982 50581 08688
0.24914 0.23349 0.20316 0.16007 0.10693 0.04717
70458 25365 74267 83285 93259 53363
13403 38355 23066 43346 95318 86512
n=9
n =10
n= 12
16
0.09501 0.28160 0.45801 0.61787 0.75540 0.86563 0.94457 0.98940
ixi 25098 37637 35507 79258 67776 57227 62444 02643 44083 55003 12023 87831 50230 73232 09349 91649
440185 913230 386342 748447 033895 743880 576078 932596
0.18945 Oil8260 0.16915 0.14959 0.12462 0.09515 0.06225 0.02715
06104 34150 65193 59888 89712 85116 35239 24594
5
002 1 576 55533 82492 38647 11754
538189 732081 872052 784810 892863 094852
0.07652 0.22778 0.37370 0.51086 0.63605 0.74633 0.83911 0.91223 0.96397 0.99312
65211 58511 60887 70019 36807 19064 69718 44282 19272 85991
33497 41645 15419 50827 26515 60150 22218 51325 77913 85094
333755 078080 560673 098004 025453 792614 823395 905868 791268 924786
0.15275 0.14917 0.14209 0.13168 0.11819 0.10193 0.08327 Oi06267 0.04060 0.01761
33871 29864 61093 86384 45319 01198 67415 20483 14298 40071
30725 72603 18382 49176 61518 17240 76704 34109 00386 39152
850698 746788 051329 626898 417312 435037 748725 063570 941331 118312
0.06405 0.19111 0.31504 0.43379 0.54542 0.64809 0.74012 0.82000 0.88641 0.93827 0.97472 0.99518
68928 88674 26796 35076 14713 36519 41915 19859 55270 45520 85559 72199
62605 73616 96163 26045 88839 36975 78554 73902 04401 02732 71309 97021
626085 309159 374387 138487 535658 569252 364244 921954 034213 758524 498198 360180
0.12793 0.12583 0.12167 0.11550 0.10744 0.09761 0.08619 0.07334 0.05929 0.04427 0.02853 0.01234
81953 74563 04729 56680 42701 86521 01615 64814 85849 74388 13886 12297
46752 46828 27803 53725 15965 04113 31953 11080 15436 17419 28933 99987
156974 296121 91204 6 1353 63 783 888270 275917 305734 780746 806169 663181 199547
n=
U'i
068 496285
$, 923 588867
n=24
's,
Compiled from P. Davis and P. Rabinowitz, Abscissas and weights for Gaussian quadratures of high order, J. Research NBS 56, 35-37, 1956, RP2645; P. Davis and P. Rabinowitz, Additional abscissas and weights for Gaussian quadratures of high order. Values for n=64, 80, and 96, J. Research NBS 60, 613-614,1958, RP2875; and A. N. Lowan, N. Davids, and A. Levenson, Table of the zeros of the Legendre polynomials of order 1-16 and the weight coefficients for Gauss' mechanical quadrature formula, Bull. Amer. Math. Soc. 48, 739-743, 1942 (with permission).
917
NUMERICAL ANALYSIS
Table 25.4 ABSCISSAS AND WEIGHT FACTORS FOR GAUSSIAN INTEGRATION
Abscissas= *zi (Zeros of Legendre Polynomials) *Xi
Wi
n=32
0.04830 0.14447 0.23928 0.33186 0.42135 0.50689 0.58771 0.66304 0.73218 0.79448 0.84936 0.89632 0.93490 0.96476 0.98561 0.99726
76656 19615 73622 86022 12761 99089 57572 42669 21187 37959 76137 11557 60759 22555 15115 38618
87738 82796 52137 82127 30635 32229 40762 30215 40289 67942 32569 66052 37739 87506 45268 49481
316235 493485 074545 649780 345364 390024 329041 200975 680387 406963 970134 123965 689171 430774 335400 563545
0.03877 0.11608 0.19269 0.26815 0.34199 0.41377 0.48307 0.54946 0.61255 0.67195 0.72731 0.77830 0.82461 0.86595 0.90209 0.93281 0.95791 0.97725 0.99072 0.99823
24175 40706 75807 21850 40908 92043 58016 71250 38896 66846 82551 56514 22308 95032 88069 28082 68192 99499 62386 77097
06050 821933 75255 208483 01371 ~~. .~ 099716 07253 681141 25758 473007 71605 001525 86178 712909 95128 202076 67980 237953 14179 548379 89927 103281 26519 387695 33311 663196 12259 503821 68874 296728 78676 533361 13791 655805 83774 262663 99457 006453 10559 200350
0.03238 0.09700 0.16122 0.22476 0.28736 0.34875 0.40868 0.46690 0.52316 0.57722 0.62886 0.67787 0.72403 0.76715 0.80706 0.84358 0.87657 0.90587 0.93138 0.95298 0.97059 0.98412 0.99353 0.99877
01709 46992 23560 37903 24873 58862 64819 29047 09747 47260 73967 23796 41309 90325 62040 82616 20202 91367 66907 77031 15925 45837 01722 10072
62869 09462 68891 94689 55455 92160 90716 50958 22233 83972 76513 32663 23814 15740 29442 24393 74247 15569 06554 60430 46247 22826 66350 52426
Weight Factors=wi
0.09654 0.09563 0.09384 0.09117 0.08765 0.08331 0.07819 0.07234 0.06582 0.05868 0.05099 0.04283 0.03427 0.02539 0.01627 0.00701
00885 87200 43990 38786 20930 19242 38957 57941 22227 40934 80592 58980 38629 20653 43947 86100
14727 79274 80804 95763 04403 26946 87070 08848 76361 78535 62376 22226 13021 09262 30905 09470
800567 859419 565639 884713 811143 755222 306472 506225 846838 547145 176196 680657 433103 059456 670605 096600
0.07750 0.07703 0.07611 0.07472 0.07288 0.07061 0.06791 0.06480 0.06130 0.05743 0.05322 0.04869 0.04387 0.03878 0.03346 0.02793 0.02224 0.01642 0.01049 0.00452
59479 98181 03619 31690 65823 16473 20458 40134 62424 97690 78469 58076 09081 21679 01952 70069 58491 10583 82845 12770
78424 64247 00626 57968 95804 91286 15233 56601 92928 99391 83936 35072 85673 74472 82547 80023 94166 81907 31152 98533
811264 965588 242372 264200 059061 779695 903826 038075 939167 551367 824355 232061 271992 017640 847393 401098 957262 888713 813615 191258
0.06473 0.06446 0.06392 0.06311 0.06203 0.06070 0.05911 0.05727 0.05519 0.05289 0.05035 0.04761 0.04467 0.04154 0.03824 0.03477 0.03116 0.02742 0.02357 0.01961 0.01557 0.01147 0.00732 0.00315
76968 61644 42385 41922 94231 44391 48396 72921 95036 01894 90355 66584 45608 50829 13510 72225 72278 65097 07608 61604 93157 72345 75539 33460
12683 35950 84648 86254 59892 65893 98395 00403 99984 85193 53854 92490 56694 43464 65830 64770 32798 08356 39324 57355 22943 79234 01276 52305
922503 082207 186624 025657 663904 880053 635746 215705 162868 667096 474958 474826 280419 749214 706317 438893 088902 948200 379141 527814 848728 539490 262102 838633
n=40
362033 698930 718056 061225 576736 738160 729916 404545 033678 703818 623995 905212 654674 339254 627083 530711 885906 672822 333114 860723 250461 857745 757548 118601
n~48
918
NUMERICAL ANALYSIS Table 25.4 ABSCISSAS AND WEIGHT FACTORS FOR GAUSSIAN INTEGRATION
Abscissas= JT, (Zeros of Legendre Polynomials) *Xi
Wi
n=64
0.02435 0.07299 Oil2146 0.16964 0.21742 Oi26468 0.31132 0.35722 0.40227 0.44636 0.48940 0.53127 0.57189 0.61115 0.64896 0.68523 0.71988 0.75281 0.78397 0.81326 0.84062 0.86599 0.88931 0.91052 0.92956 0.94641 0.96100 0.97332 0.98333 0.99101 0.99634 0.99930
02926 31217 28192 44204 36437 71622 28719 01583 01579 60172 31457 94640 56462 53551 54712 63130 18501 99072 23589 53151 92962 93981 54459 21370 91721 13748 87996 68277 62538 33714 01167 50417
63424 87799 96120 23992 40007 08767 90210 37668 63991 53464 07052 19894 02634 72393 54657 54233 71610 60531 43341 22797 52580 54092 95114 78502 31939 58402 52053 89910 84625 76744 71955 35772
432509 039450 554470 818037 084150 416374 956158 115950 603696 087985 957479 545658 034284 250249 339858 242564 826849 896612 407610 559742 362752 819761 105853 805756 575821 816062 718919 963742 956931 320739 279347 139457
0.01951 0.05850 0.09740 0.13616 0.17471 0.21299 0.25095 0.28852 0.32566 0.36230 0.39839 0.43387 0.46869 0.50280 0.53614 0.56867 0.60033 0.63107 0.66085 0.68963 0.71736 0.74400 0.76950 0.79383 0.81695 0.83883 0.85943 0.87872 0.89667 0.91326 0.92845 0.94224 0.95459 0.96548 0.97490 0.98284 0.98929 0.99422 0.99764 0.99955
13832 44371 83984 40228 22918 45028 23583 80548 43707 47534 34058 53708 66151 41118 59208 12681 06228 57730 98989 76443 51853 02975 24201 27175 41386 14735 14066 25676 55794 31025 98771 27613 07663 50890 91405 85727 13024 75409 98643 38226
56793 52420 41584 09143 32646 57666 92272 84511 47701 99487 81969 31756 70544 88784 97131 22709 29751 46871 86119 42027 62099 83597 35041 04605 81463 80255 63111 78213 38770 71757 72445 09872 43634 43799 85727 38629 99755 65688 98237 51630
997654 668629 599063 886559 812559 132572 120493 853109 914614 315619 227024 093062 477036 987594 932020 784725 743155 966248 801736 600771 880254 272317 373866 449949 470371 275617 096977 828704 683194 654165 795953 674752 905493 251452 793386 070418 531027 277892 688900 629880
Weight Factors=w,
0.04869 0.04857 0.04834 0.04799 0.04754 0.04696 0.04628 0.04549 0.04459 0.04358 0.04247 0.04126 0.03995 0.03855 0.03705 0.03547 0.03380 0.03205 0.03023 0.02833 0.02637 0.02435 0.02227 0.02013 0.01795 0.01572 0.01346 0.01116 0.00884 0.00650 0.00414 0.00178
09570 54674 47622 93885 01657 81828 47965 16279 05581 37245 35151 25632 37411 01531 51285 22132 51618 79283 46570 96726 74697 27025 01738 48231 17157 60304 30478 81394 67598 44579 70332 32807
09139 41503 34802 96458 14830 16210 81314 27418 63756 29323 23653 42623 32720 78615 40240 56882 37141 54851 72402 14259 15054 68710 08383 53530 75697 76024 96718 60131 26363 68978 60562 21696
720383 426935 957170 307728 308662 017325 417296 144480 563060 453377 589007 528610 341387 629129 046040 383811 609392 553585 478868 483228 658672 873338 254159 209372 343085 719322 642598 128819 947723 362856 467635 432947
0.03901 0.03895 0.03883 0.03866 0.03842 0.03812 0.03777 0.03736 0.03689 0.03637 0.03579 0.03516 0.03447 0.03373 0.03294 0.03210 0.03121 0.03027 0.02928 0.02825 0.02718 0.02607 0.02492 0.02373 0.02250 0.02124 0.01995 0.01862 0.01727 0.01589 0.01449 0.01306 0.01162 0.01016 0.00868 0.00719 0.00569 0.00418 0.00266 0.00114
78136 83959 96510 17597 49930 97113 63643 54902 77146 37499 43939 05290 31204 32149 19393 04986 01741 23217 83695 98160 82275 52357 25357 18828 50902 40261 06108 68142 46520 61835 35080 87615 41141 17660 39452 29047 09224 03131 35335 49500
56306 62769 59051 74076 06959 14477 62001 38730 38276 05835 53416 44747 51753 84611 97645 73487 88114 59557 83267 57276 00486 67565 64115 65930 46332 15782 78141 08299 56269 83725 40509 92401 20797 41103 69260 68117 51403 24694 89512 03186
654811 531199 968932 463327 423185 638344 397490 490027 008839 978044 054603 593496 928794 522817 401383 773148 701642 980661 847693 862397 380674 117903 491105 101293 461926 006389 998929 031429 306359 688045 076117 339294 826916 064521 858426 312753 198649 895237 681669 941534
n=80
919
NUMERICAL ANALYSIS
Table 25.4 ABSCISSAS AND WEIGHT FACTORS FOR GAUSSIAN INTEGRATION
Abscissas=
(Zeros of Legendre Polynomials) fxi
Weight Factors=wi wi
n=96
0.01627 0.04881 0.08129 0.11369 0.14597 0.17809
67448 29851 74954 58501 37146 68823
49602 36049 64425 10665 54896 67618
969579 731112 558994 920911 941989 602759
0.03255 0.03251 0.03244 0.03234 0.03220 0.03203
06144 61187 71637 38225 62047 44562
92363 13868 14064 68575 94030 31992
166242 835987 269364 928429 250669 663218
0.21003 0.24174 0.27319 0.30436 0.33520 0.36569
13104 31561 88125 49443 85228 68614
60567 63840 91049 54496 92625 72313
203603 012328 141487 353024 422616 635031
0.03182 0.03158 0.03131 0.03101 0.03067 0.03 029
87588 93307 64255 03325 13761 99154
94411 70727 96861 86313 23669 20827
006535 168558 355813 837423 149014 593794
0.39579 0.42547 0.45470 0.48345 0.51169 0.53938
76498 89884 94221 79739 41771 81083
28908 07300 67743 20596 54667 24357
603285 545365 008636 359768 673586 436227
0.02989 0.02946 0.02899 0.02849 0.02797 0.02741
63441 10899 46141 74110 00076 29627
36328 58167 50555 65085 16848 26029
385984 905970 236543 385646 334440 242823
0.56651 0.59303 0.61892 0.64416 0.66871 0.69256
04185 23647 58401 34037 83100 45366
61397 77572 25468 84967 43916 42171
168404 080684 570386 106798 153953 561344
0.02682 0.02621 0.02557 0.02490 0.02420 0.02348
68667 23407 00360 06332 48417 33990
25591 35672 05349 22483 92364 85926
762198 413913 361499 610288 691282 219842
0.71567 0.73803 0.75960 0.78036 0.80030 0.81940
68123 06437 23411 90438 87441 03107
48967 44400 76647 67433 39140 37931
626225 132851 498703 217604 817229 675539
0.02273 0.02196 0.02117 0.02035 0.01951 0.01866
70696 66444 29398 67971 90811 06796
58329 38744 92191 54333 40145 27411
374001 349195 298988 324595 022410 467385
0.83762 0.85495 0.87138 0.88689 0.90146 0.91507
35112 90334 85059 45174 06353 14231
28187 34601 09296 02420 15852 20898
121494 455463 502874 416057 341319 074206
0.01778 0.01688 0.01597 0.01503 0.01409 0.01312
25023 54798 05629 87210 09417 82295
16045 64245 02562 26994 72314 66961
260838 172450 291381 938006 860916 572637
0.92771 0.93937 0.95003 0.95968 0.96832 0.97593
24567 03397 27177 82914 68284 91745
22308 52755 84437 48742 63264 85136
690965 216932 635756 539300 212174 466453
0.01215 0.01116 0.01016 0.00914 0.00812 0.00709
16046 21020 07705 86712 68769 64707
71088 99838 35008 30783 25698 91153
319635 498591 415758 386633 759217 865269
0.98251 0.98805 0.99254 0.99598 0.99836 0.99968
72635 41263 39003 18429 43758 95038
63014 29623 23762 87209 63181 83230
677447 799481 624572 290650 677724 766828
0.00605 0.00501 0.00396 0.00291 0.00185 0.00079
85455 42027 45543 07318 39607 67920
04235 42927 38444 17934 88946 65552
961683 517693 686674 946408 921732 012429
I
920
NUMERICAL ANALYSIS ABSCISSAS FOR EQUAL WEIGHT CHEBYSHEV INTEGRATION
Table 25.5
Abscissas= i . r i
+ .ci
It
*
11
2
0.57735 02692
3
0.70710 67812 0.00000 00000
n 7
l'i
5
0.83249 74870 0.37454 14096 0.00000 00000
6
0.86624 68181 0.42251 86538 0.26663 54015
ir ;
9 4
0.79465 44723 0.18750 24741
0.88386 0.52965 0.32391 0.00000
17008 67753 18105 00000
0.91158 0.60101 0.52876 0.16790 0.00000
93077 86554 17831 61842 00000
Compiled from H. E. Salzer, Tables for facilitating the use of Chebyshev's quadrature formula, J. Math. Phys. 26, 191-194,1947 (with permission). Ttlblc 25.6
ABSCISSAS AKD WEIGHT FACTORS FOR LOBAT;rO INTEGRATION
;:J
j(.r)t/.r= /(,if(
-I)+:%'
+ Wnj(1)
wij(,ri)
1=2
Weight Factors=wi
Abscissas=
* .ri 3
4
1.00000 000 0.00000 000
0.33333 333 1.33333 333
1.00000 000 0.44721 360
0.16666 667 0.83393 333
6
1.00000 000 0.76505 532 0.28523 152
71';
7
1.00000 0.83022 0.46884 0.00000
000 390 879 000
0.04761 0.27682 0.43174 0,48761
904 604 538 904
8
1.00000 Oi87174 0.59170 0.20929
000 015 018 922
0.03571 0,21070 0.34112 0.41245
428 422 270 880
9
1.00000 0.89975 0.67718 0.36311 0.00000
00000 79954 62795 74638 00000
0.02777 0.16549 0.27453 0.34642 0.37151
77778 53616 87126 85110 92744
10
1.00000 0.91953 0.73877 0.47792 0.16527
00000 39082 38651 49498 89577
0.02222 0.13330 0.22488 0.29204 0.32753
22222 59908 93420 26836 97612
0.10000 000 0.54444 444 0.71111 111
1.00000 000 0.65465 367 0.00000 000
5
i.ri
II
Us;
0.06666 667 0.37847 496 0.55485 838
Compiled from Z. Kopal, Numerical analysis, John Wiley & Sons, Inc., New York, N.Y., 1955 (with permission).
Table 25.7
ABSCISSAS AND WEIGHT FACTORS FOR GAUSSIAN INTEGRATION FOR INTEGRANDS WITH A LOGARITHMIC SINGULARITY
Abscissas=.,,; r , r
..
-
I
Wi
7 1 M W 2 0.11200'.7 n".,*.,<<, 0.602277 0,281461
Kn
-."----
n
nn7~5
I1
3
~
rt
-.--
Weight Factors- wi -wi
n n k_-.m i n-.-.5iwn5 0.368997 0.391980 0.766880 0.094615
Kf,
II
n.nnni7
4
-.----
-wi
I.)
0.041448 0.245275 Oi556165 0.848982
0.383464 0.386875 0.190435 0.039225
K,, O.OOOO~
Compiled from Berthod-Zaborowski, Le calcul des integrales de la forme ji; j(.i,)log d.r. H. Mineur, Techniques de calcul numerique, pp. 555-556. Librairie Polytechnique Ch. BBranger, Paris, France, 1952 (with permission). .I(
*See page
11.
*
921
NUMERICAL ANALYSIS
ABSCISSAS AND WEIGHT FACTORS FOR GAUSSIAN INTEGRATION OF MOMENTS
J,'
xkf(z)d~
5
2=
1w i f ( x i )
Abscissas = x i
Weight Factors =wi k=l
k =O n
Xi
Wi
Table 25.8
Xi
k =2 Wi
Wi
Xi
1
0.50000 00000 1.00000 00000
0.66666 66667 0.50000 00000
0.75000 00000 0.33333 33333
2
0.21132 48654 0.50000 00000 0.78867 51346 0.50000 00000
0.35505 10257 0.18195 86183 0.84494 89743 0.31804 13817
0.45584 81560 0.10078 58821 0.87748 51773 0.23254 74513
3
0.11270 16654 0.27777 77778 0.50000 00000 0.44444 44444 0.88729 83346 0.27777 77778
0.21234 05382 0.06982 69799 0.59053 31356 0.22924 11064 0.91141 20405 0.20093 19137
0.29499 77901 0.02995 07030 0.65299 62340 0.14624 62693 0.92700 59759 0.15713 63611
4
0.06943 0.33000 0.66999 0.93056
18442 94782 05218 81558
0.17392 0.32607 0.32607 0.17392
74226 25774 25774 74226
0.13975 0.41640 0.72315 0.94289
98643 95676 69864 58039
0.03118 0.12984 0.20346 0.13550
09710 75476 45680 69134
0.20414 0.48295 0.76139 0.95149
85821 27049 92624 94506
0.01035 0.06863 0.14345 0.11088
22408 38872 87898 84156
5
0.04691 0.23076 0.50000 0.76923 0.95308
00770 53449 00000 46551 99230
0.11846 0.23931 0.28444 0.23931 0.11846
34425 43352 44444 43352 34425
0.09853 0.30453 0.56202 0.80198 0.96019
50858 57266 51898 65821 01429
0.01574 0.07390 0.14638 0.16717 0.09678
79145 88701 69871 46381 15902
0.14894 0.36566 0.61011 0.82651 0.96542
57871 65274 36129 96792 10601
0.00411 0.03205 0.08920 0.12619 0.08176
38252 56007 01612 89619 47843
6
0.03376 0.16939 0.38069 0.61930 0.83060 0.96623
52429 53068 04070 95930 46932 47571
0.08566 0.18038 0.23395 0.23395 0.18038 0.08566
22462 07865 69673 69673 07865 22462
0.07305 0.23076 0.44132 0.66301 0.85192 0.97068
43287 61380 84812 53097 14003 35728
0.00873 0.04395 0.09866 0.14079 0.13554 0.07231
83018 51656 11509 25538 24972 03307
0.11319 0.28431 0.49096 0.69756 0.86843 0.97409
43838 88727 35868 30820 60583 54449
0.00183 0.01572 0.05128 0.09457 0.10737 0.06253
10758 02972 95711 71867 64997 87027
7
0.02544 0.12923 Oi29707 0.50000 0.70292 0.87076 0.97455
60438 44072 74243 00000 25757 55928 39562
0.06474 0.13985 0.19091 0.20897 0.19091 0.13985 0.06474
24831 26957 50253 95918 50253 26957 24831
0.05626 0.18024 0.35262 0.5 4715 0.7342 1 0.88532 0.97752
25605 06917 47171 36263 01772 09468 06136
0.00521 0.02740 0.06638 0.10712 0.12739 0.11050 0.05596
43622 83567 46965 50657 08973 92582 73634
0.08881 0.22648 0.39997 0.58599 0.75944 0.89691 0.97986
68334 27534 84867 78554 58740 09709 72262
0.00089 0.00816 0.02942 0.06314 0.09173 0.09069 0.04927
26880 29256 22113 63787 38033 88246 65018
0.04463 39553 0.00329 51914 0.07149 10350 0.00046 85178 0.01985 50718 0.05061 42681 0.10166 67613 0.11119 05172 0.14436 62570 0.01784 29027 0.18422 82964 0.00447 45217 0.23723 37950 0.15685 33229 0.28682 47571 0.04543 93195 0.33044 77282 0.01724 68638 0.40828 26788 0.18134 18917 0.45481 33152 0.07919 95995 0.49440 29218 0.04081 44264 0.59171 73212 0.18134 18917 0.62806 78354 0.10604 73594 0.65834 80085 0.06844 71834 0.76276 62050 0.15685 33229 0.78569 15206 0.11250 57995 0.80452 48315 0.08528 47692 0.89833 32387 0.11119 05172 0.90867 63921 0.09111 90236 0.91709 93825 0.07681 80933 0.98014 49282 0.05061 42681 0.98222 00849 0.04455 08044 0.98390 22404 0.03977 89578 Compiled from H. Fishman, Numerical integration constants, Math. Tables Aids Comp. 11, 1-9,1957 (withpermission). 8
922
NUMERICAL ANALYSIS
ABSCISSAS AND WEIGHT FACTORS FOR GAUSSIAN INTEGRATION OF MOMENTS
Table 25.8
s,'
xkf(z)dz =
5
r=l
Wif(Xi)
Weight Factors =wi
Abscissas =xi
k=4
k.= 3
n
9
Xi
Wi
k=5 Xi
Wi
Wi
1
0.80000 00000 0.25000 00000
0.83333 33333 0.20000 00000
0.85714 28571 0.16666 66667
2
0.52985 79359 0.06690 G 4 9 8 0.89871 34927 0.18309 47502
0.58633 65823 0.04908 24923 0.91366 34177 0.15091 75077
0,63079 15938 0.03833 75627 0.92476 39617 0.12832 91039
3
0.36326 46302 0.01647 90593 0.69881 12692 0.10459 98976 0.93792 41006 0.12892 10432
0.42011 30593 0.01046 90422 0.73388 93552 0.08027 66735 0.94599 75855 0.10925 42844
0.46798 32355 0.00729 70036 0.76162 39697 0.06459 66123 0.95221 09767 0.09477 30507
4
0.26147 0.53584 0.79028 0.95784
77888 64461 32300 70806
0.00465 0.04254 0.10900 0.09379
83671 17241 43689 55399
0.31213 0.57891 0.81289 0.96272
54928 56596 15166 39976
0.00251 0.02916 0.08706 0.08124
63516 93822 77121 65541
0.35689 0.61466 0.83107 0.96658
37290 93899 90039 86465
0.00153 0.02142 0.07205 0.07164
44797 84046 63642 74181
5
0.19621 0.41710 0.64857 0.84560 0.96943
20074 02118 00042 51500 57035
0.00152 0.01695 0.06044 0.10031 0.07076
06894 73249 49532 65045 05281
0.23979 0.46093 0.68005 0.86088 0.97261
20448 36745 92327 63437 44185
0.00069 0.01021 0.04402 0.08271 0.06235
69771 05417 44695 27131 52986
0.27969 0.49870 0.70633 0.87340 0.97519
31248 98270 38189 27279 38347
0.00036 0.00672 0.03376 0.07007 0.05572
97155 96904 77450 13397 81761
6
0.15227 0.33130 0.53241 0.72560 0.88161 0.97679
31618 04570 15667 27783 66844 53517
0.00056 0.00708 0.03052 0.06844 0.08830 0.05508
17109 53159 61922 32818 09912 25080
0.18946 0.37275 0.56757 0.74883 0.89238 0.97898
95839 11560 23729 64975 51584 52313
0.00021 0.00372 0.01995 0.05223 0.07464 0.04920
94140 67844 62647 99543 91503 84323
0.22446 0.40953 0.59778 0.76841 0.90135 0.98079
89954 33505 90484 36046 07338 72084
0,00010 0.00218 0.01396 0.04148 0.06445 0.04446
13258 79257 96531 63470 88592 25560
7
0.12142 0.26836 0.44086 0.61860 0.78025 0.90636 0.98176
71288 34403 64606 40284 35520 25341 99145
0.00022 0.00314 0.01531 0.04099 0.06975 0.07655 0.04400
99041 75964 21671 51686 00981 65614 85043
0.15324 0.30632 0.47654 0.64638 0.79771 0.91421 0.98334
14389 65225 00930 93025 66898 99006 38305
0,00007 0.00144 0.00892 0.02854 0.05522 0.06602 0.03975
70737 70088 69676 78428 48742 18459 43870
0.18382 0.34080 0.50794 0.67036 0.81258 0.92085 0.98466
87683 75951 05240 34101 84660 64173 74508
0.00003 0.00075 0.00566 0.02095 0.04510 0,05790 0.03624
11046 53838 04137 92982 49816 76135 78712
8
0.09900 0.22124 0.36912 0.52854 0.68399 0.82028 0.92409 0.98529
17577 35074 39000 54312 32484 39497 37129 34401
0.00010 0.00148 0.00785 0.02363 0.04745 0.06736 0.06618 0.03592
24601 56841 50738 15807 43798 18394 20353 69468
0.12637 0.25552 0.40364 0.55831 0.70600 0.83367 0.92999 0.98646
29744 90521 12989 66758 95429 15420 57161 31979
0.00002 0.00059 0.00407 0.01490 0.03471 0.05491 0.05800 0.03275
97092 89500 79241 99334 99507 00973 05653 28699
0.15315 0.28726 0.43462 0.58451 0.72512 0.84518 0.93504 0.98746
06616 44039 74067 85666 64097 94879 35075 05085
0.00001 0.00027 0.00233 0,01004 0.02648 0.04588 0.05153 0.03009
05316 83586 53415 46144 53011 56532 42238 26424
923
NUMERICAL ANALYSIS
ABSCISSAS AND WEIGHT FACTORS FOR LAGUERRE INTEGRATION
E
Jome-zf(x)dx-z = 1 w l f ( x l )
S,"g(x)dx-
wi
Wiezi
wi
Xi
n=2
n=9 1.53332 603312 4.45095 733505
n=80.41577 45567 83 2.29428 03602 79 6.28994 50829 37
0.15232 0.80722 2.00513 3.78347 6.20495 9.37298 13.46623 18.83359 26.37407
22277 00227 51556 39733 67778 52516 69110 77889 18909
32 42 19 31 77 88 92 92 27
0.13779 0.72945 1.80834 3.40143 5.55249 8.33015 11.84378 16.27925 40422 08 21.99658 29.92069 787360 324237 690092 635435
34705 45495 29017 36978 61400 27467 58379 78313 58119 70122
40 03 40 55 64 64 00 78 81 74
0.11572 0.61175 0.57353 55074 23 1.51261 1.36925 259071 2.83375 2.26068 459338 4.59922 3.35052 458236 6.84452 4.88682 680021 9:62iji 7.84901 594560 13.00605 17.11685 22.15109 28.48796 37.09912
21173 74845 02697 13377 76394 54531 b8424 49933 51874 03793 72509 10444
58 15 76 44 18 15 57 06 62 97 84 67
78120 17403 54120 95262 27217 66274 62266 85680 24821 77083 88994 42267 91697 33064 55726
17 02
1.07769 285927 2.76214 296190 5.60109 462543
n=4 0.32254 1.74576 4.53662 9.39507
76896 11011 02969 09123
19 58 21 01
0.26356 1.41340 3.59642 7. 08581 12.64080
03197 30591 57710 00058 08442
18 07 41 59 76
5 w ,erig(xi>
2=1
Weight Factors = w,
Abscissas =x, (Zeros of Laguerre Polynomials) Xi
0.83273 2.04810 3.63114 6.48714
n=5 0.67909 1.63848 2.76944 4.31565 7.21918
91238 38 243845 630582 508441
n=10
n=12 n-6 0.22284 1.18893 2.99273 5.77514 9.83746 15.98287
66041 21016 63260 35691 74183 39806
79 73 59 05 83 02
0.19304 1.02666 2.56787 4.90035 8.18215 12.73418 19.39572
36765 48953 67449 30845 34445 02917 78622
60 39 51 26 63 98 63
n=7
-5 1i58654 643486 -81 3.17031 547900
n=8 0.17027 0.90370 2.25108 4.26670 7.04590 10.75851 15.74067 22i86313
96323 17767 66298 01702 54023 60101 86412 17368
05 99 66 88 93 81 78 89
Table 2S.9
0.49647 1.17764 1.91824 2.77184 3; 84124 5.38067 8.40543
75975 40 306086 978166 863623 912249 820792 248683
0,09330 0.49269 1.21559 2.26994 3.66762 5.42533 7.56591 0.43772 34104 93 10,12022 1.03386 934767 13.13028 1.66970 976566 16;65440 2.37692 470176 20.77647 3.20854 091335 25.62389 4.26857 551083 31.40751 5.81808 336867 38.53068 8.90622 621529 48.02608
7041 51 14 13 19 76 30 49 29 54 86 86
(-
I
-
1) 2.64731 371055 275873 011320 222117 811546 354187 592663 585682 387654 103052 163504 746743
n=15
1:
1-
1 2.18234 1 3.42210 112.63027 1 1.26425 2j4.02068
1-
6\6:45992 676202
885940 177923 577942 818106 649210
16 i:48302 705111 (I2011.60059 490621
0.39143 0.92180 1.48012 2.08677
11243 1 6 50285 29 790994 080755
3. 59162 4. 64876 6.21227 9.36321
606809 600214 541975 823771
0.35400 0.83190 1.33028 1.86306 i; 45025 3.12276 3.93415 4.99241 6.57220 9.78469
97386 07 23010 44 856175 390311 555808 415514 269556 487219 248513 584037
0.29720 0.69646 1.10778 I: 53846 1.99832 2.50074 3.06532 3.72328 4.52981 5; 59725 7.21299 10.54383
96360 44 29804 31 139462 423904 760627 576910 151828 911078 402998 846184 546093 74619
0.23957 0.56010 0.88700 1.22366 1.57444 1.94475 2.34150 2.77404 3.25564 3.80631 4.45847 5.27001 6.35956 8.03178 11.52777
81703 11 08427 9 3 82629 1 9 440215 872163 197653 205664 192683 334640 171423 775384 778443 346973 763212 21009
Compiled from H. E. Salzer and R. Zucker, Table of the zeros and weight factors of the first fifteen Laguerre polynomials, Bull. Amer. Math. Soc. 55, 1004-1012, 1949 (with permission).
924
NUMERICAL ANALYSIS
Table 2 5 . 1 0
ABSCISSAS AND WEIGHT FACTORS FOR HERMITE INTEGRATION m
J-
J'_"ooe-q(X)dx=2,$ = 1 W&i>
Weight Factors=wi
Abscissas=+xi (Zeros of Hermite Polynomials) *xi
*Xi
W p t
Wi
g(x)dx= 1,$ = I wi d g ( x i ,
a,
Wi
n=2 0.70710 67811 86548 (-1) 8.86226 92545 28 1.46114 11826 611
n=3 0 00000 00000 00000 0 1.18163 59006 04 1.18163 59006 037 1:22474 48713 91589 1-112.95408 97515 09 1.32393 11752 136
0.34290 1.03661 1.75668 2.53273 3.43615
13272 08297 36492 16742 91188
23705 89514 99882 32790 37738
6.10862 63373 61108 94455 57467 28552
0. 31424 0,94778 1.59768 2.27950 3. 02063 3.88972
03762 83912 26351 70805 70251 48978
54359 40164 52605 01060 20890 69782
5 70135 2:60492 5.16079 3 90539 8: 57368 2.65855
0.27348 0.82295 1.38025 1.95178 2.54620 3.17699 3.86944 4.68873
10461 14491 85391 79909 21578 91619 79048 89393
3815 4466 9888 1625 4748 7996 6012 0582
5.07929 2 80647 8'38100 1: 28803 9.32284 2.71186 2.32098 2.65480
0, 24534 0.73747 1.23407 1.73853 2.25497 2.78880 3.34785 3,94476 4. 60368 5.38748
07083 37285 62153 77121 40020 60584 45673 40401 24495 08900
009 454 953 166 893 281 832 156 507 112
n=4
1 8.04914 09000 55 1.05996 44828 950 0.52464 76232 75290 1.65068 01238 85785 11218.13128 35447 25 1.24022 58176 958
n=5
9.45308 72048 29 0.94530 87204 829 3.93619 32315 22 0.98658 09967 514 1.99532 42059 05 1.18148 86255 360
0.00000 00000 00000 0.95857 24646 13819 2.02018 28704 56086
{I 1
1
n=7
0.00000 0.81628 1.67355 2.65196
00000 78828 16287 13568
00000 1 8.10264 61755 58965 111 4.25607 25261 67471 2 5.45155 82819 4 9.71781 24509 35233
0.38118 1.15719 1.98165 2.93063
69902 37124 67566 74202
07322 46780 95843 57244
0.00000
ooopo
0.72355 1.46855 2.26658 3.19099
10187 32892 05845 32017
Table 25.11
n=12
n-6
0.43607 74119 27617 1 7.24629 59522 44 0.87640 13344 362 1 1.57067 32032 29 0.93558 05576 312 1.33584 90740 13697 2.35060 49736 74492 (-3)4.53000 99055 09 1.13690 83326 745
1:
68 01 13 95
0.81026 0.82868 0.89718 1.10133
46175 73032 46002 07296
568 836 252 103
6255 32581 83007 07221
82 49 41 14
0.76454 0.79289 0.86675 1.07193
41286 00483 26065 01442
517 864 634 480
61 26 38 37 26
0.72023 0.73030 0.76460 0.84175 1.04700
52156 24527 81250 27014 35809
061 451 946 787 767
n=9 21560 55900 27394 42755 77263
23626 31026 85615 05846 70435 16843
53 23 48 81 33
0.68708 0.70329 0.74144 0.82066 1.02545
18539 63231 19319 61264 16913
513 049 436 048 657
0.62930 0.63962 0.66266 0.70522 88 0.78664 56 0.98969
78743 12320 27732 03661 39394 90470
695 203 669 122 633 923
66 85 99 51 42 38 65 11
0.54737 0.55244 0.56321 0.58124 0.60973 0.65575 0.73824 0.93687
s2O5O 19573 78290 72754 69582 56728 56222 44928
378 675 882 009 560 761 777 841
06 28 00 46 38 63 32 69 73 34
0.49092 0.49384 0.49992 0.50967 0.52408 0.54485 0.57526 0.62227 0.70433 0.89859
15006 33852 08713 90271 03509 17423 24428 86961 29611 19614
667 721 363 175 486 644 525 914 769 532
25 42 88 29
n = 16
n=8
-1)6.61147 -1 2.07802 -211. 70779 -4)l. 99604
W,&
n=10
47901 45852 41398 11535 00862 00925 08448 74740
n=20 66960 50536 20602 20887 33422 63601 64785 93707 09922 36455
Compiled from H. E. Salzer, R. Zucker, and R. Capuano, Table of the zeros and weight factors of the first twenty Hermite polynomials, J. Research NBS 48,111-116,1952,RF'2294 (with permission). COEFFICIENTS FOR FILON'S QUADRATURE FORMULA
e
B
Y
0.00 0.01 0.02 0.03 0.04
a 0.00000 0.00000 0,00000 0.00000 0,00000
000 004 036 120 284
0.66666 0.66668 0.66671 0.66678 0.66687
667 000 999 664 990
1.33333 1.33332 1.33328 1.33321 1.33312
333 000 000 334 001
0.05 0.06 0.07 0.08 0.09
0.00000 0.00000 0.00001 0.00002 0.00003
555 961 524 274 237
0.66699 0.66714 0.66731 0.66751 0.66774
976 617 909 844 417
1.33300 1.33285 1.33268 1.33248 1.33225
003 340 012 020 365
0.1 0.2 0.3 0.4 0. 5
0.00004 0.00035 0.00118 0.00278 0.00536
438 354 467 012 042
0.66799 0.67193 0.67836 0.68703 0.69767
619 927 065 909 347
1.33200 1.32800 1.32137 1.31212 1.30029
048 761 184 154 624
0. 6 0.7 0.8 0.9 1. 0
0.00911 0.01421 0.02076 0.02884 0.03850
797 151 156 683 188
0.70989 0.72325 0.73729 0.75147 0.76525
111 813 136 168 831
1.28594 1.26913 1.24992 1.22841 1.20467
638 302 752 118 472
See 25.4.47.
26. Probability Functions MARVINZELENl AND NORMAN C. SEVERO*
Contents Page
....................
Mathematical Properties 26.1. Probability Functions: Definitions and Properties 26.2. Normal or Gaussian Probability Function . . . 26.3. Bivariate Normal Probability Function . . . . 26.4. Chi-Square Probability Function . . . . . . . 26.5. Incomplete Beta Function . . . . . . . . . . 26.6. F-(Variance-Ratio) Distribution Function . . . 26.7. Student's t-Distribution . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.......................
927 927 931 936 940 944 946 948
Numerical Methods 26.8. Methods of Generating Random Numbers and Their Applications.. . . . . . . . . . . . . . . . . . . . . . . 26.9. Use and Extension of the Tables . . . . . . . . . . . . .
949 953
References
961
..........................
949
.
9 66
Table 26.2. Normal Probability Function for Large Arguments (5Iz5500). . . . . . . . . . . . . . . . . . . . . . . . . -log Q(z), ~=5(1)50(10)100(50)500, 5D
972
Table 26.3. Higher Derivatives of the Normal Probability Function ( 0 5 ~ 1 5 ). . . . . . . . . . . . . . . . . . . . . . . . . . n=7(1)12, z=0(.1)5, 8s
974
Table 26.1. Normal Probability Function and Derivatives (0 5 x 1 5 ) . P(z), Z(z), Z(l)(z), 15D Z 2 ) ( z ) , 10D; Z(')(Z), n=3(1)6, 8D z=0(.02)3 P(z), 10D; Z(S), 10s; P)(z),n=1(1)6, 8s ~=3(.05)5
z(')(x),
Table 26.4. Normal Probability Function-Values P(z)andQ(z) . . . . . . . . . . . . . . . Q(z)=0(.001).5, 5D
Table 26.5. Normal Probability Function-Values P(z) and Q(z) . . . . . . . . . . . . . . . . Q( z) =0(.OO 1).5 , 5 D a
of Z(z) in Terms of
.........
975
of z in Terms of
........
976
National Bureau of Standards. (Presently, National Institutes of Health.) National Bureau of Standards. (Presently, University of Buffalo.)
925
PROBABILITY FUNCTIONS
926
Table 26.6. Normal Probability Function-Values Values of P ( z ) and Q(z) . . . . . . . . . . . . Q(z)=0(.0001).025, 5D Q ( ~ ) = I O - ~ , m=4(1)23, 5D
of z for Extreme
........
Table 26.7. Probability Integral of x*-Distribution, Incomplete Gamma Function, Cumulative Sums of the Poisson Distribution . . . . . .
Page
977
978
x2= .001(.001).01( .01).1(.1)2(.2) 10(.5)20(1)40(2)76 v=1(1)30,
5D
Table 26.8. Percentage Points of the X2-Distribution-Values of x2 in TermsofQandv . . . . . . . . . . . . . . . . . . . . . . . Q(x21v)=.995, .99, .975, .95, .9, $75, .5, .25, . l , .05, .025, .01, .005,
984
,001, .0005, ,0001 v= 1(1)30( 10) 100,
5-6s
Table 26.9. Percentage Points of the F-Distribution-Values of F in Termsof Q, vl, V2 . . . . . . . . . . . . . . . . . . . . . . . Q(FIv1, Y 2 ) = . 5 , -25, .l, .05, ,025, -01, .005, .OO1
986
vl=1(1)6, 8, 12, 15, 20, 30, 60, ~2=1(1)30,40, 60, 120, a, 3-5s
Table 26.10. Percentage Points of the t-Distribution-Values of t in Terms of A and Y . . . . . . . . . . . . . . . . . . . . . . . A(tlv)=.2, .5, .8, .9, .95, .98, .99, .995, .998, ,999, ,9999, .99999, .999999 v=1(1)30, 40, 60, 120, a, 3D Table 26.11. 2500 Five Digit Random Numbers
. . . . . . . . . .
990
99 1
The authors gratefully acknowledge the assistance of David S. Liepman in the preparation and checking of the tables and graphs and the many helpful comments received from members of the Committee on Mathematical Tables of the Institute of Mathematical Statistics.
26. Probability Functions Mathematical Properties a 26.1. Probability Functions : Definitions and Properties Univariate Cumulative Distribution Functions
A real-valued function F(z) is termed a (univariate) cumulative distribution function (c.d.f.) or simply distribution function if i) F(z) is non-decreasing, i.e., F(zl)5 F(Q) for 51
5x2
ii) F(z) is everywhere continuous from the right, i.e., F(z)=lim F(z+e) cto+
iii) F(-=)=O, F ( = ) = l . The function F(z) signifies the probability of the event “ X S z ” where X is a random variable, i.e., P r { X < z }= F ( z ) , and thus describes the c.d.f. of X. The two principal types of distribution functions are termed discrete and continuous. Discrete Distributions: Discrete distributions are characterized by the random variable X taking on an enumerable number of values , . ., z - ~ , ZO, zl, . . . with point probabilities
Pn=Pr{X=Zn}20
where the summation is over all values of z for which sn_O is termed the domain of the random variable X . A discrete distribution of a random variable is called a lattice distribution if therc, exist numbers a and b#O such that every possible value of X can be represented in the form a+bn where n takes on only integral values. A summary of some properties of certain discrete distributions is presented in 26.1.19-26.1.24. Continuous Distributions. Continuous distributions are characterized by F(s) being absolutely continuous. Hence F ( z ) possesses a derivative F’(z)=.f(z) and the c.d.f. can be written
26.1.2
F ( z ) = P r { X _ < z=Sl?(t)dt. )
The derivative f(z) is termed the probability density junction (p.d.f.) or frequency junction, and the values of z for which f(z)>O make up the domain of the random variable X . A summary of some properties of certain selected continuous distributions is presented in 26.1.25-26.1.34.
which need only be subject to the restriction
Multivariate Probability Functions
CPn=1*
The real-valued function F(zl, g, . . . s,) defines an n-variate cumulative distribution function if
The corresponding distribution function can then be written
26.1.1
F ( z )=Pr { X
-*3?
* Comment on notation and conventions.
a. We follow the customary convention of denoting a random variable by a capital letter, i.e., X,and using the corresponding louer case letter, i.e., z, for a particular value t h a t the random variable assumes. b. For statistical applications it is oftcn convcnicnt to have tabulated the “upper tail arca,” l-F(z), or the c.d.f. for 1x1, F ( z ) - F ( - z ) , instead of simply tho c.d.f. F ( z ) . We use the notation P to indicate the c.d.f. of X, Q = I - P t o indicnte the “uppet tail area” and A = P-Q to denote the c.d.f. of In particular we use P ( z ) , Q(z), and A ( r ) to denote the corresponding functions for thc iiormtrl or Gaussian probability function, see 26.2.2-26.2.4. When these distributions dcpcnd on other pnrirrnetcrs, say 01 and 02, u c indic:itc this by n titing P(rleI,et), Q(zlel,e l ) , or A(r(eI,&). For csirniplc the chisquare distribution 26.4 depends on the parameter U and the tabulated function is I\ ritten Q ( x 2 I v ) .
1x1.
i) F(zl, z2, . . . 2,) is a non-decreasing function for each 5; ii) F ( q , s2, . . , 2,) is continuous from the right in each xi; i.e., F(z1, 32, . . . 2,) =lim F ( z l , . . ., z;+c, . . ., 2), a++
. . t n ) = O when any X I = - = ; * F(=,a , ., ., =)=1. F(sl,s2, . . ., s,) assigns nonnegative prob-
iii) F ( q , zz,. iv)
ability to the event t l < X I ~ z 1 + h l , ~2<X2<~2+hzr . . tn<XnO for
+
k=l,
2,
. . ., n.
927
I
928
PROBABILITY FUNCTIONS
The joint probability of the event Xl<sl, vectors (zl, sz,. . ., 5,) and continuous distribuX z < z 2 , , . ., X f l < z , is F ( q , s2,. . . s,). A d o - tions are characterized by absolute continuity of gous to the one-dimensional case, discrete distribu- F(s1, s2,. . ., s,). tions assign all probability to an enumerable set of Characteristics of distribution functions: Moments, characteristic functions, cumulants Continuous distributions 26.1.3
nth moment
26.1.4
mean
about origin
wiJ-:
r*flz)&
26.1.5
cantral moment
26.1.6
ntb
26.1.7
eted value operator for eT he function g(z)
26.1.8
characteristicfunction of X
26.1.9
charakteristic runction or e(x)
26.1.10
inversion formula aattlce dtstrlbutions only)
Relation of the Characteristic Function to Momenta About the Origin
I
Coefficients of Skewnese and EXWM
26.1.15
(skewness)
26.1.11 1-0
Cumulant Function
26.1.16
(excess)
Occasionally coefficients of skewness and excess (or kurtosis) are given by 26.1.17 Relation of Central Moments to Momenta About the Origin
26.1.14
I 26.1.18
81=Y:=(
89=YZ
3)
+3=f
a
(skewness)
P4
(excess or kurtosis)
Some one-dimensional discrete distribution functions Domain
Name 26.1.19 Single mint or degenerate
z=c (c a mnstant)
26.1.20 Binomial
s=r. for 8-0, 1, 2,
26.1.21 Hypergeometric
b =8,
for
r=O, 1,.
Point Probabilities p=1
..
Restrictions on Parameters
Skewness 7 1
Variance
Excess
Characteristic function
--
Cumulants
G=O for r>l
.I=&
_. n
..min (n, NI)
26.1.22 Polsson
O<m<-
'NI\
Complicated
cm(e"-l)
K,=m
for r=l, 2, 26.1.23
Negative binomial
re=#, for r=O, 1.2,
...,m
.. .
m=nP da. r+r=PQ dQ
for r l l 26.1.24 Qoometric
&=a, for r=O, 1.2,
..
_. m
P(1-P)'
2--p G
P
U--,
1-P
P
r,+1=-(1-p)
da. -
dp' r>l
Some one-dimensional continuous distribution functions
Name
Domain
-
Probability Densitj Function J(z)
Restrictions on ParSmeteIS
-
26.1.25
Error function
O
26.1.26
Normal
--<m<-
Skewness Mean
Characteristic function
71
-P -
0
1 -
0
0
&ha
m
+ I
0
0
c
2
c"I-BI
tI
2hl
Cumulants
1 2hz r.=O for n>2 Nl=O,
#2=-
.'I
inD-
O
Cauchy
m
--
O-<m
26.i.m Exponential
--
-<-
--
Laplme. or double exponential
--
26.1.30
Extreme-Value.' (Fisher-Tippett Type. I or doubly exponential)
--
26.1.31
Pearson Type I11
--
26.1.29
o
oa<
o
O
26.1.32
Oamma distribution
Kp<-
26.1.33
Beta distribution
1
--<m
(Euler's constant) =.67721 66649
not defined
not defined
not defined
P-tB
c
2
6
a
w
0
3
p+YB
1.3
2.1
Q+@
2 -
WP
I6
P
P a
WJ<-o+b
26.1.34
4y
-
not defined
m
A' 12
2 6
WP
2(a-6) (a+b+2)
See footnote 6.
0
-11
not defined
(I-*)--
r1=m, S"+l==O
... *See pa@2
11.
931
PROBABILITY FUNCTIONS
Inequalities for distribution functions IF(") . . , denotes the c.d.f.of the random variable Xand t denotes n positive constant; further m is always assumed to he finite and all expectations are assumed to exist.) Inequality
26.1.35
P r ( u ( X ) I t ) <E[u(X)l/t
26.1.36
P r ( X 2 t )Smlt m
(i) P t ( X < O ) =O (ii) E ( X ) = m
F(t) 21-7 26.1.37
P r ( ( X - m l 2 t u ) Il/P F(m+tu)-F(m-tu)
26.1.38
P r ( IX=?iil2tF)
21--01
(i) E(X)=rn (ii) E ( X - m ) l = Z
*
(i) E ( X J =ml (ii) E ( Xi - nti)3= U: (iii) E([X,-mmi][X,-mi])=O(i#n
1 nP
(i) E ( X - m ) 9 = Z (ii) F(z) is a continuous c.d.f. (iii) F(z) is unimodal at ZOO
(i) (ii) (iii) (iv)
E(X-m)*=u9 F(z) is a continuous c.d.f. F(z) is unimodal at zoo
m=zo
(i) E ( X - m ) a = $ (ii) E ( X - m ) 4 = ~ 4
Is such that F'(m)>F'(z) for t#zo.
020
26.2. Normal or Gauasian Probability Function 1 26.2.1 Z(z) e-z2/a
26.2.8
=Fi
26.2.2 P(x)=26.2.3 26.2.4
e - t a / ~ d t = J ~ w~ ( t ) d t
sw
Q(z) =-
S,
e+/adt =
Jz;;r
&S-* e-ta/adt=J'sZ(t)dt
A(z)=-1
The corresponding probability density function
~ ( dt t )
"
is 26.2.9
+
26.2.5
P ( 4 Q ( 4 =1
26.2.6 26.2.7
A(x)=2P(x)-l
P(- 4=Q(4
I and is symmetric around m ,i.e.
Probability Integral w i t h Mean m and Variance Z
A random variable X is said to be normally distributed with mean m and variance a* if the probability that X is less than or equal to x is given by
z
(y)
The inflexion points of the probability density function are at m f a . 'See page n.
932
PROBABILITY FUNCTIONS
Polynomial and Rational Approximations7 for P(r) and Z(x)
Power Series (x 2 0 )
o<x< 26.2.16 26.2.11
Asymptotic Expansions (x>O)
26.2.12
Q(x)=z(.i(
1
1.3
,
26.2.11
.
X
+(-1)"1
*
3 . . . (2n-')}+&
t=-
X2n
1 1+pz
where R,=(-l)"+'l.
3 . . . (2n+l)Jm2
$$dt
which is less in absolute value than the first neglected term.
26.2.18
26.2.13 &(X).UT
(')
p=.23164 19 bl= .31938 1530 b4=-1.82125 5978 b2=-.35656 3782 ba= 1.33027 4429 b3= 1.78147 7937
{ 1-'
P(x)=l-- 1 (1+c~2+c2~+c3xa+c424)-~+€(x) a2
2'4-2 a + (x2+2) ( ~ ~ $ 4 )
2
.
where a l = l , a 2 = l , a3=5, a4=9, a,=129 and th6 general term is an=col * 3 . . . (2n-1) +2~11*3 . . . (2n-3) . . . +2"-lcn4 f22c2l ' 3 . . . (2n-5)
le(z)1<2.5x 10-4 ~1=.196854 ~3=.000344 C2=. 115 194 C, =.O 19527 26.2.19
P(z)= I-- 1 (1 + d l ~ + d 2 ~ ~ + d 3 $ 2
+
and ca is the coefficient of t"+ in the expansion of ttt-1) * . . ( t - n f l ) . Continued Fraction Expansions
26.2.14
Q(x)=Z(x)
1 1 2 3 4 {----x+ x+ x+ x+ x f ' } * *
26.2.15
1 Q(x)=Z-Z(2)
{-----x 3+ 552
1-
2x2 3X24X2.. 7+ 9-
*}
+d4x4 +d52' +de~')-~'+ t(2) Ie(s))<1.5x10-' dl= .O4986 73470 dr= .00003 80036 dz=.O2114 10061 dg=.OOO04 88906 d3= .OO327 76263 da= .OOOOO 53830 26.2.20
b>O)
(3
2 0)
+
+
Z(x) = (ao u2x2+a4x4 sex')-' 4-e (2) ie(x)1<2.7x 10-3 a0=2.490895 a4= -.024393 a'= ,178257 a2=1.466003
7 Based on approximations in C . Hastings, Jr., Approximations for digital computers. Princeton Univ. Press, Princeton, N.J., 1955 (with permission).
PROBABILITY FUNCTIONS
933
26.2.25
26.2.21
Z ( X= ) (bo+ b,2+
b 4 d + b6Z6
+b8z8+
+
blrj2')-'
E(X)
(e(z)1<2.3X 10-4
b6=
b0=2.50523 67 b2=1.28312 04
.13064 69 b8=-.02024 90
,22647 18
bq=
.00391 32
blo=
Rational Approximations 1 for x g where Q(x,)=p
O
I.5
26.2.22
See Figure 26.1 for error curves. ,006,004
l4P)1<3X10-* ao=2.30753
bl =,99229
- ,004 - ,006 -
a, = .27061
bz= .0448 1
- ,008
-
Pp-Pw
FIGURE26.1. Error
26.2.23 zp=t-
-
curves for distribution.
bounds
on
normal
1+d,t +d,t2+d,t3 Derivatives of the Normal Probability Density Function
Ia(p)I<4.5X 10-4 ~0=2.515517 CI=
,802853
da= ,189269
cZ=
.010328
d3= ,001308
z'"'(5)=dym d" Z ( 5 )
26.2.26
d1=1.432788
Differential Equation
Bounds UBeful as Approximations to the Normal Distribution Function
26.2.24 1 1 -+-
P, (2)=2 2 (1 -e -a2/*) $
(X>O)
(- I)"/%!
P(4I P, (2,= 1- (4+2')'-2 2
(2 -4 -za/a ). e
for m=2r, r=Ol 1, .
27") (0) =
(x> 1.4)
I
o
for odd m>O
..
934
PROBABILITY FUNCTIONS
Relation of P ( z ) and Z ( d ( z ) to Other Functions
Relation
Function
erf 2 = 2 ~ ( s J z ) - 1
26.2.29
Error function
26.2.30
Incomplete gamma function (special case)
26.2.31
Hermite polynomial
26.2.32
I(
26.2.33
H h function
26.2.34
I(
26.2.35
Tetrachoric function
26.2.36
Confluent hypergeometric function (special case)
26.2.37
(L
26.2.38
(I
26.2.39
l(
26.2.40
Parabolic cylinder function Repeated Integrals of the Normal Probability Integral
26-2-41
I,(z)=
Lrn
I,-l(t)dt
(n>O)
where I-1(x)=2(x) 26.2.42
I-,(5)
d =(-z)
n-1
Z(2)= (- 1)n - l Z ( n -
1) ( 2 )
(n2-1) 26.2.43
(&+2
~--n)I.(x)=O
26.2.44
(n+ l)I,+I(X)
+ d , ( 2 ) -178-1
(2)=0
(n> - 1)
935
PROBABILITY FUNCTIONS
Asymptotic Expansion for the Inverse Function of an Arbitrary Distribution Function
26.2.45
Let the cumulative distribution function of It
Y = C Y,be denoted by F ( y ) . Then the (Cornishi- 1
Fisher) asymptotic expansion with respect to n for the value of yp such that F(y,) = 1- p is Asymptotic Expansions of an Arbitrary Probability Density Function and Distribution Function
Let Y t (i=1,2,
. . ., n) be n
Pp-mfuw
26.2.49
where
w=z+ [Tlhl(X)1
+[Yzhz(4
independent random variables with mean m f , variance U:, and higher cumulants K,, Then asymptotic expansions with respect to n for the probability density and cumulative distribution function of
,.
+YVhl
(d1
+YlYZhlZ(d +$hllI(dl
+[Y3h3(4
+
[Y4h4(2)fr%Z (2)f Y 1 7 3 h 1 3 ( 2, +$YZhl12 (2)
+rZ~1111(41+
and Q(x)=p,
~
~
Kr-
~
r=3,4,. =
~
..
~
' ' * j
Ka
26.2.47
26.2.50
hl(z)=g1 He2(z) 1
h z ( 2 ) = a He3(d bl(d=-z 1 h3(2)=,,,
26.2.48
1
We&)
+He1(41
[He4(x)I
hI2(z)=-- 1 [He&)+He&)] 24 hlll(r)=&
[12~e,(z)+lg~ez(x>1
where
1
Terms in brackets are terms of the mme order with respect to n. When the Y,have the same distribution, then mf=m, ui=u2, Kr, f=Kr and
+
h1111(2) =-7776 [252He5(z) 832He3(2) +227Hel
I
(2)
Terms in brackets in 26.2.49 are terms of the same order with respect to n. The He,(z) are the Hermite polynomials. (See chapter 22.)
936
PROBABILITY FUNCTION8 r-7
26.2.51 In the following auxiliary table, the polynomial functions h,(z),h2(2) .
. . hllll(z)are tabulated for
p = .25, .1, .05, .025, .01, .005, .0025, .001, .0005. Auziliary coeficients 0 jor use with Cornish-Fisher asymptotic expansion. 26.2.49 P
1151
.10
1.28155 .I0706 -.07249 .06106
-.W .14644 -.11629 ,00227 .a776
,
,01088
.05
1.64486 .28428 -.ON18 -.01878 -.04828 .17532 -.11800 -.01082 .05986 ,09462
-.1W --.39517 .25823 ,08586
1.95996 .47358 .W72 -.14607 -.04410 .I0210 -.02937 -.02357 ,09659 .161oB -.SS58
.31624
2.32631 ,73532 .23379 -.87634 -.00152 17621 .25195 -.03176 ,07888 ,18058 -.32821 .07286
-.
2.5758a ,93915 ,38012 59171 .owl0 -. 53531 .59757 02821 -. 01226
-.
2.80703 1.14667 .67070
-_ 89880
-.
*
-.
05366
.3M186 46534
-.1.m17498 45
-1.39199
8.09022 1.42491 .a4331
-1.21025 .80746 -1.88355 1.86787 ,04591 69080 -.7w 4.29304 -3. 32708
-.
8.29058
1.63793 1.07EO -1,52234 ,46059
-2.71243 2.62887 .loeXl -1.03555 -1.80531 7.23307 -5.40702
8 From R. A. Fisher. Contributions to mathematical statistics. Paper 30 (with E.A. Cornish) Extralt de la Revue de 1'Institute International de Statistique 4. 1-14 (1937) (with permission).
26.3. Bivariate Normal Probability Function 26.3.1
means and variances (mz, mu) and (4, U;) and correlation p if the joint probability that X is less than or equal to h and Y less than or equal to k is given by
=L = I m Z ( z ) d z swmZ(w) dw,
(q?),-(--),
k- mu
w=@) The probability density function is
26.3.12
where
26.3.8 26.3.9
L(-h, k,p)+L(h, k, --p)=Q(k) L(-h, -k, p)-L(h,k, p)=P(k)-Q(h)
26.3.10
Circular Normal Probability Dendty Function
* 2[L(h,k, p)+L(h, k, -~)+P@)-&@)l-l 26.3.13 Probability Function With Means m,, my, Variance8 d , d , and Correlation p
The random variables X,Y are said to be distributed as a bivariate Normal distribution with *See page 11.
p)
937
PROBABILITY FUNCTIONS
Special Values of L(h, k, p )
26.3.14 26.3.15
I
I
L (h,k , 0) =Q (h)Q(k) L(h,k , - 1 ) = O
L(h,k, - 1 ) = P ( h ) - Q ( k )
26.3.17
L(h,k , I ) = & @ )
(klh)
26.3.18
L ( h , k ,I ) = Q ( k )
(k>h)
1 .J(O,O, p ) = z +
26.3.20
(h+k>O)
26.3.16
26.3.19
L(h, k, p ) as a Function of L(h, 0, p )
(
(h+kSO)
arc sin 2?r
( 4 - h ) (sgn k ) ) +L k’01Jh2-2phk+k2 if hk>O or hk=O
-
p
andh+k>O otherwise
where sgn h = 1 if h 1 0 and sgn h = - 1
P
FIGUBE26.2. L(h, 0,
14
p)
for O < h < l
and - 1 < p < O .
Values for h
0, p ) .
if h
938
PROBABILITY FUNCTIONS
P
FIGURE26.3. L(h, 0,
p)
for O l h l l and O I p I l .
Values for h
0, p ) .
939
PROBABILITY FUNCTIONS P
FIGURE26.4.
L(h, 0,p ) for h 2 1 and - 1
Values for h
51. 0 , p.)
940
PROBABILITY FUNCTIONS
Approximation to P(RI 2, rJ)
Integral Over an Ellipse With Center at (mz, mu)
26.3.25 26.3.21
A pproz:'mation
2RZ
4+RZ exp-where A is the area enclosed by the ellipse
Condition
21.2 4+Rz
26.3.26
P(x1)
R>1
26.3.27
P(xJ
R>5
2,=
Integral Over an Arbitrary Region
26.3.22
R, r both large
xZ= R - \ n
*
Inequality
26.3.28
where A*@,t ) is the transformed region obtained from the tkansformation where
Ph-k>O,
O< ~ < l *
Series Expansion
26.3.29 ull
Integral of the Circular Normal Probability Function With Parameters m+=m,=O, o = l Over the Triangle Bounded by y= 0, y =ax, x= h
26.4. Chi-Square Probability Function 26.4.1
26.3.23
1
1
=-+L(h,o, 4 p ) - L ( O , 0,p ) - 2 Q(h) where p=--
26.4.2
&(x21v)=l-P(x2(Y)
a
in2 Relation to Normal Distribution
Integral of Circular Normal Distribution Over an Offset Circle With Radius R o and Center a Distance ru From (mz*
mu)
26.3.24
Let X,, X z , . , ,,X , be independent and identically distributed random variables each following a normal distribution with mean zero and unit variance. Then X2=&X: 1-1 is said to follow the chi-square distribution with v degrees of freedom is given by P(xZlv). and the probability that P<x2
where P(R2(2,r2) is the c.d.f. of the non-central x2 distribution (see 26.4.25) with v = 2 degrees of freedom and noncentrality parameter 1.2.
Cumulanta
26.4.3
K,+1=2%!Y
*Se? page 11.
.
(%=0,1, , .)
941
PROBABILITY FUNCTIONS
Approximationr to the Chi-Square Dirtribution for Large U
Serier Expanrions
26.4.4
26.4.13 A pprozimdion
Q(x2lv)= Q ( z ~ ) ,
Condition
x ~ = ~ - J % T(v>IOO)
26.4.14 (v odd) and
x=fi
26.4.5 -
-
{ +k
Q(x21~)=J%Z(x)1
r-1
Q(x2(v)= Q ( x J ,
m
52-
26.4.15
"-3 I
i)
(Xziv) 113 -( 1 -
2.4.
..(2~)
Q(x2lv) Q(zz+h")1
hv=-
60 V
(v>30)
hao
(v>30)
(v even)
26.4.6 2
*
-3. 6 -3.0
--.0118
-1.6
+.OOO1
-.m7
-. 0033
-2. b -2.0
{ "2 (v+2)
X2'
(v+4).
.( v + 2 ~ )
-.0010
-1.0 -.6 .O
+.OOO2
1.0
-.OO08
4-1.6
+.OO08
.m
+.a
2.0 2.5
-.OOO3
3.0 3.6
-.OOO6 +.m2 .0017
.CO43
.m
Approximations for the Inveme Function for Large
U
If Q(x:(v)=p and Q(zp)=l-P(zp)=p, then Approzimatwn
26.616
xi=:
26.4.17
X;=V
Recurrence and Differential Relation.
{Z , + ~ % T } ~
Condition (v> 100)
(u>301
where hv is given by 26.4.15. Continued Fraction
Relation to Other Functionr
26.4.19
Incomplete gamma function
r (4
Arymptotic Dirtribution for Large Y
26.4.11 P(X2(v) -P(z)
26.4.20
xL2z
v=%,
y(a,=P(X21v),
Pearson's incomplete gamma function
where z=-X2-v
Jz;
Asymptotic Expanaionr for Large x'
v=2(p+l), 26.4.21
x2=2u
Poisson distribution
26.4.12
Q(xzlV ) -Q(x21v-2)
=e -m
(c- 1) !
&q7
942
PROBABILITY FUNCTIONS
26.4.22
Non-Central x4 Distribution Function
Pemon Type I11 26.4.25
2a b
v=
26.4.23
+2, x2= 2b (x+ a )
Incomplete moments of Normal distribu-
where A 2 0 is termed the non-centrality parameter.
tion
Relation of Non-Central xa Distribution With v=2 to the Integral of Circular Normal Distribution (a*= 1) Over an Offset Circle Having Radius R and Center a Distance r = f i From the Origin. (See 26.3.24-26.3.27.)
26.4.26
x2=2, v=n+1 26.4.24
Generalized Laguerre Polynomials
g(x, y , 0)dxdy=P(x2=R2Jv=2, A)
JJA
x= x2/2 a =v/2 1
Approximations to the Non-Central
a=v+h Approximating Function
b=-
x1
Distribution
h v+x
Approximation
26.4.27
x2 distribution
26.4.29
Normal distribution
2x’2 3
P ( X ’ ~ A)~ P =P(x), ,
x=[-] 1+b
-[&-l]’
Approximations to the Inverse Function of Non-Central X* Distribution
I f Q(xL21vl A>=p, Q(~”,v*)=p,and &(x,)=p then Approximating Variable
26.4.30
x2
26.4.31
Normal
26.4.32
Normal
Approximation to the Inverse Function
+
xi2 = (1 b)x;
PROBABILITY FUNCTIONS
943
h
I h 3
3
b
5I
6
3
'4
5
+
5p
i U
*
17
U
TPI
*Id: I
T
I
h
3 I
b
s
f
5I
b
f
3l&
5;t I
9
NI&
NIO,
+
5
Y
It
3
Ts
'4
5
4 I3
-f I
E'
b
3 1
h 3
0'
I
4
i
k2 W
*
U
944
PROBABILITY FUNCTIONS
26.5. Incomplete Beta Function 26.5.1
Continued Fractions
26.5.8
26.5.2 ],(U,
b ) =1-Z]--t ( b ,a) Relation to the Chi-Square Distribution
If Xi and X i are independent random variables following chi-square distributions 26.4.1 with v 1 and v2 degrees of freedom respectively, then
x:+x:is said to follow a beta distribution with and u2 degrees of freedom and has the distribution function
u1
Best results are obtained when z<--
a- 1 a+b-2
Also the 4m and 4 m+ 1 convergents are less than ZJa, b) and the 4 m f 2 , 4 m + 3 convergents are greater than Z,(u, 6). 26.5.9
26.5.3
*
x
el=l
(a+m-l)(b-m) . eZm= (a+2m -2) (a+2m - 1) 1-2
-
m(a+b-l+m) ezm+l= (a+2m--l)(a+2m)
Series Expansions (O<x
z
1-2
26.5.4 Recurrence Relations
26.5.10
+
I&, b ) =xZr(a- 1 ,b ) (1-x)Z,(a, b- 1) 26.5.11
26.5.5
26.5.12
26.5.13
26.5.14
26.5.6 1-I,(u, b) =ZI -r(6, U )
26.5.15 26.5.7 1-Z&,
b)=ZI-Z(b,
= (1-r)
26.5.16
0,)
afb-1
-0
(a+!-l) a
(L)’ 1-x
(integer a)
945
PROBABILITY FUNCTIONS Asymptotic Expansions
-r
26.5.17
and y is taken negative when z<
F(b,Y) 1-I,(a, a) =I1-, ( b,a) -
a- 1 a+b-2 ~
(b)
Approximations
+
If (a b - 1) ( 1-z) 2 . 8
26.5.20 [ (b-3)(b-2)(5b+7)
( b + l +Y)
I I ( a , b) = Q(x'Iv)
+E,
/c(<5X10-3 if a+b>6
y=-Nln
b 1 N=a+--2 2
z,
x2= (U+ b - 11(1-Z)(3-Z)- (1-5 ) ( b- 1), v=2b
26.5.18
r(a,w) e-"uY I,(% b) "r(a,
(a-1-w) 2b
+(.{
If (a+b-l)(l-z)
26.5.21
2.8
(-"-)
w=b 1--2 26.5.19
a3(1+y2/2)+ l+az al=z (b-a)[(a+b-2)(a-l)(b-l)]-% 3
...
+
1
Approximation to the Inverse Function
26.5.22
If I,,(a, b ) = p and Q(yP)=pthen U
XU
=:a+bel"
a- 1
h=?(=+-) 1 2a
1 1 2b-1
E ) ,~ : ~
-l
6
Relationr to Other Functions and Distributions
Function
Relation
1
1
26.5.23
Hypergeometric function
zqqz F(a, 1-b;
26.5.24
Binomial distribution
5 c ) p ' (1-p)
26.5.25 26.5.26
( L
Negative binomial distribution
#-a
n-8
a + l ; z)=Iz(a, b )
=I, (a, n-'a
Student's distribution
26.5.28
F-(variance-ratio) distribution
I, n-a)
c)pa(l-p)n-a=Ip(a, n-a+l)-I,(a+
5 r+8~pnq'=I,(a, -l) i-a
26.5.27
+1)
v l 1 1 Z [ l - A ( t l ~ ) ] = I, ~ (2t2)p
n) V
z=- v + t 2 v2
*See page 11.
*
*
946
PROBABILITY FUNCTIONS
26.6. F-(Vgriance-Ratio) Distribution Function
26.6.5
26.6.1
Q(F 1 ~,14=1- (1-X) '1"
2.4
x2+.
..
P(FIV1, y z ) = ( F 2 0) 26.6.2
26.6.6
where v2
x=vz+
vi
F
Relation to the Chi-Square Distribution
If X,Z and Xi are independent random variables following chi-square distributions 26.4.1 with v1 and v2 degrees of freedom respectively, then the
26.6.7
distribution of F=-x,Z'vl is said to follow the
x;lv2
variance ratio or F-distribution with v1 and v2 degrees of freedom. The corresponding distribution function is P(FIvl,va).
+
+
' '
.
(v1+vz-2) * * (v1+2) 2 - 4 . . . (v2-2)
(A)?] 1-x
Statistical Properties
26.6.3
'z{e+sine[cose+-
mean:
a
2 cos3 e+ 3
..,+
third central moment:
moments about the origin:
I
(v2+1)(vZ+3).. . (Y]+Vz-4) sin'1-3 3 . 5 . . * (v1-2)
characteristic function:
Oforvl=l
Series Expansions
x=26.6.4
*See page
n.
v2
vz+viF
where
*
e
for v2>l
PROBABILITY FUNCTIONS
947
then
26.6.9
Relation to Student’s t-Distribution Function (See 26.7)
26-6-10 Q(F 1 ~= 1 1, ~ 2 = ) 1 - A ( t 1 v2)
t=@ Approximation to the Inverse Function
Limiting Forms
26.6.16
26.6.11
lim Q(FIv,,Y ~ ) = Q ( X * ~ V ~ ) ,
x2=vlF
us-) m
If &(FpIvl,v Z ) = p ,then
Fp= ezW where w is given by 26.5.22, with u1= 2
26.6.12
b, vz=2a
XI=^
lim Q(FIvl,v2)=P(xZlv2),
v2
v,+m
Approximations
26.6.13
F Q(FIvi,~
2 -) & ( a ! ) ,
a!=
--v2-2vz
(vl and v2 large)
26.6.14
and A 2 0 is termed the non-centrality parameter. Relation of Non-Central F-Distribution Function to Other Functions
Function
26.6,18
F-distribu tion
26.6.19
Non-central tdistribution
26.6.20
Incomplete Beta function
Relation
~-
26.6.21
Confluent hypergeometric function
-*See page
n.
P(F’lv1,v2,A)=
Z
L
2e-wz
X
PROBABILIT
948
FUNCTIONS
is called Student’s t-distribution with v degrees of
Series Expansion
26.6.22
freedom. The probability that
- will be less 4 %
in absolute value thnn n fixed constant t is 26.7.1
where
To=1 “A1
1-x
T ,=- 2 i [ ( v i + ~ 2 - 2 i + A ~Tl) 1 -=x
+
1-5)
Ti - 2 1
x=-
vIF’+vz Limiting Forms
(O
- 9 -
where
v2
I
U
v+ iz
Stat istioal Properties
26.6.23
26.7.2
-
lim P(F’Jvl,v2,A) =P(X’~IV,N, ”I+
(2’ ;) ,
=l-I,
X”=vlF’,
v=vl
mean:
m=O
variance:
u2=-
26.6.24
lim P(F’Iv,,vl,X)=&(x21v),
vI-+m
wherc A / v l - w z as vl+
x2=----vz(1F‘+c2)
skc wness: yI=0
w.
Approximations to the Non-Central F-Distribution
26.6.25
P(F’Ivl,v2,A)= P ( x l ) ,
(vl and v2 largc)
cxccss:
y2=-
moments:
wherc F’--
V
v-2
v2 (U1 +A)
P5=
6 v-4 1 * 3 . . , (2n-l)P (v-2)(v-4) . . . (v-2n)
pZn+l=O
characteristic function:
Series Expansions
26.7.3
I
26.7. Student’s t-Distribution
If X is a random variable following a normal distribution with mean zero and variance unity, and xz is a random variable following an independent chi-square distribution with U degrees of X
freedom, then the distribution of the ratio =
4X’b
26.7.4
Ia
(v>l and odd) (v=l’ cos2 e+-
. . . (v-3) ‘ 2 . 4 . 6 . . . (v-2) 1.3.5
1-3 2.4
e+ . . .
(80s~
’1
(v
even)
*
949
PROBABILITY FUNCTIONS Approximation for Large v
Aeymptotic Expansion for the Inverse Function
If A(tp(v)=l-2p and &(s,)=p, then
t(1-$)
26.7.8 A(t(v)= 2 P ( ~ ) - l ,
X=
2v Non-Central t-Distribution
26.7.9
P(t'Iv, 6)= g3(4
=&
g4 (z)=
(3z7+19z6+171-15z)
m o
(79z8+776z7$1482z5-1920~-945~) Limiting Dietribution
26.7.6
&J:te-I*/qs=A(t)
lim A(tlv)=U+=
where 6 is termed the non-centrality parameter.
Approximation for Large Values of t and v I 5
A(tlv)= l - 2
26.7.7
{;+&}
26.7.10
1
d
3
4
a,
-3183
b,
.OOOO
,4991 .0518
1.1094 -.0460
3.0941 -2.756
U
Approximation to the Non-Central t-Dietribution
5
9.948 -14.05
t'(l-L)-6
P(t'(v,6) = P ( z )
where 2= (1+9(
Numerical Methods 26.8. Methods of Generating Random Numbers and Their Applications ' Random digits are digits generated by repeated Experience has shown that the congruence independent drawings from the population 0, 1, method is the most preferable device for genersting 2, . . ., 9 where the probability of selecting any random numbers on a computer. Let the sequence digit is one-tenth. This is equivalent to putting of pseudo-random numbers be denoted by { Xn} , 10 balls, numbered from 0 to 9, into an urn and n=O, 1, 2, . . . . Then the congruence method drawing one ball at a time, replacing the ball of generating pseudo-random numbers is after each drawing. The recorded set of numbers X,+l=aX,+b(mod T ) forms a collection of random digits. Any group of where b and T are relatively prime. The choice n successive random digits is known as a random number . of T is determined by the capacity and base of the Several lengthy tables of random digits are computer; a and b are chosen so that: (1) the reavailable (see references). However, the use of sulting sequence { X , } possesses the desired starandom numbers in electronic computers has retistical properties of random numbers, (2) the sulted in a need for random numbers to be genperiod of the sequence is as long as possible, and erated in a completely deterministic way. The (3) the speed of generatlon is fast. A guide for numbers so generated are termed pseudo-random choosing a and b is to iiiake the correlation numbers. The quality of pseudo-random numbetween the numbers be near zero, e.g., the correlabers is determined by subjecting the numbers to tion between X. and Xn+sis several statistical tests, see [26.55], [26.56]. The 1-6 7 ba (1 -f)+ b purpose of these statistical tests is to detect any properties of the pseudo-random numbers which PI= are different from the (conceptual) properties of a, random numbers. where aa=a' (mod T ) O The authors wish to cxpress their appreciation to b,=(l+a+a2+ . . . +a'-')b (mod 2") Professor .J. W. Tukey who mnde many penetrating and helpful suggestions in this section. I e I
950
PROBABILITY FUNCTIONS
When T= log, b need only be not divisible by 2 or 5, and a = l (mod 20). The most convenient choices for n are of the form a = F + l (for binary computers) and a=1OS++1 (for decimal computers). This results in the fastest generation of random numbers as the operations only require a shift operation plus two additions. Also any number can serve as the starting point to generate A sequence of random digits. A good summary of genernting pseudo-random numbers is [26.51]. Below are listed various congruence schemes and their properties. a= 1 (mod 4).
which occur in
Xn+,=a,Xn+b, (mod T ) When a is chosen so that a = P 2the , correlation p 1 T-11'. The sequence defined by the multiplicative congruence method will have R full period of T numbers if b is relatively prime to T (i) a= 1 (mod p ) if p is a prime factor of T (ii) a=l (mod 4) if 4 is a factor of T. (iii)
Consequently if p=2g, b need only be odd, and
I
v
Congruence methods for generating random numbers Xmtl=aX.+b(mod T), T and b relatively prime
-
ib
--
_-
Period
xo
T=to
to
OlXo
26.8.2
T=tQ
t 0-.
relatively prime to
26.8.3
T=tofl
(varies)
relatively prime to
T=W, Xo unknown; a-z7+1, b=l; T=2c7, a 4 + 1 . b=2974108625 8473. XO-76293 94531 25. T=24o 242 Xo=l. a=517(8=2) T=2:6' Xd=1, TLZIQ,Xo=l-Z-IQ, ,5478126193; a=Ll1(8=2) T=21a( Xo=lf a=515(8=2) T=2:i+l, Xo=10,987,654,321; a=23; period= 106 T=lOa+l, Xo=47,594,118; a=23; perlod=5.8XlW
26.8.4
T- 101
5.10r-1
relatively prime to
T-1010 Xo-1; a-7 T-1011: XO-1; a=71:
10x0 given
T=lOq
5.10P-r
T T T
relatively prime to T
is the startlng polnt for random numbers when statistical tests were made.
When the numbers are generated using a congruence scheme, the least significant digits have short periods. Hence the entire word length cannot be used. If one desired random nuriibers with as many digits as possible, one would have to modify the congruence schemes. One way is to generate the numbers mod T f 1. 'Phis unfortunately reduces the period. Generation of Random Deviates Let { X } be a generated sequence of independent random numbers having the domain (0, T ) . Then { U }= { T - l X ) is a sequence of random deviates (numbers) from a uniform distribution on the interval (0, 1). This is usually a necessary preliminary step in the generation of random deviates having a given cumulative distribution function F ( y ) or probability density function f ( y ) , Below are summarized some general techniques
~
'See page
Spzcial cases for which random numbers have passed statistical tests for randomness 10
26.8.1
26.8.5
*
a
T
n.
for producing arbitrary random deviates. (In what follows { U }will always denote a sequence of random deviates from a uniform distribution on the interval (0, l).) 1. Inverse Method
The solutions { g ] of the equations { u = F ( y ) } form a sequence of independent random deviates with cumulstive distribution function F ( y ) . (If F ( y ) has a discontinuity a t y=yo, then whenever U is such that F(yo-O)
Let Y be ii discrete rirndom variable with point probabilities p , = P r { Y = y , J for i=1, 2, . . . .
951
PROBABILITY FUNCTIONS
The direct way to generate. Y is to generate { U! and put Y = yr if p1+p2+
*
*
-
..
+Pt-l
*
+pt.
However, this method requires complicated machine programs that, take t'oo long. An alternative way due to Marsaglia [26.53] is simple, fast, and seems to be well suited to highspeed computa.tions. Let p , for i = l , 2, , . . , n be expressed by k decimal digits as pt=.b1t82t . . . akt where the 6's are the decimal digits. (If the domain of the random variable is infinite, it is necessary to truncate the probability distribulion at p,.) Define
Po=O, P,= 10-'
2a,,
for r = l , 2,
. . . , k, and
II,=qIO'P,, s = l , 2, . . . , k. 8
r-
Number the computer memory locations by 0, . . , , IIk-l. The memory locations are divided into k mutually exclusive sets such that the sth set consists of memory locations II,_,, 11,-1+1, . . . , & - l . The information stored in the memory locations of the sth set consists of y1 in locations, yz in locationg, . . . , yn in 68, locations. Denote the decimal expansion of the uniform deviates generated b y the computer by U =+dld2d3. . . and finally let o { m } be the contents of memory location m. Then if 1, 2,
c P t 5 U < 5 Pt
8-1
I-0
i-0
DIlt, r --
v=a{ dldz . . . r l , + ~ ~ ~ - ~ - l O ' This method is perhaps the best all-around method for generating random deviat,es from R discrete distribution. In order to illustrate this method consider the problem of generating deviates from the DinomiRl distrihution with point probabilities PI=@) p'(1-p)"-'
for n = 5 nnd p = . 2 0 . The point probabilities to 4 D are Value of Random Variable Point Probabilities 0 2)o=O.3277 1 pi= .4096 pz= ,2048 2 3 ?),a= .0512 p4= -0064 4 5 pb= a0003
and thus Po=O, Pl=.9, P2=.07, P,=.027, P4=.0030 from which IIo=O, 111=9, 112=16, 113=43, I14=73. The 73 memory locations are divided into 4 mutually exclusive sets such that Set 1 2 3 4
Memory Locations 0, 1, . . . , 8 9, 10, . . . , 15 16, . . . , 42 43, . . , 72
.
Among the nine memory locations of set 1, zero is stored 610=3 times, 1 is stored 611=4 times, 2 is stored a12=2 times; the seven locations of set 2 store 0 azO=2 times and 3 8 ~ 3 ~times; 5 etc. A summary of the memory locations is set out below: Value of Random Variable 0 1 2 3 4 5 Frequency Frequency Frequency Frequency
(set (set (set (set
3 2 7 7
1) 2) 3) 4)
4 0 9 6
2
0 4 8
0 5 1 2
0 0 6 4
0 0 0 3
Then to generate the random variables if put
0Iu<.9 .9 5u<.97 .975u<.997 .9975u<1.000
y=a { dl } y =a { dldz-8 1 } y =a { dld2d3-954 }
y = a { dld2d3d4-99273
3. Generating a Continuous Random Variable
The method for generating deviates from a discrete distribution can be adapted to random variables having a continuous distribution. Let F(y) be the cumulative distribution function and assume that t8hedomain of the random variable is (a,b) where the interval is finite. (If the domain is infinite, it must be truncated at (say) the points a and b.) Divide the interval (b-a) into n sub-intervals of length A (nA=b-a) such that the boundary of the ith interval is ( y ~ yt) , where yt=a+iA for i=O, 1, . , . , n. Now define a discrete distribution having domain
{}*Y={. with point probabilities pt=F(yt)--F(yt-l). Finally, - . let W be a random variable having a uniform distribution on
(-$
(
done by setting W=A U--
%)a
1)
This can be Then random
952
PROBABILITY FUNCTIONS
deviates from the distribution function F ( y ) , can be generated (approximately) by setting y= z+w
. This is simply an approximate ( 3 decomposition of the continuous random variable =z+A
U--
into the sum of a discrete and continuous random variable. The discrete variable can be generated quickly b y the method described previously. The smaller the value of A the better will be the approximation. Each number can be generated by using the leading digits of U to generate the discrete random variable 2 and the remaining digits forming a uniformly distributed deviate having (0,l) domain. 4. Acceptance-Rejection Methods
I n what follows the random variable I' will be assumed to have finite domain (a,b ) . If the domain is infinite, it must be truncated for computational purposes a t (say) the points a and b. Then the resulting random deviates will only have this truncated domain. a) Let f be the maximum of f(y). Then the procedure for generating random deviates is: (1) generate a pair of uniform deviates Ul, U p ; (2) compute a point y=a+(b--a)u2 in (a, b ) ; (3) if u,
viates having the probability density function f(y) is: (1) generate U,, U,,U3;(2) define z=a
+(b-a)u3; (3) if both ul< fl ( z ) and u2< f&)
fl
5-1
k
c P5 [cs,-t,+l)f,I-' j=1
b) Let F(y) be such that ~f(y)=fl(y)f2(y) where the domain of y is (a, b ) . L e t f l a n d f 2 be the maximuin of fl(y) and f2(y) respectitely. Then the procedure for generating random de-
f2
take z as the random deviate; otherwise take another sample of three uniform deviates. The acceptance ratio of this method is [ (b-a)flf2]-' and can be increased by dividing (a, b ) into subintervals as in the previous case. c) Let the probability density function of Y be f(y)
=Jab w ,
(.It
I@), (a
Let g be the maximum of g(y, t ) . Then -the procedure for generating random deviates having the probability density function f(y) is: (1) generate Ul, U,, U3; (2) define s=a+(p-a)u2; z=a+
(b--a)ua;(3) if ul< g ( z ' s ) ~take z as the random
9 deviate; otherwise take another sample of three. The acceptance ratio for this method is [ (b-u)g]-' and can be increased by dividing t>hedomain of t and y into sub-domains. 5. Composition Method
Let gz(y) be a probability density function which depends on the parameter z; further let H ( z ) be the cumulative distribution function for z. In order to generate random deviates Y having the frequency function
f ( y ) = J r n SL(YMH(Z) -0)
one draws a deviate having the cumulative distribution function H ( z ); then draws a second sample having the probability density function gp(y). 6. Generation of Random Deviates From Well Known Distributions
f(y)dy=p,; further let the
maximum ofJ(y) in t h e j t h interval bef5. Then to generate random deviates from f(y), generate n pairs of deviates (ulS,u2Js=1, 2, , . ,, n. Assign [ n p J such pairs to the j t h interval and If u1,< f(y,)/f, compute y,=t1-1+ ( f , - t l - l ) ~ l s . accept y, as a deviate. The acceptance ratio of this method is
--)
a. Normal distribution
(1) Inverse method: The inverse method depends on having U convenient approxiination t o the inverse function r=P-'(u) where
u=(27r)-1/2
j-:e-%t,
Two ways of performing this operation are to (i) use 26.2.23 with t=
(In U'>"' -1
or (ii) approximate
z=P-'(u) piecewise using Chebyshev polynomials, see [26.54]. ( 2 ) Sum of uniform deuiates: Let Ul, U,, . . . l U , be sequence of n uniform deviates. Then
953
PROBABILITY FUNCTIONS
will be distributed asymptotically as a normal random deviate. When n= 12, the mctximum errors made in the normal deviate are 9X10-3 for jXI<2, 9 x 1 0 - ' for 2
x*,=x,c az8;ylns 8PO
as the normal deviate where azs are suitable coefficients. These coefficients may be crtlculated using (say) Chebyshev polynomials or simply by making the asymptotic random deviate agree with the correc normal deviate at certain specified points. When n=12, the maximum error in the normal deviate is 8 X 1 0 - 4 using the coefficients * ~ 0 = 9 . 8 7 4 6 * U S = (-7) -5.102 * a2 = (- 3)3.9439 * u H = (-7)1.141 * U , = (- 5)7.474 ( 3 ) Direct method: Generate a pair of uniform deviates (Ul, U 2 ) . Than Xl = (- 2 In U1)1/2 cos 27rUz, Xz=(-2 In U1)1/2 sin 27rUZ will be a pair of independent normal random deviates with mean zero and unit variance. This procedure can be modified by calculating cos 27rU and sin 27rU using an acceptance rejection method; e.g., ( 1) generate ( Ul, Uz); (2) if (2 Ul - I ) * (2 Uz- 1) I1 generate a third uniform deviate U3, otherwise reject the pair and start over; (3) calculate u:-u; UlUZ (* yl=(-ln u3)'lZ -t yz= f2(-1n u3)lI2-
+
U:
*
+
U;
4-U ;
U?
random). Both y1 and yz are the desired random deviates. ( 4 ) Acceptance-rejection method: 1 ) Generate a pair of uniform deviates (Ull U z ) ;2 ) compute x = -1n ul; 3) if e-H(z-1)' >uz (or equivalently ( ~ - 1 ) ~-2s (In uz)accept x, otherwise reject the
pair and start over. The quantity will be the required normal deviate with mean zero and unit variance. b. Bivariate normal distribution
Let { X I ,X * } be a pair of independent normal deviates with mean zero and unit variance. Then { Xl, pXl ( 1 - p2)'/zXz} represent a pair of deviates from a bivariate normal distribution with zero means, unit variances, and correlrttiori coefficient p.
+
c. Exponential distribution
method: Since F ( z ) = e - z / e , X = In U will be a deviate from the exponential distribution with parameter 0. ( 2 ) Acceptance-rejection method: 1 ) Generate a pair of independent uniform deviates ( U,, U ] ); 2) if Ul
-0
+
Then X=Y+min(Ul, U,, , , . , U,) will follow an exponential distribution, The average value of n is 1.58 so that one needs, on the average, only 1.58 U ' S from which the minimum is selected.
26.9. Use and Extension of the Tables U= of Probability Function Inequalities
Example 1. Let X be a random variable with finite mean and variance equal to m and U', respectively. Use the inequalities for probability functions 26.1.37, 40, 41 to place lower bounds on
A(t)= F ( f )--F( -t) =P {'X;m' -I t } for t=1(1)4. *See page 11.
Lower bounds on A ( t ) = F ( t ) - F ( - t ) 4 0 .7500 .8889 .9375
1=1
d
S
Remarks
no knowledge of F ( t ) ;26.1.37 .5556 .8889 .9506 .9722 F(t) is unimodal and continuous; 26.1.40 0 3 1 8 2 .9697 .9912 F(t) is such that p r = 3 ; 26.1.41
954
PROBABILITY FUNCTIONS
It is of interest to note that the standard normal distribution is unimodal, has mean zero, unit variance p4=3, is continuous, and such that
A(t)=P(t)-P(-f)
values we can write r=zo+.O1 and a two-term Taylor series is P(z)=P(xo) Z(zo)10+. Thus one need only multiply Z(zo) by 10+ and add the result to P(xo).
+
Calculation of P ( x ) for x Approximate
=.6827, ,9545, .9973, and ,9999
for t = l , 2, 3 and 4 respectively. Interpolation for P ( x ) in Table 26.1
Example 2. Compute P ( z ) for x=2.576 to fifteen decimal places using a Taylor expansion. Writing x=xo+e we have e2
P(Z)
=p(z0)+Z(zo)e+z(l)(zoo)
Example 4. Using Table 26.1, fmd P ( z ) for z=1.96, when there is a possible error in z of f 5 X 10-! This is an example where the argument is only known approximately. The question arises as to how many decimal places one should retain in P(z). If Ax and AP(z) denote the error in z and the resulting error in P ( z ), respectively, then
a p ( z )=Z(z)AZ
Taking z0=2.58 and 8= -4X 10-a we calculate the successive terms to 16D +.99505 99842 42230 5 72204 35976 2952 57449 8 63097 1439
-
6 6 8 4 9
,99500 24676 84265 7
Hence AP( 1.960) = 3 X 10-4 which indicates tntt.c P(1.960) need only be calculated to 4D. Therefore P( 1.960) = ,9750. Inverse Interpolation for P(x)
Example 5. Find the value of z for which P ( z )= .97500 00000 00000 using Table 26.1 and determining as many decimal places as is consistent with the tabulated function. For inverse interpolation the tabulated function P(z) may be regarded as having a possible error of .5X1O-l5. Hence
The result correct to 17D is P(2.576) =,99500 24676 84264 98 Calculation for Arbitrary Mean and Variance
Example 3.
Find the value to 5D of
using 26.2.8 and Table 26.1. This represents the probability of the random variable being less than or equal to .5 for a normal distribution with mean m=l and variance a2=4. Using 26.2.8 we have
(*5i
P{X<.5}=P ')=P( - 25)
Since P(-z)=l-P(z), we have P(--.25)=1-P(.25)=1-.59871=.40129
where a two-term Taylor series was used for interpolation. Note that when interpolating for P ( z ) for a value of z midway between the tabulated
Let P(zoX correspond to the closest tabulated value of P(z). Then a convenient formula for inverse interpolation is
where
If only the first two terms (i.e., z=zo+t) are used, the error in
2
will be bounded by
X10-4 and the
true value will always be greater than the value thus calculated. With respect to this example, A x = ~ O - ' ~ and thus the interpolated value of z may be in error by one unit in the fourteenth place. The closest value to P(x)= ,97500 00000 00000 is P(xo)=.97500 21048 51780 with z0=1.96. Hence using the preceding inverse interpolation formulas with
955
PROBABILITY FUNCTIONS
t=-.00003
60167 31129
and carrying fifteen decimals we have the successive terms 1.96000 00000 00000
+
-
+ -
.00003
60167 31129 12 71261 68 0
1 are the mean and vari4v ance to terms of order U-' of Jz;z" (see 26.4.34).
where (2v-l)t and 1--
The values of
y1 and yz for
42x2 are
4- 1.95996 39845 40064 Edgeworth Asymptotic Expansion
Thus we obtain
Example 6. Find the Edgeworth asymptotic expansion 26.2.49 for the c.d.f. of chi-square. Method 1 . Expansion for xz
Let For numerical examples using these expansions see Example 12.
Q(XZ1 v ) =1-F(t)
where
Calculation of L(h,k,p )
Example 7.
Since the values of
y1 and yz 26.4.33
+
are
Jh2- 2 phk k2= d.oS=. 3
y1=2 &/v, yz=
w,
we obtain, by using the first two bracketed terms of 26.2.49
Find L(.5, .4,.8). Using 26.3.20
L(.5, .4, .8)=L(.5,0,0)+L(.4, 0, -.6)
Reference to Figure 26.2 yields L(.5,0,0)+L(.4,0, -.6)=.16+.08=.24
The answer to 3D is L(.5, .4, .8) =.250. L"
A
The Edgeworth expansion is an asymptotic expansion in terms of derivatives of the normal distribution function. It is often possible to transform a random variable so that the distribution of the transformed random variable more closely approximates the normal distribution function than does the distribution of the original random variable. Hence for the same number of terms, greater accuracy may be achieved by using the transformed variable in the expansion. Since the distribution of is more closely approximated by a normal distribution than x2 itself (as judged by a comparison of the values of rl and yz), we would expect that the Edgeworth asymptotic expansion of would be superior to that of xz. Method 2. Expansion for &$. Let
Calculation of the Bivariate Normal Probability Function
Example 8. Let X and Y follow a bivariate normal distribution with parameters m2=3, mv=2, u,=4, uV=2, and p=-.125. Find the value of P,{X>2, Y 1 4 } using 26.3.20 and Figures 26.2, 26.3.
Since P, { X > h , Y >k} =L have P { X > 2 , Y > 4 } =L(-.25, 26.3.20 L(-.25,
1, -.125)=L(-.25,0,
Using
,969) + L ( l , 0, .125)-g
4%
42x2
1, -.125).
1
Figure 26.2 only gives values for h>O, however, using the relationship 26.3.8 with k=O, L(-h, 0, p ) =+L(h, 0, - p ) and thus L(-.25,0, .969) Therefore L(-.25, 1, -.125) =$--L(.25,0, -.969). =-L(.25,0,
-.969)+L(l,O,
.125)=-.01+.09=.08.
The answer to 3D is L(- .25, l., -.125) =.080.
956
PROBABILITY FUNCTIONS
Integral of a Bivariate Normal Distribution Over a Polygon
For the following two configurations we define
Example 9. Let the random variables X and Y have a bivariate normal distribution with parameters mz=5, a,=2, my=9, uy=4, and p = . 5 . Find the probability that the point (X, Y) be inside the triangle whose vertices are A= (7,8), B = ( 9 , 13), and C = ( 2 , 9 ) . When obtaining the integral of a bivariate normal distribution over a polygon, it is first necessary to use 26.3.22 in order to transform the variates so that one deals with a circular normal distribution. The polygon in the region of the transformed variables is then divided’ into configurations such that the integral over any selected configuration can be easily obtained. Below are listed some of the most useful configurations.
FIQTJRE 26.8
I
> x
nn
FIGURE26.5
Y
m
FIQURE26.6 X
FIWRE26.9
Using the circularizing transformation 26.3.2 2 for our example results in 1
2-5
y-9
“Z(T+T) t=-i(T-T) 1 x-5 1’
See 26.3.23 for definition of V ( h ,k).
y-9
957
PROBABILITY FUNCTIONS
The vertices of the triangle in the (s,t) coordinates become A=(&/4, -5/4), B=(&, -1) and C=(
-$,i)
*
These points are plotted below.
From the figure it is seen that the desired probability is the sum of the probabilities that the point having the transformed variables as coordinates is inside the triangles AOB, AOC, and BOC.
=[;+L(i.31,
1 -[a+L(l
0,-.76)-L(o,
.31, 0,-.14)-L(O,
zL(1.31, 0,-.76)-L(O,
o , - - . 7 6 b 51 &(1.31)] 0,- .U) -1 &(1.31)] 2
0,-.76)
-L(1.31, 0,-.14)+L(O, 0,-.14) = .OO- -11- .04+ .23=.08
AAOC
=[;+L(.14,
0,-.99)-L(O,
0,-.99)-2 1 &(.14)]
+ [ z1+ ~ ( . i 4 ,
o , - i ) - ~ ( o , 0 , - 1 ) - ~ 1 &(.i4)] = .01+ .02= .03
FIGURE26.10
g(s, t,O)dsdt='V
For these three triangles we have h
AAOB
kl
8/14
ki
$6
ABOC
=[z+L(.48, 1
0,--.97)-L(O,
0,-.97)-- 21 &(.48)]
+[i+L(.48,
0,-.96)-L(O,
0,-.96)-2 1 &(.48)] =.05+.04=.09
Thus adding all parts, the probability that X and Y are in triangle ABCis =.08+.03+.09=.20. The answer to 3D is ,211. From the graph it is seen that the probability over AOB may be found in the same manner as that over Figure 26.8, and over AOC and BOC the probabilities may be found as that over Figure 26.9. Hence
Calculation of a Circular Normal Distribution Over an Offset Circle
Example 10. Let X and Y have a circular normal distribution with u=lOOO. Find the probability that the point ( X , Y) falls within a circle having a radius equql to 540 whose center is displaced 1210 from the mean of the circular normal distribution. In units of U, the radius and displacement from
540
the center are, respectively, R=-=.54 1000
and r
=-l2l0 1.21. The problem is thus reduced to
1000-
and consequently using 26.3.23 and Figure 26.2
finding the probability of X and Y falling in a circle of radius R=.54 displaced r=1.21 from the center of the distribution where u = l .
958
PROBABILITY FUNCTIONS
Since R<1, the approximation 26.3.25 is used. This results in
For this example Ax2= ? ~ 5 X 1 0 and - ~ %=25. This results in
=z1 (-
.076) ( f 5) 10-4= rt 2X 10-6
AQ(x'~v)
as the possible error in Q(xzlv).
The answer to 5D is ,06870.
Calculation of
1v)
Interpolation for Q ( x a
Example 11. Find Q(25.298120) using the interpolation formula given with Table 26.7. Taking x2=25, 8=.298 and applying the interpolation formula results in Q(25.298120)=: { Q(25)16)0'+ Q(25)18) (46-28') 1 8
+~ ( 2120)~3-40+ 5 0') I
=- { (.06982)(.088804)
Outside the Range of Table 26.7
Q(xalv)
Example 12. Find the value of Q(84172). Since this value is outside the range of Table 26.7 we can approximate Q(84172) by (1) using the Edgeworth expansion for Q(x21v) given in Example 6, (2) the cube root approximation 26.4.14, (3) the improved cube root approximation 26.4.15 or (4) the square root approximation 26.4.13. The results of using all four methods are presented below: 1. Edgeworth expansion
+(.12492)(1.014392)
-I- (.20143) (6.896804) }
The successive terms of the Edgeworth expansion for the distribution of chi-square result in 1-&(84172)=.841345
=.19027
.oooooo
A less accurate interpolate may be obtained by setting $ equal to zero in the above formula. This results in the value .19003. The correct value to 6D is &(25.298120)=.190259. On the other hand if x2=25.298 is assumed to have an error of f5X10-4, then how large an error arises in &(x2~v)? Denoting the error in x2 by Ax2 and the resulting error in Q(x21v) by AQ(x21v), we then have the approximate relationship
.001120 2442465
Hence Q(84 172) = ,15754. The successive terns of the Edgeworth expansion for the distribution of result in
4%'
1- Q(84172) == ,842544 - .000034 -.000138
342372
Hence Q(84 172)=. 15764. Using 26.4.8 we can write
2. Cube root approximation 26.4.14
Using the cube root approximation we have Q(84172)=Q(z>
and
where
For practical purposes it is sufficient to evaluate the derivative to one or two significant figures. Consequently we can write
LmJ This
results
in
Q(84~72)=Q(1.0046)=1-
P(1.0046) =.15754. 3. Improved cube root approximation 26.4.15
where x," is the closest value to tabulated. Hence
xz for which
Q is
The improved cube root approximation involves calculating a correction factor h, to 2. Linearly interpolating for h,, (which appears below 26.4.15) with z= 1.0046 results in hso= -.0006 and hence
959
PROBABILITY FUNCTIONS
2. Cube approximation 26.4.17
60 h~~~--(-.0006)=-.00049 '- 72
Taking x.,,=2.32635 we have
Thus x2=144
Q(84172)= Q(1.0046- .0005) = Q(1.0041)
{
[1-&]
= 1-P( 1.004 1)= .15766 4. Square root approximation 26.4.13
Using the square root approximation we have &(84/72)=&(z) where ~=7'-)-%'2(72)-
From the table for he, we obtain using linear interpolation with z =2.33 (approximately)
1: 1.0032.
l (.0012)=.00049 he,=.0012 and thus h l o = f144
This results in
Hence
&(84/72)=Q(1.0032) = 1-P(1.0032)= .15788
The value correct to 6 D is &(84172)=.157653. Generally the improved cube root approximation will be correct with a maximum error of a few units in the fifth decimal and is recommended for calculations which are outside the range of Table 26.7. Calculation of
x2
for Q ( x * I v ) Outside the Range of Table 26.8
Example 13. Find the value of x2 for which &(x2)144)=.01. Since v=144 is outside the range of Table 26.8, we can compute it by using (1) the Cornish-Fisher asymptotic expansion 26.2.50, for x2, (2) the cube approximation 26.4.17, (3) the improved cube approximation 26.4.18, or (4) the square approximation 26.4.16. We shall compute the value by all four methods. 1. Cornish-Fisher asymptotic expansion 26.2.50
The Cornish-Fisher asymptotic expansion for X' with v=144 can be written as X2- 144
8 +
~
(5)
442
(2)+2h11(~)]
16JZ
+12hn(Z)+6h112(2) +4h1111
1
(2)
Hence using the auxiliary table following 26.2.51 with p = .01 we have 144.0000 39.4794 2.9413 0242 -. 0019 0002
-.
+.
Xz= 186.395
J&1= -
186.394
4. Square approximation 26.4.16
x'=- 21 [2.32635+42(144) -1]*= 185.616 The correct answer to 3D is X2=186.394. Generally the improved cube approximation will give results correct in the second or third decimal for v>30. Calculation of the Incomplete Gamma Function
Example 14. Find the value of
niltking use of 26.4.19 and Table 26.7. Using 26.4.19 we have
3 (2.5, .9) =- JT[1- .87607]=. 16475 4
[%(z) 2 +%z(z> +2h111jz)I+-iijj- [30h*(~)
+gh22(2)
+ (2.32635-.00049)
~ ( 2 . 5.9) , = r(2.5)P(1.815)=r(2.5)[1-&(1.815)1
+124524- 4h1 +m[3h2
*sec Dam 11.
3. Improved cube approximation 26.4.18
Poisson Distribution
Example 15. Find the value of m for which 3 1-0
mf
e-m -=.99
i!
using 26.4.21 and Table 26.8. From Table 26.8 with v=2c=8 and Q=.99 we have x2= 1.646482. Hence m=x2/2=.823241. Inverse of the Incomplete Beta Function
Example 16. Find the value of 2 for which I z ( l O , 6)=.10 using Table 26.9 and 26.5.28. Using 26.5.28 we have
*
960
PROBABILITY FUNCTIONS
20
I, (10,6) =&(Fi12,20)=.10 whew z = 2 w F From Table 26.9 the upper 10 percent point of F with 12 and 20 degrees of freedom is F=1.89. Hence X=
2o -.469 204- 12(1.89)-
[ (10.5) (.60)J1'3= 1.8469, ~
wI=
i = [16(.4)]1'3=
1.8566
3[(1.8469) (.98942)-(1.8566) (.99306)]=-.0668 [ ( l . ~ ~ ~ (1.8566)' ) ' -l- 16
*
Y=
1
and interpolating in Table 26.1 gives P ( - .0668) = 1-P(.0668) =.47336
The correct value to 4 D is x=.4683.
The answer correct to 5D is I.eo(16, 10.5)=.47332.
Calculation of Iz(a, b) for a or b Small Integers
Example 17. Calculate IalO(3,20). Values of Iz(ujb ) for small integral a or b can conveniently be calculated using 26.5.6 or 26.5.7. Using 26.5.6 we have
-
21576 (. 110390X 10-') = .620O40 .216450X10-3 Binomial Distribution
Example 18. Find the value of p which satisfies
g *
Find the value of F for which
Example 20.
Q(F(7, 20) =.05 using Table 26.9.
Interpolation in Table 26.9 is approximately linear when the reciprocals of the degrees of freedom (vl, v2) are used as the interpolating variable. For this example it is only necessary to interpolate with respect to l/vl. Thus linear interpolation on l / v l results in F=2.51 which is the correct interpolate. Calculation of F for Q(FIYI,Y~)>.~O
(5so)py-'=.95,
p=l-p
using 26.5.24 and Table 26.9. Combining 26.5.24 and 26.5.28 we have
where vl=2(n-u+1),
Example 21. Find the value of F for which &(F /4 ,8 )=.90 using 26.6.9 and Table 26.9. Table 26.9 only tabulates values of F for which Q(FIvl, v2)=p where p=.500, .250, .loo, ,050, .025, .010, ,005, .001. However making, use of Table 26.9 we can find the values of F, for which p = .75, -9, .95, .975, .99, ,995, .999. For this example we have
vZ=2(a), andp=
U
a
+ (n-a+
1)F
Hence
v2)=. 10 and referring to the table for which &(Flvl, 1 gives F,lo(8, 4)=3.95 and thus F.M,(~,S)=m =l-&(F160,42)=.95
Harmonic interpolation on v2 in the table for which (3(FIv1,vz)=.05 results in F=1.624 for 42 =.301. 42+60(1.624) The correct answer to 4 D is p=.3003. vl=6O, v2=42, and thus p =
Approximating the Incomplete Beta Function
Example 19. Find 1,80(16,10.5) using 26.5.21. Values of Z ( a , b ) can conveniently be calculated with good accuracy using the iipproximntion given by 26.5.20 or 26.5.21. For this exaniple (a+b-l)(l-x)=10.20 which is greater than .8 and hence 26.5.21 will be used. Thus 'See page 11.
Interpolation for F i n Table 26.9
=.253. Calculation of Q(FIv1,ut) for Small Integral u1 or
Example 22.
Compute
Q(2.514, 15)
YZ
using
26.6.4.
Values of Q(FJv,,v2) can be readily computed for small v1 or v2 using the expansions 26.6.4 to 26.6.8 inclusive. We have using 26.6.4
+ l5
'= 15 4 (2.50)
=.60
and
[ ';"
I
Q(2.5014,15)=(.6)7.5 1+-- (.4) =.086 735
961
PROBABILITY FUNCTIONS
y=3.7190 (i.e., Q(3.7190) =.0001). stituting in 26.5.22 gives
Approximating Q(FI.1, Y Z )
Calculate &(1.714110,40) using
Example 23. 26.6.15.
h=2
The approximation given by 26.6.15 will result in a maximum error of .0005. For this example we have
-&)-(
(1.714) ll3 (1 5=
[&+(1.714)2/3
W-3.7190
9 (40)
Q( 1.714110,40) z Q( 1.2222) = 1-P( 1.2222) =. 1108
and thus F=e"=7.23.
On the other hand the approximation given by
5=
I
Ill+;
(1.714)
and interpolating in Table 26.1 gives
5=
[(&)(3.71)]1'3 [1 -"I-9(10) [ [i G+& [(&)
Q(1.714)10, 40) z Q(1.2210) = 1-P(1.2210) =.1112 Calculation of F Outside the Range of Table 26.9
Example 24. Find the value of F for which Q(F(10,20)= .0001 using 26.6.16 and 26.5.22. 2
The correct answer is
Example 25. Compute P(3.71(3,10,4) using the approximation 26.6.27 to the non-central Fdistribution. Using 26.6.27 with v1=3, u2=10, X=4, F'=3.71 we have
=1.2210
For this problem we have a=?=lO,
.9889
Approximating the Non-Central F-Distribution
4Wl
.n
12.2143
F=7.180.
26.6.14 which is usually less accurate results in (1.714) -
*
( 12.21434-1.8052)
W=
The correct value to 5 D is Q(1.714/10,40)=.11108.
(g)
1+19 1-'=12.2143
[19
1 1 -( 9-173) ['*8052+*8333-3 (12.2143) 2 l
Interpolating in Table 26.1 results in
4 1 2 (40) - 11
Hence sub-
1
-;S2] = .675
and interpolating in Table 26.1 gives
b=5=5 2 '
P(3.71/3,10,4)=P(.675)=.750
p=.OOOl. The value of the normal deviate which cuts off .0001 in the tail of the distribution is
The exact answer is P(3.7113,10,4)=.745.
References Texts (26.1) H. Cram&, Mathematical methods of statistics (Princeton Univ. Press, Princeton, N.J., 1951). [26.2] A. Erdblyi e t al., Higher transcendental functions, vols. I, 11, 111. (McGraw-Hill Book Co., Inc., New York, N.Y., 1955). [26.3] W. Feller, Probability theory and its applications, 2d ed. (John Wiley & Sons, Inc., New York, N.Y., 1957). [26.4] R. A. Fisher, Contributions to mathematical statistics, Paper 30 (with E. A. Cornish), Moments and cumulants in the specification of distributions (John Wiley &Sons, Inc., New York, N.Y., 1950). [26.5] C. Hastings, Jr., Approximations for digital computers (Princeton Univ. Press, Princeton, N.J., 1955). [26.61 M. G . Kendall and A. Stuart, The advanced theory of statistics, vol. I, Distribution theory (Charles Griffin and Co. Ltd., London, England, 1958).
Tables
I ~
General Collwtionm
[26.7] R. A. Fisher and F. Yates, Statistical tables for biological, agricultural and medical research (Oliver and Boyd, London, England, 1949). [26.8] J. Arthur Greenwood and H. 0. Hartley, Guide to taSles in mathematical statistics (Princeton Univ. Press, Princeton, N.J., 1962). (Catalogues a large selection of tables used in mathematical statistics). [26.9] A. Hald, Statistical tables and formulas (John Wiley & Sons, Inc., New York, N.Y., 1952). [26.10] 1).B. Owen, Handbook of statistical tables (Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962). [26.11] E.
S.Pearson and H. 0. Hartley (Editors). Biometrika tables for statisticians, vol. I (Cambridge Univ. Press, Cambridge, England, 1954).
962
PROBABILITY FUNCTIONS
[26.12] K. Pearson (Editor), Tables for statisticians and biometricians, parts I and I1 (Cambridge Univ. Press, Cambridge, England, 1914, 1931). Normal Probability Integral end Derivativea
[26.13] J. R. Airey, Table of H h functions, British Association for the Advancement of Science, Mathematical Tables I (Cambridge Univ. Press, Cambridge, England, 1931). [26.14] Harvard University, Tables of the error function and of its first twenty derivatives (Harvard Univ. Press, Cambridge, Mass., 1952). P ( z ) - - f , Z ( r ) , Z(n)(z), n=1(1)4 for z=0(.004) 6.468, 6D; Z(n)(z), n=5(1) 10 for r=0(.004) 8.236, 6D; Z(n)(z), n=11(1)15 for z=0(.002) 9.61, 7s; Z(n)(z), n=16(1)20 for 2=0(.002) 10.902, 75 or 6D. [26.15] T. L. Kelley, The Kelley Statistical Tables (Harvard Univ. Press, Cambridge, Mass., 1948). z for P(z)=.5(.0001).9999 and corresponding values of Z(z), 8D. [26.16] National Bureau of Standards, A guide to tables of the normal probability integral, Applied Math. Series 21 (U.S. Government Printing Office, Washington, D.C., 1951). [26.17] National Bureau of standards, Tables of normal probability functions, Applied Math. Series 23 (U.S. Government Printing Office, Washington, D.C., 1953). Z(z) and A ( z ) for z=O(.OOOI) 1(.001)7.8, 15D; Z(z) and 2[1-P(z)] for z=6(.01)10, 7s. [26.18] W. F. Sheppard, The probability integral, British Association for the Advancement of Science, ’ Mathematical Tables VII (Cambridge Univ. Press, Cambridge, England, 1939). A (z)/Z(z) for z=0(.01)10, 12D; z=O(.l)lO, 24D. Bivariate Normal Probability Integral
[26.19] Bell Aircraft Corporation, Table of circular normal probabilities, Report No. 02-949-106 (1956). Tabulates the integral of the circular normal distribution over an off-set circle having its center a distance r from the origin with radius R ; R=0(.01)4.59, r=0(.01)3, 5D. [26.20] National Bureau of Standards, Tables of the bivariate normal distribution function and related functions, Applied Math. Series 50 (U.S.Government Printing Office, Washington, D.C., 1959). L(h, Ic, p ) for h, k=0(.1)4, p=0(.05).95 (.Ol)l, 6D; L(h, k, - p ) for h, Ic=O(.l)A, p =O( .05) .95 (.O 1) 1where A is such that L< .5 * 10-7, 7D; V ( h , ah) for h=O(.Ol)4(.02)4.6(.1)5.6, a, 7D; V(ah, h) for a = . l ( . l ) l , h=0(.01)4(.02)5.6, m, 7D. (26.211 C. Nicholson, The probability integral for two variables, Biometrika 33, 59-72 (1943). V ( h ,ah) for h=.1(.1)3, ah=.1(.1)3, m , 6D. [26.22] D. B. Owen, Tables for computing bivariate normal probabilities, Ann. Math. Statist. 27, 1075-1090 1 arctan a - V ( h , ah) for (1956). T(h, a)=2s a=.25(.25)1, h=0(.01)2(.02)3; a=0(.01)1, a , h=0(.25)3; a = . l , .2(.05).5(.1).8, 1, m , h= 3(.05)3.5(.1)4.7, 6D.
t26.231 D. B. Owen, The bivariate normal probability function, Office of Technical Services, U.S. Department of Commerce (1957). T ( h , a)= 1 - arctan a-V(h, ah) for a=0(.025)1, m ; h= 2* 0(.01)3.5(.05)4.75, 6D. [26.24] Tables VIII and IX, Part I1 of [26.12]. L(h, k, p ) for h, k=0(.1)2.6, p=-1(.05)1, 6D for p>O and 7D for p
Integral,
[26.25] G. A. Campbell, Probability curves showing Poisson’s exponential summation, Bell System Technical Journal, 95-113 (1923). Tabulates
values of m=-
X2
2
for which Q(x21v)=.000001,
2D ; .0001, .01, 3D ; .l, -25, .5, .75, .9,
4D ;
.99, .9999, 3D; .999999, 2D for c=!=l(l)lOl. 2 [26.26] Table I V of [26.7]. Tabulates values of x2 for &( xzIu) = .001, .01, .02, .05, .l, .2, .3, .5, .7, -8, .9, .95, .98, .99 and ~ = 1 ( 1 ) 3 0 , 3D or 3s. [26.27] E. Fix, Tables of noncentral ~ 2 Univ. , of California Publications in Statistics 1, 15-19 (1949). Tabulates X for P(x’2lu, X) =.1(.1).9, Q ( X ’ ~ ~ V ) = .01, .05; ~=1(1)20(2)40(5)60(10)100, 3D or 35. [26.28] H. 0. Hartley and E. S. Pearson, Tables of the x2 integral and of the cumulative Poisson distribution, Biometrika 37, 313-325 (1950). Also reproduced as Table 7 in [26.11]. P(X2lu) for v=1(1)20(2)70, x2=0(.001).01(.01).1(.1)2(.2)10 (.5)20( 1)40(2) 134, 5D. [26.29] T. Kitagawa, Tables of Poisson distribution (Baifukan, Tokyo, Japan, 1951). e-mm’/s! for m=.001(.001)1(.01)5, 8 0 ; m=5(.01)10, 7D. [26.30] E. C. Molina, Poisson’s exponential binomial limit (D. Van Nostrand Co., Inc., New York, N.Y., m
1940). e-mm*/s! and P ( X ~ ~ Ye-mmf/j! ) = Z for j=c
m= x2/2= 0 (. 1)16(1) 100, 6D ; m= 0(.001) .01 (.01)3, 7D. [26.31] K. Pearson (Editor), Tables of the incomplete r-function, Biometrika Office, University College (Cambridge Univ. Press, Cambridge, England, 1934). Z(u,p) for p = -1(.05)0(.1)5(.2)50, u=O(.l) Z(u,p)=l to 7D; p=-l(.O1)-.75, u=0(.1)6, 5D; ln[l(u,p)lu~+1],p = - 1(.05)0 (.l)lO, u=O(.1)1.5, 8 D ; [zP.+l r(p+l)]-ly(p,z), p = - 1(.01)-.9,~=0(.01)3, 7D. [26.32] E. E. Sluckii, Tablitsy dlya vyEioleniya nepolnoI r-funktsii i funktsii veroyatnosti ~ 2 . (Izdat. Akad. Nauk SSSR, Moscow-Leningrad, U.S.S.R., 1950). r(x2,v)=(i
x2)-’”
P (x+),
9(tIv)=
Q ( x ~ ~ un(t, ) , z)=Q(x21v) where t = (2x2)*- (2~)3, r(x2,v), x2=0(.05)2(.1) 10, u=0(.05) 2(. 1)6; Q(x21v), x2=0(.1)3.2, u=0(.05)2( .1)6; xz=3.2 (. 2) 7 (.5) 10(1)35, v =0 (. 1).4(.2) 6 ; 9( t ,v ) , t=-4(.1)4.8, v=6(.5)11(1)32; l I ( t , ~ ) :t = -4.5 (.1)4.8, z=0(.02).22(.01).25, 5D.
z= b/2)-*.
963
PROBABILITY FUNCTIONS Inaomplste Beta Function, Binomial Dimtribution
[26.33] Harvard University, Tables of the cumulative binomial probability distribution (Harvnrd Univ. Press, Cambridge, Mass., 1955). 03
(J")p'(l-p)n-'
for p=.01(.01).5, 1/16, 1/12,
a=c
1/8, 1/6, 3/16, 5/16, 1/3, 318, 5/12, 7/16, n= 1( 1)50 (2) 100( 10)200 (20)500 (50) 1000, 5D.
[26.42] M. Merrington and C. M. Thompson, Tables of percentage points of the inverted beta ( F ) distribution, Biometrika 33, 73-88 (1943). Tabulates values of F for which & ( F l u l , v 2 ) = .5, .25, .1, .05, .025, .01, .005; vl=l(l)lO, 12, 15, 20, 24,30,40,60, 120, -;Yz=1(1)30,40,60, 120, W .
[ 26.431 P. C. Tang, The power function of the analysis of variance tests with tables and illustrations of their use, Statistical Research Memoirs 11, 126149 and tables (1938). P(F'IYI,Y Z , 6) for U I = 1(1)8, ~,=2(2)6(1)30,60, a n d + = d m = 1(.5)3(1)8 where Q(F'lv,, vZ)=.O1, .05, 3D.
[26.34] National Bureau of Standards, Tables of the binomial probability distribution, Applied Math. Series 6 (U.S. Government Printing Office, Washington, D.C., 1950). (:)p*(l--p)n-a and
2
(:)p*(l-
p)n-'
7D. l26.351 K. Pearson (Editor), Tables of the incomplete beta function, Biometrika Office, University College (Cambridge Univ. Press, Cambridge, England, 1948). Z,(a,b) for z=.01(.01)1; a,b=.5(.5)11(1)50, a>b, 7D. 126.361 W. H. Robertson, Tables of the binomial distribution function for small values of p , Office of Technical Services, U S . Department of Commerce (1960).
5 (")
Student'm t and Non-Central t-Dimtributionm
for p = .Ol(.Ol) .5, n = 2(1)49,
a=e
[ 26.441 E. T. Federighi, Extended tables of the percentage points of Student's t-distribution, J. Amer. Statist. Assoc. 64, 683-688 (1959.) Values of
[26.45]
p' ( 1-p)n-a for p=.001(.001).02, n=2(1)
a=O
[26.46]
lOO(2)200 (10)500(20) 1000; p = .021(.001) .05, n=2(1)50(2)100(5)200(10)300(20) 600(50) 1000, 5D. [26.37] H I G. Romig, 50-100 Binomial tables (John Wiley %I Sons, Inc., New York, N.Y., 1953). [26.47] p=.01(.01).5 and n=50(5)100, 6D. I26.381 C. M. Thompson, Tables of percentage points of the incomplete beta function, Biometrika 32, 151-181 (1941). Also reproduced as Table 16 in [26.11]. Tabulates values of z for which Iz(a, b) =.005, . O l , ,025, .05, .l, .25, .5; 2a=1(1)30, 40, 60, 120, a ;2b=1(1)10, 12, 15, 20, 24, 30, 40, 60, 120, 5D. [26.39] U.S. Ordnance Corps, Tables of the cumulative binomial .probabilities, ORDP 20-1, Office of Technical Services, Washington, D.C. (1952).
*
5 (r)pa(l-p)n-a
for p=.01(.01).5 and n = l
a -E
(1)150, 7D. F (Varianae-Ratio) and Non-Central F DLtribution
1 [l-A(tlv)]=.25XlO-n, 2 .1X 10-", n=0(1)6, .05X 10-n, n=0(1)5, U = 1(1)30(5)60(10)100, 200, 500, 1000, 2000, 10000, a ; 3D. Table I11 of [26.7]. Values o f t for which A(tlu)= .1(.1).9, .95, .98, .99, .999 and U = 1(1)30, 40, 60, 120, a ; 3D. N. L. Johnson and B. L. Welch, Applications of the noncentral t-distribution, Biometrika 31, 362-389 (1939). Tabulates a n auxiliary function which enables calculation of 6 for given t'andp,ort' for given 6 a n d p where P(t'Iv,S)= p = ,005, .01,.025, .05, .1(. 1) .9, .95, ,975, .99, .995. J. Neyman and B. Tokarska, Errors of the second kind in testing Student's hypothesis, J. Amer. Statist. Assoc. 31, 318-326 (1936). Tabulates 6 for P(t'lv,l)= .01,.05, .1(.1).9; Y = 1(1)30, m ; Q ( t ' 1 ~=.01, ) -05. 1 Table 9 of [26.11].P(tlv)=- [l+A(tlv)l for t = 2 0(.1)4(.2)8; Y = 1(1)20, 5 D ; t=0(.05)2(.1)4, 5; v=20(1)24, 30, 40, 60, 120, a , 5D. t for which Q ( t l v ) =
l26.48)
-
[26.49] G. S. Resnikoff and G. J. Lieberman, Tables of the noncentral t-distribution (Stanford Univ. Press, Stanford, Calif., 1957). bP(t'/v,6)/Pt' and P(t' I v,6) for v=2(1)24(5)49, 6 = &l z, whereQ(z,)= p = .25, .15, .l, .065, .04, .025, .01, .004, .0025, .001 and t'/& covers the range of values such that throughout most of the table the entries lie between 0 and 1, 4D.
Random Numbem and Normal D e d a t a 126.401 Table V of [26.7]. Tabulates values of F and 1 [26.50] E. C. Fieller, T. Lewis and E. S. Pearson, CorZ=- In F for Q ( F l v , , 4 = . 2 , .l, .05, .01, .001; related random normal deviates, Tracts for 2 Computers 26 (Cambridge Univ. Press, Camul=1(1)6, 8, 12, 24, 03; ~z=1(1)30,40, 60, 120, bridge, England, 1955). a , 2D for F, 4D for Z . [26.51] T. E. Hull and A. R. Dobell, Random number [26.41] E. Lehmer, Inverse tables of probabilities of errors generators, Soc. Ind. App. Math. 4, 230-254 of the second kind, Ann. Math. Statist. 16, (1962). 388-398 (1944). . $ = J X / ( U ~ + ~for ) ~~=1(1)10, [26.52] M. G. Kendall and B. Babington Smith, Random 12, 15, 20, 24, 30, .40, 60, 120, 0); vz=2(2)20, sampling numbers (Cambridge Univ. Press, Y Z , +) 24, 30, 40, 60, 80, 120, 240, and P(F'IY~, Cambridge, England, 1939). =.2, .3 where Q(F'lv,, ~ 1 ) = . 0 1 ,.05, 3D or 3s. *See page U.
964
PROBABILITY FUNCTIONS
[26.53]G. Marsaglia, Random variables and computers, Proc. Third Prague Conference in Probability Theory 1962. (Also aa Math. Note No. 260, Boeing Scientific Research Laboratories, 1962). [26.54] M. E. Muller, An inverse method for the generation of random normal deviates on large scale computers, Math. Tables Aids Comp. 63. 167174 (1958).
[26.55]Rand Corporation, A million random digits with 100,000 normal deviates (The Free Press, Glencoe, Ill. 1955). [26.56]H. Wold, Random normal deviates, Tracts for Computers 25 (Cambridge Univ. Press, Cambridge, England, 1948).
PROBABILITY FUNCTIONS
966 Table 26.1
NORMAL PROBABILITY FUNCTION AND DERIVATIVES Z(.,.)
P(T)
I'
2")( T )
0.00 0.02 0.04 0.06 0.08
0.50000 0.50797 0.51595 0.52392 0.53188
00000 16902 52831 54107 13988
0.39894 0.39886 0.39862 0.39822 0.39766
22804 24999 32542 48301 77055
01433 23666 04605 95607 11609
0.00000 -0.00797 -0.01594 -0.02389 -0.03181
00000 72499 49301 34898 34164
00000 98473 68184 11736 40929
0.10 0.12 0.14 0.16 0.18
0.53982 78372 77029 0.54775 84260 20584 0.55567 00048 05907 0.56355 94628 91433 0.57142 37159 00901
0.39695 0.39608 0.39505 0.39386 0.39253
25474 02117 17408 83615 14831
77012 93656 34611 68541 20429
-0.03969 -0,04752 -0.05530 -0,06301 -0.07065
52547 96254 72437 89378 56669
47701 15239 16846 50967 61677
0.20 0.22 0.24 0.26 0.28
0.57925 0.58706 0.59483 0.60256 0.61026
97094 44226 48716 81132 12475
39103 48215 97796 01761 55797
0.39104 0.38940 0.38761 0.38568 0.38360
26939 37588 66151 33691 62921
75456 33790 25014 91816 53479
-0.07820 -0.08566 -0.09302 -0,10027 -0.10740
85387 88269 79876 76759 97618
95091 43434 30003 89872 02974
0.30 0.32 0.34 0.36 0.38
0.61791 0.62551 0.63307 0.64057 0.64802
14221 58347 17360 64332 72924
88953 23320 36028 17991 24163
0.38138 0.37903 0.37653 0.37391 0.37115
78154 05261 71618 06053 38793
60524 52702 33254 73128 59466
-0.11441 -0.12128 -0.12802 -0.13460 -0.14103
63446 97683 26350 78179 84741
38157 68865 23306 34326 56597
0.40 0.42 0.44 0.46 0.48
0.65542 0.66275 0.67003 0.67721 0.68438
17416 72731 14463 18897 63034
10324 51751 39407 49653 83778
0.36827 0.36526 0.36213 0.35889 0.35553
01403 26726 48824 02910 25285
03323 22154 13092 33545 05997
-0.14730 -0.15341 -0.15933 -0.16508 -0.17065
80561 03225 93482 95338 56136
21329 01305 61761 75431 82879
0.50 0.52 0.54 0.56 0.58
0.69146 0.69846 0.70540 0.71226 0.71904
24612 82124 14837 02811 26911
74013 53034 84302 50973 01436
0.35206 0.34849 0.34481 0.34104 0.33717
53267 25127 80014 57886 99438
64299 58974 39333 30353 22381
-0,17603 -0.18121 -0.18620 -0.19098 -0.19556
26633 61066 17207 56416 43674
82150 34667 77240 32997 16981
0.60 0.62 0.64 0.66 0.68
0.72574 0.73237 0.73891 0.74537 0.75174
68822 11065 37003 30853 77695
49927 31017 07139 28664 46430
0.33322 0.32918 0.32506 0.32086 0.31659
46028 39607 22640 38037 29077
91800 70765 84082 71172 10893
-0.19993 -0.20409 -0.20803 -0,21177 -0,21528
47617 40556 98490 01104 31772
35080 77874 13813 88974 43407
0.70 0.72 0.74 0.76 0.78
0.75803 0.76423 0.77035 0.77637 0.78230
63477 75022 00028 27075 45624
76927 20749 35210 62401 14267
0.31225 0.30785 0.30338 0.29887 0.29430
39333 12604 92837 24057 50297
66761 69853 56300 75953 88325
-0.21857 -0.22165 -0.22450 -0.22714 -0.22955
77533 29075 80699 30283 79232
56733 38294 79662 89724 34894
0.80 0.82 0.84 0.86 0.88
0.78814 0.79389 0.79954 0.80510 0.81057
46014 19464 58067 54787 03452
16604 14187 39551 48192 23288
0.28969 0.28503 0.28034 0.27561 0.27086
15527 63584 38108 82471 39717
61483 89007 39621 53457 98338
-0.23175 -0.23372 -0.23548 -0.23703 -0.23836
32422 98139 88011 16925 02951
09186 60986 05281 51973 82537
0.90 0.92 0.94 0.96 0.98
0.81593 0.82121 0.82639 0.83147 0.83645
98746 36203 12196 23925 69406
53241 85629 61376 33162 72308
0.26608 0.26128 0.25647 0.25164 0.24680
52498 63012 12944 43410 94905
98755 49553 25620 98117 67043
-0.23947 -0.24038 -0,24108 -0.24157 -0.24187
67249 33971 30167 85674 33007
08879 49589 60083 54192 55702
1.00
0.84134 47460 68543
0.24197
07245 19143
-0.24197
07245 19143
00000 83137 34368 21826 13720
[(331
967
PROBABILITY FUNCTIONS
NORMAL PROBABILITY FUNCTION AND DERIVATIVES X 0.00 0.02 0.04 0.06
2(2)(x)
2(31(~)
z(4)(x)
Z(j)(X)
0.08
-0.39894 -0.39870 -0.39798 -0.39679 -0.39512
22804 29549 54570 12208 26322
0.00000 0.02392 0.04780 0.07159 0.09523
000 856 928 445 664
1.19682 1.19563 1.19204 1.18607 1.17774
684 029 400 800 897
0.00000 -0.11962 -0.23891 -0.35754 -0.47516
000 684 887 249 649
-5.98413 -5.97575 -5.95066 -5.90893 -5.85073
a93 325 742 151
0.10 0.12 0.14 0.16 0.18
-0.39298 -0.39037 -0.38730 -0.38378 -0.37981
30220 66567 87267 53315 34631
0.11868 0.14190 0.16483 0.18744 0.20967
881 445 771 353 776
1.16708 1.15410 1.13884 1.12136 1.10169
019 144 890 503 a39
-0.59146 -0.70610 -0.81878 -0.92919 -1.03701
327 997 968 252 674
-5.77625 -5.68577 -5.57961 -5.45815 -5.32182
460 399 395 435 a95
0.20 0.22 0.24 0.26 0.28
-0.37540 -0.37055 -0.36528 -0.35961 -0.35353
09862 66169 98981 11734 15588
0.23149 0.25286 0.27372 0.29405 0.31380
727 011 555 426 836
1.07990 1.05604 1.03017 1.00237 0.97272
350 063 556 941 834
-1.14196 -1.24376 -1.34214 -1.43683 -1.52759
980 938 434 568 737
-5.17112 -5.00657 -4.82876 -4.63831 -4.43591
356 387 317 979 441
0.30 0.32 0.34 0.36 0.38
-0.34706 -0.34021 -0.33300 -0i32545 -0.31755
29121 78003 94659 17909 92592
0.33295 0.35144 0.36926 0.38637 0.40274
156 923 849 828 947
0.94130 0.90818 0.87347 0.83725 0.79963
327 965 711 919 298
-1.61419 -1.69641 -1.77405 -1.84692 -1.91485
723 762 617 643 840
-4.22225 -3.99809 -3.76420 -3.52140 -3.27051
716 459 646 244 871
0.40 0.42 0.44 0.46 0.48
-0.30934 -0.30083 -0.29202 -0.28294 -0.27361
69179 03372 55692 91055 78339
0.41835 0.43316 0.44716 0.46033 0.47264
488 939 995 566 779
0.76069 0.72055 0.67932 0.63709 0.59398
880 987 193 291 256
-1.97769 -2.03531 -2.08758 -2.13440 -2.17570
904 269 144 537 278
-3.01241 -2.74796 -2.47807 -2.20363 -1.92557
439 802 382 810 548
0.50 0.52 0.54 0.56 0.58
-0.26404 89951 -0.25426 01373 -0.24426 90722 -0.23409 38293 -0.22375 26107
0.48408 0.49464 0.50430 0.51306 0.52090
982 748 874 383 525
0.55010 0.50556 0.46048 0.41496 0.36913
207 372 050 574 279
-2.21141 -2.24148 -2.26589 -2.28463 -2.29771
033 307 443 613
801
-1.64480 -1.36224 -1.07881 -0.79543 -0.51298
520 740 949 249 749
0.60 0.62 0.64 0.66 0.68
-0.21326 -0.20264 -0.19191 -0,18109 -0.17020
37459 56463 67607 55308 03472
0.52782 0.53382 0.53890 0.54306 0.54630
777 841 643 327 259
0.32309 0.27696 0.23085 0.18486 0.13911
457 332 017 483 528
-2.30516 -2.30703 -2.30336 -2.29426 -2.27980
783 091 981 388 875
-0.23237 +0.04554 0.31990 0.58988 0.85469
218 255 583 999 355
0.70 0.72 0.74 0.76 0.78
-0.15924 -0.14826 -0.13725 -0.12624 -0.11524
95060 11670 33120 37042 98497
0.54863 0.55005 0.55058 0.55023 0.54901
016 386 359 127 073
0.09370 0.04874 +o.0043:: -0.03944 -0.08247
741 473 808 465 882
-2.26011 -2.23531 -2.20553 -2.17094 -2.13170
583 162 714 715 944
1.11354 1,36570 1.61045 1.84714 2.07512
405 074 709 311 746
0.80 0.82 0.84 0.86 0.88
-0.10428 -0.09337 -0.08253 -0.07177 -0.06110
89590 79110 32179 09916 69120
0.54693 0.54402 0.54030 0.53578 0.53049
765 952 551 644 467
-0.12468 -0.16597 -0.20625 -0.24546 -0.28351
324 047 697 336 458
-2.08800 -2.04002 -1.98796 -1.93204 -1.87248
401 228 617 726 587
2.29381 2.50267 2.70117 2.88887 3.06536
943 061 643 745 044
0.90 0.92 OI94 0.96 0.98
-0.05055 -0.04013 -0.02985 -0.01972 -0.00977
61975 35759 32587 89163 36558
0.52445 0.51768 0.51022 0.50209 0.49332
403 968 310 689 478
-0.32034 -0.35587 -0.39005 -0.42282 -0.45413
003 378 463 627 732
-1,80951 -1.74335 -1.67426 -1,60247 -1.52824
008 486 103 436 456
3.23025 3.38325 3.52407 3.65250 3.76836
923 538 854 673 628
-0.48394 145
-1.45182
435
3.87153 159
1.00
0.00000 00000
0,48394 145
[ P (- x)= 1-P ( x )
(-4)3 6
Z( -.)=Z(x)
]
[‘“‘3
ziq-+(
-
421
968
PROBABILITY FUNCTIONS
NORMAL PROBABILITY FUNCTION AND DERIVATIVES
Table 26.1
1.00 1.02 1.04 1.06 1.08
0.84134 0.84613 0.85083 0.85542 0.85992
47460 57696 00496 77003 89099
68543 27265 69019 36091 11231
0.24197 0.23713 0.23229 0.22746 0.22265
Z(4 07245 19520 70047 96324 34987
19143 19380 43366 57386 51761
-0.24197 -0.24187 -0.24158 -0.24111 -0.24046
07245 45910 88849 78104 57786
19143 59767 33101 04829 51902
1.10 1.12 ~.~ 1.14 1.16 1.18
0.86433 0.86864 OI87285 0.87697 0.88099
39390 31189 68494 55969 98925
53618 57270 37202 48657 44800
0.21785 0.21306 OI20830 0.20357 0.19886
21770 91467 77900 13882 31193
32551 75718 47108 90759 87276
-0.23963 -0.23863 -0.23747 -0.23614 -0.23465
73947 74443 08806 28104 84808
35806 88804 53704 17281 76986
1.20 1.22 1.24 1.26 1.28
0.88493 0.88876 0.89251 0.89616 0.89972
03297 75625 23029 53188 74320
78292 52166 25413 78700 45558
0.19418 0.18954 0.18493 0.18037 0.17584
60549 31580 72809 11632 74302
83213 91640 63305 27080 97662
-0.23302 -0.23124 -0.22932 -0.22726 -0.22508
32659 26528 22283 76656 47107
79856 71801 94499 66121 81008
1.30 1.32 1.34 1.36 1.38
0.90319 0.90658 0.90987 0.91308 0.91620
95154 24910 73275 50380 66775
14390 06528 35548 52915 84986
0.17136 0.16693 0116255 0.15822 0.15394
85920 70417 50552 47903 82867
47807 41714 25534 70383 62634
-0.22277 -0.22035 -0.21782 -0.21518 -0.21244
91696 68950 37740 57149 86357
62150 99062 02216 03721 32434
1.40 1.42 1.44 1.46 1.48
0.91924 OI92219 0.92506 0.92785 0.93056
33407 61594 63004 49630 33766
66229 73454 65673 34106 66669
0.14972 oIi4556 0.14145 0.13741 0.13343
74656 41300 99652 65392 53039
35745 37348 24839 82282 51002
-0.20961 -0I20670 -0.20370 -0.20062 -0.19748
84518 10646 23499 81473 42498
90043 53034 23768 52131 47483
1.50 1.52 1.54 1.56 1.58
0.93319 0.93574 0.93821 0.94062 0.94294
27987 45121 98232 00594 65667
31142 81064 88188 05207 62246
0.12951 0.12566 0.12187 0.11815 0.11450
75956 46367 75370 72950 48002
65892 89088 32402 59582 59292
-0.19427 -0.19101 -0.18769 -0.18432 -0.18091
63934 02479 14070 53802 75844
98838 19414 29899 92948 09682
1.60 1.62 1.64 1.66 1.68
0.94520 0.94738 0.94949 0.95154 0.95352
07083 00442 38615,45748 74165 25897 27737 33277 13421 36280
0.11092 0.10740 0.10396 0.10058 0.09728
08346 60751 10953 63684 22693
79456 13484 28764 27691 31467
-0.17747 -0.17399 -0.17049 -0.16697 -0.16343
33354 78416 61963 33715 42124
87129 83844 39173 89966 76865
1.70 1.72 1.74 1.76 1.78
0.95543 Oi95728 0.95907 0.96079 0.96246
45372 37792 04910 60967 20196
41457 08671 21193 12518 51483
0.09404 0;09088 0.08779 0.08477 0.08182
90773 69790 60706 63613 77759
76887 16283 10906 08022 92143
-0.15988 -0Ii5632 -0.15276 -0.14920 -0.14565
34315 56039 51628 63959 34412
40708 08007 62976 02119 66014
1.80 1.82 1.84 1.86 1.88
0.96406 0.96562 0.96711 0.96855 0.96994
96808 04975 58813 72370 59610
87074 54110 40836 19248 38800
0.07895 0.07614 0.07340 0.07074 0.06814
01583 32736 68125 03934 35661
00894 96207 81657 56983 01045
-0.14211 -0.13858 -0.13506 -0.13157 -0.12810
02849 07581 85351 71318 99042
41609 27097 50249 29989 69964
1.90 1.92 1.94 1.96 1.98
0.97128 0.97257 0.97381 0.97500 0.97614
34401 10502 01550 21048 82356
83998 96163 59548 51780 58492
0.06561 0.06315 0.06076 0.05844 0.05618
58147 65614 51689 09443 31419
74677 35199 54565 33451 03868
-0.12467 -0.12126 -0.11788 -0.11454 -0.11124
00480 05979 44277 42508 26209
71886 55581 71856 93565 69659
2.00
0.97724 98680 51821
P(X)
X
Z(') (x)
0.05399 09665 13188
-0.10798 19330 26376
";a"]
969
PROBABILITY FUNCTIONS
Table 26.1
NORMAL PROBABILITY FUNCTION AND DERIVATIVES X
2 3 5 ) (XI
Z ( 6 )(x)
1.00 1.02 1.04 1.06 1.08
0.00000 0.00958 0.01895 0.02811 0.03704
00000 01309 54356 52466 95422
0.48394 0.47397 0.46346 0.45243 0.44091
145 745 412 346 805
-0.48394 -0.51219 -0.53886 -0.56392 -0.58734
145 739 899 521 012
-1.45182 -1.37346 -1.29343 -1.21197 -1.12934
435 846 272 312 487
3.87153 3.96192 4.03951 4.10431 4.15639
159 478 497 754 308
1.10 1.12 1.14 1.16 1.18
0.04574 0.05420 0.06240 0.07035 0.07803
89572 47909 90139 42718 38880
0.42895 0.41656 0.40379 0.39067 0.37723
094 552 549 467 697
-0.60909 -0.62916 -0.64755 -0.66424 -0.67924
290 776 390 543 129
-1.04580 -0.96159 -0.87697 -0.79217 -0.70744
155 420 050 397 317
4.19584 4.22282 4.23751 4.24014 4.23098
622 430 585 894 941
1.20 1.22 1.24 1.26 1.28
0.08544 0.09257 0.09942 0.10598 0.11226
18642 28784 22822 60955 09995
0.36351 0.34954 0.33536 0.32099 0.30647
629 639 083 285 534
-0.69254 -0.70416 -0.71411 -0.72240 -0.72907
515 524 427 928 143
-0.62301 -0.53910 -0.45594 -0.37373 -0.29268
100 399 161 571 993
4.21033 4.17853 4.13593 4.08295 4.02000
894 305 896 339 029
1.30 1.32 1.34 1.36 1.38
0.11824 0.12393 0.12932 0.13442 0.13923
43285 40598 88019 77819 08305
0.29184 0.27712 0.26234 0.24754 0.23275
071 083 695 965 873
-0.73412 -0.73760 -0.73953 -0.73995 -0.73889
591 168 132 087 953
-0.21299 -0.13484 -0.05841 +0.01613 0.08864
916 911 584 459 645
3.94752 3.86600 3.77593 3.67781 3.57216
847 921 384 128 556
1.40 1.42 1.44 1.46 1.48
0.14373 0.14795 0.15187 0.15550 0.15884
83670 13818 14187 05559 13858
0.21800 0.20331 0.18870 0.17422 0.15988
319 117 986 548 325
-0.73641 -0.73255 -0.72735 -0.72087 -0.71315
957 600 645 087 137
0.15897 0.22698 0.29255 0.35556 0.41593
463 486 386 954 103
3.45953 3.34046 3.21550 3.08522 2.95017
335 152 469 283 891
1.50 1.52 1.54 1.56 1.58
0.16189 0.16467 0.16716 0.16939 0.17134
69946 09400 72298 02982 49831
0.14570 0.13172 0.11794 0.10440 0.09111
730 067 528 190 010
-0.70425 -0.69422 -0.68313 -0.67103 -0.65798
193 823 742 785 890
0.47354 0.52834 0.58025 0.62921 0.67518
871 425 051 147 208
2.81093 2.66805 2.52210 2.37361 2.22315
657 791 132 937 681
1.60 1.62 1.64 1.66 1.68
0.17303 0.17447 0.17565 0.17658 0.17728
65021 04284 26667 94284 72076
0.07808 0.06535 0.05292 0.04080 0.02902
827 359 202 829 592
-0.64405 -0.62928 -0.61375 -0.59751 -0.58062
073 410 011 005 516
0.71812 0.75802 0.79486 0.82863 0.85934
810 588 211 352 661
2.07124 1.91841 1.76517 1.61201 1.45942
871 857 671 862 351
1.70 1.72 1.74 1.76 1.78
0.17775 0.17799 0.17801 0.17782 0.17743
27562 30597 53128 68955 53495
0.01758 +0.00650 -0.00421 -0.01456 -0.02452
718 315 632 254 804
-0.56315 -0.54516 -0.52670 -0.50785 -0.48864
647 459 954 061 614
0.88701 0.91167 0.93333 0.95206 0.96790
729 051 988 725 228
1.30785 1.15774 1.00953 0.86361 0.72036
296 966 633 469 463
1.80 1.82 1.84 1.86 1.88
0.17684 0.17607 0.17511 0.17399 0.17270
83546 37061 92921 30717 30539
-0.03410 -0.04329 -0.05208 -0.06047 -0.06846
647 263 243 285 193
-0.46915 -0.44942 -0.42952 -0.40949 -0.38940
342 853 621 971 073
0.98090 0.99113 0.99865 1.00356 1.00592
203 045 794 087 110
0.58014 0.44328 0.31010 0.18087 +0.05587
345 526 045 536 197
1.90 1.92 1.94 1.96 1.98
0.17125 0.16966 0.16793 0.16606 0.16407
72766 37866 06209 57874 72476
-0.07604 -0.08323 -0.09001 -0.09640 -0.10238
873 327 655 044 771
-0.36927 -0.34918 -0.32915 -0.30925 -0.28950
924 347 976 250 408
1.00582 1.00336 0.99863 0.99173 0.98276
548 537 613 666 891
-0.06467 -0.18054 -0.29155 -0.39754 -0.49836
219 414 530 137 204
2.00
0.16197 28995
P(-5)
-0.10798 193
= 1- P ( z )
0.97183 740
-0.26995 483
['-:"I
Z(-5) = Z ( x )
-0.59390 063
[);-( z
'I
970
PROBABILITY FUNCTIONS
Table 26.1
NORMAL PROBABILITY FUNCTION AND DERIVATIVES
2.00 2.02 2.04 2.06 2.08
0.97724 0.97830 0.97932 0.98030 0.98123
98680 51821 83062 32353 48371 33930 07295 90623 72335 65062
0.05399 0.05186 0.04980 0.04779 0.04586
09665 13188 35766 82821 00877 35071 95748 82077 10762 71055
-0.10798 -0.10476 -0.10159 -0.09846 -0.09539
19330 26376 44248 99298 21789 79544 71242 57079 10386 43794
2.10 2.12 2.14 2.16 2.18
0.98213 0.98299 0.98382 0.98461 0.98537
55794 69773 26166 36652 12692
37184 52367 27834 16075 24011
0.04398 0.04216 0.04040 0.03870 0.03706
35959 61069 75539 68561 29102
80427 61770 22860 47456 47806
-0.09236 -0.08939 -0.08647 -0.08360 -0.08079
55515 21467 21653 68092 71443
58897 58953 94921 78504 40218
2.20 2.22 2.24 2.26 2.28
0.98609 0.98679 0.98745 0.98808 0.98869
65524 86502 06161 92744 45385 64054 93745 81453 61557 61447
0.03547 0.03394 0.03246 0.03103 0.02965
45928 07631 02656 19322 45848
46231 82449 43697 15008 47341
-0.07804 -0.07534 -0.07271 -0.07013 -0.06761
41042 84942 09950 21668 24534
61709 65037 41882 05919 51938
2.30 2.32 2.34 2.36 2.38
0.98927 0.98982 0.99035 0.99086 0.99134
58899 78324 95613 31281 81300 54642 25324 69428 36809 74484
0.02832 0.02704 0.02581 0.02463 0.02349
70377 41601 80995 46882 65754 71588 12693 06382 09853 58201
-0.06515 -0.06275 -0.06041 -0.05812 -0.05590
21868 15909 07866 97955 85451
05683 48766 03515 63063 52519
2.40 2.42 2.44 2.46 2.46
0.99180 0.99223 0.99265 0.99305 0.99343
24640 75404 97464 49447 63690 44652 31492 11376 08808 64453
0.02239 0.02134 0.02032 0.01935 0.01842
45302 94843 07148 99923 83557 38226 62767 31737 33106 46862
-0.05374 -0I05164 -0.04960 -0.04761 -0.04568
68727 07623 45300 57813 11880 01271 64407 60073 98104 04218
2.50 2.52 2.54 2.56 2.58
0.99379 0.99413 0.99445 0.99476 0.99505
03346 74224 22582 84668 73765 56918 63918 36444 99842 42230
0.01752 0.01667 0.01584 0.01505 0.01430
83004 01008 75790 96163 51089
93569 37381 25361 27377 94150
-0.04382 -0.04200 -0.04025 -0.03855 -0.03690
07512 33921 86541 10200 28507 24416 26177 98086 71812 04906
2.60 2.62 2.64 2.66 2.68
0.99533 88119 0199560 35116 0.99585 46986 0.99609 29674 0.99631 88919
76281 51879 38964 25147 90825
0.01358 0.01289 0.01223 0.01160 0.01099
29692 21261 15263 01351 69366
33686 07895 51278 13703 29406
-0.03531 57200 -0103377 73704 -0.03229 12295 -0.03085 63594 -0.02947 17901
07583 02686 67374 02449 66807
2.70 2.72 2.74 2.76 2.78
0.99653 0.99673 OI99692 0.99710 OI99728
30261 59041 80407 99319 20550
96960 84109 81350 23774 77299
0.01042 0.00987 0.00934 0.00884 0.00836
09348 14423 11537 94751 66383 67612 64543 98237 96891 54653
-0.02813 -0.02684 -0.02560 -0.02441 -0.02326
65239 95383 97891 62141 77358
98941 21723 27258 39135 49935
2.80 2.82 2.84 2.86 2.88
0.99744 0.99759 0.99774 0.99788 0.99801
48696 88175 43233 17949 16241
69572 25811 08458 59596 45106
0.00791 0.00748 0.00707 0.00667 0.00630
54515 28725 11048 93237 67263
82980 25781 86019 39203 96266
-0.02216 -0.02110 -0.02008 -0.01910 -0.01816
32644 32344 17005 22701 19378 76295 28658 94119 33720 21246
2.90 2.92 2.94 2.96 2.98
0.99813 0.99824 0.99835 0.99846 0.99855
41866 99616 98430 71324 89387 65843 18047 88262 87580 82660
0.00595 OI00561 0.00529 0.00499 0.00470
25324 59835 63438 28992 49575
19776 95991 65311 13612 26934
-0.01726 -0.01639 -0.01557 -0.01477 -0.01402
23440 86721 12509 89816 07734
3.00
0.99865 01019 68370
0.00443 18484 11938
-0.01329 55452 35814 ";971
=s'
P(x)
- m
Z(/)dt
17350 00294 64014 72293 30263
97 1
PROBABILITY FUNCTIONS
Table 26.1
NORhIAL PROBABIIJTY FUNCTION AND DERIVATIVES
2.00 2.02 2.04 2.06 2.08
0.16197 0.15976 0.15744 0.15504 0.15255
28995 05616 79574 27011 22841
Z(3)(x) -0.10798 193 -0.11318 748 -0.11800 948 -0.12245 372 -0.12652 667
-0.26995 -0.25064 -0.23160 -0.21287 -0.19448
483 297 454 345 137
0.97183 0.95904 0.94451 0.92833 0.91062
740 873 117 417 795
-0.59390 -0.68406 -0.76878 -0.84800 -0.92169
063 360 007 114 927
2.10 2.12 2.14 2.16 2.18
0.14998 0.14734 0.14464 0.14188 0.13907
40623 52442 28800 38519 48644
-0.13023 -0.13358 -0.13659 -0.13925 -0.14158
543 762 143 550 892
-0.17645 779 -0.15882 997 -0.14162 297 -0.12485 967 -Oil0856 076
0.89150 0.87107 0.84943 0.82671 0.80301
307 003 890 890 811
-0.98986 -1.05251 -1.10968 -1.16141 -1.20777
750 862 436 446 570
2.20 2.22 2.24 2.26 2.28
0.13622 0.13333 0.13041 0.12746 0.12450
24365 28941 23633 67648 18090
-0.14360 -0.14530 -0.14670 -0.14781 -0.14863
115 204 170 055 922
-0.09274 -0.07742 -0.06262 -0.04834 -0.03460
478 816 527 844 801
0.77844 0.75309 0.72708 0.70050 0.67346
311 866 743 969 314
-1.24885 -1.28473 -1.31554 -1.34140 -1.36245
097 823 947 971 589
2.30 2.32 2.34 2.36 2.38
0.12152 0.11853 0.11554 0.11255 0.10957
29919 55915 46652 50482 13521
-0.14919 -0.14949 -0.14955 -0.14937 -0.14896
851 939 294 032 273
-0.02141 -0.00876 +0.00331 0.01484 0.02581
241 819 989 882 724
0.64604 0.61833 0.59044 0.56243 0.53440
257 976 323 808 589
-1.37883 -1.39070 -1.39823 -1.40159 -1.40097
587 730 661 796 220
2.40 2.42 2.44 2.46 2.48
0.10659 0.10363 0.10069 0.09778 0.09488
79642 90478 85430 01675 74192
-0.14834 -0.14751 -0.14650 -0.14530 -0.14394
137 744 207 633 118
0.03622 0.04607 0.05536 0.06411 0.07231
539 505 942 307 187
0.50642 0.47856 0.45090 0.42350 0.39643
453 812 689 717 129
-1.39654 -1.38851 -1.37705 -1.36239 -1.34470
584 010 991 299 892
2.50 2.52 2.54 2.56 2.58
0.09202 0.08919 0.08639 0.08363 0.08091
35776 17075 46618 50852 54185
-0.14241 -0.14074 -0.13893 -0.13700 -0.13494
744 579 674 058 742
0.07997 0.08710 0.09371 0.09981 0.10541
287 428 533 624 808
0.36973 0.34348 0.31771 0.29247 0.26781
759 039 001 277 102
-1.32420 -1.30109 -1.27556 -1.24781 -1.21804
833 199 010 146 284
2.60 2.62 2.64 2.66 2.68
0.07823 0.07560 0.07301 0.07047 0.06798
79028 45843 73197 77809 74610
-0.13278 -0.13052 -0.12818 -0.12575 -0.12326
711 927 326 818 282
0.11053 0.11517 0.11935 0.12308 0.12638
277 293 186 341 196
0.24376 0.22036 0.19764 0.17563 0.15434
323 399 415 084 760
-1.18644 -1.15321 -1.11853 -1.08259 -1.04556
824 833 985 509 139
2.70 2.72 2.74 2.76 2.78
0.06554 0.06315 0.06082 0.05854 0.05631
76800 95904 41838 22966 46165
-0.12070 -0.11809 -0.11543 -0.11274 -0.11001
569 501 869 431 916
0.12926 0.13173 0.13382 0.13554 0.13690
232 965 945 741 942
0.13381 0.11404 0.09506 0.07686 0.05946
449 817 206 640 846
-1.00761 -0.96890 -0.92961 -0.88988 -0.84986
072 932 727 829 942
2.80 2.82 2.84 2.86 2.88
0.05414 0.05202 0.04996 0.04795 0.04600
16888 39229 15987 48727 37850
-0.10727 020 -0.10450 406 -0.10172 706 -0.09894 520 -0,09616 416
0.13793 0.13862 0.13902 0.13911 0.13894
149 969 007 867 142
0.04287 0.02708 +0.01209 -0.00209 -0.01549
262 053 127 857 465
-0.80970 -0.76951 -0.72943 -0.68959 -0.65008
080 553 954 143 248
2.90 2.92 2.94 2.96 2.98
0.04410 0.04226 0.04048 0.03875 0.03707
82652 81389 31340 28865 69473
-0,09338 928 -0.09062 562 -0.08787 791 -0.08515 058 -0.08244 776
0.13850 0.13782 0.13691 0.13578 0.13446
412 240 166 706 347
-0.02810 -0.03993 -0.05100 -0.06132 -0.07091
482 892 863 737 012
-0.61101 -0.57249 -0.53459 -0.49740 -0.46100
661 036 292 627 520
3.00
0.03545 47873
-0.07977 327
0.13295 545
X
Z(2)(5)
Z(4)(x)
[(-65)lI
P( -2)
= 1- P(2)
Z( --x) =Z(x)
Z(5)(x)
-0.07977 327
w21
Z(")(-X) =(-1).Z(.)(2)
Z(6)(x)
-0.42545 745 [(-:)71
972
PROBABILITY FUNCTIONS
Table 26.1
NORMAL PROBABILITY FUNCTION AND DERIVATIVES
3.20
0.99931 28621
3.25 3.30 3.35 3.40 3.45
0.99942 0.99951 0.99959 0.99966 0.99971
3.50 . _. .
0.99976 - . . . . - 73709 .- . - .
3.55 3.60 3.65 3.70
0.99980 0.99984 0.99986 0.99989
73844 08914 88798 22003
3.75 3. 80 3.85 3.90 3.95
0.99991 0.99992 0.99994 0.99995 0.99996
15827 76520 09411 19037 09244
4.00 4.05 4.10 4.15 4.20
0.99996 0.99997 0.99997 0.99998 0.99998
a3288 43912 93425 33762 66543
4.25 4.30 4.35 4.40 4.45
0.99998 0.99999 0.99999 0.99999 0.99999
93115 14601 31931 45875 57065
4.50 4.55 4.60 4.65 4.70
0.99999 0.99999 0.99999 0.99999 0.99999
66023 73177 78875 83403 86992
4.75 4.80 4.85 4.90 4.95
0.99999 0.99999 0.99999 0.99999 0.99999
89829 92067 93827 95208 96289
5.00
0.99999 97133
29750 65759 59422 30707 97067
(-6)1.48671 9515
(-6)-7.43359 76
[(-76)31 Table 26.2 NORMAL PROBABlLITY FUNCTION FOR LARGE ARGUMENTS I'
-log Q ( a )
2'
,r
-log Q ( . E )
5 6 7 8 9
6.54265 9.00586 11.89285 15.20614 18.94746
15 16 17 18 19
50.43522 57.19458 64.38658 72.01140 80.06919
25 26 27 28 29
137.51475 148.60624 160.13139 172.09024 164.48283
20 21 22 23 24
88.56010 97.48422 106.84167 116.63253 126.85686
30 31 32 33 34
197.30921 210.56940 224.26344 238.39135 252.95315
-log
Q(X)
[(-;I 51
[(-32)51
From E. S. Pearson and H. 0. Hartley (editors), Biometrika tables for statisticians, vol. I. Cambridge Univ. Press, Cambridge, England, 1954(with permission). Known error has been corrected.
973
PROBABILITY FUNCTIONS
NORMAL PROBABILITY FUNCTION AND DERIVATIVES
Table 26.1
2 (2)(x)
2(6)(x)
X 3.00 3.05 3.10 3.15 3.20
-2 3.54547 -2 3.16305 1-21 2.81273 -2 2.49317 -2)2.20289
87 (-2)-7.97732 71 50 -2 -7.32336 28 12 1-21 -6.69403 89 71 -2 -6.09312 50 75 (-21-5.52345 55
3.25 3.30 3.35 3.40 3.45
(-2)1.94027 -2 1.70362 1-211.49118 2 1.30122 {12{1.13198
72 07 76 34 62
(-2)-4.98701 (-21-4I48505 (-2)-4,01812 2 -3.58625 (121-3.18893
97 (-1)1.03869 27 -2 9i68981 87 1-218.98716 07 -2 8.28958 82 (-217.60587
82 (-1) -1.38096 - - -. 20 -1.40361 85 \Ill-1.40345 19 1 -1.38395 84 1111-1.34845
14 -
( - 2 ) -7.05366 66
-1
69 (-2 -2.12970 34 00 1-2 +2.07973 - - - - - - 11 -76 -2 5.60664 85 27 1-21 8.49222 78
03 (-2)-2.82531 02 69 2 -2.49416 18 71 (121-2.19403 56 46 2 -1.92328 53 16 [12{-1.68013 34 3.75 3.80 3.85 3.90 3.95
(-3)4.60578 (-3 3.92316 (-313.33297 3 2,82289 11312,38395
I
-9.53712 78 -1) 1.52468 79 -8.77684 95 [-1 1.51237 96 -8.02840 11 (-1 1.47814 11
11
I
67 22 42 17 27 05 65 82 86
(-2 -5.94206 (-21-5.31924 (-2 -4.73847 -2 -4.20116 1-2 -3.70770
i
20 82 30 64 95
2 -1.60082 16 95 60 [121-1.37210 59 19 (-2 -1.17154 20 97 1-31-9.96506 67 43 -3 -8.44460 51 4.75 4.80 4.85 4.90 4.95
-4)1.08448 1-51 8.73070 -5 7.00939 -5 5.61204 (-5 4.48098
75 -4 -4.67351 25 32 1-41 -3.81045 28 74 -4 -3.09767 67 87 -4 -2.51088 57 88 -4 -2.02933 60
5.00
(-5)3.56812 68 (-4)-1.63539 15 (-4)7.10651 93 (-3)-2.89910 31
(-2) 1.09422 56
NORMAL PROBABILITY FUNCTION FOR LARGE ARGUMENTS
Table 2 6 . 2
r
-log Q ( x )
L
35 36 37 38 39
267.94888 283.37855 299.24218 315.53979 332.27139
45 46 47 48 49
40 41 42 43 44
349.4 3701 367.03664 385.07032 403.53804 422.43983
50 60 70 80 90
-log Q ( r ) 441.77568 461.54561 481.74964 502.38776 523.45999 544.96634 783.90743 1066.26576 1392.04459 1761.24604
r 100 is0 200 250
300
-log Q ( X ) 2173.87154 4888.38812 8688,58977 13574.49960 19546.12790
350 400 450 500
26603,48018 34746.55970 43975.36860 54289.90830
974
PROBABILITY FUNCTIONS
HIGHER DERIVATIVES OF THE NORMAL PROBABILITY FUNCTION
Tahle 26.3
ZCV(1)
I
0.0 0.00000 00 0.1 ( 0) 4.12640 51 0.2 ( 0) 7.88604 35
0.3 0.4
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
2(9)
[
1.40908 1.39704 1.27812 1) 1.06929 0) 7.94982
0 65 30 0 14 ( 1 1 -2.46111 11 69 1 -2.97666 59 72
0 4.83941 03+1.65937 0 -1.31434 0 -3.85379 01-5.79719
45 85 07 20 45
[ [
1
[ [( [
1 -3.19401 11-3.11962 1 -2.78951 1 -2.26227 11-1.61006
36 40 64 70 61
0)-9.09001 66 0)-2.30231 38 ( 0 +3.67230 04 01 8.41240 57 1 1.16856
03 44 07 26 49
0 -7.05769 71
01-7.62276 0 -7.54545 01-6.92967 0 -5.91207
[
I
I [
I [
/
Z(lC ( I )
(r)
39 42 ( 56 ( 42 37
[
?:
1.9
1,
Z(8J (I ) 4.18889 4.00211 3.46206 2.62702 1.58584
1) 1) ( 1 1 1.09518 61 ( 11 11 1.30711 60 ( 1)
-1.14961 -1.07710 -9.05305 1 -6.58548 11-3.68086
02 05 52 60 24
0 -6.77518 03
11+2.10408 1 4.39889 1 6.02399 l / 6.89184
36 22 37 82
1 [ [
1
Z(IU(T)
Z(12)( 1 . )
131 1.01729 46 (3 1.98042 89 3 1.14847 09 (2)+6.22581 20 11+1.72666 2 1.25426 2 2.14046 2 2.74183 2) 3.01027
73 91 31 89 69 (
2 2.94236 21 2.57621 2 1.98269 2 1.25293 dr4.84200
40 2)-2.26484 60 3 -3.01011 58 24 i2)-4.93791 72 131-2.29066 27 77 2)-6.77812 94 3 -1.36759 19 01 2 -7.65280 28 2 -3.83358 74 76 121-7.56972 92 [2/+5.27141 25
[ [
(3) 1.60633 92 (3) 1.19573 79 2.76469 29 +2.51533 48
/
( 1 -2.50848 12 ( 11-2.36048 69
3.0 ( 0 1.75501 20 ( 0 -2.28683 38 3.1 ( 01 1.49720 05 ( 0)-2.80440 64 0 -2.96904 52 1.20591 21 9.12450 33 03-2.86200 69 6.39748 51 0 -2.56761 03
1
11-2.04053 83 1 -1.61917 24 1 -1.16080 0 1
1 [
+3.85905 2.45855 11 3.82142 1 4.49758 1 4.58182
05 2 2.41200 50 73 I21 1.72126 20 44 25 18
0 -7.17959 44 [ -101-3.28394 42 -1.46351 84
1
f 1)-2.53474 56
Ojr2.14502 0 0 0 3.61188 70
02 27
[:)
+4.35697 68 8.87625 64
1 5.88418 05 1) 3.23557 28
(0) 2.21617 27
5.0 (-2)-3.73166 60 (-1) 1.09987 51 (-1)-2.51404 27 (-1) 2.67133 76 ( 0 ) 1.17837 39 (0)-8.83034 08 Z ( ,-) =-
1
42;
P-W
(1 n
Z(n)( r ) =- - Z ( I ) rl I 7b
110,~ ( I ) = (- 1)“z(n)( I )/ Z (I )
Z(70(-
= (-
1)n Z ( 4( I - )
975
PROBABILITY FUNCTIONS
NORMAL PROBABILITY FUIVCTION-VALUES
OF Z(x) IK TERMS OF P ( x ) AND
Q(x)
Table 26.1
0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0,010
0.00000 0.02665 0.04842 0.06804 0.08617
0.00337 0.02896 0.05046 0.06992 0.08792
0.00634 0.03123 0.05249 0.07177 0.08965
0.00915 0.03348 0.05449 0.07362 0.09137
0.01185 0.03569 0.05648 0.07545 0.09309
0.01446 0.03787 0.05845 0.07727 0.09479
0.01700 0.04003 0.06040 0.07908 0.09648
0.01949 0.04216 0.06233 0.08087 0.09816
0.02192 0.04427 0.06425 0.08265 0.09983
0.02431 0.04635 0.06615 0.08442 0.10149
0.02665 0.04842 0.06804 0.08617 0.10314
0.99 0.98 0.97 0.96 0.95
0.09
0.10314 0.11912 0.13427 0.14867 0.16239
0.10478 0.12067 0.13574 0,15007 0,16373
0.10641 0.12222 0.13720 0.15146 0.16506
0.10803 0.12375 0.13866 0.15285 0.16639
0.10964 0.12528 0.14011 0.15423 0.16770
0.11124 0.12679 0.14156 0.15561 0.16902
0.11284 0.12830 0.14299 0.15698 0.17033
0.11442 0.12981 0.14442 0.15834 0.17163
0.11600 0.13133 0.14584 0.15970 0.17292
0.11756 0.13279 0.14726 0.16105 0.17421
0.11912 0.13427 0.14867 0.16239 0.17550
0.94 0.93 0.92 0.91 0.90
0.10 0.11 0.12 0.13 0.14
0.17550 0.18804 0.20004 0.21155 0.22258
0.17678 0.18926 0.20121 0.21267 0.22365
0.17805 0.19048 0.20238 0.21379 0.22473
0.17932 0.19169 0.20354 0.21490 0.22580
0.18057 0.19293 0.20470 0.21601 0.22686
0.18184 0.19410 0.20585 0.21712 0.22792
0.18309 0.19530 0.20700 0.21822 0.22898
0.18433 0.19649 0.20814 0.21932 0.23003
0.18557 0.19768 0.20928 0.22041 0.23108
0.18681 0.19886 0.21042 0.22149 0.23212
0.18804 0.20004 0.21155 0.22258 0.23316
0.89 0.88 0.87 0.86 0.85
0.15 Oil6 0.17 0.18 0.19
0.23316 0.24331 0.25305 0.26240 0.27137
0.23419 0.24430 0.25401 0.26331 0.27224
0.23522 0.24529 0.25495 0.26422 0.27311
0.23625 0.24628 0.25590 0.26513 0.27398
0.23727 0.24726 0.25684 0.26603 0.27485
0.23829 0.24823 0.25778 0.26693 0.27571
0.23930 0.24921 0.25871 0.26782 0.27657
0.24031 0.25017 0.25964 0.26871 0.27742
0.24131 0.25114 0.26056 0.26960 0.27827
0.24232 0.25210 0.26148 0.27049 0.27912
0.24331 0.25305 0.26240 0.27137 0.27996
0.84 0.83 0.82 0.81 0.80
0.20 0.21 0.22 0.23 0.24
0.27996 0.28820 0.29609 0.30365 0.31087
0.28080 0.28901 0.29686 0.30439 0.31158
0.28164 0.28981 0.29763 0.30512 0.31228
0.28247 0.29060 0.29840 0.30585 0.31298
0.28330 0.29140 0.29916 0.30658 0.31367
0.28413 0.29219 0.29991 0.30730 0.31436
0.28495 0.29295 0.30067 0.30802 0.31505
0.28577 0.29376 0.30142 0.30874 0.31574
0.28658 0.29454 0.30216 0.30945 0.31642
0.28739 0.29532 0.30291 0.31016 0.31710
0.28820 0.29609 0.30365 0.31087 0.31778
0.79 0.78 0.77 0.76 0.75
0.25 0.26 0.27 0.28 0.29
0.31778 0.32437 0.33065 0.33662 0.34230
0.31845 0.32501 0.33126 0.33720 0.34285
0.31912 0.32565 0.33187 0.33778 0.34341
0.31979 0.32628 0.33247 0.33836 0.34395
0.32045 0.32691 0.33307 0.33893 0.34449
0.32111 0.32754 0.33367 0.33950 0.34503
0.32177 0.32817 0.33427 0.34007 0.34557
0.32242 0.32879 0.33486 0.34063 0.34611
0.32307 0.32941 0.33545 0.34119 0.34664
0.32372 0.33003 0.33604 0.34175 0.34717
0.32437 0.33065 0.33662 0.34230 0.34769
0.74 0.73 0.72 0.71 0.70
0.30 0.31 0.32 0.33 0.34
0.34769 0.35279 0.35761 0.36215 0.36641
0.34822 0.35329 0.35808 0.36259 0.36682
0.34874 0.35378 0.35854 0.36302 0.36723
0.34925 0.35427 0.35900 0.36346 0.36764
0.34977 0.35475 0.35946 0.36389 0.36804
0.35028 0.35524 0.35991 0.36431 0.36844
0.35079 0.35572 0.36037 0.36474 0.36884
0.35129 0.35620 0.36082 0.36516 0.36923
0.35180 0.35667 0.36126 0.36558 0.36962
0.35230 0.35714 0.36171 0.36600 0.37001
0.35279 0.35761 0.36215 0.36641 0.37040
0.69 0.68 0.67 0.66 0.65
0.35 0.36 0.37 0.38 0.39
0.37040 0.37412 0.37757 0.38076 0.38368
0.37078 0.37447 0.37790 0.38106 0.38396
0.37116 0.37483 0.37823 0.38136 0.38423
0.37154 0.37518 0.37855 0.38166 0.38451
0.37192 0.37553 0.37888 0.38196 0.38478
0.37229 0.37588 0.37920 0.38225 0.38504
0.37266 0.37622 0.37951 0.38254 0.38531
0.37303 0.37656 0.37983 0.38283 0.38557
0.37340 0.37693 0.38014 0.38312 0.38583
0.37376 0.37724 0.38045 0.383413 0.38609
0.37412 0.37757 0.38076 0.38368 0.38634
0.64 0.63 0.62 0.61 0.60
0.40 0.41 0.42 0.43 0.44
0.38634 0.38875 0.39089 0.39279 0.39442
0.38659 0.38897 0.39109 0.39296 0.39457
0.38684 0.38920 0.39129 0.39313 0.39472
0.38709 0.38942 0.39149 0.39330 0.39486
0.38734 0.38964 0.39169 0.39347 0.39501
0.38758 0.38985 0.39187 0.39364 0.39514
0.38782 0.39007 0.39206 0.39380 0.39528
0.38805 0.39020 0.39224 0.39396 0.39542
0.38829 0.39049 0.39243 0.39411 0.39555
0.38852 0.39069 0.39261 0.39427 0.39568
0.38875 0.39089 0.39279 0.39442 0.39580
0.59 0.58 0.57 0.56 0.55
0.45 0.46 0.47 0.48 0.49
0.39580 0.39694 0.39781 0.39844 0.39882
0.39593 0.39703 0.39789 0.39849 0.39884
0.39605 0.39713 0.39796 0.39854 0.39686
0.39617 0.39723 0.39803 0.39859 0.39883
0.39629 0.39732 0.39809 0.39862 0.39890
0.39640 0.39741 0.39816 0.39866 0.39891
0.39651 0.39749 0.39322 0.39870 0.39892
0.39662 0.39758 0.39828 0.39873 0.39893
0.39673 0.39766 0.39834 0.39876 0.39894
0.39683 0.39774 0.39839 0.39879 0.39894
0.39694 0.39781 0.39844 0.39882 0.39894
0.54 0.53 0.52 0.51 0.50
0,000
I.(.,,)
0.03 0.01 0.02 0.03 0.04
0.05 0.06 0.07 0.08
0.010 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001 Linear interpolation yields an error no greater than 5 units in the fifth decimal place.
Compiled from T. L. Kelley, The Kelley Statistical Tables. Harvard Univ. Press, Cambridge, Mass., 1948 (with permission).
976
PROBABILITY FUNCTIONS
Table 26.5
NORMAL PROBABILITY FUNCTION-VALUES
OF z IN TERMS OF P ( z ) AND Q(x)
0.004
0.005
0.006
0.007
0.008
0.009
0.010
2I22621 1.99539 1.83842 1.71689
2.65207 2I19729 1.97737 1.82501 1.70604
2.57583 2.17009 1.95996 1.81191 1.69540
2.51214 2.14441 1.94313 1.79912 1.68494
2.45726 2.12007 1.92684 1.78661 1.67466
2.40892 2.09693 1.91104 1.77438 1.66456
2.36562 2.07485 1.89570 1.76241 1.65463
2.32635 2.05375 1.88079 1.75069 1.64485
0.99 0.98 0.97 0.96 0.95
1.62576 1.53820 1.46106 1.39174 1.32854
1.61644 1.53007 1.45381 1.38517 1.32251
1.60725 1.52204 1.44663 1.37866 1.31652
1.59819 1.51410 1.43953 1.37220 1.31058
1.58927 1.50626 1.43250 1.36581 1.30469
1.58047 1.49851 1.42554 1.35946 1.29884
1.57179 1.49085 1.41865 1.35317 1.29303
1.56322 1.48328 1.41183 1.34694 1.28727
1.55477 1.47579 1.40507 1.34076 1.28155
0.94 0.93 0.92 0.91 0.90
1.27587 1.22123 1.17000 1.12168 1.07584
1.27024 ._ 1.21596 1.16505 1.11699 1.07138
1.26464 iIZi072 1.16012 1.11232 1.06694
1.25908 ~ _ _ ~1.25357 _ _ ~ 1.24808 ~ ~ 1.24264 1.20553 1.20036 I 3 9 5 2 2 i i i 9 0 1 2 1.15522 1.15035 1.14551 1.14069 1.10768 1.10306 1.09847 1.09390 1.06252 1.05812 1.05374 1.04939
1.23723 i.18504 1.13590 1.08935 1.04505
1.23186 1.22653 i.18000 i.17499 1.13113 1.12639 1.08482 1.08032 1.04073 1.03643
0.89 0.88 0.87 0.86 0.85
1.03643 0.99446 0.95416 0.91537 0.87790
1.03215 0.99036 0.95022 0.91156 0.87422
1.02789 0.98627 0.94629 0.90777 0.87055
1.02365 0.98220 0.94238 0.90399 0.86689
1.01943 0.97815 0.93848 0.90023 0.86325
1.01522 0.97411 0.93458 0.89647 0.85962
1.01103 0.97009 0.93072 0.89273 0.85600
1.00686 0.96609 0.92686 0.88901 0.85239
1.00271 0.96210 0.92301 0.88529 0.84879
0.99858 0.95812 0.91918 0.88159 0.84520
0.99446 0.95416 0.91537 0.87790 0.84162
0.84 0.83 0.82 0.81 0.80
0.20 0.21 0.22 0.23 0.24
0.84162 0.80642 0.77219 0.73885 0.70630
0.83805 0.80296 0.76882 0.73556 0.70309
0.83450 0.79950 0.76546 0.73228 0.69988
0.83095 0.79606 0.76210 0.72900 0.69668
0.82742 0.79262 0.75875 0.72574 0.69349
0.82390 0.78919 0.75542 0.72248 0.69031
0.82038 0.78577 0.75208 0.71923 0.68713
0.81687 0.78237 0.74876 0.71599 0.68396
0.81338 0.77897 0.74545 0.71275 0.68080
0.80990 0.77557 0.74214 0.70952 0.67764
0.80642 0.77219 0.73885 0.70630 0.67449
0.79 0.78 0.77 0.76 0.75
0.25 0.26 0.27 0.28 0.29
0.67449 0.64335 0.61281 0.58284 0.55338
0.67135 0.64027 0.60979 0.57987 0.55047
0.66821 0.63719 0.60678 0.57691 0.54755
0.66508 0.63412 0.60376 0.57395 0.54464
0.66196 0.63106 0.60076 0.57100 0.54174
0.65884 0.62801 0.59776 0.56805 0.53884
0.65573 0.62496 0.59477 0.56511 0.53594
0.65262 0.62191 0.59178 0.56217 0.53305
0.64952 0.61887 0.58879 0.55924 0.53016
0.64643 0.61584 0.58581 0.55631 0.52728
0.64335 0.61281 0.58284 0.55338 0.52440
0.74 0.73 0.72 0.71 0.70
0.30 0.31 0.32 0.33 0.34
0.52440 0.49585 0.46770 0.43991 0.41246
0.52153 0.49302 0.46490 0.43715 0.40974
0.51866 0.49019 0.46211 0.43440 0.40701
0.51579 0.48736 0.45933 0.43164 0.40429
0.51293 0.48454 0.45654 0.42889 0.40157
0.51007 0.48173 0.45376 0.42615 0.39886
0.50722 0.47891 0.45099 0.42340 0.39614
0.50437 0.47610 0.44821 0.42066 0.39343
0.50153 0.47330 0.44544 0.41793 0.39073
0.49869 0.47050 0.44268 0.41519 0.38802
0.49585 0.46770 0.43991 0.41246 0.38532
0.69 0.68 0.67 0.66 0.65
0.35 0.36 0.37 0.38 0.39
0.38532 0.35846 0.33185 0.30548 0.27932
0.38262 0.35579 0.32921 0.30286 0.27671
0.37993 0.35312 0.32656 0.30023 0.27411
0.37723 0.35045 0.32392 0.29761 0.27151
0.37454 0.34779 0.32128 0.29499 0.26891
0.37186 0.34513 0.31864 0.29237 0.26631
0.36917 0.34247 0.31600 0.28976 0.26371
0.36649 0.33981 0.31337 0.28715 0.26112
0.36381 0.33716 0.31074 0.28454 0.25853
0.36113 0.33450 0.30811 0.28193 0.25594
0.35846 0.33185 0.30548 0.27932 0.25335
0.64 0.63 0.62 0.61 0.60
0.40 0.41 0.42 0.43 0.44
0.25335 0.22754 0.20189 0.17637 0.15097
0.25076 0.22497 0.19934 0.17383 0.14843
0.24817 0.22240 0.19678 0.17128 0.14590
0.24559 0.21983 0.19422 0.16874 0.14337
0.24301 0.21727 0.19167 0.16620 0.14084
0.24043 0.21470 0.18912 0.16366 0.13830
0.23785 0.21214 0.18657 0.16112 0.13577
0.23527 0.20957 0.18402 0.15858 0.13324
0.23269 0.20701 0.18147 0.15604 0.13072
0.23012 0.20445 0.17892 0.15351 0.12819
0.22754 0.20189 0.17637 0.15097 0.12566
0.59 0.58 0.57 0.56 0.55
0.45 0.46 0.47 0.48 0.49
0.12566 0.10043 0.07527 0.05015 0.02507
0.12314 0.09791 0.07276 0.04764 0.02256
0.12061 0.09540 0.07024 0.04513 0.02005
0.11809 0.09288 0.06773 0.04263 0.01755
0.11556 0.09036 0.06522 0.04012 0.01504
0.11301 0.08784 0.06271 0.03761 0.01253
0.11052 0.08533 0.06020 0.03510 0.01003
0.10799 0.08281 0.05768 0.03259 0.00752
0.10547 0.08030 0.05517 0.03008 0.00501
0.10295 0.07778 0.05266 0.02758 0.00251
0.10043 0.07527 0.05015 0.02507 0.00000
0.54 0.53 0.52 0.51 0.50
0 h) 0.000
0.001 0.002 0.003 3.09023 _._ .-_2.87816 - _ _--. 2.74778
0.00
m
0.01 0.02 0.03 0.04
2.32635 2.05375 1.88079 1.75069
2.29037 2.03352 1.86630 1.73920
2.25713 2.01409 1.85218 1.72793
0.05 0.06 0.07 0.08 0.09
1.64485 1.55477 1.47579 1.40507 1.34076
1.63523 1.54643 1.46838 1.39838 1.33462
0.10 0.11 0.12 0.13 0.14
1.28155 1,22653 1.17499 1.12639 1.08032
0.15 0.16 0.17 0.18 0.19
~
~
~
0.010 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001 0.000 P ( z ) For Q(r)>0.007,linear interpolation yields an error of one unit in the third decimal place; five-point interpolation is necessary to obtain full accuracy.
Compiled from T. L. Kelley, The Kelley Statistical Tables. Harvard Univ. Press, Cambridge, Mass., 1948 (with permission).
977
PROBABILITY FUNCTIONS NORMAL PROBABILITY FUNCTION-VALUES
OF
z
FOR EXTREME VALUES O F P ( z ) AND Q(z)
Tnhle 26.6
0.0000
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008
0.0009
0.0010
m
3.09023 2.87816 2.74778 2.65207
3.71902 3.06181 2.86274 2.73701 2.64372
3.54008 3.03567 2.84796 2.72655 2.63555
3.43161 3.01145 2.83379 2.71638 2.62756
3.35279 2.98888 2.82016 2.70648 2.61973
3.2 9 0 5 3 2.96774 2.80703 2.69684 2.61205
3.23888 2.94784 2.79438 2.68745 2.60453
3.19465 2.92905 2.78215 2.67829 2.59715
3.15591 2.91124 2.77033 2.66934 2.58991
3.12139 2.89430 2.75888 2.66061 2.58281
3.09023 2.87816 2.74778 2.65207 2.57583
0.999 0.998 0.997 0.996 0.995
0.005 0.006 0.007 3.008 0.009
2.57583 2.51214 2.45726 2.40891 2.36562
2.56897 2.50631 2.45216 2.40437 2.36152
2.56224 2.50055 2.44713 2.39989 2.35747
2.55562 2.49489 2.44215 2.39545 2.35345
2.54910 2.48929 2.43724 2.39106 2.34947
2.54270 2.48377 2.43238 2.38671 2.34553
2.53640 2.47833 2.42758 2.38240 2.34162
2.53019 2.47296 2.42283 2.37814 2.33775
2.52408 2.46765 2.41814 2.37392 2.33392
2.51807 2.46243 2.41350 2.36975 2.33012
2.51214 2.45726 2.40891 2.36562 2.32635
0.994 0.993 0.992 0.991 0.990
0.010 0.011 0.012 0.013 0.014
2.32635 2.29037 2.25713 2.22621 2.19729
2.32261 2.28693 2.25394 2.22323 2.19449
2.31891 2.28352 2.25077 2.22028 2.19172
2.31524 2.28013 2.24763 2.21734 2.18896
2.31160 2.27677 2.24450 2.21442 2.18621
2.30798 2.27343 2.24140 2.21152 2.18349
2.30440 2.27017 2.23832 2.20864 2.18078
2.30085 2.26684 2.23526 2.20577 2.17808
2.29733 2.26358 2.23223 2.20293 2.17540
2.29383 2.26034 2.22921 2.20010 2.17274
2.29037 2.25713 2.22621 2.19729 2.17009
0.989 0.988 0.987 0.986 0.935
0.015 0.016 0.017 0.018 0.019
2.17009 2.14441 2.12007 2.09693 2.07485
2.16746 2.14192 2.11771 2.09467 2.07270
2.16484 2.13944 2.11535 2.09243 2.07056
2.16224 2.13698 2.11301 2.09020 2.06843
2.15965 2.13452 2.11068 2.08798 2.06630
2.15707 2.13208 2.10836 2.08576 2.06419
2.15451 2.12966 2.10605 2.08356 2.06208
2.15197 2.12724 2.10375 2.08137 2.05998
2.14943 2.12484 2.10147 2.07919 2.05790
2.14692 2.12245 2.09919 2.07702 2.05582
2.14441 2.12007 2.09693 2.07485 2.05375
0.984 0.983 0.932 0.981 0.980
0.020 0.021 0.022 0.023 0.024
2.05375 2.03352 2.01409 1.99539 1.97737
2.05169 2.03154 2.01219 1.99356 1.97560
2.04964 2.02957 2.01029 1.99174 1.97384
2.04759 2.02761 2.00841 1.98992 1.97208
2.04556 2.02566 2.00653 1.98811 1.97033
2.04353 2.02371 2.00465 1.98630 1.96859
2.04151 2.02177 2.00279 1.98450 1.96685
2.03950 2.01984 2.00093 1.98271 1.96512
2.03750 2.01792 1.99908 1.98092 1.96340
2.03551 2.01600 1.99723 1.97914 1.96168
2.03352 2.01409 1.99539 1.97737 1.95996
0.979 0.978 0.977 0.976 0.975
($(.I,)
0.000 0.001 0.002 0.003 0.004
0.0010 0.0009 0.0008 0.0007 0.0006 0.0005 0.0004 0.0003 0.0002 0.0001 0.0000 P(t) For 0( I )>0.0007, linear interpolation yields an error of one unit in the third decimal place; five-point interpolation is necessary to obtain full accuracy.
(2 (,?)
I
Q(7)
I
‘I)(!)
I
0 (4
I
( -4) 1. 0
3.71902
( - 9) 1.0
5.99781
( -14) 1.0
7.65063
( -19) 1.0
9.01327
( - 5 ) 1.0
4.26489
( -10) 1.0
6.36134
( -15) 1. 0
7.94135
( -20) 1.0
9.26234
( -6) 1.0
4.75342
(-11) 1.0
6.70602
( -16) 1. 0
8.22208
(-21) 1.0
9.50502 9.74179 9.97305
( -7) 1.0
5.19934
(-12) 1.0
7.03448
(-17) 1.0
8.49379
( -22) 1.0
( -8) 1.0
5.61200
( -13) 1. 0
7.34880
( -18) 1.0
8.75729
(-23) 1.0
P(,)=l-((l(,)=J: Z ( / ) r / / ~
Compiled from T. L. Kelley, The Kelley Statistical Tables. Harvard Univ. Press, Cambridge, Mass., 1948 (with permission) for Q(.r)>(-9)1.
978
PROBABILITY FUNCTIONS
Table 26.7
PROBABILITY INTEGRAL OF x~-DISTRIBUTION,INCOMPLETE GAMMA FUNCTION CUMULATIVE SUMS OF THE POISSON DISTRIBUTION
7n=0.0005
0.002 0.0010
0.003 0.0015
0.004 0.0020
0.005 0.0025
0.006 0.0030
0.007 0.0035
0.008 0.0040
0.0045
0.010 0.0050
0.97477 0.99950 0.99999
0.96433 0.99900 0.99998
0,95632 0.99850 0.99996
0.94957 0.99800 0.99993
0.94363 0.99750 0.99991
0.93826 0.99700 0.99988
0.93332 0.99651 0.99984 0.99999
0.92873 0.99601 0.99981 0.99999
0.92442 0.99551 0.99977 0.99999
0.92034 0.99501 0.99973 0.99999
0.02 0.010
0.03 0.015
0.04 0.020
0.05 0.025
0.06 0.030
0.86249 0.98511 0.99863 0.99989 0.99999
0.08 0.040
0.09 0.045
0.88754 0.99005 0.99925 0.99995
0.10 0.050
0.84148 0.98020 0.99790 0.99980 0.99998
0.82306 0.97531 0.99707 0.99969 0.99997
0.07 0.035 0.79134 0.96561 0.99518 0.99940 0.99993
0,77730 0.96079 0.99412 0.99922 0.99991
0.76418 0.95600 0.99301 0.99902 0.99987
0.75183 0.95123 0.99184 0.99879 0.99984
0.99999
0.99999
0.99999
0.99998
0.9 0.45
0.50
X2=0.001 v
1 2 3 4 V
5
x2=0.01 m=0.005 0.92034 0.99501 0.99973 0.99999
0.80650 0.97045 0.99616 0.99956 0.99995
6 V
x2=0.1 m=0.05
0.2 0.10
0.3 0.15
0.4 0.20
0.5 0.25
0.6 0.30
0.7 0.35
0.8 0.40
0.009
1.0
1 2 3 4 5
0.75183 0.95123 0.99184 0.99879 0.99984
0.65472 0.90484 0.97759 0.99532 0.99911
0.58388 0.86071 0.96003 0.98981 0.99764
0.52709 0.81873 0.94024 0.98248 0.99533
0.47950 0.77880 0.91889 0.97350 0.99212
0.43858 0.74082 0.89643 0.96306 0.98800
0.40278 0.70469 0.87320 0.95133 0.98297
0.37109 0.67032 0.84947 0. 93845 0.97703
0.34278 0.63763 0.82543 0.92456 0.97022
0.31731 0.60653 0.80125 0: 90980 0.96257
6 7 8 9
0.99998
0.99985 0.99997
0.99950 0.99990 0.99998
0.99885 0.99974 0.99994 0.99999
0.99784 0.99945 0.99987 0.99997 0.99999
0.99640 0.99899 0.99973 0.99993 0.99998
0.99449 0.99834 0.99953 0.99987 0.99997
0.99207 0.99744 0.99922 0.99978 0.99994
0.98912 0.99628 0.99880 0.99964 0.99989
0.98561 0.99483 0.99825 0.99944 0.99983
0.99999
0.99998
0.99997 0.99999
0.99995 0.99999
1.7 0.85
1.8 0.90
1.9 0.95
10 11 12 iL= V
1 2 3 4 5 6 7 8 9
10
11 12 13
14 15 16
1.1
m = 0.55
1.2 0.60
1.3 0.65
1.4 0.70
1.5 0.75
1.6 0.80
2.0 1.00
0.29427 0.57695 0.77707 0.89427 0.95410
0.27332 0.54881 0.75300 0.87810 0.94488
0.25421 0.52205 0.72913 0.86138 0.93493
0.23672 0.49659 0.70553 0.84420 0.92431
0.22067 0.47237 0.68227 0.82664 0.91307
0.20590 0.44933 0.65939 0.80879 0.90125
0.19229 0.42741 0.63693 0.79072 0.88890
0.17971 0.40657 0.61493 0.77248 0.87607
0.16808 0.38674 0.59342 0.75414 0.86280
0.15730 0.36788 0.57241 0.73576 0.84915
0.98154 0.99305 0.99753 0.99917 0.99973
0.97689 0.99093 0.99664 0.99882 0.99961
0.97166 0. 98844 0.99555 0.99838 0.99944
0.96586 0: 98557 0.99425 0.99782 0.99921
0.95949 0.98231 0.99271 0.99715 0.99894
0.95258 0: 97864 0.99092 0.99633 0.99859
0.94512 0.97457 0.98887 0.99537 0.99817
0.93714 0.97008 0.98654 0.99425 0.99766
0.92866 0.96517 0.98393 0.99295 0.99705
0.91970 0. 95984 0.98101 0.99147 0.99634
0.99992 0.99998 0.99999
0.99987 0.99996 0.99999
0.99981 0.99994 0.99998 0.99999
0.99973 0.99991 0.99997 0.99999
0.99962 0.99987 0.99996 0.99999
0.99948 0.99982 0.99994 0.99998 0.99999
0.99930 0.99975 0.99991 0.99997 0.99999
0.99908 0.99966 0.99988 0.99996 0.99999
0.99882 0.99954 0.99983 0.99994 0.99998
0.99850 0.99941 0.99977 0.99992 0.99997
0.99999
0.99999
Compiled from E. S. Pearson and H. 0. Hartley (editors), Biometrika tables for statisticians, vol. I. Cambridge Univ. Press, Cambridge, England, 1954 (with permission).
979
PROBABILITY F U N C T I O N S
PROBABILITY INTEGRAL OF xz-DISTRIBUTION, INCOMPLETE GAMMA FUNCTION Table 26.7 CUMULATIVE SUMS OF THE POISSON DISTRIBUTION
x2=2.2 m=l.l
2.4 1.2
2.6 1.3
2.8 1.4
3.0 1.5
3.2 1.6
1 2 3 4 5
0.13801 0.33287 0.53195 0.69903 0.82084
0.12134 0.30119 0.49363 0.66263 0.79147
0.10686 0.27253 0.45749 0.62682 0.76137
0.09426 0.24660 0.42350 0.59183 0.73079
0.08327 0.22313 0.39163 0.55783 0.69999
6 7 8 9 10
0.90042 0.94795 0.97426 0.98790 0.99457
0.87949 0.85711 0.93444 0.91938 0.96623 0.95691 0.98345 0.97807 0.99225 0.98934
0.83350 0.90287 0.94628 0.97170 0.98575
0.80885 0.78336 0.88500 0.86590 0.93436 oI 92Ii9 0.96430 0.95583 0.98142 0.97632
11 12 13 14 15
0.99766 0.99903 0.99961 0.99985 0.99994
0.99652 0.99850 0.99938 0.99975 0.99990
0.99503 0.99777 0.99903 0.99960 0.99984
0.99311 0.99680 0.99856 0.99938 0.99974
16 17 18 19 20
0.99998 0.99999
0.99996 0.99999
0.99994 0.99998 0.99999
0.99989 0.99996 0.99998 0.99999
3.4 1.7
0.07364 0.06520 0.20190 0.18268 0.36181 0.33397 0.52493 0.49325 0.66918 0.63857
4.4 2.2
4.6 2.3
0.75722 0.84570 01 90681 0.94631 0.97039
0.73062 0.70372 0.82452 - - - - - 0.-.m- -2-5- n0.89129 0.87470 0.93572 0.92408 0.96359 0.95592
0.67668 n. - .7. .7 9. 7- ~ 0.85712 0.91141 0.94735
0.99073 0.98781 0.99554 0.99396 0.99793 0.99711 0.99907 0.99866 0.99960 0.99940
0.98431 0.99200 0.99606 0.99813 0.99913
0.98019 0.98962 0.99475 0.99743 0.99878
0.97541 0.98678 0.99314 0.99655 0.99832
0.96992 0.98344 0.99119 0.99547 0.99774
0.99983 0.99974 0.99993 0.99989 0.99997 0.99995 0.99999 0.99998 0.99999
0.99961 0.99983 0.99993 0.99997 0.99999
0.99944 0.99921 0.99975 0.99964 0.99989 0.99984 0.99995 0.99993 0.99998 0.99997
0.99890
5.0 2.5
4.8 2.4
4.0 2.0 0.04550 0.13534 0.26146 0.40601 0.54942
0.99999
x?=4.2 n~=2.1
3.8 1.9
0.05778 0.05125 0.16530 0.14957 0.30802 0.28389 0.46284 0.43375 0.60831 0.57856
21 22
V
3.6 1.8
5.2 2.6
0.99999
5.6 2.8
5.4 2.7
I
0.99948 . . . . .-
0.99976 0.99989 0.99995 0.99998 0.99999
5.8 2.9
6.0
3.0
0.02846 0.02535 0.09072 0.08209 0.18704 0.17180 0.30844 0.28730 0.44077 0.41588
0.02259 0.07427 0.15772 0.26739 0.39196
0.02014 0.06721 0.14474 0.24866 0.36904
0.01796 0.06081 0.13278 0.23108 0.34711
0.01603 0.05502 0.12176 0.21459 0.32617
0.01431 0.04979 0.11161 0.19915 0.30622
0.59604 0.70864 0.79935 0.86769 0.91625
0.56971 0.68435 0.77872 0.85138 0.90413
0.54381 0.65996 0.75758 0.83431 0.89118
0.51843 0.63557 0.73600 0.81654 0.87742
0.49363 0.61127 0.71409 0.79814 0.86291
0.46945 0.58715 0.69194 0.77919 0.84768
0.44596 0.56329 0.66962 0.75976 0.83178
0.42319 0.53975 0.64723 0.73992 0.81526
0.98887 0.99414 0.99701
0.97509 0.98614 0.99254 0.99610
0.94898 0; 97002 0.98298 0.99064 0.99501
0.94046 0; 96433 0.97934 0.98841 0.99369
0.93117 0;95798 0.97519 0.98581 0.99213
0.92109 0: 95096 0.97052 0.98283 0.99029
0.91026 0: 94327 0.96530 0.97943 0.98816
0.89868 0; 93489 0.95951 0.97559 0.98571
0.88637 0.92583 0.95313 0.97128 0.98291
0.87337 0.91608 0.94615 0.96649 0.97975
1'6 17 18 19 20
0.99851 0.99928 0.99966 0.99985 0.99993
0.99802 0.99741 0.99902 0.99869 0.99953 0.99936 0.99978 0.99969 0.99990 0.99986
0.99666 0.99828 0.99914 0.99958 0.99980
0.99575 0.99777 0.99886 0.99943 0.99972
0.99467 0.99715 0.99851 0.99924 0.99962
0.99338 0.99639 0.99809 0.99901 0.99950
0.99187 0.99550 0.99757 0.99872 0.99934
0.99012 0.99443 0.99694 0.99836 0.99914
0.98810 0.99319 0.99620 0.99793 0.99890
21- . 22 23 24 25
0.99997 0.99999 0.99999
0.99995 0.99998 0.99999
0.99993 0.99997 0.99999 0.99999
0.99991 0.99996 0.99998 0.99999
0.99987 0.99994 0.99997 0.99999 0.99999
0.99982 0.99991 0.99996 0.99998 0.99999
0.99975 0.99988 0.99994 0.99997 0.99999
0.99967 0.99984 0.99992 0.99996 0.99998
0.99956 0.99978 0.99989 0.99995 0.99998
0.99943 . ... . 0.99971 0.99986 0.99993 0.99997
0.99999
0.99999 0.99999
0.99998 0.99999
3 4 5
0.04042 0.12246 0.24066 0.37962 0.52099
0.03594 0.03197 0.11080 0.10026 0.22139 0.20354 0.35457 0.33085 0.49337 0.46662
6 7 8 9 10
0.64963 0.75647 0.83864 0.89776 0.93787
0.62271 0.73272 0.81935 0.88317 0.92750
11 12 13 14 15
0.96370 -- -
6: 97955
0-.95672 -- -
26 27
,+=; (x2-x;)
Interpolation on
//J="-"">o
x2
+'I
Q ( X ~ / ~ ) = Q ( X ~ ~ V O - ~ ) [ ~ $ ] + Q ( X ~(xiI~o)[l-++i ~~~-~)[~-~*]+Q
Double Entry Interpolation
Q (x'IV)=Q ( X ~ ~ V ~ - ~ ) [ ~ + ' ] + Q +Q ( x ; l v o ) [ l - u ' z - + + $
(X;'V~-~)[+-+'-W+]+Q
(xi1
[i
~a-l)[;W'-;
,-,+I
+2+lc+]+Q ( ~ ~ ~ ~ ~ + l )
E+W+
1
980
PROBABILITY FUNCTIONS
Table 26.7 PR(JBABILITY INTEGRAL OF X*-DISTRIBUTION, INCOMPLETE GAMMA FUKCTION CUMULATIVE SUMS OF THE POISSON DlSTRIBl'TlOK
x2 = 6.2 m=3.1 0.01278 0.04505 0.10228 0.18470 0.28724
V
6.6 3.3 0.01141 0.01020 0.04076 0.03688 0.09369 0.08580 0.17120 0.15860 0.26922 0.25213
6.8 3.4 0.00912 0.03337 0.07855 0.14684 0.23595
7.0 3.5 0.00815 0.03020 0.07190 0.13589 0.22064
7.2 3.6 0.00729 0.02732 0.06579 0.12569 0.20619
7.4 3.7 0.00652 0.02472 0.06018 0.11620 0.19255
7.6 3.8 0.00584 0.02237 0.05504 0.10738 0.17970
7.8 3.9 0.00522 0.02024 0.05033 0.09919 0.16761
8.0 4.0 0.00468 0.01832 0.04601 0.09158 0.15624
6.4
3.2 - .-
6 7 8 9 10
0.40116 0.51660 0.62484 0.71975 0.79819
0.37990 0.49390 0.60252 0.69931 0.78061
0.35943 0.47168 0.58034 0.67869 0.76259
0.33974 0.45000 0.55836 0.65793 0.74418
0.32085 0.42888 0.53663 0.63712 0.72544
0.30275 0.40836 0.51522 0.61631 0.70644
0.28543 0.38845 0.49415 0.59555 0.68722
0.26890 0.36918 0.47349 0.57490 0.66784
0.25313 0.35056 0.45325 0.55442 0.64837
0.23810 0.33259 0.43347 0.53415 0.62884
11 12 13 14 15
0.85969 0.90567 0.93857 0.96120 0.97619
0.84539 0.89459 0.93038 0.95538 0.97222
0.83049 0.88288 0.92157 0.94903 0.96782
0.81504 0.87054 0.91216 0.94215 0.96296
0.79908 0.85761 0.90215 0.93471 0.95765
0.78266 0.84412 0.89155 0.92673 0.95186
0.76583 0.83009 0.88038 0.91819 0.94559
0.74862 0.81556 0.86865 0.90911 0.93882
0.73110 0.80056 0.85638 0.89948 0.93155
0.71330 0.78513 0.84360 0.88933 0.92378
16 17 18 19 20
0.98579 0.99174 0.99532 0.99741 0.99860
0.98317 0.99007 0.99429 0.99679 0.99824
0.98022 0.98816 0.99309 0.99606 0.99781
0.97693 0.98599 0.99171 0.99521 0.99729
0.97326 0.98355 0.99013 0.99421 0.99669
0.96921. 0.98081 0.98833 0.99307 0.99598
0.96476 0.97775 0.98630 0.99176 0.99515
0.95989 0.97437 0.98402 0.99026 0.99420
0.95460 0.97064 0.98147 0.98857 0. 99311
0.94887 0.96655 0.97864 0.98667 0.99187
21 22 23 24 25
0.99926 0.99962 0.99981 0.99990 0.99995
0.99905 0.99950 0.99974 0.99987 0.99994
0.99880 0.99936 0.99967 0.99983 0.99991
0.99850 0.99919 0.99957 0.99978 0.99989
0.99814 0.99898 0.99945 0.99971 0.99985
0.99771 0.99873 0.99931 0.99963 0.99981
0.99721 0.99843 0.99913 0.99953 0.99975
0.99662 0.99807 0.99892 0.99941 0.99968
0.99594 0.99765 0.99867 0.99926 0.99960
0.99514 0.99716 0.99837 0.99908 0.99949
0.99998 0.99997 0.99996 0.99994 0.99992 0.99990 0.99999 0.99999 0.99998 0.99997 0.99996 0.99995 0.99999 0.99999 0.99999 0.99998 0.99998 0.99999 0.99999 0.99999 0.99999 2 x =8.2 8.4 8.6 8.8 9.0 9.2 m -4.1 4.2 4.4 4.3 4.5 4.6 0.00419 0.00375 0.00336 0.00301 0.00270 0.00242 0.01657 0.01500 0.01357 0.01228 0.01111 0.01005 0.04205 0.03843 0.03511 0.03207 0.02929 0.02675 0. 08452 0.07798 0.07191 0.06630 0.06110 0.05629 0.14555 0.13553 0.12612 0.11731 0.10906 0.10135
0.99987 0.99993 0.99997 0.99998 0.99999
0.99983 0,99991 0.99996 0.99998 0.99999
0.99978 0.99989 0.99994 0.99997 0.99999
0.99973 0.99985 0.99992 0.99996 0.99998
9.4 4.7 0.00217 0.00910 0.02442 0.05184 0.09413
9.6 4.8 0.00195 0.00823 0.02229 0.04773 0.08740
9.8 4.9 0. 00175 0.00745 0. 02034 0.04394 0.08110
10.0 5.0 0.00157 0.00674 0.01857 0.04043 0.07524
26 27 28 29 -. 30
V
5 6 7 8 9 10
0.22381 0.31529 0.41418 0.51412 0.60931
0.18514 0.26734 0.35945 0.45594 0.55118
0.17358 0.25266 0.34230 0.43727 0.53210
0.16264 0.23861 0.32571 0.41902 0.51323
0.15230 0.22520 0.30968 0.40120 0.49461
0.14254 0.21240 0.29423 0.38383 0.47626
0.13333 0.20019 0.27935 0.36692 0.45821
0. U465 0.18857 0.26503 0.35049 0.44049
11 12 13 14 15
0.69528 0.67709 0.65876 0.64035 0.76931 0.75314 0.73666 0.71991 0.83033 0.81660 0.80244 0.78788 0.87865 0.86746 0.85579 0.84365 0.91551 0.90675 0.89749 0.88774
0.62189 0.70293 0.77294 0.83105 0.87752
0.60344 0.68576 0.75768 0.81803 0.86683
0.58502 0.66844 0.74211 0.80461 0.85569
0.56669 0.65101 0.72627 0.79081 0.84412
0.54846 0.63350 0.71020 0.77666 0.83213
0.53039 0.61596 0.69393 0.76218 0.81974
16 17 18 19 20
0.94269 0.96208 0.97551 0.98454 0.99046
0.93606 0.95723 0.97207 0.98217 0.98887
0.92897 0.95198 0.96830 0.97955 0.98709
0.92142 0.94633 0.96420 0.97666 0.98511
0.91341 0.94026 0.95974 0.97348 0.98291
0.90495 0.93378 0.95493 0.97001 0.98047
0.89603 0.92687 0.94974 0.96623 0.97779
0.88667 0.91954 0.94418 0.96213 0.97486
0.87686 0.91179 0.93824 0.95771 0.97166
0.86663 0.90361 0.93191 0.95295 0.96817
21 22 23 24 25
0.99424 0.99659 0.99802 0.99888 0.99937
0.99320 0.99593 0.99761 0.99863 0.99922
0.99203 0.99518 0.99714 0.99833 0.99905
0.99070 0.99431 0.99659 0.99799 0.99884
0.98921 0.99333 0.99596 0.99760 0.99860
0.98755 0.99222 0.99524 0.99714 0.99831
0.98570 0.99098 0.99442 0.99661 0.99798
0.98365 0.98958 0.99349 0.99601 0.99760
0.98139 0.98803 0.99245 0.99532 0.99716
0.97891 0.98630 0.99128 0.99455 0.99665
26 27 28 29 30
0.99966 0.99981 0.99990 0.99995 0.99997
0.99957 0.99977 0.99987 0.99993 0.99997
0.99947 0.99971 0.99984 0.99991 0.99996
0.99934 0.99963 0.99980 0.99989 0.99994
0.99919 0.99955 0.99975 0.99986 0.99993
0.99902 0.99944 0.99969 0.99983 0.99991
0.99882 0.99932 0.99962 0.99979 0.99988
0.99858 0.99917 0.99953 0.99973 0.99985
0.99830 0.99900 0.99942 0.99967 0.99982
0.99798 0.99880 0.99930 0.99960 0.99977
Q
0.21024 0.29865 0.39540 0.49439 0.58983
0.19736 0.28266 0.37715 0.47499 0.57044
-7
w j / j ! ( v even,
c=
i v , ?U=
a
x2)
981
PROBABILITY FUNCTIONS
Table 26.7 PROBABILITY INTEGRAL OF x2-DISTRIBUTION, INCOMPLETE GAMMA FUNCTION CUMULATIVE SUMS OF THE POlSSON DISTRIBUTION
~2= 1 0 . 5 11.0 v m = 5.25 5.5
1 2 3 4 5
0.00119 0.00525 0.01476 0,03280 0.06225
6 7 8 9
0 10511
11.5 12.0 5.75 6.0
12.5 13.0 6.25 6.5
0.00091 0.00409 0.01173 0.02656 0.05138
0.00070 0.00318 0.00931 0.02148 0.04232
0.00053 0.00248 0.00738 0.01735 0.03479
0.00041 0.00193 0.00585 0.01400 0.02854
0.00031 0.00150 0.00464 0.01128 0.02338
10
0.08838 0.13862 0.23167 0.20170 0.31154 0.27571 0.39777 0.35752
0.07410 0.11825 0.17495 0.24299 0.31991
0.06197 0.10056 0.15120 0.21331 0.28506
0.05170 0.08527 0.13025 0.18657 0.25299
11 12 13 14 15
0.48605 0.57218 0.65263 0 72479 0: 78717
0.44326 0.52892 0.61082 0.68604 0.75259
0.40237 0.48662 0.56901 0.64639 0.71641
0.36364 0.44568 0.52764 0.60630 0.67903
16 17 18 19 20
0.83925 0.88135 0.91436 0.93952 0.95817
0.80949 0.85656 0.89436 0.92384 0.94622
0.77762 0.82942 0.87195 0.90587 0.93221
21 22 23 24 25
0.97166 0.98118 0.98773 0.99216 0.99507
0.96279 0.97475 0.98319 0.98901 0.99295
26 27 28 29 30
0.99696 0.99815 0.99890 0.99935 0.99963
0.99555 0.99724 0.99831 0.99899 0.99940
v
x2=15.5 m = 7.75
0: 16196
16.0 8.0
13.5 14.0 6.75 7.0
0.00018
0.00014 0.00071
15.0 7.5
0.00367 0.00907 0.01912
0.00291 0.00730 0.01561
0.00230 0.00586 0.01273
0.00011 0.00055 0.00182 0.00470 0; 01036
0.04304 0.07211 0.11185 0.16261 0.22367
0.03575 0.06082 0.09577 0.14126 0.19704
0.02964 0.05118 0.08177 0.12233 0.17299
0.02452 0.04297 0.06963 0.10562 0.15138
0.02026 0.03600 0.05915 0.09094 0.13206
0.32726 0.40640 0.48713 0.56622 0.64086
0.29333 0.36904 0.44781 0.52652 0.60230
0.26190 0.33377 0.40997 0.48759 0.56374
0.23299 0.30071 0.37384 0.44971 0.52553
0.20655 0.26992 0.33960 0.41316 0.48800
0.18250 0.24144 0.30735 0.37815 0.45142
0.74398 0.80014 0.84724 0.88562 0.91608
0.70890 0.76896 0.82038 0.86316 0.89779
0.67276 0.63591 0.73619 0.70212 0.79157 0.76106 0.83857 0.81202 0.87738 0.85492
0.59871 0.66710 0.72909 0.78369 0.83050
0.56152 0.63145 0.69596 0.75380 0.80427
0.52464 0.59548 0.66197 0.72260 0.77641
0.95214 0.96686 0.97748 0.98498 0.99015
0.93962 0.95738 0.97047 0.97991 0.98657
0.92513 0.94618 0.96201 0.97367 0.98206
0.90862 0.93316 0.95199 0.96612 0.97650
0.89010 0.91827 0.94030 0.95715 0.96976
0.86960 0.90148 0.92687 0.94665 0.96173
0.84718 0.88279 0.91165 0.93454 0.95230
0.82295 0.86224 0.89463 0.92076 0.94138
0.99366 0.99598 0 997 9 0: 99816 0.99907
0.99117 0.99429 0.99637 0.99773 0.99860
0.98798 0.99208 0.99487 0.99672 0.99794
0.98397 0.98925 0.99290 0.99538 0.99704
0.97902 0.98567 0.99037 0.99363 0.99585
0.97300 0.98125 0.98719 0.99138 0.99428
0.96581 0.97588 0.98324 0.98854 0.99227
0.95733 0.96943 0.97844 0.98502 0.98974
17.5 8.75
18.0 9.0
16.5 17.0 8.25 8.5
0.00024
14.5 7.25
0. ooii7 0.00091
18.5 19.0 9.25 9.5
19.5 20.0 9.75 10.0
0.00008 0.00043 0.00144 0.00377 0.00843
0.00006 0.00034 0.00113 0.00302 0.00684
0.00005 0.00026 0.00090 0.00242 0.00555
0.00004 0.00020 0.00071 0.00193 0.00450
0.00003 0.00016 0.00056 0.00154 0.00364
0,00002 0.00012 0.00044 0.00123 0.00295
0.00002 0.00010 0.00035 0.00099 0.00238
0.00001 0.00001 0.00008 0.00006 0.00027 0.00022 0.00079 0.00063 0.00192 0.00155
0.00001 0.00005 0.00017 0.00050 0.00125
6 7 8 9 10
0.01670 0.03010 0.05012 0.07809 0.11487
0.01375 0.02512 0.04238 0.06688 0.09963
0.01131 0.02092 0.03576 0.05715 0.08619
0.00928 0.01740 0.03011 0.04872 0.07436
0.00761 0.01444 0.02530 0.04144 0.06401
0.00623 0.01197 0.02123 0.03517 0.05496
0.00510 0.00991 0.01777 0.02980 0.04709
0.00416 0.00819 0.01486 0.02519 0.04026
0.00340 0.00676 0.01240 0.02126 0.03435
0.00277 0.00557 0.01034 0.01791 0.02925
11 12 13 14 15
0.16073 0.21522 0.27719 0.34485 0.41604
0.14113 0.19124 0.24913 0.31337 0.38205
0.12356 0.16939 0.22318 0.28380 0.34962
0.10788 0.14960 0.19930 0.25618 0.31886
0.09393 0.13174 0.17744 0.23051 0.28986
0.08158 0.11569 0.15752 0.20678 0.26267
0.07068 0.10133 0.13944 0.18495 0.23729
0.06109 0.08853 0.12310 0.16495 0.21373
0.05269 0.07716 0.10840 0.14671 0.19196
0.04534 0.06709 0.09521 0.13014 0.17193
16 17 18 19 20
0.48837 0.55951 0.62740 0.69033 0.74712
0.45296 0.52383 0.59255 0.65728 0.71662
0.41864 0.48871 0.55770 0.62370 0.68516
0.38560 0.35398 0.45437 0.42102 0.52311 0.48902 0.58987 0.55603 0.65297 0.62031
0.32390 0.38884 0.45565 0.52244 0.58741
0.29544 0.35797 0.42320 0.48931 0.55451
0.26866 0.24359 0.32853 0.30060 0.39182 0.36166 0.45684 0.42521 0.52183 0.48957
0.22022 0.27423 0.33282 0.39458 0.45793
21 22 23 24 25
0.79705 0.83990 0.87582 0.90527 0.92891
0.76965 0.81589 0.85527 0.88808 0.91483
0.74093 0.79032 0.83304 0.86919 0.89912
0.71111 0.76336 0.80925 0.84866 0.88179
0.68039 0.73519 0.78402 0.82657 0.86287
0.64900 0.70599 0.75749 0.80301 0.84239
0.61718 0.58514 0.67597 0.64533 0.72983 0.70122 0.77810 0.75199 0.82044 0.79712
0.55310 0.61428 0.67185 0.72483 0.77254
0.52126 0.58304 0.64191 0.69678 0.74683
26 27 28 29 30
0.94749 0.96182 0.97266 0.98071 0.98659
0.93620 0.95295 0.96582 0.97554 0.98274
0.92341 0.94274 0.95782 0.96939 0.97810
0.90908 0.93112 0.94859 0.96218 0.97258
0.89320 0.91806 0.93805 0.95383 0.96608
0.87577 0.90352 0.92615 0.94427 0.95853
0.85683 0.88750 0.91285 0.93344 0.94986
0.81464 0.85107 0.88200 0.90779 0.92891
0.79156 0.83076 0.86446 0.89293 0.91654
1 2 3 4 5
0.83643 0.87000 0.89814 0.92129 0.94001
982
PROBABILITY FUNCTIONS
Table 26.7 PROBABILITY INTEGRAL OF x2-DISTRIBUTION, INCOMPLETE GAMMA FUNCTION CUMULATIVE SUMS OF THE POISSON DISTRIBUTION i 2 = 21 Y
1
V? = 10.5
22 11.0
23 11.5
24 12.0
25 12.5
26 13.0
27 13.5
28 14.0
29 14.5
30 15.0
0.00001 0.00004 0.00013 0.00034
0,00001 0.00003 0.00008 0.00022
0.00002 0.00005 0.00014
0.00001 0.00003 0.00009
0,00001 0.00002 0.00001 0.00006 0.00004
0.00001 0.00002
0,00001 0.00002
0.00080
0.00034 0.00076 0.00155 0.00297 0.00535
0.00022 0; 00050 0.00105 0.00204 0.00374
0.00015 0.00009 0.00006 0.00004 0; 00033 0: 00022 0; 00015 0,00010
0.00071 0.00140 0.00260
0.00047 0.00095 0.00181
0.00032 0.00065 0.00125
0.00021 0.00044 0.00086
2 3 4 5
0.00001 0.00003 0.00011 0.00032 0.00081
0.00002 0.00007 0.00020 0.00052
6 7 8 9 10
0.00184 0; 00377 0.00715 0.01265 0.02109
0.00121 0; 00254 0.00492 0.00888 0.01511
0.00336 0.00620 0.01075
0.00052 0; 00114 0.00229 0.00430 0.00760
11 12
13 14 15
0.03337 0.05038 0.07293 0.10163 0.13683
0.02437 0.03752 0.05536 0.07861 0.10780
0.01768 0.02773 0.04168 0.06027 0.08414
0.01273 0.02034 0.03113 0.04582 0.06509
0.00912 0.01482 0.02308 0.03457 0.04994
0.00649 0.01073 0.01700 0.02589 0.03802
0.00460 0.00773 0.01244 0.01925 0.02874
0.00324 0.00553 0.00905 0.01423 0.02157
0.00227 0.00394 0.00655 0.01045 0.01609
0.00159 0.00279 0.00471 0.00763 0.01192
16 17 18 19 20
0.17851 0.22629 .. 0.27941 0.33680 0.39713
0.14319 0I 18472 0.23199 0.28426 0.34051
0.11374 0; 14925 0.19059 0.23734 0.28880
0.08950 0.11944 0.15503 0.19615 0.24239
0.06982 0.09471 0.12492 0.16054 0.20143
0.05403 0.07446 0.09976 0.13019 0.16581
0.04148 0.05807 0.07900 0.10465 0.13526
0.03162 0.04494 0.06206 0.08343 0.10940
0.02394 0.03453 0.04838 0.06599 0.08776
0.01800 0.02635 0.03745 0.05180 0.06985
21 22 23 24 25
0.45894 0.52074 0.58109 0.63873 0.69261
0.39951 0.45989 0.52025 0.57927 0.63574
0.34398 0.40173 0.46077 0.51980 0.57756
0.29306 0.24716 0.20645 0.34723 0.29707 0.25168 0.40381 0.35029 0.30087 0.46160 0.40576 0.35317 0.51937 0.46237 0.40760
0.17085 0.21123 0.25597 0.30445 0.35588
0.14015 0.17568 0.21578 0.26004 0.30785
0.11400 0.14486 0.18031 0.22013 0.26392
0.09199 0.11846 0.14940 0.18475 0.22429
26 27 28 29 30
0.74196 0.78629 0.82535 0.85915 0.88789
0.68870 0.73738 0.78129 0.82019 0.85404
0.63295 0.68501 0.73304 0.77654 0.81526
0.57597 ..- 0.63032 0.68154 0.72893 0.77203
0.46311 0.51860 0; 57305 0.62549 0.67513
0.40933 0.46379 0I 51825 0.57171 0.62327
0.35846 0.41097 Ol46445 0.51791 0.57044
0.31108 0.36090 oI41253 0.46507 0.51760
0.26761 0.31415 . ~-~ 0.36322 0.41400 0.46565
32 16.0
33 16.5
34 17.0
36 18.0
37 18.5
38 19.0
39 19.5
Y
x2=31 ni = 15.5
0; 00171
0.51898 0; 57446 0.62784 0.67825 0.72503
35 17.5
40 20.0
0.00001 0.00001 0.00003 0.00002 0.00006 0.00004 0.00014 0.00009 0.00030 0.00020
0.00001 0.00003 0.00006 0.00013
0.00001 0.00002 0.00001 0; 00004 0; OOOO? 0.00009 0.00006
0.00001 0.00002 0.00004
0.00001 0.00003
0.00001 0.00002
0.00001
0.00001
11 12 13 14
0.00059 0.00110 0.00197 0.00337 0.00554
0.00040 0.00076 0.00138 0.00240 0.00401
0.00027 0.00053 0.00097 0.00170 0.00288
0.00019 0.00036 0.00068 0.00120 0.00206
0.00012 0.00025 0.00047 0.00085 0.00147
0.00008 0.00017 0.00032 0.00059 0.00104
0.00006 0.00012 0.00022 0.00041 0.00074
0.00004 0.00008 0.00015 0.00029 0.00052
0.00003 0.00005 0,00011 0.00020 0.00036
0.00002 0.00004 0.00007 0.00014 0.00026
15 16 17 18 19
0.00878 0.01346 0.01997 0.02879 0.04037
0.00644 0.01000 0.01505 0.02199 0.03125
0.00469 0.00739 0.01127 0.01669 0.02404
0.00341 0.00543 0.00840 0.01260 0.01838
0.00246 0.00397 0.00622 0.00945 0.01397
0.00177 0.00289 0.00459 0.00706 0.01056
0.00127 0.00210 0.00337 0.00524 0.00793
0.00090 0.00151 0.00246 0.00387 0.00593
0.00064 0.00109 0.00179 0.00285 0.00442
0.00045 0.00078 0.00129 0.00209 0.00327
20 21 22 23 24
0.05519 0.07366 0.09612 0.12279 0.15378
0.04330 0.05855 0.07740 0.10014 0.12699
0.03374 0.04622 0.06187 0.08107 0.10407
0.02613 0.03624 0.04912 0.06516 0.08467
0.02010 0.02824 0.03875 0.05202 0.06840
0.01538 0.02187 0.03037 0.04125 0.05489
0.01170 0.01683 0.02366 0.03251 0.04376
0.00886 0; 01289 0.01832 0.02547 0.03467
0.00667
0.00500
0.01411 0.01984 0.02731
0.01081 0.01537 0.02139
25 26 27 28 29
0.18902 0.22827 0.27114 0.31708 0.36542
0.15801 0.19312 0.23208 0.27451 0.31987
oI 16210 0;
0.13107
0.08820 _ _ . - - _0.07160 _
0.19707 0.23574 0.27774
0.10791 13502 0.16605 0.20087 0.23926
0.11165 0.13887 0.16987 0.20454
0.09167 0.11530 0.14260 0.17356
0.05774 0.07475 0.09507 0.11886 0.14622
0.04626 0.06056 0.07786 0.09840 0.12234
0.03684 0.04875 0.06336 0.08092 0.10166
0.02916 0.03901 0.05124 0.06613 0.08394
30
0.41541
0.36753
0.32254
0.28083
0.24264
0.20808
0.17714
0.14975
0.12573
0.10486
10
0; 00981 0.00744 . ... . .
983
PROBABILITY FUNCTIONS
PROBABILITY INTEGRAL OF x~-DISTRIBUTION,INCOMPLETE GAMMA FUNCTION CUMULATIVE SUMS OF THE POISSON DISTRIBUTION
52
54
56
26
27
28
0.00001 0.00001 0.00002 0.00004 0.00007
0.00001 0.00001 0.00002 0.00003
0.00001 0.00001 0.00002
0.00001
0.00022 0.00036 0.00059 0.00092 0.00142
0.00011 0.00019 0.00031 0.00050 0.00078
0.00006 0.00010 0.00016 0.00027 0.00043
0.00003 0.00005 0.00009 0.00014 0.00023
0.00001 0.00003 0.00004 0.00007 0.00012
0.00001 0.00001 0.00002 0.00004 0.00006
0.00373 0.00540 0.00768 0.01072 0.01470
0.00213 0.00314 0.00455 0.00647 0.00903
0.00120 0.00180 0.00265 0.00384 0.00545
0.00066 0.00102 0.00152 0.00224 0.00324
0.00036 0.00056 0.00086 0.00129 0.00189
0.00020 0.00031 0.00048 0.00073 0.00109
0.00011 0.00017 0.00026 0.00041 0.00062
0.01983
0.01240
0.00762
0.00460
0.00273
0.00160
0.00092
0.00001 0.00001 0.00003
0.00001 0.00001
0.00001
19
0.00023 0.00040 0.00067 0.00111 0.00177
0.00011 0.00020 0.00034 0.00058 0.00094
0.00005 0.00010 0.00017 0.00030 0.00050
0.00003 0.00005 0.00009 0.00015 0.00026
0.00001 0.00002 0.00004 0.00008 0.00013
20 21 22 23 24
0.00277 0.00421 0.00625 0.00908 0.01291
0.00151 0.00234 0.00355 0.00526 0.00763
0.00081 0.00128 0.00198 0.00299 0.00443
0.00043 0.00069 0.00109 0.00167 0.00252
25 26 27 28 29
0.01797 0.02455 0.03292 0.04336 0.05616
0.01085 0.01512 0.02068 0.02779 0.03670
0.00642 0.00912 0.01272 0.01743 0.02346
30
0.07157
0.04769
0.03107
15 16 17 18
46 23
50
0.00001 0.00002 0.00003 0.00006
10 11 12 13 14
44 22
25
x2=42 m=21 0.00001 0.00002 0.00003 0.00006 0.00012
V
48 24
x2 = 62
64
m=31 0.00001 0.00001 0.00002 0.00003 0.00006
32
21 22 23 24 25
0.00001 0.00001 0.00002 0.00003
0.00001 0.00001 0.00002
0.00001
26 27 28 29 30
0.00009 0.00014 0.00023 0.00035 0.00052
0.00005 0.00008 0.00012 0; 00019 0.00029
0.00003 0.00004 0.00007 0,00011 0.00016
0.00001 0.00002 0.00004 0.00006 0.00009
V
66 33
68
70 35
34
0.00001 0.00001 0.00002 0.00003 0.00005
;( x2-x '0)
$,=-
Interpolation on
x2
Double Entry Interpolation
Table 26.7
72
74
76
36
37
38
0.00001 0.00001 0.00002 0.00003
w=v--v~>o
0,00001 0.00001 0,00001 0.00001
58 29
60
30
984
PROBABILITY FUNCTIONS
Table 26.8
''
PERCENTAGE POINTS OF THE X2-DISTRIBUTION-VALUES OF X2 IN TERMS OF Q AND Y
0.995 0.99 0.975 0.95 -5) 3.92704 -4 1.57088 -4 9.82069 ( -3)3.93214 2 -2 1.00251 -2 2.01007 1-215.06356 0.102587 {-2{7.17212 0.114832 0.215795 0.351846 0.484419 0.710721 4 0.206990 0.297110 5 0.411740 0.554300 0.831211 1.145476 '\
0.9 0.0157908 0.210720 0.584375 1.06362? 1.61031
0.75 0.101531 0.575364 1.212534 1.92255 2.67460
0.454937 1.38629 2.36597 3.35670 4.35146
5.34812 7.84080 6.34581 9.03715 7.34412 10.2188 8.34283 11.3887 9.34182 12.5489
0.5
0.25
1.32330 2.77259 4.10835 5.38527 6.62568
6 7 8 9 10
0.675727 0.989265 1.344419 1.734926 2.15585
0.872085 1.239043 1.646482 2.087912 2.55821
1.237347 1.68987 2.17973 2.70039 3.24697
1.63539 2.16735 2.73264 3.32511 3.94030
2.20413 2.83311 3.48954 4.16816 4.86518
3.45460 4.25485 5.07064 5.89883 6.73720
11 12 13 14 15
2.60321 3i07382 3.56503 4.07468 4.60094
3.05347 3757056 4.10691 4.66043 5.22935
3.81575 4.40379 5.00874 5.62872 6.26214
4.57481 5.22603 5.89186 6.57063 7.26094
5.57779 6.30380 7.04150 7.78953 8.54675
7.58412 8.43842 9.29906 10.1653 11.0365
10.3410 11.3403 12.3398 13.3393 14.3389
13.7007 14.8454 15.9839 17.1170 18.2451
16 17 18 19 20
5.14224 5.69724 6I26481 6.84398 7.43386
5.81221 6.40776 7.01491 7.63273 8.26040
6.90766 7.56418 8.2 3075 8.90655 9.59083
7.96164 8.67176 9.39046 10;1170 10.8508
9.31223 10.0852 10.8649 1176509 12.4426
11.9122 12.7919 13.6753 14.5620 15.4518
15.3385 16.3381 17.3379 18.3376 19.3374
19.3688 20.4887 21.6049 22.7178 23.8277
21 22 23 24 25
8.03366 8i64272 9.26042 9.88623 10.5197
8.89720 9.54249 10.19567 10.8564 11.5240
10.28293 10.9823 11.6885 12.4011 1371197
11.5913 12.3380 13.0905 13.8484 14.6114
13.2396 14.0415 14.8479 15.6587 16.4734
16.3444 17.2396 18.1373 19.0372 19.9393
20.3372 21.3370 22.3369 23.3367 24.3366
24.9348 26.0393 27.1413 28.2412 29.3389
26 27 28 29 30
11.1603 11.8076 12.4613 13.1211 13.7867
12.1981 12.8786 13.5648 14.2565 14.9 535
13.8439 14.5733 15.3079 16.0471 16.7908
15.3791 16.1513 16.9279 17.7083 18.4926
17.2919 18.1138 18.9392 19.7677 20.5992
20.8434 21.7494 22.6572 23.5666 24.4776
25.3364 26.3363 27.3363 28.3362 29.3360
30.4345 31.5284 32.6205 33.7109 34.7998
40 50 60 70 80
20.7065 27.9907 35.5346 43.2752 51.1720
22.1643 29.7067 37.4848 45.4418 53.5400
24.4331 32.3574 40.4817 48.7576 57.1532
26.5093 34.7642 43.1879 51.7393 60.3915
29.0505 37.6886 46.4589 55.3290 64.2778
33.6603 42.9421 52.2938 61.6983 71.1445
39.3354 49.3349 59.3347 69.3344 79.3343
45.6160 56.3336 66.9814 77.5766 88.1303
90 100
59.1963 67.3276
61.7541 70.0648
65.6466 74.2219
69.1260 77.9295
73.2912 82.3581
80.6247 90.1332
89.3342 99.3341
98.6499 109.141
X
-2.5758
-2.3263
-1.9600
-1.6449
-1.2816
-0.6745
0.0000
0.6745
From E. S. Pearson and H. 0. Hartley (editors): Biometrika tables for statisticians, vol. I. Cambridge Univ. Press, Cambridge, England, 1954 (with permission) for Q > 0.0005.
985
PROBABILITY FUNCTIONS
PERCENTAGE POINTS OF THE xz-DISTRIBUTION- -VALUES OF X2 IN TERMS OF Q AND Y Y\
1 2 3 4 5
Q
0.1
2.70554 4.60517 6.25139 7.77944 9.23635
Table 26.8
0.001
0.0005
0.0001
3.84146 5.99147 7.81473 9.48773 11.0705
5.02389 7.37776 9.34840 11.1433 12.8325
6.63490 9.21034 11.3449 13.2767 15.0863
7.87944 10.5966 12.8381 14.8602 16.7496
10.828 13.816 16.266 18.467 20.515
12.116 15.202 17.730 19.997 22.105
15.137 18.421 21.108 23.513 25.745
0.05
0.025
0.01
0.005
6 7 8 9 10
10.6446 12.0170 13.3616 14.6837 15.9871
12.5916 14.0671 15.5073 16.9190 18.3070
14.4494 16.0128 17.5346 19.0228 20.4831
16.8119 18.4753 20.0902 21.6660 23.2093
18.5476 20.2777 21.9550 23.5893 25.1882
22.458 24.322 26.125 27.877 29.588
24.103 26.018 27.868 29.666 31.420
27.856 29.877 31.828 33.720 35.564
11 12 13 14
is
17.2750 18.5494 19.8119 21.0642 22i3072
19.6751 21.0261 22.3621 23.6848 24.9958
21.9200 23.3367 24.7356 26.1190 27I4884
24.7250 26.2170 27.6883 29.1413 30.5779
26.7569 28.2995 29.8194 31.3193 3218013
31.264 32.909 34.528 36.123 37.697
33.137 34.821 36.478 38I109 39.719
37.367 39.134 40.871 42.579 44.263
16 17 18 19 20
23.5418 24.7690 25.9894 27.2036 28.4120
26.2962 27.5871 28.8693 30.1435 31.4104
28.8454 30.1910 31.5264 32.8523 34.1696
31.9999 33.4087 34.8053 36.1908 37.5662
34.2672 35.7185 37.1564 38.5822 39.9968
39.252 40.790 42.312 43.820 45.315
41.308 42.879 44.434 45.973 47.498
45.925 47.566 49.189 50.796 52.386
21 22 23 24 25
29.6151 30.8133 32.0069 33.1963 34.3816
32.6705 33.9244 35.1725 36.4151 37.6525
35.4789 36.7807 38.0757 39.3641 40.6465
38.9321 40.2894 41.6384 42.9798 44.3141
41.4010 42.7956 44.1813 45.5585 46.9278
46.797 48.268 49.728 51.179 52.620
49.011 50.511 52.000 53.479 54.947
53.962 55.525 57.075 58.613 60.140
26 27 28 29 30
35.5631 36.7412 37.9159 39.0875 40.2560
38.8852 40.1133 41.3372 42.5569 43.7729
41.9232 43.1944 44.4607 45.7222 46.9792
45.6417 46.9630 48.2782 49.5879 50.8922
48.2899 49.6449 50.9933 52.3356 53.672 0
54.052 55.476 56.892 58.302 59;703
56.407 57.858 59.300 60.735 62I162
61.657 63.164 64.662 66.152 67.633
40
51.8050 63.1671 74.3970 85.5271 96.5782
55.7585 67.5048 79.0819 90.5312 101.879
59.3417 71.4202 83.2976 95.0231 106.629
63.6907 76.1539 88.3794 100.425 112.329
66.7659 79.4900 91.9517 104.215 116.321
73.402 86.661 99.607 112.317 124.839
76.095 89.560 102.695 115.578 128.261
82.062 95.969 109.503 122.755 135.783
113.145 124.342
118.136 129.561
124.116 135.807
128.299 140.169
137.208 149.449
140.782 153.167
148.627 161.319
50
60 70 80 90 100
x
107.565 118.498 1.2816
1.6449
1.9600
2.3263
2.5758
3.0902
3.2905
3.7190
986
PROBABILITY FUNCTIONS
Table 26.9 PERCENTAGE POINTS OF THE F-DISTRIBUTION -VALUES OF F IN TERMS OF Q, v,, 9
Q(F(vi,q)=0.5 y2\v1 1 2 1.50 1 1.00 2 0.667 1.00 3 0.585 0.881 4 0 549 0.828 5 (528 0.799
3
4
5
1.71 1.13 1.00 0.941 0.907
1.82 1.21 1.06 1.00 0.965
1.89 1.25 1.10 1.04 1.00
0.780 0.767 0.757 0.749 0.743
0.886 0 871 01860 0.852 0.845
0.942 0.926 0.915 0.906 0.899
0.739
-
6
8
12
15
20
30
60
1.94 1.28 1.13 1.06 1.02
2.00 1.32 1.16 1.09 1.05
2.07 1.36 1.20 1.13 1.09
2.09 1.38 1.21 1.14 1.10
2.12 1.39 1.23 1.15 1.11
2.15 1.41 1.24 1.16 1.12
2.17 1.43 1.25 1.18 1.14
2.20 1.44 1.27 1.19 1.15
0.977 1.00 0.960 0.983 0.948 0.971 0.939 0.962 0.932 0.954
1.03 1.01 1.00 0.990 0.983
1.06 1.04 1.03 1.02 1.01
1.07 1.05 1.04 1.03 1.02
1.08 1.07 1.05 1.04 1.03
1.10 1.08 1.07 1.05 1.05
1.11 1.09 1.08 1.07 1.06
1.12 1.10 1.09 1.08 1.07
0.893 0,888 0.885 0.881 0.878
0.926 0.921 0.917 0.914 0.911
0.948 0.943 0.939 0.936 0.933
0.977 0.972 0.967 0.964 0.960
1.01 1.00 0.996 0.992 0.989
1.02 1.01 1.01 1.00 1.00
1.03 1.02 1.02 1.01 1.01
1.04 1.03 1.03 1.03 1.02
1.05 1.05 1.04 1.04 1.03
1.06 1.06 1.05 1.05 1.05
6 7 8 9 10
0.515 0 506 0'499 01494 0.490
11 12 13 14 15
0 486 0'484 0'481 0'479 01478
0:731 0.729 0.726
0.840 0.835 0.832 0.828 0.826
16 17 18 19 20
0 476 0'475 0'474 0'473 01472
0 724 0'722 01721 0.719 0.718
0.823 0 821 01819 0 818 01816
0.876 0.874 0.872 0.870 0.868
0.908 0.906 0.904 0.902 0.900
0.930 0.928 0.926 0.924 0.922
0.958 0.955 0.953 0.951 0.950
0.986 0.983 0.981 0.979 0.977
0.997 0.995 0.992 0.990 0.989
1.01 1.01 1.00 1.00 1.00
1.02 1.02 1.02 1.01 1.01
1.03 1.03 1.03 1.02 1.02
1.04 1.04 1.04 1.04 1.03
21 22 23 24 25
0 471 0'470 0'470 0'469 01468
0 716 01715 0 714 0'714 01713
0 815 01814 0.813 0.812 0.811
0 867 0:866 0.864 0.863 0.862
0 899 01898 0.896 0.895 0.894
0.921 0.919 0.918 0.917 0.916
0.948 0.947 0.945 0.944 0.943
0.976 0.974 0.973 0.972 0.971
0.987 0.986 0.984 0.983 0.982
0.998 0.997 0.996 0.994 0.993
1.01 1.01 1.01 1.01 1.00
1.02 1.02 1.02 1.02 1.02
1.03 1.03 1.03 1.03 1.03
26 27 28 29 30
0.468 0 467 0'467 01466 0.466
0.712 0 711 0'711 0:710 0.709
0.810 0.809 0.808 0.808 0.807
0.861 0.861 0.860 0.859 0.858
0.893 0.892 0.892 0.891 0.890
0.915 0.914 0.913 0.912 0.912
0.942 0.941 0.940 0.940 0.939
0.970 0.969 0.968 0.967 0.966
0.981 0.980 0.979 0.978 0.978
0.992 0.991 0.990 0.990 0.989
1.00 1.00 1.00 1.00 1.00
1.01 1.01 1.01 1.01 1.01
1.03 1.03 1.02 1.02 1.02
40 60 120
0 463 0'461 01458 0.455
0.705 0.701 0.697 0.693
0.802 0 798 01793 0.789
0.854 0.849 0.844 0.839
0 885 0:880 0.875 0.870
0.907 0.901 0.896 0.891
0.934 0.928 0.923 0.918
0.961 0.956 0.950 0.945
0.972 0.967 0.961 0.956
0.983 0.978 0.972 0.967
0.994 0.989 0.983 0.978
1.01 1.00 0.994 0.989
1.02 1.01 1.01 1.00
2
3
4
5
20
30
60
7.50 3.00 2.28 2.00 1.85
8.20 3.15 2.36 2.05 1.88
8.58 3.23 2.39 2.06 1.89
8.82 3.28 2.41 2.07 1.89
8.98 3.31 2.42 2.08 1.89
9.19 3.35 2.44 2.08 1.89
9.41 3.39 2.45 2.08 1.89
9.49 3.41 2.46 2.08 1.89
9.58 3.43 2.46 2.08 1.88
9.67 3.44 2.47 2.08 1.88
9.76 3.46 2.47 2.08 1.87
9.85 3.48 2.47 2.08 1.87
10
1.62 1.57 1.54 1.51 1.49
1.76 1.70 1.66 1.62 1.60
1.78 1.72 1.67 1.63 1.60
1.79 1.72 1.66 1.63 1.59
1.79 1.71 1.66 1.62 1.59
1.78 1.71 1.65 1.61 1.58
1.78 1.70 1.64 1.60 1.56
1.77 1.68 1.62 1.58 1.54
1.76 1.68 1.62 1.57 1.53
1.76 1.67 1.61 1.56 1.52
1.75 1.66 1.60 1.55 1.51
1.74 1.65 1.59 1.54 1.50
1.74 1.65 1.58 1.53 1.48
11 12 13 14 15
1.47 1.46 1.45 1.44 1.43
1.58 1.56 1.55 1.53 1.52
1.58 1.56 1.55 1.53 1.52
1.57 1.55 1.53 1.52 1.51
1.56 1.54 1.52 1.51 1.49
1.55 1.53 1.51 1.50 1.48
1.53 1.51 1.49 1.48 1.46
1.51 1.49 1.47 1.45 1.44
1.50 1.48 1.46 1.44 1.43
1.49 1.47 1.45 1.43 1.41
1.48 1.45 1.43 1.41 1.40
1.47 1.44 1.42 1.40 1.38
1.45 1.42 1.40 1.38 1.36
16 17 18 19 20
1.42 1.42 1.41 1.41 1.40
1.51 1.51 1.50 1.49 1.49
1.51 1.50 1.49 1.49 1.48
1.50 1.49 1.48 1.47 1.47
1.48 1.47 1.46 1.46 1.45
1.47 1.46 1.45 1.44 1.44
1.45 1.44 1.43 1.42 1.42
1.43 1.41 1.40 1.40 1.39
1.41 1.40 1.39 1.38 1.37
1.40 1.39 1.38 1.37 1.36
1.38 1.37 1.36 1.35 1.34
1.36 1.35 1.34 1.33 1.32
1.34 1.33 1.32 1.30 1.29
21 22 23 24 25
1.40 1.40 1.39 1.39 1.39
1.48 1.48 1.47 1.47 1.47
1.48 1.47 1.47 1.46 1.46
1.46 1.45 1.45 1.44 1.44
1.44 1.44 1.43 1.43 1.42
1.43 1.42 1.42 1.41 1.41
1.41 1.40 1.40 1.39 1.39
1.38 1.37 1.37 1.36 1.36
1.37 1.36 1.35 1.35 1.34
1.35 1.34 1.34 1.33 1.33
1.33 1.32 1.32 1.31 1.31
1.31 1.30 1.30 1.29 1.28
1.28 1.28 1.27 1.26 1.25
26 27 28 29 30
1.38 1.38 1.38 1.38 1.38
1.46 1.46 1.46 1.45 1.45
1.45 1.45 1.45 1.45 1.44
1.44 1.43 1.43 1.43 1.42
1.42 1.42 1.41 1.41 1.41
1.41 1.40 1.40 1.40 1.39
1.38 1.38 1.38 1.37 1.37
1.35 1.35 1.34 1.34 1.34
1.34 1.33 1.33 1.32 1.32
1.32 1.32 1.31 1.31 1.30
1.30 1.30 1.29 1.29 1.28
1.28 1.27 1.27 1.26 1.26
1.25 1.24 1.24 1.23 1.23
40 60 120
1.36 1.35 1.34 1.32
1.44 1.42 1.40 1.39
1.42 1.41 1.39 1.37
1.40 1.38 1.37 1.35
1.39 1.37 1.35 1.33
1.37 1.35 1.33 1.31
1.35 1.32 1.30 1.28
1.31 1.29 1.26 1.24
1.30 1.27 1.24 1.22
1.28 1.25 1.22 1.19
1.25 1.22 1.19 1.16
1.22 1.19 1.16 1.12
1.19 1.15 1.10 1.00
m
S\Vi 1 1 5.83 2 2.57 3 2.02 4 1.81 5 1.69 6 7 8 9
m
0 735
Q(F'vi,y)=0.25 6 8 12
15
01
Compiled from E. S.. Pearson and H. 0. Hartley (editors), Biometrika tables for statisticians, vol. I. Cambridge Univ. Press, Cambridge, England, 1954 (with permission 1.
987
PROBABILITY FUNCTIONS
v24
Table 26.9 PERCENTAGE POINTS OF THE F-DISTRIBUTION -VALUES OF F IN TERMS OF Q, U,, U, Q ( F \ v , . h )=0.1 m 30 60 20 15 8 12 6 4 5 3 2 1 63.33 62.79 62.26 61.74 61.22
2 3 4 5
39.86 8.53 5.54 4.54 4.06
49.50 9.00 5.46 4.32 3.78
53.59 9.16 5.39 4.19 3.62
55.83 9.24 5.34 4.11 3.52
57.24 9.29 5.31 4.05 3.45
58.20 9.33 5.28 4.01 3.40
59.44 9.37 5.25 3.95 3.34
60.71 9.41 5.22 3.90 3.27
9.42 5.20 3.87 3.24
9.44 5.18 3.84 3.21
9.46 5.17 3.82 3.17
9.47 5.15 3.79 3.14
9.49 5.13 3.76 3.10
6 7 8 9 10
3.78 3.59 3.46 3.36 3.29
3.46 3.26 3.11 3.01 2.92
3.29 3.07 2.92 2.81 2.73
3.18 2.96 2.81 2.69 2.61
3.11 2.88 2.73 2.61 2.52
3.05 2.83 2.67 2.55 2.46
2.98 2.75 2.59 2.47 2.38
2.90 2.67 2.50 2.38 2.28
2.87 2.63 2.46 2.34 2.24
2.84 2.59 2.42 2.30 2.20
2.80 2.56 2.38 2.25 2.16
2.76 2.51 2.34 2.21 2.11
2.72 2.47 2.29 2.16 2.06
11 12 13 14 15
3.23 3.18 3.14 3.10 3.07
2.86 2.81 2.76 2.73 2.70
2.66 2.61 2.56 2.52 2.49
2.54 2.48 2.43 2.39 2.36
2.45 2.39 2.35 2.31 2.27
2.39 2.33 2.28 2.24 2.21
2.30 2.24 2.20 2.15 2.12
2.21 2.15 2.10 2.05 2.02
2.17 2.10 2.05 2.01 1197
2.12 2.06 2.01 1.96 1.92
2.08 2.01 1.96 1.91 1.87
2.03 1.96 1.90 1.86 1.82
1.97 1.90 1.85 1.80 1.76
16 17 18 19 20
3.05 3.03 3.01 2.99 2.97
2.67 2.64 2.62 2.61 2.59
2.46 2.44 2.42 2.40 2.38
2.33 2.31 2.29 2.27 2.25
2.24 2.22 2.20 2.18 2.16
2.18 2.15 2.13 2.11 2.09
2.09 2.06 2.04 2.02 2.00
1.99 1.96 1.93 1.91 1.89
1.94 1.91 1.89 1.86 1.84
1.89 1.86 1.84 1.81 1.79
1.84 1.81 1.78 1.76 1.74
1.78 1.75 1.72 1.70 1.68
1.72 1.69 1.66 1.63 1.61
21 22 23 24 25
2.96 2.95 2.94 2.93 2.92
2.57 2.56 2.55 2.54 2.53
2.36 2.35 2.34 2.33 2.32
2.23 2.22 2.21 2.19 2.18
2.14 2.13 2.11 2.10 2.09
2.08 2.06 2.05 2.04 2.02
1.98 1.97 1.95 1.94 1.93
1.87 1.86 1.84 1.83 1.82
1.83 1.81 1.80 1.78 1.77
1.78 1.76 1.74 1.73 1.72
1.72 1.70 1.69 1.67 1.66
1.66 1.64 1.62 1.61 1.59
1.59 1.57 1.55 1.53 1.52
26 27 28 29
2.91 2.90 2.89 2.89 2.88
2.52 2.51 2.50 2.50 2.49
2.31 2.30 2.29 2.28 2.28
2.17 2.17 2.16 2.15 2.14
2.08 2;07 2.06 2.06 2.05
2.01 2.00 2.00 1.99 1.98
1.92 1.91 1.90 1.89 1.88
1.81 1.80 1.79 1.78 1.77
1.76 1.75 1.74 1.73 1.72
1.71 1.70 1.69 1.68 1.67
1.65 1.64 1.63 1.62 1.61
1.58 1.57 1.56 1.55 1.54
1.50 1.49 1.48 1.47 1.46
2.84 2.79 2.75 2.71
2.44 2.39 2.35 2.30
2.23 2.18 2.13 2.08
2.09 2.04 1.99 1.94
2.00 1.95 1.90 1.85
1.93 1.87 1.82 1.77
1.83 1.77 1.72 1.67
1.71 1.66 1.60 1.55
1.66 1.60 1.55 1.49
1.61 1.54 1.48 1.42
1.54 1.48 1.41 1.34
1.47 1.40 1.32 1.24
1.38 1.29 1.19 1.00
1
30 40 60 120 m
988
PROBABILITY FUNCTIONS
PERCENTAGE POINTS OF THE F-DISTRIBUTION-VALUES OF F IN TERMS OF Q, V,, V? Q(F(4,q) =0.025
Table 26.9
3
4
5
6
8
12
15
20
30
647.8 38.51 17.44 12.22 10.01
799.5 39.00 16.04 10.65 8.43
864.2 39.17 15.44 9.98 7.76
899.6 39.25 15.10 9.60 7.39
921.8 39.30 14.88 9.36 7.15
937.1 39.33 14.73 9.20 6.98
956.7 39.37 14.54 8.98 6.76
976.7 39.41 14.34 8.75 6.52
984.9 39.43 14.25 8.66 6.43
993.1 39.45 14.17 8.56 6.33
1001 39.46 14.08 8.46 6.23
1010 39.48 13.99 8.36 6.12
1018 39.50 13.90 8.26 6.02
6 7 8
9 10
8.81 8.07 7.57 7.21 6.94
7.26 6.54 6.06 5.71 5.46
6.60 5.89 5.42 5.08 4.83
6.23 5.52 5.05 4.72 4.47
5.99 5.29 4.82 4.48 4.24
5.82 5.12 4.65 4.32 4.07
5.60 4.90 4.43 4.10 3.85
5.37 4.67 4.20 3.87 3.62
5.27 4.57 4.10 3.77 3.52
5.17 4.47 4.00 3.67 3.42
5.07 4.36 3.89 3.56 3.31
4.96 4.25 3.78 3.45 3.20
4.85 4.14 3.67 3.33 3.08
11 12 13 14 15
6.72 6.55 6.41 6.30 6.20
5.26 5.10 4.97 4.86 4.77
4.63 4.47 4.35 4.24 4.15
4.28 4.12 4.00 3.89 3.80
4.04 3.89 3.77 3.66 3.58
3.88 3.73 3.60 3.50 3.41
3.66 3.51 3.39 3.29 3.20
3.43 3.28 3.15 3.05 2.96
3.33 3.18 3.05 2.95 2.86
3.23 3.07 2.95 2.84 2.76
3.12 2.96 2.84 2.73 2.64
3.00 2.85 2.72 2.61 2.52
2.88 2.72 2.60 2.49 2.40
16 17 18 19 20
6.12 6.04 5.98 5.92 5.87
4.69 4.62 4.56 4.51 4.46
4.08 4.01 3.95 3.90 3.86
3.73 3.66 3.61 3.56 3.51
3.50 3.44 3.38 3.33 3.29
3.34 3.28 3.22 3.17 3.13
3.12 3.06 3.01 2.96 2.91
2.89 2.82 2.77 2.12 2.68
2.79 2.72 2.67 2.62 2.57
2.68 2.62 2.56 2.51 2.46
2.57 2.50 2.44 2.39 2.35
2.45 2.38 2.32 2.27 2.22
2.32 2.25 2.19 2.13 2.09
21 22 23 24 25
5.83 5.79 5.75 5.72 5.69
4.42 4.38 4.35 4.32 4.29
3.82 3.78 3.75 3.72 3.69
3.48 3.44 3.41 3.38 3.35
3.25 3.22 3.18 3.15 3.13
3.09 3.05 3.02 2.99 2.97
2.07 2.84 2.81 2.78 2.75
2.64 2.60 2.51 2.54 2.51
2.53 2.50 2.47 2.44 2.41
2.42 2.39 2.36 2.33 2.30
2.31 2.27 2.24 2.21 2.18
2.18 2.14 2.11 2.08 2.05
2.04 2.00 1.97 1.94 1.91
26 27 28 29 30
5.66 5.63 5.61 5.59 5.57
4.27 4.24 4.22 4.20 4.18
3.67 3.65 3.63 3.61 3.59
3.33 3.31 3.29 3.27 3.25
3.10 3.08 3.06 3.04 3.03
2.94 2.92 2.90 2.88 2.87
2.73 2.71 2.69 2.67 2.65
2.49 2.47 2.45 2.43 2.41
2.39 2.36 2.34 2.32 2.31
2.28 2.25 2.23 2.21 2.20
2.16 2.13 2.11 2.09 2.07
2.03 2.00 1.98 1.96 1.94
1.88 1.85 1.83 1.81 1.79
40 60 120
5.42 5.29 5.15 5.02
4.05 3.93 3.80 3.69
3.46 3.34 3.23 3.12
3.13 3.01 2.89 2.79
2.90 2.79 2.67 2.57
2.74 2.63 2.52 2.41
2.53 2.41 2.30 2.19
2.29 2.17 2.05 1.94
2.18 2.06 1.94 1.83
2.07 1.94 1.82 1.71
1.94 1.82 1.69 1.57
1.80 1.67 1.53 1.39
1.64 1.48 1.31 1.00
2
3
4
5
m
60
-
2 1 2 3 4 5
Q(F~V,,vz)=0.01 K\Vl 1 1 4052 2 98.50 3 34.12 4 21.20 5 16.26
20
30
60
4999.5 99.00 30.82 18.00 13.27
5403 99.17 29.46 16.69 12.06
5625 99.25 28.71 15.98 11.39
5764 99.30 28.24 15.52 10.97
5859 99.33 27.91 15.21 10.67
5982 99.37 27.49 14.80 10.29
6106 99.42 27.05 14.37 9.89
6157 99.43 26.87 14.20 9.72
6209 99.45 26.69 14.02 9.55
6261 99.47 2h.50 13.84 9.38
6313 99.48 26.32 13.65 9.20
6366 99.50 26.13 13.46 9.02
6
8
12
15
m
6 7 8 9 10
13.15 12.25 11.26 10.56 10.04
10.92 9.55 8.65 8.02 7.56
9.78 8.45 7.59 6.99 6.55
9.15 7.85 7.01 6.42 5.99
8.75 7.46 6.63 6.06 5.64
8.47 7.19 6.37 5.80 5.39
8.10 6.84 6.03 5.47 5.06
7.72 6.47 5.67 5.11 4.71
7.56 6.31 5.52 4.96 4.56
7.40 6.16 5.36 4.81 4.41
7.23 5.99 5.20 4.65 4.25
7.06 5.82 5.03 4.48 4.08
6.88 5.65 4.86 4.31 3.91
11 12 13 14
9.65 9.33 9.07 8.86
7.21 6.93 6.70 6.51 6.36
6.22 5.95 5.74 5.56 5.42
5.67 5.41 5.21 5.04 4.89
5.32 5.06 4.86 4.69 4.56
5.01 4.82 4.62 4.46 4.32
4.74 4.50 4.30 4.14 4.00
4.40 4.16 3.96 3.80 3.67
4.25 4.01 3.82 3.66 3.52
4.10 3.86 3.66 3.51 3.37
3.94 3.70 3.51 3.35 3.21
3.18 3.54 3.34 3.18 3.05
3.60 3.36 3.17 3.00 2.87
16 17 18 19 20
8.53 8;40 8.29 8.18 8.10
6.23 6-11 6.01 5.93 5.85
5.29 5.18 5.09 5.01 4.94
4.77 4.67 4.58 4.50 4.43
4.44 4.34 4.25 4.17 4.10
4.20 4.10 4.01 3.94 3.87
3.89 3.79 3.71 3.63 3.56
3.55 3.46 3.37 3.30 3.23
3.41 3.31 3.23 3.15 3.09
3.26 3.16 3.08 3.00 2.94
3.10 3.00 2.92 2.84 2.78
2.93 2.83 2.75 2.67 2.61
2.75 2.65 2.57 2.49 2.42
21 22 23 24 25
8.02 1.95 7.88 7.82 7.77
5.78 5.72 5.66 5.61 5.57
4.87 4.82 4.76 4.72 4.68
4.37 4.31 4.26 4.22 4.18
4.04 3.99 3.94 3.90 3.85
3.81 3.76 3.71 3.67 3.63
3.51 3.45 3.41 3.36 3.32
3.17 3.12 3.07 3.03 2.99
3.03 2.98 2.93 2.89 2.85
2.88 2.83 2.78 2.74 2.70
2.72 2.67 2.62 2.58 2.54
2.55 2.50 2.45 2.40 2.36
2.36 2.31 2.26 2.21 2.17
26 27 28 29 30
7.72 7.68 1.64 7.60 7.56
5.53 5.49 5.45 5.42 5.39
4.64 4.60 4.57 4.54 4.51
4.14 4.11 4.07 4.04 4.02
3.82 3.78 3.75 3.73 3.70
3.59 3.56 3.53 3.50 3.47
3.29 3.26 3.23 3.20 3.17
2.96 2.93 2.90 2.87 2.84
2.81 2.78 2.75 2.73 2.70
2.66 2.63 2.60 2.57 2.55
2.50 2.47 2.44 2.41 2.39
2.33 2.29 2.26 2.23 2.21
2.13 2.10 2.06 2.03 2.01
40 60 120
7.31 7.08 6.85 6.63
5.18 4.98 4.79 4.61
4.31 4.13 3.95 3.78
3.83 3.65 3.48 3.32
3.51 3.34 3.17 3.02
3.29 3.12 2.96 2.80
2.99 2.82 2.66 2.51
2.66 2.50 2.34 2.18
2.52 2.35 2.19 2.04
2.37 2.20 2.03 1.88
2.20 2.03 1.86 1.70
2.02 1.84 1.66 1.47
1.80 1.60 1.38 1.00
m
989
PROBABILITY FUNCTIONS
Tuble 26.9
PERCEFTAGE POlNTS OF THE F-DlSTRlBL"~lO\-\ ALUES OF F I N TERMS OF Q, Y,,Y, Q(Flv,,v?)=0.005 vz v1
1
1 16211 2 198.5 3 55.55 4 31.33 5 22.78 6 7 8 9 10
4
5
6
8
12
5;47
9.59 7.75 6.61 5.83 5.27
9.36 7.53 6.40 5.62 5.07
9.12 7.31 6.18 5.41 4.86
8.88 7.08 5.95 5.19 4.64
5.05 4.72 4.46 4.25 4.07
4.86 4.53 4;27 4.06 3.88
4.65 4.33 4.07 3.86 3.69
4.44 4.12 3.87 3.66 3.48
4.23 3.90 3.65 3.44 3.26
4.10 3.97 3.86 3.76 3.68
3.92 3.79 3.68 3.59 3.50
3.73 3.61 3.50 3.40 3.32
3.54 3.41 3.30 3.21 3.12
3.33 3.21 3.10 3.00 2.92
3.11 2.98 2.87 2.78 2.69
4.01 3.94 3.88 3.83 3.78
3.60 3.54 3.47 3.42 3.37
3.43 3.36 3.30 3.25 3.20
3.24 3.18 3.12 3.06 3.01
3.05 2.98 2.92 2.87 2.82
2.84 2.77 2.71 2.66 2.61
2.61 2.55 2.48 2.43 2.38
3.73 .. 3.69 3.65 3.61 3.58
3.33 3.28 3.25 3.21 3.18
3.15 3.11 3.07 3.04 A01
2.97 2;93 2.89 2.86 2.82
2.77 2.73 2.69 2.66 2.63
2.56 2.52 2.48 2.45 2.42
2.33 2.29 2.25 2.21 2.18
3.35 3.13 2.93 2.74
2.95 2.74 2.54 2.36
2.78 2.57 2.37 2.19
2.60 2.39 2.19 2.00
2.40 2.19 1.98 1.79
?.18 1.96 1.75 1.55
1.93 1.69 1.43 1.00
14.54 12.40 11.04 10.11 9.43
li.ii 10.88 9.60 8.72 8.08
12.03 10.05 8.81 7.96 7.34
11.46 9.52 8.30 6.87
11.07 9.16 7.95 7.13 6.54
10.57 8.68 7.50 6.69 6.12
10.03 8.18 7.01 6.23 5.66
6.88 6.52 6.23 6.00 5.80
6.42 6.07 5.79 5.56 5.37
6.10 5.76 5.48 5.26 5.07
5.68 5.35 5.08 4.86 4.67
5.24
5.64 5.5c 5.37 5.27 5.17
5.21 5.07 4.96 4.85 4.76
4.91 4.78 4.66 4.56 4.47
4.52 4.39 4.28 4.18 4.09
5.09 5.02 4.95 4.89 4.84
4.68 4.61 4.54 4.49 4.43
4.39 4.32 4.26 4.21 4.15
4.79 4.74 4.70 4.b6 4.62
4.38 4.34 4.30 4.26 4.23
4.37 4.14 3.92 3.72
3.99 3;76 3.55 3.35
4
5
21 22 23 24 25
9.83 9.73 9.63 9.55 9.48
6.89 6.81 6.73 6.66 6.60
26 27 28 29 30
9.41 9.34 9.28 9.23 9.18
6.54 6.49 6.44 6.40 6.35
40 60 120
8.83 8.49 8.18 7.88
6.07 5.79 5.54 5.30
2 ( 5 ) 5.000 999.0 148.5 61.25 37.12
5.73 5.65 5.58 5.52 5.46
4.98 .~ 4.73 4.50 4.28
3 ( 5 ) 5.404 999.2 141;l 56.18 33.20
( 5 ) 5.625 999.2 137.1 53.44 31.09
3.71 3.49 3.28 3.09
, v2) = 0.,001 Q(FIv~ 12 6 8
( 5 ) 5.764 999.3 134.6 51.71 29.75
( 5 ) 5.859 999.3 132.8 50.53 28.84
m
25465 199.5 41.83 19.32 12.14
24426 199.4 43.39 20.70 13.38
7.51 7.35 7.21 7.09 6.99
60 25253 199.5 42.15 19.61 12.40
23925 199.4 44.13 21.35 13.96
10.58 10.38 10.22 10.07 9.94
30 25044 199.5 42.47 19.89 12.66
23437 199.3 44.84 21.97 14.51
16 17 18 19 20
20 24836 199.4 42.78 20.17 12.90
23056 199.3 45.35 22.46 14.94
7.... A7
15 24630 199.4 43.08 20.44 13.15
22500 199.2 46.19 23.15 15.56
12.23 11.75 11.37 11.06 10.80
v24 1 1 (5)4.053 2 998.5 3 167.0 4 74.14 5 47;18
3 21615 199.2 47.47 24.26 16.53
11 12 13 14 15
m
~
18.63 16.24 14.69 13.61 12.83
2 20000 199.0 49.80 26.28 18.31
( 5 ) 5.981 999.4 130.6 49.00 27.64
( 5 ) 6.107 999.4 128.3 47.41 26.42
15 ( 5 ) 6.158 999.4 127.4 46.76 25.91
20 (5)6.209 999.4 126.4 46.10 25.39
30
60
(5)6.261 999.5 125.4 45.43 24.87
( 5 ) 6.313 999.5 124.5 44.75 24.33
m
( 5 ) 6.366 999.5 123;5 44.05 23.79
6 7 8 9 10
35.51 29.25 25.42 22.86 21.04
27.00 21.69 18.49 16.39 14.91
23.70 18.77 15.83 13.90 12.55
21.92 17.19 14.39 12.56 11.28
20.81 16-21 13.49 11.71 10.48
20.03 15.52 12.86 11.13 9.92
19.03 14.63 12.04 10.37 9.20
17.99 13.71 11.19 9.57 8.45
17.56 13.32 10.84 9.24 8.13
17.12 12.93 10.48 8.90 7.80
16.67 12.53 10.11 8.55 7.47
16.21 12.12 9.73 8.19 7.12
15.75 11.70 9.33 7.81 6.76
11 1; 13 14 15
19.69 18.64 17.81 17.14 16.59
13.81 12.97 12.31 11.78 11.34
11.56 10.80 10.21 9.73 9134
10.35 9.63 9.07 8.62 8;25
9.58 8.89 8.35 7.92 7.57
9.05 8.38 7.86 7.43 7.09
8.35 7.71 7.21 6.80 6.47
7.63 7.00 6.52 6.13 5.81
7.32 6.71 6.23 5.85 5.54
7.01 6.40 5.93 5.56 5.25
6.68 6.09 5.63 5.25 4.95
6.35 5.76 5.30 4.94 4.64
6.00 5.42 4.97 4.60 4.31
16 17 18 19 20
16.12 15.72 15.38 15.08 14.82
10.97 10.66 10.39 10.16 9.95
9.00 8.73 8.49 8.28 8.10
7.94 7.68 7.46 7.26 7.10
7.27 7.02 6.81 6.62 6.46
6.81 6.56 6.35 6.18 6.02
6.19 5.96 5.76 5.59 5.44
5.55 5.32 5.13 4.97 4.82
5.27 5.05 4.87 4.70 4.56
4.99 4.78 4.59 4.43 4.29
4.70 4.48 4.30 4.14 4.00
4.39 4ii8 4.00 3.84 3.70
4.06 3.85 3.67 3.51 3.38
21 22 23 24 25
14.59 14.38 14.19 14.03 13.88
9.77 9.61 9.47 9.34 9.22
7.94 7.80 7.67 7.55 7.45
6.95 6.81 6.69 6.59 6.49
6.32 6.19 6.08 5.98 5.88
5.88 5.76 5.65 5.55 5.46
5.31 5i19 5.09 4.99 4.91
4.70 4.58 4.48 4.39 4.31
4.44 4.33 4;23 4.14 4.06
4.17 4.06 3.96 3.87 3.79
3.88 3.78 3.68 3.59 3.52
3.58 3.48 3.38 3.29 3.22
3.26 3.15 3.05 2.97 2.89
26 27 28 29 30
13.74 13.61 13.50 13.39 13.29
9.12 9.02 8.93 8.85 8.77
7.36 7.27 7.19 7.12 7.05
6.41 6.33 6.25 6.19
5.80 5.73 5.66 5.59 5.53
5.38 5.31 5.24 5.18 5.12
4.83 4.76 4.69 4.64 4.58
4.24 4.17 4.11 4.05 4.00
3.99 3.92 3.86 3.80 3.75
3.72 3.66 3.60 3.54 3.49
3.44 3.38 3.32 3.27 3.22
3.15 3.08 3.02 2.97 2.92
2.82 2.75 2.69 2.64 2.59
40 60 120
12.61 11.97 11.38 10.83
8.25 7.76 7.32 6.91
6.60 6.17 5.79 5.42
5.70 5.31 4.95 4.62
5.13 4.76 4.42 4.10
4.73 4.37 4.04 3.74
4.21 3.87 3.55 3.27
3.64 3.31 3.02 2.74
3.40 3.08 2.78 2.51
3.15 2.83 2.53 2.27
2.87 2.55 2.26 1.99
m
*See page 11.
2.23 1.89 1.54 1.00
990
PROBABILITY FUNCTIONS
Taldc 26.1 0 PEHCE~TNE i
w w s OF ‘rim ~-I)ISTRIBI T I O Y - \
A I J ISS 01:I I\
~ I ~ I I ~ oI IyS,.I A ~ YD
0.5
0.8
0.9
0.95 0.98
0.99
5
0.325 0.289 0.277 0.271 0.267
1.000 0.816 0.765 0.741 0.727
3.078 1.886 1.638 1.533 1.476
6.314 2.920 2.353 2.132 2.015
12.706 4.303 3.182 2.776 2.571
31.821 6.965 4.541 3.747 3.365
63.657 9.925 5.841 4.604 4.032
127.321 14.089 7.453 5.598 4.773
318.309 22.327 10.214 7.173 5.893
636.619 31.598 12.924 8.610 6.869
6366.198 99.992 28.000 15.544 11.178
63661.977 316.225 60.397 27.771 17.897
5 7 8 9 10
0.265 0;263 0.262 0.261 0.260
0.718 0.711 0.706 0.703 0.700
1.440 1.415 1.397 1.383 1.372
1.943, 1.895 1.860 1.833 1.812
2.447 2;365 2.306 2.267 2.228
3.143 2.998 2.896 2.821 2.764
3.707 3.499 3.355 3.250 3.169
4.317 4.029 3.833 3.690 3.581
5.208 4.785 4.501 4.297 4.144
5.959 .. . 5.408 5.041 4.781 4.587
9.082 7.885 7.120 6.594 6.211
11.215 9.782 8.827 8.150
15.764 13.257 11.637 10.516
11 12 13 14 15
0.260 0.259 0.259 0.258 0.258
0.697 0.695 0.694 0.692 0.691
1.363 1.356 1.350 1.345 1.341
1.796 1.782 1.771 1.761 1.753
2.201 2.179 2.160 2.145 2.131
2.718 2.681 2.650 .2.624 2.602
3.106 3.055 3.012 2.977 2.947
3.497 3.428 3.372 3.326 3.286
4.025 3.930 3.852 3.787 3.733
4.437 4.318 4.221 4.140 4:073
5.921 5.694 5.513 5.363 5.239
7.648 7.261 6.955
-.. --
9.702 9.085 8.604
A in6
R >lR w.111
6.502
7.903
16 17 18 19 20
0.258 0.257 0.257 0.257 0.257
0.690 0.689 0.688 0.688 0.687
1.337 1.333 1.330 1.328 1.325
1.746 1.740 1.734 1.729 1.725
2.120 2.110 2.101 2.093 2.086
2.583 2.567 2.552 2.539 2.528
2.921 2.898 2.878 2.861 2.845
3.252 3.223 3.197 3.174 3.153
3.686 3.646 3.610 3.579 3.552
4.015 3.965 3.922 3.883 3.850
5.134 5.044 4.966 4.897 4.837
6.330 6.184 6.059 5.949 5.854
7.642 7.421 7.232 7.069 6.927
21 22
0.257 0.256
0.686 0.686
1.323 1.321
1.721 1.717
2.080 2.074
2.518 2.508
2.831 2.819
3.135 3.119
3.527 3.505
3.819 3.792
4.784 4.736
6 76.9
A
26 27 28 29 30
0.256 0.256 0.256 0.256 0.256
0.684 0.684 0.683 0.683 0.683
1.315 1.314 1.313 1.311 1.310
1.706 1.703 1.701 1.699 1.697
2.056 2.052 2.048 2.045 2.042
2.479 2.473 2.467 2.462 2.457
2.779 2.771 2.763 2.756 2.750
3.067 3.057 3.047 3.038 3.030
3.435 3.421 3.408 3.396 3.385
3.707 3;690 3.674 3.659 3.646
4.587 4;558 4.530 4.506 4.482
5.415 5.373 5.335 5.299
6.286 6.225 6.170 6.119
40 60 120
0.255 0.254 0.254 0.253
0.681 0.679 0.677 0.674
1.303 1.296 1.289 1.282
1.684 1.671 1.658 1.645
2.021 2.000 1.980 1.960
2.423 2.390 2.358 2.326
2.704 2.660 2.617 2.576
2.971 2.915 2.860 2.807
3.307 3.232 3.160 3.090
3.551 3.460 3.373 3.291
4.321 4.169 4.025 3.891
5.053 4.825 4.613 4.417
5.768 5.449 5.158 4.892
v \ A 0.2 1 2 3 4
m
0.995 0.998 0.999
0.9999 0.99999 0.999999
*
636619.772 999.999 130.155 49.459 28.477
13 555 -_.---
m
5 4 6-1 _.
*
From E. S. Pearson and H. 0. Hartley (editors), Biometrika tables for statisticians, vol. I. Cambridge Univ. Press, Cambridge, England, 1954 for A 0.999, from E. T. Federighi, Extended tables of the percentage points of Student’s t-distribution, J. Amer. Statist. Assoc. 54, 683-688 (1959) for A 0.999 (with permission).
n47
.
ano
A ‘Zc.3
I.>>-
*
991
PROBABILITY FUNCTIONS
2500 FIVE DIGIT RANDOM NUMBERS
Table! 26.11
53479 97344 66023 99776 30176
81115 70328 38277 75723 48979
98036 58116 74523 03172 92153
12217 91964 71118 43112 38416
59526 26240 84892 83086 42436
40238 44643 13956 81982 26636
40577 83287 98899 14538 83903
39351 97391 92315 26162 44722
43211 92823 65783 24899 69210
69255 77578 59640 20551 69117
81874 19839 09337 31151 67619
83339 90630 33435 58295 52515
14988 71863 53869 40823 03037
99937 95053 52769 41330 81699
13213 55532 18801 21093 17106
30177 60908 25820 93882 64982
47967 84108 96198 49192 60834
93793 55342 66518 44876 85319
86693 48479 78314 47185 47814
98854 63799 97013 81425 08075
61946 04811 05763 73260 54909
48790 64892 39601 56877 09976
11602 96346 56140 40794 76580
83043 79065 25513 13948 02645
22257 26999 86151 96289 35795
11832 43967 78657 90185 44537
04344 63485 02184 47111 64428
95541 93572 29715 66807 35441
20366 80753 04334 61849 28318
55937 96582 15678 44686 99001
42583 27266 49843 29316 30463
36335 27403 11442 40460 27856
60068 97520 66682 27076 67798
04044 23334 36055 69232 16837
29678 36453 32002 51423 74273
16342 33699 78600 58515 05793
48592 23672 36924 49920 02900
25547 45884 59962 03901 63498
63177 41515 68191 26597 00782
75225 04756 62580 33068 35097
28708 13183 60796 13486 34914
84088 50652 76639 46918 94502
65535 94872 30157 64683 39374
44258 28257 40295 07411 34185
33869 78547 99476 77842 57500
82530 55286 28334 01908 22514
98399 33591 15368 47796 04060
26387 61565 42481 65796 94511
02836 51723 60312 44230 44612
36838 14211 42770 77230 10485
28105 59231 87437 29046 62035
04814 45028 82758 01301 71886
85170 01173 71093 55343 94506
86490 08848 36833 65732 15263
35695 81925 53582 78714 61435
03483 71494 25986 43644 10369
57315 95401 46005 46248 42054
63174 34049 42840 53205 68257
71902 04851 81683 94868 14385
71182 65914 21459 48711 79436
38856 40666 40588 78237 98247
80048 43328 90087 86556 67474
59973 87379 37729 50276 71455
73368 86418 08667 20431 69540
52876 95841 37256 00243 01169
47673 25590 20317 02303 03320
41020 54137 53316 71029 67017
82295 94182 50982 49932 92543
26430 42308 32900 23245 97977
87377 07361 32097 00862 52728
69977 39843 62880 56138 90804
78558 23074 87277 64927 56026
65430 40814 99895 29454 48994
32627 03713 99965 52967 64569
28312 21891 34374 86624 67465
61815 96353 42556 62422 60180
14598 96806 11679 30163 12972
79728 24595 99605 76181 03848
55699 26203 98011 95317 62582
91348 26009 48867 39264 93855
09665 34756 12157 69384 93358
44672 50403 73327 07734 64565
74762 76634 74196 94451 43766
33357 12767 26668 76428 45041
67301 32220 78087 16121 44930
80546 34545 53636 09300 69970
97659 18100 52304 67417 16964
11348 53513 00007 68587 08277
78771 14521 05708 87932 67752
45011 72120 63538 38840 60292
38879 58314 83568 28067 05730
35544 60298 10227 91152 75557
99563 72394 99471 40568 93161
85404 69668 74729 33705 80921
04913 12474 22075 64510 55873
62547 93059 10233 07067 54103
78406 02053 21575 64374 34801
01017 29807 20325 26336 83157
86187 63645 21317 79652 04534
22072 12792 57124 31140 81368
Compiled from Rand Corporation, A million random digits with 100,000 normal deviates. The Free Press, Glencoe, Ill., 1955 (with permission).
992
PROBABILITY FUNCTIONS
Table 26.11
2500 FIVE DIGIT RANDOM NUMBERS
26687 60675 45418 69872 03765
74223 75169 98635 48026 86366
43546 24510 83123 89755 99539
45699 15100 98558 28470 44183
94469 02011 09953 44130 23886
82125 14375 60255 59979 89977
37370 65187 42071 91063 11964
23966 10630 40930 28766 51581
68926 37664 64421 66745 97992 93085 85962 77173 18033 56239
84686 91512 10737 54870 48967
57636 49670 49307 19676 49579
32326 32556 18307 58367 65369
19867 85189 22246 20905 74305
71345 28023 22461 38324 62085
42002 88151 10003 00026 39297
96997 62896 93157 98440 10309
84379 95498 66984 37427 23173
27991 29423 44919 22896 74212
21459 38138 30467 37637 32272
91430 92564 41734 25251 91657
79112 03685 29567 47476 12199 '77441 78110 54178 11563 66036
05411 62804 92415 78241 28523
23027 73428 63542 09226 83705
54735 04535 42115 87529 09956
91550 86395 84972 35376 76610
06250 12162 12454 90690 88116
18705 59647 33133 54178 78351
18909 97726 48467 08561 50877
00149 53250 25587 01176 83531
84745 73200 17481 12182 15544
63222 84066 56716 06882 40834
50533 59620 49749 27562 20296
50159 61009 70733 75456 88576
60433 38542 32733 54261 47815
04822 05758 60365 38564 96540
49577 06178 14108 89054 79462
89049 80193 52573 96911 78666
16162 26466 39391 88906 25353
19902 98866 96516 78705 99417 56171 77699 57853 32245 83794
32805 25556 19848 93213 99528
61091 35181 24352 27342 05150
91587 29064 51844 28906 27246
30340 84909 64047 49005 29843 68949 03791 72127 57958 31052 65815 21637 48263 62156 62469
67750 50506 08366 49385 97048
87638 45862 43190 75406 16511
12874 72753 63899 41910 16255 43271 75553 30207 41772 18441
66469 45484 26540 41814 34685
13782 55461 41298 74985 13892
64330 66518 35095 40223 38843
00056 82486 32170 91223 69007
73324 74694 70625 64238 10362
13193 09724 01050 83100 08814
19466 76490 44225 92041 66785
09270 85058 80222 83901 36303
01245 17815 8'572 88028 57833
81765 71551 62758 56743 77622
06809 36356 14858 25598 02238
10561 97519 36350 79349 53285
1 00 8 0 54144 23304 47880 77316
'I7 482 05471 82273 06902 51132 70453 77912 40106
83169 21065 52020 38456
27373 63812 84305 92214
68609 29860 02897 54278
91543 14415 82465 27306 91960
63886 33816 07781 39843 82766
60539 96334 78231 87674 09938 66874 05634 96368 02331 08797
20804 96473 72128 72022 33858
72692 08944 44451 25098 99685 84329 01278 92830 21847 17391
02870 29296 14530 40094 53755
74892 50679 08410 31776 58079
22598 07798 45953 41822 48498
59284 10428 65527 59688 44452
96108 96003 41039 43078 10188
91610 71223 79574 93275 43565
07483 21352 05105 31978 46531
37943 78685 59588 08768 93023
96832 55964 02115 84805 07618
87275 94155 26488 37073 a3835
82013 93110 76394 34547 139575
59804 49964 91282 88296 55956
78595 27753 03419 68638 93957
60553 85090 68758 12976 30361
14038 12096 77677 69303 89575 66469 50896 10023 47679 83001
03920 07865 66407 73012 84125
15444 12091 35510 94805 33446 56780 50661 18523 12910 60934 95472 66323 97835 27220 35056
36690 58317 23422 04492 18402 36279 83235 50602 53403 18401 42736 77811 66681 05785 07103
08573 22791 03171 77538 63072
993
PROBABILITY FUNCTIONS
2500 FIVE DIGIT RANDOM NUMBERS
Table 26.11
55034 25521 85421 61219 20230
81217 99536 72744 48390 03147
90564 43233 97242 47344 58854
81943 48786 66383 30413 11650
11241 49221 00132 39392 28415
84512 06960 05661 91365 12821
12288 31564 96442 56203 58931
89862 21458 37388 79204 30508
00760 88199 57671 05330 65989
76159 06312 27916 31196 26675
95776 07603 00645 62950 79350
83206 17344 17459 83162 10276
56144 01148 78742 61504 81933
55953 83300 39005 31557 26347
89787 96955 36027 80590 08068
64426 65027 98807 47893 67816
08448 31713 72666 72360 06659
45707 89013 54484 72720 87917
80364 79557 68262 08396 74166
60262 49755 38827 33674 85519
48339 05842 25855 25272 73003
69834 08439 02209 16152 29058
59047 79836 07307 82323 17605
82175 50957 59942 70718 49298
92010 32059 71389 98081 47675
58446 32910 76159 38631 90445
69591 15842 11263 91956 68919
56205 13918 38787 49909 05676
95700 41365 61541 76253 23823
86211 80115 22606 33970 84892
81310 10024 84671 29296 51771
94430 44713 52806 58162 94074
22663 59832 89124 21858 70630
06584 80721 37691 33732 41286
38142 63711 20897 94056 90583
00146 67882 82339 88806 87680
17496 25100 22627 54603 13961
51115 45345 06142 00384 55627
61458 55743 05773 66340 23670
65790 67618 03547 69232 35109
42166 78355 09552 15771 13231
56251 67041 51347 63127 99058
60770 22492 33864 34847 93754
51672 51522 89018 05660 36730
36031 31164 73418 06156 44286
77273 30450 81538 48970 44326
85218 27600 77399 55699 15729
14812 44428 30448 61818 37500
90758 96380 97740 91763 47269
23677 26772 18158 20821 13333
50583 99485 54676 99343 35492
03570 57330 39524 71549 40231
38472 10634 73785 10248 34868
73236 74905 48864 76036 55356
67613 90671 69835 31702 12847
72780 19643 62798 76868 68093
78174 69903 65205 88909 52643
18718 60950 69187 69574 32732
99092 17968 05572 27642 67016
64114 37217 74741 00336 46784
98170 02670 36934 56851 05464
25384 86155 42879 12778 28892
03841 56860 81637 24309 14271
23920 02592 79952 73660 23778
47954 01646 07066 84264 88599
10359 42200 41625 24668 17081
70114 79950 96804 16686 33884
11177 37764 92388 02239 88783
63298 82341 88860 66022 39015
99903 71952 68580 64133 57118
15025 95610 09026 81431 21431
20237 08030 40378 99955 59335
63386 81469 05731 52462 58627
71122 91066 55128 67667 94822
06620 88857 74298 97322 65484
07415 56583 49196 69808 09641
94982 01224 31669 21240 41018
32324 28097 42605 65921 85100
79427 19726 30368 12629 16110
70387 71465 96424 92896 32077
95832 99813 77210 13268 44285
76145 44631 31148 02609 71735
11636 43746 50543 79833 26620
80284 99790 11603 66058 54691
17787 86823 50934 80277 14909
97934 12114 02498 08533 52132
12822 31706 09184 28676 81110
73890 05024 95875 37532 74548
66009 28156 85840 70535 78853
27521 04202 71954 82356 31996
70526 88386 83161 50214 97689
45953 11222 73994 71’721 29341
79637 25080 17209 33851 67747
57374 71462 79441 45144 80643
05053 09818 64091 05696 13620
31965 46001 49790 29935 23943
33376 19065 11936 12823 49396
13232 68981 44864 01594 83686
85666 18310 86978 08453 37302
86615 74178 34538 52825 95350
994
PROBABILITY FUNCTIONS
Table 26.11
2500 FIVE DIGIT R ANDOM NUMB ERS
12367 38890 80788 02395 73720
23891 30239 55410 77585 70184
31506 34237 39770 08854 69112
90721 22578 93317 23562 71887
18710 74420 18270 33544 80140
89140 22734 21141 45796 72876
58595 26930 52085 10976 38984
99425 40604 78093 44721 23409
22840 10782 85638 24781 63957
08267 80128 81140 09690 44751
61383 39161 80907 09052 33425
17222 44282 74484 65670 24226
55234 14975 39884 63660 32043
18963 97498 19885 34035 60082
39006 25973 37311 06578 20418
93504 33605 04209 87837 85047
18273 60141 49675 28125 53570
49815 30030 39596 48883 32554
52802 77677 01052 50482 64099
69675 49294 43999 55735 52326
72651 04142 85226 54888 33258
69474 32092 14193 03579 51516
73648 83586 52213 91674 82032
71530 61825 60746 59502 45233
55454 35482 24414 08619 39351
19576 32736 57858 33790 33229
15552 63403 31884 29011 59464
20577 91499 51266 85193 65545
12124 37196 82293 62262 76809
50038 02762 73553 28684 16982
75973 90638 65061 64420 27175
15957 75314 15498 07427 17389
32405 35381 93348 82233 76963
82081 34451 33566 97812 75117
02214 49246 19427 39572 45580
57143 11465 66826 07766 99904
33526 25102 03044 65844 47160
47194 71489 97361 29980 55364
94526 89883 08159 15533 25666
73253 99708 47485 90114 25405
32215 54209 59286 83872 83310
30094 58043 66964 58167 57080
87276 72350 84843 01221 03366
56896 89828 71549 95558 80017
15625 02706 67553 22196 39601
32594 16815 33867 65905 40698
80663 89985 83011 38785 56434
08082 37380 66213 01355 64055
19422 44032 69372 47489 02495
80717 59366 23903 28170 50880
64545 39269 29763 06310 97541
29500 00076 05675 02998 47607
13351 55489 28193 01463 57655
78647 01524 65514 27738 59102
92628 76568 11954 90288 21851
19354 22571 78599 17697 44446
60479 20328 63902 64511 07976
57338 84623 21346 39552 54295
52133 30188 19219 34694 84671
07114 43904 90286 03211 78755
82968 76878 87394 74040 47896
85717 34727 78884 12731 41413
11619 12524 87237 59616 66431
97721 90642 92086 33697 70046
53513 16921 95633 12592 50793
53781 13669 66841 44891 45920
98941 17420 22906 67982 96564
38401 84483 64989 72972 67958
70939 68309 86952 89795 56369
11319 85241 54700 10587 44725
87778 96977 43820 57203 49065
71697 63143 13285 83960 72171
64148 72219 77811 40096 80939
54363 80040 81697 39234 06017
92114 11990 29937 65953 90323
34037 47698 70750 59911 63687
59061 95621 02029 91411 07932
62051 72990 32377 55573 99587
62049 29047 00556 88427 49014
33526 85893 86687 45573 26452
94250 68148 12208 88317 56728
84270 81382 97809 89705 80359
95798 82383 33619 26119 29613
13477 18674 28868 12416 63052
80139 40453 41646 19438 15251
26335 92828 16734 65665 44684
55169 30042 88860 60989 64681
73417 37412 32636 59766 42354
40766 43423 41985 11418 51029
45170 45138 84615 18250 77680
07138 21188 02154 90953 80103
12320 64554 12250 85238 91308
01073 55618 88738 32771 12858
19304 36088 43917 07305 41293
87042 24331 03655 36181 00325
58920 84390 21099 47420 15013
28454 16022 60805 19681 19579
81069 12200 63246 33184 91132
93978 77559 26842 41386 12720
66659 75661 35816 03249 92603
995
PROBABILITY FUNCTIONS
2500 FIVE DIGIT RASDORI NUMBlERS
Tal~ l e26.11
92630 79445 59654 31524 06348
78240 78735 71966 49587 76938
19267 71549 27386 76612 90379
95457 44843 50004 39789 51392
53497 26104 05358 13537 55887
23894 67318 94031 48086 71015
37708 00701 29281 59483 09209
79862 34986 18544 60680 79157
76471 66751 52429 84675 24440
66418 99723 06080 53014 30244
28703 68108 99938 91543 42103
51709 89266 90704 73196 02781
94456 94730 93621 34449 73920
48396 95761 66330 63513 56297
73780 75023 33393 83834 72678
06436 48464 95261 99411 12249
86641 65544 95349 58826 25270
69239 96583 51769 40456 36678
57662 18911 91616 69268 21313
80181 16391 33238 48562 75767
17138 28297 09331 31295 36146
27584 14280 56712 04204 15560
25296 54524 51333 93712 27592
28387 21618 06289 51287 42089
51350 95320 75345 05754 99281
61664 38174 08811 79396 59640
37893 05363 60579 08089 82711 57392 87399 51773 15221 96079
44143 94999 25252 33075 09961
42677 78460 30333 97061 05371
29553 23501 57888 55336 10087
18432 22642 85846 71264 10072
13630 63081 67967 88472 55980
05529 08191 07835 04334 64688
02791 89420 11314 63919 68239
81017 67800 01545 36394 20461
49027 55137 48535 11196 89381
79031 54707 17142 92470 93809
50912 32945 08552 70543 00796
09399 64522 67457 29776 95945
34101 53362 82975 54827 25464
81277 44940 66158 84673 59098
66090 60430 84731 22898 27436
88872 22834 19436 08094 89421
37818 14130 55790 14326 80754
72142 96593 69229 87038 89924
67140 23298 28661 42892 19097
50785 56203 13675 21127 67737
21380 92671 99318 30712 80368
16703 15925 76873 48489 08795
67609 44921 33170 84687 71886
60214 70924 30972 85445 56450
41475 61295 98130 06208 36567
84950 51137 95828 17654 09395
40133 47596 49786 51333 96951
02546 86735 13301 02878 35507
09570 35561 36081 35010 17555
45682 76649 80761 67578 35212
50165 18217 33985 61574 69106
15609 63446 68621 20749 01679
00475 25993 92882 25138 84631
02224 38881 53178 26810 71882
74722 68361 99195 07093 12991
14721 59560 93803 15677 83028
40215 41274 56985 60688 82484
21351 69742 53089 04410 90339
08596 40703 15305 24505 91950
45625 37993 50522 37890 74579
83981 03435 55900 67186 03539
63748 18873 43026 62829 90122
34003 53775 59316 20479 86180
92326 45749 97885 66557 84931
12793 05734 72807 50705 25455
61453 86169 54966 26999 26044
48121 42762 60859 09854 02227
74271 70175 11932 52591 52015
28363 97310 35265 14063 21820
66561 73894 71601 30214 50599
75220 88606 55577 19890 51671
35908 19994 67715 19292 65411
21451 98062 01788 62465 94324
68001 68375 64429 04841 31089
72710 80089 14430 43272 84159
40261 24135 94575 68702 92933
61281 72355 75153 01274 99989
13172 95428 94576 05437 89500
63819 11808 61393 22953 91586
48970 29740 96192 18946 02802
51732 81644 03227 99053 69471
54113 86610 32258 41690 68274
05797 10395 35177 25633 16464
43984 14289 56986 89619 48280
21575 52185 25549 75882 94254
09908 09721 59730 98256 45777
70221 25789 64718 02126 45150
19791 38562 52630 72099 68865
51578 54794 31100 57183 11382
36432 04897 62384 55887 11782
33494 59012 49483 09320 22695
79888 89251 11409 73463 41988
27. Miscellaneous Functions IRENE A. STEGUN
Contents 27.1. Debye Functions TL=
so tndt n. ...
. . . . . . .
,
. . . . .
Page
998
1(1)4, ~ = 0 ( . 1 1.4(.2)5(.5) ) 10, 6D
. . . . . .
999
. . . . . . . . . . . . . .
999
27.2. Planck’s Radiation Function z-s(el’z- l ) - l . . . . Z= .05 (.005). 1(.01).2 (.02).4 (.05).9(.1)1.5(.5)3.5, 3D %,,I, f(%ax>, 9-10s 27.3. Einstein Functions
x2ez (ez-
2
,
.
, ,
2 -ez- 1
In (l-e-z),
FT’
1)s’
. .
In (1-e-3
~ = 0 ( . 0 5 )1.5(.1)3(.2)6, 5D
27.4. Sievert Integral
so”
e-zuea+&
.
,
. .... . .. . . . . . . 6D
~ = 0 ( . 11 ) (.2)3(.5)10, 8= 10’(10’)60’(15’)90’, 27.5. f,,,(z)=Sm trne-‘’-:
1000
d t and Related Integrals
0
f,,,(~),
m=1, 2, 3; ~=0(.01).05,.1(.1)1, 4D
fS(i~),
~=0(.2)8(.5)15(1)20, 4-5D
.. . . . . . . .
1001
. . . . . . .
1003
f(x)+ln x, x=0(.05)1 f(x), ~=1(.1)3(.5)8, 4D 27.7. Dilogarithm (Spence’s Integral)f(x)=-l
x=0(.01).5,
f(8),
1004
. . . . . . . . .
1005
. . . . . . .
1006
.
8=0°(10)150
8= 15’ (1’) 30’ (2’) 90’ (5’) 180°,
6D
27.9. Vector-Addition Coefficients (j1j2m1m21j1j2jm).
Algebraic Expressions for j2=1/2, 1,3/2,2 Decimal Values for j2=l/2, 1, 3/2, 5D 1
. t.
9D
27.8. Clausen’s Integral and Related Summations
f(e)+e In 0,
. .
~In t d
National Bureau of Standards.
27. Miscellaneous Functions 27.1. Debye Functions
I
Series Representations
1
Jrn %=n!l(n+l).
27.1.3
27.1.1
tndt
Relation to Riemann Zeta Function (see chapter 23)
+5(2k+n) ( 2 k ) ! ] lm=xn[n-2(n+l) B2kxU'
k-1
( I 4 < 2 r , n 2 1) (For Bernoulli numbers Bzn,see chapter 23.) 27.1.2
I27.11 J. A. Beattie, Six-place tables of the Debye energy and specific heat functions, J. Math. Phys. 6, 1-32 (1926).
:J'&
z.[L l2
Debye Functions
0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 1. 3 1. 4 1. 6 1. 8 2. 0 2. 2 2. 4 2. 6 2. 8 3. 0 3. 2 3. 4 3. 6 3. 8 4. 0 4. 2 4. 4 4. 6 4. 8 5. 0 5. 5 6. 0 6. 5 7. 0 7. 5 8. 0 8. 6 9. 0 9. 5 10. 0
1.000000 0.975278 0.951111 0.927498 0.904437
1.000000
0. 960555
0.903746 0. 873322
0.857985 0. 824963
0. 777505 0. 758213 0. 739438 0.721173 0. 703412 0. 669366 0. 637235 0.606947 0. 578427 0. 551596 0. 526375 0. 502682 0.480435 0.459555 0. 439962 0. 421580 0. 404332 0. 388148 0. 372958 0. 358696 0. 345301 0. 332713 0. 320876 0. 294240 0. 271260
0. 205239 0. 193294 0. 182633 0. 173068 0. 164443
0.792924 0. 761859 0. 731759 0. 702615 0. 674416 0. 647148 0. 620798 0. 595351 0. 570793 0. 524275 0. 481103 0. 441129 0.404194 0. 370137 0. 338793 0. 309995 0.283580 0.259385 0.237252 0. 217030 0. 198571 0. 181737 0. 166396 0. 152424
0. 733451 0. 707878 0. 683086 0. 659064 0. 635800 0. 613281 0. 570431 0. 530404
0. 396095 0. 368324 0. 342614 0. 318834 0. 296859 0. 276565 0. 257835 0. 240554 0.224615 0. 209916
0.095241 0.077581 0. 063604
0. 147243 0. 126669
0.074269 0.066036
1
0.030840 0. 026200 0.022411 0.019296
['-;I"] 998
65.
Widerstandes reiner Metalle von der Temperatur, Ann. Physik. (5) 16, 530-540 (1933). 20 r' t'dt 4x ~ l J oet-1 ez-1' x =O( .I) 13(.2) 18(1)20 (2)52(4)80, 48.
---
Table 27.1
321,2=0(.01)24,
x o ey-1' z - e z - 1 [27.2] E. Griineisen, Die Abhangigkeit des elektrisohen
0.922221 0. 884994 0.848871 0.813846 0. 779911 0. 747057 0.715275 0.684551 0. 654874 0. 626228 0.598598 0. 571967 0. 546317 0. 497882 0. 453131 0. 411893 0. 373984 0. 339218 0. 307405 0. 278355 0. 2518Z9 0. 227742 0. 205915 0. 186075 0. 168107 0. 151855 0. 137169 0. 123913 0. 111957 0.101180 0.091471 0. 071228 0.055677 0.043730 0.034541 0.027453 0.021968 0.017702 0.014368 0.011747 0.009674
2
f (2)
5
f(2)
2
f (2)
5
f (2)
0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100
0.007 0.025 0.074 0. 179 0.372 0.682 1. 137 1.752 2. 531 3. 466 4. 540
0. 10 0. 11 0. 12 0. 13 0. 14 0. 15 0. 16 0. 17 0. 18 0. 19 0. 20
4.540 6.998 9.662 12.296 14.710 16. 780 18. 446 19.692 20. 539 21.025 21.199
0. 20 0. 22 0. 24 0. 26 0. 28 0. 30 0. 32 0. 34 0. 36 0. 38 0. 40
21.199 20.819 19.777 18.372 16.809 16.224 13.696 12. 270 10.965 9.787 8. 733
0. 40 0. 45 0. 60 0. 55 0. 60 0. 66 0. 70 0. 75 0. 80 0. 85 0. 90
8.733 6.586 5.009 3.850 2.995 2.356 1.875 1.508 1.225 1.005 0.831
2
0. 9 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 2. 0
2. 5 3. 0 3. 5
f (2) 0.831 0.582 0.419 0.309 0.233 0. 178 0. 139 0.048 0.021 0.010 0.006
[ 27.31 Miscellaneous Physical Tables, Planck's radiation
functions and electronic functions, MT 17 (U.S. Government Printing Office, Washington, D.C., 1941).
&&=SoA
RI=c,A-6(ec~/XT-l)-1,
~~=[.06(.001) Yc.005) .4(.01) .6(.02) 1(.05)2]cm KO.
, NO-A (T=lOOOo K) Tab& II: RA, R ~ A NA, for A= [.5(.Ol) 1(.05) 4(,1)6( .2) 10(.5)201 microns.
RAdX,
Tab& III: N A for X=[.25(.05)1.6(.2)3(1)10] microns, T=[1000°(6000)35000 K and 6000' K].
Einstein Functions 2
e'--l 0. 00 0. 06 0. 10 0. 16 0. 20 0. 26 0. 30 0. 36 0. 40 0. 46 0. 60 0. 66 0. 60 0. 66 0. 70 0. 76 0. 80 0. 86 0. 90 0. 96 1. 00 1.06 1. 10 1. 16 1. 20 1. 26 1. 30 1. 36 1. 40 1. 46 1. 60
1.00000 0.99979 0.99917 0.99813 0. 99667 0.99481 0.99263 0.98986 0.98677 0.98329 0. 97942 0. 97617 0.97063 0.96662 0. 96016 0.96441 0.94833 0.94191 0.93616 0.92807 0.92067 0.91298 0.90499 0.89671 0.88817 0. 87937 0. 87031 0.86102 0.86161 0.84178 0. 83186
I I 1
I I
1.00000 0.97621 0. 96083 0. 92687 0.90333 0.88020 0.86749 0.83619 0.77076 0.76008 0. 72982 0. 70996 0.69060 0.67144 0. 66277 0. 83460 0.61661 0.69910 0.68198 0. 66623 0.64886 0.63286 0.61722 0.60194 0. 48702 0.47246 0.46824 0.44436 0.43083
In (1-e-m)
-0a
-3.02063 -2. 36217 - 1.97118 -1. 70777 - 1.60869 - 1.36023 - 1.21972 -1. 10963 - 1.01608 -0.93276 -0. 86026 -0.79687 -0.73824 -0.68634 -0.63936 -0. 69662 -0.66769 -0.52184
-o*48897 -0.-. 46868 - - - .-0.43069 -0.40477 -0.38073 -0.36838 -0. 33768 -0.31818 -0.30008 -0.28316 -0.26732 -0.26248
1
Table 27.3 5
-e --In (1-e-m)
1 0 )
I
I I 1
I I
3.99684 3. 30300 2. 89806 2. 61110 2.38888 2.20771 2.06491 1.92293 1.80690 1.70360 1.61036 1. 62669 1. 44820 1.37684 1.31079 1.24939 i.igm9 1. 13844 1.08809 1.04066 0.99692 0.96363 0. 91368 0. 87660 0.83962 0.80620
0.77263 0.74139 0. 71168 0.68331
1000
MISCELLANEOUS FUNCTIONS
Einstein Functions
Table 27.3 L
I
I
xae*
X
(ez- 1)'
0. 81143
1. 6 1. 7 1. 8 1. 9 2. 0
0.79035 0. 76869 0. 74657 0. 72406 0. 70127 0. 67827
2. 1 2. 2 2. 3 2. 4 2. 5 2. 6 2. 7 2. 8 2. 9 3. 0 3. 2 3. 4 3. 6 3. 8 4. 0 4. 2 4 4 4. 6 4. 8 5. 0 5. 2 5. 4 5. 6 5. 8 6. 0
0. 58589 0. 56307
0.54049 0. 51820 0. 49627
0. 45363
0.27264
0. 11683 0. 10247
0.08968
X e*- 1
I
--In (1-e-a)
0.40475
-0. 22552 -0. 20173
0.33416 0. 31304 0. 29304 0.27414 0. 25629 0. 23945 0. 22356
-0. 16201 -0. 14541
0. 37998 0. 35646
0.49617 0.45845 0. 42367 0. 39158 0. 36194 0.33455 0. 30921
-0. 13063 -0. 11744 -0. 10565
0.08695 0.07463
0.06394 0.05469 0.04671 0.03983 0.03392 0.02885 0.02450 0.02078 0.01761 0.01491
-0.01511 -0.01235 -0.01010 -0.00826 -0.00676 -0.00553 -0.00463 -0.00370 -0.00303 -0.00248
0. 13598 0. 11739 0. 10113
0.63027
0. 58171 0. 53714
-0.18068
-0.09510 -0.08565 -0.07718 -0.06957 -0.06274 -0.05659 -0.05107 -0. 04162 -0.03394 -0.02770 -0.02262 -0.01849
0. 20861 0. 19453 0. 18129 0. 16886 0. 15719
X ez- 1
In (1-e-8)
I 0.22545 0. 20826
0. 10958 0.09311
0.07905 0.06705 0.05681 0.04809 0.04068
0.02065 0.01739
[27.4] H. L. Johnston, L. Savedoff and J. Belzer, Contributions to the thermodynamic functions by a Planck-Einstein oscillator in one degree of freedom, NAVEXOS p. 646, Office of Naval Research, Department of the Navy, Washington, D.C. (1949). Values of x*e*(e*- l)-*,x(e*- l)-l, --In (1-e-") and z(e*-l)-l-ln (1-e-*) for z=0(.001)3(.01) 14.99, 5D with first differences.
27.4. Sievert Integral e - z aeo
*d4
1 ' 3 * 5 . . , (2k-1) 2.4.6... (2k) (For E2k+2(2), see chapter 5.) oro=
1,ak=
Relation to the Integal of the Bessel Function KO@)
27.4.3 Relation to the Error Function
27.4.1
2655
301035
--1 0 2 4+--. ~ 3~ 2 7 6 8 ~ ~ (For erf, see chapter 7.)
(For Ki,(s),see chapter 11.)
*
.}
1001
MISCELLANEOUS FVNCTIONB (27.51 National Bureau of Standards, Table of the Sievert integral, Applied Math. Series- (U.S. Government Printing Office, Washington, D.C. In press). x=O( .01) 2( .02) 5(.05) 10, 8=Oo (1') 90°,
'
Sievert Integral
I
30'
I
0.523599 0.471456 0.424515 0.382255 0.344209
loo
20'
0. 0 0. 1 0. 2
0. 3 0. 4
0.174533 0. 157843 0. 142749 0. 129099 0. 116754
0.349066 0.315187 0.284598 0.256978 0.232040
0. 5 0. 6 0. 7 0. 8 0. 9
0. 105589 0.095492 0.086361 0. 078103 0.070634
0.209522 0. 189191 0. 170833 0. 154256 0. 139289
0.309957 0.279118 0.251353 0.226354 0.203845
::: 1
0. 125775 0. 102553
0.083620 0.068183 0.055597
0. 183579 0. 148899 0. 120780
1. 8
0.063880 0.052247 0.042733 0.034951 0.028587
2. 0 2. 2 2. 4 2. 6 2. 8
0.023381 0.019123 0.015641 0.012793 0. 010463
4. 0 4. 5 5. 0
0.008558 0. 005178 0.003132 0.001895 0.001147
1. 0 1. 2
I
:::1 5. 5 6. 0 6. 5 7. 0 7. 5
t:: 9. 0
9. 5 10.0
I
s," I
s,'
e-=
+
I
40'
50' 0.872665 0. 777323 0. 692565 0. 617194 0.550154
0.625886 0.561159 0. 503165 0.451198 0.362893 0.325486 0.291957 0.261901
0.490508 0.437428 0.390178 0.348109 0. 310642
I
60'
1
1.047198 0.923778 0.815477 0. 720366 0. 636769
1.308997 1. 123611 0.968414 0.837712 0.727031
1.228632 1. 023680 0.868832 0.745203
I
0.563236 0.498504 0.441478 0.391204 0.346851
0.632830 0. 552287 0.483134 0.423535 0.371996
0.643694 0.558890 0.487198 0.426062 0.373579
goo 1. 570796
0.097979 0.079488
0. 122667 0.098829
0.045335 0.036967 0.030145 0.024582 0.020045
0.064492 0. 052329 0.042463 0. 034460 0.027968
0.079644 0.064201 0.051766 0.041750 0.033680
0.089954 0.071979 0.057635 0.046179 0. 037024
0.095342 0.075797 0.060342 0.048100 0.038387
0. 097108 0. 076905 0.061040 0.048541 0.038667
0. 097121 0.0769 11 0.061043 0.048542 0.038668
0.016347 0.009817 0.005896 0.003542 0.002127
0.022700 0.013477 0.008005 0.004756 0.002828
0.027177 0.015912 0.009330 0.005478 0,003221
0.029702 0.017164 0.009951 0.005787 0.003374
0.030670 0.017576 0.010128 0.005862 0.003407
0.030848 0.017634 0.010147 0.005869 0.003409
0.030848 0.017634 0. 010147 0. 005869 0.003409
0.001896 0.001117 0.000659 0.000389 0.000230
0.001972 0.001155 0. 000678 0.000399 0.000235
0.001986 0.001162 0.000681 0.000400 0.000235
0. 001987
0.001162 0.000681 0.000400 0.000235
0.001987 0.001162 0.000681 0.000400 0. 000235
0.000136 0.000081 0.000048 0.000028 0.000017
0.000139 0. 000082 0. 000048 0. 000029 0.000017
0. 000139
0.000139 0.000082 0.000048 0.000029 0.000017
0.000139 0.000082 0.000048 0.000029 0.000017
I
0.000056 0.000034 0.000021 0.000012 0.000008
0.000100 0.000060 0.000036 0.000022 0.000013
1
I
1
0.001682 0.001001 0. 000596 0. 000355 0.000211 0. 000126 0.000075 0.000045 0.000027 0.000016
=lm 27.5.4
a g '- ( m-1)jl+2fm=0
. . .)
0.000082 0.000048 0.000029 0.000017
2 j l ( z ) = 2 (akIn z + b k ) b k -0
-2 b, -
(m23)
-2ak-Z ak=k(k-l) (k-2)
bk=
G=a,.=O
@=-bo
bo= 1
Recurrence Relation
2JlR=(m-l)f,-,+zf,-*
I
Power Series Reprewntations
and
t"e-'"?dt
(m=1,2,
0.328286
I
Differential Equations
27.5.3
I
0. 254889 0. 199051 0. 156156 0. 122961
I
J&=-fm-l
75O
0.327288 0.254485 0. 198885 0. 156087 0. 122932
9
27.5.2
I
0.307694 0.242523 0. 191533 0. 151541 0. 120105
Related Integrals m=O, 1 , 2 , . 27.5.1
3D.
Table 27.4
0. 404629
I
lac*d+, ~=3O0(lo)9O0,A=0(.01).5,
&I
0. 698132
1
e-A
0. 277267 0. 221027 0. 176336 0. 140792 0. 112497
0. 001278 0.000768 0.000461 0.000277 0.000167
27.5. &(z)
9D.
0. 234956 0. 189138 0. 152298
0.000694 0.000420 0. 000254 0.000154 0.000093
I
[27.6] R. M. Sievert, Die v-Strahlungsintensitht an der Oberflache und in der nachsten Umgebung von Radiumnadeln, Acts Radiologica 11, 239-301 (1930).
I
(For y, see chapter 6.)
2(3P- 6k+ 2 )ak k(k-1) (k-2)
1002
MISCELLANEOUS FUNCTIONS Asymptotic Representation
27.5.5
27.5.11
2 f , ( ~ )=1-&%+.6342;c2+.590828-.1431~' -.01968~"+.00324~"+.000188~' ... -xa In ~(1-.08333~+.0013892'-.0000083X"+.
. .)
27.5.12
] ( A cos 0--B sin e)
g2(x)=-Gy'2iexp[-2(3) 3 x 27.5.6 2j 2 ( x ) = @ - x + 2
f i x2-.32252-.1477x'+.03195x' 2
+,00328~'- .000491~'- .00002351, . . +x3 In x(~-.01667;c2+.000198x4-
. . .)
27.5.7
2f 3 ( X ) =1-$Zf$2
.2954$f .1014S4+ .02954Xs
- .00578x6- .00047~'+.000064~~ ... -x4 In ~ ( ~ 0 8 3 3.00278$+ , 0 0 0 0 2 5 ~ ~ .- . .)
-aK ao=l a3= --.017879
Aoymptotic Representation
27.5.8
(:r3+.] ,
.
(x+-)
al=.972222 &=.148534 a4=.004594 as= -.000762
[27.7] M. Abramowitz, Evaluation of
the integral
J* e-s*-s/udu, J. Math. Phys. 32,188-192 v=3
(;)
[27.8] H. F a x h , Expansion in series of the integral
2/8
exp [-z(tht-*)]Pdt, Ark. Mat., Astr., Fys.
Jvw
16, 13, 1-57 (1921). [27.9] J. E. Kilpatrick and M. F. Kilpatrick, Discrete energy levels associated with the LennardJones potential, J. Chem. Phys. 19, 7, 930-933 (1951). (27.101 U. E. Kruse and N. F. Ramsey, The integral
1 uo=l, al=r2 (3m9-3m-1) l2(k+2)uk+$=- (12k2+36k-3m2-3m+25)u,+, +3(m-2k)
(1953).
(2k+3-m)(2k+3+2m)ak (k=O, 1 , 2
. . .)
s,-
-y*+r ( 40 (1951). ya exp
'3
dy, J. Math. Phys. 30,
[27.11] 0. Laporte, Absorption coefficients for thermal neutrons, Phys. Rev. 52, 72-74 (1937). [27.12] H. C. Torrey, Notes on intensities of radio fiequency spectra, Phys. Rev. 59, 293 (1941). [27.13] C. T. Zahn, Absorption coefficients for thermal neutrons, Phys. Rev. 62, 67-71 (1937).
s,
W
yne'r-zlfidy
for n=O,
i, 1; z=O(.Ol).l(.l)l.
1003
MISCELLANEOUS FUNCTIONS
fl(z)
Z
-0.00 0.01 0.02 0.03 0.04 0.05
.fi(Z)
0. 5000 0.4914 0. 4832 0. 4753 0. 4676 0. 4602
0. 4431 0. 4382 0. 4333 0. 4285 0. 4238 0. 4191
f3(z)
fi(Z)
f3(z)
0. 5000 0. 4956 0. 4912 0. 4869 0. 4826 0. 4784
0. 1 0. 2 0. 3 0. 4 0. 5
0. 4263 0. 3697 0. 3238 0. 2855 0. 2531
0.3970 0. 3573 0. 3227 0. 2923 0. 2654
2
0.4580 0. 4204 0. 3864 0. 3557 0. 3278
0. 6 0. 7 0. 8 0. 9 1.0
fie4
f&)
f3 (4
0.2255 0. 2015 0. 1807 0. 1626 0. 1466
0.2415 0. 2202 0. 2011 0. 1839 0. 1685
0. 3025 0. 2793 0. 2584 0. 2392 0. 2215
50000 49019 46229 41950 36543
0.00000 0.08754 0. 16933 0. 24139 0. 30136
4.0 4. 2 4. 4 4. 6 4.8
-0. -0. -0. -0. -0.
2626 2552 2441 2299 2132
0.0430 +O. 0094 -0.0214 -0.0490 -0.0734
8. 0 8. 5 9. 0 9. 5 10. 0
0.06078 0.07562 0. 08221 0.08191 0.07626
-0.09808 -0.07131 -0.04496 -0.02082 -0.00010
1. 0 1. 2 1. 4 1. 6 1. 8
0. 30366 0. 23746 0. 16972 0. 10288 $0.03892
0. 34805 0. 38122 0. 40127 0. 40910 0. 40592
5. 2 5. 4 5. 6 5.8
5.0
-0. -0. -0. -0. -0.
1945 1745 1536 1322 1108
-0.0944 -0. 1120 -0. 1263 -0. 1374 -0. 1455
10. 5 11. 0 11. 5 12. 0 12. 5
0.06684 0.05507 0. 04224 0.02937 0.01727
$0. 01654 0.02889 0.03707 0.04146 0.04259
2.0 2. 2 2. 4 2. 6 2. 8
-0.02062 -0.0746 -0. 1221 -0. 1629 -0. 1966
0. 39314 0. 3722 0. 3448 0. 3122 0.2759
6.0 6. 2 6. 4 6. 6 6. 8
-0.0896 -0.0691 -0.0493 -0,0307 -0.0132
-0. 1507 -0. 1533 -0. 1535 -0. 1515 -0. 1476
13. 0 13. 5 14. 0 14. 5 15. 0
$0.00650 -0.00259 -0.00982 -0.01517 -0.01872
-0. -0. -0. -0.
0. 2371 0. 1971 0. 1569 0. 1173
i:7. 4
$0. 00286 0.01749 0.03061 0.04220
-0. -0. -0. -0.
16. 0 17. 0 18. 0 19. 0
-0. 02118
0. 0 0. 2 0. 4 0. 6 0. 8
0. 0. 0. 0. 0.
2233 2432 2565 2639
=so t+x m
27.6. f(x)
7. 6
~
dt
ln x+e-z2[J;;
+O. 00921 -0.00022 -0.00650 -0.00965
27.6.4
Power Series Representation
j(x)=-e-z2
-0.01906 -0. 01435 -0. 00879
Asymptotic Representation
e-t2
27.6.1
14211 13518 12709 11805
0.04109 0.03758 0.03268 0.02696 0.02089
5k!(2k+l)
6[,+s+,,a+m+ 1 1 1.3 1.3.5 *I
f(d-7j-
x2k+l
*
*
k-0
-Em k-1
x2k
A-_
k!2k 2
1 1
1
2! 3!
--[>+T+T+g+ 2 s x x
*
*
.I
(x-+m)
27.6.2 (-l)k+(k+1)x2k k! (-2)kx2k+1 1 . 3 . 5 . . . (2k+l) (For y and the digamma function +(x), see chapter 6.) =-e-z2
1
In
+J;;z
" f 2 kc =O
Relation to the Exponential Integral
1 e-"'Ei (zz)+$e-z2 Jz e% 0 2 (For ~i ($) see 5 ; e-z2 e t 2 d t , see chapter 74
27.6.3 f(x)=--
[27.14] A. ErdBlyi, Note on the paper "On a definite integral" by R. H. Ritchie, hfath. Tables Aids Comp. 4, 31, 179 (1950). [27.15] E. T. Goodwin and J. Staton, Table of
Quart. J. Mech. Appl. Math. 1, 319 (1948). z=0(.02)2(.05)3(.1) 10. Auxiliary function for 2 = 0(.01) 1. [27.16] R. H. Ritchie, On a definite integral, Math. Tables Aids Comp. 4,30, 75 (1950).
1004
MISCELLANEOUS FUNCTIONS
j(z)=Im
Table 27.6
t+z dt ff
z
f(z)+lnz
z
f(z)+lnz
Z
f(z)
Z
f(4
Z
0.00 0.05 0. 10 0. 15 0. 20
-0.2886 -0.2081 -0. 1375 -0,0735 -0.0146
0. 50 0. 55 0. 60 0.65 0.70
0.2704 0. 3100 0.3479 0.3842 0.4192
1. 0 1. 1 1. 2 1. 3 1. 4
0.6051 0.5644 0.5291 0.4980 0.4705
2. 0 2. 1 2. 2 2. 3 2. 4
0.3543 0. 3404 0.3276 0.3157 0.3046
3. 0 3. 5 4. 0 4. 5 5. 0
0. 2519 0.2203 0. 1958 0. 1762 0. 1602
0.25 0. 30 0. 35 0. 40 0. 45
+O. 0402 0.0915 0. 1398 0. 1856 0.2290
0.75 0.80 0.85 0. 90 0.95
0.4529 0.4854 0. 5168 0. 5472 0. 5766
1. 5 1. 6 1. 7 1. 8 1. 9
0.4460 0.4239 0.4040 0.3860 0.3695
2. 5 2. 6 2. 7 2. 8 2. 9
0. 2944 0.2848 0. 2758 0. 2673 0.2594
5. 5 6. 0 6. 5 7. 0 7. 5
0. 1468 0. 1356 0. 1259 0. 1175 0.1102
0. 50
0. 2704
1.00
0. 6051
2. 0
0.3543
3. 0
0. 2519
8. 0
0. 1037
f(z)
“-911
“-“13 Compiled from E.T. Qoodwin and J. Staton, Table of
:;-
du, Quart. J . Mech. Appl. Math. 1,318 (1048) (with permission).
Relation to Debye Functions
27.7. Dilogarithm (Spence’s Integral for n =2)
27.7.1 [27.17] L. Lewin, Dilogarithms and associated functions (Macdonald, London, England, 1958).
Series Expansion m
27.7.2
f ( z ) =k=1 C (-l)k
(x-l)k k2
Functional Relationships
27.7.3
f(z>+j(1-z)=-ln
z In (1--2)+f 6
(12z>0)
[27.18] K. Mitchell, Tables of the function -logkl-il‘ dill with an account of some properties of this and related functions, Phil. Mag. 40, 351-368 (1949). ~ = - l ( , O l ) l ; ~=0(.001).5, 9D. [27.19] E. 0. Powell, An integral related to the radiation integrals, Pliil. Mag. 7, 34, 600-607 (1943).
27.7.4
1
(122>0)
f(l.-2)+j(l+r)=~f(l-22)
27.7.5 f ( z ) + j ( i ) = - i
(In 2)’
(05~11)
27.7.6
j ( z + l ) - j(s)=-In
K
(22x20)
~
J B d y ,
z=O(.Ol)2(.02)6,
7D.
[27.20] A. van Wijngaarden, Polylogarithms, by the Staff of the Computation Department, Report R24, Mathematisch Centrum, Amsterdam, Holland m
1 z In (z+I)---12 2f(x? ??a
(22x20)
(1954). F , ( z ) = x
h-nzh
for z=z= -l(.Ol)l;
h-1
z=iz,
10D.
for 2=0(.01)1; z=ei*a/* for a=0(.01)2,
1005
MISCELLANEOUS FUNCTIONS
Dilogarit hm fO=-J gIn1d t I
II
I
Table 27.7
II
f (2) 0.00 0. 01 0.02 0.03 0.04
1. 64493 1. 58862 1. 54579 1.50789 1. 47312
4067 5448 9712 9041 5860
0. 0. 0. 0. 0.
10 11 12 13 14
1. 29971 1. 27452 1. 25008 1. 22632 1.20316
4723 9160 7584 0101 7961
0.20 0.21 0.22 0.23 0.24
1.07479 1. 05485 1. 03527 1.01603 0.99709
0. 05 0.06 0.07 0.08 0.09
1.44063 1.40992 1. 38068 1. 35267 1. 32572
3797 8300 5041 5161 8728
0. 15 0. 16 0. 17 0. 18 0. 19
1. 18058 1. 15851 1. 13693 1. 11580 1.09510
1124 6487 6560 8451 3088
0.25 0.26 0.27 0.28 0.29
0. 10
1. 29971 4723
0. 20
1.07479 4600
0.30
f (2)
2
1 I
1 I 0.40 0. 41 0.42 0.43 0.44
0. 72758 6308 0. 71239 0.69736 0. 68247 0. 66774
5042 1058 9725 6644
2689 6024 3992 0483 9737
0.45 0. 46 0.47 0.48 0.49
0.65315 0.63870 0.62439 0.61021 0.59616
7631 8705 6071 6108 5361
0.72758 6308
0. 50
0. 58224 0526
0.30 0.31 0.32 0.33 0. 34
0.88937 0.87229 0.85542 0.83877 0.82233
7624 1733 7404 6261 0471
0. 97846 9393 0. 96012 6675 0.94205 7798 0.92425'0654 0.90669 4053
0.35 0.36 0.37 0.38 0.39
0. 80608 0.79002 0. 77415 0. 75846 0. 74293
0.88937 7624
0.40
4600 9830 7934 0062 9088
f (2)
2
['-p-j
[(- 4) 11 27.8. Clausen's Integral and Related Summations 27.8.1
f(e) =-
se (2 a) In
sin
0
dt
=$k2 sin ke
-1
(0 I 6 5 4
Summable Series
27.8.6
2
-
n-1
n
---In
n~ + c 2=--n 6 COS
n=l
Series Representation
-
27.8.2
j(e)=-e
111
(-1)k-1
(2 sin S) re 2'T
e2
(o<e<24 (05e52T)
p+1
lel+e+ck-1 (2k)! B2' 2k(2k+1)
@so<;) 27.8.3
f(?r-e)=e
--
In 2--C
k-1
(-1)k-1 (2k)! B2'(21-1)
Functional Relationship
p + 1
2k(2k+l) [27.21] A. Ashour and A. Sabri, Tabulation of the function sin n8 $(e) =E7 9 Math. Tables Aids Comp. 10, OD
n-1
Relation to Spence's Integral
27.8.5
54, 57-65 (1956). [27.22] T. Clausen, Uber die Zerlegung reeller gebrochener Funktionen, J. Reine Angew. Math. 8 , 298-300 (1832). z=O0(lo)180°, 16D. [27.23] L. B. W. Jolley, Summation of series (Chapman Publishing Co., London, England, 1925). [27.24] A. D. Wheelon, A short table of summable series, Report No. SM-14642, D o u g h Aircraft Co., Inc., Santa Monice, Calif. (1953).
1006
MISCELLANEOUS FUNCTIONS
Table 27.8
Clausen’s Integral
eo
11
15 16 17 18 19 20
0.612906 0. 635781 0.657571 0.678341 0.698149 0.717047
-II
/I
2 3 4 5 6 7 8 9 10
0. 104735 0. 122199 0.139664 0.157133 0.174607
21 22 23 24 25
0.735080 0.752292 0. 768719 0.784398 0. 799360
42 44 46 48 50
11
0. 192084 0.209567 0.227055 0.244549 0.262049
26 27 28 29 30
0.813635 0.827249 0.840230 0.852599 0.864379
52 54 56
1
12 13 14 15
I
I
30 32 34 36 38 40
0.000000 0.017453 0.034908 0.052362 0.069818 0.087276
0
*
58
60
I-I
1
62 60 64 66 68 70
1. 014942 1. 014421 1.012886 1. 010376 1.006928 1. 002576
90 95 100 105 110 115
0.915966 0.883872 0.848287 0.809505 0.767800 0. 723427
0.966174 0.977020 0.986357 0.994258 1.000791
72 74 76 78 80
0.997355 0.991294 0.984425 0.976776 0.968375
120 125 130 135 140
0.676628 0.627629 0.576647 0. 523889 0.469554
1.006016 1.009992 1.012773 1.014407 1.014942
82 84 86 88 90
0.959247 0. 949419 0. 938914 0. 927755 0.915966
145 150 160 170 180
0.413831 0.356908 0. 240176 0. 120755 0.000000
0.864379 0.886253 0.906001 0.923755 0. 939633 0.953741
“-911
[(-44)1]
y,
Math. Tables Aids Comp. 10.54,57-85 (1956) (with PermiMIOn).
Compiled from A. Ashour and A. Sabri, Tabulation ofthe function $(.9)n=l
27.9. Vector-Addition Coefficients
(Wigner coefficients or Clebsch-Gordan coefficients) Definition
27.9.1 (j l
+jz- Jl!(j+
jl
-AY (j+jz -j l ) !(2j+ 1)
(j+jl
27.9.8
Conditions
27.9.2 27.9.3
n
j1,
ja, j=+n or+g
+jz+1)!
(n=integer)
27.9.9
jl+jz+j=n
lmll Sj1, lmzl I j a , Iml I j ( ~ l ~ z m l m 2 ~ ~ l ~ z ~ ml+m2 m)=0 Zm Special Values
27.9.4 27.9.5 27.9.6 27.9.7
-j1
+ja
+j n 2
ml, mz, m = f n or f-
27.9.10
~ l O m l O ~ ~ l O ~ mj)s(ml, ) = ~ ~m) l,
27.9.11
cilj,OOIj&jO)=O
27.9.12
( j ~ l m l m l ~ j j l j m ) = O 2jl+j=2n+ 1
jl+jhj=2n+ 1
I
1007
MISCELLANEOUS FUNCTIONS
Table 27.9.1
1
SNOLL3Nfld Sfl03lwTI33SIW
8001
j=
*=2
*=1
*=O
1
jl-
j1-2
j=
j1+2
jl-2
0
I
5 *=-1
*=-2
1010
MISCELLANEOUS FUNCTIONS
Table 27.9.5 [By use of symmetry relations,. coefficients may be put in standard form j , l j , S j and m>O] m2
1 1 1 1 m
j1
j
-1JH
(jhmmlj~jzjm)
4% 4%
0.70711 0. 70711 1.00000
I
jZ= 1 -1 0 0 0 1 0 1 0 1 1 1 1 0 %
1 1 1 1
1 1 1 1 1
E # :#r 0 0 0 1 1 2
-1 0 1 0 1 1
0 1 1 2 0 0 0
1 1
H
1 1 1 1 1
H
i8
H
EH E E
P
1
1 1 1 1
4%
4%
2 2 2 2 2 2
1 1 1 1
%
- 4% 4% - 4%
EK 2
2 2 2 2 2 2 2 2 2 2 2 ~
% -- 4 4% 4% -4 % 4 x 6
4
6
4%
H4 3
4%
- 4%
4% - 4%
$Eo
4 x 0
4% 4%
0.70711 0.00000 -0.70711 0. 70711' -0.70711 0. 81650 0.57735 1.00000 0.40825 0.81650 0.40825 0. 707 11 0.70711 1.00000
*
0. 73030 -0.25820 -0. 63246 0. 63246 -0. 77460 0. 70711 0. 707 11 0.86603 0. 50000 1.00000 0. 50000 0. 50000 -0. 50000 -0.50000 0. 707 11 0.00000 -0. 70711 0. 70711 -0. 70711 0.54772 0.77460 0.31623 0.77460 0. 63246 1. OOOOO
Compiled from A Bimon Numerical tables of the Clebsch-Oordan mfUcients Oak Ridge 'Nstionh Laboratory Report 1718, Oak Rldge, Tenn. (1954)' (with Oermission).
[27.25] E. U. Condon and G. A. Shortley, Theor of atomic s ectra (Cambridge Univ. Press, h m bridge &gland, 1935). L27.261 M. E. hose Elementary theory of an ular momemtum (John Wiley & Sons, Inc., r$ew York, N.Y., 1955). L27.271 A. Simon, Numerical tables of the Clebsch-Gordan
coefficients, Oak Ridge National Laboratory Report 1718, Oak Rid e, Tenn. (1954). c j j ; mlmm) for a t ang&,r moments
b.
10
*See page n.
28. Scales of Notation S. PEAVY,' A. SCHOPF'
Contents page
. . . . . . . . . . . . . . . . . . Numerical Methods . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . Table 28.1. 2*n in Decimal, n=0(1)50, Exact . . . . . . . . . . . Table 28.2. 2" in Decimal, z=.OOl(.OOl) .01(.01).1(.1).9, 15D . . .
1012
. . . . . . . 10 in Decimal, n=1(1)10, 10D . . . .
1017
Representation of Numbers.
Table28.3. 10*" in Octal, n=0(1)18,
Exact or 20D
1013 1015 1016 1017
Table 28.4.
n log,, 2, n log,
Table 28.5.
Addition and Multiplication Tables, Binary and Octal S c a l e s . . . . . . . . . . . . . . . . . . . . . 1017
Table28.6. Mathematical Constants in Octal Scale
........
1017
1017
The authors acknowledge the assistance of David S. Liepman in the preparation and checking of the tables.
National Bureau of Standards. worker, National Bureau of Standards, from The Ameriaan University (deceased). 1
* Guest
1011
28. Scales of Notation Representation of Numbers Any positive real number x can be uniquely represented in the scale of some integer b>l as x=(Am
. . . AIAo.a-la-a . .
.)(b),
Integers X = ( A ,
(I) b-scale arithmetic. and define
. . . AI&)(b) Convert 8 to the b-scale
--
Xb =X1+AJb,
where every A, and a-j is one of the integers 0, 1, , . ., b-1, not all Ail a-j are zero, and Am>O if z > 1. There is a one-tosne correspondence between the number and the sequence
x,fi=x2+Z;/T,
m
x=A,bm+
. . . +Alb+A,+C 1
a-jb-j
where the infinite series converges. The integer b is called the base or radix of the scale. The sequence for z in the scale of b may ter. . . = O for some minate, i.e., a-.-,=a-n-a= n > 1 so that x=(Am
Scale Binary Ternary Quaternary Quinary Senary Septenary
1 1 Bese
XI, Xa, , . ., X;;; the quotients (in the b-scale) where X , X , , . . ., XE-~,respectively are divided by in the b-scale. Then convert the remainders to the &scale,
8 Octal 9 Nonary 10 Decimal 11 12 16
(11) &scale arithmetic. Convert b and Ao, A,, . . ., Am to the &scale and define, using arithmetic operations in the h a l e , Xm-l=Amb +Am-1,
Scale
Undenary Duodenary Hexadecimal
General Conversion Methods
Any number can be converted from the scale of b to the scale of some integer T#b, Z>l, by using arithmetic operations in either the b-scale or the 8-scale. Accordingly, there are four methods of conversion, depending on whether the number to be converted is an integer or a proper fraction. 1012
-1
Xm-a=Xm-lb +Am-2,
Names of Scales
I
z,zi, . . ,, A;;; are the remainders and
. , . A1Ao.a-la-2 . . . a-,,)(b);
then z is said to be a finite b-adic number. A sequence which does not terminate may have the property that the infinite sequence a-l, a-2, . , , becomes periodic from a certain digit a-.(n,>l) on; according as n=l or n>l the sequence is then said to be pure or mixed recurring. A sequence which neither terminates nor recurs represents an irrational number.
' Base
where
Proper fractionm ~=(O.a-ia-a
. . .)(b)
To convert a proper fraction x, given to n digits in the b-scale, to the scale of Z b such that inverse conversion from the &.cale may yield the same n rounded digits in the b-scale, the representation of x in the b-scale must be obtained to rounded digits where n satisfies T;>bn. (111) b-scale arithmetic, Convert 'b to the b-scale and define
a
n
-
zb= 51+EL1 d=Zq
+z1,
-
z;,J=q+a!.,
I
1013
SCALES OF NOTATION
-
where E-1, Zla, , . .,a-;; are the integral parts and xl, x2, . . ., G the fractional parts (in the b-scale) of the products x5, d,. . ., G-IT, respectively. Then convert the integral parts to the b-scale,
(IV) &scale arithmetic, Convert b and a-l,
. ., a-, to the $-scale and define, using arithmetic operations in the &scale,
a-3, ,
z-,+~=a-,/b
+a-,,++l,
Numerical Methods Example 2. Convert X=(2531)(8) to the decimal scale. By (I) we have T= 10= (12)(8)and hence, using octal arithmetic, 2531/12=210+11/12 210/12=15+6/12 15/12=1+3/12 1/12=0+1/12
The examples are restricted to the scales of 2, 8, 10 because of their importance to electronic computers. Note that the octal scale is a power of the binary scale, In fact, an octal digit corresponds to a triplet of binary digits. Then, binary arithmetic may be used whenever a number either is to be converted to the octal scale or is given in the octal scale and is to be converted to some other scale. Decimal 1 2 3
4
5
6
7
8
9
10
Octal
4
5
6
7
10
11
12
1 2 3
Binary 1 10 11 100 101 110 111 1000 1001 1010 Example 1. Convert X= (1369)(10)to the octal scale. By (I) we have b = l O , T=8(10) and SO, using decimal arithmetic, 1369/8=171+1/8,
+ 2 1/8=2 +518, 2/8 =0 +2/8 ;
171/8=2 1 3/8,
then
X= (2531)(8).
By (11) we have b=(12)(8) and Aa=1(8), A, =3(s), A1=6(8), Ao=(ll)c8). Hence, using octal arithmetic, X2= 1* 12 3 = (15)(a),
+
Xi= 15 12+6= (2 10) (Q, X=210.12+11=
(2531)(8).
Using binary arithmetic we have, by (11), b= (1010)(a)and Aa= I(a),Aa= (11)(a), AI= (11O)(a), Ao(IOOl)(a). Thus Xa= 1* 1010 11= (1101)(a), X,=llOl*1010+110=(10 001 000)(2), X=10 001 OO0*1O1O+1001=(10 101 011 001)(2), whence, on converting to the octal scale, X= (2531)o).
+
Thus, converting to the decimal scale,
-Ao=(11)(8)=9, A1=6(8)=6, A2=3(8)=3, A,=l,
I
and so
X= (1369)(10). By (11)we have T = l O , and the octal digits of X are unchanged in the decimal scale. Hence, using decimal arithmetic, x2=2 * 8 +5= (21)(10)) X1=21* 8+3= (171) (10)) 171-8 1= ( 1369)(10).
x=
+
Using binary arithmetic we have, by (11), b= 8= (1000)(2) and Ao= 1,A,=( 11)(a), Aa=( 101)(2), Aa=(10)(2). Then, Xa=lO*lOOO+lOl=
(10 1Ol)(a),
X,=lO 101.1000+11=(10 101 011)(2), X=lO 101 011.1OOO+l=(lO 101 011 001)(2), whence, on converting to the decimal scale,
X= (1369)clo). Observe that in both examples above, octal arithmetic is used as an intermediate step to convert. according to (11), the given number to the binary scale. If, instead, the given number is first convert,ed to the binary scale, then binary arithmetic may be applied directly to convert, according to (I), the given number from the binary scale to the scale desired.
1014
BCALES OF NOTATION
Alternatively, we can apply (III)with 8= (IOIO)(a), For example, in converting X=(2531)(8) to the decimal scale, we find first X = (10101011001)(~~ using binary arithmetic: and then obtain, using (I) with 8= 10= (lOlO)(a), (0.010 110 11).1010=11+(0.100 011 l), (0,100 011 1)~1010=101+(0.100 Oll), 10 101 011 001/1010=10 001 000+1001/1010, (0.100 011).1010=101+(0.011 l l ) , 10 001 000/1010=1101+110/1010, 1101/1010= l + l l / l O l O , (0.011 11)~1010=100+(0.101 1). l/lOlO=O+
l/lOlO.
Thus, on converting to the decimal scale,
Ao= (1001)(2) =9, AI= (I 10)(2)=6, As= (11)(2) =3, Aa= 1, whence
X= (1369)(10).
Example 3. Convert x= (0.355)c10,to the binary scale. We first convert to the octal scale, using decimal arithmetic. By (111),we find with 8=8 (0.355) -8=2+0.840, (0.080) .8=0+0.640 (0.840) -8=6+0.720, (0.640) *8=5+0.120 (0.720) *8=5+0.760, (0.120) *8=0+0.960 (0.760) .8=6+0.080, (0.960) *8=7+0.680
whence x=(O.26560507 . . verting to the binary scale, x=(O.OlO
Thus, on con-
110 101 110 000 101 000 111
. . .)(2)*
In order that inverse conversion of x from the binary to the decimal scale yield again x to the given number n of decimal digits, we must round x in the binary scale to at least 5 digits where 5 is chosen such that 2;>10n. As a working rule, we 10 may take 5 1- n. Hence, to obtain x= (0.355)(lm 3 by inverse conversion, x must be rounded in the 10 binary scale to E 23 = 10 digits. 3 Thus, x=(O.OlO 110 110 O)@)* To carry out the inverse conversion we can first convert to the octal scale, X = (0.266)(8),
and then apply (IV) with b=8, using decimal arithmetic: X-2=6/8 6 =6.75, ~-1=6.75/8+2=2.84375, x =2.843751a=0.355 46875.
Converting the integral parts to the decimal scale, we find U-,= (11)(2)=3, E-a=Z-a= (101)(2)=5, (IOO)(2)=4, and thus X= (0.3554) (10)
-
Note that the fractional part in any step is the unconverted remainder. Thus, to round at any step, it is only necessary to ascertain whether the unconverted portion to be neglected is greater or less than 3; i.e., whether, in the binary scale, the first neglected digit is 1 or 0. Example 4. Convert x= (3.141593)(l0).10-' to the binary scale. The desired representation is x = ( I . u - ~ u - ~ . . a-n)(2)*2-' where n and k are such that inverse conversion from the binary scale to the decimal scale will produce x to the same given 15 decimal digits. Accordingly, by the rule stated in Example 3, n 10 and k are to be chosen so as to s a t i s f y n f k 2 3 . 1 5 =50. From Table 28.1 we find 2-20<(3.141593)(l~). 10-'<2-28
Thus, we must take k=29 and, consequently, choose n>21. The conversion on a desk calculator thus proceeds as follows, First, we obtain by use of Table 28.1 2 % ~ (1.686 = 629 899) (10)
Then, for convenience's sake, we convert this number to the octal scale, using the method of Example 3 and rounding aa required, to at least 7 octal (=21 binary) digits. We find 2 ? ~ = (1.537 4337)(8,. Hsnce X = (1.537 433 7)(8)* 2-20 and, consequently, x=(1. 101 011 111 100 011 011 lll)(2)*2-m.
1015
SCALES OF NOTATION
To convert x back to the decimal scale we only need to obtain from Table 28.1 the various powers of 2 which appear in the above representation and sum them. However, since 2-"'=2-"'+l-2-"' for any real constant m, it is more convenient to reduce fmt the binary representation of x to the form
We first compute, using 4.1.19 and Table 4.1, -log10 x 83.44295=277 .05764 log, 2---30103' log,, 2- .30103 and find from Table 4.1, .05764=log10 1.1419. Hence
+
log, x =277 log'' 1'1419=277+logz 1.1419 log10 2 and so x= (1.14 19) (lo) .2277. Now we apply the methods of Example 3 to obtain (1.14 19) (lo) = (1.1 10516),8) where octal notation is used for the sake of convenience. To round such that inverse conversion will yield the same decimal digits of x, observe that the last non-zero decimal digit of x is 3 . low. Table 28.4 shows that 2265<1080<2u16. Hence, in the binary scale, x must be a binary integer times 2aeb;i.e., (l.110516)(8)must be rounded to 4 octal (=12 binary) digits. As a result, x= (1.1105)(g).2277=(11105)(8)~ 2 % ~ = ( 1 001 001 000 101)(1)2265
x=2-~-2-81-2-88-2-89+2-42-2-4b~2-~
and then sum these powers of 2. (Note that the number of summands is thereby decreased from 16 to 7.) From Table 28.1 we have +2-28= $3.725 -2-81= - ,465 -2-83, - .116 -2-89, - .oo 1 +2-42=+ .ooo -2-45=- .ooo -2-m= - ,000 X=
290 66 1 415 818 227 028 000
298 287 322 989 374 422 888
3.141 592 764
*
10-9
40-9
.10-9 40-9
-
10-9 e10-Q -10-9 .10-9
Nine decimal digits are used for sufficient accuracy reserve. Hence, rounding to seven significant figures, we find
Conversion back to the decimal scale proceeds as follows, we write log,, x=log,, 2 log2 x =10g102{265+10gz (11105) (a)}
X = (3.14 1593) (10) .1O-'.
To convert a number such as
x= (€1(10) *
=265 log10 2+10g,o (11105)(8).
to the binary scale, where k is a positive integer so large that Table 28.1 cannot be used, apply the following device: Compute
Hence, converting (1 1105)(8, to the decimal scale by any of the methods of Example 2, we obt a b log10 ~ = 2 6 5log10 2+10g10 4677 which yields, using Table 4.1
where k is the quotient and x1 the remainder, the division being carried out in the decimal scale. Then find 7=1OZ1, i.e., xl=loglo q , so that * log,, x=k+--log'' '-k+log, log10 2
log10 x =83 A4292
Thus, by Table 4.1, we find, rounded to four significant figures, X = (2.773)(10)* 10".
q
whence
References
x= (v> (lo)2L. Now convert (v),,~)to the binary scale by any of the methods described above. A similar device may be used to convert to the decimal scale a binary number that is outside the range of Table 28.1. Example 5. Convert x= (2.773)(ro).1099 to the binary scale.
I
[28.1] J. Malengreau, Etude des 6criturea binairea, Bibliothhque Sci. 32 Mathhmatique. adition Griffon, NeuchAtcl, Suisae (1958). [28.2] D. D. McCracken, Digital computer programming (John Wiley & Sons, Inc., New York, N.Y., 1957). [28.3] R. K. Richards, Arithmetic operation in digital commters (D. Van Nostrand Co., Inc., New York, N.<, 1955).
1016
SCALES OF NOTATION
Table 28.1
2*n
IN DECIMAL
2n
n
2 -n
1 2 4
0 1 2
1.0 0.5 0.25
8 16 32
3 4 5
0.125 0.0625 0.03125
64 128 256
6 7 8
0,01562 5 0.00781 25 0.00390 625
512 1024 2048
10
4096 8192 16384
12 13 14
0.00024 41406 25 0.00012 20703 125 0.00006 10351 5625
32768 65536 1 31072
15 16 17
0.00003 05175 78125 0.00001 52587 89062 5 0,00000 76293 94531 25
2 62144 5 24288 10 48576
ia 19 20
0.00000 38146 97265 625 0,00000 19073 48632 8125 0.00000 09536 74316 40625
20 97152 41 94304 83 88608
21 22 23
0.00000 04768 37158 20312 5 0.00000 02384 18579 10156 25 0.00000 01192 09289 55078 125
167 77216 335 54432 671 08864
24 25 26
0,00000 00596 04644 77539 0625 0,00000 00298 02322 38769 53125 0.00000 00149 01161 19384 76562 5
1342 17728 2684 35456 5368 70912
27 28 29
0,00000 00074 50580 59692 38281 25 0.00000 00037 25290 29846 19140 625 0.00000 00018 62645 14923 09570 3125
10737 41824 21474 83648 42949 67296
30 31 32
0.00000 00009 31322 57461 54785 15625 0,00000 00004 65661 28730 77392 57812 5 0.00000 00002 32830 64365 38696 28906 25
85899 34592 1 71798 69184 3 43597 38368
33 34 35
0.00000 00001 16415 32182 69348 14453 125 0.00000 00000 58207 66091 34674 07226 5625 0.00000 00000 29103 83045 67337 03613 28125
6 87194 76736 13 74389 53472 27 48779 06944
36 37 38
0.00000 00000 14551 91522 83668 51806 64062 5 0,00000 00000 07275 95761 41834 25903 32031 25 0.00000 00000 03637 97880 70917 12951 66015 625
54 97558 13888 109 95116 27776 219 90232 55552
39 40 41
0.00000 00000 01818 98940 35458 56475 83007 8125 0.00000 00000 00909 49470 17729 28237 91503 90625 0.00000 00000 00454 74735 08864 64118 95751 95312 5
439 80465 11104 879 60930 22208 1759 21860 44416
42 43 44
0.00000 00000 00227 37367 54432 32059 47875 97656 25 0.00000 00000 00113 68683 77216 16029 73937 98828 125 0.00000 00000 00056 84341 88608 08014 86968 99414 0625
3518 43720 88832 7036 87441 77664 14073 74883 55328
45 46 47
0.00000 00000 00028 42170 94304 04007 43484 49707 03125 0.00000 00000 00014 21085 47152 02003 71742 24853 51562 5 0.00000 00000 00007 10542 73576 01001 85871 12426 75781 25
28147 49767 10656 56294 99534 21312 112589 99068 42624
48 49 50
0.00000 00000 00003 55271 36788 00500 92935 56213 37890 625 0.00000 00000 00001 77635 68394 00250 46467 78106 68945 3125 0.00000 00000 00000 88817 84197 00125 23233 89053 34472 65625
9 11
1017
SCALES OF NOTATION
2“ IN DECIMAL
2”
X
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
1.00069 1.00138 1,00208 1.00277 1.00347 1.00416 1.00486 1,00556 1.00625
2”
x’
33874 72557 16050 64359 17485 75432 38204 05803 78234
Talde 28.2
2”
t
0.1 0. 2 0. 3 0.4 0. 5 0. 6 0. 7 0. 8 0.9
0. 01 0. 02 0. 03 0.04 0. 05 0. 06 0. 07 0. 08 0. 09
62581 11335 79633 01078 09503 38973 23785 98468 97782
10+ri IN OCTAL
3 46 575 7 346
10”
n
1 12 144 1 750 23 420
0 1
303 641 113 360 545
2
3 4
240 100 200 400 000
000 146 015 406 032
1.000 0.063 0.005 0.000 0.000
000 314 341 111 155
000 631 217 564 613
10”
000 463 270 570 530
000 146 243 651 704
00 31 66 77 15
5
0.000 002 476 132 610 706 64
6 7 8 9
0.000 0.000 0.000 0.000
000 000 000 000
206 015 001 000
157 327 257 104
364 745 143 560
055 152 561 276
37 75 06 41
n
1 0 ~ 1 02
n
0.30102 99957 o:bo% 99913 0.90308 99870 1.20411 99827 i;&ii 99783
1
5
3
4
5
log2
3.32192 6.64385 9.96578 13.28771 16.60964
10-“
n
1 16 221 2 657
112 351 432 411 142
402 035 451 634 036
762 564 210 520 440
000 000 000 000 000
10 11 12 13 14
0,000 000 000 006 676 331 66 0.000 000 000 000 537 657 77
34 327 434 157 5 432 127 6 1 405 553
724 115 413 164
461 760 542 731
500 200 400 000
000 000 000 000
15 16 17 18
0.000 0.000 0.000 0.000
0.000 000 000 000 043 136 32 0,000 000 000 000 003 411 35 0,000 000 000 000 000 264 11 000 000 000 000
n log2 10 IN DECIMAL
n logl0 2 ,
n
Talde 2 8 . 3
10-”
10
n
80949 61898 42847 23195 04744
A
n
log10
Table 28.4
2
n
1. 80617 _. . .- 99740
7
2.10720 2.40823 2.70926 % 01029
8 a 10
log2
19.93156 23; 25349 26.57542 29.89735 33.21928
99696 99653 99610 99566
10 85693 66642 47591 28540 09489
‘1al)le 2 8 . 5
ADDITION AND MULTIPLICATION TABLES
Addition
000 000 000 000 000 000 000 000 000 000 000 000
Multiplication
Binary Scale o + o = 0 0 + 1 = 1 + 0 = 1 1 + 1 = 1 0
o x o = o
0 x 1 - l x o . o 1 X l . l
Octal Scale
4
05
06
07
10
11 1 2 1 3
5
12
17
24
31
36
5
06
07
10
11 1 2 1 3 1 4
6
1 4 22
30
36
44
52
6
07
10
11 12 1 3 1 4 1 5
7
1 6 25
34
43
52
61
7
1 0 11 1 2
43
13 14 15 16
MATHEMATICAL CONSTANTS IN OCTAL SCALE I-
= (0.24276 301556)
4;In log2
(1.61337 611067)(0 (1.11206
I=
e-
(3.11037 552421)
404435)(~)
(1.51544 163223)(,)
dms (3.12305
407267)(a)
e- I
-
de=
(2.55760 5 2 1 3 0 5 ) ( ~ ) (0.27426 530661)(8)
( 1.51411 230704)
7=
In log2
’I
-
7-
Table 28.6 (0.44742 147707) -( 0.43127 233602) -( 0.62573 030645)
( 8)
(0.33626 754251)
d2=
e=
( I. 34252 166245)
In 2 =
( 0.54271 0 2 7 7 6 0 ) ( ~ )
logz 10-
(3.24464 741136)
In 10-
(2.23273 0 6 7 3 5 5 ) ( ~ )
l o g 1 0 elog2
(8)
( 1.32404 746320)
022 001 000 000
01 63 14 01
29. Laplace Transforms Contents
1020
29.3. Table of Laplace Transforms
1021
29.4. Table of Laplace-Stieltjes
. . . . . . . . . . . . . . . . Transforms . . . . . . . . . . . .
1029
29.2. Operations for the Laplace Transform
_.--
Page
. . . . . . . . . . . . . . . . . . . . . . . .
29.1. Definition of the Laplace Transform.
References
..........................
1020
1030
29. Laplace Transforms 29.1. Definition of the Laplace Transform
1
function of s in the half-plane ~ s > s o .
One-dimensional Laplace Transform
f(s)=-EP{ F ( t )1 = J m
29.1.1
Two-dimensional Laplace Transform
29.1.2
e-"F(t)clt 0
f ( u , ~ ) = L f { F ( z , y =/ J)m}J0m
F(t) is a function of the real variable t and s is a complex variable. F ( t )is called the original function andf(s) is called the image function. If the integral in 29.1.1 converges for a real s=so, i.e.,
u(t)=
limJB e-aotF(t)dt
E+
A
m
exists, then it converges for all s with 9 s > s o , and the image function is a single valued analytic
e-UZ-oYF(x,y)dxdy
Definition of the Unit Step Function
29.1.3 A-10
0
I
{
0
4 1
(tO)
I n the following tables the factor u(t) is to be understood as multiplying the original function F(t).
29.2. Operations for the Laplace Transform Original Function F ( t )
lm
e-s'F(t)dt
F(t)
29.2.1
Image Function f(e)
Inversion Formula
29.2.2 Linearity Property
Integration
29.2.6
1
8 -f(s)
29.2.7
1
82 -f(s>
Convolution (Faltung) Theorem
lf
29.2.8
Fl(t-r)F2(r)dl=Fl*F2 -tF(t)
29.2.9 29.2.10
(-I)"t"F(t)
f ' (8)
Differentiation
P' (8)
I Ada ted by permission from R. V. Churchill, Operational mathelhatics, 2d ed., McGraw-Hill Book Co., Inc., New York, N.Q., 1958.
1020
1021
LAPLACE TRANSFORMS
Original Function F ( t )
Image Function j ( s ) Integration
1
t F(t)
29.2.11
JW
f(x)dx
Linear Transformation
29.2.12
eafF(t)
f(s-a>
Translation
29.2.15
F(t - b)U ( t -6)
e-
( b>0)
Periodic Functions
e-"F(t)dt
F(t +a) =F(t)
29.2.16
l-e-aa
F(t +a) =- F( t )
29.2.17
Half-Wave Rectification of F ( t ) in 29.2.17
29.2.18
F(t)
5 (-l)Ru(t--na) n PO
Full-Wave Rectification of F ( t ) in 29.2.17
as
lF(t)I
29.2.19
f(s) coth 2 Heaviside Expansion Theorem
29.2.20
p ( s ) a polynomial of degree<m 29.2.21
eat
5 p('-n)(a) tn-' RI1
(r-n)!
(n-l)!
24s)
(s-a>l p ( s ) R polynomial of degree
29.3. Table of Laplace Traneforrn~~,~
For a comprehensive table of Laplace and other integral t8ransfonusscc [29.9]. For n tnblc of twodimensional Laplace transforms see [29.11]. 1'(U
29.3.1
-1 S
29.3.2
-1 S2
1
t
The numbers in bold type in t h cf ( s ) and F ( t ) columns indicate the chapters in which the properties of thc rcspcctivc higher mathematical functions are given. * Adapted by permission from R. V. Churchill, Operational Innthemntics, 2d. etl., McCraw-Hill Book Co., IIIC., SC\\ York, N. Y., 1958.
1022
LAPLACE TRANSFORMS
f(4 29.3.3
1 5"
(n=1,2,3,. * .)
5-(n+4)
*)
1.3.5.. . (2n-l)h
6
(k>O)
Sk
1
tk-l
e-at
1
te-"'
(5+(q2
(n=1,2,3,
29.3.10 29.3.11
J;;t
8-312
29.3.8 29.3.9
1
z
29.3.5
29.3.7
(n- 1)!
1
29.3.4
29.3.6
tn-1
(%=1,2,3, . . .)
(k>O)
(5+a>k
tn-le-at
. . .)
(n- l)!
6
tk-le-at
a-b
29.3.14
1
(5+a)(s+b)(5+c)
- ( b- c )
e
+ (c-a) (a-
(a, b, c distinct constants) 1
29.3.15
s2+a2
29.3.16
s2+a2
29.3.17 29.3.18 29.3.19 29.3.20 29.3.21
S
1 sa- a2 S
s2-a2
1
- sin at a
cos at 1
- sinh at a cosh at
5(s2fa2)
1 (1-cos at) a2
1 s2(s2+a2)
1 (at-sin at) a3
1
1
+
(s2 a')
+
e-bf (a- b) e-cf
a) (b-c)
1 - (sin at-at cos a t ) 2a3
(c-a)
LAPLACE TRANSFORMS
1023 F (t)
29.3.22 29.3.23 29.3.24
1 (sin at+at cos at)
S2
+
(s2 a=)=
2a
s2- a= (sZ+a=)2
t cos at
29.3.25
(a2# bZ)
29.3.26
COS
at-cos
bt
b2-a2 e-ar
29.3.27 29.3.28
2at sin at
S
(s*+a2)2
e-"l
sin bt
cos
bt
3a2 -I-a3 s3
29.3.29 29.3.30 29.3.31 29.3.32
4aa s4+4a4 S
s'+qa4 1 -
sin at cosh at-cos at sinh at 1 sin at sinh at 2a2
1 (sinh at-sin at)
s4-a4
2a3
S -
1 (cosh at-cos at) 2aa
s4-a4
+
29.3.33
( 1 a2t*) sin at -at cos at
29.3.34
22
29.3.35 29.3.36 29.3.37 29.3.38
1 -&+U
7
fi s-a=
7
29.3.39
29.3.44
7 1 6(8-a*)
7
1024
LAPLACE TRANSFORMS
f (4
F (0
7
29.3.41 29.3.42
eaat[b--a
29.3.43
,azt
erf aJt]-beb2t erfc b f i
erfc a d
7 7
29.3.44
7
29.3.45
7
29.3.46 29.3.47
(1-8)"
22
gn+*
(1-8)" 8"+t
22
29.3.48
9
29.3.49
9
1
I
I I
29.3.50
10
29.3.51
9
j I
I
29.3.52 9
29.3.53
I I
1
- e-r'lv(3at)
29.3.54
29.3.55
29.3.56
29.3.57
ay
1
9
9
J82+a2 avJ,(at)
9
6,lO
1025
LAPLACE TRANSFORMS
f (8) 29.3.58
29.3.59
(4W-s)' (S-@=aV
dsZ--aZ
(k>O)
kak t Jk(at)
9
(y>-l)
avI,(at)
9
f 29.3.61
-1 e - k s
29.3.62
1 e-kd -
S
62
u(t-k)
(t -k )~ (-kt )
6
29.3.64
5u(t-nk)
29.3.65
n =O
0
X
-1
Zk
a,
a"-'u(t-nk)
29.3.66
n=l
*;-f
0
29.3.67
29.3.68
29.3.69
1
- tanh ks S
1
s(l+e-ka) 1
tanh ks
u(t)+2
2
2k
k
5 (-l)"u(t--nk)
n-1
U
(-l)"u(t-nk)
t U ( t)
L
ty-L+
+2 5 (-1 )"( t-2nk)U (t -2nk) n=l
0
t 29.3.70
1
s sinh ks
2
5 u[t-(2n+l)k]
n-0
1
2
61
81
'nn t
5 (-l)"u[t-(2n+l)k] n=O
4k
lYz 0
s cosh ks
Zk
r
1 1 2
29.3.71
31
I
L
~
3k
~
5k
0
h
3L
Sk
7k
1026
LAPLACE TRANSFORMS
f (8)
F(1)
-81 coth k8
29.3.72
u(t)+2
5 u(t-2nk)
n-1
0
Zk
'
41
1
29.3.74
(sa+ 1 ) ( 1-e-rr)
1 -L
29.3.75
-e 8
1 -& cos 2 4 G
i e4
29.3.76
1
29.3.77
cosh 2@
1
z a
29.3.78
sin 2 m
1
29.3.79
83/a
1
*
e'
sinh 2 & t
29.3.81 -k&
29.3.82
e
29.3.83
-e
1
-k&
8
(00) ( k 2 0)
29.3.84
k
erfc
1exp
fl 29.3.85 29.3.86
29.3.87
29.3.88
LS i e - 4 1 e-kdi Ql+l* ~1 s 2
-kfi e
(k2O) (n=O, 1,2, . . .; k 2 0 )
(n=O, 1 , 2 , , . .; k>O)
7
G
2$
(-3
exp (-:)-k ?r
(4t)i" i" erfc
k -
erfc - = k 24 2 4
i erfc k
7
2 4
7
2 4
22
7
1027
LAPLACE TRANSFORMS
I ~
f (8)
i
F(t)
k
-k d m J52+a2
29.3.92
29.3.94
( k 2 0)
29.3.95
e-
(k20) (k>O)
k 6 - e - k w
1
-Ins
29.3.98
S
1
29.3.99
-In s
(k>O)
In s -
(a>()>
Sk
29.3.100
s-a
29.3.101 29.3.102 29.3.103
I
e -etI0(+aJt '-k2)U (t -k )
9
I
J o ( aJt2_k2) U (t -k )
9
Jw)
J o( a ak
J 1(aJt2- k2)U(t-k )
9
-1, ak Jt2-k2
(aJt2--k2)u(t-k )
9
(5:y
J,
-7-ln
t(7=.57721 56649
d
n
U (t-k )
9
. . . Euler's constant) 6
92+1
In s
cos t Si (t)-sin t Ci ( t )
5
s In s
-sin t Si (t)-cos t Ci ( t )
5
s2+1
1
- In ( l f k s ) S
(k>O)
29.3.104
s+a In s+b
29.3.105
- In (l+k2s2)
29.3.106
7
e - k ( w - r )
.JW
7
1
S
-S1 In (s2+aZ)
(9
5
(k>O)
(a>())
2 In a-2 Ci (at)
5
I
1028
LAPLACE TRANSFORMS
f (8) 29.3.107
F (t)
1
- In (s2+a2)
4a [at In a+sin
(a>O)
62
s2+a2 In -
29.3.109
In 82
2t (1-cosh
29.3.110
k arctan -
1
29.3.111
1 k - arctan -
29.3.112 29.3.113
-t (1-cos at)
S2
a2
S
S
1.S
at)
sin kt
Si (kt)
S
ekaazerfc ks
5
2
29.3.108
s2-
at--at c i (at)]
(k>O)
erfc ks
(k>O)
eklaZ
7
-exp(-&) 1 kfi
7
erf
at
5
7
I-
29.3.114
er* erfc &
(k>O)
29.3.115
1 3 erfcfi
(k20)
29.3.116 29.3.117
29.3.118
q1 ekaerfc &
(k20)
k
erf
z
1!
k
Ge8erfc 4 -
7
7
-@&-k) 1 1
J
m
7
rt Lsin 2 k 4
7
-1
-2k6
m u(t-k)
29.3.119
9
29.3.120
9
&exp(-Z)
9
iJt(t+zk)
29.3.121
-81 ekaKl(ks)
(k>O)
29.3.122 29.3.123
9 1
29.3.124
r e +Io (ks)
(k>O)
9
[u(t)-~(t-2k)] J@Ei
29.3.125
e-lUll(ks)
(k>O)
9
k-t [u(t>- ~ ( t - z k ) ] r k d m
~
1029
LAPLACE TRANSFORMS
f (5) 29.3.126
easEl(as)
29.3.127
1 --se"El(as) a
29.3.128
a'-neaaEn(a.s)
29.3.129
[;-Si(8)]
F (t) (a>O)
(a>O)
5
-
5
-
1 t+a
1
(t+# 1
(a>O;n=O, 1 ' 2 , . . .) 5
cos s+Ci(s) sin s
( t +a> "
5
-
1 t2+l
29.4. Table of Laplace-Stieltjes Transforms
W)
4s) n m
29.4.1 29.4.2
e-ka
(k>O)
u(t-k)
29.4.3 29.4.4
n=O
1 l+e-ka
(D
n=O
29.4.5
2
29.4.6
2
29.4.7 29.4.8
29'4'9 29*4g10
tanh ks 1
sinh (ks+a)
e-hs sinh ( k s f a ) sinh (hs+b) sinh (ks+a)
u(t-nk) (-l)"u(t-nk)
5 w[t-(2n+l)k] n=O
5 (-l)nu[t-(2n+l)k]
n PO
u(t)+2
(k>O)
5 (-1)"u(t-%k)
n-1
(k>o)
2 e-czn+1)uu[t-h-(2n+l)k] n=O m.
2
h>O)
m
C e-(2n+1'a{ebu[t+h-(2n+l)k]
(O
transform see [29.7]. I n practice, Laplace-Stieltjes transforms are often written as ordinary Laplace transforms involving Dirac's delta function 6 ( t ) .
This "function" may formally be considered as
n-0
-ehbu[t-h-
dt, so tllat J" du(t)=J:m
(2n+ l ) k l }
s(t)dt=
-m
I
The correspondence 29.4.2, for instance, then assumes the form
e-ka=lm
e-"'b(t-k)dt.
Adapted by permission from P. M. Morse and H. Feshbach, Methods of theoretical physics, vols. 1, 2, McCrawHill Book Co., Inc., New York, N.Y., 1953.
1030
LAPLACE TRANSFORMS
References Texts
[29.1]H. S. Carslaw and J. C. Jaeger, Operational methods in applied mathematics, 2d ed. (Oxford Univ. Press, London, England, 1948). [29.2]R. V. Churchill, Operational mathematics, 2d ed. (McGraw-Hill Book Co., Inc., New York, N.Y., Toronto, Canada, London, England, 1958). [29.3] G. Doetsch, Handbuch der Laplace-Transformation, vols. 1-111 (Birkhauser, Basel, Switzerland, 1950; Basel, Switzerland, Stuttgart, Germany, 1955, 1956). [29.4] G. Doetsch, Einfiihrung in Theorie und Anwendung der Laplace-Transformation (Birkhauser, Basel, Switzerland, Stuttgart, Sermany, 1958). [29.5]P.M.Morse and H. Feshbach, Methods of theoretical physics, vols. I, I1 (McGraw-Hill Book Co., Inc., New York, N.Y., Toronto, Canada, London, England, 1953). [29.6] B. van der Pol and H. Bremmer, Operational
calculus, 2d ed. (Cambridge Univ. Press, Cambridge, England, 1955). I29.71 D. V. Widder, The Laplace transform (Princeton Univ. Press, Princeton, N.J., 1941).
Tables
[29.8]G. Doetsch, Guide to the applications of Laplace transforms (D. Van Nostrand, London, England; Toronto, Canada; New York, N.Y.; Princeton, N.J., 1961). [29.9]A. ErdBlyi et al., Tables of integral transforms, vols. I, I1 (McGraw-Hill Book Co., Inc., New York, N.Y., Toronto, Canada, London, England, 1954). [29.10]W. Magnus and F. O)erhettinger, Formulas and theorems for the special functions of mathematical physics (Chelsea Publishing Co., New York, N.Y., 1949). [29.11] D. Voelkeq and G. Doetsch, Die zweidimensionale Laplace-Transformation (Birkhauser, Basel, Switzerland, 1950).
Subject Index Page
__ ____ ___________ _ - __ _ _ _- - _ __ __________ __ _ _ _ _ ___ _ _ ____ _ _ _ _ _ _ _ _ _ _ _ _ _ ___
822 510 804 810 803 804 809 804 804 804 805 804 805 805 804 806 805 806 804
generating function for--- -inequalities for- - - - - - - - - - - - - - - - - - - - - - - - integrals involving--- - - - - - - - - - - - - - - . - multiplication theorem for-- - - relations with Euler polynomials. - - - special values of----------------------------_ symbolic operations - _ -symmetry relations _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Bessel functions as parabolic cylinder functions _ _ - _ _ - - - _ _ _ 692,697 ___ definite integrals _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 485 modified_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _374, _ _ _509 _ notation for _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _358 __ of fractional order _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 437 of the first kind _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 358,509 of the second kind _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 358,509 of the third kind - - _ _ _ _ _ _ - _ - _ _ _ _ _ _ _ - _ _358,510 _____ orthogonality properties of 485 representations in terms of Airy functions - - - - 447 spherical- - -------- --437, ‘509 Bessel functions of half-integer order--- - - - - - - - _ 437, 497 ieros and associated values 467 zeros of the derivative and associated values- 468 Bessel functions, integrals479,485 asymptotic expansions- - - - - - - - - - - - _- - - _ 480,482 computation of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _488 _ convolution type _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 485 __ Hankel-Nicholson type 488 involving products of-484 polynominal approximations- - - - - - - - 481,482 recurrence relations-- - - - _ - _- - - - - - - - - - - - - - 480,483 reduction formulas- - - - - - - - - - _- - - - - 483 repeated _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _482 ___ simple _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _480 __ tables of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _492 ___ Weber-Schafheitlin type --- - - - - - 487 Bessel functions J , ( z ) ,Y,(z) 358, 379, 381, 385 addition theorems for _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 363
_______
______ _ _ _ _ _ _ _ _______ _ __ ____ _____
___________________
__
___________________ __ __
_______ _______-________ ______________________
__ _____ _ _ _ _ _ _ _ _ _ __ _____ _ _ _ _ _ _ _ _ ___________
1031
INDEX
Bessel functions J v ( z ) , Yv(z)-Continued Page analytic continuation of_-- - - - - - - _ _ - - - - 361 ascending series for _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 360 asymptotic expansion for large arguments- - 364 asymptotic expansions for large orders--------365 asymptotic expansions for zeros- - - - - - 371 asymptotic expansions in the transition reglon for large orders____-_-----_----____________ 367 asymptotic expansions of modulus and phase for . . . . . . . . . . . . . . . . . . . . . . 365 large arguments connection with Legendre functions--- - 362 continued fractions for- - - - - - - - - - - - - - - - - _ _ _ _ 363 derivatives with respect to order 362 358 differential equation- - - - - - - - - - - - - - - - - - - - - - - - 362 differential equations for products- 361 formulas for derivatives- _ _ _ - - - - - - - - - - - - generating function and associated series- - - - 361 graphs of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _359,373 _____ in terms of hypergeometric functions--. 362 360 integral representations of.. - - - - - - - - - - - - - _ _ _ _ limiting forms for small arguments_ _ _ _ _ _ _ _ _ _ _ _ _ 360 modulus and phase _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _365 __ multiplication theorem for-- - - - - - - - - - 363 Neumaiin’s expansion of an arbitrary function, 363 notation _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _358 __ other differential equations- - - - - - - - - - - - 362 polynomial approximations - - - - - - - - - - - - - - - 369 recurrence relations _ _ _ _ _ _ 361 recurrence relations for cross-products---- - - - 361 relations between- - - - - - - - - - - - - - - - - - - - - - - - - - 358 tables o f - - - _ _ - _ - - - - - _ - - - - - - - - - - - _ _ _ _ _ _ _ - _ _ _ _ 390 358 uniform asymptotic expansions for large orders-362 upper b o u n d s - - - - - - - - - - - - - - - - - - - - - - - - - - - - _ - 360 Wronskian relations- - - - - - - - - - - - - - - - - - - - - - - zeros of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _370 __ 372 zeros, complex- - 370 zeros, infinite products for 371 zeros, McMahon’s expansions for-- - - - - - - - - - 374 zeros of cross products of zeros, tables of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 371,409 ,414 371 zeros, uniform expansions of- - - -__ --_ 881 Bessel’s interpolation formula- - - - - - - - - - - - - - - - - -
__
_____
__ __ ___ ________
_ _ _ __ __ ______________ ___________ __ ___ __ ________
__
_
__
__
____
_
__ _ __
____ .................... __ _
_
_______________ ____________ .................... __ _____________________ _
__ __ _ _ __
795 11 958 940 941 941 941 940 942 941 940 941 941 943 785 71,91 72 72 76 75 78 74 77 74 75 72 72 77 75 75 75 74 72 72 72 76 72 74 73 72 74 74 73 142 936 957 1005 1006
I
INDEX
1033
883 877 877 877 877 883 877 878 896 450 896 896 896 896 896 896 896 896 897 882 883 882 883 882 914 258 1004 927 935 928 927
1034
INDEX Page
927 93 1 927 930 929 827 840 21
INDEX
1035
INDEX Page
recurrence formulas _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 263, 944 relation to other functions . . . . . . . . . . . . . . . . . . . . 945 relation to the binomial expansion _ _ _ _ _ _ _ _ _ _ _ _ _ 263 relation to the +distribution- - - - - - - - - - - - - - - - 944 relation to the hypergeometric function- - - - - _ _ 263 series expansion for _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 944 __ symmetry relation--- _ _ _ _ _ - - _ -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 263 Incomplete gamma function _ _ _ _ - _ _ _230,260,486, __ 509 as a confluent hypergeometric function-- - - - - - - 262 asymptotic expansions of.. - - - - - - - _ -- - - - - - - - 263 computation of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _959 ___ continued fraction for _ _ _ _ _ _ - - - - - - - - - - - _ _ _ _ _263 __ definite integrals.. - - - - - - - - - - - - - - - - - - - - - - - - - - 263 derivatives and differential equations- - - - - - - - - 262 graph o f - - - _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 261 Pearson’s form of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _262 ___ 262 262 262 978 13 11 11 11 11 11 11 11 11
__
956 77 71 86 82 88 12 69 12 885 886 12 887 886 890 887 887 891 886 888 891 886 888 886 885 878 879 881 882 880
1037
INDEX
Page
quarter periods _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _569 ___ reciprocal parameter-- _ _ _ _ _ _ _ _ _ _ - _ _ _ _ - _ _ 573 relations between squares of the functions- - - - - 573 relation to the copolar trio . . . . . . . . . . . . . . . . . . . . 570 relation with Weierstrass functions- - - -.- - - - - - 649 series expansions in terms of the nome q- - - - - - - 575 special arguments.. - - - _ _ _ _ - - _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ 571 Jacobi’s e ta function 577 Jacobi’s polynomials- - _ _ - - - - - - - - - - - - - - - - - - - - - 561, 773 (see orthogonal polynomials) coefficients for- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _793 __ graphs of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _773,776 _____ Jacobi’s theta function (see theta functions) - - - - - 576 Jacobi’s zeta function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 578, 595 addition theorem for _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 595 __ calculation by use of the arithmetic-geometric mean-----------------------------------578 graph o f _ _ - - - _ _ _ _ _ _ - _ - _ - - - - - - - - - - - - - - - - - - - -595 Jacobi’s imaginary transformation - - - - - - - - - - - - 595 q-series for _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 595 relation to theta functions_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 578, 595 specialvalues------------------------------595 table o f - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 619
__
__
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ r _
K Kelvin functions--- . . . . . . . . . . . . . . . . . . . . . 379,387,509 ascending series for _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 379 __ ascending series for products of--- - - - - - - - - - - - - 381 asymptotic expansions for large arguments- - - 381 asymptotie expansions for large zeros- - - - - - - - - 383 asymptotic expansions of modulus and phase- - 383 asymptotic expansions of products-- - - - - - - - - - - 383 definitions-- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - 379 differential equations--- - - - - - - - - - - - - - - - - - - - - - 379 expansions in series of Bessel functions-381 graphs o f - - _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 382
____
.
_______
382 380 384 380 380 379 430 384 381 822 504 16
882 886 915 878 900 878 14 890 923
INDEX
INDEX Page
896 14 11 11
997 826 374 376 375 377 377 377 374 376 376 374 377 376 375 377 377 377 378 376 375 416 378 375 377 722 734 83,498 445 443 453 443 445 445 443 444 445 445 445 444 444 443 469 443 498 498 499 498 498 498 498 498 498 501 16 928 891
1039
1040
INDEX
Orthogonal polynomials-Continued page limit relations _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _787 ____ of a discrete variable _ _ _ _ . _ _ _ _ _ 788 _______________ orthogonality relations- - - - - - - - - - - - - - - - - - - - - 774 powers of z in terms of _ _ _ _ - _ _ _ _ _ _ _ _ 793, _ _ _ 794-801 _ recurrence relations, miscellaneous- - - - - - - - - - 773, 782 recurrence relations with respect to degree n- _ _ 782 Rodrigues’ formula- - - - - - - - - - - - - - - - - - - - - - - - 773, 785 special values of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _777 ___ sum f o r m u l a s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 785 tables of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _795, _ _ _796, _ 800, 802 zeros o f - _ _ _ _ - - - _ - _ - - - - - _ - - - - - - - - - - - - - - - - - - - 787
-
-
P Parabolic cylinder functions V ( a ,z), V ( a ,2) -_- - - 300, 509, 685, 780 asymptotic expansions of-- _ _ - - - - - - - _ _ 689 computation of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 697 connection with Bessel functions _ _ _ _ _ _ _ _ _ _ _ _ 692,697 connection with confluent hypergeometric func691 tions-----_-----_-----_-----------__-connection with Hermite polynomials and functions----__-----__--------_---___-____-69 1 connection with probability integrals and Dawson’s integral- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 69 1 Darwin’s expansions- - - - - - - - - - - - - - - - - - - - - - - - 689 differential equation- - - - - - - - - - - - - - - - - - - - - - 686 expansion8 for a large, z moderate_ _ _ _ _ _ _ _ 689 expansions for z large, a moderate 689 expansions in terms of Airy functions- - - - - - 689 integral representations of- _ _ - - - - - - - - - - - 687 modulus and phase.. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 690
- __ __
-
-
-
__
____ _____________ -_ _ __ __ -
Page
825 262 260
984 986 990 999 78, 92 256 896 509 959 978 16 260 260 260 260 260
INDEX Page
16 14 68 15 16 14 74 774 774 1000
INDEX
Page Spheroidal wave functions- Continued Page characteristic values for- - - 753, 756 Thiele’s interpolation formula-- - - - - - - - - - - - - - - 881 differential equations - --_ _ _ _ __ - 753 I Toroidal functions_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 336 evaluation of coefficients for Toronto function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _509 __ 755 Trapezoids1 rule --_ _ -----_ _ 885 expansions f o r _ _ _ _ _ - - - _ - - _ _ - _ - _ _ _ _ - - _ - _ _ - - - _755 joining factors for _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 757 Triangle inequality- - - - -11 normalization of _ _ _ _ _ _ _ _ _ _ _ - - _ _ _ _ _ _ _ _ _ _755 _ _ _ _ _Trigamma _ function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 260 tables of _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ - - _ _ _ _ _ _ _ _ 766 _ _ _ _ _ _ _(see _ polygemqna functions) 71 functions- - - - - - - - - - - - - - - - - - - - table of eigenvalues of- _ _ _ _ - - - _ - _ - _ _ _ _ _ _760 _ _ _ _ Trigonometric _ (see circular functions) table of prolate joining factors 769 Stirling numbers- - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 824 Truncated exponential function- - - 70,262 table of the first kind _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 833 U table of the second kind _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 835 Ultraspherical polynomials-- - - - - - - - - - Stirling’s formula -------- --257 774 Struve’s functions.. - - - - - _ _ - -----495 (see orthogonal polynomials) coefficients for and r” in terms of _ _ _ _ _ _ _ _ _ _ 794 asymptotic expansions for large orders - - - - - - - 498 asymptotic expansions for large zI - - 497,498 graphs o f _ _ _ _ _ - - _ _ _ _ - - - - _ _ - - - - - - - - - - - - - - - - 776 computation of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 499 Unit step function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1020 ___ differential equation- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 496 V graphs of _ _ _ _ - - - _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _496 _______ integral representations of - - - _ _ _ _ _ _ - 496,498 Variance--_----_---------_____________----928 integrals _ - _ _- -- - - - - - - - - - - - - - - - - - --- - __ -- - - 497,498 Variance-ratio distribution function--- - - - - - 946 modified-___--------_____________________-_498 (see F-distribution function) power series expansion for 496,498 1006 Vector-addition coefficients- - - - - - - - - - - - - - - - - recurrence relations-- - - _ _ - - - _ _ - 496,498 W relation to Weber’s function- - - - - 498 special properties of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ *497 Wallis’ formula _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 258 ___ tables o f _ _ - - - _ _ - - - - - - - _ _ _ - - - - - - - - - - - _ - - - - - - - 501 Wave equation in prolate and oblate spheroidal coordinates----752 Student’s 1-distribution _ _ _ _ - --948 approximations t o - - - - - - - - - - - - _ - - - _ - _ - - - - - _ _ 949 Weber’s function498 asymptotic expansion of--- _ _ - 949 relation to Anger’s function 498 limiting distribution- relation t o Struve’s function 498 949 non-central-----------------------_-----_--949 Weierstrass elliptic functions--- - - --- --- 627 series expansions for- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 948 addition formulas for _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 635 statistical properties of-- - -- -- 948 case A=O---------------_-_________________, 051 Subtabulation_ _ _- - - - - - - - - - - - _ 881 computation of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _663 __ Summable series _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _1005 __ conformal mapping of 642,654,659 Summation of rational series 264 definitions- - - - _ _ - - - - - - - - - - 629 Sums of positive powers _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 813 derivatives of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _040 __ Sums of powers-- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 804 determination of periods from given invariants- 665 I Sums of reciprocal powers807,811 determination of values at half-periods, etc., from Systems of differential equations of first order----897 064 given periods _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ differential equation- - - - - - - - - - - - 629,640 T discriminant- - - - - - - - _ _ _ _ - - - - --- 029 Taylor expansion------_,---_-------------_---880 equianharmonic case _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 652 Taylor’s formula _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 14 expressing any elliptic function in terms of %nd Tesseral harmonics- - - - - - - - - - - - - - - - - - 332 8 ’ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _651 _______ Tetrachoric functions- - - - - - - - - - - - - - - - - - 934 fundamental period parallelogram.. - -629 fundamental rectangle- - - - _ -- - - - - - - - - - 630 Tetragamma function 260 (see polygamma functions) homogeneity relations _ _ _ _ -- ----631 Theta functions 576 integrals _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _641 ___ . . invariants- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 629 addition of quarter-periods- - - - - - - - - --577 calculation by use of the arithmetic-geometric Legendre’s relation- - 634 mean___--__------_____________________ 577,580 lemniscatic case- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 658 expansions in terms of the nome q 576 maps of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 642,654,659 Jacobi’s notation for _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 577 __ multiplication formulas-- _ _ _ - - - - - - - - - - - - - - - - - 635 logarithmic derivatives of - ---- - - 576 other series involving 8,9’’ 639 pseudo-lemniscatic case - - - - - - - - - - - - - - - - - - 662 logarithms of sum and difference _ _ _ _ _ _ _ _ _ _ _ _ _ _ 577 Neville’s notation for _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 578,582 reduction formulas 031 relation with complete elliptic integrals 649 relations between squares of the functions - - - - - 576 relations with Jacobi’s elliptic functions- - - 049 relation to Jacobi’s zeta function 578 650 relation with Weierstrass elliptic functions-- - - - 650 relations with theta functions
________________ _____ _ _ ____ ____ __________________
__
_____ _ _ _ _ _ _ _
_______ _ _ _ _ _ _ _ _ _ _ _ ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____
________________
_______
____ __ ____ __ _______ ____
I _____ _ _ _ _
__
__ _
_____ _-
__
__
______
_
_
__
__________________ __ __________ _________ ___
_ _ _ _ _ _ _ _ _ _ _ __ __ ________ ____ __ _____________ __________ ______ __ ______ _ _ _ _ _ _ _ _ _ _ __ _ _ ....................
_____________________________
___________________ __________________ - -_ _ _ _
__________________ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _
___________________
_
__ ____ __ __ ___ __ _________ ________________ ___________ . . . . . . . . . . . . . . . . . . . . __ ____ _____________ _____ __ _ _ _ _ _ _
_ _ ___ _ _ _ _ _ _ __
__ _____
____ ____ ___
__ _ _ _ __ _ __ __ __ _
_______________ ________
_______________
_
_ _
_______. . . . . . . . . . . . . . . . . . . .
______________
_________ _-__
_ _ _ c _ _ _ _ _ _ _ _ _ _ _ _ _
INDEX
1043
Index of Notations Page
Psge
__
256 = r ( a + n ) / r ( a ) (Pochhammer's symbol) - - _ _ Ei(z) exponential integral- _ _ _ - - _ _ _ _ _ _ _ _ _ _ - - - 228 228 722 characteristic value of Mathieu's equation- E l ( z ) exponential integral- - _ _ - - - - - _ _ _ _ _ _ _ _ - A ( z ) =2P(z) - 1 normal probability function- -.. 931 E [ g ( X ) ] expected value operator for the function Ai(z) Airy function _ _ _ _ _ _ _ _ _ _446 ___.. g (.z_ ) _ __ _ __ _ __ _ __ _ - -_ - - -_ - - -_ - - -_ - - -_ - - -_ - - - - - - - - ~ - -928 228 A.G.M. arithmetic-geometric mean.- - - - - - - - - - - Ein(z) modified exponential integral- - - - - - - - - - - 571 E , Euler number _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _804 ___ am z amplitude of the complex number z_ _ _ _ _ _ _ _ 16 E,(z) Euler polynomial _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 804 antilog antilogarithm (log-') _ _ - - - - - - - - - - -.- .- .89 79 arcsin z , arccos z inverse circular functions. - - - - 228 E,(z) exponential integral-_-.- _ _ - - - - _ _ _ _ _ _ _ - - erf z error function _ _ _ _ _ _ _ _ _ _297 _____._ arctan z, arccot z erfc z complementary error function _ _ _ _ _ _ _ _ _ _ _ _ 297 arcsec z, arccsc z exp z = e * exponential function- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 69 arcsinh z, arccosh z inverse hyperbolic functions-. 86 exsec A , exsecant A - - . - _ _ _ _ _ _ _ _ _ 78 _ _ _ - _ arctanh z, arccoth z arcsech z, arccsch z joining factors for Mathieu functions- - - 735 fc,,, fo., F ( a , b ; c; z) hypergeometric function-- _ _ _ _ _ _ _ _ _ 556 arg z argument of z-___.----------.._.------- 16 F(q\a) elliptic integral of the first k i n d - - - - - - - - 589 722 b , ( q ) characteristic value of Mathieu's equation.. B , Bernoulli number- - _ _ _ _ _ _ _ _ _ .._ Coulomb _ _ wave __ function ___ (regular) _ ___ ---538 804 F_ L ( T_ , ~ )_ FPP fundamental period parallelogram- - - - - - - - 629 804 B,(z) Rernoulli polynomial-- - - - - - - - - - -..- - - - - ,Fm(alr. . ., a,; bl, ., b,; z) generalized hyperber,z, beiA, Kelvin functions- - - - - - - - - -.-.- - - - 3 79 556 geometric function .__ _ _ - _ _ _ _ _ _ _ _ - - _ _ _ _ _ _ _ - Bi(z) Airy function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _446 ___ cd, sd, nd Jacobian elliptic functions__._. -. - _ _ -. 570 82, g3 invariants of Weierstrass cAlliptic functions- 629 c.d.f. cumulative distribution function- - - - - - - - -. 927 Be,,, q 0 . , joining factors for Mathieu functions--740 cel(z, q) Mathieu function _ _ . _ _ _ _ _ _ _ _ normal _ _ _ _ _ function--g(z,_ y, _ p) _ bivariate probability 936 725 _ _ cn Jacobian elliptic function- - - - - - - - - - - - - - - - - - Gi(z) related Airy function . . . . . . . . . . . . . . . . . . . . 448 569 Cn, Dn, Sn integrals of the squares of Jacobian G L ( T *,p ) Coulomb wave function (irregular or loga. r i t h m i c ) _ _ _ _ _ - - - - - - - - - - - - - - - _ - - . . - - - - - - - - - - 538 elliptic functions- - - - - - - - - - - -.- - - - - - - - - - - - 576 cs, ds, ns Jacobian elliptic functions- - - _ _ _ _ - - - - 570 G',(p, q, z) Jacobi polynomial- _ _ _ _ _ - - _ _ _ _ _ _ _774 ___ Gudermannian __ ___---77 300 C(z) Fresnel integral _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _. . _ _ _ _ _gd(z) _ h t l ( z ) spherical Bessel function of the third kind437 774 C,(z) Chebyshev polynomial of the second kind-hav A haversine A _ - - _ _ _ _ _ _ _ _ _ _ _ _ - _ - - _ _ _ _ 78 ____ 262 C(z, a) generalized Fresnel integral- - - - - -. - - - - H,(z) Struve's function- - - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 496 C e , ( z , q) modified Mathieu function-. ._ _ _ _ _ _ _ _ _ 732 CI(Z), Cz(z) Fresnel integrals _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Hi(z) related Airy function . . . . . . . . . . . . . . . . . . . . 448 300 Cn(")(z) ultraspherical (Gegenbauer) polynomial---- ______ - 775 774 H e , ( z ) Hermite polynomial H!"'(z) Bessel function of the third kind (Hankel) 358 Chi(z) hyperbolic cosine integral- - -.-.- - - - - - - - 23 1 23 1 Ci(z) cosine integral- - - _ _ - - - -.- _ _ - - _ _ _ _ - _ _ _ _ Hh,(z) Hh (probability) function _ _ _ _ _ _ _ _ _ _ _ _ _ 300,891 Cin(z) cosine integral-- - - - __ _ _ _ -.- - - - _ _ _ _ - - - - 231 775 H,(z) Hermite polynomial- - - - - - - - - - - - - - - - - - - Cinh(z) hyperbolic cosine integral- - - - - - - - - - - - - H(m, n , z) confluent hypergeometric function- - - 695 231 colog cologarithm I&) modified Bessel function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 374 89 covers A , coversine A _ _ _ _ - - - . _ _ _78 __ m_ Z ,_ + g_ ( z_ ) modified _ _ _spherical ___ Bessel _ _function of the first kind _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _443 __ dc, nc, sc Jacobian elliptic functions- - _ _ _ - - -.- _ _ 570 dn=A( q) delta amplitude (Jacobian elliptic func&&Z-"+(z) modified spherical Bessel function I __ of the second kind _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 443 t i o n ) - - - - - - - - - - _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - 569 D,(z) parabolic cylinder function (Whittaker's I(?/,p ) incomplete gamma function (Pearson's f o r m ) _ - _ _ _ _ _ - - - - - _ - - - - - - - - - - - - - - - - - - - - - - - 262 f o r m ) - - - - . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 687 ____Zz(a, b ) incomplete beta function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 263 el, e2, c3 roots of a polynomial (Weierstrass form)-629 e s exponential function- _ _ - - - - - - - - - - -. --------9 z imaginary part of z(=y) . . . . . . . . . . . . . . . . . . . . 16 69 in erfc z repeated integral of the error function--299 262 e,(z) truncated exponential function- - - - - - - -.- - j , ( z ) spherical Bessel function of the first kind--437 E ( p\a) elliptic integral of the second kind- - - - - 589 E ( a , z ) parabolic cylinder function- _ _ ._ _ . _ _ - - - - - 693 Jy(z) Anger's function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _498 E.(z) Weber's function _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ __._ J ,_ ( z_ ) _Bessel function of the first kind _ _ _ _ _ _ _ _ _ _ _ 358 498 E , ( m ) ( z ) Weber parabolic cylinder function---- - -. 509 k modulus of Jacobian elliptic functions--- - - - - 590 E(m) complete elliptic integral of the second k' complementary modulus-- - - - - - - - - - - - - - - - - - 590 k . ( z ) Bateman's function _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ 510 ___ 590 (a), a,(q)
__
-
..
_____ _ _ _ _
_____
1044
_______
__
__
1045
INDEX OF NOTATIONS
Page Pare q(n) number of partitions into distinct integer 483 repeated integrals of K o ( z ) - - - _ _ _ _ _ _ _ _ _ _ _ summands--------_----------------------825 Kn+x(z ) modified spherical Bessel function of the third kind _ _ _ _ _ _ _ _ 443 _ _ . _ _associated _ _ _Legendre _ _ _ _ _ _ Q:(z) function of the second 374 332 K , ( z ) modified Bessel function-- - _ _ - _ _ - - - - - - kind--____-.----____------------^-------334 590 K ( m ) complete elliptic integral of the first kind-Qn(z) Legendre function of the second kind---- - 16 379 k e r j , k e i z Kelvin functions _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 9 2 2 real part of z(=z) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 228 753 li(z) logarithmic integral _ _ _ _ - - _ -- - - - -.- - - - - - - - R?L(c, E ) radial spheroidal wave function------. . 824 lim l i m i t - _ _ _ _ - _ - . - - - - - - - - - - - - - - - - - - - - - - - - - - 13 S,(m) Stirling number of the first kind _ _ _ _ _ _ _ _ _ _ _ 68 824 &(”’) Stirling number of the second kind- - - - - - - log,@ common (Briggs) logarithm- - - - _ _ _ _ _ - - - - 725 67 Be.(z, q) Mathieu function . . . . . . . . . . . . . . . . . . . . . log,z logarithm of z t o base n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 569 In z (=log& natural, Naperian or hyperbolic sn Jacobian elliptic function- - - - - - - - - - - - - - - - - logarithm_.___^----_____________________-300 68 S(z) Fresnel integral_ _ _ _ _ - - _ _ - - - - - - _ _ - - - _ _ _ _ - f l ~ ( t ])= j ( s , Laplace transform- - - - - - - - - - - - - - - 1020 S , ( z ) , S2(z) Fresnel integrals_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 300 733 L ( h , k, p ) cumulative hivariate normal probaSe,(z, q) modified Mathieu function _ _ _ _ _ _ _ _ _ _ _ _ 262 bility function _ _ _ _ - 936 S(z, a) generalized Fresnel integral- - - - - - - - - - - 231 775 Shi(z) hyptrbolic sine integral- - - - - - - - - - - - - - - L,(z) Laguerre polynomial- - - - - - - - - - - - - - - - - - 231 775 L,(d (5) generalized Laguerre polynomial-- _ _ .- - Si(z) sine integral- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ L.(z) modified Struve function _ _ _ _ __ _ _ _._ _ _ _ _ _ _ 498 S,(z) Chebyshev polynomial of the first kind- - - - 774 231 928 m=pl’ mean---_-------.-.------------------Sih(z) hyperbolic sine integral- - - - - - - - - - - - - - - - ni parameter (elliptic functions) _ _ _ - - - - - - _ _ - - - - 753 569 S;i(c, 7) angular spheroidal wave function-- - - - - . . si(z) sine integral_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _232 ___ ml complementary parameter-. - - - - - - - - - - - - - - - - 569 71 M ( a , b , z ) Kummer’s confluent hypergeometric sin z, cos z, tan z circular functions _ _ _ _ _ _ _ _ _ _ _ _ _ 72 _ _ _ _ f u n c t i o n _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _504 _ _ _ _ _ _ _ cot _ _ -2,- sec z, csc z _ _ _ _ _ _ . _ _ _ _ 83 733 sinh z, cosh z, tanh z hyperbolic functions _ _ _ _ _ _ _ Mc,(i)(z, q) modified Mathieu function--. _ _ - - 83 733 coth z, sech z, csch z _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Ms,O)(z,q ) modified Mathieu function _ _ _ _ _ _ _ _ _ _ 505 509 T(m,n , t ) Toronto function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ M . , , ( z ) Whittaker function- - - - - - _ _ - - - - - - _ _ - - 774 n characteristic of the elliptic integral of the third T.(z) Chebyshev polynomial of the first kind---590 kind______________..-.-------------^-^-^T:(z) shifted Chebyshev polynomial of the first k i n d _ - _ _ _ _ _ _ _ _ _ - - _ _ _ - - - - - - - - - - - - - - - - - - -774 -. 15 O(v,j =U,,, U, is of the order of U,, (u,/u. is bounded) un V(a,b, z) Kummer’s confluent hypergeometric o(u,)=u,,, lim -=0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 259 function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _504 ___ n+mVn 363 O,,(z) Neumann’s polynomial- - - _ _ - _ _ - - - _ _ _ _ - _ _ V.(z) Chebyshev polynomial of the second kind- 774 p ( n ) number of partitions . . . . . . . . . . . . . . . . . . . . . 825 x ( z ) shifted Chebyshev polynomial of the second 629 g ( z ) Weierstrass elliptic function--- - - - - _ _ _ _ - - kind--____-_-^---___--------------------774 ph z phase of the complex number z _ _ _ _ _ _ _ _ _ _ _ _ 16 687 V ( a ,z) Weber parabolic cylinder function--- - - - P ( a , z ) incomplete gamma function- - - - - - _ _ - - - - - 260 vers A, versine A _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 78 P ( x a [ v ) probability of the Xz-distribution_---- 262, 940 687 V(a,z) Weber parabolic cylinder function- - - - P ! ( z ) associated Legendre function of the first w ( z ) error function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 297 kind_^__________________________________332 692 W ( a ,z) Weber parabolic cylinder function- - - - - P(z) normal probability function--- - - - - _ -- - - - - - 931 505 W K . ~ ( ZWhittaker ) function P,,(z) Legendre function (spherical polynomials) - 333,774 W{f(z), g(r)I(=f(z)g’(z)-f’(z)g(z)) Wronskianrel a t i o n - _ _ _ _ _ _ _ - - - _ _ _ - - - - - - - - - - - - - - - - - - - -505 -774’ P:(x) shifted Legendre polynomial-- - - - - - - - - - - Pn(al@)(z)Jacobi polynomial--- - - - - - _ _ _ _ _ 774 [ ZO,ZI, ,zk] divided difference _ _ _ _ _ _ _ - - - - - _ _877 _ 437 Pr{ X _
Ki.(z)
__
-
_ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _
-
__
-
___________________
______
...
--
Notation modular angle (elliptic function) - - - - - _ _ _ _ _ _ _
a
a.(z)
=J”
- Greek Letters Page
~
__
Page
joining factor for spheroidal wave functions- -
757
@(ulm) Jacobi’s theta function _ _ _ _ - - - - - - - - - - 577 s,, nth c u m u l a n t - - - - - - - - - . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _928 ___
590 228
tne-sldt _ _ _ _ _ . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~
K ~ J
OD
~,,(z)
=J‘I
tne-aldt
=E(2k+ 1)-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _228 ___
m
+ 1) _ _ _ _ - - - - - - - - - - - - - - - - -
A(n)
n-
------ ------- ------- -------
k -0
807
characteristic value of the spheroidal wave equation__-___-_-___-------______ 753 B.(n, b) incomplete beta function _ _ _ _ _ _ _ _ _ _ _ _ _ _ 263 595 Au(p\a) Heuman’s lambda function- - - - - - _ _ - - - B ( z , w ) beta function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 258 mean difference- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 877 y Euler’s constant _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _255 _ _ _ p ( n ) Mobius function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _82 _6 260 ?(a, 2) incomplete gamma function (normalized) p,, nth central moment _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _928 _ Pa p’,, nth moment about the origin _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 928 yl=coefficient of skewness _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 928 U3 231 r(z) number of primes 52 . . . . . . . . . . . . . . . . . . . . *,,(z) = (2-20) (2-21) * (2-2.) 878 Ir4 y2=--3 coefficient of excess _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 928 U1 II(n; p\a) elliptic integral of the third kind- - - - - 590 r(z) gamma function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 255 n(z) factorial function _ _ _ _ _ _ _ _ _ _ _ 255 r ( a , z) incomplete gamma function _ _ _ _ _ _ _ _ _ _ _ _ _ 260 p correlation coefficient- - - - - _ _ _ _ _ _ _ _ 936 822 6ii Kronecker delta ( = 0 if i # k ; = 1 if i = k ) - - - - ~,,(ZO,Z,, .,z,,) reciprocal difference _ _ _ 878 877 6:(fn) central difference- - - - _ _ _ _ _ - - _ _ _ _ _ _ _ _ _ _ _ p,,(u, 2) Poisson-Charlier function- - - - - - - - - - - 509 A difference o p e r a t o r _ _ _ _ _ - - - - - - - . . - - - - - - - - - - - - - 822 U standard deviation _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ 298 A discriminant of Weierstrass’ canonical form--- 629 U’ v a r i a n c e - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 928 A(fn) forward difference- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 877 629 u ( z ) Weierstrass sigma function- - - - - - - - - - - - - - - Ax absolute error _ _ _ _ . _ _ _ _ _ _ _ ._ __ __ _ _ _ _ _ _ _ _ _ 14_ _ U k(n) divisor function __ -__ --- - - 827 f(z) Riemann zeta function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 807 934 s,,(z) tetrachoric function- - - - - - - - - - - - - - - - - - - - f(z) Weierstrass zeta function _ _ _ _ _ _ _ - _ _ - _ _ _ - _ _ - 629 p = a m U, amplitude- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 569 578 Z(ulm) Jacobi’s zeta function-- _ _ _ - - _ _ - - _ _ - _ _ _ _ 826 p(n) Euler-Totient function- - - - - - - - - - - - - - - - - - m = E_ ( ei 8-X) - characteristic function of X -- - - - 928 q(n) (-1)j-lk-n _ . _ _ _ _ _ _ _ _ _ _ _ 807 _ - _ _p(t) __ 504 +(a; b ; z) confluent hypergeometric function- - - - k-1 Weierstrass elliptic function - - - - - - 631 q., = f(w.) $(z) logarithmic derivative of the gamma 577 H ( u ) , Hl(u) Jacobi’s et a function- - - - _ _ _ _ _ _ _ _ _ _ function__-------------------------------258 a,,(%) theta function- - - - - - - - - - - - - - - - - - - - - - - - - - 576 504 * ( a ; c; z) confluent hypergeometric function----578 9,(c\a) ,OS( e\ a), Neville’s notation - - - - - - - - - - - - 629 o., period of Weierstrass elliptic functions- - - - - for 510 w.,,(z) Cunningham function -------- -----s,,(s\a),s,(c\a) theta functions B(n)
(- 1)k(2k
=
k-0
-.n
A,,
807
. .
..
_____________ ___ __ ____ _________ ___
______
________ -
=r,
-
___
-
_
Miscellaneous Notations determinant _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ad] column matrix _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ vn Laplacian operator- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ :A forward difference operator _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
page
. . . . . . . . _. ._ ._ ._ ._ ._ ._._. _. _. _. _. _
<x> nearest integer t o z z complex conjugate of z (=z-iy)
[aik]
a
partial derivative _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
883
I
______
complex number (Cartesian form) (polar form) . . . . . . . . . . . . . . . . . . . . . . . . . . . J z I absolute value or modulus of z _ _ _ _ _ _ _ _ _ _ _ _ - _ 2 overall summation _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Page
222 16 16 16 16 822 755 807 826
(m,n) greatest common divisor _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
822 437
.
______
(n;n ~ nl; , . ., n,) mu!tinomial coefficient [z] largest; integer 52 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1046
823 66
r
Cauchy’s principal value of the integral------
=
approximately equal---- - asymptotically equal 5 1 inequality, inclusion unequal_--------_----------------_--_----
J-
-<, >, #
___
__- __ _____ __
_______________________
______________
228 14 15 10 12
A CATALOGUE OF SELECTED DOVER BOOKS I N ALL FIELDS O F INTEREST
A CATALOGUE OF SELECTED DOVER BOOKS IN ALL FIELDS OF INTEREST
LEATHER TOOLING AND CARVING, Chris H. Groneman. One of few books concentrating on tooling and carving, with complete instructions and grid designs for 39 projects ranging from bookmarks to bags. 148 illustrations. I l l p p . 77/8 x 10. 23061-9 Pa. $2.50 NUTTALL,A PICTURE MANUSCRIPT FROM ANCIENT MEXICO, as first THECODEX edited by Zelia Nuttall. Only inexpensive edition, in full color, of a pre-Columbian Mexican (Mixtec) book. 88 color plates show kings, gods, heroes, temples, sacrifices. New explanatory, historical introduction by Arthur G . Miller. 96pp. 113b 8 1 ~ 23168-2 Pa. $7.50
AMERICANPRIMITIVE PAINTING, Jean Lipman. Classic collection of an enduring American tradition. 109 plates, 8 in full color-portraits, landscapes, Biblical and historical scenes, etc., showing family groups, farm life, and so on. 8Opp. of lucid text. 83/8 x 11%. 22815-0 Pa. $4.00 WILLBRADLEY: HISGRAPHIC ART,edited by Clarence P. Hornung. Striking collection of work by foremost practitioner of Art Nouveau in America: posters, cover designs, sample pages, advertisements, other illustrations. 97 plates, including 8 in full color and 19 in two colors. 97pp. 93/8 x 12%. 20701-3 Pa. $4.00 22120-2 Clothbd. $10.00 SKETCHBOOK OF JAN FAUST, Jan Faust. 101 bitter, horrifying, THEUNDERGROUND black-humorous, penetrating sketches on sex, war, greed, various liberations, etc. Sometimes sexual, but not pornographic. Not for prudish. 1Olpp. 6% x 9%. 22740-5 Pa. $1.50 GIRL AND HERAMERICA, Charles Dana Gibson. 155 finest drawings of THEGIBSON effervescent world of 1900-1910: the Gibson Girl and her loves, amusements, adventures, Mr. Pipp, etc. Selected by E. Gillon; introduction by Henry Pitz. 144pp. 8% x 1 1 ~ 8 . 21986-0 Pa. $3.50
STAINED GLASS CRAFT, J.A.F. Divine, G . Blachford. One of the very few books that tell the beginner exactly what he needs to know: planning cuts, making shapes, avoiding design weaknesses, fitting glass, etc. 93 illustrations. 115pp. 22812-6 Pa. $1.50
CATALOGUE OF DOVER BOOKS
150 MASTERPIECES OF DRAWING, edited by Anthony Toney. 150 plates, early 15th century to end of 18th century; Rembrandt, Michelangelo, DKrer, Fragonard, Watteau, Wouwerman, many others. 150pp. 83/73 x 11%. 21032-4 Pa. $3.50 ACE OFTHE POST^, Hayward and Blanche Cirker. 70 extraordinary THEGOLDEN posters in full colors, from Maitres de I’Affiche, Mucha, Lautrec, Bradley, Cheret, 22753-7 Pa. $4.95 Beardsley, many others. 93/8 x 12%. 21718-3 Clothbd. $7.95
SIMPLICISSIMUS, selection, translations and text by Stanley Appelbaum. 180 satirical drawings, 16 in full color, from the famous German weekly magazine in the years 1896 to 1926.24 artists included: Grosz, Kley, Pascin, Kubin, Kollwitz, plus Heine, Thijny, Bruno Paul, others. 172pp. 8% x 12%. 23098-8 Pa. $5.00 23099-6 Clothbd. $10.00 Aubrey Beardsley. 157 plates, 2 in color: THEEARLY WORKOF AUBREYBEARDSLEY, Manon Lescaut, Madame Bovary, Morte d’Arthur, Salome, other. Introduction by 21816-3 Pa. $3.50 H. Marillier. 175pp. 8% x 11. THELATERWORKOF AUBREYBEARDSLEY, Aubrey Beardsley. Exotic masterpieces of full maturity: Venus and TannhPuser, Lysistrata, Rape of the Lock, Volpone, Savoy material, etc. 174 plates, 2 in color. 176pp. 8%x 11. 21817-1 Pa. $3.75 OF WILLIAM BLAKE, William Blake. 92 plates from Book of Job, Divine DRAWINGS Comedy, Paradise Lost, visionary heads, mythological figures, Laocoijn, etc. Selection, introduction, commentary by Sir Geoffrey Keynes. 178pp. 8% x 11. 22303-5 Pa. $3.50
LONDON: A PILGRIMAGE, Gustave Dad, Blanchard Jerrold. Squalor, riches, misery, beauty of mid-Victorian metropolis; 55 wonderful plates, 125 other illustrations, full social, cultural text by Jerrold. 191pp. of text. 81/73 x 11. 22306-X Pa. $5.00 THECOMPLETE WOODCUTS OF ALBRECHT D ~ E Redited , by Dr. W. Kurth. 346 in all: Old Testament, St. Jerome, Passion, Life of Virgin, Apocalypse, many others. Introduction by Campbell Dodgson. 285pp. 8% x 12%. 21097-9 Pa. $6.00 THEDISASTERS OF WAR,Francisco Goya. 83 etchings record horrors of Napoleonic wars in Spain and war in general. Reprint of 1st edition, plus 3 additional plates. Introduction by Philip Hofer. 97pp. 93/73 x 8%. 21872-4 Pa. $2.50 OF HOGARTH, William Hogarth. 101 of Hogarth’s greatest works: ENGRAVINGS Rake’s Progress, Harlot’s Progress, Illustrations for Hudibras, Midnight Modern Conversation, Before and After, Beer Street and Gin Lane, many more. Full com22479-1 Pa. $6.00 mentary. 256pp. 11 x 14. 23023-6 Clothbd. $13.50
ART, Franz Boas. Great anthropologist on ceramics, textiles, wood, PRIMITIVE stone, metal, etc.; patterns, technology, symbols, styles. All areas, but fullest on Northwest Coast Indians. 350 illustrations. 378pp. 20025-6 Pa. $3.50
CATALOGUE OF DOVER BOOKS HOUDINI ON MAGIC,Harold Houdini. Edited by Walter Gibson, Morris N. Young. How he escaped; expose‘s of fake spiritualists; instructions for eye-catching tricks; other fascinating material by and about greatest magician. 155 illustrations. 280pp. 20384-0 Pa. $2.50 OF THE NUTRITIONAL CONTENTS OF FOOD,U.S. Dept. Of Agriculture. HANDBOOK Largest, most detailed source of food nutrition information ever prepared. Two mammoth tables: one measuring nutrients in 100 grams of edible portion; the other, in edible portion of 1 pound as purchased. Originally titled Composition of 21342-0 Pa. $4.00 Foods. 19Opp. 9 x 12.
PRESERVING AND FREEZING, U.S. Dept. of COMPLETE GUIDETO HOMECANNING, Agriculture. Seven basic manuals with full instructions for jams and jellies; pickles and relishes; canning fruits, vegetables, meat; freezing anything. Really good recipes, exact instructions for optimal results. Save a fortune in food. 156 il22911-4 Pa. $2.50 lustrations. 214pp. 6l/6 x 9%. THEBREAD TRAY,Louis P. De Gouy. Nearly every bread the cook could buy or make: bread sticks of Italy, fruit breads of Greece, glazed rolls of Vienna, everything from corn pone to croissants. Over 500 recipes altogether. including buns, 23000-7 Pa. $3.50 rolls, muffins, scones, and more. 463pp. CREATIVE HAMBURGER COOKERY, Louis P. De Gouy. 182 unusual recipes for casseroles, meat loaves and hamburgers that turn inexpensive ground meat into memorable main dishes: Arizona chili burgers, burger tamale pie, burger stew, burger corn loaf, burger wine loaf, and more. 120pp. 23001-5 Pa. $1.75
J. George Frederick and Jean Joyce. Probably LONGISLAND SEAFOOD COOKBOOK, the best American seafood cookbook. Hundreds of recipes. 40 gourmet sauces, 123 recipes using oysters alone! All varieties of fish and seafood amply represented. 324pp. 22677-8 Pa. $3.00 THEEPICUREAN. A COMPLETE TREATISE OF ANALYTICAL AND PRACTICAL STUDIES IN CULINARY ART,Charles Ranhofer. Great modern classic. 3,500 recipes from master chef of Delmonico’s, turn-of-the-century America’s hest restaurant. Also explained, many techniques known only to professional chefs. 775 illustrations. 22680-8 Clothbd. $17.50 1183pp. 65/6 x 10.
THE
THEAMERICANWINECOOKBOOK,Ted Hatch. Over 700 recipes: old favorites livened up with wine plus many more: Czech fish soup, quince soup, sauce Perigueux, shrimp shortcake, filets Stroganoff, cordon bleu goulash, jambonneau, 22796-0 Pa. $2.50 wine fruit cake, more. 314pp. DELICIOUS VEGETARIAN COOKING, Ivan Baker. Close to 500 delicious and varied recipes: soups, main course dishes (pea, bean, lentil, cheese, vegetable, pasta, and egg dishes), savories, stews, whole-wheat breads and cakes, more. 168pp. U S 0 22834-7 Pa. $1.75
CATALOGUE OF DOVER BOOKS
THEART DECOSTYLE, ed. by Theodore Menten. Furniture, jewelry, metalwork, ceramics, fabrics, lighting fixtures, interior decors, exteriors, graphics from pure French sources. Best sampling around. Over 400 photographs. 183pp. @/E x 11% 22824-X Pa. $4.00 THE GENTLEMAN AND CABINET MAKERSDIRECTOR, Thomas Chippendale. Full reprint, 1762 style book, most influential of all time; chairs, tables, sofas, mirrors, cabinets, etc. 200 plates, plus 24 photographs of surviving pieces. 249pp. 97/8 x 123~ 21601-2 Pa. $5.00 PINEFURNITURE OF EARLY NEWENGLAND, Russell H. Kettell. Basic book. Thorough historical text, plus 200 illustrations of boxes, highboys, candlesticks, desks, etc. 477pp. 7718 10u. 20145-7 Clothbd. $12.50 ORIENTAL RUGS, ANTIQUE AND MODERN, Walter A. Hawley. Persia, Turkey, Caucasus, Central Asia, China, other traditions. Best general survey of all aspects: styles and periods, manufacture, uses, symbols and their interpretation, and identification. 96 illustrations, 11in color. 320pp. 6% x 9%. 22366-3 Pa. $5.00 DECORATIVE ANTIQUEIRONWORK, Henry R. d’Allemagne. Photographs of 4500 iron artifacts from worlds finest collection, Rouen. Hinges, locks, candelabra, weapons, lighting devices, clocks, tools, from Roman times to mid-19th century. Nothing else comparable to it. 420pp. 9 x 12. 22082-6 Pa. $8.50 Catherine Christopher. THECOMPLETE BOOKOF DOLLMAKINGAND COLLECTING, Instructions, patterns for dozens of dolls, from rag doll on up to elaborate, historically accurate figures. Mould faces, sew clothing, make doll houses, etc. Also collecting information. Many illustrations. 288pp. 6 x 9. 23066-4 Pa. $3.00 ANTIQUEPAPER DOLLS:1915-1920, edited by Arnold Arnold. 7 antique cut-out dolls and 24 costumes from 1915-1920, selected by Arnold Arnold from his collection of rare children’s books and entertainments, all in full color. 32pp. 9% x 12% 23176-3 Pa. $2.00 ANTIQUEPAPER DOLLS:THEEDWARDIAN ERA,Epinal. Full-color reproductions of two historic series of paper dolls that show clothing styles in 1908 and at the beginning of the First World War. 8 two-sided, stand-up dolls and 32 complete, two-sided costumes. Full instructions for assembling included. 32pp. 9% x 12%. 23175-5 Pa. $2.00
A HISTORY OF COSTUME, Car1 KBhler, Emma von Sichardt. Egypt, Babylon, Greece up through 19th century Europe; based on surviving pieces, art works, etc. Full text and 595 illustrations, including many clear, measured patterns for reproducing historic costume. Practical. 464pp. 21030-8 Pa. $4.00
EARLY AMERICANLOCOMOTIVES, John H. White, Jr. Finest locomotive engravings from late 19th century: historical (1804-18741, main-line (after 1870), special, foreign, etc. 147 plates. 200pp. llY8 x 8%. 22772-3 Pa. $3.50
CATALOGUE OF DOVER BOOKS
GREETING CARDS,Ed Sibbett, Jr. 16 cards to cut and color. Three say “Happy Chanukah,” one “Happy New Year,” others have no message, show stars of David, Torahs, wine cups, other traditional themes. 16 envelopes. 8% x 11. 23225-5 Pa. $2.00
JEWISH
AUBREYBEARDSLEY GREETING CARD BOOK,Aubrey Beardsley. Edited by Theodore Menten. 16 elegant yet inexpensive greeting cards let you combine your own sentiments with subtle Art Nouveau lines. 16 different Aubrey Beardsley designs that you can color or not, as you wish. 16 envelopes. 64pp. 8% x 11. 23173-9 Pa. $2.00
RECREATIONS IN THE THEORY OF NUMBERS, Albert Beiler. Number theory, an inexhaustible source of puzzles, recreations, for beginners and advanced. Divisors, perfect numbers. scales of notation, etc. 349pp. 21096-0 Pa. $2.50 AMUSEMENTS IN MATHEMATICS, Henry E. Dudeney. One of largest puzzle collections, based on algebra, arithmetic, permutations, probability, plane figure dissection, properties of numbers, by one of world’s foremost puzzlists. Solutions. 450 illustrations. 258pp. 20473-1 Pa. $2.75
MATHEMATICS, MAGICAND MYSTERY, Martin Gardner. Puzzle editor for Scientific American explains math behind: card tricks, stage mind reading, coin and match tricks, counting out games, geometric dissections. Probability, sets, theory of numbers, clearly explained. Plus more than 400 tricks, guaranteed to work. 135 illustrations. 176pp. 20335-2 Pa. $2.00 BESTMATHEMATICAL PUZZLES OF SAMLOUD,edited by Martin Gardner. Bizarre, original, whimsical puzzles by America’s greatest puzzler. From fabulously rare Cyclopedia, including famous 14-15 puzzles, the Horse of a Different Color, 115 more. Elementary math. 150 illustrations. 167pp. 20498-7 Pa. $2.00 MATHEMATICAL PUZZLES FOR BEGINNERS AND ENTHUSIASTS, Geoffrey Mott-Smith. 189 puzzles from easy to difficult involving arithmetic, logic, algebra, properties of digits, probability. Explanation of math behind puzzles. 135 illustrations. 248pp. 20198-8 Pa. $2.00 BIGBOOKOF MAZESAND LABYRINTHS, Walter Shepherd. Classical, solid, and ripple mazes; short path and avoidance labyrinths; more -50 mazes and labyrinths in all. 12 other figures. Full solutions. 112pp. 8% x 11. 22951-3 Pa. $2.00 AND PUZZLES, Maxey Brooke. 60 puzzles, games and stunts - from COINGAMES Japan, Korea, Africa and the ancient world, by Dudeney and the other great puzzlers, as well as Maxey Brooke’s own creations. Full solutions. 67 illustrations. 94PP. 22893-2 Pa. $1.25
HANDSHADOWS TO BE THROWN UPON THE WALL,Henry Bursill. Wonderful Victorian novelty tells how to make flying birds, dog, goose, deer, and 14 others. 21779-5 Pa. $1.00 32pp. 6% x 9%.
CATALOGUE OF DOVER BOOKS
.
rlr.
BUILDYOUR OWNLOW-COSTHOME,L.O.Anderson, H.F. Zornig. U.S.Dept. of Agriculture sets of plans, full, detailed, for 11 houses: A-Frame, circular, conventional. Also construction manual. Save hundreds of dollars. 204pp. 11 x 16. 21525-3 Pa. $5.95 HOUSE,L.O. Anderson. Comprehensive, easy to How TO BUILDA WOOD-FRAME follow U.S.Government manual: placement, foundations, framing, sheathing, roof, insulation, plaster, finishing - almost everything else. 179 illustrations. 223pp. 7718 x 10%. 22954-8 Pa. $3.50 MASONRY AND BRICKWORK, U.S. Department of the Army. Practical CONCRETE, handbook for the home owner and small builder, manual contains basic principles, techniques, and important background information on construction with concrete, concrete blocks, and brick. 177 figures, 37 tables. 200pp. 6% x 9%. 23203-4 Pa. $4.00 BOOKOF QUILTMAKING AND COLLECTING, Marguerite Ickis. Full inTHESTANDARD formation, full-sized patterns for making 46 traditional quilts, also 150 other patterns. Quilted cloths, lame', satin quilts, etc. 483 illustrations. 273pp. 6718 x @/. . 20582-7 Pa. $3.50 '
101 PATCHWORK PATTERNS, Ruby S. McKim. 101 beautiful, immediately useable patterns, full-size, modern and traditional. Also general information, estimating, quilt lore. 124pp. 7718 x 10%. 20773-0 Pa. $2.50 KNITYOUR OWNNORWEGIAN SWEATERS, Dale Yarn Company. Complete instructions for 50 authentic sweaters, hats, mittens, gloves, caps, etc. Thoroughly modem designs that command high prices in stores. 24 patterns, 24 color photographs. Nearly 100 charts and other illustrations. 58pp. 8318 x 11%. 23031-7 Pa. $2.50 IRON-ON TRANSFER PATTERNS FOR CREWEL AND EMBROIDERY FROM EARLY AMERICAN SOURCES, edited by Rita Weiss. 75 designs, borders, alphabets, from traditional American sources printed on translucent paper in transfer ink. Reuseable. Instructions. Test patterns. 24pp. 8% x 11. 23162-3 Pa. $1.50 AMERICANINDIAN NEEDLEPOINTDESIGNS FOR PILLOWS, BELTS,HANDBAGS AND OTHER PROJECTS, Roslyn Epstein. 37 authentic American Indian designs adapted for modern needlepoint projects. Grid backing makes designs easily transferable to canvas. 48pp. 8% x 11. 22973-4 Pa. $1.50
I
CHARTED FOLKDESIGNS FOR CROSS-STITCH EMBROIDERY, P4aria Foris & Andreas Foris. 278 charted folk designs, most in 2 colors, frail Danube region: florals, fantastic beasts, geometrics, traditional symbols, more. Border and central patterns. 77pp. 8% x 11. US0 23191-7 Pa. $2.00 Prices subject to change without notice. Available at your book dealer or write for free catalogue to Dept. GI, Dover Publications, Inc., 180 Varick St., N.Y., N.Y. 10014. Dover publishes inore than 150 books each year on science, elementary and advanced inatheinatics, I)iology, inusic, art, literary history, social sciences and other areas.
.a
(continued from front flap)
,
CALCULUS REFRESHENER FOR TECHNICAL MEN,A. Albert Klaf. (20370-0) $4.00 PRACTICAL STATISTICS, Russell Langley. ( 22729-4) $4.00 CHANCE,LUCKA N D STATISTICS, Horace C. Levinson. (21007-3) $2.50 UNIVERSITYALGEBRA, D. E. Littlewood. (62715-2) $3.50 H O W Do You USE A SLIDEKULE?, Arthur A. Merrill. . ( ”Y62 0) $ 1 .OO MATHEMATICALEXCURSIONS, Helen Abbott Merrill. (20350-6) $1.75 THE GENTLEART OF MATHEMATICS, Dan Pedoe. (22949-1) $2.50 _--
GEOMETRIC EXERCISES I N PAPERFOLDJNG, T. Sundara Row. f 7 ) (21 594-6) $2.00 GREATIPAS IN INFORMATION THEORY,LANGUAGE AND CYBERNETICS, Jagjit Singh. (21694-2) $3.50 APPLIED MATHEMATICSFOR RADIOAND COMMUNICATIONS ENGINEERS, Car1 E. Smith. (60142-0) $3.00 TEACHYOURSELF THE SLIDERULE,Burns Snodgrass. (20684-X) Clothbound $2.50 H O W To CALCULA? E QUICKLY, Henry Sticker. (20295-X) $2.50 THENUMBER SYSTEM,Hugh A. Thurston. (61848-X) $2.00 CONCEPTS AND METHODS OF ARITHMETIC,Marvin C. Volpel. (61 237-6) $3.00 I *
aperbound unless otherwise indicated. Prices subject to change ithout notice. Available at your book dealer or write for freo catalogues to Dept. TF4, Dover Publications, Inc., 180 Varick Street, New York, N. Y. 1001$
_--_
..